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Abstract

In this thesis we use a relatively new modeling technique based on functional

data analysis for demand and price prediction. The basic novelty of our problem

is that we are going to predict not just a value at some point, but a whole

function of the price depending on the cumulative offered quantity. As far as we

know, non-parametric mesh-free interpolation techniques were never considered

for the problem of modeling the daily supply and demand curves. The main

goal of this thesis is to model and forecast the whole supply and demand curves

and the variables related to electricity markets, such as prices and demand. We

will show that the forecasting of the whole curves gives deep insight into the

electricity market and allows to improve the accuracy of forecasting.

Chapter 1 provides a brief overview of previous research on short term

forecast. Short term forecast proved to be a very challenging task due to some

specific features. In the literature, different methods have been discussed. Func-

tional data analysis is extensively used in other fields of science, but it has been

not much explored in the electricity market setting.

In Chapter 2 the mathematical preliminaries regarding the infinite di-

mensional stochastic processes relevant for this thesis are provided. Mainly, we

follow the monograph by Bosq, which introduces functional linear time series.

Chapter 3 describes radial basis function interpolation techniques. The

first task in our thesis is to elaborate an appropriate algorithm to present the

information about electricity prices and demands, in particular to approximate

a monotone piecewise constant function. This problem is similar to another one

already studied in numerical analysis, in particular in the context of approxi-

mation theory with meshless methods. The use of radial basis functions have
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attracted increasing attention in recent years as an elegant scheme for high-

dimensional scattered data approximation, an accepted method for machine

learning, one of the foundations of mesh-free methods and so on.

In Chapter 4 we present a parsimonious way for representing supply and

demand curves, using a mesh-free method based on radial basis functions. Using

the tools of functional data analysis, we are able to approximate the original

curves with far less parameters than the original ones. Namely, in order to

approximate piecewise constant monotone functions, we are using linear com-

binations of integrals of Gaussian functions.

We also test this new approach with the aim of forecasting supply and

demand curves and finding the intersection of the predicted curves in order to

obtain the market clearing price. In assessing the goodness of our method, we

compare it with models with similar complexity in terms of dependence of the

past, but only based on the clearing price. Our forecasting errors are smaller

compared with these univariate models. In particular, our analysis show that

our multivariate approach leads to better results than the univariate one in

terms of different error measures.

In Chapter 5 we consider supply and demand curves as stochastic pro-

cesses with values in a functional space. In order to deal with the huge amount

of bid data, we study linear transformations of multivariate stochastic processes.

It is a known fact that a linear transformation of a vector ARMA process is

again an ARMA process. However, in general, there are transformations of a

finite order ARppq process that do not admit a finite order AR representation,

but just a mixed ARMA representation. We obtained a characterization result

regarding the conditions that guarantees that a linear transformation of a vec-

tor AR process is again an AR process both in finite and in infinite dimension,

and we apply these results to the model of Ziel and Steinert from [75].
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Riassunto

In questa tesi utilizziamo una tecnica di modellizzazione relativamente

nuova basata sull’analisi dei dati funzionali per la previsione della domanda

e dei prezzi. La novità fondamentale del nostro problema è che prediremo

non solo un valore in un determinato punto, ma un’intera funzione del prezzo

che dipende dalla quantità cumulativa offerta. Per quanto ne sappiamo, le

tecniche di interpolazione senza mesh non parametriche non sono mai state

prese in considerazione per il problema della modellizzazione delle curve di do-

manda e offerta giornaliere. L’obiettivo principale di questa tesi è modellizzare

e prevedere tutte le curve di domanda e offerta e le variabili relative ai mercati

elettrici, come i prezzi e la domanda. Dimostreremo che la previsione di tutte

le curve fornisce una visione approfondita del mercato elettrico e consente di

migliorare l’accuratezza delle previsioni.

Il Capitolo 1 fornisce una breve panoramica delle ricerche precedenti sulle

previsioni a breve termine. Le previsioni a breve termine si sono rivelate

un’attività molto impegnativa a causa di alcune caratteristiche specifiche. In

articoli del settore sono stati discussi diversi metodi. L’analisi dei dati funzion-

ali è ampiamente utilizzata in altri settori disciplinari, ma è stata poco esplorata

nel contesto del mercato elettrico.

IL Capitolo 2 presenta i preliminari matematici riguardanti i processi sto-

castici a dimensione infinita rilevanti per questa tesi. Principalmente, seguiamo

la monografia di Bosq, che introduce serie storiche lineari funzionali.

Il Capitolo 3 descrive le tecniche di interpolazione delle funzioni radiali di

base. Il primo compito per la nostra tesi è quello di creare un algoritmo appro-

priato per presentare le informazioni sui prezzi e le richieste dell’elettricità, in

particolare per approssimare una funzione monotona costante a tratti. Questo

problema è simile ad un altro già studiato in analisi numerica, in particolare

nell’ambito della teoria dell’approssimazione con metodi meshless. Negli ultimi

anni l’uso delle funzioni radiali di base ha attirato una crescente attenzione
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come metodo elegante per l’approssimazione di dati sparsi ad alta dimensione,

un metodo accettato per machine learning, uno dei fondamenti dei metodi

meshless etc.

Nel Capitolo 4 presentiamo un metodo parsimonioso per rappresentare

le curve di domanda e offerta, usando un metodo meshless basato su funzioni

radiali di base. Utilizzando gli strumenti di analisi dei dati funzionali, siamo

in grado di approssimare le curve originali con molti meno parametri di quelli

iniziali. Per approssimare funzioni monotone costanti a tratti, stiamo usando

combinazioni lineari di integrali di funzioni gaussiane.

Inoltre, testiamo questo nuovo approccio con l’obiettivo di prevedere le

curve di domanda e offerta e trovare l’intersezione delle curve previste per

ottenere il prezzo di equilibrio di mercato. Nel valutare l’efficacia del nos-

tro metodo, lo confrontiamo con modelli con complessità simile in termini di

dipendenza dal passato, ma basati solo sul prezzo di equilibrio di mercato. I

nostri errori di previsione sono minori rispetto a questi modelli univariati. In

particolare, la nostra analisi mostra che il nostro approccio multivariato porta

a risultati migliori rispetto a quello univariato in termini di diverse misure di

errore.

Nel Capitolo 5 consideriamo le curve di domanda e offerta come processi

stocastici con valori in uno spazio funzionale. Per gestire l’enorme quantità

di dati di offerta, abbiamo studiato trasformazioni lineari di processi stocas-

tici multivariati. È noto che una trasformazione lineare di un processo ARMA

vettoriale è di nuovo un processo ARMA. Tuttavia, in generale, ci sono trasfor-

mazioni di un processo ARppq di ordine finito che non ammettono una rapp-

resentazione AR di ordine finito, ma solo una rappresentazione ARMA mista.

Abbiamo ottenuto un risultato di caratterizzazione relativo alle condizioni che

garantiscono che una trasformazione lineare di un processo AR vettoriale sia

ancora un processo AR sia di dimensione finita che di dimensione infinita, e

applichiamo questi risultati al modello di Ziel e Steinert da [75].
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Notation

Throughout the dissertation, R and C denote the sets of real and complex

numbers, respectively, the symbol N denotes the set of natural numbers, Z
denotes the set of integers.

H denote a real separable Hilbert space with its norm } ¨ } and its scalar

product x¨, ¨y.

CpKq – the space of continuous real-valued functions on K, with the norm

}f} “ max
tPK

|fptq|.

BpΩq – the Borel σ-algebra on a topological space Ω.

LpX, Y q – the space of continuous linear operators from X to Y with the norm

}T } “ max
xPX

}Tx}Y
}x}X

.

LpXq – the space of continuous linear operators from X to X.

T ˚ – adjoint operator of T .

pΩ,A , P q – a probability space

1A : X Ñ t0, 1u – the indicator function of a subset, which for a given subset

A of X, has value 1 at points of A and 0 at points of X{A

1



Chapter 1

Introduction

1.1 Supply and demand curves

In microeconomics, supply and demand is an economic model of price de-

termination in a market. An equilibrium is defined to be the price-quantity

pair where the quantity demanded is equal to the quantity supplied. It is

represented by the intersection of the demand and supply curves.

Before liberalization of the electric sector, when the market was highly regu-

lated and controlled by state owned companies, the electric utilities were mainly

interested in efficient forecasting of electric load as the variation in the electric-

ity prices was minimal and changes in prices were considered after regular time

intervals. However, because generation is actually a competitive market with

upward-sloping supply curves, it does not need to be regulated as part of a

”rate case“, as is the case for distribution and transmission. So, in most of the

country, in the 1980s and 1990s, the generation part of the system was sold off

or spun off into separate companies. These companies are called ”merchant gen-

erators“ or ”unregulated generators“, because they are selling at marginal cost

into a competitive marketplace, bidding against other firms. They are not nat-

ural monopolies that need to be controlled by public utility commissions. There

is lots of evidence that market systems for generation deliver lower costs and

better service, but many areas are comfortable keeping generation under the

control of utility commissions. They are trading off lower costs and potential

innovations for stability and less price volatility.

2
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Figure 1.1: Supply and demand curves in electricity market

1.2 Price formation process

Consider, for example, the Italian electricity market (IPEX). IPEX consists

of different markets, including a day-ahead market. The day-ahead market is

managed by Gestore del Mercato Elettrico (GME) where prices and demand are

determined the day before the delivery by means of hourly concurrent auctions.

For each delivery day the market session starts at 8 a.m. of the ninth day before

the day of physical delivery and closes at mid-day (12 a.m.) of the day before

delivery.

The producers submit offers where they specify the quantities and the min-

imum price at which they are willing to sell. The demanders submit bids where

they specify the quantities and the maximum price at which they are willing to

buy. These bids and offers typically consist of a set of energy blocks and their

corresponding prices with other relevant information for every hour of the next

day and they are submitted through an online web portal called ”market par-

ticipant interface“ that is also used to manage and display invoicing data and



4

payables/receivables resulting from transactions that are already concluded in

the previous days. They are then aggregated by an independent system op-

erator (ISO) in order to construct the supply and demand curves. Only one

agent is responsible for this task and his role is very important for many rea-

sons including reliability, independence, non-discrimination, unbundling and

efficiency. ISO ensures reliability of power grid by coordinating short term

operations, independence by not allowing any entity to control the criteria or

operating procedures and non-discriminatory access for all market participants

without distinction as to customer identity or affiliation. Services unbundling

for utilization by the market participants and efficient operating procedures

and pricing of services are also responsibility of ISO.

Since bidders are expected to buy electricity at lower prices and sell at

higher prices, corresponding quantities in the hourly bid must be a non-

increasing sequences. In a competitive market, each generator enters bids for

how much of its output power it wants to sell at what price. That is, each

generator gives an individual supply curve to the system operator. The system

operator is a quasi-governmental non-profit firm that is responsible for collect-

ing all of the bids, arranging them in ascending order of price, and then figuring

out which power plants shall be turned on, and when.

When we add together each individual supply curve, we are left with an

aggregate supply curve that is called a ”generation stack“ - literally, all of the

generators are ”stacked up“ in ascending order of marginal cost, and only the

lowest cost ones necessary to meet expected demand will be turned on the next

day. Although an hourly bid consists of a discrete set of quantity price pairs,

it is in fact a monotone increasing piecewise constant function. This

is done on a ”day-ahead“ basis, where generators enter their bids for tomorrow

and, after computer runs, are told if and when they will be expected to turn

on the next day.

In electricity markets, the demand side is called the ”load“. The load is

simply the sum of all demands for electricity in a market at any given time. Load
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changes continuously as people turn devices on and off, as temperature changes,

as the natural light comes and goes, and so on. This pattern of changing load is

called a ”load shape“. We can have daily load shapes, weekly ones, and annual

ones. The demand curve for electricity was classically represented as a vertical

line, i.e. a perfectly inelastic demand curve. However, in recent work [40] a

study of wholesale demand elasticities were conducted.

Once the offers and bids are received by the ISO, supply and demand curves

are established by summing up individual supply and demand schedules. In

the case of demand, the first step is to replace ”zero prices“ bids by the market

maximum price (for IPEX, the market maximum price is 3000 Euro) without

changing the corresponding quantities. After this replacement, the bids are

sorted from the highest to the lowest with respect to prices. The corresponding

value of the quantities is obtained by cumulating each single demand bid. For

supply curve, in contrast, the offers are sorted from the lowest to the highest

with respect to prices and the corresponding value of the quantities is obtained

by cumulating each single supply offer. The market equilibrium is the point

where both curves intersect each other and the price balances supply and de-

mand schedules (see Figure 1.2). This point determines the market clearing

price and the quantity. Accepted offers and bids are those that fall to the

left of the intersection of the two curves and all of them are exchanged at the

resulting price.

However, at GME the equilibrium price is different from the market clearing

price as the latter accounts for other transactions, e.g. transmission capacity

limits between zones, electricity imports from other countries etc. All demand

bids and supply offers pertaining to both, pumping unit and consuming units,

belonging to foreign virtual zones, that are accepted, are valued at the marginal

clearing price of the zone to which they belong. The accepted demand bids

pertaining to consuming units belonging to Italian geographical zones are val-

ued at the ”Prezzo Unico Nazionale“ (national single price, PUN); this price

is equal to the average of the prices of geographical zones, weighted for the
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Figure 1.2: The market equilibrium point

quantities purchased in those zones (more information on the GME website

www.mercatoelettrico.org). The results (market clearing prices and quantities

for each hour for the following day) of the day-ahead market (MGP) are made

available within 12.55 p.m. of the day before that of delivery.

1.3 Literature review

In the beginning of the 2000s the amount of papers focused on electricity

price forecasting started to increase dramatically. A great variety of methods

and models occurred during last twenty years. Weron [74] made an overview of
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the existing literature on electricity price forecasting. Electricity price models

in literature can be broadly classified under the following classes:

1. Multi-agent models, which simulate the operation of a system of hetero-

geneous agents (generating units, companies) interacting with each other,

and build the price process by matching the demand and supply in the

market.

2. Fundamental models, which describe the price dynamics by modeling the

impacts of important physical and economic factors on the price of elec-

tricity. These models manifest electricity price dynamics by incorporating

and modeling impact of all physical factors and economic factors. These

models are believed to be better suited for medium-term electricity price

forecasting compared to short term electricity price modeling and forecast-

ing.

3. Quantitative models, which characterize the statistical properties of elec-

tricity prices over time, with the ultimate objective of derivatives evalua-

tion and risk management. These models have their practical application

in valuation of derivatives and for risk management motive and purpose.

4. Statistical approach. These techniques are direct applications of methods

inspired by electrical load forecasting or time series econometric models.

The effectiveness, efficiency and appropriate usefulness of adopting tech-

nical analysis approach is often questioned in financial markets, however,

the same techniques stand better chance in power markets irrespective of

the time period considered. Statistical models are attractive because some

physical interpretation may be attached to their components, thus allowing

engineers and system operators to understand their behavior.

5. Artificial Intelligence techniques. In these techniques, spot electricity prices

are modeled by adopting neural networks, expert systems, support vector

machines, fuzzy logic etc which are non-parametric tools having the ad-

vantage of being flexible and capable of handling complexity and most
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importantly non-linearity. Being non-intuitive and often performing below

par has been their biggest drawback.

Forecasting models for electricity prices also can be classified on the base

of the time frame for which prediction of electricity price needs to be done as

follows:

1. Forecasting of electricity prices for long-term (more than 1 year). The

prime objective is for analyzing and planning long term investment and

political decisions.

2. Forecasting of electricity prices for medium-term (3 months to 1 year).

These classes of models are normally favored for balance-sheet calculations,

derivatives pricing and also risk management. The focus is on distributions

of future electricity prices for medium term rather than exact point fore-

casts.

3. Forecasting of electricity prices for short-term price (up to 3 months).

Power market participants belonging to auction-type spot markets are

particularly interested with forecasting of electricity prices for short-term

where they should participants communicate their bids quoting the price

for buying/selling along with quantities. Statistical models and artificial

intelligence based approaches are useful for short-term electricity price fore-

casting purpose.

The multi-agent (or equilibrium) models, and hybrid models which, given

the particular characteristics of electricity, explain price formation based on

state variables that are mainly associated to supply and demand. For exam-

ple, Pirrong and Jermakyan (1999) [54] and Pirrong and Jermakyan (2000) [?]

proposed to model the equilibrium price as a function of two state variables,

electricity demand and the futures price of the marginal fuel. Moreover, the

authors considered that electricity prices should be an increasing and convex

function of demand.

Bessembinder and Lemmon (2002) [6] adopted an equilibrium perspective
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and explicitly modeled the economic determinants of the forward market. In

their model, producers face marginal production costs that may increase steeply

with output and aggregate demand is exogenous and stochastic. They showed

that the forward premium, defined as the forward minus the expected spot

price, is positively (resp. negatively) related to the skewness (resp. variance)

of the spot price.

Longstaff and Wang (2004) [43] focused on the question of how electricity

forward prices are related to expected spot prices. Their goal was to provide

an empirical analysis of the theoretical predictions presented in Bessembinder

and Lemmon (2002) [6]. They found a significant forward premium in the

PJM market which they consider as being the result of ”the rationality and

risk aversion of economic agents participating in the market“. They pointed

out that ”total demand approaching or exceeding the physical limits of power

generation“ is an important economic risk (related also to quantity risk) and

”the risk of price spikes as demand approaches system capacity is an extreme

type of risk which may have important implications for the relation between

spot and forward prices“. Therefore in those situations where the demand level

is near the maximum capacity of the system, the behavior of electricity prices

can be quite abrupt, since electricity must be generated by plants with higher

marginal costs (convexity of the supply function). Barlow (2002) [4] proposed a

non-linear Ornstein-Uhlenbeck process for the description of observed electricity

prices.

In 2007 A.Cartea and P.Villaplana [18] proposed a model for the electricity

spot price as a function of demand and generation capacity . They derived

analytical expressions to price forward contracts and to calculated the forward

premium. They applied their model to the PJM, England and Wales, and Nord

Pool markets. They assumed that both volatility of capacity and the market

price of capacity risk are constant and found that, depending on the market and

period under study, it could either exert an upward or downward pressure on

forward prices. Most models have in common that they focus on the price itself
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or related time series. In such a way these models does not take into account

the underlying mechanic which determines the price process – the intersection

between the part of the electricity supply and demand. Some of the recent

approaches try to to analyse the real offered volumes for selling and purchasing

electricity. This commonly leads to a problem of a large amount of data and,

therefore, high complexity.

Eichler, Sollie, Tuerk in 2012 [25] investigated a new approach that exploits

information available in the supply and demand curves for the German day-

ahead market. They proposed the idea that the form of the supply and demand

curves or, more precisely, the spread between supply and demand, reflects the

risk of extreme price fluctuations. They utilize the curves to model a scaled

supply and demand spread using an autoregressive time series model in order to

construct a flexible model adapted to changing market conditions. Furthermore,

Aneiros, Vilar, Cao, San Roque in 2013 [2] dealt with the prediction of residual

demand curve in elecricity spot market using two functional models. They

tested this method as a tool for optimizing bidding strategies for the Spanish

day-ahead market.

In 2016 Shah [65] also considered the idea of modeling the daily supply and

demand curves, predicting them and finding the intersection of the predicted

curves in order to find the predicted market clearing price and volume. He

used the functional approach, namely, B-spline approximation, to convert the

resulted piece-wise constant curves into smooth functions.

In 2016 Ziel and Steinert described and showed a new methods for the

day-ahead electricity market of Germany and Austria [75]. Instead of directly

modeling the electricity price, they modeled and utilized its true source: the

sale and purchase curves of the electricity exchange. They analyzed the hourly

day-ahead electricity price auction data of Germany and Austria provided by

the EPEX Spot from 01.10.2012 to 19.04.2015, using a subtle data processing

technique as well as dimension reduction and lasso-based estimation methods.

Their model consists of three parts:
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1. Construction of price classes in order to overcome the massive amount of

data.

2. Forecasting for each price class by using time series model.

3. Reconstruction of supply and demand curves and computation of market

clearing price.

We describe the model of Ziel and Steinert in more details in Chapter 5.

1.4 Our approach to price prediction

Short term forecast proved to be very challenging task due to these specific

features. Figure 1.3 and 1.4 demonstrate changing of electricity equilibrium

price and quantity during one week. The hourly load forecasting of the next 24

up to 48 hours ahead or more is needed to support basic operational planning

functions, such as spinning reserve management and energy exchanges, as well

as network analysis functions related to system security, such as contingency

analysis. Functional data analysis is extensively used in other fields of science,

but it has been little explored in the electricity market setting.

Figure 1.3: Electricity equilibrium prices
during a week

Figure 1.4: Electricity equilibrium quanti-
ties during a week

In this thesis we are going to use a relatively new modeling technique based

on functional data analysis for demand and price prediction. The basic novelty

of our problem is that we are going to predict not just a value at some point, but

a whole function of the price depending on cumulative offered quantity. The
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first task for this purpose is to make an appropriate algorithm to present the

information about electricity prices and demands, in particular to approximate

a monotone piecewise constant function. This problem is similar to another

one already studied in numerical analysis, in particular in the context of ap-

proximation theory with meshless methods, namely, approximation by radial

basis functions. As far as we know, non-parametric mesh-free interpolation

techniques were never considered for the problem of modeling the daily supply

and demand curves. The use of radial basis functions have attracted increasing

attention in recent years as an elegant scheme for high-dimensional scattered

data approximation, an accepted method for machine learning, one of the foun-

dations of meshfree methods and so on. We will show that the forecasting of

the whole curves gives deep insight into the electricity market.

After presenting the original supply and demand curves from the Italian

day-ahead electricity market with far less parameters than the original ones we

will show that there is no direct relationship between the number of offer and

bid layers and the hour of the day, the day of the week, and the time of the

year. We also will test this new approach with the aim of forecasting supply

and demand curves and finding the intersection of the predicted curves in order

to obtain the market clearing price. In assess the goodness of our method, we

will compare it with models with similar complexity in terms of dependence of

the past, but only based on the clearing price.

In order to deal with the huge amount of bid data, we will study linear

transformations of multivariate stochastic processes. It is known fact that a

linear transformation of a vector ARMA process is again an ARMA process.

Instead, a linear transformation of a finite order ARppq process does not admit

in general a finite order AR representation, but just a mixed ARMA represen-

tation. We will obtain a characterization result regarding the conditions that

guarantee that a linear transformation of a vector AR process is again an AR

process both in finite and in infinite dimension. We will then apply them to

the model of Ziel and Steinert from [75].



Chapter 2

Mathematical preliminaries for

stochastic modelling in large dimension

In this chapter we provide the mathematical preliminaries regarding the

stochastic calculus relevant for this thesis. Mainly, we follow the monograph

by Bosq [13], which introduces functional linear time series

Let us give a simple example where infinite-dimensional modeling is a useful

tool for applications. If one observes temperature in continuous time during N

days, and wants to predict its evolution during the pN`1q day, then pXnq, n P N
is a sequence of random variables with values in a suitable function space, say

C pr0, 24sq.

Another example of modeling in large dimensions is the following: consider

an economic variable associated with individuals. At instant n, the variable

associated with the individual i is Xn,i. In order to study the global evolution

of that variable for a large number of individuals, and during a long time, it is

convenient to set

Xn “ pXn,i, i ě 1q, n P Z,

which defines a process X “ pXn, n P Zq with values in some sequence space

F .

13
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2.1 Stochastic processes and random variables in functional spaces

We need to recall the definitions of the main types of vector-valued inte-

grals [22, 23]. The Bochner integral is a straightforward generalization of the

Lebesgue integral to Banach space valued functions.

Let B be a Banach space and pΩ,A , µq be a measurable space. A function

f : Ω Ñ B is called simple, if it is of the form f “
řn
i“1 xi1Ai

with xn P B,

and Ai P A forming a partition of Ω. A function f : Ω Ñ B is said to be

measurable if f´1pUq P A for every Borel subset U Ă X; f is said to be scalarly

measurable if the composition of f with every linear functional is a measurable

scalar function; f is said to be strongly (or Bochner) measurable if there is a

sequence of simple functions converging to f a.e..

For an arbitrary Banach space B we have the following characterization [23,

Theorem 3.3]: a random variable ξ : pΩ,A , P q Ñ B is Bochner integrable if

and only if ξ is Bochner measurable and E}ξ} ă 8. Notice that for separable

B strong measurability, scalar measurability and measurability are equivalent,

but in non-separable case this equivalence no longer takes place.

Let pΩ,A , P q be a probability space. Let H be a real separable Hilbert

space with its norm } ¨ } and its scalar product x¨, ¨y, LpHq denote the space

of continuous linear operators from H to H, and B be the Borel σ-algebra

generated by the norm topology on the space H.

A mapping X : Ω Ñ H is said to be a random variable taking values in a

Hilbert space H if X´1pBq P A for every B P B. Define

PXpBq “ P pX´1
pBq, B P Bq.

PX is a probability measure on the measurable spacepH,Bq generated by the

random variable X.

We consider the space L2
H :“ L2

HpΩ,A , P q of random variables X, defined

on the probability space pΩ,A , P q, with values in H, and such that E}X}2 ă
8. If E}X}2 ă 8, then the mathematical expectation EX exists as an element

of H (e.g. as a Bochner integral
ş

ΩXpwqdP pwq). The mean EX is the unique
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element of H such that

xEX, hy “ ExX, hy for all h P H. (2.1.1)

We now list some important properties of the expectation [10].

