UNIVERSITA
DEGLI STUDI
DI PADOVA

Sede amministrativa: Universitd degli Studi di Padova

Dipartimento di Matematica "Tullio Levi-Civita”

CORSO DI DOTTORATO DI RICERCA IN SCIENZE MATEMATICHE
CURRICOLO: MATEMATICA

CICLO XXXIII

Modeling and Forecasting
Electricity Market Variables Using

Functional Data Analysis

Coordinatore: Ch.mo Prof. Martino Bardi

Supervisore: Ch.mo Prof. Tiziano Vargiolu

Dottorando: Mariia Soloviova



Abstract

In this thesis we use a relatively new modeling technique based on functional
data analysis for demand and price prediction. The basic novelty of our problem
is that we are going to predict not just a value at some point, but a whole
function of the price depending on the cumulative offered quantity. As far as we
know, non-parametric mesh-free interpolation techniques were never considered
for the problem of modeling the daily supply and demand curves. The main
goal of this thesis is to model and forecast the whole supply and demand curves
and the variables related to electricity markets, such as prices and demand. We
will show that the forecasting of the whole curves gives deep insight into the
electricity market and allows to improve the accuracy of forecasting.

Chapter 1 provides a brief overview of previous research on short term
forecast. Short term forecast proved to be a very challenging task due to some
specific features. In the literature, different methods have been discussed. Func-
tional data analysis is extensively used in other fields of science, but it has been
not much explored in the electricity market setting.

In Chapter 2 the mathematical preliminaries regarding the infinite di-
mensional stochastic processes relevant for this thesis are provided. Mainly, we
follow the monograph by Bosq, which introduces functional linear time series.

Chapter 3 describes radial basis function interpolation techniques. The
first task in our thesis is to elaborate an appropriate algorithm to present the
information about electricity prices and demands, in particular to approximate
a monotone piecewise constant function. This problem is similar to another one
already studied in numerical analysis, in particular in the context of approxi-

mation theory with meshless methods. The use of radial basis functions have
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attracted increasing attention in recent years as an elegant scheme for high-
dimensional scattered data approximation, an accepted method for machine
learning, one of the foundations of mesh-free methods and so on.

In Chapter 4 we present a parsimonious way for representing supply and
demand curves, using a mesh-free method based on radial basis functions. Using
the tools of functional data analysis, we are able to approximate the original
curves with far less parameters than the original ones. Namely, in order to
approximate piecewise constant monotone functions, we are using linear com-
binations of integrals of Gaussian functions.

We also test this new approach with the aim of forecasting supply and
demand curves and finding the intersection of the predicted curves in order to
obtain the market clearing price. In assessing the goodness of our method, we
compare it with models with similar complexity in terms of dependence of the
past, but only based on the clearing price. Our forecasting errors are smaller
compared with these univariate models. In particular, our analysis show that
our multivariate approach leads to better results than the univariate one in
terms of different error measures.

In Chapter 5 we consider supply and demand curves as stochastic pro-
cesses with values in a functional space. In order to deal with the huge amount
of bid data, we study linear transformations of multivariate stochastic processes.
[t is a known fact that a linear transformation of a vector ARMA process is
again an ARMA process. However, in general, there are transformations of a
finite order AR(p) process that do not admit a finite order AR representation,
but just a mixed ARMA representation. We obtained a characterization result
regarding the conditions that guarantees that a linear transformation of a vec-
tor AR process is again an AR process both in finite and in infinite dimension,

and we apply these results to the model of Ziel and Steinert from [75].
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Riassunto

In questa tesi utilizziamo una tecnica di modellizzazione relativamente
nuova basata sull’analisi dei dati funzionali per la previsione della domanda
e dei prezzi. La novita fondamentale del nostro problema e che prediremo
non solo un valore in un determinato punto, ma un’intera funzione del prezzo
che dipende dalla quantita cumulativa offerta. Per quanto ne sappiamo, le
tecniche di interpolazione senza mesh non parametriche non sono mai state
prese in considerazione per il problema della modellizzazione delle curve di do-
manda e offerta giornaliere. L’obiettivo principale di questa tesi &€ modellizzare
e prevedere tutte le curve di domanda e offerta e le variabili relative ai mercati
elettrici, come 1 prezzi e la domanda. Dimostreremo che la previsione di tutte
le curve fornisce una visione approfondita del mercato elettrico e consente di
migliorare ’accuratezza delle previsioni.

Il Capitolo 1 fornisce una breve panoramica delle ricerche precedenti sulle
previsioni a breve termine. Le previsioni a breve termine si sono rivelate
un’attivitd molto impegnativa a causa di alcune caratteristiche specifiche. In
articoli del settore sono stati discussi diversi metodi. L’analisi dei dati funzion-
ali @ ampiamente utilizzata in altri settori disciplinari, ma e stata poco esplorata
nel contesto del mercato elettrico.

IL Capitolo 2 presenta i preliminari matematici riguardanti i processi sto-
castici a dimensione infinita rilevanti per questa tesi. Principalmente, seguiamo
la monografia di Bosq, che introduce serie storiche lineari funzionali.

I1 Capitolo 3 descrive le tecniche di interpolazione delle funzioni radiali di
base. Il primo compito per la nostra tesi ¢ quello di creare un algoritmo appro-
priato per presentare le informazioni sui prezzi e le richieste dell’elettricita, in
particolare per approssimare una funzione monotona costante a tratti. Questo
problema ¢ simile ad un altro gia studiato in analisi numerica, in particolare
nell’ambito della teoria dell’approssimazione con metodi meshless. Negli ultimi

anni 'uso delle funzioni radiali di base ha attirato una crescente attenzione
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come metodo elegante per I'approssimazione di dati sparsi ad alta dimensione,
un metodo accettato per machine learning, uno dei fondamenti dei metodi
meshless etc.

Nel Capitolo 4 presentiamo un metodo parsimonioso per rappresentare
le curve di domanda e offerta, usando un metodo meshless basato su funzioni
radiali di base. Utilizzando gli strumenti di analisi dei dati funzionali, siamo
in grado di approssimare le curve originali con molti meno parametri di quelli
iniziali. Per approssimare funzioni monotone costanti a tratti, stiamo usando
combinazioni lineari di integrali di funzioni gaussiane.

Inoltre, testiamo questo nuovo approccio con l'obiettivo di prevedere le
curve di domanda e offerta e trovare l'intersezione delle curve previste per
ottenere il prezzo di equilibrio di mercato. Nel valutare 'efficacia del nos-
tro metodo, lo confrontiamo con modelli con complessita simile in termini di
dipendenza dal passato, ma basati solo sul prezzo di equilibrio di mercato. I
nostri errori di previsione sono minori rispetto a questi modelli univariati. In
particolare, la nostra analisi mostra che il nostro approccio multivariato porta
a risultati migliori rispetto a quello univariato in termini di diverse misure di
errore.

Nel Capitolo 5 consideriamo le curve di domanda e offerta come processi
stocastici con valori in uno spazio funzionale. Per gestire ’enorme quantita
di dati di offerta, abbiamo studiato trasformazioni lineari di processi stocas-
tici multivariati. E noto che una trasformazione lineare di un processo ARMA
vettoriale ¢ di nuovo un processo ARMA. Tuttavia, in generale, ci sono trasfor-
mazioni di un processo AR(p) di ordine finito che non ammettono una rapp-
resentazione AR di ordine finito, ma solo una rappresentazione ARMA mista.
Abbiamo ottenuto un risultato di caratterizzazione relativo alle condizioni che
garantiscono che una trasformazione lineare di un processo AR vettoriale sia
ancora un processo AR sia di dimensione finita che di dimensione infinita, e

applichiamo questi risultati al modello di Ziel e Steinert da [75].
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Notation

Throughout the dissertation, R and C denote the sets of real and complex
numbers, respectively, the symbol N denotes the set of natural numbers, Z
denotes the set of integers.

H denote a real separable Hilbert space with its norm || - | and its scalar
product (-, -).

C(K) — the space of continuous real-valued functions on K, with the norm

|f]} = max]|f(#)].

A(2) — the Borel g-algebra on a topological space €.

L(X,Y) — the space of continuous linear operators from X to Y with the norm

T
IT] = max 221
reX Hﬂ?”X

L(X) — the space of continuous linear operators from X to X.

T* — adjoint operator of T

(Q, o, P) — a probability space

14: X — {0,1} — the indicator function of a subset, which for a given subset

A of X has value 1 at points of A and 0 at points of X/A



Chapter 1

Introduction

1.1 Supply and demand curves

In microeconomics, supply and demand is an economic model of price de-
termination in a market. An equilibrium is defined to be the price-quantity
pair where the quantity demanded is equal to the quantity supplied. It is
represented by the intersection of the demand and supply curves.

Before liberalization of the electric sector, when the market was highly regu-
lated and controlled by state owned companies, the electric utilities were mainly
interested in efficient forecasting of electric load as the variation in the electric-
ity prices was minimal and changes in prices were considered after regular time
intervals. However, because generation is actually a competitive market with
upward-sloping supply curves, it does not need to be regulated as part of a
"rate case”, as is the case for distribution and transmission. So, in most of the
country, in the 1980s and 1990s, the generation part of the system was sold off
or spun off into separate companies. These companies are called "merchant gen-
erators” or "unregulated generators”, because they are selling at marginal cost
into a competitive marketplace, bidding against other firms. They are not nat-
ural monopolies that need to be controlled by public utility commissions. There
is lots of evidence that market systems for generation deliver lower costs and
better service, but many areas are comfortable keeping generation under the
control of utility commissions. They are trading off lower costs and potential

innovations for stability and less price volatility.



Figure 1.1: Supply and demand curves in electricity market
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1.2 Price formation process

Consider, for example, the Italian electricity market (IPEX). IPEX consists
of different markets, including a day-ahead market. The day-ahead market is
managed by Gestore del Mercato Elettrico (GME) where prices and demand are
determined the day before the delivery by means of hourly concurrent auctions.
For each delivery day the market session starts at 8 a.m. of the ninth day before
the day of physical delivery and closes at mid-day (12 a.m.) of the day before
delivery.

The producers submit offers where they specify the quantities and the min-
imum price at which they are willing to sell. The demanders submit bids where
they specify the quantities and the maximum price at which they are willing to
buy. These bids and offers typically consist of a set of energy blocks and their
corresponding prices with other relevant information for every hour of the next
day and they are submitted through an online web portal called "market par-

ticipant interface” that is also used to manage and display invoicing data and



payables/receivables resulting from transactions that are already concluded in
the previous days. They are then aggregated by an independent system op-
erator (ISO) in order to construct the supply and demand curves. Only one
agent is responsible for this task and his role is very important for many rea-
sons including reliability, independence, non-discrimination, unbundling and
efficiency. ISO ensures reliability of power grid by coordinating short term
operations, independence by not allowing any entity to control the criteria or
operating procedures and non-discriminatory access for all market participants
without distinction as to customer identity or affiliation. Services unbundling
for utilization by the market participants and efficient operating procedures
and pricing of services are also responsibility of ISO.

Since bidders are expected to buy electricity at lower prices and sell at
higher prices, corresponding quantities in the hourly bid must be a non-
increasing sequences. In a competitive market, each generator enters bids for
how much of its output power it wants to sell at what price. That is, each
generator gives an individual supply curve to the system operator. The system
operator is a quasi-governmental non-profit firm that is responsible for collect-
ing all of the bids, arranging them in ascending order of price, and then figuring
out which power plants shall be turned on, and when.

When we add together each individual supply curve, we are left with an
aggregate supply curve that is called a “generation stack® - literally, all of the
generators are "stacked up” in ascending order of marginal cost, and only the
lowest cost ones necessary to meet expected demand will be turned on the next
day. Although an hourly bid consists of a discrete set of quantity price pairs,
it is in fact a monotone increasing piecewise constant function. This
is done on a "day-ahead” basis, where generators enter their bids for tomorrow
and, after computer runs, are told if and when they will be expected to turn
on the next day.

In electricity markets, the demand side is called the "load“. The load is

simply the sum of all demands for electricity in a market at any given time. Load



changes continuously as people turn devices on and off, as temperature changes,
as the natural light comes and goes, and so on. This pattern of changing load is
called a "load shape”. We can have daily load shapes, weekly ones, and annual
ones. The demand curve for electricity was classically represented as a vertical
line, i.e. a perfectly inelastic demand curve. However, in recent work [40] a
study of wholesale demand elasticities were conducted.

Once the offers and bids are received by the ISO, supply and demand curves
are established by summing up individual supply and demand schedules. In
the case of demand, the first step is to replace "zero prices* bids by the market
maximum price (for IPEX, the market maximum price is 3000 Euro) without
changing the corresponding quantities. After this replacement, the bids are
sorted from the highest to the lowest with respect to prices. The corresponding
value of the quantities is obtained by cumulating each single demand bid. For
supply curve, in contrast, the offers are sorted from the lowest to the highest
with respect to prices and the corresponding value of the quantities is obtained
by cumulating each single supply offer. The market equilibrium is the point
where both curves intersect each other and the price balances supply and de-
mand schedules (see Figure 1.2). This point determines the market clearing
price and the quantity. Accepted offers and bids are those that fall to the
left of the intersection of the two curves and all of them are exchanged at the
resulting price.

However, at GME the equilibrium price is different from the market clearing
price as the latter accounts for other transactions, e.g. transmission capacity
limits between zones, electricity imports from other countries etc. All demand
bids and supply offers pertaining to both, pumping unit and consuming units,
belonging to foreign virtual zones, that are accepted, are valued at the marginal
clearing price of the zone to which they belong. The accepted demand bids
pertaining to consuming units belonging to Italian geographical zones are val-
ued at the "Prezzo Unico Nazionale* (national single price, PUN); this price

is equal to the average of the prices of geographical zones, weighted for the
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Figure 1.2: The market equilibrium point

quantities purchased in those zones (more information on the GME website
www.mercatoelettrico.org). The results (market clearing prices and quantities
for each hour for the following day) of the day-ahead market (MGP) are made
available within 12.55 p.m. of the day before that of delivery.

1.3 Literature review

In the beginning of the 2000s the amount of papers focused on electricity
price forecasting started to increase dramatically. A great variety of methods

and models occurred during last twenty years. Weron [74] made an overview of



the existing literature on electricity price forecasting. Electricity price models

in literature can be broadly classified under the following classes:

1. Multi-agent models, which simulate the operation of a system of hetero-
geneous agents (generating units, companies) interacting with each other,
and build the price process by matching the demand and supply in the

market.

2. Fundamental models, which describe the price dynamics by modeling the
impacts of important physical and economic factors on the price of elec-
tricity. These models manifest electricity price dynamics by incorporating
and modeling impact of all physical factors and economic factors. These
models are believed to be better suited for medium-term electricity price
forecasting compared to short term electricity price modeling and forecast-

ing.

3. Quantitative models, which characterize the statistical properties of elec-
tricity prices over time, with the ultimate objective of derivatives evalua-
tion and risk management. These models have their practical application

in valuation of derivatives and for risk management motive and purpose.

4. Statistical approach. These techniques are direct applications of methods
inspired by electrical load forecasting or time series econometric models.
The effectiveness, efficiency and appropriate usefulness of adopting tech-
nical analysis approach is often questioned in financial markets, however,
the same techniques stand better chance in power markets irrespective of
the time period considered. Statistical models are attractive because some
physical interpretation may be attached to their components, thus allowing

engineers and system operators to understand their behavior.

5. Artificial Intelligence techniques. In these techniques, spot electricity prices
are modeled by adopting neural networks, expert systems, support vector
machines, fuzzy logic etc which are non-parametric tools having the ad-

vantage of being flexible and capable of handling complexity and most



importantly non-linearity. Being non-intuitive and often performing below

par has been their biggest drawback.

Forecasting models for electricity prices also can be classified on the base
of the time frame for which prediction of electricity price needs to be done as

follows:

1. Forecasting of electricity prices for long-term (more than 1 year). The
prime objective is for analyzing and planning long term investment and

political decisions.

2. Forecasting of electricity prices for medium-term (3 months to 1 year).
These classes of models are normally favored for balance-sheet calculations,
derivatives pricing and also risk management. The focus is on distributions
of future electricity prices for medium term rather than exact point fore-

casts.

3. Forecasting of electricity prices for short-term price (up to 3 months).
Power market participants belonging to auction-type spot markets are
particularly interested with forecasting of electricity prices for short-term
where they should participants communicate their bids quoting the price
for buying/selling along with quantities. Statistical models and artificial
intelligence based approaches are useful for short-term electricity price fore-

casting purpose.

The multi-agent (or equilibrium) models, and hybrid models which, given
the particular characteristics of electricity, explain price formation based on
state variables that are mainly associated to supply and demand. For exam-
ple, Pirrong and Jermakyan (1999) [54] and Pirrong and Jermakyan (2000) |?]
proposed to model the equilibrium price as a function of two state variables,
electricity demand and the futures price of the marginal fuel. Moreover, the
authors considered that electricity prices should be an increasing and convex
function of demand.

Bessembinder and Lemmon (2002) [6] adopted an equilibrium perspective



and explicitly modeled the economic determinants of the forward market. In
their model, producers face marginal production costs that may increase steeply
with output and aggregate demand is exogenous and stochastic. They showed
that the forward premium, defined as the forward minus the expected spot
price, is positively (resp. negatively) related to the skewness (resp. variance)
of the spot price.

Longstaff and Wang (2004) [43] focused on the question of how electricity
forward prices are related to expected spot prices. Their goal was to provide
an empirical analysis of the theoretical predictions presented in Bessembinder
and Lemmon (2002) [6]. They found a significant forward premium in the
PJM market which they consider as being the result of "the rationality and
risk aversion of economic agents participating in the market”. They pointed
out that "total demand approaching or exceeding the physical limits of power
generation” is an important economic risk (related also to quantity risk) and
"the risk of price spikes as demand approaches system capacity is an extreme
type of risk which may have important implications for the relation between
spot and forward prices”. Therefore in those situations where the demand level
is near the maximum capacity of the system, the behavior of electricity prices
can be quite abrupt, since electricity must be generated by plants with higher
marginal costs (convexity of the supply function). Barlow (2002) [4] proposed a
non-linear Ornstein-Uhlenbeck process for the description of observed electricity
prices.

In 2007 A.Cartea and P.Villaplana [18] proposed a model for the electricity
spot price as a function of demand and generation capacity . They derived
analytical expressions to price forward contracts and to calculated the forward
premium. They applied their model to the PJM, England and Wales, and Nord
Pool markets. They assumed that both volatility of capacity and the market
price of capacity risk are constant and found that, depending on the market and
period under study, it could either exert an upward or downward pressure on

forward prices. Most models have in common that they focus on the price itself



10

or related time series. In such a way these models does not take into account
the underlying mechanic which determines the price process — the intersection
between the part of the electricity supply and demand. Some of the recent
approaches try to to analyse the real offered volumes for selling and purchasing
electricity. This commonly leads to a problem of a large amount of data and,
therefore, high complexity:.