Proposition 2.1.1. 1. The space L2
H of equivalence classes of integrable H-

random variables X (with respect to the equivalence relation X “ Y a.s.),

defined on the probability space pΩ,A , P q, with values in H, and such that

E}X}2 ă 8 is a Hilbert space with scalar product

xX, Y yL2
H
“ ExX, Y y. (2.1.2)

2. E defines a continuous linear operator from L2
H to H, which satisfies the

contractive property

}EX} ď E}X} (2.1.3)

2. Let H1 and H2 be two separable Hilbert spaces and let T be a continuous

linear operators from H1 to H2. If X P L2
H1
, then T pXq P L2

H2
and

ET pXq “ T pEXq (2.1.4)

4. Dominated convergence: If Xn Ñ X a.s. in H and }Xn} ď Y a.s.,

where n ě 1 and Y is an integrable real random variable, then Xn P

L2
H , n ě 1, X P L2

H and

E}X ´Xn} Ñ 0. (2.1.5)

If X and Y are in L2
H , the cross-covariance operator of X and Y , which is

an infinite dimensional analogous to the covariance matrix, is defined as

CX,Y phq “ ErxX ´ EX, hypY ´ EY qs : H Ñ H. (2.1.6)

The covariance operator CX,X of X is denoted by CX . The covariance

operator CX is positive symmetric operator, i.e. xCXx, xy ě 0 and xCXx, yy “

xx,CXyy for all x, y P H.

We can indicate a characterization of covariance operators.
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Theorem 2.1.2. [10, Theorem 1.7] An operator C : H Ñ H is a covariance

operator if and only if it is symmetric, positive, and nuclear (i. e. a compact

operator with finite trace).

Moreover, the following properties holds: if vi, i ě 1, denotes an orthonor-

mal basis of H consisting of eigenvectors, λ1 ď λ2 ď . . . ď 0 are corresponding

eigenvalues, then C has decomposition:

Cphq “
8
ÿ

i“1

λi xh, viy vi, h P H.

8
ÿ

i“1

λi “ E}X}2 and
8
ÿ

i“1

λ2
i “

g

f

f

e

8
ÿ

i“1

pExX, viy2q2

Remark 2.1.3. Recall that any bounded linear operator in a separable Hilbert

space can be viewed as an infinite matrix. Fix an orthonormal basis teiuiPN for

a separable Hilbert space H. Let X “
ř8

i“1 xiei, Y “
ř8

i“1 yiei and h “
ř8

i“1 hiei. We can define

Y XT :“

¨

˚

˚

˚

˚

˚

˝

y1x1 y1x2 y1x3 . . .

y2x1 y2x2 y2x3 . . .

y3x1 y3x2 y3x3 . . .
... ... . . .

˛

‹

‹

‹

‹

‹

‚

.

Notice that, if EX “ EY “ 0, then the matrix EpY XT q represents the

operator CXY . Indeed,

CX,Y phq “ ErxX, hyY s “ E

«

8
ÿ

i“1

xihi

8
ÿ

j“1

yjej

ff

“

8
ÿ

j“1

8
ÿ

i“1

Epxiyjqhiej “ EpY XT
qh.

2.2 Linearly closed subspaces

The problem of linear approximation of a nonobserved random variable X

by a linear function of observed random variables pXi, i P Iq has a simple and

well known statement in a finite-dimensional setting.
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If X P L2pΩ,A , P q and Xi P L
2pΩ,A , P q, i P I are zero-mean, the best

linear approximation of X is its orthogonal projection over the smallest closed

subspace of L2pΩ,A , P q containing pXi, i P Iq. This subspace is the closure of

spantXi, i P Iu “

#

ÿ

iPJ

aiXi : J Ă I ´ finite, i P J, ai P R

+

.

If the variables are in X P L2
RdpΩ,A , P q, the usual procedure is to con-

sider the closed subspace generated by the components of the observed random

vectors and then to project each component of the nonobserved random vector.

More generally, in an infinite-dimensional Hilbert space it is convenient

to project over a rich enough subspace of L2
HpΩ,A , P q. In this context, we

introduce the notion of linearly closed subspace (LCS) (or hermetically closed

subspace) in L2
HpΩ,A , P q.

Definition 2.2.1. G is said to be a linearly closed subspace of L2
HpΩ,A , P q if

1. G is a closed subspace of L2
HpΩ,A , P q.

2. If X P G , then `pXq P G for any ` P LpHq.

For any random variable X P L2
H we can consider the linearly closed sub-

space generated by X:

GX “ spant`pXq : ` P LpHqu.

Note that, in general, GX is infinite-dimensional and that the elements of

GX are not necessary of the form `pXq, ` P LpHq.

Example 2.2.2. Let H “ `2, Ω “ r0, 1s, Xpwq “ we1 : Ω Ñ `2.

GX “ spant`pXq : ` P LpHqu “ spantw ¨ `pe1q : ` P LpHqu

“ tw ¨ h : h P Hu Ă L2
H .

So, GX is infinite dimensional and GX ‰ L2
H (Y pwq ” e1 R GX).

By ΠGX “ ΠX we denote the orthogonal projector onto the subspace GX .

Now it is of our interest to give conditions that yields existence of l P LpHq

such that ΠXpY q “ lpXq a.s..
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Theorem 2.2.3. [12, p.233] Let X, Y be zero-mean H-valued random vari-

ables in L2
H . Then the following conditions are equivalent:

(i.) The cross-covariance operator CX,Y is dominated by the covariance oper-

ator CX , i.e. there exists α ě 0 such that }CX,Y phq} ď α}CXphq} for all

h P H.

(ii.) There exists l P LpHq such that ΠXpY q “ lpXq (a.s.).

2.3 Stationary processes in Hilbert spaces

Definition 2.3.1. An H-valued process X “ pXn, n P Zq is said to be strictly

stationary if the joint probability distribution of X does not change when

shifted in time, i.e.

PX “ PτmpXq, @m P Z,

where τmpXq “ pXn`m, n P Zq.

Definition 2.3.2. An H-valued process X “ pXn, n P Zq is said to be (weakly)

stationary if

1. E}Xn}
2 ă 8 and EXn do not depend on n;

2. CXn`j ,Xm`j
“ CXn,Xm

for any n,m, j P Z.

Example 2.3.3 (Discrete Ornstein-Uhlenbeck equation in the infinite-dimen-

sional case.). Let X “ pXn, n P Nq be a random `2-valued vector. Consider the

dynamics

Xn “ AXn´1 `Wn,

where Wn are independent identically distributed `2-valued random vectors

such that Wn „ N p0, Sq . Suppose that A is invertible with }A} ă 8. We

want to find a covariance operator C0 such that, if X0 „ N p0, C0q, then pXnq

is weakly stationary.

Evidently, EXn “ 0 for all n P N. So, we need to guarantee that the

covariance matrix is invariant under time shift. We will use the representation
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CXY “ EpY XT q. Suppose that m “ n` k, k ě 0 and calculate CXmXn
.

CXmXn
“ EpXnX

T
mq

“ E
“

pWn ` AWn´1 ` . . .` A
nX0qpWm ` AWm´1 ` . . .` A

mX0q
T
q
‰

“ ErpWnW
T
n ` AWn´1W

T
n´1A

T
` . . .

` An´1W1W
T
1 ppA

n´1
q
T
q ` AnX0X

T
0 pA

n
q
T
qpAk

q
T
s

“
`

S ` ASAT
` . . .` An´1SpAn´1

q
T
` AnC0pA

n
q
T
˘

pAk
q
T

Denote F pnq “ S`ASAT` . . .`An´1SpAn´1qT`AnC0pA
nqT . We want to

find sufficient condition such that CXmXn
depends only on k. This is equivalent

to the condition F pn´ 1q “ F pnq, so, we obtain the equation for C0:

C0 “ S ` AC0A
T . (2.3.1)

This is the so-called discrete time Lyapunov equation. The solution can be

expressed as an infinite sum

C0 “

8
ÿ

k“0

AkSpAT
q
k. (2.3.2)

The operator C0 is defined correctly if }A} ă 1. So, we showed that pXnq is

weakly stationary, if A is an invertible operator with norm less than 1 and C0

satisfies (2.3.2). Notice that in the one-dimensional case (A, S, C0 P R) this

means that C0 “
ř8

k“1A
2S “ S{p1´ A2q.

Definition 2.3.4. An H-valued process ε “ pεn, n P Zq is said to be a H-white

noise if

1. 0 ă E}εn}2 “ σ2 ă 8;

2. Eεn “ 0,

3. Cεn :“ Cε ‰ 0 do not depend on n P Z;

4. εn are pairwise orthogonal in the strong sense

E pxεn, xy xεm, yyq “ 0 @x, y P H,n ‰ m.

εn is called a H strong white noise if it satisfies 1)-3) and

4’) εn is a sequence of i.i.d. H-random variables.
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An strong white noise is a white noise and the converse fails. It holds if εn
is Gaussian. Let us now give examples of Hilbertian white noises.

Example 2.3.5. Consider H “ L2 pr0, 1s,Bpr0, 1sq, µq, where µ denotes

the Lebesgue measure. Let Ws be a bilateral Wiener process (i.e Ws “

W
p1q
s 1R`psq`W

p2q
´s 1R´psq, andW

p1q
s ,W

p2q
s are two independent standard Wiener

processes). Fix h P H, h ‰ 0 and set

εnptq “

ż n`t

n

hpn` t´ sqdWs, t P r0, 1s n P Z.

Then ε “ pεn, n P Zq is a strong white noise, since increments of W are

independent stationary.

Definition 2.3.6. LetX “ pXn, n P Zq beH-valued weakly stationary process

and let Mn be the linearly closed subspace generated by pXs, s ď nq, i.e.

Mn “ spant`pXsq : ` P LpHq, s ď nu. X is called regular process if, for the

process

εn “ Xn ´ ΠMn´1pXnq,

it holds that σ2 :“ E}εn}
2 ą 0.

In this case ε “ pεn, n P Zq is an H-white noise. Moreover εn PMn and εn
is strongly orthogonal to Mn´1, i.e. Cεn,ξ “ 0 for any ξ P Mn´1. pεnq is called

the innovation process of X.

Definition 2.3.7. An H-valued weakly stationary and regular process X “

pXn, n P Zq is a linear process (LPH) if for all n P Z

Xn “ ΠInpXnq,

where In is the linearly closed subspace generated by pεs, s ď nq.

So, every LPH X “ pXn, n P Zq can be written in the form

Xn “ εn `
8
ÿ

k“1

Πεn´kpXnq, n P Z

and Πεn´kpXnq only depends on Cε0, Cε0,Xj
and Xn. However, linear processes

which depend only on a finite number of parameters are more tractable than

general linear processes from a statistical point of view.



21

2.3.1 Gaussian random variables in Hilbert spaces

In this subsection we recall the basic definitions and some classical proper-

ties of Gaussian random variables. Historically, the study of Gaussian random

vectors and processes may indeed be considered as one of the fundamental top-

ics of the theory since it inspired many other parts of the field in results and

techniques of investigation.

A real valued random variable X in L2pΩ,A , P q is said to be Gaussian if

its characteristic function is given by

ϕXptq “ epiµt´σ
2t2{2q,

where µ “ EX, σ2 “ V arrXs.

A random vector X “ pX1, . . . , Xdq in Rd is Gaussian if for all real numbers

α1, . . . , αd, a linear combination
řd
k“1 αkXk is a real valued Gaussian random

variable. An equivalent definition is the following: a random vector X is Gaus-

sian in Rd if there is a d-vector µ and a symmetric, positive semidefinite dˆ d

matrix S, such that the characteristic function of X is

ϕXptq “ e

´

itTµ´
1
2 t

TSt

¯

.

Recall that the characteristic functional ϕX of the random variable X taking

values in a Hilbert space H is given by

ϕXpyq “

ż

H

eixx,yyPXpdxq “

ż

Ω

eixXpwq,yyP pdwq “ E
”

eixX,yy
ı

, y P H.

It is known that ϕXp¨q : H Ñ C is continuous in the norm topology, and

satisfies the properties:

1. ϕXp0q “ 1;

2. |ϕXpyq| ď 1, y P H;

3. ϕXpyq “ ϕXp´yq, y P H;

4. If X and Y are independent random variables with values in H, then

ϕX`Y pyq “ ϕXpyqϕY pyq, y P H;
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The proof of these results can be found in [32].

Definition 2.3.8. A random variable X on a Hilbert space H is said to be

Gaussian if its characteristic functional ϕXpyq is of the form

ϕXpyq “ e

´

ixµ,yy´
1
2xCy,yy

¯

,

where µ P H and C : H Ñ H is semi-definite positive Hermitian operator

with finite trace (that is, for some orthonormal basis teiu8i“1 of H, the sum
ř8

i“1xCei, eiy ă 8).

It can be shown that µ is the mean and the operator C is the covariance

operator for the Gaussian random variable X. The multivariate Gaussian dis-

tribution of a infinite dimensional random variable X can be written with the

notation X „ N pµ,Cq.

The next theorem gathers some important properties of H-valued Gaussian

random variables.

Theorem 2.3.9. [32, p. 141]

(i) Suppose that X and Y are two H-valued independent random variables,

X „ N pµX , CXq, Y „ N pµY , CY q. Then pX `Y q „ N pµX `µY , CX `

CY q.

Conversely, if Z “ X`Y is H-valued Gaussian random variable, and X, Y

are independent, then X and Y have to be Gaussian random variables.

(ii) If X „ N pµX , CXq, then X can be represented as

X “ µX `
8
ÿ

i“1

ψiei,

where teiu8i“1 is an orthonormal basis on H, tψiu8i“1 are independent zero-

mean Gaussian random variables with V arpψiq “ σ2
i and tσ2

i u
8
i“1 are the

eigenvalues of CX . Furthermore the infinite series is convergent (strongly)

with probability 1.

(iii) If X „ N pµX , CXq, and A P LpHq is a bounded linear operator from
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H to H, then the random variable Y “ AX is also Gaussian and Y „

N pAµX , ACXA
˚q.

2.3.2 The Wold decomposition

The classical Wold decomposition theorem states that any covariance sta-

tionary process can be decomposed into two mutually uncorrelated component

processes, one a linear combination of lags of a white noise process and the

other a process, future values of which can be predicted exactly by some lin-

ear function of past observations. The Wold theorem plays a central role in

time series analysis. It implies that the dynamic of any purely nondetermin-

istic covariance-stationary process can be arbitrarily well approximated by an

ARMA process. So, one reason for the popularity of the ARMA models de-

rives from Wold’s Theorem. On the other hand, the Wold decomposition of a

stationary process is analogous to the Lebesgue decomposition of the spectral

measure into its absolutely continuous and singular parts.

We are using the Wold decomposition theorem for vector-valued processes

in the proof of Lemma 2.4.1.

The Wold decomposition – real valued processes

The Wold representation theorem says that every weakly stationary process

can be written as the sum of two processes, one deterministic and one stochastic.

Let txt, t P Zu be a real valued weakly stationary process and define

Mn “ spantxt, t ď nu.

Definition 2.3.10. The process txtu is said to be deterministic if and only if

the one-step squared error

σ2
“ E|xn`1 ´ ΠMnxn`1|

2

equals to 0. In other words, the values xn`j, j ě 1 are perfectly predictable in

terms of elements of Mn.
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It is important to note that deterministic does not mean that xt is non-

random.

Example 2.3.11. Let txt, t P Zu be a stochastic process defined by

xt “ A cosptq `B sinptq

where A and B are independent standard normal random variables. This pro-

cess is deterministic. In fact it is possible to show that xt “
sinp2q
sinp1qxt´1 ´ xt´2.

Proposition 2.3.12. Any zero-mean weakly stationary process txtu with

σ2 ą 0 can be expressed as

xt “
8
ÿ

i“0

ψizt´i ` µt

where

(i) ψ0 “ 1 and
ř8

i“0 ψ
2
i ă 8,

(ii) tziu v WNp0, σ2q,

(iii) zt PMt for each t P Z,

(iv) Epztµsq “ 0 for all t, s P Z,

(v) µt P
Ş

nPZMn for each t P Z,

(vi) µt is deterministic.

The usefulness of the Wold Theorem is that it allows the dynamic evolution

of a variable xt to be approximated by a linear model. If the innovations εt are

independent, then the linear model is the only possible representation relating

the observed value of xt to its past evolution. However, when εt is merely an

uncorrelated but not independent sequence, then the linear model exists but

it is not the only representation of the dynamic dependence of the series. In

this latter case, it is possible that the linear model may not be very useful, and

there would be a nonlinear model relating the observed value of xt to its past

evolution. However, in practical time series analysis, it is often the case that

only linear predictors are considered, partly on the grounds of simplicity, in

which case the Wold decomposition is directly relevant.
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The Wold decomposition – vector valued processes

Proposition 2.3.13. Any zero-mean stationary vector process X “ pXn, n P

Zq admits the following representation:

Xn “

8
ÿ

i“1

Ciεn´i ` µn

where

(i) C0 “ I and
ř8

i“0 }Ci}
2 ă 8,

(ii) εi is white noise

CpLqεn is the stochastic component with CpLq “
ř8

i“0CiL
i, C0 “ I and

µn the purely deterministic component.

If µn “ 0 the process is said regular.

The result is very powerful since holds for any covariance stationary process.

However the theorem does not implies that (2) is the true representation of the

process. For instance the process could be stationary but non-linear or non-

invertible.

The Wold decomposition – H-valued processes

For the sake of clarity, first, we present the concept of The Wold decompo-

sition of H-valued process for linear process based on the paper [47].

Definition 2.3.14. X “ pXn, n P Nq be an H-valued linear process. Then the

representation

Xn “ µ`
8
ÿ

j“0

ajpεn´jq, (2.3.3)

where µ “ EX P H, pakqkPN is a sequence of elements from LpHq, a0 “ I and

εn, n P N is a sequence of i.i.d. centered random variables in H, is called the

Wold Decomposition of X.

In the work [47] we can find the following invertibility property:
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Theorem 2.3.15. Let X “ pXn, n P Nq be an H-valued linear process defined

by (2.3.3), and

1´
8
ÿ

j“1

zj}aj} ‰ o for any |z| ă 1.

Then X “ pXn, n P Nq is invertible, i.e.

Xn “ εn `
8
ÿ

j“1

ρjpXn ´ jq, (2.3.4)

where ρj P H and
ř8

j“1 }ρj} ă 8.

Let X be a weakly stationary process and let Mn be the linearly closed

subspace generated by pXs, s ď nq, i.e. Mn “ spant`pXsq : ` P LpHq, s ď nu.

X is called a regular process if, for the process

εn “ Xn ´ ΠMn´1pXnq,

it holds that σ2 :“ E}εn}
2 ą 0.

In this case pεnq is an H-white noise. Moreover εn PMn and εn is strongly

orthogonal to Mn´1, i.e. Cεn,ξ “ 0 for any ξ P Mn´1. pεnq is called the

innovation process of X.

Now, if Jn is the linearly closed subspace generated by pεs, s ď nq, the Wold

docomposition of X is defined by

Xn “ ΠJnpXnq ` ΠJKn pXnq :“ Yn ` Zn, n P Z.

This definition remains essentially the same as in Equation (2.3.3), but the

operators aj, j P N may then be unbounded; this finally generalizes the notion.

Properties of this decomposition are similar to those in the real case. In par-

ticular, one has εs is strongly orthogonal to Zn for any s, n P Z, i.e. Cεs,ξ “ 0

for any ξ P Zn. and Zn P
Ş8

j“0Mn´j, n P Z.

2.3.3 Moving average processes in Hilbert spaces

Definition 2.3.16. A moving average process of order q in H (MAH(q)) is a

linear process X “ pXn, n P Zq such that E}Πεn´qpXnq} ą 0 for all n P Z and

ΠMn´1pXnq “ ΠJn´1,qpXnq, n P Z,
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where Jn´1,q is the linearly closed subspace generated by pεn´1, . . . , εn´qq.

Example 2.3.17 (Truncated Ornstein-Uhlenbeck process). Let H “

L2
`

r0, 1s,Bpr0, 1sq, µ` δp1q
˘

, where µ is the Lebesgue measure on r0, 1s and

δp1q denotes the Dirac measure centered on point 1. We choose a version of an

orthonormal basis teju8j“0 such that e0 “ 1t1u and ejp1q “ 0, j ě 1.

Consider the real continuous time process

ξt “

ż t

tt´1u

es´tdWs, t P R,

where Ws is a bilateral Wiener process (i.e Ws “ W
p1q
s 1R`psq `W

p2q
´s 1R´psq,

and W p1q
s ,W

p2q
s are two independent standard Wiener processes), and tt ´ 1u

is the biggest integer ď t ´ 1. pξt, t P Rq is a fixed continuous version of the

stochastic integral.

Let us set

Ynpxq “ ξn`x, x P r0, 1s, n P Z.

Then we can identify Yn with an H-valued random variable by putting

Ynp¨q “ Ynp1qe0p¨q `

8
ÿ

j“1

„
ż 1

0

Ynpsqejpsqds



ejp¨q.

We claim that pYnq is MAH(1) process. Indeed, let us define the operator

` P LpHq:

p`pfqqpxq “ fp1qe´x, f P H.

If 0 ď x ă 1 we can write

Yn “

ż n`x

tn`x´1u

es´n´xdWs “ e´x
ż n

n´1

es´ndWs `

ż n`x

n

es´n´xdWs.

Then pYnq has decomposition

Yn “ `pεn´1q ` εn, n P Z, (2.3.5)

where pεnq is defined as follow:

εnpxq “

ż n`x

n

es´n´xdWs, x P r0, 1q, εnp1q “ Ynp1q ´ e
´1Yn´1p1q.

From (2.3.5) we have that ΠMn´1pYnq “ Πεn´1pYnq “ `pεn´1q. Obviously,

E}Πεn´1pYnq} “ E}`pεn´1q} “ E}e´x
şn

n´1 e
s´ndWs} ą 0.



28

2.3.4 Autoregressive processes in Hilbert spaces

Definition 2.3.18. Let X “ pXn, n P Zq be a H-valued weakly stationary

process, Mn be the linearly closed subspace generated by pXs, s ď nq, and Mp
n

be the linearly closed subspace generated by pXs, n ´ p ď s ď nq. X is called

autoregressive Hilbertian process of order p (ARH(p)) if,

ΠMn´1pXnq “ ΠMp
n´1pXnq,

and, if p ą 1,

E
›

›

›
ΠMp

n´1pXnq ´ ΠMp´1
n´1pXnq

›

›

›
ą 0.

Remark 2.3.19. One may characterize an ARH(1) by a relation of the form

Xn “ λnpXn´1q ` εn, n P Z, (2.3.6)

where λn are measurable mappings from H to H, and pεn, n P Zq is a

H-white noise .

If X is strictly stationary, it is possible to choose λn “ λ not depending on

n. If also we have that CXn´1Xn
is dominated by CXn´1

, then Theorem 2.2.3

yields existence of ρ P LpHq such that

Xn “ εn ` ρpXn´1q. (2.3.7)

In this case we will say that ρ is the autocorrelation operator of X.

The next theorem shows the existence of X “ pXn, n P Zq satisfying (2.3.7)

with a given white noise pεnq and ρ P LpHq. First, we need to prove a simple

but somewhat surprising lemma.

Lemma 2.3.20. Let ρ P LpHq. The following conditions are equivalent:

(i).
ř8

j“0 }ρ
j} ď 8;

(ii). D j0 P N such that }ρj} ă 1 for all j ě j0;

(iii). D j0 P N such that }ρj0} ă 1;

(iv). D j0 P N, a ą 0 and b P p0, 1q such that }ρj} ď abj for all j ě j0.
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Proof. Obviously, pivq entails piq:
8
ÿ

j“j0

}ρj} ď
8
ÿ

j“j0

abj ď 8, so
8
ÿ

j“0

}ρj} ď 8.

The implications piq ñ piiq ñ piiiq are also trivial.

Now we are going to prove the most substantive part of the lemma that

from piiiq follows pivq. We have 0 ă }ρj0} ă 1 and suppose that j ą j0. Then

we can write

j “ j0q ` r,

where q ě 1 and r P r0, j0´ 1s are integers. Using inequality }sv} ď }s}}v} for

any s, v P LpHq, we obtain

}ρj} “ }ρj0q`r} ď }ρj0}q}ρr}.

Notice that q “ j
j0
´ r

j0
ą

j
j0
´ 1. As 0 ă }ρj0} ă 1 we can estimate

}ρj} ď }ρj0}
j
j0
´1
}ρr}. (2.3.8)

Let us choose

a “
maxt}ρr} : 0 ď r ď j0´1u

}ρj0}
and b “ }ρj0}

1
j0 .

Then a ą 0, b P p0, 1q and from (2.3.8) it follows that

}ρj} ď abj for all j ě j0.

Remark 2.3.21. Observe that piq´ pivq does not imply }ρ} ă 1, contrarily to

the one-dimensional case. The simplest example to see that in two dimensional

case could be

ρ “

˜

0 2

0 0

¸

.

A less trivial example can be found in the Hilbert space H “

L2
`

r0, 1s,Bpr0, 1sq, µ` δp1q
˘

with the operator pρpfqqpxq “ fp1qe´
1
2x, f P H.
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Theorem 2.3.22. [11, p. 245] Let pεnq be a white-noise (see Definition 2.3.4),

ρ P LpHq, and there is m P N such that }ρm} ă 1. Then (2.3.7) has a unique

stationary solution given by

Xn “

8
ÿ

m“1

ρmpεn´mq, n P Z,

where the series converges almost surely and in L2
H . Moreover pεnq is the

innovation of pXnq.

Example 2.3.23 (Ornstein-Uhlenbeck process). Consider again H “

L2
`

r0, 1s,Bpr0, 1sq, µ` δp1q
˘

. Let ξ “ pξt, t P Rq be a measurable version

of the Ornstein-Uhlenbeck process:

ξt “

ż t

´8

es´tdWs, t P R,

where Ws is a bilateral Wiener process.

Let us set

Ynpxq “ ξn`x, x P r0, 1s, n P Z.

We claim that pYnq is ARH(1) process. Indeed, let us define the operator

ρ P LpHq:

pρpfqqpxq “ fp1qe´x, f P H,

and define the H-white noise

εnpxq “

ż n`x

n

es´n´xdWs, x P r0, 1q, εnp1q “ Ynp1q ´ e
´1Yn´1p1q.

Also we have

Ynpxq “

ż n`x

´8

es´n´xdWs “ e´x
ż pn´1q`1

´8

es´ndWs `

ż n`x

n

es´n´xdWs.

Therefore, pYnq has decomposition Yn “ ρpYn´1q ` εn. Notice that

}ρ}2 “

ż 1

0

e´2xdpµ` δp1qqpxq “
1´ e´2

2
` e´2

“
1` e´2

2
ă 1.

So, the assumption of Theorem 2.3.22 holds, and pYnq is ARH(1) with innova-

tion pεnq and autocorrelation operator ρ.
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Example 2.3.24 (Cartea-Villaplana). Let H “ L2 pr0,M s,Bpr0,M sq, µq,

where µ is the Lebesgue measure on r0,M s, M is maximum electricity price,

for exampleM “ 3000 Euro. Let C “ pCn, n “ 0, 1, 2, . . .q be a random valued

variable which represents capacity. Consider the dynamics

Cnpxq “ ´2bXn ´ lg x, x P p0,M s, b ą 0

where Xn is the solution of a discrete Ornstein-Uhlenbeck equation:

Xn`1 “ λXn `Wn`1, n “ 0, 1, . . . ,

where λ P p0, 1q, X0 „ N
`

0, 1
1´λ2

˘

, Wn „ Np0, 1q ´ i.i.d. - H-white noise. So,

we can write

Cn “ ´2b

˜

λnX0 `

n
ÿ

i“1

λn´iWi

¸

´ lg x.

We claim that pCnq is ARH(1) process. First, we should verify that pCnq is

weakly stationary.

}Cn}
2
H “

ż M

0

˜

´2b

˜

λnX0 `

n
ÿ

i“1

λn´iWi

¸

´ lg x

¸2

dx

ď

ż M

0

lg2 xdx` 4b

˜

λnX0 `

n
ÿ

i“1

λn´iWi

¸

ż M

0

lg xdx

`

˜

´2b

˜

λnX0 `

n
ÿ

i“1

λn´iWi

¸¸2
ż M

0

dx.

Therefore, E}Cn}2H ă 8. We now compute

CCnCn`k
phq “ E rxCn ´ ECn, hy pCn`k ´ ECn`kqs

“ E
“

x´2bXn ´ lg x´ p2bλnEX0 ´ lg xq, hy p´2bXn`k ´ lg x´ p2bλn`kEX0 ´ lg xqq
‰

“ ´4b2E rxXn ´ EXn, hy pXn`k ´ EXn`kqqs “ ´4b2CXnXn`k
phq.

Using the reasoning from Example 2.3.3 we can conclude that the covariance

matrix is invariant under time shifts.

We can write

Cn “ λCn´1 ´ p1´ λq lg x´ 2bWn,
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so, equation (2.3.6) holds, which means that pCnq is ARH(1) process.

Similarly, let D “ pDn, n “ 0, 1, 2, . . .q be a random valued variable which

represents the evolution electricity demand. Consider the dynamics

Dnpxq “ ´2aYn ` lg x, x P p0,M s, a ą 0

where Yn is the solution of a discrete Ornstein-Uhlenbeck equation:

Yn`1 “ λYn ` Vn`1, n “ 0, 1, . . . ,

where λ P p0, 1q, Y0 „ N
`

0, 1
1´λ2

˘

, Vn „ Np0, 1q ´ i.i.d. - H-white noise.

Obviously, pDnq is also ARH(1) process. Finally, the wholesale power prices Pn
can be found as the intersection of the capacity and demand:

´2bXn ´ lg x “ ´2aYn ` lg x

Therefore,

Pn “ eaYn´bXn,

which is the model of price proposed by Cartea and Villaplana.

2.4 Linear transformation of stochastic processes

In the paper [44] it is proved that a linear transformation of a process

possessing an MApqq representation gives a process that also has a finite order

MA representation with order not greater than q. The more general fact that

a linear transformation of a vector ARMA process is again an ARMA process

is also proved. These results are of importance because many temporal as

well as contemporaneous aggregation procedures can be represented as linear

transformations.

Proposition 2.4.1. [44, Lemma 1] Let X “ pXn, n P Zq be an m2-

dimensional MApqq process, and T “ rtijsi,j ‰ 0 be a real m1 ˆm2 matrix.

Then pYnq “ pT pXnqq is an m1-dimensional MApq˚q process, where q˚ ď q.

Proof. If Xt “ px1n, x2n . . . , xm2nq
1 is MApqq process, then it can be written as

follows

Xn “ Un `M1Un´1 ` . . .`MqUn´q, (2.4.1)
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where Un “ pu1n, u2n . . . , unnq
1
n is an m2-dimensional white noise process,

(i.e. EUn “ 0, EpUnU 1n`kq “ 0 if k ‰ 0 and EpUnU 1nq “ Σu ) and

Mk “ rµ
k
i,jsi,j“1,...,m2

are pm2 ˆm2q matrices.

Let us denote the back-shift operator B (i.e BkUn “ Un´k) and

MpBq “

«

q
ÿ

k“0

µki,jB
k

ff

i,j“1,...,m2

.

Then we can rewrite (2.4.1) as

Xn “MpBqUn. (2.4.2)

For Yn “ pT pXnqq “ py1nt, y2n . . . , ym2tq
1 we define a Hilbert space H to be

the closure of

spantyi,t : i “ 1 . . . ,m1, n P Zu

with inner product xx, yy “ Epxyq, where x, y P H. Consider also closed

subspaces of H:

Hn “ spantyi,s : i “ 1 . . . ,m1, s ď nu.

Let us denote by Mn the orthogonal complement of Hn´1 in Hn, so Hn “

Hn´1

À

Mn.

By the Wold Decomposition Theorem,

Yn “
8
ÿ

k“0

ΦkVn´k, Φ0 “ Im1
,

where vin is the projection of yin on Mn, and thus Vn “ pv1,n, . . . , vm1nq
1 is

white noise with variance-covariace matrix Σv say, and

Φk “ EpYtV 1t´nqΣ´1
v , n ą 0

where Σ´1
v is the generalized inverse of Σv. Since EpYnY 1n´kq “ 0 for k ą q,

yn is orthogonal to Hn´k for k ą q, and hence EpYnV 1n´kq “ 0 for k ą q.

Consequently, Φk “ 0 for k ą q, and thus we have a representation of Yn as

an MApq˚q, where q˚ is less than q if EpYnV 1n´kq “ 0 for n ą q˚, otherwise

q˚ “ q.
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Let us show that there is no version of this theorem for AR processes.

Example 2.4.2. Consider the case m1 “ 1,m2 “ 2 and define the ARp1q

process Xn as

Xn “

˜

x1n

x2n

¸

“

˜

ax1n´1 ` w1n

bx2n´1 ` w2n

¸

Let T “ r1 1s : R2 Ñ R. Then Yn “ T pXnq “ ax1n´1`bx2n´1`w1n`w2n.

Evidently, unless a “ b, Yn is not autoregressive.

The next proposition shows that the vector-valued ARMA class is closed

with respect to linear transformations.

Proposition 2.4.3. [45, Corollary 11.1.2] Let X “ pXn, n P Zq be an m2-

dimensional ARMApp, qq process, and T “ rtijsi,j ‰ 0 be a real m1ˆm2 matrix

of rank m1. Then Yn “ T pXnq is an m1-dimensional MApp˚, q˚q process with

p˚ ď m2p and q˚ ď pm2 ´ 1qp` q.

This theorem gives upper bounds for the ARMA orders of a linearly trans-

formed ARMA process. For instance, if Xn is a ARppq “ ARMApp, 0q process,

a linear transformation Yn “ pT pXnqq has a ARMApp˚, q˚q representation. For

some linear transformations, q˚ will be zero. However, there are transforma-

tions of a finite order ARppq process that do not admit a finite order AR

representation, as in Example 2.4.2, but just a mixed ARMA representation.

In Chapter 5 we will present a characterization result regarding the con-

ditions that guarantees that a linear transformation of a vector AR process is

again an AR process both in finite and in infinite dimension.

2.5 Cpr0, 1sq-valued autoregressive processes

In [15] the authors introduced the model for the prediction of functional time

series, where observations are assumed to be continuous random functions.

Consider a functional time series X “ pXn, n P Zq, and let xnp¨q P Cpr0, 1sq

be a realization of the corresponding random process. In practice, the curves

xnp¨q are usually recorded as high-dimensional vectors with highly correlated
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entrances, exactly as in our case with supply and demand curves. Then, the

need of dimension reduction techniques that take into account the continuous

nature of the data arises.

For the prediction of xn`1p¨q the whole curves xnp¨q can be replaced with

the p most relevant evaluations xnpt1q, xnpt2q, . . . , xnptpq. The problem of se-

lection of the points t1, t2, . . . , tp Ă r0, 1s under a suitable optimality criterion

is commonly known as variable selection. Although this technique leads to a

finite dimensional vector, the problem is fully functional, since the definition of

this criterion is based on the whole curves.

The standard assumption for the process X “ pXn, n P Zq are:

1. The random variable sup t|Xnpsq|, s P r0, 1su has finite variance. In this

case each evaluation Xnpsq, for s P r0, 1s, also has finite variance.

2. Xn is a centered stationary stochastic process (i.e. EXn “ 0)

Also we will use the following notations. Tp “ pt1, t2, . . . , tpq P r0, 1s
p

is the vector of the points; fpTpq is understood to be the column vec-

tor with coordinates fptjq. The covariance matrix of the random vari-

ables Xnpt1q, Xnpt2q, . . . , Xnptpq indexed by Tp is ΣTp. The vector of lagged-

covariance c1p¨, Tpq has coordinates pcovpX1p¨q, X0ptjqqqj“1,...,p. The set Θp is

the compact subset of r0, 1sp defined as follows:

Θp “ tTp “ pt1, t2, . . . , tpq P r0, 1s
p : ti`1 ´ ti ď δ, i “ 1, . . . pu,

where 0 ă δ ă 1 is some fixed number. The following model is proposed in [15]

Xnp¨q “

p
ÿ

j“1

αjp¨qXn´1ptjq ` εnp¨q, (2.5.1)

where αjp¨q are continuous functions in r0, 1s and εn is a strong Cpr0, 1sq-valued

white noise pointwisely uncorrelated with Xn. That is, all the curves depend

on the same set of points regardless of the index n. After finding the relevant

points Tp and optimal functions pα1psq, α2psq, . . . , αppsqq Equation (5.4.2) is a

p-dimensional AR(1) model.
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For the optimality criterion for variable selection we will define the following

operators:

qpTp;α1, . . . αpq “ E

»

–

˜

Xnpsq ´
p
ÿ

j“1

αjpsqXn´1ptjq

¸2
fi

fl , (2.5.2)

where the coefficients αjpsq depend on the points t1, t2, . . . , tp. Then, integrat-

ing q2 over s leads to

QpTpq “

ż 1

0

min
αjpsqPR

qpTp;α1, . . . αpq
2
psqds. (2.5.3)

This function Q can now be minimized with respect to Tp.

Theorem 2.5.1. [15, Proposition 1] Let X “ pXn, n P Zq be a stationary

process such that Erpsup |Xnpsq|q
2s ă 8. Suppose that it can be expressed as

in Equation (5.4.2) with
řp
i“1 }αi} ă 1 and E}ε2

n} ă 8. Then

arg min
TpPΘp

QpTpq “ arg max
TpPΘp

Q0
pTpq, (2.5.4)

where

Q0
pTpq “

ż 1

0

c1ps, Tpq
1Σ´1

Tp
c1ps, Tpqds, (2.5.5)

and the optimal functions are given by

pα1psq, α2psq, . . . , αppsqq “ Σ´1
Tp
c1ps, Tpq. (2.5.6)

The optimality criterion defined by Q0 is simple to implement in practice.

Let us go on to estimation from the sample. Suppose that we have a

sample x1, . . . , xm of size m drawn from a process satisfying the assumptions

of Theorem 2.5.1. The usual estimator of the covariance function is

pcrps, tq “
1

m´ 1

m´1
ÿ

i“1

xi`rpsqxiptq. (2.5.7)

Then, the natural estimator for the functions Q0pTpq is

pQ0
mpTpq “

ż 1

0

pc1ps, Tpq
1Σ´1

Tp
pc1ps, Tpq ds, (2.5.8)

where pc1p¨, Tpq “ ppc1p¨, t1q, . . . ,pc1p¨, tpqq
1. According to Theorem 2.5.1 the most

relevant points are
pTp “ arg max

TpPΘp

pQ0
mpTpq. (2.5.9)
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Due to computational limitations, this optimization is not feasible even for

relatively small values of p. Therefore, a greedy approximation is carried out.

The function Q0 can be decomposed in a way that directly suggests an iterative

approximation to this optimization problem. If the vector Tp`1 is such that it

contains all the entries of Tp plus a new one tp`1 P r0, 1s, the pQ0
mpTp`1q can be

expressed as

pQ0
mpTp`1q “ pQ0

mpTpq`
ş1

0ppc1ps, Tpq1Σ
´1
Tp

pc0ptp`1, Tpq ´ pc1ps, tp`1qq
2 ds

pc0ptp`1, tp`1q ´ pc0ptp`1, Tpq1Σ
´1
Tp

pc0ptp`1, Tpq
.

Notice that this quotient is easy to compute under the assumption that all

the covariance matrices Σ´1
Tp

are invertible. However, for some real data sets

the condition of the invertibility of Σ´1
Tp

may not be satisfied. If the data is

not invertible, it can be always preprocessed to remove the conflicting points

of the grid. This would not affect the efficiency of the method, since these

points would be linearly dependent of the others, so their information would

be redundant.



Chapter 3

Radial basis function interpolation

3.1 Historical remarks

For what concerns approximation theory, the historical and theoretical foun-

dation of meshless methods lies in the concept of positive definite functions or,

more in general, positive definite kernels. Their development can be traced,

for example, back to the work of J. Mercer (1909) [48], a fellow of Trinity Col-

lege at Cambridge University. Many positive definite functions are nowadays

classified as Radial Basis Functions. Perhaps one of the most fundamental con-

tributions, namely characterizations of positive definite functions in terms of

Fourier transforms, were made a few years later by Salomon Bochner [8] and

Iso Schoenberg [63].

The initial motivation for radial basis function (RBF) methods came from

geodesy, mapping, and meteorology. RBF methods were first studied by Roland

Hardy, an Iowa State geodesist, in 1968, when he developed one of the first

effective methods for the interpolation of scattered data [34]. He suggested

what he called the multiquadric method for applications in cartography because

he was not satisfied with the results of polynomial interpolation. RBF methods

were developed to overcome the structure requirements of existing numerical

methods. Multiquadric radial basis function is only one of many existing radial

basis function.

Then, in 1979, Richard Franke published a study of multiquadric radial

basis function method for scattered data interpolation problem [30]. Later in

38
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1986 Charles Micchelli, an IBM mathematician, developed the theory behind

the multiquadric method [49]. Micchelli made the connection between scat-

tered data interpolation and positive definite functions. He proved that the

system matrix for the multiquadric method is invertible, which means that the

RBF scattered data interpolation problem is well-posed. The contributions of

Bochner and Schoenberg were used by Micchelli as the starting point of his

proofs.

During the next years, research in RBF methods has rapidly grown. RBF

methods are now considered an effective way to solve partial differential equa-

tions, to represent topographical surfaces as well as other intricate three-

dimensional shapes, having been successfully applied in such diverse areas as

climate modeling, facial recognition, topographical map production, car and

aircraft design, ocean floor mapping, and medical imaging. RBF methods have

been actively developed over the last 40 years. Now RBF methods are an active

area of mathematical research, as many open questions still remain.

3.2 The scattered data interpolation problem

Interpolation and approximation techniques are used in solutions of many

engineering problems. Given a set of N distinct data points (or nodes) XN “

txi : i “ 1, 2, . . . , Nu arbitrarily distributed on a domain Ω Ă Rn and a set of

data values (or function values) YN “ tyi : i “ 1, 2, . . . , Nu Ă R. The data

interpolation problem consists in finding a function s : Ω Ñ R such that

spxiq “ yi, i “ 1, . . . , N.

If the data points at which the values are taken do not lie on a uniform

or regular grid and they are in a large amount, then the process is called scat-

tered data interpolation. The interpolation and approximation of unorganized

scattered data is still a difficult problem.

In this thesis we are going to use the data about supply bids from the

Italian electricity market for the period starting on 01/01/2013 and ending
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on 05/02/2018 (data from the GME website www.mercatoelettrico.org).

Notice that the size of these data is very large, due the number of offers for

each load period, and hence not easy to handle. For each hour of the day,

the original data published by GME consist of information corresponding to a

single supplier and reported in a XML table format, where every row represents

a single offer with its own date, trader name, awarded price, awarded quantity.

For example, for the single hour of the first day we have 351 units of information

about price and quantity of offered electricity (see Table 1).

Table 3.1: Data from the Italian electricity market
Date Hour Volume Price

01-01-13 1 14117.32 0

01-01-13 1 52 0.01

01-01-13 1 66 1

01-01-13 1 15 2

01-01-13 1 15 5

01-01-13 1 150 8

01-01-13 1 18 9

01-01-13 1 8 9.01

01-01-13 1 8 9.02

01-01-13 1 6.006 9.03

01-01-13 1 2.004 9.04

01-01-13 1 2.994 9.05

01-01-13 1 2.14 9.06

. . . . . . . . . . . .

So, to analyze the period from 01/01/2013 to 05/02/2018, we need to deal

with more than 16 million of data. In Figure 3.1 we present the supply curve

corresponding to the first hour of the first day of the analyzed period. The first

problem of our work is to present the information about electricity prices in a

efficient and parsimonious way.

Let us review briefly the most popular methods for the interpolation prob-

lem.

• Polynomial interpolation is the interpolation of a given data set by

the polynomial of lowest possible degree that passes through the points
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Figure 3.1: Supply curve
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of the dataset. For given data sites x1 ă x2 ă . . . ă xN and function

values y1, . . . , yN there exists exactly one polynomial p P πN´1pRq that in-
terpolates the data at the data sites. Therefore the space πN´1pRq depends
neither on the data sites nor on the function values but only on the number

of points.

Runge’s phenomenon (1901) shows that for high values of N , the interpo-

lation polynomial may oscillate wildly between the data points. Evidently,

the polynomial interpolation does not suit for our problem, because of the

large amount of data.

• Spline interpolation. It is a well-established fact that a large data set

is better dealt with splines than with polynomials. An aspect to notice in

contrast to polynomials is that the accuracy of the interpolation process

using splines is not based on the polynomial degree but on the spacing of

the data sites. In particular, cubic splines are widely used to fit a smooth

continuous function through discrete data.

A cubic spline is a spline constructed of piecewise third-order polynomials

which pass through a set of N control points. The second derivative of each

polynomial is commonly set to zero at the endpoints, since this provides a

boundary condition that completes the system of N ´ 2 equations.

Notice that for all methods, the interpolant s is expressed as a linear combi-

nation of some basis functions Bi , i.e. sptq “
d
ÿ

k“1

ckBkptq. The basis functions

in polynomial interpolation does not depend on the data points. Another ap-

proach is to use a basis which depends on the data points.

3.3 Positive definite functions

The scattered data interpolation problem leads to the solution of a linear

system of the form Ax “ y. The solution of the system requires that the matrix

A is non-singular. It is enough to know in advance that the matrix is positive
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definite. We need to introduce the concept of positive definite functions

and conditionally positive definite functions.

3.3.1 Unconditionally positive definite functions

Definition 3.3.1. A real-valued function Φ : Rn ÝÑ R is called positive

semi-definite if , for all m P N and for any set of pairwise distinct points

x1, x2, . . . , xm, the mˆm matrix

A “ pΦpxi ´ xjqq
m
i,j“1

is positive semi-definite, i.e. for every column vector z of m real numbers the

scalar zTAz ě 0. The function Φ : Rn ÝÑ R is called (strictly) positive

definite if the matrix A is positive definite, i.e. for every non-zero column

vector z of m real numbers the scalar zTAz ą 0.

Notice that, if Φ is positive semi-definite, then Φpxq “ Φp´xq, Φp0q ě 0,

|Φpxq| ď Φp0q for all x P Rn.

Remark 3.3.2. Unfortunately, for historical reasons there is an alternative

terminology around in the literature: other authors call a function positive

definite if the associated matrices are positive semi-definite and strictly positive

definite if the matrices are positive definite. We do not follow this historical

approach here, keeping the terminology from [71].

The most important property of positive semi-definite matrices is that their

eigenvalues are positive and so is its determinant.

One of the most celebrated results on positive semi-definite functions is

their characterization in terms of Fourier transforms, which was established by

Bochner [8].

Theorem 3.3.3 (Bochner’s characterization). A continuous function Φ :

Rn ÝÑ R is positive semi-definite if and only if it is the Fourier transform

of a finite nonnegative Borel measure µ on Rn, i.e.

Φpxq “

ż

Rn

e´ix
Twdµpwq, x P Rn.
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The proof of this theorem can be found in [8] or in the book [71, p. 70].

The Bochner representation is the most simple way to prove that a function

is positive definite, as is the case of the following examples: e´x2, e´|x|, 1
1`x2 .

Indeed,

e´x
2

“

ż

R
e´ixtdµptq for dµptq “

1

2
?
π
e´t

2{4dt;

e´|x| “

ż

R
e´ixtdµptq for dµptq “

1

π

1

1` t2
dt;

1

1` x2
“

ż

R
e´ixtdµptq for dµptq “

1

2
e´|t|dt;

Another useful characterization for positive semi-definite univariate function

was given by Schoenberg in 1938 in terms of completely monotone functions.

Definition 3.3.4. A continuous function φ : r0,8q Ñ R is called completely

monotone on r0,8q if

1. φ P C8p0,8q;

2. p´1qkφpkqprq ě 0 for all r ě 0, for k “ 0, 1, . . ..

For example, e´r, e´
?
r, 1

1`r , are completely monotone functions.

Theorem 3.3.5 (Schoenberg’s characterization). Let φ : r0,8q Ñ R be a

continuous function which is additionally in C8pp0,`8qq and Φ : Rn Ñ R be

a function such that Φpxq “ φp}x}22q. Then Φ is positive semi-definite if and

only if φ is completely monotone on r0,8q.

The proof is again in [71, p. 93].

3.4 Radial basis functions

Consider a set of N distinct data points txiuNi“1 Ă Rn and a set of data

values tyiuNi“1 Ă R. We want to find a function s : Rn Ñ R such that spxiq “

yi, i “ 1, . . . , N. Moreover, we want to find a basis for the solution, which

depends on the data points. One simple way to do this is to choose a fixed

function φ : RÑ R and to form the interpolant as

spxq “
N
ÿ

i“1

αiφp}x´ xi}q,
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where the coefficients αi are determined by the interpolation conditions spxiq “

yi. Therefore, the scattered data interpolation problem leads to the solution of

a linear system

Aα “ y, where Ai,j “ φp|xi ´ xj|q. (3.4.1)

Definition 3.4.1. A function Φ : Rn Ñ R is called radial if there exists a

function φ : r0,8q Ñ R , so that Φpxq “ φp}x´ c}q for some point c, called a

center.

So, a radial function is a real-valued function whose value depends only on

the distance from the center c. The norm is usually given by the Euclidean

one; although other distance functions are also possible. A radial function has

the advantage of a very simple structure. Sums of radial basis functions are

typically used to approximate given functions. This approximation process can

also be interpreted as a simple kind of neural network; this was the context in

which they originally surfaced, in work by David Broomhead and David Lowe

in 1988.

Solvability of the system (3.4.1) is guaranteed if Φ is positive semi-definite.

Hence, if we choose the basis consisting of positive semi-definite radial functions,

we would always have a well-posed interpolation problem.

Here are some standard radial basis function in dimension 1.

Let ε ą 0 denote a shape parameter, r “ }x}2.

Positive definite radial function.

• Gaussian: φprq “ e´pεrq
2

.

• Inverse multiquadric: φprq “
1

a

1` pεrq2
.

• Matérn C2: φprq “ e´εrpεr ` 1q.

• Matérn C4: φprq “ e´εrpε2r2 ` 3εr ` 3q.