Eichler, Sollie, Tuerk in 2012 [25] investigated a new approach that exploits
information available in the supply and demand curves for the German day-
ahead market. They proposed the idea that the form of the supply and demand
curves or, more precisely, the spread between supply and demand, reflects the
risk of extreme price fluctuations. They utilize the curves to model a scaled
supply and demand spread using an autoregressive time series model in order to
construct a flexible model adapted to changing market conditions. Furthermore,
Aneiros, Vilar, Cao, San Roque in 2013 [2] dealt with the prediction of residual
demand curve in elecricity spot market using two functional models. They
tested this method as a tool for optimizing bidding strategies for the Spanish
day-ahead market.

In 2016 Shah [65] also considered the idea of modeling the daily supply and
demand curves, predicting them and finding the intersection of the predicted
curves in order to find the predicted market clearing price and volume. He
used the functional approach, namely, B-spline approximation, to convert the
resulted piece-wise constant curves into smooth functions.

In 2016 Ziel and Steinert described and showed a new methods for the
day-ahead electricity market of Germany and Austria [75]. Instead of directly
modeling the electricity price, they modeled and utilized its true source: the
sale and purchase curves of the electricity exchange. They analyzed the hourly
day-ahead electricity price auction data of Germany and Austria provided by
the EPEX Spot from 01.10.2012 to 19.04.2015, using a subtle data processing
technique as well as dimension reduction and lasso-based estimation methods.

Their model consists of three parts:
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1. Construction of price classes in order to overcome the massive amount of

data.
2. Forecasting for each price class by using time series model.

3. Reconstruction of supply and demand curves and computation of market

clearing price.

We describe the model of Ziel and Steinert in more details in Chapter 5.

1.4 Our approach to price prediction

Short term forecast proved to be very challenging task due to these specific
features. Figure 1.3 and 1.4 demonstrate changing of electricity equilibrium
price and quantity during one week. The hourly load forecasting of the next 24
up to 48 hours ahead or more is needed to support basic operational planning
functions, such as spinning reserve management and energy exchanges, as well
as network analysis functions related to system security, such as contingency
analysis. Functional data analysis is extensively used in other fields of science,

but it has been little explored in the electricity market setting.
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Figure 1.3: Electricity equilibrium prices Figure 1.4: Electricity equilibrium quanti-

during a week ties during a week

In this thesis we are going to use a relatively new modeling technique based
on functional data analysis for demand and price prediction. The basic novelty
of our problem is that we are going to predict not just a value at some point, but

a whole function of the price depending on cumulative offered quantity. The
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first task for this purpose is to make an appropriate algorithm to present the
information about electricity prices and demands, in particular to approximate
a monotone piecewise constant function. This problem is similar to another
one already studied in numerical analysis, in particular in the context of ap-
proximation theory with meshless methods, namely, approximation by radial
basis functions. As far as we know, non-parametric mesh-free interpolation
techniques were never considered for the problem of modeling the daily supply
and demand curves. The use of radial basis functions have attracted increasing
attention in recent years as an elegant scheme for high-dimensional scattered
data approximation, an accepted method for machine learning, one of the foun-
dations of meshfree methods and so on. We will show that the forecasting of
the whole curves gives deep insight into the electricity market.

After presenting the original supply and demand curves from the Italian
day-ahead electricity market with far less parameters than the original ones we
will show that there is no direct relationship between the number of offer and
bid layers and the hour of the day, the day of the week, and the time of the
year. We also will test this new approach with the aim of forecasting supply
and demand curves and finding the intersection of the predicted curves in order
to obtain the market clearing price. In assess the goodness of our method, we
will compare it with models with similar complexity in terms of dependence of
the past, but only based on the clearing price.

In order to deal with the huge amount of bid data, we will study linear
transformations of multivariate stochastic processes. It is known fact that a
linear transformation of a vector ARMA process is again an ARMA process.
Instead, a linear transformation of a finite order AR(p) process does not admit
in general a finite order AR representation, but just a mixed ARMA represen-
tation. We will obtain a characterization result regarding the conditions that
guarantee that a linear transformation of a vector AR process is again an AR
process both in finite and in infinite dimension. We will then apply them to

the model of Ziel and Steinert from |75].



Chapter 2

Mathematical preliminaries for

stochastic modelling in large dimension

In this chapter we provide the mathematical preliminaries regarding the
stochastic calculus relevant for this thesis. Mainly, we follow the monograph
by Bosq |13], which introduces functional linear time series

Let us give a simple example where infinite-dimensional modeling is a useful
tool for applications. If one observes temperature in continuous time during /N
days, and wants to predict its evolution during the (N+1) day, then (X,,),n € N
is a sequence of random variables with values in a suitable function space, say
C' ([0, 24]).

Another example of modeling in large dimensions is the following: consider
an economic variable associated with individuals. At instant n, the variable
associated with the individual ¢ is X, ;. In order to study the global evolution
of that variable for a large number of individuals, and during a long time, it is

convenient to set

Xn = (Xnﬂ';i = 1), ne Z,

which defines a process X = (X,,,n € Z) with values in some sequence space

F.

13
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2.1 Stochastic processes and random variables in functional spaces

We need to recall the definitions of the main types of vector-valued inte-
grals [22,23]. The Bochner integral is a straightforward generalization of the
Lebesgue integral to Banach space valued functions.

Let B be a Banach space and (€2, &7, 1) be a measurable space. A function
[ Q — B is called simple, if it is of the form f = > | x;14, with z,, € B,
and A; € o/ forming a partition of 2. A function f : 2 — B is said to be
measurable if f~1(U) € @ for every Borel subset U < X; f is said to be scalarly
measurable if the composition of f with every linear functional is a measurable
scalar function; f is said to be strongly (or Bochner) measurable if there is a
sequence of simple functions converging to f a.e..

For an arbitrary Banach space B we have the following characterization [23,
Theorem 3.3]: a random variable £ : (2,27, P) — B is Bochner integrable if
and only if £ is Bochner measurable and E||£|| < oo. Notice that for separable
B strong measurability, scalar measurability and measurability are equivalent,
but in non-separable case this equivalence no longer takes place.

Let (2,47, P) be a probability space. Let H be a real separable Hilbert
space with its norm | - || and its scalar product {-,-), L(H) denote the space
of continuous linear operators from H to H, and £ be the Borel g-algebra
generated by the norm topology on the space H.

A mapping X : Q — H is said to be a random variable taking values in a
Hilbert space H if X~Y(B) € & for every B € %. Define

Px(B) = P(X Y(B), Be A).

Py is a probability measure on the measurable space(H, %) generated by the
random variable X.

We consider the space L3, := L%(Q, <7, P) of random variables X, defined
on the probability space (€2, .7, P), with values in H, and such that E|X|?* <
. If E| X|* < oo, then the mathematical expectation EX exists as an element

of H (e.g. as a Bochner integral {, X (w)dP(w)). The mean EX is the unique
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element of H such that
(EX,h) = E(X,h) for all h € H. (2.1.1)
We now list some important properties of the expectation [10].

Proposition 2.1.1. 1. The space L3 of equivalence classes of integrable H -
random variables X (with respect to the equivalence relation X =Y a.s.),
defined on the probability space (2, &7, P), with values in H, and such that

E|X|* < o0 is a Hilbert space with scalar product
(X, Y)pe, = ECX,Y). (2.1.2)

2. E defines a continuous linear operator from L3 to H, which satisfies the

contractive property
IEX| <E|X]| (2.1.3)

2. Let Hy and Hy be two separable Hilbert spaces and let T be a continuous
linear operators from Hy to Hy. If X € L? > then T(X)e L%z and

ET(X) = T(EX) (2.1.4)

4. Dominated convergence: If X, — X a.s. in H and |X,|| <Y as.,
where n = 1 and Y s an integrable real random wvariable, then X, €

L34 n>1, X eL? and
E|X — X,| — 0. (2.1.5)

If X and Y are in L%, the cross-covariance operator of X and Y, which is

an infinite dimensional analogous to the covariance matrix, is defined as
Cxy(h) =E[(X —EX,h)(Y —EY)]: H — H. (2.1.6)

The covariance operator Cx x of X is denoted by Cx. The covariance
operator C'y is positive symmetric operator, i.e. (Cxz,x) = 0 and (Cxz,y) =
(x,Cxy)y for all z,y € H.

We can indicate a characterization of covariance operators.
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Theorem 2.1.2. [10, Theorem 1.7] An operator C': H — H is a covariance
operator if and only if it is symmetric, positive, and nuclear (i. e. a compact
operator with finite trace).

Moreover, the following properties holds: if v;, ©+ = 1, denotes an orthonor-
mal basis of H consisting of eigenvectors, \i < Ao < ... < 0 are corresponding

eigenvalues, then C has decomposition:

:ZAi<havi>Uz’7 he H.

o0 o0
>N =E|X|* and zv D (E(X, v;)?
i=1 i=1 i=1
Remark 2.1.3. Recall that any bounded linear operator in a separable Hilbert
space can be viewed as an infinite matrix. Fix an orthonormal basis {e; };en for
a separable Hilbert space H. Let X = >.° xe;,Y = >.7 ye; and h =
> hie;. We can define

Y11 Y1T2 Y13
Y21 Y22 Y23

YsT1 Y32 Y33

yXT .=

Notice that, if EX = EY = 0, then the matrix E(Y XT) represents the

operator C'xy. Indeed,

Cxy(h) = E[(X,h)Y] = [Z 2ih; Zy]e]]

o O
ZZ ziy;)hie; = E(Y XT)h.
j=1li=1

2.2 Linearly closed subspaces

The problem of linear approximation of a nonobserved random variable X
by a linear function of observed random variables (X, € I) has a simple and

well known statement in a finite-dimensional setting.
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If X e [?(Q,o/,P) and X; € L?(Q, .o, P),i € I are zero-mean, the best
linear approximation of X is its orthogonal projection over the smallest closed

subspace of Lo(€2, &7, P) containing (X;,7 € I). This subspace is the closure of

span{X;, 1€ I} = {Z%’Xi :J I — finite,i€ J,aq; € R} :
ieJ
If the variables are in X € L%d(ﬁ, </, P), the usual procedure is to con-
sider the closed subspace generated by the components of the observed random
vectors and then to project each component of the nonobserved random vector.
More generally, in an infinite-dimensional Hilbert space it is convenient
to project over a rich enough subspace of L%(f2, <7, P). In this context, we
introduce the notion of linearly closed subspace (LCS) (or hermetically closed

subspace) in L%(Q, <7, P).

Definition 2.2.1. ¢ is said to be a linearly closed subspace of L%(2, <, P) if
1. ¢ is a closed subspace of L%(Q, <, P).
2. 1f X €9, then {(X) e ¥ for any { € L(H).

For any random variable X € L% we can consider the linearly closed sub-

space generated by X:

Gy =span{l(X):le L(H)}.

Note that, in general, ¥ is infinite-dimensional and that the elements of

¢y are not necessary of the form ¢(X),¢ e L(H).

Example 2.2.2. Let H = {5, Q = [0,1], X(w) = we; : Q — {s.

Gy =span{l(X) : e L(H)} = span{w - {(ey) : ¢ € L(H)}
={w-h:heH}c L%.

So, ¥ is infinite dimensional and ¥y # L%, (Y (w) = e; ¢ ¥x).

By 1% = I1¥ we denote the orthogonal projector onto the subspace ¥x.
Now it is of our interest to give conditions that yields existence of [ € L(H)

such that ITX(Y) = [(X) a.s..
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Theorem 2.2.3. [12, p.233] Let X,Y be zero-mean H-valued random vari-

ables in L3;,. Then the following conditions are equivalent:

(i.) The cross-covariance operator Cxy is dominated by the covariance oper-
ator Cx, i.e. there exists a = 0 such that |Cxy(h)|| < «|Cx(h)| for all
he H.

(ii.) There exists | € L(H) such that TIX(Y) = 1(X) (a.s.).

2.3 Stationary processes in Hilbert spaces

Definition 2.3.1. An H-valued process X = (X,,,n € Z) is said to be strictly
stationary if the joint probability distribution of X does not change when

shifted in time, i.e.

Py = Pouix), YmeZ,
where 7"(X) = (X,om,n € Z).

Definition 2.3.2. An H-valued process X = (X,,,n € Z) is said to be (weakly)

stationary if
1. E|X,|]* < o0 and EX,, do not depend on n;

2. CX X

n+jr»dm-+j

= CY, x,, for any n,m, j € Z.

Example 2.3.3 (Discrete Ornstein-Uhlenbeck equation in the infinite-dimen-
sional case.). Let X = (X,,,n € N) be a random /¢s-valued vector. Consider the
dynamics

Xy = AXy1 + Wy,

where W, are independent identically distributed f¢s-valued random vectors
such that W,, ~ 47(0,5) . Suppose that A is invertible with |A| < co. We
want to find a covariance operator Cj such that, if Xo ~ A47(0,Cp), then (X,,)
is weakly stationary.

Evidently, EX,, = 0 for all n € N. So, we need to guarantee that the

covariance matrix is invariant under time shift. We will use the representation
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Cxy = E(YXT). Suppose that m = n + k, k > 0 and calculate Cx, x. .
Cx,x, = E(X, X))
=E[(W, + AW,_1+ ... + A"Xo)(Wo, + AWy + ...+ A7 X)")]
= E[(W, W + AW, W AT+
+ AT (AT + AMXo X (A")F)(AY)']
= (S+ ASAT + ..+ AVIS(ATHT 4+ A"Cy(AMT) (AF)T
Denote F'(n) = S+ ASAT +. . .+ A 1S(AH)T + APCy(A™)T. We want to

find sufficient condition such that Cx_x_ depends only on k. This is equivalent

to the condition F'(n — 1) = F(n), so, we obtain the equation for Cj:
Co =S + ACyAT. (2.3.1)

This is the so-called discrete time Lyapunov equation. The solution can be

expressed as an infinite sum
Co= > AFS(AT). (2.3.2)
k=0

The operator Cj is defined correctly if | Al < 1. So, we showed that (X,,) is
weakly stationary, if A is an invertible operator with norm less than 1 and Cj
satisfies (2.3.2). Notice that in the one-dimensional case (A, S,Cy € R) this
means that Cy = >.;7 | A%2S = S/(1 — A?).

Definition 2.3.4. An H-valued process € = (¢, n € Z) is said to be a H-white

noise if
1.0 < Ele,|? = 02 < 0
2. Ee, =0,
3. C., = C. # 0 do not depend on n € Z;
4. €, are pairwise orthogonal in the strong sense

E(<5n;x> <5may>) =0 Va,ye Hyn#m.

en 1s called a H strong white noise if it satisfies 1)-3) and

4’) g, is a sequence of i.i.d. H-random variables.
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An strong white noise is a white noise and the converse fails. It holds if ¢,

is Gaussian. Let us now give examples of Hilbertian white noises.

Example 2.3.5. Consider H = L?([0,1],%([0,1]), 1), where u denotes
the Lebesgue measure. Let Wy be a bilateral Wiener process (i.e Wy =
w1 . (9) +W£28)1R_ (s), and W, W are two independent standard Wiener
processes). Fix h e H, h # 0 and set
n+t
en(t) = J h(n +t—s)dWs, te0,1] neZ.

n

Then ¢ = (g,,n € 7Z) is a strong white noise, since increments of W are

independent stationary.

Definition 2.3.6. Let X = (X,,,n € Z) be H-valued weakly stationary process
and let M, be the linearly closed subspace generated by (X5, s < n), ie.
M, = span{l(X;):fe L(H),s <n}. X is called regular process if, for the

process

En = Xp — HMnfl (Xn)7

it holds that o2 := El|e,,|* > 0.
In this case € = (e,,n € Z) is an H-white noise. Moreover ¢, € M, and &,
is strongly orthogonal to M,_1, i.e. C; ¢ = 0 for any £ € M,,_1. (&,) is called

the innovation process of X.

Definition 2.3.7. An H-valued weakly stationary and regular process X =
(Xp,neZ)isa linear process (LPH) if for all n € Z

X, = 1"(X,),
where I, is the linearly closed subspace generated by (g5, s < n).

So, every LPH X = (X,,,n € Z) can be written in the form
Q0
Xy =en+ ) I H(X,),neZ
k=1

and II*"-*(X},) only depends on C.,, C;, x, and X,,. However, linear processes
which depend only on a finite number of parameters are more tractable than

general linear processes from a statistical point of view.
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2.3.1 Gaussian random variables in Hilbert spaces

In this subsection we recall the basic definitions and some classical proper-
ties of Gaussian random variables. Historically, the study of Gaussian random
vectors and processes may indeed be considered as one of the fundamental top-
ics of the theory since it inspired many other parts of the field in results and
techniques of investigation.

A real valued random variable X in L*(§), o7, P) is said to be Gaussian if

its characteristic function is given by

px(t) = elirt=r112),

where = EX, 0% = Var[X].

A random vector X = (X71,..., Xy) in R?is Gaussian if for all real numbers
Qi,...,0q, a linear combination ZZ=1 ap X} is a real valued Gaussian random
variable. An equivalent definition is the following: a random vector X is Gaus-
sian in R? if there is a d-vector p and a symmetric, positive semidefinite d x d

matrix .S, such that the characteristic function of X is
<itTu—%tTSt>
ex(t) =e .

Recall that the characteristic functional ¢x of the random variable X taking

values in a Hilbert space H is given by

px(y) = L e'" Py (dz) = f

ei<X(w)’y>P(dw) =FE [ei<X’y>] , yeH.
Q

[t is known that ¢x(:) : H — C is continuous in the norm topology, and

satisfies the properties:
Loox(0) = 1;
2. lex(y)l < 1,y e H;

3. ox(y) = ¢x(—y), y € H;
4. If X and Y are independent random variables with values in H, then

px+v(y) = px(y)ey(y), y € H;
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The proof of these results can be found in [32].

Definition 2.3.8. A random variable X on a Hilbert space H is said to be

Gaussian if its characteristic functional ¢x(y) is of the form

ox(y) = e(i<u,y>—%<0y,y>)

where © € H and C' : H — H is semi-definite positive Hermitian operator

with finite trace (that is, for some orthonormal basis {e;}2, of H, the sum
Z?Ozl<06i, 6i> < OO)

It can be shown that p is the mean and the operator C' is the covariance
operator for the Gaussian random variable X. The multivariate Gaussian dis-
tribution of a infinite dimensional random variable X can be written with the
notation X ~ A (u,C).

The next theorem gathers some important properties of H-valued Gaussian

random variables.
Theorem 2.3.9. [32, p. 1/1]

(1) Suppose that X and Y are two H-valued independent random variables,
X ~ JV(,LL)(,C)(), Y ~ JV(/Ly,Cy). Then (X-I-Y) ~ JV(MX + py, Cx +
Cy).

Conversely, if Z = X+Y is H-valued Gaussian random variable, and X,Y

are independent, then X and Y have to be Gaussian random variables.

(i) If X ~ AN (ux,Cx), then X can be represented as
0
X = px + Zwieia
i=1

where {e;}2 is an orthonormal basis on H, {1;} are independent zero-
mean Gaussian random variables with Var(v;) = o? and {02}, are the
eigenvalues of C'x. Furthermore the infinite series is convergent (strongly)

with probability 1.

(iir) If X ~ AN (ux,Cx), and A € L(H) is a bounded linear operator from
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H to H, then the random variable Y = AX 1s also Gaussian and Y ~
JV(A/L)(,ACXA*).