• Wendland C2: φprq “ p1´ εrq4`p4εr ` 1q.

• Wendland C4: φprq “ p1´ εrq6`p35ε2r2 ` 18εr ` 3q.
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In kernel-based methods, how to handle the scaling or the choice of the

shape parameter is a well-documented but still an open problem. Variably

scaled kernels (VSKs) were introduced in [16] with the aim to give a new tech-

nique to handle the problem of the choice of the scale or shape parameter in

kernel-based interpolation problems. There, the authors consider native spaces

whose kernels allow for a change the kernel scale of a d-variate interpolation

problem locally, depending on the requirements of the application.

It is well-known that kernels on Rn can be scaled be a positive factor δ:

Kpx, y; δq :“ Kpx{δ, y{δq.

Variably scaled kernels were further developed in [58], [59]. VSKs were

already used also in neural networks problems [52] and for approximating the

solution of elliptic partial derivative problems [21]. In [59] the author showed

that VSKs are a useful tool also for recovering unknown non-regular functions

from set of scattered data.

3.5 Reproducing kernel Hilbert space

A reproducing kernel Hilbert space (RKHS) provides a practical and el-

egant structure to solve optimization problems in function spaces. We need

to introduce the concept of RKHS which which plays an important role in

approximation theory.

Let Ω P Rn be an arbitrary nonempty set.

Definition 3.5.1. A function K : Ω ˆ Ω Ñ R is symmetric and positive

definite (SPD) if for all m P N and for any set of pairwise distinct points

x1, x2, . . . , xm Ă Ω, the mˆm matrix

A “ pKpxi, xjqq
m
i,j“1

is symmetric and positive definite (i.e. for every non-zero column vector z of m

real numbers the scalar zTAz ą 0). A function K : Ω ˆ Ω Ñ R is symmetric

and positive semi-definite (nonnegative) if for all m P N and for any set of
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pairwise distinct points x1, x2, . . . , xm Ă Ω, the mˆm matrix

A “ pKpxi, xjqq
m
i,j“1

is symmetric and positive semidefinite (i.e. for every non-zero column vector z

of m real numbers the scalar zTAz ě 0).

We say that K : Rn ˆ Rn Ñ R is translation invariant if Kpx, yq “

Kpx ´ t, y ´ tq for all t, x, y P Rn. In this case Kpx, yq “ Kpx ´ y, 0q, so K

can be viewed as a function on Rn. Conversely, every positive definite function

Φ : Rn Ñ R (see Definition 3.3.1) gives rise to a kernel that is translation

invariant:

Kpx, yq “ Φpx´ yq.

Some examples of SPD translation invariant kernels are:

• Gaussian kernel: Kpx, yq “ e´
}x´y}2

2σ2 , x, y P Rn, σ ą 0.

• Inverse multiquadric kernel: Kpx, yq “ 1?
1`pε}x´y}q2

, x, y P Rn.

• Matérn C2 kernel: Kpx, yq “ e´ε}x´y}pε}x´ y} ` 1q, x, y P Rn.

• Wendland C2 kernel: Kpx, yq “ p1´ε}x´y}q4`p4ε}x´y}`1q, x, y P Rn.

Let H be a Hilbert space of real-valued functions on Ω.

Definition 3.5.2. We say that H is a reproducing kernel Hilbert space if, for

all x P Ω, the evaluation functional Lx : f Ñ fpxq for all f P H is continuous

at any f in H or, equivalently, if Lx is a bounded operator on H.

Definition 3.5.3. A function K : Ω ˆ Ω Ñ R is called a reproducing kernel

for a Hilbert space H if

1. For every x P Ω the functional Kx :“ Kpx, ¨q P H;

2. For every x P Ω and for every f P H fpxq “ xf,KxyH .

In fact, Definitions 3.5.2 and 3.5.3 are equivalent.
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Proposition 3.5.4. Suppose that H is a Hilbert space of functions f : Ω Ñ R.
Then H is a reproducing kernel Hilbert space if and only if H has a reproducing

kernel.

Proof. Suppose that H has a reproducing kernel K. Then the reproducing

property gives

|Lxpfq| “ |fpxq| “ | xf,KxyH |.

Using the Cauchy-Schwarz inequality we can estimate

|Lxpfq| “ | xf,KxyH | ď }f}}Kx}.

So, for all x P Ω the functional Lx : f Ñ fpxq for all f P H is continuous.

Consequently, H is a reproducing kernel Hilbert space.

Now let us show that, conversely, every reproducing kernel Hilbert space

has a unique reproducing kernel. The Riesz representation theorem implies

that for all x in Ω there exists a unique element Kx of H with the reproducing

property,

fpxq “ Lxpfq “ xf, Kxy @f P H.

Since Kx is itself a function in H, it holds that for every y in Ω there exist

a Ky P H such that

Kxpyq “ xKx, Kyy.

This allows us to define the reproducing kernel of H as a function K : ΩˆΩ Ñ

R by

Kpx, yq “ xKx, Kyy. (3.5.1)

Clearly Kx :“ Kpx, ¨q P H and fpxq “ xf,KxyH . Thus, H has a reproduc-

ing kernel K.

Let us give a few key examples.

Example 3.5.5 (Non-example). L2r0, 1s is not RKHS.
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The easiest way to demonstrate this fact is to construct a sequence tfnu P

L2r0, 1s such that limnÑ8 }fn} “ 0 and fnpx0q ‰ 0 for some fixed point x0 P

r0, 1s. Define fnpxq “ p´nx` 1q`.

Then, evidently, lim
nÑ8

}fn} “ 0 and fnp0q “ 1 for all n, So, the evaluation

functional at 0 is not continuous.

Example 3.5.6 (L2 on a discrete set). Let X be a discrete set of points txiu Ă

R. Recall that the Dirac measures δsi is defined by

δapAq “

$

&

%

1 if a P A

0 if a R A

for any Lebesgue measurable set A. Choose the sequence of positive real num-

bers a1, a2, . . . and consider the measure

µ “
ÿ

i

aiδxi.

Then L2pX,µq is RKHS. In this case the reproducing kernel K : X ˆX Ñ R
for L2pX,µq is

Kpxi, xjq “ δi,j “

$

&

%

1 if i “ j

0 if i ‰ j
.

Example 3.5.7 (Sobolev space). Consider the Sobolev space H1r0,M s con-

sisting of absolutely continuous functions f : r0,M s Ñ R whose distributional

derivative lies in L2r0,M s. H1r0,M s has the inner product

xf, gyH1 “ xf, gyL2 ` xf 1, g1yL2 .

We can demonstrate that an evaluation functional at any point is continu-

ous. Indeed, for every a P r0,M s via integration by parts we have
ż M

a

fptqdt “ fptqpt´Mq

ˇ

ˇ

ˇ

ˇ

M

a

´

ż M

a

f 1ptqpt´Mqdt.

Therefore, for all a P r0,Mq

fpaq “
1

M ´ a

ˆ
ż M

a

fptqdt`

ż M

a

f 1ptqpt´Mqdt

˙

.
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Then we can estimate the point evaluation functional at a P r0,Mq using

the Hölder inequality:

|fpaq| ď
1

M ´ a

¨

˝

d

ż M

a

1dt

d

ż M

a

f 2ptqdt`

d

ż M

a

pt´Mq2dt ¨

d

ż M

a

pf 1ptqq2dt

˛

‚

ď

?
M ´ a

M ´ a

¨

˝

d

ż M

a

f 2ptqdt`

d

ż M

a

pf 1ptqq2dt

˛

‚ď
1

?
M ´ a

}f}H1.

Now consider the case of the evaluation functional at the point M .

|fpMq| ď fp0q `

ż M

0

|f 1ptq|dt ď fp0q `

d

ż M

0

1dt

d

ż M

0

pf 1ptqq2dt

ď
1
?
M
}f}H1 `

?
M}f}H1 ď

M ` 1
?
M

}f}H1.

So, we have shown that |Lapfq| “ |fpaq| ď Ca}f} for all a P r0,M s.

Let us find the kernel function. The kernel K : r0,M s ˆ r0,M s Ñ R of the

space H1 must exist and for all x P r0,M s, f P H1r0,M s should satisfy

fpxq “ xfp¨q, Kpx, ¨qyH1 . (3.5.2)

From now on we keep x fixed and use only derivatives with respect to y.

We can rewrite (3.5.2) as follow:

fpxq “

ż M

0

fpyqKpx, yqdy `

ż M

0

f 1pyqK 1
px, yqdy. (3.5.3)

As this equation must hold for all f P L2r0,M s we have to assume that

Kpx, yq has a derivative discontinuity at y “ x, and we split the integral there.

Denote K 1
`px, xq and K 1

´px, xq right and left derivatives with respect to y at

y “ x (i.e. K 1
`px, xq “ lim

yÑx`

Kpx,yq´Kpx,xq
y´x , K 1

´px, xq “ lim
yÑx´

Kpx,yq´Kpx,xq
y´x ).
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Using integration by parts on the second integral we can write
ż M

0

f 1pyqK 1
px, yqdy “

ż x

0

f 1pyqK 1
px, yqdy `

ż M

x

f 1pyqK 1
px, yqdy “

fpyqK 1
px, yq

ˇ

ˇ

ˇ

ˇ

x

0

´

ż x

0

fpyqK2
px, yqdy ` fpyqK 1

px, yq

ˇ

ˇ

ˇ

ˇ

M

x

´

ż M

x

fpyqK2
px, yqdy “

´

ż M

0

fpyqK2
px, yqdy ` fpxqpK 1

´px, xq ´K
1
`px, xqq

´ fp0qK 1
px, 0q ` fpMqK 1

px,Mq.

Substituting this expression in (3.5.3) we get

fpxq “

ż M

0

fpyq pKpx, yq ´K2
px, yqq dy`

fpxqpK 1
´px, xq ´K

1
`px, xqq ´ fp0qK

1
px, 0q ` fpMqK 1

px,Mq.

(3.5.4)

Thus, to find the kernel function we need to solve the boundary-value problem

Kpx, yq ´K2
px, yq “ 0 for all x, y P r0,M s, x ‰ y (3.5.5)

K 1
px, 0q “ 0 for all x P r0,M s (3.5.6)

K 1
px,Mq “ 0 for all x P r0,M s (3.5.7)

K 1
´px, xq ´K

1
`px, xq “ 1 for all x P r0,M s (3.5.8)

The differential equation (3.5.5) has the general solution

Kpx, yq “ Apxqey `Bpxqe´y. (3.5.9)

It remains to find coefficient functions Apxq, Bpxq for whichKpx, yq satisfies

(3.5.6)–(3.5.8). Denote K 1
´px, xq :“ αpxq, K 1

`px, xq :“ βpxq. We consider two

cases separately.

Case 1: y ď x with x ą 0. Kpx, yq have to satisfy
$

&

%

K 1px, 0q “ Apxq ´Bpxq “ 0,

K 1px, xq “ Apxqex ´Bpxqe´x “ αpxq.

Therefore,

Apxq “ αpxq
ex´e´x , Bpxq “

αpxq
ex´e´x .
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So, substituting in (3.5.9) we obtain

Kpx, yq “ αpxq e
y`e´y

ex´e´x “ αpxqcoshpyq
sinhpxq . (3.5.10)

Case 2: x ď y with x ă 1. Similarly, Kpx, yq have to satisfy
$

&

%

K 1px,Mq “ ApxqeM ´Bpxqe´M “ 0,

K 1px, xq “ Apxqex ´Bpxqe´x “ βpxq.

Therefore,

Apxq “ βpxq e´M

ex´M´e´px´Mq , Bpxq “ βpxq eM

ex´M´e´px´Mq .

So, substituting in (3.5.9) we obtain

Kpx, yq “ βpxq e
y´M`e´py´Mq

ex´M´e´px´Mq “ βpxqcoshpy´Mq
sinhpx´Mq . (3.5.11)

Now, from (3.5.8) and the fact that lim
yÑx`

Kpx, yq “ lim
yÑx´

Kpx, yq, we obtain

the system for functions αpxq and βpxq:
$

&

%

αpxq ´ βpxq “ 1,

αpxqcoshpxq
sinhpxq ´ βpxq

coshpx´Mq
sinhpx´Mq “ 0,

which results in

αpxq “ sinhpxq coshpx´Mq
sinhpxq coshpx´Mq´sinhpx´Mq coshpxq “

sinhpxq coshpx´Mq
sinhpMq

βpxq “ sinhpx´Mq coshpxq
sinhpxq coshpx´Mq´sinhpx´Mq coshpxq “

sinhpx´Mq coshpxq
sinhpMq .

Finally, together with (3.5.10) and (3.5.11) we obtain the result

Kpx, yq “

$

&

%

coshpx´Mq coshpyq
sinhpMq if x ď y

coshpxq coshpy´Mq
sinhpMq if x ě y.

3.5.1 Native space

From the definition of the the reproducing kernel it is easy to see that

K : ΩˆΩ Ñ R is symmetric and positive semi-definite. Namely, we know that
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h!

Figure 3.2: The local kernel for H1r0, 1s.

Kpx, yq “ xKx, KyyH , so K is symmetric. Moreover, for n P N, c1, . . . , cn P R,

and x1, . . . , xn P Ω we have
n
ÿ

i,j“1

cicjKpxi, xjq “

C

n
ÿ

i“1

ciKxi,
n
ÿ

j“1

cjKxj

G

H

ě 0,

so K is positive semi-definite.

The Moore-Aronszajn theorem goes in the other direction: it states that

every symmetric, positive semi-definite kernel defines a unique reproducing ker-

nel Hilbert space. Notice that the region Ω P Rn can be quite arbitrary except

that it should contain at least one point.

Theorem 3.5.8 (Moore-Aronszajn). Suppose K : Ωˆ Ω Ñ R is a symmetric

positive definite kernel. Then there is a unique (up to isometry) Hilbert space

NK of functions on Ω for which K is a reproducing kernel. More precisely

1. For every x P Ω the function Kxp¨q “ Kpx, ¨q P NK;

2. For every x P Ω and for every f P NK

fpxq “ xf,KxyNK

This theorem first appeared in Aronszajn’s Theory of Reproducing Kernels

[3], although he attributes it to Eliakim Hastings Moore.



54

The associated function space NK that has a given kernel K as its repro-

ducing kernel is called the native Hilbert space of a positive definite

kernel K. [62, Theorem 2.2] gives a description of a native space for (strictly)

positive definite function.

Theorem 3.5.9. Every symmetric positive definite function K : Ω ˆ Ω Ñ R
has a unique native Hilbert space NKpΩq. It is the closure of the pre-Hilbert

space

HKpΩq :“ spantKp¨, yq : y P Ωu

under the inner product

xKp¨, xq, Kp¨, yqyNK
“ Kpx, yq for all x, y P Ω.

The elements of the native space can be interpreted as functions from Ω to R
via the reproducing formula

fpxq “ xf,Kp¨, xqyNK
.

So, there is a one-to-one correspondence between symmetric, positive def-

inite kernel on Ω and Hilbert space of real-valued functions on Ω with the

continuous evaluation functional.

One of the most difficult problems in the theory of RKHSs is starting with a

positive definite function, K to give a concrete description of the space HpKq.

We can refer to this as the reconstruction problem. However, there are

some useful characterizations of the native spaces.

Theorem 3.5.10 (Characterization in terms of Fourier transform). Suppose

Φ P CpRq X L1pRq is a real-valued strictly positive definite function. Consider

a translation invariant kernel Kpx, yq “ Φpx´ yq. Then the native space NK

is given by

NKpRq “ tf P CpRq X L2pRq : f̂{
a

Φ̂ P L2pRqu,

and the native space inner product can be written as

xf, gyNK
“

1
?

2π

ż

R

f̂ptqĝptq

Φ̂ptq
dt.
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In particular, every f P NKpRq can be recovered from its Fourier transform

f̂ P L1pRq X L2pRq.

This result shows that in the case, when Ω “ R and the kernel is translation

invariant, the native space actually consists of smooth functions. The proof of

this fact can be found in [71, p. 139-141].

Another interesting characterization of the native space can be given in

terms of the eigenfunctions of some linear operator associated with the repro-

ducing kernel. Namely, the Mercer theorem provides a series representation for

continuous kernels on compact domain.

Theorem 3.5.11 (Mercer). Let K : ra, bs ˆ ra, bs Ñ R be a continu-

ous, symmetric, positive semi-definite kernel. Consider a linear operator

TK : L2ra, bs Ñ L2ra, bs associated to K:

rTKpϕqspxq “

ż b

a

Kpx, tqϕptq dt. (3.5.12)

Then there is an orthonormal basis tϕiu8i“1 of L2ra, bs consisting of eigen-

functions of TK such that the corresponding sequence of eigenvalues tλiu8i“1

is nonnegative. The eigenfunctions corresponding to non-zero eigenvalues are

continuous on ra, bs and K has the representation

Kpx, yq “
8
ÿ

j“1

λj ϕjpxqϕjpyq, (3.5.13)

where the convergence is absolute and uniform.

Corollary 3.5.12 (Characterization in terms of eigenfunctions). Let K :

ra, bs ˆ ra, bs Ñ R be a continuous, symmetric, positive semi-definite kernel,

tϕiu
8
i“1, tλiu

8
i“1 be the eigenfunctions and the eigenvalues of TK. Then the

native space NK is given by

NKra, bs “

#

f P L2ra, bs :
8
ÿ

i“1

1

λi

ˇ

ˇ

ˇ
xf, ϕiyL2ra,bs

ˇ

ˇ

ˇ
ă 8

+

,

and the native space inner product can be written as

xf, gyNK
“

8
ÿ

i“1

1

λi
xf, ϕiyL2ra,bs

xg, ϕiyL2ra,bs
.
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It is one of the interesting topics in the theory of RKHS to deduce properties

of the native space from properties of its reproducing kernel K, like continuity,

measurability, differentiability ( [64, Section 4.4]). For instance, continuity of

K on Ω ˆ Ω implies that all functions in the native space NK are continuous

on Ω.

At the end of this section, let us introduce a class of particularly important

RKHS – universal RKHS.

Definition 3.5.13. Let Ω be a compact metric space, K : Ω ˆ Ω Ñ R be a

continuous, symmetric, positive semi-definite kernel. K : Ω ˆ Ω Ñ R is called

universal if its native space NK is dense in CpΩq with respect to uniform norm.

It is possible to prove that the following kernels are universal [64, Corollary

4.58]:

• Gaussian kernel: Kpx, yq “ e´
}x´y}2

2σ2 , x, y P Rn, σ ą 0.

• Exponential kernel: Kpx, yq “ e}x´y}, x, y P Rn.



Chapter 4

Prices prediction with supply and

demand curves

In deregulated electricity markets, the study of price prediction is equally

important for producers, buyers, investors and other load serving bodies for

various reasons. These includes, among others, the cash flow analysis, least cost

planning, integrated resource planning, financial procurement, optimal bidding

strategies, regulatory rule-making and demand side management.

Instead of directly modeling the electricity price as it is usually done in

time series or data mining approaches, we are going to model and utilize its

true source: the sale and purchase curves of the electricity exchange.

4.1 Meshless approximation of supply and demand curves

Let us briefly notice some features of supply and demand curves that are

relevant for our modeling:

• By construction, the curves are monotone.

• The values attained by the supply curve are roughly clustered around lay-

ers, corresponding to different production technologies. In Italy they are

non-dispatchable renewables, gas, coal, hydro, oil.

• The fact that renewables are the first ones make the supply curve intrinsi-

cally "meshless".

• Demand is much more inelastic than supply.

57
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So, we are dealing with a scattered data interpolation problem. We have a large

amount of points (each point represents price and amount of electricity) that

we want to approximate. We can formalize this problem as follows.

Given a set ofN distinct data points XN “ txi : i “ 1, 2, . . . , Nu arbitrarily

distributed on a domain Ω Ă R and a set of data values (or function values)

YN “ tyi : i “ 1, 2, . . . , Nu Ă R, the data interpolation problem consists in

finding a function sf : Ω Ñ R such that

sfpxiq “ yi, i “ 1, . . . , N. (4.1.1)

The idea of meshless approximation with radial basis functions is to find

an approximant of f in the following form:

sfpxq :“
N
ÿ

i“1

αiφp}x´ xi}q

where:

• the coefficients αi and the centers xi are to be chosen so that the inter-

polant is as near as possible as the original function f ;

• φ : RÑ R is a radial basis function (RBF).

Notice that the radial basis function φ ě 0, with αi ě 0, so
M
ÿ

i“1

αiφp}x´ xi}q ě 0.

As we need to approximate piecewise constant monotone function from r0,M s

to R`, we decided to use the integrals of RBF. Namely, we want to find an

approximant of the form

sfptq “

ż t

0

M
ÿ

i“1

αiφpλi}x´ xi}q dx “
M
ÿ

i“1

αi

ż t

0

φpλi}x´ xi}q dx

where λi is a shape parameter for every center xi.

4.2 Approximation by Gauss error function

Let F pxq be a function which corresponds to the supply curve (i.e. piece-

wise non-decreasing constant function from r0,M s to R`). We need to find a
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function Gpxq, such that the difference between F and G is reasonably small.

The derivative of F pxq in the sense of distribution is the sum of Dirac delta

functions centered in the "jumps" of the supply curve. Also we know that the

Dirac delta distribution can be written as limit of Gaussians:

δpxq “ lim
σÑ0

1
?

2πσ2
et

2{2σ2

.

Therefore, it seems natural to search for Gpxq as a linear combination of func-

tions

gpxq “ A ¨
2
?
π

Cpx´Bq
ż

0

e´t
2

dt`D, (4.2.1)

which are called the Gauss error function.

The error function is a special non-elementary function of sigmoid shape

that occurs in probability, statistics, and partial differential equations describ-

ing diffusions. The standard error function is defined as:

erfpxq “
1
?
π

ż x

´x

e´t
2

dt “
2
?
π

ż x

0

e´t
2

dt.

Let us denote

hpxq “

$

&

%

1 if x ě 0,

´1 if x ă 0.
.

Notice that any supply curve can be expressed as a linear combination

of functions hpx ´ aq up to a constant. So, the problem of approximation

the supply curve leads to the problem of approximation of hpx ´ aq by error

functions. In this subsection we are going to give an estimation of the difference

between the step function hpxq and Gauss error function.

From the picture we can see that erfnpxq “ erfpn ¨ xq gets closer to hpxq as

n becomes bigger. So, our first task is to examine, in which sense erfn converges

to h. We are going to check four types of convergence:

1. Uniform convergence;

2. Pointwise almost everywhere convergence;
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Figure 4.1: Gauss error function

3. Convergence in measure;

4. L2 convergence on a real line;

For the first three items the answer is immediate. There is no uniform

convergence, because | erfnp0q ´ hp0q| “ 1 for all n. But for every x ‰ 0

erfnpxq Ñ hpxq, so erfn converges to h almost everywhere. And therefore,

erfn Ñ h in measure. To obtain the answer about L2pRq convergence we need

to use some additional theory.

One of the related functions is the complementary error function, which is

defined as

erfcpxq “ 1´ erfpxq “
2
?
π

ż 8

x

e´t
2

dt.

To obtain an estimation for }h´erfn }L2pRq, we will use the following known

fact about the complementary error function from [1]:

Lemma 4.2.1.
ż `8

0

erfc2
pxqdx “

2´
?

2
?
π

.

Proposition 4.2.2. Consider the functions
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hpxq “

$

&

%

1 if x ě 0,

´1 if x ă 0.
and erfnpxq “

1
?
π

ż nx

´nx

e´t
2

dt.

Then for every n P N

} erfn´h}L2pRq “

d

2p2´
?

2q

n
?
π

. (4.2.2)

Proof. We can write

hpxq ´ erfnpxq “

$

&

%

1´ erfpnxq if x ě 0,

´p1´ erfp´nxqq if x ă 0.
.

It means that hpxq ´ erfnpxq “ signpxq ¨ erfcp|nx|q, and so,

phpxq ´ erfnpxqq
2
“ erfc2

p|nx|q.

Therefore

} erfn´h}
2
L2pRq “

8
ż

´8

erfc2
p|nx|q dx “ 2

8
ż

0

erfc2
pnxq dx

“
2

n

8
ż

0

erfc2
pyq dy “

2

n
¨

2´
?

2
?
π

The last equality is obtained from Lemma 4.2.1, and this ends the proof.

The goal of the next theorem is to show that any supply curve (piecewise

constant function with a finite number of segments) can be approximated by a

combination of error functions in the sense of L2 convergence.

Theorem 4.2.3. Any piecewise constant function can be approximated by the

linear combination of error functions in the sense of } ¨ }L2pRq.

More precisely, if we have a function of the form

F pxq “
k
ÿ

i“1

aihpx´ biq ` ci `D,

then for every ε ą 0 there is N P N such that, for
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Gpxq “
k
ÿ

i“1

ai erfpN ¨ px´ biqq ` ci `D,

it holds }F ´G}L2
ă ε.

Proof. Without loss of generality we can assume that D “ 0. Fix ε ą 0. Let

us denote

fipxq “ aihpx´ biq ` ci.

So, F pxq “
řk
i“1 fipxq. For each i consider the sequence of functions

gi,npxq “ ai erfpnpx´ biqq ` ci.

Then, from (4.2.2) we have the estimation

}fi ´ gi,n}L2
“ ai} erfn´h}L2

“ ai

d

2p2´
?