2.3.2 The Wold decomposition

The classical Wold decomposition theorem states that any covariance sta-
tionary process can be decomposed into two mutually uncorrelated component
processes, one a linear combination of lags of a white noise process and the
other a process, future values of which can be predicted exactly by some lin-
ear function of past observations. The Wold theorem plays a central role in
time series analysis. It implies that the dynamic of any purely nondetermin-
istic covariance-stationary process can be arbitrarily well approximated by an
ARMA process. So, one reason for the popularity of the ARMA models de-
rives from Wold’s Theorem. On the other hand, the Wold decomposition of a
stationary process is analogous to the Lebesgue decomposition of the spectral
measure into its absolutely continuous and singular parts.

We are using the Wold decomposition theorem for vector-valued processes

in the proof of Lemma 2.4.1.

The Wold decomposition — real valued processes

The Wold representation theorem says that every weakly stationary process
can be written as the sum of two processes, one deterministic and one stochastic.

Let {xy, t € Z} be a real valued weakly stationary process and define
M, = span{xz, t < n}.

Definition 2.3.10. The process {x;} is said to be deterministic if and only if

the one-step squared error
2 M, 2
g = E’$n+1 - H $n+1|

equals to 0. In other words, the values z,,;,j = 1 are perfectly predictable in

terms of elements of M,,.
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It is important to note that deterministic does not mean that x; is non-

random.

Example 2.3.11. Let {z;, t € Z} be a stochastic process defined by
x; = Acos(t) + Bsin(t)

where A and B are independent standard normal random variables. This pro-

cess is deterministic. In fact it is possible to show that x; = 32—521;%5—1 — Ty 9.

Proposition 2.3.12. Any zero-mean weakly stationary process {x;} with

o2 > 0 can be expressed as

0
Ty = Z Vize—i + it
i=0
where
(i) Yo =1 and 3.7 ? < o,
(ii) {z;} ~ WN(0,0?),
(111) z; € My for each t € Z,
(1v) E(zyus) = 0 for all t,s € Z,
(v) pe € (e My for each t € Z,

(vi) py is deterministic.

The usefulness of the Wold Theorem is that it allows the dynamic evolution
of a variable x; to be approximated by a linear model. If the innovations &; are
independent, then the linear model is the only possible representation relating
the observed value of z; to its past evolution. However, when &; is merely an
uncorrelated but not independent sequence, then the linear model exists but
it is not the only representation of the dynamic dependence of the series. In
this latter case, it is possible that the linear model may not be very useful, and
there would be a nonlinear model relating the observed value of x; to its past
evolution. However, in practical time series analysis, it is often the case that
only linear predictors are considered, partly on the grounds of simplicity, in

which case the Wold decomposition is directly relevant.
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The Wold decomposition — vector valued processes

Proposition 2.3.13. Any zero-mean stationary vector process X = (X,,n €

Z) admits the following representation:
0
Xn = Z Cign—i +
i=1

where
(i) Co =1 and 3.2, | Ci|* < oo,
(11) €; is white noise
C(L)ey, is the stochastic component with C(L) = >,.2  C;L',Cy = I and
Wy the purely deterministic component.

If 1, = 0 the process is said regular.

The result is very powerful since holds for any covariance stationary process.
However the theorem does not implies that (2) is the true representation of the
process. For instance the process could be stationary but non-linear or non-

invertible.

The Wold decomposition — H-valued processes

For the sake of clarity, first, we present the concept of The Wold decompo-

sition of H-valued process for linear process based on the paper [47].

Definition 2.3.14. X = (X,,,n € N) be an H-valued linear process. Then the

representation
Q0
Xp=p+ Z aj(sn_j), (233)
j=0

where p = EX € H, (ag)ren is a sequence of elements from L(H), ag = I and
en,n € N is a sequence of i.i.d. centered random variables in H, is called the

Wold Decomposition of X.

In the work [47] we can find the following invertibility property:
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Theorem 2.3.15. Let X = (X,,,n € N) be an H-valued linear process defined
by (2.3.3), and

00]
1— Z 2 a;| # o for any |z| < 1.
=1

Then X = (X,,n € N) is invertible, i.e.
o0

Xp =¢ep+ Z p](Xn - ])7 (234>
j=1

where pj € H and 337, [ pj] < .

Let X be a weakly stationary process and let M, be the linearly closed
subspace generated by (Xg,s < n), i.e. M, = span{l(Xy):le L(H),s <n}.

X is called a reqular process if, for the process
en = X, — IY1(X,),

it holds that o2 := F|e,|? > 0.

In this case (g,,) is an H-white noise. Moreover ¢, € M,, and ¢, is strongly
orthogonal to M,_;, i.e. C, ¢ = 0 for any £ € M,_;. (e,) is called the
innovation process of X.

Now, if .J,, is the linearly closed subspace generated by (g5, s < n), the Wold
docomposition of X is defined by

X, =7(X,) + " (X,)) :== Y, + Z,, nel.

This definition remains essentially the same as in Equation (2.3.3), but the
operators a;, 7 € N may then be unbounded; this finally generalizes the notion.
Properties of this decomposition are similar to those in the real case. In par-
ticular, one has €, is strongly orthogonal to Z,, for any s,n € Z, i.e. C. ¢ =0

for any £ € Z,,. and Z,, € ﬂ;ozo M,_j,neZ.

2.3.3 Moving average processes in Hilbert spaces

Definition 2.3.16. A mowving average process of order ¢ in H (MAH(q)) is a
linear process X = (X,,,n € Z) such that E|II*»-«(X,,)|| > 0 for all n € Z and

MMe-1(X,) = I714(X,,), neZ,
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where J,,_1 4 is the linearly closed subspace generated by (e,-1,...,€n—¢)-

Example 2.3.17 (Truncated Ornstein-Uhlenbeck process). Let H =
L?([0,1], A([0,1]),  + 61)), where p is the Lebesgue measure on [0,1] and
0(1y denotes the Dirac measure centered on point 1. We choose a version of an
orthonormal basis {e;}72 such that ey = 1(3y and e;(1) = 0,7 > 1.
Consider the real continuous time process
& = Jt e tdW,, teR,
|t—1]

where Wy is a bilateral Wiener process (i.e Wy = WS(I)lR L(s) + szs)lR_(s),
and Ws(l), W are two independent standard Wiener processes), and [t — 1]
is the biggest integer < t — 1. (&,t € R) is a fixed continuous version of the
stochastic integral.

Let us set

Yo(z) = &iwy, €]0,1],n € Z.

Then we can identify Y,, with an H-valued random variable by putting

Yal) = Ya(D)eo(:) + i [ vaoes] o0

We claim that (Y;,) is MAH(1) process. Indeed, let us define the operator
te L(H):
(@) = f(L)e™, feH.
If 0 <z <1 we can write
n+x n n+x
Y, = f e’ " AW, = e_‘rf e’ "dWs + f e’ " dW.
[n+x—1] n—1 n

Then (Y;,) has decomposition
Y, ={l(en_1) + €n, n€Z, (2.3.5)

where (g,) is defined as follow:

en(T) = Jn xBS*”*IdWS, ze[0,1), e,(1) = Y, (1) — e 'Y, 1(1).

n

From (2.3.5) we have that IIM-1(Y,) = II*(Y,,) = {(g,_1). Obviously,
B[ (V)| = E[¢(en-1)| = Ee™ {_, e"dW] > 0.

n—1
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2.3.4 Autoregressive processes in Hilbert spaces

Definition 2.3.18. Let X = (X,,,n € Z) be a H-valued weakly stationary
process, M,, be the linearly closed subspace generated by (X, s < n), and MP
be the linearly closed subspace generated by (Xs,m —p < s <n). X is called
autoregressive Hilbertian process of order p (ARH(p)) if,

MM-1(X,) = TM1(X,),

and, if p > 1,

E HHMﬁ—l(Xn) =TS )

Remark 2.3.19. One may characterize an ARH(1) by a relation of the form
X, = M(Xo1) + enin € Z, (2.3.6)

where ), are measurable mappings from H to H, and (g,,n € Z) is a
H-white noise .

If X is strictly stationary, it is possible to choose A\, = A\ not depending on
n. If also we have that Cx,  x, is dominated by C¥, ,, then Theorem 2.2.3
yields existence of p € L(H) such that

Xn =&p + p(Xn—l) (237>
In this case we will say that p is the autocorrelation operator of X.

The next theorem shows the existence of X = (X,,,n € Z) satisfying (2.3.7)
with a given white noise (g,,) and p € L(H). First, we need to prove a simple

but somewhat surprising lemma.

Lemma 2.3.20. Let p € L(H). The following conditions are equivalent:
(i) S 1] < ;

(i1). 3 jo € N such that |p’| < 1 for all j = jo;

(iii). 3 jo € N such that |p”| < 1;

(iv). 3jo e Nya > 0 and b e (0,1) such that |p’|| < ab’ for all j = jo.
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Proof. Obviously, (iv) entails (7):

DA< >l ab <o, s0 > 0] < o0
J=Jo J=Jo j=0

The implications (i) = (i1) = (i4i) are also trivial.
Now we are going to prove the most substantive part of the lemma that
from (i74) follows (iv). We have 0 < |p| < 1 and suppose that j > jo. Then

we can write
j = ]Oq + 7,
where ¢ > 1 and r € [0, jo — 1] are integers. Using inequality |sv| < |s||jv| for

any s,v € L(H), we obtain

I =l < o %] o" ).

Notice that ¢ = j—o -5 > ]]—0 —1. As 0 < [|p/°| < 1 we can estimate

| Sl
171 < Ml " [p"])- (2.3.8)

Let us choose

1

_max{p:0< 7 <joa} o 7|70

[o%]
Then a > 0, be (0,1) and from (2.3.8) it follows that

7| < ab’ for all j > jo.
O

Remark 2.3.21. Observe that (i) — (iv) does not imply ||p| < 1, contrarily to

the one-dimensional case. The simplest example to see that in two dimensional

-(03)

A less trivial example can be found in the Hilbert space H =
1
L2 ([0,1], B(]0,1]), st + 6(1)) with the operator (p(f))(z) = f(1)e 2%, fe H.

case could be
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Theorem 2.3.22. [11, p. 245] Let (e,,) be a white-noise (see Definition 2.3.4),
p€ L(H), and there is m € N such that |p™| < 1. Then (2.3.7) has a unique

stationary solution given by

o
X, = 2 pm(gn—m)a neZ,

m=1
where the series converges almost surely and in L%. Moreover (g,) is the

innovation of (X,,).

Example 2.3.23 (Ornstein-Uhlenbeck process). Consider again H =
L2 ([0,1],([0,1]),  + 61)). Let & = (&,t € R) be a measurable version
of the Ornstein-Uhlenbeck process:

t
¢ = J et dW,, t e R,

where W is a bilateral Wiener process.

Let us set
Yo(z) = &piw, € [0,1],n € Z.
We claim that (Y;) is ARH(1) process. Indeed, let us define the operator
pe L(H):
(p(f)(z) = f(L)e™, feH,
and define the H-white noise

en(x) = Jn xes_n_deS, ze[0,1), e,(1) = V(1) —e 'Y, 1(1).

n+x (n—1)+1 n+x
Y, (x) = J e AW, = exJ e* "dW + J e” " AW,

—00 n

Therefore, (Y;,) has decomposition Y;,, = p(Y,,_1) + &,. Notice that

Lo l—e? 1+e?
ol = f e 2 d(j + 5)) () = fe? =

< 1.
2 2

So, the assumption of Theorem 2.3.22 holds, and (Y;,) is ARH(1) with innova-

tion (e,) and autocorrelation operator p.



31

Example 2.3.24 (Cartea-Villaplana). Let H = L2 ([0, M], B([0, M]), u),
where 1 is the Lebesgue measure on [0, M|, M is maximum electricity price,
for example M = 3000 Euro. Let C' = (C,,,n = 0,1,2,...) be a random valued

variable which represents capacity. Consider the dynamics
Cp(x) = =2bX, —lgx, x € (0,M],b>0
where X, is the solution of a discrete Ornstein-Uhlenbeck equation:
X1 =2X, + Wy, n=0,1,...,

where A € (0,1), Xy ~ N (0, =3), W, ~ N(0,1) — i.i.d. - H-white noise. So,

we can write
C, = —-2b ()\”XO + Z )\”iWZ-) —lgx.
i=1

We claim that (C),) is ARH(1) process. First, we should verify that (C),) is

weakly stationary:.

2
rM n ’

0 i=1

(&

~rM

n M
< | lg*axdr + 4b <>\”X0 + Z A”W) J lg wdx
1=1

JO 0

n 2 M
+ <2b ()\”XO + Z A“’Wi» J da.
i=1 0

Therefore, E|C, |3 < o0. We now compute

CCnC,Hk(h) =K [<Cn - Ecna h> (Cn+k - E0n+k)]

=K [<—2bXn —lgz — (2bA"EX) —1gz), h) (—2bX, 1 — gz — (20A""EX) — 1g x))]
= —4VE [(X,, — EX,, h) (X — EXpip))] = —40°Cx, x,,, (h).

Using the reasoning from Example 2.3.3 we can conclude that the covariance

matrix is invariant under time shifts.

We can write

Ch = ACoy — (1= \) gz — 26W,,
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so, equation (2.3.6) holds, which means that (C},) is ARH(1) process.
Similarly, let D = (D,,,n = 0,1,2,...) be a random valued variable which

represents the evolution electricity demand. Consider the dynamics
D, (z) = —2aY, +1gz, x € (0, M],a >0
where Y, is the solution of a discrete Ornstein-Uhlenbeck equation:
Yor1 =AY, + Vo, n=01,...,

where A € (0,1),Yy ~ N (O, ﬁ), Vo ~ N(0,1) — i.i.d. - H-white noise.
Obviously, (D,,) is also ARH(1) process. Finally, the wholesale power prices P,

can be found as the intersection of the capacity and demand:
—2bX, —lgx = —2aY, +1gx

Therefore,
Pn _ ann—bXn

9

which is the model of price proposed by Cartea and Villaplana.

2.4 Linear transformation of stochastic processes

In the paper [44] it is proved that a linear transformation of a process
possessing an M A(q) representation gives a process that also has a finite order
M A representation with order not greater than ¢. The more general fact that
a linear transformation of a vector ARMA process is again an ARMA process
is also proved. These results are of importance because many temporal as
well as contemporaneous aggregation procedures can be represented as linear

transformations.

Proposition 2.4.1. [}/, Lemma 1] Let X = (X,,n € Z) be an ms-
dimensional MA(q) process, and T = [t;jli; # 0 be a real my x my matriz.

Then (Y,,) = (T'(X,)) is an my-dimensional M A(q*) process, where ¢* < q.

Proof. If Xy = (x1p, Ton - -, Tmyn)' 18 M A(q) process, then it can be written as
follows

X, =U,+MUy1+ ...+ MUy, (2.4.1)
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/

where U,, = (uip,Uzp -, Upp),

My, = [Mﬁj]z‘,jﬂ,...,mz are (msg X mgy) matrices.

Let us denote the back-shift operator B (i.e B*U, = U, _;) and

Zq: pi;B*
k=0 '

is an meo-dimensional white noise process,

M(B) =

Then we can rewrite (2.4.1) as
X, = M(B)U,. (2.4.2)

For Y, = (T(X,)) = (Yint, Yon - - -, Ymyt)" we define a Hilbert space H to be
the closure of
span{y;;:i=1...,my,n e Z}
with inner product {(z,yy = E(xy), where x,y € H. Consider also closed
subspaces of H:

H, =span{y;s:i=1...,my,s < n}.

Let us denote by M, the orthogonal complement of H, ; in H,, so H, =
H, 1D M,.
By the Wold Decomposition Theorem,

Q0
Vo= Vg, ®o=In,,
k=0

where v;, is the projection of y;, on M,, and thus V,, = (vipn, ..., Upn) 18

white noise with variance-covariace matrix >, say, and

o, =EVV.,)Z" n>0

[

where ;! is the generalized inverse of 3,. Since E(Y,)Y/ ,) = 0 for k > ¢,
yn is orthogonal to H,_j for k > ¢, and hence E(Y,,V ,) = 0 for k > ¢.
Consequently, &, = 0 for £ > ¢, and thus we have a representation of Y,, as
an MA(q*), where ¢* is less than ¢ if E(Y, V! ) = 0 for n > ¢*, otherwise
¢ =q [
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Let us show that there is no version of this theorem for AR processes.

Example 2.4.2. Consider the case my = 1,my = 2 and define the AR(1)

process X, as
T1n Ax1p—1 + Win
Xn p— pr—
Ton broy 1 + way

Let T =[1 1]:R?* - R. ThenY, = T(X,) = ar1,_1+bxo, 1 +wi,+way,.

Evidently, unless a = b, Y,, is not autoregressive.

The next proposition shows that the vector-valued ARMA class is closed

with respect to linear transformations.

Proposition 2.4.3. /45, Corollary 11.1.2] Let X = (X,,n € Z) be an ma-
dimensional ARM A(p, q) process, and T = [t;;];; # 0 be a real my x my matriz
of rank my. Then Y, = T(X,) is an my-dimensional M A(p*, q¢*) process with
p* < mop and ¢* < (mg — 1)p +q.

This theorem gives upper bounds for the ARMA orders of a linearly trans-
formed ARMA process. For instance, if X,, isa AR(p) = ARM A(p, 0) process,
a linear transformation Y, = (T'(X,,)) has a ARM A(p*, ¢*) representation. For
some linear transformations, ¢* will be zero. However, there are transforma-
tions of a finite order AR(p) process that do not admit a finite order AR
representation, as in Example 2.4.2, but just a mixed ARM A representation.

In Chapter 5 we will present a characterization result regarding the con-
ditions that guarantees that a linear transformation of a vector AR process is

again an AR process both in finite and in infinite dimension.

2.5 (][0, 1])-valued autoregressive processes

In [15] the authors introduced the model for the prediction of functional time
series, where observations are assumed to be continuous random functions.

Consider a functional time series X = (X,,,n € Z), and let x,,(-) € C([0, 1])
be a realization of the corresponding random process. In practice, the curves

x,(+) are usually recorded as high-dimensional vectors with highly correlated
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entrances, exactly as in our case with supply and demand curves. Then, the
need of dimension reduction techniques that take into account the continuous
nature of the data arises.

For the prediction of x,1(-) the whole curves z,(-) can be replaced with
the p most relevant evaluations x,(¢1), xn(t2), ..., zn(ty). The problem of se-
lection of the points ¢y, t9,...,t, < [0, 1] under a suitable optimality criterion
is commonly known as variable selection. Although this technique leads to a
finite dimensional vector, the problem is fully functional, since the definition of
this criterion is based on the whole curves.