2q

n
?
π

.

We can choose Ni such that }fi ´ gi,Ni
}L2
ă ε

k . Therefore, taking N “ max
i
Ni,

we obtain

}fi ´ gi,N}L2
ă
ε

k
for all i. (4.2.3)

Now take Gpxq “
řk
i“1 ai erfpN ¨ px´ biqq ` ci. Then we can estimate

}F ´G}L2
“

›

›

›

›

›

k
ÿ

i“1

fi ´
k
ÿ

i“1

gi,N

›

›

›

›

›

L2

ď

k
ÿ

i“1

}fi ´ gi,N}L2

(4.2.3)
ă k

ε

k
“ ε.

Evidently, any supply curve and any demand curve can be approximated by

a combination of error functions, which is the integral of a normalized Gaussian

function. The standard error function is defined as:

erfpxq “
1
?
π

ż x

´x

e´t
2

dt “
2
?
π

ż x

0

e´t
2

dt.

Since we want to approximate monotone curves we came up with the idea to

use the integral of radial basis function. In order to find unknown coefficients

αi, λi, xi we need to solve global minimization problem:

min
p
}sfpxi, pq ´ yi}

2
2,
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where p “ pαi, λi, xiqi“1,...,N and

sfpt, pq :“
M
ÿ

i“1

αi

ż t

0

φpλi}x´ xi}q dx

and φptq “ perfptq ` 1q{2 is the primitive of a Gaussian kernel. However,

this optimization problem is very heavy, as it is a nonlinear and nonconvex

minimization over p P R3M (M » 150).

We divide our global problem in simpler subproblems, with lower dimen-

sionality, so that the final result is faster. Let us to describe our method in

some more details for the supply curve.

First, we divided the y-axis into M equal intervals, and approximate the

supply function on that interval exactly with one basis function ; M 3-

dimensional optimization problems. However, this has the huge drawback that

a huge jump concentrates on itself, keeping uselessly many components. Then

we divide the y-axis into M intervals rpi, pi`1s, where the pi correspond to the

greatest quantity Qi offered, i.e. to the largest "plateaus" on the bidding curve;

again, we approximate the supply function on that interval exactly with one

basis function. On each part we need to fine only 3 coefficients. For the re-

alization of our algorithm we are using standard function lsqcurvefit from

MatLab Optimization Toolbox.

For optimizing the numerical procedure we solved some parts of the opti-

mization problem by ourselves: when the interval rpi, pi`1s contains just one

jump, then

αi :“ fppi`1q ´ fppiq

for any kernel function φ with unit integral.

4.3 Data set

In our work we are using the data about supply bids from the Italian elec-

tricity market from the GME website www.mercatoelettrico.org. We consider

time period from 01.01.2017 to 31.12.2017. These data are in aggregated form,

i.e. bids coming from different agents but with the same price are aggregated
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Figure 4.2: Method 1 and Method 2

in the price layer. Even in this form, we are dealing with the massive amount

of data. For instance, there were observed 2 800 687 offer and 558 926 bid

layers during this period.

So, it means, that on average there are 324 offer and 65 bid layers for each

hour of the year, which corresponds to one supply curve and one demand curve

respectively.
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Table 4.1: Data
Date Hour Volume (MW) Price (Euro)

01-01-2017 1 13392.7 0

01-01-2017 1 25 0.1

01-01-2017 1 113.8 1

01-01-2017 1 11 3.5

01-01-2017 1 270.3 5

01-01-2017 1 0.5 6

.................. ...... ...................... ....................

31-12-2017 24 370 554.2

31-12-2017 24 352 554.3

31-12-2017 24 365 554.5

31-12-2017 24 97 700

31-12-2017 24 60000 3000

It is a known fact that the dynamics of electricity trade displays a set of

characteristics: external weather conditions, dependence of the consumption

on the hour of the day, the day of the week, and time of the year. Variation in

prices are all dependent on the principles of demand and supply. First of all, on

the day-ahead market the energy is traded on an hourly basis and this means

that the prices can and will vary per hour. For example, at 9:00 a.m. there

could be a price peak, while at 4:00 a.m. prices could be only half of the peak

price. Second, the weekly seasonal behaviour matters. Usually, it is necessary

to differentiate between the two weekend days (Saturday and Sunday), the first

business day of the week (Monday), the last business day of the week (Friday)

and the remaining business days. Thirdly, electricity spot prices display a strong

seasonal pattern. For instance, demand increases in summer, as consumers

turn their air conditioners on, and also in winter because of electric heating in

housing.

As far as the number of offers (or bids) affects directly the complexity of

approximation, we decided to explore the relationship between the number of

bids and offers and such a characteristics as the hour of the day, the day of

the week, and the month of the year. Based on the dependence between this

three factors and electricity prices we could expect that some hours, days have

much less offers and bids than another one. This analysis is presented on
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Figures 4.3 – 4.5.

The main conclusion that we have made is that there is no direct relation-

ship between the number of offer and bid layers and the hour of the day, the

day of the week, and the time of the year. In particular, during 24 hour of the

day the number of offer layers varies between 299 and 332, and the number of

bid layers varies between 61 and 66. With regard to dependence of the day of

the week the number of offer layers varies between 310 and 320, and the number

of bid layers varies between 55 and 68. Based on this observation we decided

to chose the same number of basis functions independently of the hour of the

day, the day of the week, and the time of the year.

Hour
Number

Hour
Number

of offers of bids of offers of bids

1 300 64 13 329 64

2 299 64 14 329 64

3 300 64 15 330 64

4 300 64 16 332 64

5 301 63 17 332 63

6 303 63 18 332 63

7 307 62 19 331 64

8 318 63 20 329 65

9 325 65 21 329 66

10 326 64 22 323 64

11 329 64 23 321 63

12 329 65 24 314 61

Figure 4.3: Hour dependence of the number of offer and bid layers

Month
Number

of offers of bids
Sunday 310 55
Monday 310 56
Tuesday 322 68

Wednesday 324 67
Thursday 326 68

Friday 327 68
Saturday 329 68

Figure 4.4: Weekly dependence of the number of offer and bid layers
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Month
Number

of offers of bids
January 331 65
February 341 79
March 324 81
April 305 72
May 298 57
June 298 54
July 322 55

August 305 58
September 300 64
October 309 66

November 348 58
December 357 57

Figure 4.5: Monthly dependence of the number of offer and bid layers

4.4 Numerical experiments

Since the maximum market clearing price for the period under review (i.e.

from 01.01.2017 to 31.12.2017) is 350 e, in all the experiments we restricted

ourselves to a maximum price 400 e. In Figure 4.6 we demonstrate that the

approximation by polynomials does not suit to our problem. In Theorem 4.2.3

we have showed that we can approximate supply curve with a linear combi-

nation of error functions. Now we want to implement this into practice using

MatLab. First of all, we care about

• accuracy of the approximation;

• running time.

Notice that Runge’s phenomenon (1901) shows that for high values ofN , the

interpolation polynomial may oscillate wildly between the data points. Besides,

the polynomial interpolation does not guarantee of monotonicity of the curves

(see Figure 4.6).

For the realization of our algorithm we are using standard func-

tion lsqcurvefit from MatLab Optimization Toolbox and functions main,
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Figure 4.6: Approximation of supply curve with polynomials

datainterpolation, onestepdata.

In the function main we download the data from a text file and choose the

number of basis function M . The result of function datainterpolation is the

coefficients ai, bi, ci of the function

Gpxq “
k
ÿ

i“1

aiperfpci ¨ px´ biqq ` 1q. (4.4.1)

Here for the calculation convenience we are using terfpci ¨ px´ biqq` 1u instead

of terfpci ¨ px´ biqqu, as our data values are never negative.

The lsqcurvefit function solves nonlinear data-fitting problems in least-

squares sense. Suppose that we have data points XN “ txi : i “ 1, 2, . . . , Nu

and data values YN “ tyi : i “ 1, 2, . . . , Nu Ă R and we want to find a function

f such that fpxiq « yi, i “ 1, . . . , N. We can consider the family of functions

tfpx, pq : p P Rku, depending of some parameter p P Rk. Let p0 P Rk be an

“initial guess” such that fpxi, pq is reasonably close to yi.
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The function lsqcurvefit starts at p0 and finds coefficients p from some

neighborhood of p0 to best fit the data set YN :

min
p
}fpxi, pq ´ yi}

2
2.

Notice that this function works well only if the number of parameters

pp1, . . . , pkq is not very big. That is why we are forced to divide our prob-

lem into many local problems.

After we choose the number of basis function M , we want to divide our

problem into M sub-problems. Then each part of the supply curve must be

approximated by one error function. Our first attempt (Method 1) was just to

divide y-axis uniformly intoM equal intervals (see Figure 4.2, A). However this

approach is ineffective, as “jumps” of supply curve can be bigger that the length

of these intervals. To resolve this problem we created a simple algorithm that

finds the points P1, . . . , PM on the y-axis such that our supply curve takes the

value exactly Pi on some non-trivial interval (see Figure 4.2, B). ThenM times

we resolve the same optimization problem for the values of the supply curve

between Pi and Pi`1 using function lsqcurvefit. The function onestepdata

gives for each step the initial point p0.

A summary of the results is shown in Table 4.2. For all experiments we pro-

ceed with the data for period from 01.01.2017 to 31.12.2017. We used different

number of basis function to approximate supply and demand curves, and then

compared the equilibrium price, which was received as intersection of approx-

imants (Pappr), with the correct equilibrium price (P ). We did this for each

hour of each day, and then computed the average value of |P ´ Pappr| (Error)

for all 8 664 hours of the year and the maximum value of |P ´ Pappr| (Max

error).

This empirical results show that the accuracy of our approximation is good

enough, if we use 5 basis function for the demand curve and 15 basis function

for the supply curve. Then the increase in the number of functions leads to

more time-consumption, but the increase of the accuracy is less significant.

As a last step we analyzed the stability of the coefficients for the case, when
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Figure 4.7: Local interpolation by one error function with lsqcurvefit function

we approximate the supply curve with 10 basis functions and the demand curve

with 5 basis functions for the same period of time.

Spxq “
10
ÿ

i“1

AiperfpCi ¨ px´Biqq ` 1q and Dpxq “
5
ÿ

i“1

EiperfpKi ¨ px´Liqq ` 1q.

From Table 4.3 we can see that these coefficients do not have a stable behav-

ior (namely, maximum values, minimum values and mean values are presented).
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Table 4.2: Results of numerical experiment
Number of functions Results

For demand For supply Error Max error Running time

5 5 3.9 e 28.6 e 69 min.
5 10 2.2 e 14.9 e 82 min.
5 15 1.5 e 11.1 e 103 min.
5 20 1.3 e 9.1 e 110 min.
5 25 1.2 e 9.3 e 135 min.
5 30 1.2 e 9.4 e 159 min.
5 35 1.2 e 9.8 e 177 min.
5 40 1.2 e 9.6 e 190 min.
5 45 1.2 e 9.6 e 199 min.
5 50 1.2 e 9.6 e 207 min.

10 5 3.9 e 39.5 e 100 min.
10 10 2.1 e 14.9 e 128 min.
10 15 1.4 e 8.9 e 146 min.
10 20 1.2 e 9.1 e 162 min.
10 25 1.1 e 9.5 e 183 min.
10 30 1.1 e 9.3 e 199 min.
10 35 1.0 e 9.4 e 223 min.
10 40 0.98 e 9.8 e 241 min.
10 45 0.98 e 9.6 e 255 min.
10 50 0.98 e 9.6 e 273 min.

Although the values attained by the supply curve are clustered around layers,

which correspond to different production technologies, we came to the conclu-

sion that we have no chance to choose these coefficients uniformly for all curves,

but we need to calculate them for all supply and demand curves.
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Figure 4.8: Supply curve approximated with 10 basis functions

Table 4.3: Stability of the coefficients
Min Mean Max

Coeffitients for supply curve
A1 10 14.76981 18
A2 10.5 15.15519 21
A3 10.5 15.21438 19.5
A4 11 15.53944 22
A5 11 16.8968 27.5
A6 12.5 20.44287 27
A7 14.5 22.15457 33
A8 19 29.69132 57.5
A9 17 24.48784 48
A10 21 25.64777 50

Coeffitients for demand curve
E1 12 30.95154 37.5
E2 25 34.31039 58.5
E3 25 36.24469 50
E4 33 40.19715 50
E5 50 58.29623 75

So, in this section we presented a parsimonious way to represent supply and

demand curves, using a mesh-free method based on Radial Basis Functions.

Using the tools of functional data analysis, we are able to approximate the

original curves with far less parameters than the original ones. Namely, in
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order to approximate piece-wise constant monotone functions, we are using the

combination of the integral of a normalized Gaussian function.

4.5 Price and demand forecasting based on supply and demand

curves

Our main goal in this section is to forecast next-day electricity demand and

prices using approximated supply and demand curves and to compare differ-

ent modeling techniques. The classical models do not explain the relationships

between market clearing price and different influential factors that can be es-

sential in the problem of price prediction. To this purpose, we want to compare

commonly used autoregressive models, based just on the clearing price, with

ours, based on supply and demand curves. For this test, we are using again

the data about supply bids from the Italian electricity market considering the

time period from 01.01.2017 to 31.12.2017. In particular, our training set in-

cludes data from 01.01.2017 to 31.10.2017, while the test set which is used for

forecasting to test the performance of the model on out-of-sample data is from

01.11.2017 to 31.12.2017. We will consider a linear parametric autoregressive

(AR) model for univariate price prediction and functional autoregressive (FAR)

models for the prediction of supply and demand curves.

We performed electricity price forecasting using six different methods: au-

toregressive model of order 1 with (SAR(1)) and without seasonality (AR(1))

for the closing price; functional autoregressive model of order 1 applied to the

modeled supply and demand curves, where for the representation of demand

curve we used one basis function and for the representation of supply curve we

used 5 or 10 functions (FAR(1) (5 functions) and FAR(1) (10 functions), respec-

tively) together with the corresponding seasonal models (SFAR(1) (5 functions)

and SFAR(1) (10 functions), respectively). In all the seasonal versions, dummy

variables corresponding to weekdays were introduced. These models were ap-

plied to each market hour separately.

While formulations of AR(1) and SAR(1) models for the closing prices
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are quite standard (thus we do not give details on them here), we feel that a

description of our implementation of FAR(1) and SFAR(1) models for supply

and demand curves are needed. We considered the simplified representation of

the supply curve Sd,hpxq withM basis functions, and the demand curve Dd,hpxq

with one basis function, at day d and hour h, keeping the shape parameter

constantly equal to 1

Sd,hpxq “
M
ÿ

i“1

Ad,h,i ¨ perfppx´Bd,h,iqq ` 1q, M “ 5 or M “ 10,

Dd,hpxq “ 200 ¨ erfppx´ Ld,hqq ` 1.

Then we provide a model for the process Xd,h “ pX
1
d,h, X

2
d,h, . . . , X

2M
d,h q, where

X i
d,h “ Ad,h,i, i “ 1, . . . ,M ´ 1,

X i`M´1
d,h “ Bd,h,i, i “ 1, . . . ,M,

X2M
d,h “ Ld,h.

Notice that, as we restricted ourselves to a maximum price (and so the maxi-

mum of supply and demand curves) of 400 e, we need to exclude the parameter

Ad,h,M from the model, as it is linearly dependent on others. The considered

time series model FAR(1) for Xd,h for each hour h is given by

Xd,h “ νd ` ΦdXd,h´1 ` εd,h

with the 2M ˆ 2M matrix Φd, and the 2M -dimentional vector νd as param-

eters, and εd,h as error term. We assume that the error process εd,h is a 2M -

dimensional white noise process.

For modeling the day of the week impact in SFAR(1) models we define ad-

ditionally function W pdq that gives a number that corresponds to the weekday

of day d (W pdq “ 1 for a Sunday, for a Monday W pdq “ 2 up to W pdq “ 7 for

a Saturday), and the weekday indicators

Wkpdq “

$

&

%

1, if W pdq “ k

0, if W pdq ‰ k
.
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We introduced parameters Dd,h,k for the weekday effect. Thus, the correspond-

ing SFAR(1) model for Xd,h for each hour h and is written, in terms of coeffi-

cients, as

Xd,h “ νd ` ΦdXd,h´1 `

7
ÿ

k“1

WkpdqDd,h,k ` εd,h.

We compared the results obtained with our functional approach with cor-

responding univariate price prediction. Three different summary measures,

namely, mean absolute error (MAE), root mean square error (RMSE) and mean

absolute percentage error (MAPE) were used to evaluate the out-of-sample fore-

casting performance. Let us denote Edh and Êdh the observed and the predicted

values for day d, d “ 1, . . . , T “ 61 and hour h, h “ 1, . . . , 24. We com-

puted

MAE “

řT
i“1 |Eih ´ Êdh|

T
, h “ 1, . . . , 24;

RMSE “

d

řT
i“1pEih ´ Êdhq

2

T
, h “ 1, . . . , 24;

MAPE “

řT
i“1 |Eih ´ Êdh|{Eih

T
, h “ 1, . . . , 24;

Table 4 provide summary statistics of errors for the forecasting of next-

day electricity price. In order to facilitate the comparison between different

methods we plot the errors for each of the six methods on Figures 4.9, 4.10 and

4.11.

As expected, SAR(1) performs better than AR(1). Surprisingly, instead,

functional autoregressive models without seasonality gives better results than

corresponding seasonal models. By comparing functional autoregressive models

with 5 and 10 functions we can see similar results, so increasing the number of

parameters does not lead to the improvement of the prediction accuracy. These

two outcomes could be possibly due to overfitting effects. These results shows

that we should use FAR(1) (5 functions) as this method is less time-consuming

than the one with 10 functions. Finally, our method FAR(1) (5 functions)

gives considerably more accurate results compared to the SAR(1) model for all

hours. In particular, not only SAR(1) gives an average of the MAPE equal to
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16.51% while FAR(1) (5 functions) gives 14.98%, but we can see that FAR(1)

(5 functions) performs significantly better than SAR(1) on every single hour.

Also comparing MAE and RMSE we obtain similar results.

Due to the superior performance of FAR(1) (5 functions) method, we also

conducted prediction of electricity demand with just three methods: AR(1),

SAR(1), and FAR(1) (5 functions). Table 5 provide summary statistics of errors

for the forecasting of next-day electricity demand also represented in Figures

4.12, 4.13, 4.14. In this case AR(1) gives an average of the mean absolute

percentage error 12.82%, SAR(1) gives 11.33% and FAR(1) (5 functions) gives

10.04%. Moreover, FAR(1) (5 functions) for the demand forecasting again

gives more accurate results compared to the AR(1) model for all hours and also

compared to the SAR(1) model. The same is true for MAE and RMSE.
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Figure 4.9: Mean absolute error for price forecasting.

Figure 4.10: Root mean square error for price forecasting.

Figure 4.11: Mean absolute percentage error for price forecasting.
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Table 4.4: Price prediction accuracy statistics.

Model Hour
MAE
Euro

RMSE
Euro

MAPE
%

Hour
MAE
Euro

RMSE
Euro

MAPE
%

AR(1)

1

9.12 11.59 14.47

13

12.33 18.62 16.86
FAR(1) (5 functions) 6.92 9.06 10.77 9.35 15.37 12.68
FAR(1) (10 functions) 6.57 9.07 10.28 10.66 16.76 14.68
SAR(1) 8.1 10.31 12.92 12.43 18.04 17.43
SFAR(1) (5 functions) 7.5 9.60 11.86 11.27 16.91 15.77
SFAR(1) (10 functions) 7.32 9.55 11.62 12.14 17.67 17.22

AR(1)

2

9.32 11.64 15.45

14

13.92 19.31 19.58
FAR(1) (5 functions) 6.29 8.75 10.14 10.51 15.91 14.88
FAR(1) (10 functions) 6.39 9.03 10.27 10.68 16.28 15.05
SAR(1) 7.37 10.20 12.13 14.02 19.01 20.17
SFAR(1) (5 functions) 6.74 9.06 11.09 12.28 17.70 17.51
SFAR(1) (10 functions) 6.80 9.13 11.16 12.60 18.23 18.07

AR(1)

3

7.58 9.58 13.26

15

19.78 26.10 25.10
FAR(1) (5 functions) 5.59 7.47 9.47 14.80 20.73 19.05
FAR(1) (10 functions) 5.39 7.76 9.18 16.12 21.49 20.60
SAR(1) 6.22 7.97 10.89 18.91 25.16 24.76
SFAR(1) (5 functions) 5.88 7.98 10.13 17.14 23.63 22.16
SFAR(1) (10 functions) 6.00 8.13 10.39 17.37 23.29 22.55

AR(1)

4

7.51 9.67 13.44

16

26.77 35.98 29.41
FAR(1) (5 functions) 5.36 7.48 9.22 20.78 29.76 22.68
FAR(1) (10 functions) 5.48 7.74 9.91 20.86 30.67 22.36
SAR(1) 6.27 8.02 11.31 24.95 33.72 28.07
SFAR(1) (5 functions) 5.96 8.07 10.46 22.76 31.65 25.11
SFAR(1) (10 functions) 6.05 8.04 10.93 23.15 32.27 25.41

AR(1)

5

7.41 9.55 12.97

17

35.21 49.61 33.00
FAR(1) (5 functions) 5.47 7.55 9.38 27.07 42.61 23.56
FAR(1) (10 functions) 5.54 7.50 9.71 26.78 43.08 23.27
SAR(1) 6.17 7.92 10.83 31.34 45.55 28.56
SFAR(1) (5 functions) 5.94 7.86 10.34 29.29 44.22 25.99
SFAR(1) (10 functions) 5.95 7.85 10.49 28.40 43.37 25.66

AR(1)

6

8.01 10.06 13.34

18

40.62 60.62 32.32
FAR(1) (5 functions) 5.65 7.76 9.32 31.41 49.74 22.90
FAR(1) (10 functions) 5.70 7.66 9.44 31.65 48.41 25.03
SAR(1) 6.19 8.36 10.31 35.01 52.87 26.79
SFAR(1) (5 functions) 5.95 7.95 9.99 32.21 50.63 24.12
SFAR(1) (10 functions) 5.95 7.89 10.02 34.17 49.10 27.56
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Table 4: Price prediction accuracy statistics.

Model Hour
MAE
Euro

RMSE
Euro

MAPE
%

Hour
MAE
Euro

RMSE
Euro

MAPE
%

AR(1)

7

10.35 14.15 15.09

19

30.43 46.78 26.33
FAR(1) (5 functions) 7.80 11.15 11.60 23.27 38.21 19.06
FAR(1) (10 functions) 8.36 11.77 12.77 24.53 38.40 20.99
SAR(1) 9.13 12.29 13.70 26.13 41.06 22.01
SFAR(1) (5 functions) 8.42 11.75 12.74 24.91 39.04 21.16
SFAR(1) (10 functions) 9.07 11.99 14.11 25.98 38.99 22.84

AR(1)

8

18.91 27.67 22.79

20

23.26 41.01 21.08
FAR(1) (5 functions) 15.27 24.08 18.51 19.08 35.09 16.11
FAR(1) (10 functions) 16.13 23.97 20.55 18.85 34.54 16.43
SAR(1) 18.14 26.08 22.25 22.62 37.70 19.90
SFAR(1) (5 functions) 17.37 24.80 21.74 20.87 36.16 18.16
SFAR(1) (10 functions) 18.60 25.46 24.09 22.22 36.56 20.00

AR(1)

9

26.71 41.73 28.29

21

15.29 22.04 15.91
FAR(1) (5 functions) 22.56 38.91 23.33 13.34 20.24 13.49
FAR(1) (10 functions) 22.40 36.46 24.12 13.47 19.69 13.83
SAR(1) 27.24 39.85 29.50 15.85 21.60 16.80
SFAR(1) (5 functions) 26.21 39.85 28.64 16.51 23.04 17.30
SFAR(1) (10 functions) 26.62 38.01 30.35 15.28 21.66 15.88

AR(1)

10

23.25 40.09 25.17

22

10.21 17.07 12.41
FAR(1) (5 functions) 19.58 36.07 20.59 10.61 17.56 12.54
FAR(1) (10 functions) 19.70 36.96 21.37 11.45 18.48 13.46
SAR(1) 23.68 38.14 25.96 11.25 17.26 13.79
SFAR(1) (5 functions) 22.92 36.55 25.82 13.43 19.27 16.23
SFAR(1) (10 functions) 23.12 37.02 26.37 12.91 19.23 15.43

AR(1)

11

15.77 22.79 19.62

23

7.23 10.92 10.31
FAR(1) (5 functions) 13.66 20.20 17.10 6.37 9.62 8.92
FAR(1) (10 functions) 14.88 21.57 19.02 7.09 10.76 9.87
SAR(1) 16.04 22.24 20.42 6.97 10.54 9.72
SFAR(1) (5 functions) 15.82 22.02 20.42 6.84 10.00 9.54
SFAR(1) (10 functions) 18.59 24.78 24.15 7.55 11.02 10.45

AR(1)

12

14.92 21.56 18.95

24

6.55 8.37 10.43
FAR(1) (5 functions) 11.67 18.19 15.07 5.74 7.36 9.23
FAR(1) (10 functions) 12.63 19.20 16.37 5.83 7.79 9.35
SAR(1) 14.90 20.61 19.56 5.74 7.41 9.08
SFAR(1) (5 functions) 13.66 19.76 18.19 6.07 7.88 9.67
SFAR(1) (10 functions) 15.23 20.83 20.54 6.58 8.50 10.55
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Figure 4.12: Mean absolute error for demand forecasting.

Figure 4.13: Root mean square error for demand forecasting.

Figure 4.14: Mean absolute percentage error for demand forecasting.
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Table 5: Demand prediction accuracy statistics.

Model Hour
MAE
mW

RMSE
mW

MAPE
%

Hour
MAE
mW

RMSE
mW

MAPE
%

AR(1)
1

1749 2134 6.7575
13

4955 5750 14.9272
SAR(1) 1650 1960 6.349 4381 5629 13.1578
FAR(1) (5 functions) 1197 1534 4.5906 3941 4824 11.9352

AR(p)
2

1723 2054 7.0308
14

5477 6313 16.9839
SAR(1) 1584 1897 6.458 4731 6132 14.596
FAR(1) (5 functions) 1173 1531 4.7919 4117 5272 12.9417

AR(p)
3

1773 2071 7.4811
15

6154 7033 18.9165
SAR(1) 1573 1887 6.6261 5214 6897 15.9249
FAR(1) (5 functions) 1206 1523 5.0349 4747 5964 14.6323

AR(p)
4

1789 2098 7.6647
16

6378 7243 19.1183
SAR(1) 1576 1892 6.7444 5364 7098 16.0223
FAR(1) (5 functions) 1365 1690 5.8724 5113 6164 15.3625

AR(p)
5

1825 2162 7.7768
17

6439 7211 18.1779
SAR(1) 1566 1912 6.6696 5334 7022 15.1515
FAR(1) (5 functions) 1343 1656 5.7846 5476 6630 15.1782

AR(p)
6

2029 2505 8.2893
18

6055 6690 15.406
SAR(1) 1870 2254 7.6712 4869 6316 12.6027
FAR(1) (5 functions) 1589 1913 6.5373 4905 6158 12.5699

AR(p)
7

3502 4065 12.6681
19

5259 5887 13.3915
SAR(1) 3299 3987 12.125 4341 5543 11.2166
FAR(1) (5 functions) 2903 3464 10.6912 4142 4948 10.6123

AR(p)
8

5272 6000 17.1605
20

4387 5009 11.3723
SAR(1) 4938 6097 16.2434 3758 4798 9.8719
FAR(1) (5 functions) 4461 5316 14.9315 3294 4079 8.6847

AR(p)
9

6270 7132 19.0464
21

3670 4220 10.0831
SAR(1) 5772 7345 17.5386 3231 4109 8.909
FAR(1) (5 functions) 4847 6016 14.6453 2960 3516 8.1968

AR(p)
10

6098 6954 17.8199
22

3111 3741 9.2407
SAR(1) 5618 7145 16.4139 2732 3483 8.0774
FAR(1) (5 functions) 4818 6103 14.0522 2353 2842 6.9697

AR(p)
11

5761 6618 16.7452
23

2485 3016 8.0533
SAR(1) 5236 6704 15.1949 2211 2752 7.1536
FAR(1) (5 functions) 4445 5389 12.8906 1764 2216 5.7381

AR(p)
12

5641 6476 16.4409
24

2067 2534 7.3591
SAR(1) 5011 6449 14.573 1883 2289 6.6889
FAR(1) (5 functions) 4377 5240 12.6463 1646 2015 5.8758



Chapter 5

Supply and demand curves as stochastic

processes

Our next goal is to consider supply and demand curves as stochastic pro-

cesses. As a functional space in this case we can consider the space, which con-

tains all monotone bounded functions from r0,M s to r0, P s, where M “ 60000

MWh ans P “ 3000 Euro/MWh. As far as the real data about supply and

demand are discrete (there exist a minimum size of quantities of electricity for

the supply offers and the demand bids) we are able to consider supply and

demand curves either as piece-wise constant curves or as continuous piece-wise

linear curves. In principle, it is an infinite dimensional subset of L2 pr0,M sq

or H1 pr0,M sq. However, market operators allow discrete minimum increases,

or ticks, both for quantities as for prices. Then, in our model the dimension

is finite1. Though finite, this is a huge number to implement in the numerical

model, so we will consider the stochastic processes in an abstract Hilbert space.

In order to deal with the huge amount of bid data, we studied linear trans-

formations of multivariate stochastic processes. It is known fact that a linear

transformation of a vector ARMA process is again an ARMA process. Instead,

a linear transformation of a finite order ARppq process does not admit in general

a finite order AR representation, but just a mixed ARMA representation. In

this chapter we obtain a characterization result regarding the conditions that

guarantee that a linear transformation of a vector AR process is again an AR
1For Italian Electricity Market the ticks are 1 kWh for quantities (i.e. 0.001 MWh) and 0.01 Euro/MWh for prices. Thus,

the dimension of the model is 60000000.

82
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process both in finite and in infinite dimension. We will then apply them to

the model of Ziel and Steinert from [75].

5.1 Motivation

Let us reformulate the model of Ziel and Steinert mentioned in Section 1.3

in terms of linear transformation of multivariate stochastic process. They use a

time series model for the bid volume processesXpcq
S,t andX

pcq
D,t for each price class

c. The original bid volume processes are VS,tppq and VD,tppq for each possible

price p P P “ tp1, p2, . . . , pn´1, pnu, where p1 “ ´500, p2 “ ´499.9, . . . , pn “

3000, thus n “ 35001. So, we can say that the stochastic processes

VS,t “ pVS,tpp1q, VS,tpp2q, . . . , VS,tppnqq,

VD,t “ pVD,tpp1q, VD,tpp2q, . . . , VD,tppnqq,

are processes with values in Rn, which represents the information about the

whole supply and demand curves. More precisely, the sale and purchase curves

are characterized by

Stppq “
ÿ

i:piďp

VS,tppiq, and Dtppq “
ÿ

i:piěp

VD,tppiq.

In order to reduce the dimensionality of the problem, Ziel and Steinert

define price classes for supply and demand curves as CS “ pc1, c2, . . . , cmq

and CD “ pc̃1, c̃2, . . . , c̃mq, where ´500 “ c1 ă c2, . . . ă cm “ 3000 and

3000 “ c̃1 ą c̃2 ą . . . ą c̃m “ ´500. In such a way, m is a new dimension

for the studied processes and it is much less than n, for instance in their paper

they put m “ 16. The price classes are given by

PSpc1q “ t´500u, PSpc2q “ pc1, c2s X P, . . . , PSpcmq “ pcm´1, cms X P

PDpc1q “ t3000u, PDpc̃2q “ rc̃2, c̃1q X P, . . . , PSpcmq “ rc̃m, c̃m´1q X P.

So, instead of considering the processes VS,t and VD,t, they study

XS,t “ pXS,tpc1q, XS,tpc2q, . . . , XS,tpcmqq,

XD,tm “ pXD,tpc̃1q, XD,tpc̃2q, . . . , XD,tpc̃mqq,
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where

XS,tpciq “
ÿ

i:piPPSpciq

VS,tppiq and XD,tpc̃iq “
ÿ

i:piPPDpc̃iq

VD,tppiq

We can assume that CS Ă P and CS Ă P , rounding, if necessary, ci and c̃i to

one decimal place. Therefore, we can state that

XS,t “ TSpVS,tq and XD,t “ TDpVD,tq

where TS, TD : Rn Ñ Rm are linear continuous operators such that

TSpx1, x2, . . . , xnq “

˜

k1
ÿ

i“1

xi,
k2
ÿ

i“k1`1

xi, . . . ,
n
ÿ

i“km´1`1

xi

¸

and

TDpx1, x2, . . . , xnq “

˜

m1
ÿ

i“1

xi,
m2
ÿ

i“k1`1

xi, . . . ,
n
ÿ

i“mm´1`1

xi

¸

.

So, the processes pXS,tq and pXD,tq are linear transformations of the processes

pVS,tq and pVD,tq. Notice, that in practice, the original variables of interest are

often transformed before their generation process is modeled.

As we already said, for modeling the electricity price Ziel and Steinert follow

a simple regression approach described in [46], [73], [76]. So, in this case, the

initial processes pVS,tq and pVD,tq, and the transformed processes pXS,tq and

pXD,tq are vector-valued processes and pXS,tq and pXD,tq are assumed to be

autoregressive. We asked ourselves the following question: Suppose that pVtq

is Rn-valued process and pVtq P ARppq, i.e.

Vt “ A1Vt´1 ` A2Vt´2 ` . . .` ApVt´p `Wt,

where Ai are pnˆ n coefficient matrices and Wt is an pnˆ 1q zero-mean white

noise vector process. Let T : Rn Ñ Rm be a linear continuous operator.

Consider the Rm-valued process Xt “ T pVtq. Can we state that pXtq P ARppq?

If Xt “ B1Vt´1`B2Vt´2`. . .`BpV pt´pq`Zt, what is the connection between

Ai, Bi, Wt and Zt? Could this result be generalized to infinite dimensional

cases?
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5.2 Linear transformation of ARH(1) processes

In this section we are going to obtain some partial results regarding the

conditions that guarantee that a linear transformation of a AR process is again

an AR process in the most general form – in infinite dimension. Recall that

the space of all bounded linear operators between two Hilbert spaces H1 and

H2 is denoted by LpH1, H2q, and LpHq denote the space of continuous linear

operators from H to H. First, let us prove the following lemma.

Lemma 5.2.1. Let H1 and H2 be two Hilbert spaces and T P LpH1, H2q.

Suppose that ε “ pεn, n P Zq is a H1-valued white noise (see Definition 2.3.4)

with covariance operator C P LpH1q, and

ϑn “ T pεnq, n P Z

Then ϑ “ pϑn, n P Zq is a H2-valued white noise with covariance operator

C 1 “ T ˝ C ˝ T ˚ P LpH2q.

Proof. From Property 2.1.1 we have that ϑ P L2
H2

and

Eϑn “ ET pεnq “ T pEεnq “ 0.

Recall that for T : H1 Ñ H2 there exists adjoint operator T ˚ : H2 Ñ H1

fulfilling xTh1, h2yH2
“ xh1, T

˚h2yH1
(existence and uniqueness of this operator

follows from the Riesz representation theorem). Since

Cϑnphq “ E rxϑn, hyϑns

“ E rxT pεnq, hyT pεnqs

“ TE rxεn, T ˚phqy εns ,

so, Cϑn does not depend on n. Also, ϑn are pairwise orthogonal. In fact, for

any x, y P H and n ‰ m

E rxϑn, xy xϑm, yys “ E rxT pεnq, xy xT pεmq, yys

“ E rxεn, T ˚xy xεm, T ˚yys “ 0.

It remains to show that 0 ă Er}ϑn}2s ă 8 does not depend on n. This

follows from the fact that Cϑn “ Cϑ does not depend on n. Indeed, let thiu8i“1
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be orthonormal basis of H2, then ϑn “
ř8

i“1xϑn, hiyhi. Therefore,

Er}ϑn}2s “ Erxϑn, ϑnys “ E

«C

ϑn,
8
ÿ

i“1

xϑn, hiyhi

Gff

“

8
ÿ

i“1

E rxxϑn, hiyϑn, hiys “
8
ÿ

i“1

xErxϑn, hiyϑns, hiy

“

8
ÿ

i“1

xCϑphiq, hiy .

So, ϑ “ pϑn, n P Zq is a H2-valued white noise.

Remark 5.2.2. In the vector-valued case (n-dimensional or infinite-

dimensional) we can always consider autoregressive processes of order 1 without

loss of generality. Recall that for a Hilbert space H and a constant p P N Hp

is the product of Hilbert spaces

H bH . . .bH
loooooooomoooooooon

p

with scalar product

xpx1, x2, . . . , xpq, py1, y2, . . . , ypqyHp “ xx1, y1yH ` xx2, y2yH ` . . .` xxp, ypyH .

Suppose that Xt P ARHppq:

Xt “ A1Xt´1 ` A2Xt´2 ` . . .` ApXt´p `Wt.

Then we can define a new process xXt putting

xXt “ pXt, Xt´1, . . . , Xt´p`1q
1;

A “

¨

˚

˚

˚

˚

˚

˝

A1 A2 . . . Ap´1 Ap

I 0 . . . 0 0
...

0 0 . . . I 0

˛

‹

‹

‹

‹

‹

‚

So, xWt “ pWt, 0, . . . , 0q
1 is H bH . . .bH

loooooooomoooooooon

p

“ Hp-valued white noise by

Lemma 5.2.1, and xXt “ AzXt´1 ` xWt is ARHpp1q.
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By the previous remark, all the results concerning ARHppq processes can

be obtained from result, concerning ARH̃p1q, with H̃ suitable Hilbert space

(namely, H̃ “ Hp). For this reason we are going to formulate our results for

autoregressive processes of order 1.

Theorem 5.2.3. Let H1 and H2 be two Hilbert spaces and T P LpH1, H2q.

Consider a zero-mean ARH1p1q process X “ pXn, n P Zq with values in H1,

satisfying, for all n P Z, the equation

Xn “ ρpXn´1q ` εn,

where ρ P LpH1q denotes the autocorrelation operator of the process X. Let

Yt “ T pXtq. Then the following are equivalent:

I. There exists ϑ P LpH2q such that

Tρ “ ϑT on spantXnu. (5.2.1)

II. Y “ pYn, n P Zq is an ARH2p1q and Yt “ ϑYt´1 ` ξt, ϑ P LpH2q.

Proof. The following sequence of equality shows that condition (5.2.1) is suffi-

cient for (II):

Yt “ T pXtq “ TρXt´1 ` Tεt

“ ϑTXt´1 ` Tεt

“ ϑYt´1 ` ξt,

where ξt “ Tεt is a zero-mean white noise according to Lemma 5.2.1 and

ϑ P LpH2q is the autocorrelation operator of process Y .

Conversely, if Yt has the representation Yt “ ϑYt´1`ξt, therefore ϑTXt´1`

ξt “ TρXt´1 ` Tεn, so (5.2.1) holds.

Remark 5.2.4. Notice that necessary condition for equation (5.2.1) to be true

is that for any x P kerpT qXspantXnu ñ ρpxq P kerpT q. It means that kerpT qX

spantXnu is an invariant subspace of ρ restricted on subspace spantXnu.

In the case that the operator T is invertible, obviously, condition (5.2.1)

holds with ϑ :“ TρT´1. For operators that are not invertible, various types
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of generalized inverses exist in the literature. Before introducing the concept

of pseudo-inverse operator, we briefly recall some basic facts concerning the

orthogonal projection of a Hilbert space onto a closed subset.

Recall that the operator P P LpH,Hq is called a projector onto H̃ Ă H

if P pHq Ă H̃ and Px “ x for all x P H̃. An element h P H is said to be

orthogonal to the subset X Ă H if h is orthogonal to all the elements of X.

The set of all elements orthogonal to the subset X is called the orthogonal

complement to X and is denoted by XK. It is known fact that, if X is a closed

linear subspace of the Hilbert space H, then H decomposes into the direct sum

of the subspaces X and XK. Since H “ X
À

XK, there exists a bounded

projector P onto the subspace X with kerP “ XK. The orthogonal projection

onto a closed subspace M Ă H is the bounded linear operator P : H Ñ H

such that for each x “ m ` m1 P H (m P M,m1 P MK), P pxq “ m. A

projector P P LpHq is an orthogonal projector if and only if P is a self-adjoint

operator [36, Section 12.2].

Definition 5.2.5. Let H1, H2 be Hilbert spaces, and suppose that T P

LpH1, H2q. The pseudo-inverse of T (if it exist) is an element T` P LpH2, H1q

such that

TT`x “ x for x P rangepT q;

kerpT`q “ rangepT qK;

rangepT`q “ kerpT qK.

It turns out that, in contrast to the finite dimensional setting, not every

continuous linear operator has a continuous linear pseudo-inverse in this sense.

Those that do are precisely the ones whose range is closed in H2 [33, Theorem

2.4].

Example 5.2.6. Consider the operator

A “ diagp1, 1{2, 1{3, . . .q P Lp`2q.

We can see that rangepAq “ ty P `2 :
ř8

i“1 i
2y2
i ă 8u is not closed in `2,

as the limit point p1, 1{2, 1{3, . . .q R rangepAq. So, there is no pseudo-inverse



89

of the operator A. Indeed, the only possible candidate would be the operator

B “ diagp1, 2, 3, . . .q, which is unbounded.

We collect some properties of T` and its relationship to T [20].

Proposition 5.2.7. Let H1, H2 be Hilbert spaces, and T P LpH1, H2q have

closed range. Then the following holds:

1. TT` is the orthogonal projection of H2 onto rangepT q.

2. T`T is the orthogonal projection of H1 onto rangepT`q.

3. T ˚ has closed range, and pT ˚q` “ pT`q˚.

4. On rangepT q the operator T` is given explicitly by

T` “ T ˚pTT ˚q´1.

5. T` satisfies to Moore-Penrose equations

TT`T “ T ; T`TT` “ T`; pTT`q˚ “ TT`; pT`T q˚ “ T`T.

(5.2.2)

Remark 5.2.8. For the finite dimensional case, it has been shown [53] that if

the four equations (5.2.2) are considered as equations for the unknown matrix

T`, then these equations have a unique solution which is called the Moore-

Penrose inverse. The pseudo-inverse defined in Definition 5.2.5 is therefore an

extension of the Moore-Penrose inverse in Hilbert space.

From Proposition 5.2.7 and Theorem 5.2.3 we obtain the following result.

Corollary 5.2.9. Let T : H1 Ñ H2 be a linear continuous operator between

two Hilbert spaces with closed range in H2. Consider a zero-mean ARHp1q

process X “ pXn, n P Zq with values in H1, satisfying, for all n P Z, the

equation

Xn “ ρpXn´1q ` εn,

where ρ P LpH1q. Let kerpT q be an invariant subspace of ρ (i.e. ρpkerpT qq Ă

kerpT q).
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Then Yn “ T pXnq is an ARH2p1q with values in RT , and the process Yn
has the representation:

Yn “ ϑYn´1 ` Tεn with ϑ :“ TρT ˚pTT ˚q´1.

Proof. Let us denote H̃ :“ rangepT q. Yn “ T pXnq has values in H̃ Ă H2. Let

us define ϑ “ TρT ˚pTT ˚q´1 P LpH̃q, which is exactly TρT` on H̃.

T`T is the orthogonal projection of H1 onto rangepT`q. Since

H1 “ rangepT`q
à

prangepT`qqK “ rangepT`q
à

kerpT q,

we can write any x P H1 as x “ y ` z with y P rangepT`q and z P kerpT q.

Then

ϑT pyq “ TρT`T pyq “ TρIpyq “ Tρpyq

ϑT pzq “ 0 and Tρpzq “ 0, as ρpkerpT qq Ă kerpT q.

So, as Tρ “ ϑT , according to Theorem 5.2.3, Y “ pYn, n P Zq is an

ARH2p1q.

5.3 Linear transformation of VAR(1) processes

Now we are going to reformulate the necessary and sufficient condition in

Theorem 5.2.3 for the case H1 “ Rn and H2 “ Rm.

Theorem 5.3.1. Let Xt be an n-dimensional ARp1q process with the repre-

sentation

Xt “ AXt´1 `Wt,

T : Rn Ñ Rm, be linear transformation and Yt “ T pXtq. Then the following

are equivalent:

I. There exists a pmˆmq matrix B such that

BT “ TA.

II. Y “ pYn, n P Zq is an m-dimensional ARp1q and Yt “ BYt´1 ` Zt, where

Zt “ TWt is a zero-mean white noise vector process.
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Remark 5.3.2. If T has linearly independent rows, then B “ TAT`, where

T` “ T T pTT T q´1 is the Moore-Penrose inverse of T (see Definition ??), and

Yt “ BYt´1 ` Zt.

Corollary 5.3.3. Let Xt be an n-dimensional ARppq process with the repre-

sentation

Xt “ A1Xt´1 ` A2Xt´2 ` . . .` ApXt´p `Wt,

and T : Rn Ñ Rm be a linear transformation.

Then Yt “ T pXtq is an m-dimensional ARppq if and only if there exist

pmˆmq matrices Bi such that

BiT “ TAi for all i “ 1, . . . , p. (5.3.1)

Moreover, if T has linearly independent rows, the process Yt has the repre-

sentation:

Yt “ TA1T
`Yt´1 ` TA2T

`Yt´2 ` . . .` TApT
`Yt´p ` TWt, (5.3.2)

where T` is the Moore-Penrose inverse of T .

Proof. The statement can be deduced from Remark 5.2.2 and Theorem 5.3.1,

but the easiest way to obtain this result is the straightforward proof. Indeed,

the following sequence of equality shows that condition (5.3.1) is necessary and

sufficient:

Yt “ T pXtq “ TA1Xt´1 ` TA2Xt´2 ` . . .` TApXt´p ` TWt

“ B1TXt´1 `B2TXt´2 ` . . .`BpTXt´p ` TWt

“ B1Yt´1 `B2Yt´2 ` . . .`BpYt´p ` Zt,

where Zt “ TWt is a zero-mean white noise vector process. So, Yt is an m-

dimensional ARppq process. If the rows of T are linearly independent, the

Moore-Penrose inverse of T can be expressed as

T` “ T T pTT T q´1

so that TT` “ I, and, therefore, Bi “ TAiT
`, so, the process Yt has the

representation (5.3.2).
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Now we are going to apply this result for the model of Ziel and Steinert in

order to guarantee that the transformation of the initial process belongs to the

class of autoregressive processes. For any matrix A let RA
i denote its i-th row

and let CA
j denote its j-th column.

In the model of Ziel and Steinert we start from the stochastic processes with

values in Rn, which represents the information about the whole supply curve:

VS,t “ pVS,tpp1q, VS,tpp2q, . . . , VS,tppNqq,

and then we define the modified process with values in Rm

XS,t “ pXS,tpc1q, XS,tpc2q, . . . , XS,tpcMqq,

such that

XS,t “ TSpVS,tq

where TS is an pmˆ nq matrix (m ă n) with columns

CTS
ks´1

“ CTS
ks´1`1 “ CTS

ks´1`2 “ . . . “ CTS
ks
“ es, 1 ď s ď m

where 0 “ k0 ă k1 ă k2 ă . . . ă km “ n and te1, e2, . . . , emu is the standard

basis of Rm, i.e.

TS “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 . . . 1 0 . . . 0 0 . . . 0 0 . . . 0
looomooon

k1

0 . . . 0 1 . . . 1 0 . . . 0 0 . . . 0
looomooon

k2´k1
... ...

0 . . . 0 0 . . . 0 1 . . . 1 0 . . . 0
looomooon

km´1´km´2

0 . . . 0 0 . . . 0 0 . . . 0 1 . . . 1
looomooon

n´km´1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(5.3.3)

The authors in [75] introduced Xpcq
S,d,h as the bid supply volume process of

price class c P CS, and X
pcq
D,d,h as the bid demand volume process of price class
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c P CD at day d and hour h. Also they introduced the additional processes de-

noted byXprice,d,t, Xvolume,d,t, Xgeneration,d,t, Xwind,d,t, Xsolar,d,t that represent the

additional information that is available at the time where the auction will take

place. For modeling the weekday impact they defined the weekday indicators

Wkpdq “

$

&

%

1, W pdq ă k

0, W pdq ě k,

where W pdq is a function that gives a number that corresponds to the weekday

of day d (without loss of generality, let k “ 1 for a Monday, for a Tuesday

k “ 2 up to k “ 7 for a Sunday).

To fully present the considered time series model, the object

Xd,h “ pX1,d,h, X2,d,h, . . . , XM,d,hq “ ppX
pcq
S,d,hqcPCS

, pX
pcq
D,d,hqcPCD

,

Xprice,d,h, Xvolume,d,h, Xgeneration,d`1,h, Xwind,d`1,h, Xsolar,d`1,hq

was introduced. As the number of price classes for the supply side is MS “ 16

and the number of price classes for the demand side is MD “ 16, therefore, the

dimension of Xd,h is M “MS `MD ` 5 “ 37.

Then for each hour h the considered time series model of zero-mean process

Yd,h “ Xd,h ´ EpXd,hq “ pY1,d,h, Y2,d,h, . . . , YM,d,hq.

The considered time series model for Ym,d,h for each hour h and m P

t1, . . . ,MS `MDu is given by

Ym,d,h “
M
ÿ

l“1

24
ÿ

j“1

ÿ

kPIm,hpl,jq

φm,h,l,j,kYl,d´k,j `
7
ÿ

k“2

ψm,h,kWkpdq ` εm,d,h (5.3.4)

with the side constraint 0 “
ř

ψm,h,kWkpdq, with parameters φm,h,l,j,k and

ψm,h,k as lag sets of lags and εm,d,h as error term. We assume that the error

process εm,d,h is i.i.d. with constant variance σ2
m,h. The introduced parameters

φm,h,l,j,kY
l
d´k,j model the linear autoregressive impact and ψm,h,k the day of the
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week effect. Lag sets c are defined as follow:

Im,h “

$

’

’

’

’

&

’

’

’

’

%

t1, 2, . . . , 36u, m “ l and h “ j

t1, 2, . . . , 8u, pm “ l and h ‰ jq or pm ‰ l and h “ jq

t1u, m ‰ l and h ‰ j

Thus, the process Ym,d,h of price class m at day d and hour h can depend

on the values of the past 36 days of price class m at hour h, it is only allowed

to depend on the value of another process at another hour one with a maxi-

mum lag of 1, and in all other cases a maximum lag of eight is possible. The

considered model is basically a simple regression approach model. In order to

rewrite (5.3.4) as autoregressive model of order 1 we can define vector of larger

dimension, namely M ˆ 24ˆ 35 :“M1

Yd “

ˆ

pYi,d,hqi“1,...,M
j“1,...,24

, pYi,d´1,hqi“1,...,M
j“1,...,24

, . . . , pYi,d´35,hqi“1,...,M
j“1,...,24

˙

.