The standard assumption for the process X = (X,,,n € Z) are:

1. The random variable sup {| X, (s)|, s € [0, 1]} has finite variance. In this

case each evaluation X, (s), for s € [0, 1], also has finite variance.
2. X, is a centered stationary stochastic process (i.e. EX,, = 0)

Also we will use the following notations. T, = (t1,t2,...,t,) € [0,1]
is the vector of the points; f(7,) is understood to be the column vec-
tor with coordinates f(¢;). The covariance matrix of the random vari-
ables X,,(t1), X, (t2), ..., X,(tp) indexed by T), is X7,. The vector of lagged-
covariance ¢i(-, 7)) has coordinates (cov(Xi(-), Xo(t;)));j=1,..p- The set O, is

the compact subset of [0, 1]? defined as follows:
@p = {Tp = (tl,tg,...,tp) € [O, l]p Cti— < 0,1 = 1,...]9},

where 0 < § < 1 is some fixed number. The following model is proposed in [15]
P
Xa() = oy () Xni(t)) + £al), (2.5.1)
j=1

where o (+) are continuous functions in [0, 1] and €, is a strong C([0, 1])-valued
white noise pointwisely uncorrelated with X,,. That is, all the curves depend
on the same set of points regardless of the index n. After finding the relevant
points T}, and optimal functions (o (s), aa(s), ..., a,(s)) Equation (5.4.2) is a

p-dimensional AR(1) model.
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For the optimality criterion for variable selection we will define the following

operators:

¢(Tyay,...ay) =E @Q@E}MQ&J@O , (2.5.2)

where the coefficients a;(s) depend on the points t1,%s, ..., t,. Then, integrat-

ing ¢> over s leads to

1
QT,) = I?i)an(T cag, ... p)?(s)ds. (2.5.3)
0 @;(S)E

This function () can now be minimized with respect to 7).

Theorem 2.5.1. [15, Proposition 1] Let X = (X,,n € Z) be a stationary
process such that E[(sup | X,,(s)|)?] < co. Suppose that it can be expressed as
in Equation (5.4.2) with >¥_ |a;| <1 and E|2|| < co. Then

0
arg Ilgnelél Q(T,) = arg JI”?E%}EQ (1)), (2.5.4)
where .
Q"(T,) :f c1(s, Ty) X7 cl(s T,)ds, (2.5.5)
0
and the optimal functions are given by
(a1(s), aa(s), ..., ap(s)) = Ei} c1(s, Tp). (2.5.6)

The optimality criterion defined by @ is simple to implement in practice.

Let us go on to estimation from the sample. Suppose that we have a
sample x1,...,x,, of size m drawn from a process satisfying the assumptions
of Theorem 2.5.1. The usual estimator of the covariance function is

Cr(s,t) = m—— 2 Tir(8)x(t (2.5.7)

=1

Then, the natural estimator for the functions Qo(7}) is

@?H(Tp) =J ci(s, T,) E_ ci(s, T,) ds, (2.5.8)

0
where ¢1(-,T,) = (¢1(-,t1),...,¢1(-, tp))". According to Theorem 2.5.1 the most

relevant points are

f_@@?§gw ). (2.5.9)
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Due to computational limitations, this optimization is not feasible even for
relatively small values of p. Therefore, a greedy approximation is carried out.
The function Q° can be decomposed in a way that directly suggests an iterative
approximation to this optimization problem. If the vector T}, is such that it
contains all the entries of T}, plus a new one t,,1 € [0, 1], the @QH(TPH) can be

expressed as

Q% (Tyi1) = Q%(T;)+
§o(Ca(s. 1)1 57! Coltyen, T) — Cu(s, tpe))? ds
Co(tpr1stpr1) = Coltprn, Tp) 2p Co(tper, Tp)

Notice that this quotient is easy to compute under the assumption that all

the covariance matrices E;pl are invertible. However, for some real data sets
the condition of the invertibility of Z}pl may not be satisfied. If the data is
not invertible, it can be always preprocessed to remove the conflicting points
of the grid. This would not affect the efficiency of the method, since these
points would be linearly dependent of the others, so their information would

be redundant.



Chapter 3

Radial basis function interpolation

3.1 Historical remarks

For what concerns approximation theory, the historical and theoretical foun-
dation of meshless methods lies in the concept of positive definite functions or,
more in general, positive definite kernels. Their development can be traced,
for example, back to the work of J. Mercer (1909) [48], a fellow of Trinity Col-
lege at Cambridge University. Many positive definite functions are nowadays
classified as Radial Basis Functions. Perhaps one of the most fundamental con-
tributions, namely characterizations of positive definite functions in terms of
Fourier transforms, were made a few years later by Salomon Bochner [8] and
[so Schoenberg [63].

The initial motivation for radial basis function (RBF) methods came from
geodesy, mapping, and meteorology. RBF methods were first studied by Roland
Hardy, an Iowa State geodesist, in 1968, when he developed one of the first
effective methods for the interpolation of scattered data [34]. He suggested
what he called the multiquadric method for applications in cartography because
he was not satisfied with the results of polynomial interpolation. RBF methods
were developed to overcome the structure requirements of existing numerical
methods. Multiquadric radial basis function is only one of many existing radial
basis function.

Then, in 1979, Richard Franke published a study of multiquadric radial

basis function method for scattered data interpolation problem [30]. Later in

38
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1986 Charles Micchelli, an IBM mathematician, developed the theory behind
the multiquadric method [49]. Micchelli made the connection between scat-
tered data interpolation and positive definite functions. He proved that the
system matrix for the multiquadric method is invertible, which means that the
RBF scattered data interpolation problem is well-posed. The contributions of
Bochner and Schoenberg were used by Micchelli as the starting point of his
proofs.

During the next years, research in RBF methods has rapidly grown. RBF
methods are now considered an effective way to solve partial differential equa-
tions, to represent topographical surfaces as well as other intricate three-
dimensional shapes, having been successfully applied in such diverse areas as
climate modeling, facial recognition, topographical map production, car and
aircraft design, ocean floor mapping, and medical imaging. RBF methods have
been actively developed over the last 40 years. Now RBF methods are an active

area of mathematical research, as many open questions still remain.

3.2 The scattered data interpolation problem

Interpolation and approximation techniques are used in solutions of many
engineering problems. Given a set of N distinct data points (or nodes) Xy =
{x; i =1,2,..., N} arbitrarily distributed on a domain 2 < R" and a set of
data values (or function values) Yy = {y; : i = 1,2,..., N} < R. The data

interpolation problem consists in finding a function s : {2 — R such that
s(z;)=vy,i=1,...,N.

If the data points at which the values are taken do not lie on a uniform
or regular grid and they are in a large amount, then the process is called scat-
tered data interpolation. The interpolation and approximation of unorganized
scattered data is still a difficult problem.

In this thesis we are going to use the data about supply bids from the
[talian electricity market for the period starting on 01/01/2013 and ending
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on 05/02/2018 (data from the GME website www.mercatoelettrico.org).
Notice that the size of these data is very large, due the number of offers for
each load period, and hence not easy to handle. For each hour of the day,
the original data published by GME consist of information corresponding to a
single supplier and reported in a XML table format, where every row represents
a single offer with its own date, trader name, awarded price, awarded quantity.
For example, for the single hour of the first day we have 351 units of information

about price and quantity of offered electricity (see Table 1).

Table 3.1: Data from the Italian electricity market

Date Hour | Volume | Price
01-01-13 1 14117.32 0
01-01-13 1 52 0.01
01-01-13 1 66 1
01-01-13 1 15 2
01-01-13 1 15 5
01-01-13 1 150 8
01-01-13 1 18 9
01-01-13 1 8 9.01
01-01-13 1 8 9.02
01-01-13 1 6.006 9.03
01-01-13 1 2.004 9.04
01-01-13 1 2.994 9.05
01-01-13 1 2.14 9.06

So, to analyze the period from 01/01/2013 to 05/02/2018, we need to deal
with more than 16 million of data. In Figure 3.1 we present the supply curve
corresponding to the first hour of the first day of the analyzed period. The first
problem of our work is to present the information about electricity prices in a
efficient and parsimonious way:.

Let us review briefly the most popular methods for the interpolation prob-

lem.

e Polynomial interpolation is the interpolation of a given data set by

the polynomial of lowest possible degree that passes through the points



3000

2500

2000

Price (€/MWh)

1500

1000

Figure 3.1: Supply curve

Supply curve
T

500

2 4 6

Price (€/M/h)

500

450

350

300

250

200

150

100

50

Volume (MWh)

12
%107

1 2 3

Volume (MWh)

%107

41



42

of the dataset. For given data sites 1 < x9 < ... < xny and function
values y1, . .., yn there exists exactly one polynomial p € my_1(R) that in-
terpolates the data at the data sites. Therefore the space my_1(R) depends
neither on the data sites nor on the function values but only on the number

of points.

Runge’s phenomenon (1901) shows that for high values of IV, the interpo-
lation polynomial may oscillate wildly between the data points. Evidently,
the polynomial interpolation does not suit for our problem, because of the

large amount of data.

e Spline interpolation. It is a well-established fact that a large data set
is better dealt with splines than with polynomials. An aspect to notice in
contrast to polynomials is that the accuracy of the interpolation process
using splines is not based on the polynomial degree but on the spacing of
the data sites. In particular, cubic splines are widely used to fit a smooth

continuous function through discrete data.

A cubic spline is a spline constructed of piecewise third-order polynomials
which pass through a set of N control points. The second derivative of each
polynomial is commonly set to zero at the endpoints, since this provides a

boundary condition that completes the system of N — 2 equations.

Notice that for all methods, the interpolant s is expressed as a linear combi-
d

nation of some basis functions B; , i.e. s(t) = Z cx Bi(t). The basis functions

k=
in polynomial interpolation does not depend on the data points. Another ap-

proach is to use a basis which depends on the data points.

3.3 Positive definite functions

The scattered data interpolation problem leads to the solution of a linear
system of the form Ax = y. The solution of the system requires that the matrix

A is non-singular. It is enough to know in advance that the matrix is positive
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definite. We need to introduce the concept of positive definite functions

and conditionally positive definite functions.

3.3.1 Unconditionally positive definite functions

Definition 3.3.1. A real-valued function & : R” — R is called positive
semi-definite if | for all m € N and for any set of pairwise distinct points

X1, To,...,Tm, the m x m matrix

A= (B(z; — x));,

ij=1
is positive semi-definite, i.e. for every column vector z of m real numbers the
scalar zZAz > 0. The function ® : R — R is called (strictly) positive

definite if the matrix A is positive definite, i.e. for every non-zero column

vector z of m real numbers the scalar zZ Az > 0.

Notice that, if ® is positive semi-definite, then ®(x) = ®(—=z), (0) > 0,
|®(x)] < P(0) for all z € R".

Remark 3.3.2. Unfortunately, for historical reasons there is an alternative
terminology around in the literature: other authors call a function positive
definite if the associated matrices are positive semi-definite and strictly positive
definite if the matrices are positive definite. We do not follow this historical

approach here, keeping the terminology from [71].

The most important property of positive semi-definite matrices is that their
eigenvalues are positive and so is its determinant.
One of the most celebrated results on positive semi-definite functions is

their characterization in terms of Fourier transforms, which was established by
Bochner [§].

Theorem 3.3.3 (Bochner’s characterization). A continuous function ®
R"™ — R is positive semi-definite if and only if it is the Fourier transform

of a finite nonnegative Borel measure p on R", i.e.

O (x) :J e*mT“’dﬂ(w), reR"
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The proof of this theorem can be found in [8] or in the book |71, p. 70].

The Bochner representation is the most simple way to prove that a function

is positive definite, as is the case of the following examples: 6_332, et 1

» 142
Indeed,
2 - 1 2
e = | e ™ du(t) for du e /At
| e aute) tor dutty = 5=
eIl = f e “tdu(t) for du(t) = l;dt
R s ]. + t2

1 —txt —t| 7¢.
e JRG du(t) for du(t) = 56 1t

Another useful characterization for positive semi-definite univariate function

was given by Schoenberg in 1938 in terms of completely monotone functions.

Definition 3.3.4. A continuous function ¢ : [0,00) — R is called completely

monotone on [0, o) if
1. ¢ € C*(0, 00);
2. (=1)F¢®(r) = 0 for all ¥ = 0, for k= 0,1, .. ..

—r 1
> 14

Theorem 3.3.5 (Schoenberg’s characterization). Let ¢ : [0,00) — R be a
continuous function which is additionally in C*((0,+00)) and ® : R" — R be
a function such that ®(x) = ¢(|z|3). Then ® is positive semi-definite if and

-

For example, e™", ¢ are completely monotone functions.

only if ¢ is completely monotone on [0, 00).

The proof is again in [71, p. 93].

3.4 Radial basis functions

Consider a set of N distinct data points {z;}

values {1}, = R. We want to find a function s : R” — R such that s(z;) =

; © R" and a set of data

yi, © = 1,...,N. Moreover, we want to find a basis for the solution, which
depends on the data points. One simple way to do this is to choose a fixed

function ¢ : R — R and to form the interpolant as

2) = Yol — i),
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where the coefficients «; are determined by the interpolation conditions s(x;) =
y;. Therefore, the scattered data interpolation problem leads to the solution of
a linear system

Ao =y, where A;; = ¢(|x; — x4]). (3.4.1)

Definition 3.4.1. A function ® : R” — R is called radial if there exists a
function ¢ : [0,00) — R | so that ®(x) = ¢(|x — c||) for some point ¢, called a

center.

So, a radial function is a real-valued function whose value depends only on
the distance from the center ¢. The norm is usually given by the Euclidean
one; although other distance functions are also possible. A radial function has
the advantage of a very simple structure. Sums of radial basis functions are
typically used to approximate given functions. This approximation process can
also be interpreted as a simple kind of neural network; this was the context in
which they originally surfaced, in work by David Broomhead and David Lowe
in 1988.

Solvability of the system (3.4.1) is guaranteed if ® is positive semi-definite.
Hence, if we choose the basis consisting of positive semi-definite radial functions,
we would always have a well-posed interpolation problem.

Here are some standard radial basis function in dimension 1.

Let € > 0 denote a shape parameter, r = |z|2.

Positive definite radial function.

e Gaussian: ¢(r) = e )",

_
1+ (er)?
e Matérn C?: ¢(r) = e " (er + 1).

e Inverse multiquadric: ¢(r) =

e Matérn C*: ¢(r) = e =" (e%r? + 3er + 3).
e Wendland C?: ¢(r) = (1 —er)? (der + 1).

e Wendland C*: ¢(r) = (1 —er)8 (35e%% + 18er + 3).
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In kernel-based methods, how to handle the scaling or the choice of the
shape parameter is a well-documented but still an open problem. Variably
scaled kernels (VSKs) were introduced in [16] with the aim to give a new tech-
nique to handle the problem of the choice of the scale or shape parameter in
kernel-based interpolation problems. There, the authors consider native spaces
whose kernels allow for a change the kernel scale of a d-variate interpolation
problem locally, depending on the requirements of the application.

It is well-known that kernels on R"™ can be scaled be a positive factor ¢:
K(z,y;0) := K(z/0,y/0).

Variably scaled kernels were further developed in [58], [59]. VSKs were
already used also in neural networks problems [52] and for approximating the
solution of elliptic partial derivative problems [21]. In [59] the author showed
that VSKs are a useful tool also for recovering unknown non-regular functions

from set of scattered data.

3.5 Reproducing kernel Hilbert space

A reproducing kernel Hilbert space (RKHS) provides a practical and el-
egant structure to solve optimization problems in function spaces. We need
to introduce the concept of RKHS which which plays an important role in
approximation theory.

Let © € R" be an arbitrary nonempty set.

Definition 3.5.1. A function K : Q x Q — R is symmetric and positive
definite (SPD) if for all m € N and for any set of pairwise distinct points

X1,To, ..., T, < ), the m x m matrix

A= (K(x% xj))m

1,7=1

is symmetric and positive definite (i.e. for every non-zero column vector z of m
real numbers the scalar 27 Az > 0). A function K : Q x Q — R is symmetric

and positive semi-definite (nonnegative) if for all m € N and for any set of
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pairwise distinct points x1, xo, ..., x,, < 2, the m x m matrix

A= (K(zi, z)));5,

is symmetric and positive semidefinite (i.e. for every non-zero column vector z

of m real numbers the scalar 2z Az > 0).

We say that K : R" x R" — R is translation invariant if K(z,y) =
K(x —t,y —t) for all t,z,y € R". In this case K(z,y) = K(x —y,0), so K
can be viewed as a function on R". Conversely, every positive definite function
® : R" — R (see Definition 3.3.1) gives rise to a kernel that is translation

invariant:

Some examples of SPD translation invariant kernels are:

lz—yl?

e Gaussian kernel: K(x,y) =e 22 | z,yeR" 0 >0.

e Inverse multiquadric kernel: K(z,y) = ————, z,y € R".
’ V1 (elz—y])?’ ’

e Matérn C? kernel: K(z,y) = e " V(c|z —y| +1), 2z,yeR™
e Wendland C? kernel: K(z,y) = (1—¢|z—y|)L(4e|z—y|+1), =,yeR™
Let H be a Hilbert space of real-valued functions on €2.

Definition 3.5.2. We say that H is a reproducing kernel Hilbert space if, for
all x € Q, the evaluation functional L, : f — f(x) for all f € H is continuous

at any f in H or, equivalently, if L, is a bounded operator on H.

Definition 3.5.3. A function K : Q x Q@ — R is called a reproducing kernel
for a Hilbert space H if

1. For every x € () the functional K, := K(z,-) € H;

2. For every x € Q and for every fe H f(zx) ={f, K.)y-

In fact, Definitions 3.5.2 and 3.5.3 are equivalent.
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Proposition 3.5.4. Suppose that H is a Hilbert space of functions f : 2 — R.
Then H is a reproducing kernel Hilbert space if and only if H has a reproducing

kernel.

Proof. Suppose that H has a reproducing kernel K. Then the reproducing
property gives
Lo ()] = [f(@)] = [{f, Ka)p |-

Using the Cauchy-Schwarz inequality we can estimate

[La ()] = [ Koy | < |FII ]

So, for all x € Q the functional L, : f — f(z) for all f € H is continuous.
Consequently, H is a reproducing kernel Hilbert space.

Now let us show that, conversely, every reproducing kernel Hilbert space
has a unique reproducing kernel. The Riesz representation theorem implies

that for all z in € there exists a unique element K, of H with the reproducing

property,

flx) = Lo(f) =<f, Kz) VfeH.
Since K, is itself a function in H, it holds that for every y in 2 there exist
a K, € H such that

K.(y) = (K, Ky).

This allows us to define the reproducing kernel of H as a function K : 2 x Q2 —
R by
K(z,y) = (K, Ky). (3.5.1)

Clearly K, := K(z,-) € H and f(x) = {f, K;)y. Thus, H has a reproduc-
ing kernel K. []

Let us give a few key examples.

Example 3.5.5 (Non-example). L?[0, 1] is not RKHS.
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The easiest way to demonstrate this fact is to construct a sequence {f,} €
L?0,1] such that lim, o ||f.]| = 0 and f,,(z¢) # 0 for some fixed point xq €
[0,1]. Define f,(x) = (—nz +1),.

Then, evidently, nh_r}gloﬂan = 0 and f,(0) = 1 for all n, So, the evaluation

functional at 0 is not continuous.

Example 3.5.6 (L? on a discrete set). Let X be a discrete set of points {z;} =
R. Recall that the Dirac measures J;, is defined by

1 ifae A
6a(A) -
0 ifa¢ A
for any Lebesgue measurable set A. Choose the sequence of positive real num-

bers ay, a9, ... and consider the measure

= Z ;0

Then L?(X, ) is RKHS. In this case the reproducing kernel K : X x X — R
for L2(X, u) is
1 ifi=j
K(SIZZ‘,ZIL']') = 52'7]' = .
0 ifi#]
Example 3.5.7 (Sobolev space). Consider the Sobolev space H![0, M] con-

sisting of absolutely continuous functions f : [0, M] — R whose distributional
derivative lies in L?[0, M]. H'[0, M] has the inner product

<f7 g>7—[1 = <f7 g>L2 + <f/7 gl>L2 :

We can demonstrate that an evaluation functional at any point is continu-

ous. Indeed, for every a € [0, M] via integration by parts we have

Jf@ﬁ=ﬂmvw@ —wam_th

Therefore, for all a € [0, M)

)= 3= ([ s [ e - anar).
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Then we can estimate the point evaluation functional at a € [0, M) using

the Holder inequality:

1f(a)] < Ml_ . \/JM 1dt\/JaM F2(t)dt + \/LM(t — M)2dt - \/LM(f,(t)ydt

<—‘]\y__aa \/J fz(t)dH\/L (f'(8))>dt <\/%Hf\w-

Now consider the case of the evaluation functional at the point M.

!f(M)|<f(0)+LM\ f()ldt < \/J 1dt\/f (F/(£)2dt

< =l + VI s < M}l i

So, we have shown that |L,(f)| = |f(a)| < C,||f| for all a € [0, M].
Let us find the kernel function. The kernel K : [0, M] x [0, M] — R of the
space H! must exist and for all x € [0, M], f € H[0, M] should satisfy

fla) = O K (@, ) g - (3.5.2)

From now on we keep z fixed and use only derivatives with respect to y.

We can rewrite (3.5.2) as follow:

- |tk | PR @ 359
0 0

As this equation must hold for all f € L?[0, M] we have to assume that
K (x,y) has a derivative discontinuity at y = x, and we split the integral there.

Denote K’ (z,x) and K’ (x,z) right and left derivatives with respect to y at

K(z,y)—K(z,7) K (x x) — lim K(x,y):K(Wf))_
y—x Y1 y—x

y=u (ie. K\ (z,z) = lim
y—xt
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Using integration by parts on the second integral we can write

fo P ) (2, y)dy = f " )K (o, y)dy + f f’(y)K’(rc,y)dy _

PR )| = [ K" @y + f R f ()K", y)dy =
- SR o+ £ ) K, (@,2)
— f(O)K'(2,0) + f(M)K'(x, M).
Substituting this expression in (3.5.3) we get
j F() (K (w,y) - K"(z,y)) dy+ s

) (K (x,z) — K' (z,2)) — f(0)K'(2,0) + f(M)K'(z, M).

Thus, to find the kernel function we need to solve the boundary-value problem

K(z,y) — K"(z,y) =0 for all z,y € [0, M],x # y (3.5.5)
K'(x,0) = 0 for all z € [0, M] (3.5.6)
K'(ar, M) = 0 for all € [0, M] (3.5.7)
K' (z,z) — K (z,x) = 1 for all z € [0, M] (3.5.8)
The differential equation (3.5.5) has the general solution
K(z,y) = A(x)e! + B(x)e™. (3.5.9)

[t remains to find coefficient functions A(x), B(x) for which K (x,y) satisfies
(3.5.6)-(3.5.8). Denote K’ (z,x) := a(x), K, (z,z) := B(x). We consider two
cases separately.

Case 1: y < x with x > 0. K(x,y) have to satisfy

=
3
=)
N
I
N
—~
2
|
Sy
—
S
I
=

Therefore,
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So, substituting in (3.5.9) we obtain

K(z,y) = a(x) 5= = o) (3.5.10)

er—e® sinh(x)

Case 2: © <y with x < 1. Similarly, K (z,y) have to satisfy

Az) = B(%) =wr—=m» B(@) = B(¥) "=

So, substituting in (3.5.9) we obtain

ey=M 4 o= (y—M) cosh(y—M
K(z,y) = B(2) 5= = 5(@W (3.5.11)

Now, from (3.5.8) and the fact that limf((w, y) = lim K(x,y), we obtain

y— y—a~

the system for functions a(x) and 5(z):

a(z) — B(z) =1,
()5 — Bla) S = 0.
which results in
() = G coi?ff%ofiﬁ@?% cosh(z) Si“h(ﬁfﬁﬁf’?}f_M)
plx) = sinh(z) cosi?ffﬂfi;oﬁéf% cosh(z) Smh(xsi_rf(?\;?s}l(x)

Finally, together with (3.5.10) and (3.5.11) we obtain the result

cosh(z— M) cosh(y)

K(;U y) _ sinh(M) itz < Y
COSh(zi);}?(Sjl\léag_M) if x> Y.

3.5.1 Native space

From the definition of the the reproducing kernel it is easy to see that

K : Q) x ) — Ris symmetric and positive semi-definite. Namely, we know that
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Figure 3.2: The local kernel for H[0,1].

K(z,y) = (K., K,)m, so K is symmetric. Moreover, forne N, ¢1,...,¢, € R,

and x1,...,z, € Q we have
n n n
Z CZ'CJ'K(.QS'i,l'j) = ZCini,ZCijj = O,
1,7=1 1=1 j=1 H

so K is positive semi-definite.

The Moore-Aronszajn theorem goes in the other direction: it states that
every symmetric, positive semi-definite kernel defines a unique reproducing ker-
nel Hilbert space. Notice that the region 2 € R" can be quite arbitrary except

that it should contain at least one point.

Theorem 3.5.8 (Moore-Aronszajn). Suppose K : Q2 x Q — R is a symmetric
positive definite kernel. Then there is a unique (up to isometry) Hilbert space

N of functions on Q for which K is a reproducing kernel. More precisely
1. For every x € Q the function K,(-) = K(x,-) € Nk;
2. For every x € Q) and for every f € Nk

f(il?) = <f7 K$></VK

This theorem first appeared in Aronszajn’s Theory of Reproducing Kernels

[3], although he attributes it to Eliakim Hastings Moore.
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The associated function space 4% that has a given kernel K as its repro-
ducing kernel is called the native Hilbert space of a positive definite
kernel K. [62, Theorem 2.2] gives a description of a native space for (strictly)

positive definite function.

Theorem 3.5.9. Every symmetric positive definite function K : 1 x Q@ — R
has a unique native Hilbert space N (). It is the closure of the pre-Hilbert
space

H () := span{K (-, y) : y € Q}

under the inner product

(K(,2), K(,9)) 45 = K(x,y) for all z,y € .

The elements of the native space can be interpreted as functions from € to R

via the reproducing formula

f(x) - <f7K(7x)>JVK :

So, there is a one-to-one correspondence between symmetric, positive def-
inite kernel on €2 and Hilbert space of real-valued functions on 2 with the
continuous evaluation functional.

One of the most difficult problems in the theory of RKHSs is starting with a
positive definite function, K to give a concrete description of the space H(K).
We can refer to this as the reconstruction problem. However, there are

some useful characterizations of the native spaces.

Theorem 3.5.10 (Characterization in terms of Fourier transform). Suppose
® e C(R) n Li(R) is a real-valued strictly positive definite function. Consider
a translation invariant kernel K(x,y) = ®(x —y). Then the native space N

15 given by
Ni(R) = {f € C(R) A Ly(R) : f/V/d e Ly(R)},

and the native space tnner product can be written as

1 fma)
<f’g>”K_\/%JR o
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In particular, every f € N (R) can be recovered from its Fourier transform
feLi(R) n Ly(R).

This result shows that in the case, when {2 = R and the kernel is translation
invariant, the native space actually consists of smooth functions. The proof of
this fact can be found in [71, p. 139-141].

Another interesting characterization of the native space can be given in
terms of the eigenfunctions of some linear operator associated with the repro-
ducing kernel. Namely, the Mercer theorem provides a series representation for

continuous kernels on compact domain.

Theorem 3.5.11 (Mercer). Let K : [a,b] x [a,b] — R be a continu-
ous, symmetric, positive semi-definite kernel. Consider a linear operator
Ty : Lofa,b] — Lola,b] associated to K :

Te()a) = | Koot dt. (35,19

Then there is an orthonormal basis {p;}, of Ls|a,b] consisting of eigen-
functions of Tk such that the corresponding sequence of eigenvalues {\;} 4
15 nonnegative. The eigenfunctions corresponding to non-zero eigenvalues are

continuous on |a,b] and K has the representation
00
K(z,y) = Y 2 ¢i(x) 05(y), (3.5.13)
j=1

where the convergence is absolute and uniform.

Corollary 3.5.12 (Characterization in terms of eigenfunctions). Let K :
[a,b] x [a,b] — R be a continuous, symmetric, positive semi-definite kernel,
{0}, {2, be the eigenfunctions and the eigenvalues of Tx. Then the

native space Nx is given by

‘A/K[CL?b] = {f € LQ[a7b] Z% <f? Spi>L2[a,b]) < OO}?
i=1""

and the native space inner product can be written as

o 1
<f7 g>JVK = Z )\_ <f7 gpi>L2[a7b] <ga 902'>L2[a,b] :
i=1""
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It is one of the interesting topics in the theory of RKHS to deduce properties
of the native space from properties of its reproducing kernel K, like continuity;,
measurability, differentiability ( [64, Section 4.4]). For instance, continuity of
K on Q x € implies that all functions in the native space A% are continuous
on ).

At the end of this section, let us introduce a class of particularly important

RKHS — universal RKHS.

Definition 3.5.13. Let 2 be a compact metric space, K : Q2 x Q2 — R be a
continuous, symmetric, positive semi-definite kernel. K : €2 x 2 — R is called

universal if its native space A% is dense in C'(2) with respect to uniform norm.

[t is possible to prove that the following kernels are universal [64, Corollary
4.58]:

lz—yl?

e Gaussian kernel: K(z,y) =e 202 | z,yeR" 0> 0.

e Exponential kernel: K(z,y) = el*=¥ 2 yeR™



Chapter 4

Prices prediction with supply and

demand curves

In deregulated electricity markets, the study of price prediction is equally
important for producers, buyers, investors and other load serving bodies for
various reasons. These includes, among others, the cash flow analysis, least cost
planning, integrated resource planning, financial procurement, optimal bidding
strategies, regulatory rule-making and demand side management.

Instead of directly modeling the electricity price as it is usually done in
time series or data mining approaches, we are going to model and utilize its

true source: the sale and purchase curves of the electricity exchange.

4.1 Meshless approximation of supply and demand curves

Let us briefly notice some features of supply and demand curves that are

relevant for our modeling:

e By construction, the curves are monotone.

e The values attained by the supply curve are roughly clustered around lay-
ers, corresponding to different production technologies. In Italy they are

non-dispatchable renewables, gas, coal, hydro, oil.

e The fact that renewables are the first ones make the supply curve intrinsi-

cally "meshless".
e Demand is much more inelastic than supply.

o7



98

So, we are dealing with a scattered data interpolation problem. We have a large
amount of points (each point represents price and amount of electricity) that
we want to approximate. We can formalize this problem as follows.
Given a set of NV distinct data points Xy = {z; : i = 1,2,..., N} arbitrarily
distributed on a domain 2 < R and a set of data values (or function values)
={y; 11 =1,2,...,N} c R, the data interpolation problem consists in
finding a function sy : €2 — R such that

sf(xi)) =y, i=1,...,N. (4.1.1)

The idea of meshless approximation with radial basis functions is to find

an approximant of f in the following form:

r)i= Yol — i)

where:

e the coefficients «; and the centers z; are to be chosen so that the inter-

polant is as near as possible as the original function f;
e ¢ : R — R is a radial basis function (RBF).

Notice that the radial basis function ¢ > 0, with «; > 0, so

M
D cid(e — i) =0
i-1

As we need to approximate piecewise constant monotone function from [0, M]
to R*, we decided to use the integrals of RBF. Namely, we want to find an

approximant of the form

JZ% (Aillz — i) d f Ltéb()\in—%H)dx

where ); is a shape parameter for every center x;.

4.2 Approximation by Gauss error function

Let F'(z) be a function which corresponds to the supply curve (i.e. piece-

wise non-decreasing constant function from [0, M| to R™). We need to find a
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function G(z), such that the difference between F' and G is reasonably small.
The derivative of F'(x) in the sense of distribution is the sum of Dirac delta
functions centered in the "jumps" of the supply curve. Also we know that the

Dirac delta distribution can be written as limit of Gaussians:

1 2 2
5(z) = im ———— el /207
(z) 00 /21 o2

Therefore, it seems natural to search for G(z) as a linear combination of func-

tions
C(z—B)
2 2
glx) =A- NG J e " dt+ D, (4.2.1)
0

which are called the Gauss error function.
The error function is a special non-elementary function of sigmoid shape
that occurs in probability, statistics, and partial differential equations describ-

ing diffusions. The standard error function is defined as:

X

1 2 2 (" _p
erf(x) = — | e"dt=—=| e dt
VT ) VT Jo

Let us denote

1 it x >0,
h(zx) = :
-1 ifx <.

Notice that any supply curve can be expressed as a linear combination
of functions h(x — a) up to a constant. So, the problem of approximation
the supply curve leads to the problem of approximation of h(z — a) by error
functions. In this subsection we are going to give an estimation of the difference
between the step function h(z) and Gauss error function.

From the picture we can see that erf,(x) = erf(n - z) gets closer to h(z) as
n becomes bigger. So, our first task is to examine, in which sense erf,, converges

to h. We are going to check four types of convergence:
1. Uniform convergence;

2. Pointwise almost everywhere convergence;
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Figure 4.1: Gauss error function
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3. Convergence in measure;
4. Lo convergence on a real line;

For the first three items the answer is immediate. There is no uniform
convergence, because |erf,(0) — h(0)] = 1 for all n. But for every z # 0
erf,(x) — h(z), so erf, converges to h almost everywhere. And therefore,
erf,, — h in measure. To obtain the answer about Ly(R) convergence we need
to use some additional theory:.

One of the related functions is the complementary error function, which is
defined as

2 (7 _p
erfe(z) =1 —erf(x) = — | e " dt.
VT

To obtain an estimation for |k —erf, |z2(w), we will use the following known

fact about the complementary error function from [1]:

Lemma 4.2.1.

erfc?(z)dx =

0 VT

Proposition 4.2.2. Consider the functions

e



1 if x© = 0, 1 e 2
h(z) = / and erf,(x) = —J e " dt.

1 ifzr <O, VT e

Then for every n e N

| erfyn —hlL,@) =
Proof. We can write

1 — erf(nz) if x >0,
h(zx) — erf,(x) = :
—(1 —erf(—nx)) ifz <0.
[t means that h(x) — erf,(z) = sign(x) - erfc(|nz|), and so,

(h(z) — erf,(x))? = erfc?(|nx]).

Therefore
0 0
| erf, —hH%Q(R) = f erfc?(|nz|) do = 2ferf62(nx) dx

—0 0
e ¢]

2 f (2 _ 2 242

= — | erfc —.

n n o AT

0
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(4.2.2)

The last equality is obtained from Lemma 4.2.1, and this ends the proof. [

The goal of the next theorem is to show that any supply curve (piecewise

constant function with a finite number of segments) can be approximated by a

combination of error functions in the sense of Ly convergence.

Theorem 4.2.3. Any piecewise constant function can be approrimated by the

linear combination of error functions in the sense of | - ||1,m®)
More precisely, if we have a function of the form

k
F(z) = Zaih(:c —bi)+c¢+ D,
i=1

then for every € > 0 there is N € N such that, for
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k
G(r) = Zai erf(N - (z —b;)) + ¢; + D,

i=1
it holds |[F' — G, <e.
Proof. Without loss of generality we can assume that D = 0. Fix ¢ > 0. Let
us denote

fi(x) = a;h(x —b;) + ¢;.
So, F(x) = Zle fi(x). For each i consider the sequence of functions

gin(x) = a;erf(n(x — b)) + ¢.

Then, from (4.2.2) we have the estimation

2(2 — /2
L, = ail erf, —h|, = a; (—ﬂ.

T

L, < 7. Therefore, taking N = mZaXNi,

”fi — Gin

We can choose N; such that | f; — gin,
we obtain

Ifi = ginllL, < % for all i. (4.2.3)

Now take G(z) = SV a;erf(N - (z — b;)) + ¢;. Then we can estimate

k k
Z fi— Z 9i,N
i=1 i=1

4.2.3 IS

k
(4.2.3)
IF ~ G, - <M lfi—ginl < k==
1=1

Lo
[]

Evidently, any supply curve and any demand curve can be approximated by
a combination of error functions, which is the integral of a normalized Gaussian

function. The standard error function is defined as:

I 2 2 (" _p
erf(x) = — | edt=—=| e"dt
NI =,

Since we want to approximate monotone curves we came up with the idea to
use the integral of radial basis function. In order to find unknown coefficients

a;, \;, x; we need to solve global minimization problem:
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where p = (o, Ai, %;)i1,.. v and

M t
s(tp) = o f oz — z4]) da
i=1

and ¢(t) = (erf(t) + 1)/2 is the primitive of a Gaussian kernel. However,
this optimization problem is very heavy, as it is a nonlinear and nonconvex
minimization over p € R*¥ (M ~ 150).

We divide our global problem in simpler subproblems, with lower dimen-
sionality, so that the final result is faster. Let us to describe our method in
some more details for the supply curve.

First, we divided the y-axis into M equal intervals, and approximate the
supply function on that interval exactly with one basis function ~ M 3-
dimensional optimization problems. However, this has the huge drawback that
a huge jump concentrates on itself, keeping uselessly many components. Then
we divide the y-axis into M intervals [p;, p;+1], where the p; correspond to the
greatest quantity (); offered, i.e. to the largest "plateaus" on the bidding curve;
again, we approximate the supply function on that interval exactly with one
basis function. On each part we need to fine only 3 coefficients. For the re-
alization of our algorithm we are using standard function lsqcurvefit from
MatLab Optimization Toolbox.

For optimizing the numerical procedure we solved some parts of the opti-
mization problem by ourselves: when the interval [p;, p;+1] contains just one

jump, then
o = f(pit1) — f(pi)

for any kernel function ¢ with unit integral.

4.3 Data set

In our work we are using the data about supply bids from the Italian elec-
tricity market from the GME website www.mercatoelettrico.org. We consider
time period from 01.01.2017 to 31.12.2017. These data are in aggregated form,

i.e. bids coming from different agents but with the same price are aggregated
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Figure 4.2: Method 1 and Method 2

Approximation of supply curve for 2018-01-01 hour 15

With 4 functions.

Time: 4.4707 sec

Error: 528.5971 €
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Approximation of supply curve for 2018-01-01 hour 15

With 4 functions.

Time: 2.821 sec.

Error: 200.3605 €

6
Volume (MWh) «10*

in the price layer. Even in this form, we are dealing with the massive amount

of data. For instance, there were observed 2 800 687 offer and 558 926 bid

layers during th

is period.