Then

Yd “ ΦdYd´1 `

7
ÿ

k“2

ΨkWkpdq ` εd, (5.3.5)

with parameters Φd,Ψk P RM1 as lag sets of lags and εd P RM1 as error term.

Example 5.3.4. Let us calculate the Moore-Penrose inverse of the pm ˆ nq

matrix T given by (5.3.3).
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T` “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1
k1´k0

0 0 . . . . . . . . . 0 0
... ...
1

k1´k0
0 0 . . . . . . . . . 0 0

0 1
k2´k1

0 . . . . . . . . . 0 0
... ...

0 1
k2´k1

0 . . . . . . . . . 0 0
... ...
... ...

0 0 0 . . . . . . . . . 0 1
km´km´1

... ...

0 0 0 . . . . . . 0 1
km´km´1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

i.e. the j-th column of T` has exactly kj´kj´1 non-zero elements, all equals to
1

kj´kj´1
. It is straightforward to check that TT` is the pmˆmq identity matrix

and T`T is self-adjoint, so T` satisfies Definition ??.

Now we want to formulate a result, which gives sufficient and necessary

condition for the specific operator which appears in the model of Ziel and

Steinert.

Proposition 5.3.5. Let T be an pmˆ nq, matrix (m ă n) with columns

CT
ks´1

“ CT
ks´1`1 “ CT

ks´1`2 “ . . . “ CT
ks
“ es, 1 ď s ď m

where 0 “ k0 ă k1 ă k2 ă . . . ă km “ n and te1, e2, . . . , emu is the standard

basis of Rm, i.e. T is as in (5.3.3). Let A “ taijuni,j“1 be an pn ˆ nq matrix.

Then there exists a pmˆmq matrix B “ tbijumi,j“1 such that

BT “ TA,

if and only if the following condition holds: for every index 1 ď d ď m,

whenever j and l are such that kp´1 ` 1 ď j ď kp and kp´1 ` 1 ď l ď kp for

some 1 ď p ď m, then
kd
ÿ

i“kd´1`1

aij “
kd
ÿ

i“kd´1`1

ail. (5.3.6)



96

Moreover, in this case

bij “
ki
ÿ

l“ki´1`1

alkj .

Proof. The proof is straightforward. From the expressions

BT “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

b11 . . . b11 b12 . . . b12 . . . b1m . . . b1m

looomooon

k1

b21 . . . b21 b22 . . . b22 . . . b2m . . . b2m

looomooon

k2´k1
... ...

bm1 . . . bm1 bm2 . . . bm1 . . . bmm . . . bmm
looomooon

n´km´1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“

TA “

¨

˚

˚

˚

˚

˚

˚

˚

˝

řk1
i“1 ai1

řk1
i“1 ai2 . . .

řk1
i“1 ain

řk2
i“k1`1 ai1

řk2
i“k1`1 ai2 . . .

řk2
i“k1`1 ain

... ...
řkm
i“km´1`1 ai1

řkm
i“km´1`1 ai2 . . .

řkm
i“km´1`1 ain

˛

‹

‹

‹

‹

‹

‹

‹

‚

we obtain that (5.3.6) holds.

Conversely, suppose now that A satisfies (5.3.6). Then we can define the

matrix B “ tbijumi,j“1 as follows:

bij “
ki
ÿ

l“ki´1`1

alkj

in order to have BT “ TA.

Remark 5.3.6. In particular, this condition holds if the first k1 columns of

A are the same, the following k2 ´ k1 are the same, and so on, until the last

km´km´1 columns. However, Proposition 5.3.5 gives slightly weaker condition,
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as the following example shows:

T “

˜

1 1 0

0 0 1

¸

A “

¨

˚

˚

˝

1 0 1

0 1 1

1 1 1

˛

‹

‹

‚

.

Evidently, A satisfies (5.3.6), although the first two columns of A are not the

same, and B is obtained as b11 “ 1, b12 “ 2, b21 “ 1, b22 “ 1.

5.4 An infinite-dimensional formulation of Ziel-Steinert’s X-model

The supply and demand curves are characterized by

Stppq “
ÿ

xPP
xďp

VS,tpxq and Dtppq “
ÿ

xPP
xěp

VD,tpxq for p P P.

Here t “ pd, hq, where d denotes day and h denotes hour. Assume that

Sd,hppq “

ż p

´500

sd,hpzqdz for p P P and Dd,hppq “

ż 3000

p

dd,hpzqdz for p P P,

(5.4.1)

where sd,h, dd,h P L2pr´500, 3000sq. Then we can state that the processes

Sd,h, Dd,h take values in the Hilbert space H1pr´500, 3000sq. Recall that

H1pr´500, 3000sq consists of f P L2pr´500, 3000sq whose distributional deriva-

tive f 1 lies in L2pr´500, 3000sq and has the inner product

xf, gyH1 “ xf, gyL2 ` xf 1, g1yL2 .

From the general theory of Sobolev spaces we know that H1pr´500, 3000sq Ă

Cpr´500, 3000sq and it is a reproducing kernel Hilbert space (see Example

3.5.7). Recall that the following model was proposed in [15]

Xnp¨q “

p
ÿ

j“1

αjp¨qXn´1ptjq ` εnp¨q, (5.4.2)

where αjp¨q are continuous functions in r0, 1s and εn is a strong Cpr0, 1sq-valued

white noise pointwisely uncorrelated with Xn. That is, all the curves depend

on the same set of points regardless of the index n.



98

Now let us make a connection between the model described in (5.4.2) and

the model of Ziel and Steinert.

Theorem 5.4.1. Suppose that H is RKHS consisting of functions f : ra, bs Ñ

R, the points t1, t2, . . . , tp P ra, bs are fixed, and the functions α1, α2, . . . , αp P

Cra, bs are fixed. Let X “ pXn, n P Zq be a zero-mean ARHp1q process, satis-

fying, for all n P Z, the equation

Xn “ ρpXn´1q ` εn,

where

ρpfqp¨q “
p
ÿ

j“1

αjp¨qfptjq,

and ε “ pεn, n P Zq is a H-valued white noise. Let T : H Ñ Rp be the linear

continuous operator defined as

T pfq “ pfpt1q, fpt2q, . . . , fptpqq.

Then the process Yn “ T pXnq, n P Z is V ARp1q with values in Rp and

dynamics

Yn “ ϑYn´1 ` T pεnq, where

ϑ “

¨

˚

˚

˝

α1pt1q α2pt1q . . . αppt1q
... ...

αppt1q αppt2q . . . αpptpq

˛

‹

‹

‚

Proof. According to Theorem 5.2.3 the process Y “ pYn, n P Zq is auto-

regressive if and only if there exists a linear continuous operator ϑ : Rp Ñ Rp

such that

Tρ “ ϑT. (5.4.3)

This condition holds for the operator ϑ such that for every pb1, . . . , bpq P Rp

ϑpb1, b2, . . . , bpq “

˜

p
ÿ

j“1

αjpt1qbj,
p
ÿ

j“1

αjpt2qbj, . . . ,
p
ÿ

j“1

αjptpqbj

¸

.
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Indeed, for any f P H

pTρqpfq “ T pρfq “ T

˜

p
ÿ

j“1

αjp¨qfptjq

¸

“

˜

p
ÿ

j“1

αjpt1qfptjq, . . . ,
p
ÿ

j“1

αjptpqfptjq

¸

“ ϑpfpt1q, . . . , fptpqq “ ϑpTfq “ pϑT qpfq.

Evidently, ϑ is a linear continuous operator with }ϑ} “ max
i“1,...,p

|
řp
j“1 αjptiq|.

Example 5.4.2. Consider H “ L2pX,µq, where X be a discrete set of

points txiu Ă r0, 1s and the measure µ “
ř

i δxi. Suppose that a finite

X̃ “ tt1, t2, . . . , tpu Ă X is fixed. Let T : H Ñ Rp be a linear continuous

operator such that

T pfq “ pfpt1q, fpt2q, . . . , fptpqq.

Then the pseudo-inverse of T is given by

T`py1, y2 . . . , ypq “ y11tt1u ` y21tt2u ` . . .` yp1ttpu.

Indeed, TT` “ I on Rp; rangepT q “ Rp, kerpT`q “ t0u, so kerpT`q “

rangepT qK and rangepT`q “ kerpT qK “ tf : f |X{X̃ “ 0u.

Example 5.4.3. Consider the Sobolev space H1r0,M s consisting of absolutely

continuous functions f : r0,M s Ñ R whose derivative lies in L2r0,M s with the

inner product

xf, gyH1 “ xf, gyL2 ` xf 1, g1yL2 .

Recall that fpxq “ xfp¨q, Kpx, ¨qy for any x P r0,M s, and the kernel func-

tion K : r0,M s ˆ r0,M s Ñ R (see Example 3.5.7) is given by

Kpx, yq “

$

&

%

coshpx´Mq coshpyq
sinhpMq if x ď y

coshpxq coshpy´Mq
sinhpMq if x ě y.

.

Suppose that a finite set tt1, t2, . . . , tpu Ă r0,M s is fixed. Consider the

same operator T : H Ñ Rp such that

T pfq “ pfpt1q, fpt2q, . . . , fptpqq.
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We have rangepT q “ Rp, so the pseudo-inverse of T exists. Let us find T`.

First, notice that the adjoint operator is given by

T ˚py1, y2 . . . , ypq “ y1Kpt1, ¨q ` y2Kpt2, ¨q ` . . .` ypKptp, ¨q.

Then

T`py1, y2 . . . , ypq “ T ˚pTT ˚q´1
py1, y2 . . . , ypq

“ z1Kpt1, ¨q ` z2Kpt2, ¨q ` . . .` zpKptp, ¨q,

where z “ Cy and C is the inverse matrix of

TT ˚ “

¨

˚

˚

˝

Kpt1, t1q Kpt1, t2q . . . Kpt1, tpq
... ...

Kptp, t1q Kptp, t2q . . . Kptp, tpq

˛

‹

‹

‚

.

Now consider the processes Sd,h, Dd,h defined in (5.4.1) with values in the

Hilbert space H1pr´500, 3000sq. In order to define an auto-regressive model

of order 1, similarly to (5.3.5), we need to consider elements of "biggest" di-

mension, namely,

Xd “ppSd,hqj“1,...,24, pSd´1,hqj“1,...,24, . . . , pSd´35,hqj“1,...,24,

pDd,hqj“1,...,24, pDd´1,hqj“1,...,24, . . . , pDd´35,hj“1,...,24qq,

which takes values in the product space
`

H1pr´500, 3000sq
˘24ˆ35ˆ2.

Let us now extend Theorem 5.4.1 for the case when stochastic processes

takes values in a product space.

Theorem 5.4.4. Suppose that H is a Hilbert space consisting of functions

f : ra, bs Ñ R, HM is a product space, t1, t2, . . . , tp P ra, bs are fixed, and

the set of functions tαjiu i“1,...,p
j“1,...,M

P Cra, bs is fixed. Let X “ pXd, d P Zq be a

zero-mean ARHMp1q process, satisfying, for all d P Z, the equation

Xd “ ρpXd´1q ` εd,
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where ε “ pεd, d P Zq is a HM -valued white noise, ρ P LpHMq, and for any

pf1, . . . , fMq P H
M jth coordinate of ρpf1, . . . , fMq is

gjp¨q “
p
ÿ

i“1

αji p¨qfjptiq.

Let T : HM Ñ pRpqM be a linear continuous operator such that

T pf1 . . . , fMq “ ppf1ptiqqi“1,...,p, pf2ptiqqi“1,...,p, . . . , pfMptiqqi“1,...,pq.

Then the process Yd “ T pXdq, d P Z is an ARp1q with values in pRpqM .

Proof. In order to prove the statement, according to Theorem 5.2.3, we need

to show that there exist a linear continuous operator ϑ : pRpqM Ñ pRpqM such

that

Tρ “ ϑT. (5.4.4)

This condition holds for the operator ϑ such that for every b “

ppb1
i qi“1,...,p, . . . , pb

M
i qi“1,...,pq P pRpqM

ϑpbq “

¨

˝

˜

p
ÿ

j“1

α1
jptiqb

1
j

¸

i“1,...,p

, . . . ,

˜

p
ÿ

j“1

αMj ptiqb
M
j

¸

i“1,...,p

˛

‚.

Indeed, for any pf1, . . . , fMq P H
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Conclusion and further research

The liberalization of electricity sector introduced a new field of research.

Accurate modeling and forecasting of different variables related to the mar-

ket e.g. prices, demand, production etc. became more crucial due to market

structure. Thus, accurate forecasting is very important issue for an efficient

management of power grid. In the past, various techniques have been devel-

oped both for price and demand prediction with different levels of complexity

and final performance. This thesis addressed the issue of forecasting electricity

demand and prices following to a relatively new modeling technique based on

functional data analysis. The main results are presented in Chapters 4 and 5.

Chapter 4 focused on the parsimonious way for representing supply and

demand curves, using a mesh-free method based on radial basis functions. The

real data about supply and demand bids from the Italian day-ahead electricity

market showed that there is no direct relationship between the number of offer

and bid layers and the hour of the day, the day of the week, and the time of

the year. Based on this observation, we decided to choose the same number of

basis functions independently of these three seasonality modes. The numerical

results showed that the accuracy of our approximation is good enough, if we

use 5 basis function for the demand curve and 10 basis function for the supply

curve, and then the increase in the number of functions leads to more time-

consumption, but the increase of the accuracy is less significant.

We also tested this new approach with the aim of forecasting supply and

demand curves and finding the intersection of the predicted curves in order to

obtain the market clearing price. In assess the goodness of our method, we

compared it with models with similar complexity in terms of dependence of the
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past, but only based on the clearing price. Our forecasting errors are smaller

compared with these univariate models. In particular, our analyses show that

our multivariate approach leads to better results than the univariate one in

terms of error measures like MAE, MAPE and RMSE.

In Chapter 5 we considered supply and demand curves as stochastic pro-

cesses with values in a functional space. We obtained a characterization result

regarding the conditions that guarantees that a linear transformation of a vec-

tor AR process is again an AR process both in finite and in infinite dimension,

and we applied these results to the model of Ziel and Steinert from [75].

We also found out that the model of Ziel and Steinert is a particular

case of the model proposed in paper [15]. In particular, in [75] the authors

applied a simple dimension reduction procedure to the price formation pro-

cess that is computational manageable. It means that for the prediction of

xn`1p¨q the whole curves xnp¨q is replaced with the p most relevant evaluations

xnpt1q, xnpt2q, . . . , xnptpq. The problem of the selection of the most relevant

points t1, t2, . . . , tp Ă r0, 1s is commonly known as variable selection problem.

In [15] the authors showed how to find relevant points of the curves in terms

of prediction accuracy. Applying the algorithm proposed in [15], we made an

observation that the point used by Ziel and Steinert are not optimal in this

sense (see Figure 5.4). So, one of the possibility for further research could be

to add the optimal choice of the points into approach proposed by Ziel and

Steinert.
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Figure 5.1: Supply curve with chosen relevant points
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Appendix A: Matlab Code

1 % Task I : CURVES APPROXIMATION
2

3 %crea t e array o f day between some dates
4 t i c ;
5 d1=datenum('2017 -01 -01' ,'yyyy -mm-dd' ) ;
6 d2=datenum('2017 -01 -01' ,'yyyy -mm-dd' ) ;
7 d=d1 : d2 ;
8 quant_of_days=length (d) ;
9 s = [ num2str (M_supply ) ,' and ' , num2str (M_demand) ] ;

10 %approximate up to t h i s p r i c e
11 % crea t e columns f o r r e s u l t s
12 Eq_price_array=ze ro s ( quant_of_days *24 ,1) ;
13 Eq_quant_array=ze ro s ( quant_of_days *24 ,1) ;
14 Eq_price_approx=ze ro s ( quant_of_days *24 ,1) ;
15 Eq_quant_approx=ze ro s ( quant_of_days *24 ,1) ;
16 Error_price_array=ze ro s ( quant_of_days *24 ,1) ;
17 Error_quantity_array=ze ro s ( quant_of_days *24 ,1) ;
18 Hour_name = ze ro s ( quant_of_days *24 ,1 ,' i n t 8' ) ;
19 Date_name = s t r i n g s ( quant_of_days *24 ,1) ;
20 R=s t r i n g s ( quant_of_days *24 ,1) ;
21 % crea t e t ab l e s f o r s t a t i s t i c s o f c o e f f i t i e n t
22 Supply_coef f = ze ro s (24* l ength (d) , M_supply ) ;
23 Demand_coeff = ze ro s (24* l ength (d) , M_demand) ;
24 counter =0;
25 f o r k=1: l ength (d)% cyc l e f o r each day o f the year
26 f i l ename1 = [ 'C:\ Users \maria\Work\Energy market\Matlab\2017 Of f e r s and ...

Bids \' , d a t e s t r (d(k ) ,'yyyy -mm-dd' ) ,' -OFF.txt' ] ;
27 f i l ename2 = [ 'C:\ Users \maria\Work\Energy market\Matlab\2017 Of f e r s and ...

Bids \' , d a t e s t r (d(k ) ,'yyyy -mm-dd' ) ,' - BID.txt' ] ;
28 da t e s t r (d(k ) ,'yyyy -mm-dd' )
29 T_OFFERS = readtab l e ( f i l ename1 ) ;
30 T_BIDS = readtab l e ( f i l ename2 ) ;
31 f o r hour = 1 : 1 : 24 % cyc l e f o r each hour o f the day
32 numer_row=24*counter+hour ;
33 %1 . r ead the in fo rmat ion about t h i s hour to pOff , pBid , qOff , qBid
34 i ndexes=f i nd (T_BIDS.Hour==hour ) ;
35 pBid=ze ro s ( l ength ( indexes ) , 1 ) ;
36 qBid=ze ro s ( l ength ( indexes ) ,1 ) ;
37 f o r j =1: l ength ( indexes )
38 pBid ( j )=T_BIDS.Price ( indexes ( j ) ) ;
39 qBid ( j )=T_BIDS.Quantity ( indexes ( j ) ) ;
40 end
41 i ndexes=f i nd (T_OFFERS.Hour==hour ) ;
42 qOff=ze ro s ( l ength ( indexes ) , 1 ) ;
43 pOff=ze ro s ( l ength ( indexes ) , 1 ) ;
44 f o r j =1: l ength ( indexes )
45 pOff ( j )=T_OFFERS.Price ( indexes ( j ) ) ;
46 qOff ( j )=T_OFFERS.Quantity ( indexes ( j ) ) ;
47 end
48 Max_price=400;%pOff ( l ength ( pOff ) ) ;
49 %2 . c a l c u l a t e equ i l i b r i um pr i c e and quant i ty
50 [ P_eq , Q_eq ] = Equi l ibr ium ( pOff , pBid , qOff , qBid ) ;
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51 %3 .approx imat ion o f supply curve
52 Matrix_coeff_supply = Approx_coeff ( pOff , qOff , M_supply , Max_price ) ;
53 %4 .approx imat ion o f demand curve
54 pBid2=ze ro s ( l ength ( pBid ) +1 ,1) ;
55 qBid2=ze ro s ( l ength ( qBid ) +1 ,1) ;
56 pBid2 (1 ) =0;
57 f o r j =2: l ength ( pBid2 )
58 pBid2 ( j )=pBid ( j - 1 ) ;
59 qBid2 ( j )=qBid ( j - 1 ) ;
60 end
61 qBid2 (1 )=abs (sum( qBid ) -sum( qOff ) ) ;
62 Matrix_coeff_demand = Approx_coeff ( pBid2 , qBid2 ,M_demand, Max_price ) ;
63 %crea t e f unc t i on s as ve c t o r s
64 x=transpose ( 1 : 1 : sum( qBid2 ) ) ;
65 Supply_approx = ze ro s ( l ength (x ) ,1 ) ;
66 f o r n = 1 : M_supply
67 Supply_coef f (24* counter+hour , n)=Matrix_coeff_supply (n , 1 ) ;
68 Supply_approx=Supply_approx+Matrix_coeff_supply (n , 1 ) *( e r f ( ( x - Matrix_coeff_supply (n , 2 ) ) /Matrix_coeff_supply (n , 3 ) )+1) ;
69 end
70 Demand_approx = ze ro s ( l ength (x ) ,1 ) ;
71 f o r n = 1 :M_demand
72 Demand_coeff (24* counter+hour , n)=Matrix_coeff_demand (n , 1 ) ;
73 Demand_approx=Demand_approx+Matrix_coeff_demand (n , 1 ) *( e r f ( ( x - Matrix_coeff_demand (n , 2 ) ) /Matrix_coeff_demand (n , 3 ) )+1) ;
74 end
75 Demand_approx = f l i p ud (Demand_approx) ;
76 f o r n = 2 : ( l ength ( qOff ) )
77 qOff (n) = qOff (n)+qOff (n - 1 ) ;
78 end
79 fO f f=ze ro s ( l ength (x ) ,1 ) ;
80 j =1;
81 i =1;
82 whi le ( iď l ength (x ) ) && ( jď l ength ( qOff ) )
83 whi le ( iď l ength (x ) ) && (x ( i )ďqOff ( j ) )
84 fO f f ( i )=pOff ( j ) ;
85 i=i +1;
86 end
87 j=j +1;
88 end
89 pBid = f l i p ud ( pBid ) ;
90 qBid = f l i p ud ( qBid ) ;
91 f o r n = 2 : ( l ength ( qBid ) )
92 qBid (n) = qBid (n)+qBid (n - 1 ) ;
93 end
94 fBid=ze ro s ( l ength (x ) ,1 ) ;
95 j =1;
96 i =1;
97 whi le ( iď l ength (x ) ) && ( jď l ength ( qBid ) )
98 whi le ( iď l ength (x ) ) && (x ( i )ďqBid ( j ) )
99 fBid ( i )=pBid ( j ) ;

100 i=i +1;
101 end
102 j=j +1;
103 end
104 [M, I ]=min ( abs ( fOf f - fBid ) ) ;
105 P_eq=1/2*( fO f f ( I )+fBid ( I ) ) ;
106 Q_eq=I ;
107 %5 . i n t e r s e c t i o n o f approximated curves
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108 [A, Ind ]=min ( abs ( Supply_approx -Demand_approx) ) ;
109 P_approx=1/2*(Supply_approx ( Ind )+Demand_approx( Ind ) ) ;
110 Q_approx=x( Ind ) ;
111 %graphic o f r e s u l t s
112 f i g u r e 1 = f i g u r e ;
113 axes1 = axes ('Parent' , f i g u r e 1 ) ;
114 hold ( axes1 , ' a l l ' ) ;
115 x l ab e l ('Volume (MWh)' )
116 y l ab e l ('Pr ice (Р’/MWh)' )
117 p lo t (x , fOf f , 'g' , x , fBid , 'r' ,' l i n ew id th' ,1 . 5 )
118 p lo t (x , Supply_approx , 'r' ,' l i n ew id th' ,1 . 5 ) ; hold on ;
119 p lo t (x , Demand_approx , 'b' ,' l i n ew id th' ,1 . 5 ) ; hold on ;
120 ax i s ( [ 0 60000 0 3500 ] ) ;
121 %wr i t e r e s u l t s in row o f the t ab l e
122 Eq_price_array (numer_row)=P_eq ;
123 Eq_quant_array (numer_row)=Q_eq ;
124 Eq_price_approx (numer_row)=P_approx ;
125 Eq_quant_approx (numer_row)=Q_approx ;
126 Error_price_array (numer_row)=abs (P_approx -P_eq) ;
127 Error_quantity_array (numer_row)=abs (Q_approx -Q_eq) ;
128 Hour_name(numer_row)=hour ;
129 Date_name(numer_row)=da t e s t r (d(k ) ,'yyyy -mm-dd' ) ;
130 end %end cy c l e f o r each hour o f the day
131 counter=counter +1;
132 end
133 time=toc ;
134 Max_error=max( Error_price_array ) ;
135 Mean_error = mean( Error_price_array ) ;
136 R(1) =['time = ' , num2str ( time ) ,' s e c . ' ] ;
137 R(2) =['max_er = ' , num2str (Max_error ) ] ;
138 R(3) =['mean_er = ' , num2str ( Mean_error ) ] ;
139 Table_resu l t s = ...

t ab l e (Date_name , Hour_name , Eq_price_array , Eq_quant_array , Eq_price_approx , Eq_quant_approx , Error_price_array , Error_quantity_array ,R) ;
140 namef i l e =['Expiriment with ' , s , ' . x l s x ' ] ;
141 wr i t e t ab l e ( Table_results , name f i l e ) ;
142 %fo r s t a t i s t i c s
143 Table1CoeffDemand = tab l e (Demand_coeff ) ;
144 namef i l e =['C o e f f i t i e n t s f o r demand with ' , s , ' f u n c t i o n s . x l s x ' ] ;
145 wr i t e t ab l e ( Table1CoeffDemand , name f i l e ) ;
146 Table1CoeffSupply = tab l e ( Supply_coef f ) ;
147 namef i l e =['C o e f f i t i e n t s f o r supply with ' , s , ' f u n c t i o n s . x l s x ' ] ;
148 wr i t e t ab l e ( Table1CoeffSupply , name f i l e ) ;
149