So, it means, that on average there are 324 offer and 65 bid layers for each

hour of the year, which corresponds to one supply curve and one demand curve

respectively.
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Table 4.1: Data

Date Hour | Volume (MW) | Price (Euro)
01-01-2017 1 13392.7 0
01-01-2017 1 25 0.1
01-01-2017 1 113.8 1
01-01-2017 1 11 3.5
01-01-2017 1 270.3

01-01-2017 1 0.5 6
31-12-2017 24 370 554.2
31-12-2017 24 352 554.3
31-12-2017 24 365 554.5
31-12-2017 24 97 700
31-12-2017 24 60000 3000

It is a known fact that the dynamics of electricity trade displays a set of
characteristics: external weather conditions, dependence of the consumption
on the hour of the day, the day of the week, and time of the year. Variation in
prices are all dependent on the principles of demand and supply. First of all, on
the day-ahead market the energy is traded on an hourly basis and this means
that the prices can and will vary per hour. For example, at 9:00 a.m. there
could be a price peak, while at 4:00 a.m. prices could be only half of the peak
price. Second, the weekly seasonal behaviour matters. Usually, it is necessary
to differentiate between the two weekend days (Saturday and Sunday), the first
business day of the week (Monday), the last business day of the week (Friday)
and the remaining business days. Thirdly, electricity spot prices display a strong
seasonal pattern. For instance, demand increases in summer, as consumers
turn their air conditioners on, and also in winter because of electric heating in
housing.

As far as the number of offers (or bids) affects directly the complexity of
approximation, we decided to explore the relationship between the number of
bids and offers and such a characteristics as the hour of the day, the day of
the week, and the month of the year. Based on the dependence between this
three factors and electricity prices we could expect that some hours, days have

much less offers and bids than another one. This analysis is presented on
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Figures 4.3 — 4.5.

The main conclusion that we have made is that there is no direct relation-
ship between the number of offer and bid layers and the hour of the day, the
day of the week, and the time of the year. In particular, during 24 hour of the
day the number of offer layers varies between 299 and 332, and the number of
bid layers varies between 61 and 66. With regard to dependence of the day of
the week the number of offer layers varies between 310 and 320, and the number
of bid layers varies between 55 and 68. Based on this observation we decided

to chose the same number of basis functions independently of the hour of the

day, the day of the week, and the time of the year.

350 Number Number

- M Gt e, Hour of offers | of bids Hour of offers | of bids

" 1 300 64 13 329 64

= 2 299 64 | 14 | 329 64

3 300 64 15 330 64

200 4 300 64 16 332 64

S 5 301 63 17 332 63

6 303 63 18 332 63

100 7 307 62 19 331 64

8 | 318 63 | 20 | 329 65

2 S : 9 325 65 21 329 66

2 10 326 64 22 323 64

) 5 7 9 11 13 15 IF¥ 19 2 B 11 329 64 23 321 63

s e 12 | 32 65 | 24 | 314 61

Figure 4.3: Hour dependence of the number of offer and bid layers
350
300 g S : g Number
e Month -
230 of offers | of bids
200 Sunday 310 55
1“ Monday 310 56
:: Tuesday 322 68
J: Wednesday 324 67
o (tﬁb" ,E}ﬁx' \&;‘a \03*1 Thursday 326 68
oF T&’ o o Friday 327 68
= Saturday 329 68

= Bids

Figure 4.4: Weekly dependence of the number of offer and bid layers
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Number

350 Month :
Ww of offers | of bids

300 January 331 65

S February 341 79

March 324 81

200 April 305 72

150 May 298 57

o June 298 54

I — ) July 322 55

50 TSRS August 305 58

0 September 300 64

& S ?&;&\ \.‘5'“'-;' x‘-{:\n & \Q?;} .@'-5“ P._gx {}_Fx .qt?} October 309 66

o - & o & November 348 58

% o =
’ December 357 o7
g Offiers Bids

Figure 4.5: Monthly dependence of the number of offer and bid layers

4.4 Numerical experiments

Since the maximum market clearing price for the period under review (i.e.
from 01.01.2017 to 31.12.2017) is 350 €, in all the experiments we restricted
ourselves to a maximum price 400 €. In Figure 4.6 we demonstrate that the
approximation by polynomials does not suit to our problem. In Theorem 4.2.3
we have showed that we can approximate supply curve with a linear combi-
nation of error functions. Now we want to implement this into practice using

MatLab. First of all, we care about
e accuracy of the approximation;
e running time.

Notice that Runge’s phenomenon (1901) shows that for high values of IV, the
interpolation polynomial may oscillate wildly between the data points. Besides,
the polynomial interpolation does not guarantee of monotonicity of the curves
(see Figure 4.6).

For the realization of our algorithm we are using standard func-

tion lsqcurvefit from MatLab Optimization Toolbox and functions main,
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Figure 4.6: Approximation of supply curve with polynomials

3500 —

datal
) Ath degree
e, : —— 10th degree

3000 —

2500 -

2000 —

1500 —

Price (€/MWh)

1000 [~

Volume (MWh) <104

datainterpolation, onestepdata.
In the function main we download the data from a text file and choose the
number of basis function M. The result of function datainterpolation is the

coefficients a;, b;, ¢; of the function

a;(erf(c; - (x — b;)) + 1). (4.4.1)

M:v

i=1
Here for the calculation convenience we are using {erf(c¢; - (x — b;)) + 1} instead
of {erf(c; - (x — b;))}, as our data values are never negative.

The 1sqcurvefit function solves nonlinear data-fitting problems in least-
squares sense. Suppose that we have data points Xy = {z; : ¢ = 1,2,..., N}
and data values Yy = {y; : 1 = 1,2,..., N} < R and we want to find a function
f such that f(z;) ~ y;, 1 = 1,..., N. We can consider the family of functions
{f(x,p) : p e R*}, depending of some parameter p € R*. Let py € R* be an

“initial guess” such that f(z;,p) is reasonably close to ¥;.
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The function 1sqcurvefit starts at py and finds coefficients p from some

neighborhood of py to best fit the data set Yy:
minl (21, ) ~ 13

Notice that this function works well only if the number of parameters
(p1,-..,pr) is not very big. That is why we are forced to divide our prob-
lem into many local problems.

After we choose the number of basis function M, we want to divide our
problem into M sub-problems. Then each part of the supply curve must be
approximated by one error function. Our first attempt (Method 1) was just to
divide y-axis uniformly into M equal intervals (see Figure 4.2, A). However this
approach is ineffective, as “jumps” of supply curve can be bigger that the length
of these intervals. To resolve this problem we created a simple algorithm that
finds the points P, ..., Py on the y-axis such that our supply curve takes the
value exactly P; on some non-trivial interval (see Figure 4.2, B). Then M times
we resolve the same optimization problem for the values of the supply curve
between P; and P;,; using function 1sqcurvefit. The function onestepdata
gives for each step the initial point py.

A summary of the results is shown in Table 4.2. For all experiments we pro-
ceed with the data for period from 01.01.2017 to 31.12.2017. We used different
number of basis function to approximate supply and demand curves, and then
compared the equilibrium price, which was received as intersection of approx-
imants (P,,,-), with the correct equilibrium price (P). We did this for each
hour of each day, and then computed the average value of |P — P,,,,| (Error)
for all 8 664 hours of the year and the maximum value of |P — P,,,,| (Max
error).

This empirical results show that the accuracy of our approximation is good
enough, if we use 5 basis function for the demand curve and 15 basis function
for the supply curve. Then the increase in the number of functions leads to
more time-consumption, but the increase of the accuracy is less significant.

As a last step we analyzed the stability of the coefficients for the case, when
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Figure 4.7: Local interpolation by one error function with 1sqcurvefit function
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we approximate the supply curve with 10 basis functions and the demand curve

with 5 basis functions for the same period of time.

10 )
S(x) = Z Ai(erf(C; - (x — B;)) + 1) and D(z) = 2 BEi(erf(K; - (x — L;)) + 1).

From Table 4.3 we can see that these coefficients do not have a stable behav-

ior (namely, maximum values, minimum values and mean values are presented).



Table 4.2: Results of numerical experiment

Number of functions Results
For demand | For supply | Error | Max error | Running time
5 5 3.9 € 28.6 € 69 min.
5 10 22 € 14.9 € 82 min.
5 15 1.5 € 11.1 € 103 min.
5 20 1.3 € 9.1 € 110 min.
5 25 1.2 € 9.3 € 135 min.
5 30 1.2 € 9.4 € 159 min.
5 35 1.2 € 9.8 € 177 min.
) 40 1.2 € 9.6 € 190 min.
5 45 1.2 € 9.6 € 199 min.
5 50 1.2 € 9.6 € 207 min.
10 5 3.9 € 39.5 € 100 min.
10 10 2.1€ 14.9 € 128 min.
10 15 14 € 8.9 € 146 min.
10 20 1.2 € 9.1€ 162 min.
10 25 1.1 € 9.5 € 183 min.
10 30 1.1€ 9.3 € 199 min.
10 35 1.0 € 9.4 € 223 min.
10 40 0.98 € 9.8 € 241 min.
10 45 0.98 € 9.6 € 255 min.
10 50 0.98 € 9.6 € 273 min.
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Although the values attained by the supply curve are clustered around layers,

which correspond to different production technologies, we came to the conclu-

sion that we have no chance to choose these coefficients uniformly for all curves,

but we need to calculate them for all supply and demand curves.
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Figure 4.8: Supply curve approximated with 10 basis functions

2017-05-01

Table 4.3: Stability of the coefficients
‘ Min ‘ Mean Max
Coeffitients for supply curve
Ay 10 | 14.76981 18
Ay | 10.5 | 15.15519 | 21
Az | 10.5 | 15.21438 | 19.5
Ay 11 | 15.53944 | 22
As 11 16.8968 | 27.5
Ag | 12.5 | 20.44287 | 27
Ay | 14.5 | 22.15457 | 33
Ag 19 | 29.69132 | 57.5
Ag 17 | 24.48784 | 48
A | 21 | 25.64777 | 50
Coeffitients for demand curve
Ey 12 | 30.95154 | 37.5
Es 25 | 34.31039 | 58.5
Es 25 | 36.24469 | 50
FEy 33 | 40.19715 | 50
E5 50 | 58.29623 | 75

So, in this section we presented a parsimonious way to represent supply and
demand curves, using a mesh-free method based on Radial Basis Functions.
Using the tools of functional data analysis, we are able to approximate the

original curves with far less parameters than the original ones. Namely, in
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order to approximate piece-wise constant monotone functions, we are using the

combination of the integral of a normalized Gaussian function.

4.5 Price and demand forecasting based on supply and demand

curves

Our main goal in this section is to forecast next-day electricity demand and
prices using approximated supply and demand curves and to compare differ-
ent modeling techniques. The classical models do not explain the relationships
between market clearing price and different influential factors that can be es-
sential in the problem of price prediction. To this purpose, we want to compare
commonly used autoregressive models, based just on the clearing price, with
ours, based on supply and demand curves. For this test, we are using again
the data about supply bids from the Italian electricity market considering the
time period from 01.01.2017 to 31.12.2017. In particular, our training set in-
cludes data from 01.01.2017 to 31.10.2017, while the test set which is used for
forecasting to test the performance of the model on out-of-sample data is from
01.11.2017 to 31.12.2017. We will consider a linear parametric autoregressive
(AR) model for univariate price prediction and functional autoregressive (FAR)
models for the prediction of supply and demand curves.

We performed electricity price forecasting using six different methods: au-
toregressive model of order 1 with (SAR(1)) and without seasonality (AR(1))
for the closing price; functional autoregressive model of order 1 applied to the
modeled supply and demand curves, where for the representation of demand
curve we used one basis function and for the representation of supply curve we
used 5 or 10 functions (FAR(1) (5 functions) and FAR(1) (10 functions), respec-
tively) together with the corresponding seasonal models (SFAR(1) (5 functions)
and SFAR(1) (10 functions), respectively). In all the seasonal versions, dummy
variables corresponding to weekdays were introduced. These models were ap-
plied to each market hour separately.

While formulations of AR(1) and SAR(1) models for the closing prices



74

are quite standard (thus we do not give details on them here), we feel that a
description of our implementation of FAR(1) and SFAR(1) models for supply
and demand curves are needed. We considered the simplified representation of
the supply curve Sy p,(x) with M basis functions, and the demand curve Dy ()
with one basis function, at day d and hour h, keeping the shape parameter

constantly equal to 1

M
San(x) = > Aqpi - (erf((x — Bapi)) +1), M =5o0r M = 10,
1=1

Dd,h($) = 200 - erf((x — Ld,h)) + 1.
Then we provide a model for the process Xy = (Xé)h, Xﬁvh, . ,Xg%), where

X(Zi,h:Ad,hﬂ', i=1,....,.M—1,
i M1 .
X =DBani, t=1,..., M,

2M
XdJL - Ld,h

Notice that, as we restricted ourselves to a maximum price (and so the maxi-
mum of supply and demand curves) of 400 €, we need to exclude the parameter
Ag .y from the model, as it is linearly dependent on others. The considered

time series model FAR(1) for X, for each hour h is given by
Xan =vqg+PaXgn—1 +ean

with the 2M x 2M matrix ®4, and the 2M-dimentional vector v; as param-
eters, and €4, as error term. We assume that the error process g4, is a 2M-
dimensional white noise process.

For modeling the day of the week impact in SFAR(1) models we define ad-
ditionally function W (d) that gives a number that corresponds to the weekday
of day d (W (d) = 1 for a Sunday, for a Monday W (d) = 2 up to W(d) = 7 for
a Saturday), and the weekday indicators

1,if W(d) = k
Wi(d) =
0,if W(d) # k



(6]

We introduced parameters Dy, for the weekday effect. Thus, the correspond-
ing SFAR(1) model for Xy for each hour h and is written, in terms of coethi-
clents, as
7
Xan = Vg + PaXgp1 + Z Wi(d)Danx + €an-

k=1
We compared the results obtained with our functional approach with cor-

responding univariate price prediction. Three different summary measures,
namely, mean absolute error (MAE), root mean square error (RMSE) and mean
absolute percentage error (MAPE) were used to evaluate the out-of-sample fore-
casting performance. Let us denote Fy;, and Edh the observed and the predicted
values for day d, d =1,...,T =61 and hour h, h =1,...,24. We com-
puted

. .
I By — FE

MAE = 2=t Fin dh‘, h=1,...,24;

T

S (Eip — Ean)?

RMSE = =1 T . h=1,...,24;
. )
I By — Eul/E;

MAPE — 2=t "T anl/ hoh=1,... 24

Table 4 provide summary statistics of errors for the forecasting of next-
day electricity price. In order to facilitate the comparison between different
methods we plot the errors for each of the six methods on Figures 4.9, 4.10 and
4.11.

As expected, SAR(1) performs better than AR(1). Surprisingly, instead,
functional autoregressive models without seasonality gives better results than
corresponding seasonal models. By comparing functional autoregressive models
with 5 and 10 functions we can see similar results, so increasing the number of
parameters does not lead to the improvement of the prediction accuracy. These
two outcomes could be possibly due to overfitting effects. These results shows
that we should use FAR(1) (5 functions) as this method is less time-consuming
than the one with 10 functions. Finally, our method FAR(1) (5 functions)
gives considerably more accurate results compared to the SAR(1) model for all

hours. In particular, not only SAR(1) gives an average of the MAPE equal to
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16.51% while FAR(1) (5 functions) gives 14.98%, but we can see that FAR(1)
(5 functions) performs significantly better than SAR(1) on every single hour.
Also comparing MAE and RMSE we obtain similar results.

Due to the superior performance of FAR(1) (5 functions) method, we also
conducted prediction of electricity demand with just three methods: AR(1),
SAR(1), and FAR(1) (5 functions). Table 5 provide summary statistics of errors
for the forecasting of next-day electricity demand also represented in Figures
412, 4.13, 4.14. In this case AR(1) gives an average of the mean absolute
percentage error 12.82%, SAR(1) gives 11.33% and FAR(1) (5 functions) gives
10.04%. Moreover, FAR(1) (5 functions) for the demand forecasting again
gives more accurate results compared to the AR(1) model for all hours and also

compared to the SAR(1) model. The same is true for MAE and RMSE.
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Figure 4.9: Mean absolute error for price forecasting.

T T T T T T I T
||—AR(1) e SAR(T)

---FAR(1) (56 functions) -+*-SFAR(1) (5 functions)
FAR(1) (10 functions) ~*~SFAR(1) (10 functions)

Figure 4.10: Root mean square error for price forecasting.
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Figure 4.11: Mean absolute percentage error for price forecasting.
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Table 4.4: Price prediction accuracy statistics.

MAE | RMSE | MAPE MAE | RMSE | MAPE
Model Hour Hour

Euro | Euro % Euro | Euro %
AR(1) 9.12 11.59 14.47 12.33 | 18.62 16.86
FAR(1) (5 functions) 6.92 | 9.06 | 10.77 9.35 | 15.37 | 12.68
FAR(1) (10 functions) , 1657 [907 [1028 | | 1066|1676 | 1468
SAR(1) 8.1 10.31 12.92 12.43 | 18.04 17.43
SFAR(1) (5 functions) 75 | 960 | 11.86 11.27 | 1691 | 15.77
SFAR(1) (10 functions) 732 | 955 | 11.62 12.14 | 17.67 | 17.22
AR(1) 9.32 11.64 15.45 13.92 | 19.31 19.58
FAR(1) (5 functions) 6.29 8.75 10.14 10.51 | 1591 14.88
FAR(1) (10 functions) | 639 | 903 [1027 | [1068[1628 [ 1505
SAR(1) 7.37 10.20 12.13 14.02 | 19.01 20.17
SFAR(1) (5 functions) 6.74 | 9.06 | 11.09 12.28 | 17.70 | 17.51
SFAR(1) (10 functions) 6.80 9.13 11.16 12.60 | 18.23 18.07
AR(1) 7.58 9.58 13.26 19.78 | 26.10 25.10
FAR(1) (5 functions) 559 | 7.47 | 947 14.80 | 20.73 | 19.05
FAR(1) (10 functions) , | 539 [776 [ 918 L5 [ 1612|2149 | 2060
SAR(1) 6.22 7.97 10.89 18.91 | 25.16 24.76
SFAR(1) (5 functions) 5.88 7.98 10.13 17.14 | 23.63 22.16
SFAR(1) (10 functions) 6.00 8.13 10.39 17.37 | 23.29 22.55
AR(1) 7.51 9.67 13.44 26.77 | 35.98 29.41
FAR(1) (5 functions) 5.36 | 7.48 9.22 20.78 | 29.76 | 22.68
FAR() (10 functions) | | 548 |[7.74 | 991 Lo | 2086 [ 3067 | 2236
SAR(1) 6.27 8.02 11.31 24.95 | 33.72 28.07
SFAR(1) (5 functions) 596 | 807 | 10.46 92.76 | 31.65 | 25.11
SFAR(1) (10 functions) 6.05 8.04 10.93 23.15 | 32.27 25.41
AR(1) 7.41 9.55 12.97 35.21 | 49.61 33.00
FAR(1) (5 functions) 547 | 7.55 | 9.38 27.07 | 42.61 | 23.56
FAR(1) (10 functions) 5 5.54 | 7.50 9.71 17 26.78 | 43.08 | 23.27
SAR(1) 6.17 7.92 10.83 31.34 | 45.55 28.56
SFAR(1) (5 functions) 594 | 7.86 | 10.34 20.29 | 44.22 | 25.99
SFAR(1) (10 functions) 5.95 | 7.85 | 10.49 28.40 | 43.37 | 25.66
AR(1) 8.01 10.06 13.34 40.62 | 60.62 32.32
FAR(1) (5 functions) 565 | 776 | 9.32 3141 | 49.74 | 22.90
FAR(1) (10 functions) ¢ 570 766 |94 Lg | BLO5 | 4841 | 2503
SAR(1) 6.19 8.36 10.31 35.01 | 52.87 26.79
SFAR(1) (5 functions) 595 | 7.95 9.99 32.21 | 50.63 | 24.12
SFAR(1) (10 functions) 595 | 7.89 | 10.02 34.17 | 49.10 | 27.56
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Table 4: Price prediction accuracy statistics.

MAE | RMSE | MAPE MAE | RMSE | MAPE
Model Hour Hour

Euro | Euro % Euro | Euro %
AR(1) 10.35 | 14.15 15.09 30.43 | 46.78 26.33
FAR(1) (5 functions) 7.80 | 11.15 | 11.60 23.27 | 38.21 | 19.06
FAR(1) (10 functions) o 836 [1177 |1277 | [2453 | 3840 | 2099
SAR(1) 9.13 12.29 13.70 26.13 | 41.06 22.01
SFAR(1) (5 functions) 8.42 11.75 12.74 24.91 | 39.04 21.16
SFAR(1) (10 functions) 9.07 |11.99 |14.11 25.98 | 38.99 | 22.84
AR(1) 18.91 | 27.67 22.79 23.26 | 41.01 21.08
FAR(1) (5 functions) 15.27 | 24.08 18.51 19.08 | 35.09 16.11
FAR(L) (10 functions) | | 1613 | 2397 [ 2055 | | 1885|3454 | 1643
SAR(1) 18.14 | 26.08 22.25 22.62 | 37.70 19.90
SFAR(1) (5 functions) 17.37 | 24.80 | 21.74 20.87 | 36.16 | 18.16
SFAR(1) (10 functions) 18.60 | 25.46 24.09 22.22 | 36.56 20.00
AR(1) 26.71 | 41.73 28.29 15.29 | 22.04 15.91
FAR(1) (5 functions) 2256 | 38.91 | 23.33 13.34 | 20.24 | 13.49
FAR(1) (10 functions) 9 22.40 | 36.46 24.12 21 13.47 | 19.69 13.83
SAR(1) 27.24 | 39.85 29.50 15.85 | 21.60 16.80
SFAR(1) (5 functions) 26.21 | 39.85 | 28.64 16.51 | 23.04 | 17.30
SFAR(1) (10 functions) 26.62 | 38.01 30.35 15.28 | 21.66 15.88
AR(1) 23.25 | 40.09 25.17 10.21 | 17.07 12.41
FAR(1) (5 functions) 19.58 | 36.07 | 20.59 10.61 | 17.56 | 12.54
FAR(L) (10 functions) | [ 19.70 [ 3696 | 2137 | [ 1145 | 1848 | 1346
SAR(1) 23.68 | 38.14 25.96 11.25 | 17.26 13.79
SFAR(1) (5 functions) 22.92 | 36.55 25.82 13.43 | 19.27 16.23
SFAR(1) (10 functions) 23.12 | 37.02 26.37 12.91 | 19.23 15.43
AR(1) 15.77 | 22.79 19.62 7.23 10.92 10.31
FAR(1) (5 functions) 13.66 | 20.20 | 17.10 6.37 | 9.62 | 8.92
FAR(1) (10 functions) 1 14.88 | 21.57 | 19.02 93 7.09 | 10.76 | 9.87
SAR(1) 16.04 | 22.24 20.42 6.97 10.54 9.72
SFAR(1) (5 functions) 15.82 | 22.02 | 20.42 6.84 | 10.00 | 9.54
SFAR(1) (10 functions) 18.59 | 24.78 24.15 7.55 11.02 10.45
AR(1) 14.92 | 21.56 | 18.95 655 |837 |1043
FAR(1) (5 functions) 11.67 | 18.19 | 15.07 5.74 | 7.36 9.23
FAR() (10 functions) | [ 12.63 [ 1920 [1637 | |58 [7.70 |03
SAR(1) 14.90 | 20.61 19.56 5.74 7.41 9.08
SFAR(1) (5 functions) 13.66 | 19.76 18.19 6.07 7.88 9.67
SFAR(1) (10 functions) 15.23 | 20.83 | 20.54 6.58 | 850 | 10.55
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Figure 4.12: Mean absolute error for demand forecasting.
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Figure 4.13: Root mean square error for demand forecasting.
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Table 5: Demand prediction accuracy statistics.

MAE | RMSE | MAPE MAE | RMSE | MAPE
Model Hour Hour

mW mW % mW mW %
AR(1) 1749 2134 6.7575 4955 5750 14.9272
SAR(1) 1 1650 1960 6.349 13 4381 5629 13.1578
FAR(1) (5 functions) 1197 | 1534 | 4.5906 3041 | 4824 | 11.9352
AR(p) 1723 | 2054 | 7.0308 5477 | 6313 | 16.9839
SAR(1) 2 1584 1897 6.458 14 4731 6132 14.596
FAR(1) (5 functions) 1173 1531 4.7919 4117 5272 12.9417
AR(p) 1773 2071 7.4811 6154 7033 18.9165
SAR(1) 3 1573 1887 6.6261 15 5214 6897 | 15.9249
FAR(1) (5 functions) 1206 | 1523 5.0349 4747 | 5964 | 14.6323
AR(p) 1789 2098 7.6647 6378 7243 19.1183
SAR(1) 4 1576 1892 6.7444 16 5364 7098 16.0223
FAR(1) (5 functions) 1365 | 1690 | 5.8724 5113 | 6164 | 15.3625
AR(p) 1825 2162 7.7768 6439 7211 18.1779
SAR(1) 5 1566 1912 6.6696 17 5334 7022 15.1515
FAR(1) (5 functions) 1343 | 1656 5.7846 5476 | 6630 | 15.1782
AR(p) 2029 2505 8.2893 6055 6690 15.406
SAR(1) 6 1870 2254 7.6712 18 4869 6316 12.6027
FAR(1) (5 functions) 1589 1913 6.5373 4905 6158 12.5699
AR(p) 3502 4065 12.6681 5259 5887 | 13.3915
SAR(1) 7 3299 3987 12.125 19 4341 5543 11.2166
FAR(1) (5 functions) 2903 3464 10.6912 4142 4948 10.6123
AR(p) 5272 6000 17.1605 4387 5009 11.3723
SAR(1) 8 4938 6097 | 16.2434 20 3758 4798 9.8719
FAR(1) (5 functions) 4461 | 5316 | 14.9315 3204 | 4079 | 8.6847
AR(p) 6270 7132 19.0464 3670 4220 10.0831
SAR(1) 9 5772 7345 17.5386 21 3231 4109 8.909
FAR(1) (5 functions) 4847 | 6016 | 14.6453 2960 | 3516 | 8.1968
AR(p) 6098 6954 | 17.8199 3111 3741 9.2407
SAR(1) 10 5618 7145 16.4139 22 2732 3483 8.0774
FAR(1) (5 functions) 4818 6103 14.0522 2353 2842 6.9697
AR(p) 5761 6618 16.7452 2485 3016 8.0533
SAR(1) 11 5236 6704 15.1949 23 2211 2752 7.1536
FAR(1) (5 functions) 4445 5389 12.8906 1764 2216 5.7381
AR(p) 5641 6476 16.4409 2067 2534 7.3591
SAR(1) 12 5011 6449 14.573 24 1883 2289 6.6889
FAR(1) (5 functions) 4377 | 5240 | 12.6463 1646 | 2015 | 5.8758
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Chapter 5

Supply and demand curves as stochastic

processes

Our next goal is to consider supply and demand curves as stochastic pro-
cesses. As a functional space in this case we can consider the space, which con-
tains all monotone bounded functions from [0, M] to [0, P], where M = 60000
MWh ans P = 3000 Euro/MWh. As far as the real data about supply and
demand are discrete (there exist a minimum size of quantities of electricity for
the supply offers and the demand bids) we are able to consider supply and
demand curves either as piece-wise constant curves or as continuous piece-wise
linear curves. In principle, it is an infinite dimensional subset of L* ([0, M])
or H' ([0, M]). However, market operators allow discrete minimum increases,
or ticks, both for quantities as for prices. Then, in our model the dimension
is finite!. Though finite, this is a huge number to implement in the numerical
model, so we will consider the stochastic processes in an abstract Hilbert space.

In order to deal with the huge amount of bid data, we studied linear trans-
formations of multivariate stochastic processes. It is known fact that a linear
transformation of a vector ARMA process is again an ARMA process. Instead,
a linear transformation of a finite order AR(p) process does not admit in general
a finite order AR representation, but just a mixed ARMA representation. In
this chapter we obtain a characterization result regarding the conditions that

guarantee that a linear transformation of a vector AR process is again an AR

1For Italian Electricity Market the ticks are 1 kWh for quantities (i.e. 0.001 MWh) and 0.01 Euro/MWh for prices. Thus,
the dimension of the model is 60000000.
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process both in finite and in infinite dimension. We will then apply them to

the model of Ziel and Steinert from |75].

5.1 Motivation

Let us reformulate the model of Ziel and Steinert mentioned in Section 1.3
in terms of linear transformation of multivariate stochastic process. They use a
time series model for the bid volume processes X écz and Xl(;?t for each price class
c. The original bid volume processes are Vg;(p) and Vp,(p) for each possible
price p € P = {p1,pa,...,Pn_1,Pn}, Where p; = —500,py = —499.9,...,p, =

3000, thus n = 35001. So, we can say that the stochastic processes

VS,t = (VS,t<p1)7 VS,t<p2)7 ) VS,t(pn))a
Ve = Vpi(p1), Voi(p2), ..., Vbi(pn)),

are processes with values in R", which represents the information about the
whole supply and demand curves. More precisely, the sale and purchase curves
are characterized by
Si(p) = >, Vsu(pi), and Dy(p) = > Vou(pi)-
(HIES? Epi=p

In order to reduce the dimensionality of the problem, Ziel and Steinert

define price classes for supply and demand curves as Cg = (c1,¢2,...,Cn)
and Cp = (é1,¢9,...,6y), where =500 = ¢ < ¢9,... < ¢, = 3000 and
3000 = ¢ > ¢ > ... > ¢, = —500. In such a way, m is a new dimension

for the studied processes and it is much less than n, for instance in their paper

they put m = 16. The price classes are given by
PS(CI) = {_500}7 PS(CQ) = (Cl7 62] a P7 SR PS(C’m> - (Cm—17 Cm] NP
PD(Cl) = {3000}, PD(EQ) = [52, 51) M P, ceey PS(Cm) = [Em, ém—l) N P.
So, instead of considering the processes Vs; and Vp,, they study

Xs,t = (XS,t(Cl>7 XS,t(CQ)y cee 7X5,t(cm))7
Xpim = (Xpi(é1), Xp(é2),..., Xpi(Cn)),
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where

XS,t(Ci) = Z VS,t(pz‘) and XD,t<C~i) = Z Vb t(pz)

1:pi€Ps(c;) 1:p;i€Pp(¢;)
We can assume that C's < P and Csg < P, rounding, if necessary, ¢; and ¢; to

one decimal place. Therefore, we can state that
Xsi=Ts(Vsy) and Xpy = Tp(Vpy)

where Ts, T : R — R™ are linear continuous operators such that

Ts(xy,29,...,0 <le, Z iy, z”: xz> and

i=k1+1 1=kpy—1+1
n
Tp(zy, 29, ..., Z:cz, Z iy, Z x| .
i=k1+1 1=My—1+1

So, the processes (Xg;) and (Xp;) are linear transformations of the processes
(Vsy) and (Vpy). Notice, that in practice, the original variables of interest are
often transformed before their generation process is modeled.

As we already said, for modeling the electricity price Ziel and Steinert follow
a simple regression approach described in [46], [73], [76]. So, in this case, the
initial processes (Vs;) and (Vp,), and the transformed processes (Xg;) and
(Xp,:) are vector-valued processes and (Xg;) and (Xp,) are assumed to be

autoregressive. We asked ourselves the following question: Suppose that (})

is R"-valued process and (V;) € AR(p), i.e
Vi=AVi+AVio+ ..+ AV, + W,

where A; are (n x n coefficient matrices and W; is an (n x 1) zero-mean white
noise vector process. Let T' : R®” — R™ be a linear continuous operator.
Consider the R™-valued process X; = T'(V;). Can we state that (X;) € AR(p)?

It Xy = BiVi1+BsVi_o+...+ B,V (t—p)+ Z;, what is the connection between
A;, B;, W; and Z;? Could this result be generalized to infinite dimensional

cases?
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5.2 Linear transformation of ARH(1) processes

In this section we are going to obtain some partial results regarding the
conditions that guarantee that a linear transformation of a AR process is again
an AR process in the most general form — in infinite dimension. Recall that
the space of all bounded linear operators between two Hilbert spaces H; and
H, is denoted by L(Hj, Hs), and L(H) denote the space of continuous linear

operators from H to H. First, let us prove the following lemma.

Lemma 5.2.1. Let Hy and Hs be two Hilbert spaces and T € L(Hy, Hs).
Suppose that € = (e,,n € Z) is a Hy-valued white noise (see Definition 2.5.4)

with covariance operator C'€ L(Hy), and
VU, =T(en), neZ
Then ¥ = (Vn,n € Z) is a Ho-valued white noise with covariance operator
C'=ToCoT*e L(Hy).
Proof. From Property 2.1.1 we have that 9 € L%{Q and
EY, = ET(e,) = T(Ee,) = 0.

Recall that for T' : Hy — H, there exists adjoint operator T : Hy — H;
fulfilling {T'hy, ha)y, = (h1, T*ha)y, (existence and uniqueness of this operator
follows from the Riesz representation theorem). Since
Cy. (h) = E [0y, h)v,]
= E[(T'(en), h)T(en)]
=TE [{e,, T*(h))en],
so, Cy, does not depend on n. Also, ¥, are pairwise orthogonal. In fact, for

any x,y € H and n # m

E [, ) O, )] = E[(T'(en), 2)<T(em), y)]
= E [{en, T"x){em, T y)] = 0.
It remains to show that 0 < E[||J,|?] < oo does not depend on n. This

follows from the fact that Cy = Cy does not depend on n. Indeed, let {h;}7,
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be orthonormal basis of Hy, then 9, = > {(J,,, h;>h;. Therefore,

MﬁnﬂmwmmﬂE[ﬁmZ@mMm>]
= D B[ kb, h)] = Y (B[O, hiyDa). hi)
= Z (Cy(hi), hi).
So, ¥ = (¥,,,n € Z) is a Hy-valued white noise. ]

Remark 5.2.2. In the vector-valued case (n-dimensional or infinite-
dimensional) we can always consider autoregressive processes of order 1 without
loss of generality. Recall that for a Hilbert space H and a constant p e N H?
is the product of Hilbert spaces

HOH..®H

p

with scalar product
{z1, @, ), (Y, Y2, Y ge = 1, Y1) H + T2, Y2 + - . + {Zp, Yp)H .
Suppose that X; € ARH (p):
Xe =X+ X0+ +AX, + W
Then we can define a new process )/(\t putting
X, = (X, Xio1, oo, Xoepi1)s
A Ay Ay A

I 0 ... 0 0
A=

o 0 ... I O/
So, ﬁ\/t = (W;,0,...,0) is H® H...® H = HP-valued white noise by

P
Lemma 5.2.1, and X; = A X, 1 + W; is ARHP(1).
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By the previous remark, all the results concerning ARH (p) processes can
be obtained from result, concerning ARH (1), with H suitable Hilbert space
(namely, H = HP). For this reason we are going to formulate our results for

autoregressive processes of order 1.

Theorem 5.2.3. Let Hy; and Hs be two Hilbert spaces and T € L(Hy, Hs).
Consider a zero-mean ARH1(1) process X = (X,,n € Z) with values in Hy,
satisfying, for all n € Z, the equation

Xn = p(Xﬂ—l) + En,
where p € L(Hy) denotes the autocorrelation operator of the process X . Let
Y, = T(Xy). Then the following are equivalent:

I. There exists ¥ € L(Hs) such that
Tp =19T on span{X,}. (5.2.1)

I'Y = (Yy,neZ)is an ARHy(1) and Yy = 9Y; 1 + &, v € L(H»).

Proof. The following sequence of equality shows that condition (5.2.1) is suffi-
cient for (I7):

Vi =T(Xy) =TpXiq1 + Tey
=9TX,_1+Te
=0Y; 1 + &,
where & = Te; is a zero-mean white noise according to Lemma 5.2.1 and
v € L(H>) is the autocorrelation operator of process Y.

Conversely, if Y; has the representation Y; = 9Y; 1 + &, therefore 9T X, 1+
& =TpXi 1+ Tey, so (5.2.1) holds. []

Remark 5.2.4. Notice that necessary condition for equation (5.2.1) to be true
is that for any x € ker(T') nspan{ X, } = p(z) € ker(T). It means that ker(T") n

span{X,} is an invariant subspace of p restricted on subspace span{X,}.

In the case that the operator T is invertible, obviously, condition (5.2.1)

holds with ¥ := TpT~!. For operators that are not invertible, various types
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of generalized inverses exist in the literature. Before introducing the concept
of pseudo-inverse operator, we briefly recall some basic facts concerning the
orthogonal projection of a Hilbert space onto a closed subset.

Recall that the operator P € L(H, H) is called a projector onto Hc H
if P(H) ¢ H and Pz = x for all x € H. An element h € H is said to be
orthogonal to the subset X < H if h is orthogonal to all the elements of X.
The set of all elements orthogonal to the subset X is called the orthogonal
complement to X and is denoted by X*. It is known fact that, if X is a closed
linear subspace of the Hilbert space H, then H decomposes into the direct sum
of the subspaces X and X*. Since H = X @ X*, there exists a bounded
projector P onto the subspace X with ker P = X*. The orthogonal projection
onto a closed subspace M < H is the bounded linear operator P : H — H
such that for each x = m +m/ e H (m € M,m' e M*), P(z) = m. A
projector P € L(H) is an orthogonal projector if and only if P is a self-adjoint
operator [36, Section 12.2].

Definition 5.2.5. Let H;, Hy be Hilbert spaces, and suppose that T €
L(Hy, Hs). The pseudo-inverse of T' (if it exist) is an element 7" € L(Hsy, Hy)
such that
TT x = x for x € range(T);
ker(T") = range(T)*;
range(T") = ker(T)*.
It turns out that, in contrast to the finite dimensional setting, not every

continuous linear operator has a continuous linear pseudo-inverse in this sense.

Those that do are precisely the ones whose range is closed in Hs |33, Theorem

2.4].
Example 5.2.6. Consider the operator
A =diag(1,1/2,1/3,...) € L({2).

We can see that range(A) = {y € £y : >.,”,i%*y? < oo} is not closed in /s,
as the limit point (1,1/2,1/3,...) ¢ range(A). So, there is no pseudo-inverse
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of the operator A. Indeed, the only possible candidate would be the operator
B = diag(1,2,3,...), which is unbounded.

We collect some properties of TF and its relationship to 7' [20].