150 c l o s e a l l
151 %FUNCTIONS
152 f unc t i on [ output1 , output2 ] = Equi l ibr ium ( pOff , pBid , qOff , qBid )
153 pBid = f l i p ud ( pBid ) ;%bids need to be s o r t from
154 qBid = f l i p ud ( qBid ) ;%the b i gg e s t p r i c e to the l e a s t
155 qBid2=ze ro s ( l ength ( qBid ) ,1 ) ;
156 qBid2 (1 )=qBid (1 ) ;
157 f o r j =2: l ength ( qBid )
158 qBid2 ( j )=qBid ( j )+qBid2 ( j - 1 ) ;
159 end
160 qOff2=ze ro s ( l ength ( qOff ) , 1 ) ;
161 qOff2 (1 )=qOff (1 ) ;
162 f o r j =2: l ength ( qOff )
163 qOff2 ( j )=qOff ( j )+qOff2 ( j - 1 ) ;
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164 end
165 p_between_supl_dem=pBid (1 ) - pOff (1 ) ;
166 j =1;
167 whi le p_between_supl_dem > 0
168 j=j +1;
169 q=qBid2 ( j ) ;
170 i =1;
171 whi le q>qOff2 ( i )
172 i=i +1;
173 end
174 p_between_supl_dem=pBid ( j ) - pOff ( i ) ;
175 end
176 i f p_between_supl_dem < 0
177 Q_eq=qBid2 ( j - 1 ) ;
178 P_eq=pOff ( i ) ;
179 end
180 i f p_between_supl_dem == 0
181 Q_eq=qBid2 ( j ) ;
182 P_eq=pOff ( i ) ;
183 end
184 output1=P_eq ;
185 output2=Q_eq ;
186 end
187

188 f unc t i on [ output1 ] = Approx_coeff ( pr i ce , quant , M_supply , Max_price )
189 [ p , q ] = Simplier_data ( pr i c e , quant , Max_price ) ;%to make l e s s data
190 qq=q ;
191 f o r n = 2 : l ength ( qq )
192 qq (n) = qq (n)+qq (n - 1 ) ;
193 end
194 M=M_supply ;
195 Q=qq ( l ength ( qq ) ) ;% amount o f e l e c t i c i t y
196 %[ Matrix_coeff , time , pr ice_array ]= da t a i n t e r po l a t i o n (M, p , q ) ;
197 an_matr=ze ro s (4 ,M+1) ;
198 %1 - pr i ce , 2 - amount o f t h i s p r i c e
199 %3 - where t h i s p r i c e f i n i s h e s 4 - number o f jumps be f o r e t h i s p r i c e
200 an_matr (1 , M+1)=p( l ength (p) ) ;
201 an_matr (3 , M+1)=qq ( l ength ( qq ) ) ;
202 an_matr (2 , M+1)=q( l ength (q ) ) ;
203 an_matr (4 ,M+1)=1;% to count f i r s t and l a s t p r i c e
204 an_matr (4 , 1 ) =1;
205 i =1;
206 f o r num = 0 :M-1
207 Price_jump=an_matr (1 ,M-num+1)/(M-num) ;
208 j =0;
209 whi le ( iď l ength (p) ) && (p( l ength (p) - i )>an_matr (1 ,M-num+1) -Price_jump )
210 i=i +1;
211 j=j +1;
212 end
213 an_matr (1 ,M-num)=p( l ength (p) - i ) ;
214 an_matr (2 , M-num)=q( l ength (q ) - i ) ;
215 an_matr (3 , M-num)=qq ( l ength (q ) - i ) ;
216 an_matr (4 ,M-num+1)=an_matr (4 ,M-num+1)+j ;
217 end
218 Matrix_coef f = ze ro s (M, 3 ) ;
219 f o r i = 1 :M
220 P1=an_matr (1 , i ) ;



109

221 P2=an_matr (1 , i +1) ;
222 J=an_matr (4 , i +1) ;
223 c en te r=an_matr (3 , i ) ;
224 i f J == 1
225 Matrix_coef f ( i , : ) =[(P2 -P1) /2 , center , 0 . 5 ] ;
226 end
227

228 i f J > 1
229 h=4;
230 [ datax , dataf , c en t e r ]= onestepdata (P1 , P2 , h , p , q ) ;
231 a1=(P2 -P1) /2 ;
232 a2=cente r ;
233 a3=1/3000;
234 a4=P1 ;
235 z0 = [ a2 a3 ] ;
236 F = @( z , zdata ) a1*( e r f ( z (2 ) *( datax - h*z (1 ) ) )+1)+a4 ;
237 [ z , resnorm , , e x i t f l a g , output ] = l s q c u r v e f i t (F , z0 , datax , data f ) ;%opt imiza t i on
238 Matrix_coef f ( i , : ) =[a1 , h*z (1 ) ,1/ z (2 ) ] ;
239 end
240 end
241 output1=Matrix_coef f ;
242 end
243 f unc t i on [ output1 , output2 ] = Simplier_data ( pOff , qOff , Max_price )
244 q1=qOff ;
245 p1=min ( round ( pOff ) ,Max_price ) ;
246 m=1;% m i s a number o f d i f f e r e n t p r i c e s
247 f o r i =2: l ength ( p1 )
248 i f ( p1 ( i )‰p1 ( i - 1 ) )
249 m=m+1;
250 end
251 end
252 p = ze ro s (m, 1 ) ;
253 q = ze ro s (m, 1 ) ;
254 k=1;
255 f o r i =1:m
256 p( i )=p1 (k ) ;
257 q ( i )=q1 (k ) ;
258 k=k+1;
259 whi le ( kď l ength ( p1 ) ) && (p1 (k )==p1 (k - 1 ) )
260 q ( i )=q( i )+q1 (k ) ;
261 k=k+1;
262 end
263 end
264 q ( l ength (q ) )=min (q ( l ength (q ) ) ,10000) ;
265 output1=p ;
266 output2=q ;
267 end
268

269

270

271

272

273

274

275

276

277
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278 % Task I I : PRICE PREDICTION
279 %One va r i a v l e f o r e c a s t
280 f i l ename = [ 'Eq_quant2017.xlsx' ] ;%with weekday dummy
281 MAPE=ze ro s (24 ,1 ) ;
282 MAE=ze ro s (24 ,1 ) ;
283 RMSE=ze ro s (24 ,1 ) ;
284 f o r hour =1:1:24
285 Table = readtab l e ( f i l ename ) ;
286 data=tab l e2a r ray ( Table ( : , hour ) ) ;
287 data_0=data ( 1 : 3 04 ) ;
288 E=ze ro s (7 , 1 ) ;% 1 - sunday , 2 - monday , . . . 7 - saturday
289 f o r day=1:1:7
290 i=day ; %f i r s t day - Sunday
291 count=0;
292 whi le i < (304+1)
293 E(day )=E(day )+data_0 ( i , : ) ;
294 i=i+7 ;
295 count=count+1;
296 end
297 E(day )=E(day ) / count ;
298 end
299 % make E=0
300 f o r day=1:1:7
301 i=day ; %f i r s t day - Sunday
302 whi le i < (304+1)
303 data_0 ( i )=data_0 ( i ) -E( day ) ;
304 i=i +7;
305 end
306 end
307 Mdl = arima (1 , 0 , 0 ) ;
308 EstMdl = est imate (Mdl , data_0 (1 : 3 04 ) ) ;
309 Coef_ar=ce l l 2mat (EstMdl.AR) ;
310 constant = EstMdl.Constant ;
311 Result=ze ro s (61 ,1 ) ;
312 Error=ze ro s (61 ,1 ) ;
313 Error_percent=ze ro s (61 ,1 ) ;
314 Date_name = s t r i n g s (61 ,1 ) ;
315 D = datet ime (2017 ,11 ,30) ;
316 f o r i =1:1:61
317 Past=data (303+ i ) -E(weekday (D+i - 1 ) ) ;
318 Forecast=EstMdl.Constant+Coef_ar*Past+E(weekday (D+i ) ) ;
319 e r r o r=abs ( data (304+ i ) - Forecast ) ;
320 Result ( i )=Forecast ;
321 Error ( i )=e r r o r ;
322 Error_percent ( i )=Error ( i ) *100/ data (304+ i ) ;
323 Date_name( i )=da t e s t r (D+i , 'yyyy -mm-dd' ) ;
324 end
325 Table_resu l t s = tab l e (Date_name , data (305 : 365 ) , Result , Error , Error_percent ) ;
326 namef i l e =['ForecastEq_price_2month_hour' , i n t 2 s t r ( hour ) ,' . x l s x ' ] ;
327 wr i t e t ab l e ( Table_results , name f i l e ) ;
328 MAPE( hour )=mean( Error_percent ) ;
329 RMSE( hour )=sq r t (mean( Er ro r . ^2) ) ;
330 MAE( hour )=mean( Error ) ;
331 end
332

333

334
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335 % Mul t i va r i ab l e f o r e c a s t
336 M_supply=10; %number o f ba s i s f unc t i on 5 ,10 ,15 ,20
337 f o r hour =1:1:24
338 s = num2str (M_supply ) ;
339 namef i l e =['Supply_coef f with ' , s , ' functions_Hour' , i n t 2 s t r ( hour ) ,' . x l s x ' ] ;
340 %Table = readtab l e (' Supply_coef f with 5 funct ions_Hour12.x l sx ') ;
341 Table = readtab l e ( name f i l e ) ;
342 data_centers=tab l e2a r ray ( Table ( : , M_supply+2:2*M_supply+1) ) ;
343 data_prices=tab l e2a r ray ( Table ( : , 2 : M_supply ) ) ;
344 %s
345 Mdl_centers = varm(M_supply , 7 ) ;
346 EstMdl_centers = est imate ( Mdl_centers , data_centers ( 1 : 3 3 4 , : ) ) ;
347 %2 Forecast
348 Result=ze ro s (31 ,2*M_supply ) ;
349 Error=ze ro s (31 ,2*M_supply ) ;
350 Date_name = s t r i n g s (31 ,1 ) ;
351 D = datet ime (2017 ,12 ,01) ;
352 f o r i =1:1:31
353 %cen t e r s
354 Forecast_centers=EstMdl_centers.Constant ;
355 f o r j =1:1 :7
356 Past=transpose ( data_centers (334+ i - j , : ) ) ;
357 Forecast_centers=Forecast_centers+EstMdl_centers.AR{ j }*Past ;
358 end
359 e r r o r=abs ( data_centers (334+ i , : ) - t ranspose ( Forecast_centers ) ) ;
360 Result ( i , M_supply+1:2*M_supply )=transpose ( Forecast_centers ) ;
361 Error ( i , M_supply+1:2*M_supply )=e r r o r ;
362 Date_name( i )=da t e s t r (D, 'yyyy -mm-dd' ) ;
363 %pr i c e s
364 Result ( i , M_supply ) =350;
365 D=D+1;
366 end
367 %pr i c e s
368 f o r j =1 :1 : (M_supply - 1 )
369 data=data_prices ( : , j ) ;
370 Mdl = arima (7 , 0 , 0 ) ;
371 EstMdl = est imate (Mdl , data ( 1 : 3 34 ) ) ;
372 Coef_ar=ce l l 2mat (EstMdl.AR) ;
373 constant = EstMdl.Constant ;
374 f o r i =1:1:31
375 Past=[data (333+ i ) ; data (332+ i ) ; data (331+ i ) ; data (330+ i ) ; data (329+ i ) ; data (328+ i ) ; data (327+ i ) ] ;
376 Forecast=EstMdl.Constant+Coef_ar*Past ;
377 e r r o r=abs ( data (334+ i ) - Forecast ) ;
378 Result ( i , j )=Forecast ;
379 Error ( i , j )=e r r o r ;
380 end
381 end
382 Table_resu l t s = tab l e (Date_name , Result , Error ) ;
383 namef i l e =['Forecast_Supply' , s , 'fun_Hour' , i n t 2 s t r ( hour ) ,' . x l s x ' ] ;
384 wr i t e t ab l e ( Table_results , name f i l e ) ;
385 %fo r fu the r s tep
386 Table_resu l t s = tab l e (Date_name , Result ) ;
387 namef i l e =['Forecast_CoefSupply' , s , 'fun_Hour' , i n t 2 s t r ( hour ) ,' . x l s x ' ] ;
388 wr i t e t ab l e ( Table_results , name f i l e ) ;
389 end
390

391 PRICES=ze ro s (24*61 ,2) ;
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392 MAE=ze ro s (24 ,1 ) ;
393 RMSE=ze ro s (24 ,1 ) ;
394 MAPE=ze ro s (24 ,1 ) ;
395 M_supply=5;
396 f o r hour =1:1:24
397 s = num2str (M_supply ) ;
398 namef i l e =['Supply_coef f2 with ' , s , ' functions_Hour' , i n t 2 s t r ( hour ) ,' . x l s x ' ] ;
399 %Table = readtab l e (' Supply_coef f with 5 funct ions_Hour12.x l sx ') ;
400 Table = readtab l e ( name f i l e ) ;
401 K=2*M_supply ;
402 data=ze ro s (365 ,K) ;
403 data ( : , 1 : M_supply )=tab l e2a r ray ( Table ( : , 2 : M_supply+1) ) ;
404 data ( : , M_supply+1:K)=tab l e2a r ray ( Table ( : , M_supply+2:K+1) ) /1000 ;
405 namef i l e =['Eq_quant2017.xlsx' ] ;
406 Table = readtab l e ( name f i l e ) ;
407 data ( : ,K)=tab l e2a r ray ( Table ( : , hour ) ) /1000 ;%the l a s t c en t e r i s the equ i l i b r i um quant i ty ...

o f e l e c t r i c i t y
408 Mdl = varm(K, 1 ) ;
409 EstMdl = est imate (Mdl , data ( 1 : 3 0 4 , : ) ) ;
410 Coef_ar=ce l l 2mat (EstMdl.AR) ;
411 constant = EstMdl.Constant ;
412 Result=ze ro s (61 ,1 ) ;
413 Error=ze ro s (61 ,1 ) ;
414 Error_percent=ze ro s (61 ,1 ) ;
415 Date_name = s t r i n g s (61 ,1 ) ;
416 D = datet ime (2017 ,11 ,01) ;
417 f o r i =1:1:61
418 Past=data (303+ i , : ) ;
419 Forecast=EstMdl.Constant+Coef_ar* t ranspose ( Past ) ;
420 Pr i ce = data (304+ i , M_supply ) ;
421 Result ( i )=Forecast (M_supply ) ;
422 Error ( i )=abs ( Result ( i ) - Pr i ce ) ;
423 Error_percent ( i )=Error ( i ) *100/ Pr i ce ;
424 PRICES( ( i - 1 )*24+hour , 1 )=Pr i ce ;
425 PRICES( ( i - 1 )*24+hour , 2 )=Result ( i ) ;
426 Date_name( i )=da t e s t r (D, 'yyyy -mm-dd' ) ;
427 D=D+1;
428 end
429 %pred i c t i on o f demand
430 f o r i =1:1:61
431 Past=data (303+ i , : ) ;
432 Forecast=EstMdl.Constant+Coef_ar* t ranspose ( Past ) ;
433 Demand = data (304+ i ,K) *1000;
434 Result ( i )=Forecast (K) *1000;
435 Error ( i )=abs ( Result ( i ) -Demand) ;
436 Error_percent ( i )=Error ( i ) *100/Demand ;
437 Date_name( i )=da t e s t r (D, 'yyyy -mm-dd' ) ;
438 D=D+1;
439 end
440 MAPE( hour )=mean( Error_percent ) ;
441 RMSE( hour )=sq r t (mean( Er ro r . ^2) ) ;
442 MAE( hour )=mean( Error ) ;
443 Table_resu l t s = tab l e (Date_name , data (305 :365 , M_supply ) , Result , Error , Error_percent ) ;
444 namef i l e =['Forecast_two_month_Second_method_hour' , i n t 2 s t r ( hour ) ,' with ...

' , i n t 2 s t r (K) ,'paramete r s . x l sx' ] ;
445 wr i t e t ab l e ( Table_results , name f i l e ) ;
446 end
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Appendix B: SQL Code

1 SET GLOBAL innodb_buffer_pool_size =402653184;
2 USE e l e c t i c i t y_o f f e r_b i d ;
3

4 CREATE TABLE a l l_o f f e r_b id ( day VARCHAR(50) , hour INT , quant i ty FLOAT, p r i c e FLOAT, ...
type VARCHAR(50) ) ;

5

6 LOAD DATA INFILE 'C:/ ProgramData/MySQL/MySQL Server 8 . 0 /Uploads/ a l l _ o f f e r s . t x t ' INTO ...
TABLE a l l_ o f f e r s FIELDS TERMINATED BY ' ; ' LINES TERMINATED BY "\n " ;

7

8 SELECT * FROM al l_o f f e r_b id ;
9

10 SELECT hour , quantity , p r i c e FROM al l_o f f e r_b id WHERE day="2014 -01 -01" AND type LIKE ...
'%OFF%' ;

11 SELECT hour , quantity , p r i c e FROM al l_o f f e r_b id WHERE day="2014 -01 -01" AND type LIKE ...
'%BID%' ;

12

13 CREATE TABLE 2014 -01 -01 -OFF AS SELECT hour , quantity , p r i c e FROM al l_o f f e r_b id WHERE ...
day="2014 -01 -01" AND type LIKE '%OFF%' ;

14

15 CREATE TABLE new_table AS SELECT hour , quantity , p r i c e FROM al l_o f f e r_b id WHERE ...
day="2014 -01 -01" AND pr i c e < 1 AND type LIKE '%OFF%' AND hour=1;

16

17 SELECT * INTO OUTFILE 'C:/ ProgramData/MySQL/MySQL Server 8 . 0 /Uploads/ name.xls' FIELDS ...
TERMINATED BY '\ t' LINES TERMINATED BY '\n' FROM new_table ;

18

19 STR_TO_DATE(" August 10 2017" , "%M %d %Y") ;
20

21 count number o f rows
22 SELECT COUNT(*) FROM al l_bids2017 ;
23 SELECT COUNT(*) FROM a l l_o f f e r s 2 0 1 7 WHERE daydate LIKE '2017 -12%' ;
24 SELECT COUNT(*) FROM al l_bids2017 WHERE day LIKE '2017 -12%' ;
25 s t r i n g to date
26 SELECT STR_TO_DATE(2017 -01 -01 , '%Y-%m-%d' ) FROM a l l_o f f e r s 2 0 17 ;
27

28 de c l a r e @my_date datet ime
29 s e t @my_date = '20170101'
30 whi le @my_date < '20171231'
31 begin
32 CREATE TABLE bid2018 -02 -05 -BID AS SELECT day , hour , quantity , p r i c e FROM al l_b ids ...

WHERE day LIKE '2013%' ;
33 s e t @my_date = dateadd (dd , 1 , @my_date)
34 end
35

36 CREATE TABLE t e s t ( day DATE, hour INT , quant i ty FLOAT, p r i c e FLOAT) ;
37 LOAD DATA INFILE 'C:/ ProgramData/MySQL/MySQL Server 8 . 0 /Uploads/ t e s t . t x t ' INTO TABLE ...

t e s t FIELDS TERMINATED BY ' ; ' LINES TERMINATED BY "\n " ;
38 INSERT INTO t e s t ( day , hour , quantity , p r i c e ) VALUES ('2017 -01 -01' , 1 , 0 , 0 ) ;
39 INSERT INTO t e s t ( day , hour , quantity , p r i c e ) VALUES (STR_TO_DATE(2017 -01 -01 , ...

'%Y-%m-%d' ) , 1 , 0 , 0 ) ;
40

41 de c l a r e @my_date datet ime
42 s e t @my_date = '20170101'
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43 whi le @my_date < '20171231'
44 begin
45 INSERT INTO t e s t ( day , hour , quantity , p r i c e ) VALUES ('2017 -01 -01' , 1 , 0 , 0 ) ; ;
46 s e t @my_date = dateadd (dd , 1 , @my_date)
47 end
48

49 d e l im i t e r #
50 c r e a t e procedure c i k l 1 ( )
51 begin
52

53 de c l a r e v_max in t unsigned d e f au l t 1000 ;
54 de c l a r e v_counter i n t unsigned de f au l t 0 ;
55

56 t runcate t ab l e foo ;
57 s t a r t t r an sa c t i on ;
58 whi le v_counter < v_max do
59 i n s e r t i n to foo ( va l ) va lue s ( f l o o r (0 + ( rand ( ) * 65535) ) ) ;
60 s e t v_counter=v_counter+1;
61 end whi le ;
62 commit ;
63 end #
64

65 d e l im i t e r ;
66

67 UPDATE a l l_o f f e r s 2 0 1 7 SET day = str_to_date ( day , '%Y-%m-%d' ) ;
68

69 CONVERT VARCHR TO DATE IN THE TABLE+
70

71 ALTER TABLE a l l_o f f e r s 2 0 1 7 ADD COLUMN daydate DATE AFTER day ;
72 UPDATE a l l_o f f e r s 2 0 1 7 SET daydate = STR_TO_DATE( day , '%Y-%m-%d' ) ;
73 SELECT * INTO OUTFILE 'C:/ ProgramData/MySQL/MySQL Server ...

8 . 0 /Uploads/ a l l_o f f e r s 2 0 1 7 2 . t x t ' FIELDS TERMINATED BY '\ t' LINES TERMINATED BY ...
'\n' FROM a l l_o f f e r s 2 0 1 7 ;

74 DESCRIBE a l l_o f f e r s 2 0 17 ;
75 ALTER TABLE a l l_o f f e r s 2 0 1 7 DROP COLUMN day ;
76

77 SELECT 1 day
78

79 SELECT * FROM a l l_o f f e r s 2 0 1 7 WHERE daydate='2017 -01 -01' ;
80

81 CREATE PROCEDURE
82

83 DELIMITER //
84 DROP PROCEDURE IF EXISTS save_day_test //
85 CREATE PROCEDURE save_day_test ( )
86 BEGIN
87 DECLARE my_date DATE DEFAULT '20170101' ;
88 WHILE my_date < '20170103' DO
89 DECLARE my_name VARCHAR(10) DEFAULT
90 DROP TEMPORARY TABLE IF EXISTS tmp_deals ;
91 CREATE TEMPORARY TABLE tmp_deals
92 SELECT hour , quantity , p r i c e FROM a l l_o f f e r s 2 0 17 WHERE daydate=my_date and hour=1;
93 SELECT * INTO OUTFILE 'C:/ ProgramData/MySQL/MySQL Server 8 . 0 /Uploads /"my_name" -OFF.txt'
94 FIELDS TERMINATED BY ' ; ' LINES TERMINATED BY '\n' FROM tmp_deals ;
95 s e t my_date = ADDDATE(my_date , INTERVAL 1 DAY) ;
96 END WHILE;
97 END//
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98 DELIMITER;
99

100 CALL save_day_test ( ) ;
101

102 DELIMITER //
103 DROP PROCEDURE IF EXISTS count_week_days//
104 CREATE PROCEDURE count_week_days (OUT param1 INT)
105 BEGIN
106 DECLARE num INT DEFAULT 0 ;
107 param1=num;
108 WHILE my_date ď '2017 -01 -02' DO
109 SELECT COUNT(*) INTO param1 FROM a l l_o f f e r s 2 0 17 WHERE daydate=my_date ;
110 s e t my_date = ADDDATE(my_date , INTERVAL 7 DAY) ;
111 END WHILE;
112 END;
113 //
114 DELIMITER ;
115

116 CALL count_week_days (@a) ;
117 SELECT @a ;
118

119 DELIMITER //
120 DROP PROCEDURE IF EXISTS save_day_bids//
121 CREATE PROCEDURE save_day_bids ( )
122 BEGIN
123 DECLARE my_date DATE DEFAULT '2017 -01 -01' ;
124 WHILE my_date ď '2017 -12 -31' DO
125 SET @fi le_date=CAST(my_date AS CHAR) ;
126 DROP TEMPORARY TABLE IF EXISTS tmp_deals ;
127 CREATE TEMPORARY TABLE tmp_deals
128 SELECT hour , quantity , p r i c e FROM al l_bids2017 WHERE day=@fi le_date ;
129 SET @tmp_sql= CONCAT("SELECT 'Hour' , 'Quantity' , 'Pr i ce' UNION ALL
130 SELECT * INTO OUTFILE 'C:/ ProgramData/MySQL/MySQL Server ...

8 . 0 /Uploads /" , @fi le_date , " - BID.txt'
131 FIELDS TERMINATED BY ' ; ' LINES TERMINATED BY '\n' FROM tmp_deals ") ;
132 PREPARE s1 FROM @tmp_sql ;
133 EXECUTE s1 ;
134 DEALLOCATE PREPARE s1 ;
135 s e t my_date = ADDDATE(my_date , INTERVAL 1 DAY) ;
136 END WHILE;
137 END;
138 //
139 DELIMITER ;
140

141 c a l l save_day_bids ( ) ;
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