Proposition 5.2.7. Let Hy, Hy be Hilbert spaces, and T € L(H;y, Hy) have
closed range. Then the following holds:

1. TT™ is the orthogonal projection of Hy onto range(T).
2. T*T is the orthogonal projection of Hy onto range(T™).
3. T* has closed range, and (T*)" = (T™")*.
4. On range(T) the operator T is given explicitly by

T =T*(TT*)~ "
5. T satisfies to Moore-Penrose equations

TT*T =T, TYTT*=T% (TT*)*=TT" (T*T) =T"T.
(5.2.2)

Remark 5.2.8. For the finite dimensional case, it has been shown [53] that if
the four equations (5.2.2) are considered as equations for the unknown matrix
T, then these equations have a unique solution which is called the Moore-
Penrose inverse. The pseudo-inverse defined in Definition 5.2.5 is therefore an

extension of the Moore-Penrose inverse in Hilbert space.
From Proposition 5.2.7 and Theorem 5.2.3 we obtain the following result.

Corollary 5.2.9. Let T : Hy — Hy be a linear continuous operator between
two Hilbert spaces with closed range in Hy. Consider a zero-mean ARH(1)
process X = (Xp,,n € Z) with values in Hy, satisfying, for all n € Z, the
equation

Xn = p(Xn—l) + 8%7

where p € L(Hy). Let ker(T) be an invariant subspace of p (i.e. p(ker(T)) <
ker(T)).
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Then Y, = T(X,) is an ARH5(1) with values in Ry, and the process Yy,

has the representation:
Y, = 9Y,_1 + Te, with ¥ := TpT*(TT*)".

Proof. Let us denote H := range(T). Y, = T'(X,,) has values in H ¢ Hy. Let
us define ¥ = TpT*(TT*)~' € L(H), which is exactly TpT* on H.
T*T is the orthogonal projection of Hy onto range(7"). Since
Hy = range(T") (P (range(T"))" = range(T") P ker(T),

we can write any x € Hy as ¢ = y + z with y € range(7T™") and z € ker(T).
Then

9T (y) = TpT"T(y) = Tpl(y) = Tp(y)
VT (z) =0 and Tp(z) =0, as p(ker(T)) < ker(T)).

So, as Tp = 9T, according to Theorem 523, Y = (Y,,n € Z) is an
ARH5(1). O

5.3 Linear transformation of VAR(1) processes

Now we are going to reformulate the necessary and sufficient condition in

Theorem 5.2.3 for the case H; = R" and Hy = R™.

Theorem 5.3.1. Let X; be an n-dimensional AR(1) process with the repre-
sentation

Xt = AXt_l + Wt,

T :R" - R™ be linear transformation and Y; = T(X;). Then the following

are equivalent:

I. There exists a (m x m) matriz B such that

BT =TA.

I'Y = (Y,,n € Z) is an m-dimensional AR(1) and Yy = BY;_1 + Z;, where

Zy = TW, is a zero-mean white noise vector process.
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Remark 5.3.2. If T has linearly independent rows, then B = T AT, where

T+ =TT(TTT)™! is the Moore-Penrose inverse of T' (see Definition ??), and
Y, =BY,_1+ Z.

Corollary 5.3.3. Let X; be an n-dimensional AR(p) process with the repre-
sentation
Xe=A X0+ AXe o+ +AX, + W,

and T : R" — R™ be a linear transformation.
Then Yy = T(Xy) is an m-dimensional AR(p) if and only if there ezist

(m x m) matrices B; such that
BT =TA; foralli=1,...,p. (5.3.1)

Moreover, if T has linearly independent rows, the process Y; has the repre-

sentation:
Y, =TATY, 1+ TAT Y, 9o+ ...+ TATY, , + TW, (5.3.2)
where T is the Moore-Penrose inverse of T.

Proof. The statement can be deduced from Remark 5.2.2 and Theorem 5.3.1,
but the easiest way to obtain this result is the straightforward proof. Indeed,
the following sequence of equality shows that condition (5.3.1) is necessary and
sufficient:
Y, =T(Xy) =TAX;1 +TA Xy o+ ...+ TAX, , + TW;

=B\TX, 1 +BTXy o+ ...+ BTX, , +TW,

=BY, 1+ BY, o+ ...+ Bth_p + Zi,
where Z; = TW, is a zero-mean white noise vector process. So, Y; is an m-
dimensional AR(p) process. If the rows of T are linearly independent, the
Moore-Penrose inverse of 1" can be expressed as

T+ _ TT(TTT>_1

so that TT* = I, and, therefore, B; = TA;T™, so, the process Y; has the
representation (5.3.2). O
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Now we are going to apply this result for the model of Ziel and Steinert in
order to guarantee that the transformation of the initial process belongs to the
class of autoregressive processes. For any matrix A let R7 denote its i-th row
and let C’f‘ denote its j-th column.

In the model of Ziel and Steinert we start from the stochastic processes with

values in R”, which represents the information about the whole supply curve:

Var = (Vsi(p1), Vsa(p2), - - Vau(pw)),
and then we define the modified process with values in R™
Xsi = (Xsui(cr), Xsu(ca), ...y Xsulenr)),
such that
Xsi=Ts(Vsy)

where Tg is an (m x n) matrix (m < n) with columns

Ts _ Ts _ Is - _ ATs
Ck571 - Cksfl"_l — Ok571+2 — ... — Cks — 657 ]_ < S < m
where 0 = ko < k1 < ky < ... < ky, = n and {e,es,..., €5} is the standard

basis of R™, i.e.

(1 ...10...00..00..0)
k
0 0 1 10 ...00 0
—_——
ko—k1
Tg=| : : (5.3.3)

0 0 0 0 1 10 0

—_——

km—1—Km—o
0..00..00..01.. 1
\ v

The authors in [75] introduced X éc,Zi,h as the bid supply volume process of

price class ¢ € Cg, and Xl()c)d , as the bid demand volume process of price class
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c € Cp at day d and hour h. Also they introduced the additional processes de-
noted by Xpm’ce,d,t; Xvolume,d,t; Xgeneration,d,ta Xwind,d,ta Xsolar,d,t that represent the
additional information that is available at the time where the auction will take

place. For modeling the weekday impact they defined the weekday indicators

k
Wi(d) =
k

-

where W (d) is a function that gives a number that corresponds to the weekday
of day d (without loss of generality, let & = 1 for a Monday, for a Tuesday
k =2 up to k = 7 for a Sunday).

To fully present the considered time series model, the object

Xan = (Xvran, Xodhy - Xnran) = ((Xéle’h)ceCsa (Xg,)dﬁ)cecw

Xprice,d,h7 Xvolume,d,h7 Xgeneration,d+1,ha Xwind,d+1,ha Xsolar,d+1,h)

was introduced. As the number of price classes for the supply side is Mg = 16
and the number of price classes for the demand side is Mp = 16, therefore, the
dimension of Xgj is M = Mg+ Mp + 5 = 37.

Then for each hour A the considered time series model of zero-mean process
Yan = Xapn — E(Xan) = Yian, Yoan, - Yaran)-

The considered time series model for Y, 45 for each hour h and m e
{1,..., Mg+ Mp} is given by

M 24

Yian =20, D, GmnijuYidrj + Z Uk Wi(d) + eman  (5.3.4)

I= 1.7 lkEImh l7.])
with the side constraint 0 = > vy, xWi(d), with parameters ¢, 5, and
Yk as lag sets of lags and €, 45 as error term. We assume that the error
process €p, 4.5 is 1.1.d. with constant variance 07271 ,- The introduced parameters

ﬁbm,h,l,j,kydl—k, ; model the linear autoregressive impact and ¢, 5, the day of the
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week effect. Lag sets ¢ are defined as follow:

r

{1,2,...,36}, m=Iland h=j
Inn=191{1,2,...,8}, (m=1I1andh# j)or (m#1andh = j)

{1}, m#land h #j

\

Thus, the process Y;, 4 of price class m at day d and hour h can depend
on the values of the past 36 days of price class m at hour A, it is only allowed
to depend on the value of another process at another hour one with a maxi-
mum lag of 1, and in all other cases a maximum lag of eight is possible. The
considered model is basically a simple regression approach model. In order to
rewrite (5.3.4) as autoregressive model of order 1 we can define vector of larger

dimension, namely M x 24 x 35 := M,

Yg = ((Yz’,d,h);zl ..... My (Yia-vn)i=t,ns s (Yia-ssn)i 1,...,M) :
j

Then

7
Yo =®Ye1 + ), UWi(d) + e, (5.3.5)
k=2

with parameters ®4, ¥, € RM! as lag sets of lags and £4 € RM' as error term.

Example 5.3.4. Let us calculate the Moore-Penrose inverse of the (m x n)

matrix 7" given by (5.3.3).
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1
(klko 0 0 ... 0 0 )
10 0 ......... 0 0
klkro
0 &= 0 0 0
T"=1 0 = 0 ... 0 0 :
1
O 0 0 ......... Om
1
\0 o 0 ... 0

i.e. the j-th column of 7% has exactly k; —k;_1 non-zero elements, all equals to
W It is straightforward to check that 7T is the (m x m) identity matrix

and 77T is self-adjoint, so T'" satisfies Definition ?7.

Now we want to formulate a result, which gives sufficient and necessary
condition for the specific operator which appears in the model of Ziel and

Steinert.
Proposition 5.3.5. Let T' be an (m x n), matriz (m < n) with columns
Clz;l :CIZ;H :Cli,lwz ZC/Z; =e5, l<s<sm

where 0 = ko < ky < ky < ... < ky, = n and {ey,es, ... ey} is the standard

basis of R™, i.e. T is as in (5.3.3). Let A = {aij}?j_l be an (n x n) matriz.

Then there exists a (m x m) matriv B = {b;}{"_; such that

BT =TA,
if and only if the following condition holds: for every index 1 < d < m,
whenever j and | are such that ky_1 +1 < j <k, and k,_1 +1 <1 <k, for

some 1 < p < m, then
ka ka



Moreover, in this case

l=k;_1+1
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Proof. The proof is straightforward. From the expressions

(b oo by b ... bi
—_———
ky
b21 s b?l 622 b22
ko—k1
bml bml bm2 bml
]4;1 kl
( it ain it Gin
k k
TA= Diin Ziiklﬂ @i2

i=k1+1 Qi1

we obtain that (5.3.6) holds.

Fem e ,
K Zi:km,ﬁ—l i1 Zi:km,ﬁl @i2

blm

b2m

S k1 @
i=k1+1

Sk v )
i=ky,_1+1 din

Conversely, suppose now that A satisfies (5.3.6). Then we can define the

matrix B = {b;;}"_; as follows:

bij = Z ag,

in order to have BT = T A.

I=k;_1+1

[

Remark 5.3.6. In particular, this condition holds if the first k1 columns of

A are the same, the following ko — k1 are the same, and so on, until the last

ky, — k-1 columns. However, Proposition 5.3.5 gives slightly weaker condition,
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as the following example shows:

1 01

110
T = A=1011
001

111

Evidently, A satisfies (5.3.6), although the first two columns of A are not the

same, and B is obtained as b;; = 1,b19 = 2,by1 = 1,b99 = 1.

5.4 An infinite-dimensional formulation of Ziel-Steinert’s X-model

The supply and demand curves are characterized by

p) = Z Vsi(x) and Dy(p Z Vp(z) for p e P.

zeP zeP
T<p T=p

Here t = (d, h), where d denotes day and h denotes hour. Assume that

p 3000
San(p) = f san(z)dz for pe P and Dgy(p) = f dan(z)dz for p e P,

500 p
(5.4.1)
where sqp,dgn € L*([—500,3000]). Then we can state that the processes
San, Dap take values in the Hilbert space H'([—500,3000]). Recall that
H*([-500, 3000]) consists of f € L*([—500,3000]) whose distributional deriva-
tive f’ lies in L?*([—500, 3000]) and has the inner product

<f7 g>H1 = <f7 g>L2 + <f/7 g/>L2 :

From the general theory of Sobolev spaces we know that H'([-500, 3000]) <
C([—500,3000]) and it is a reproducing kernel Hilbert space (see Example
3.5.7). Recall that the following model was proposed in |15]

zp] )+ enl(t), (5.4.2)

where o (+) are continuous functions in [0, 1] and €, is a strong C([0, 1])-valued
white noise pointwisely uncorrelated with X,,. That is, all the curves depend

on the same set of points regardless of the index n.
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Now let us make a connection between the model described in (5.4.2) and

the model of Ziel and Steinert.

Theorem 5.4.1. Suppose that H is RKHS consisting of functions f : [a,b] —
R, the points t1,ta,...,t, € [a,b] are fived, and the functions oy, q, ..., qp €
Cla,b] are fived. Let X = (X,,,n € Z) be a zero-mean ARH(1) process, satis-
fying, for all n € Z, the equation

Xn = p(Xn71> + €n,

where
p

p(H)() = D ai()f(ty),

j=1
and € = (e,,n € Z) is a H-valued white noise. Let T : H — RP be the linear

continuous operator defined as

T(f) = (f(tl)?f(tQ)v . '>f(tp))'

Then the process Y, = T(X,),n € Z is VAR(1) with values in RP and
dynamics
Y, =0Y, 1+ T(e,), where

ai(t) as(ty) ... op(ts)
V= : :
ap(tr) op(ta) .. aplty)
Proof. According to Theorem 5.2.3 the process Y = (Y,,n € Z) is auto-
regressive if and only if there exists a linear continuous operator v : RP — RP
such that
Tp=9T. (5.4.3)

This condition holds for the operator ¢ such that for every (by,...,b,) € R?

b

p p
19(()1, b2, ceey bp) = ( ij(tl)bj, 2 Oéj(tQ)bj, ceey Z Oéj(tp)bj> .
j=1 = j=1

j=1
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Indeed, for any f e H

= Zocj(tl)f(tj),...,.

= I(f (), .., [ (1) = I(T]) = WT)(S).

Evidently, ¢ is a linear continuous operator with ||| = max |20 ay(t)]. O
i=1,....p

Q) (tp)f(tj)>

1

Example 5.4.2. Consider H = L*(X,u), where X be a discrete set of
points {z;} < [0,1] and the measure p = > d,. Suppose that a finite
X = {t1,ts,... ,tpy} < X is fixed. Let T': H — RP be a linear continuous

operator such that
T(f) = (f(tl)a f(t2)7 S f(tp))

Then the pseudo-inverse of T" is given by

T (Y1, 92 ¥p) = 1 lpyy + 2l + o+ yply ).

Indeed, TT" = I on RP; range(T) = RP, ker(T") = {0}, so ker(T") =
range(T)* and range(T*) = ker(T)* = {f : flx/x =0}

Example 5.4.3. Consider the Sobolev space H'[0, M] consisting of absolutely
continuous functions f : [0, M| — R whose derivative lies in L?[0, M| with the

inner product

Sopm =P+
Recall that f(x) = {f(:), K(x,-)) for any x € [0, M], and the kernel func-
tion K : [0, M] x [0, M] — R (see Example 3.5.7) is given by

cosh(xz— M) cosh(y)

_ sinh (M)
K(z,y) cosh(z) cosh(y—M)  s¢
sinh(M) :

T
Suppose that a finite set {t1,ts,...,t,} < [0, M] is fixed. Consider the

ifr<y

= 1.

same operator 7' : H — R? such that

T(f) - (f(tl)a f(t2)7 . 7f(tp))
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We have range(T) = RP, so the pseudo-inverse of T exists. Let us find 7.

First, notice that the adjoint operator is given by

T (1,925 yp) = K (L, ) + 12K (ta, ) + ... + 4y, K(tp, ).

Then

TJr(yla Y2 ..., yp) = T*(TT*)il(yla Y2 ... nyp)
= 20 K(t1, ) + 20K (ta,) + ... + 2,K(tp, ),
where z = C'y and C' is the inverse matrix of
K(t1,t1) K(ti1,t2) ... K(ti,tp)
TT* — . .
K(tpatl) K(tpat2) K(tpatp)

Now consider the processes Sgp, Dgj defined in (5.4.1) with values in the
Hilbert space H'([—500,3000]). In order to define an auto-regressive model
of order 1, similarly to (5.3.5), we need to consider elements of "biggest" di-

mension, namely,

which takes values in the product space (H'([—500, 3000]))
Let us now extend Theorem 5.4.1 for the case when stochastic processes

takes values in a product space.

Theorem 5.4.4. Suppose that H is a Hilbert space consisting of functions
[ a,b] - R, HM is a product space, ti,ts,...,t, € [a,b] are fived, and

.....

j=1,....M
zero-mean ARH™M (1) process, satisfying, for all d € Z, the equation

Xyg= P(Xd—l) + €4,
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where € = (eq4,d € Z) is a HM -valued white noise, p € L(HM), and for any

(fi,. .., fu) € HM jth coordinate of p(fi,. .., fur) is
P
gi() = 2l () filta).
i=1
Let T : HM — (RPYM be a linear continuous operator such that

T(fr--s fa) = ((uE))imreps (F2(8i))imtips - -+ (ar (i) )im1,.p)-
Then the process Yq = T(Xy),d € Z is an AR(1) with values in (RP)M.

Proof. In order to prove the statement, according to Theorem 5.2.3, we need
to show that there exist a linear continuous operator 9 : (R?)M — (R?)M such
that

Tp=9T. (5.4.4)

This condition holds for the operator ¢ such that for every b =

=1,... =1,...

Indeed, for any (fi,..., fur) € HY

(Tp)(frse- s fu) =T (Z a; () fiti), - .. ,ZO&ZM(-)JCM(Q)>
i=1 i=1
= <Z azl(tk)fl (tl>> DI (Z aiw(tk)fM(tl)>
i=1 k=1,..p i=1 k=1,...p
= V((f1(ti))i=1,.ps - (far(ti))i=1,.p) = WOT)(f1, -5 fur)
Evidently, 9 is linear continuous operator with |¢| = max 1>, ol (1), so
j=L

Y = (Y, de Z) is AR(1). O



Conclusion and further research

The liberalization of electricity sector introduced a new field of research.
Accurate modeling and forecasting of different variables related to the mar-
ket e.g. prices, demand, production etc. became more crucial due to market
structure. Thus, accurate forecasting is very important issue for an efficient
management of power grid. In the past, various techniques have been devel-
oped both for price and demand prediction with different levels of complexity
and final performance. This thesis addressed the issue of forecasting electricity
demand and prices following to a relatively new modeling technique based on
functional data analysis. The main results are presented in Chapters 4 and 5.

Chapter 4 focused on the parsimonious way for representing supply and
demand curves, using a mesh-free method based on radial basis functions. The
real data about supply and demand bids from the Italian day-ahead electricity
market showed that there is no direct relationship between the number of offer
and bid layers and the hour of the day, the day of the week, and the time of
the year. Based on this observation, we decided to choose the same number of
basis functions independently of these three seasonality modes. The numerical
results showed that the accuracy of our approximation is good enough, if we
use 5 basis function for the demand curve and 10 basis function for the supply
curve, and then the increase in the number of functions leads to more time-
consumption, but the increase of the accuracy is less significant.

We also tested this new approach with the aim of forecasting supply and
demand curves and finding the intersection of the predicted curves in order to
obtain the market clearing price. In assess the goodness of our method, we

compared it with models with similar complexity in terms of dependence of the
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past, but only based on the clearing price. Our forecasting errors are smaller
compared with these univariate models. In particular, our analyses show that
our multivariate approach leads to better results than the univariate one in
terms of error measures like MAE, MAPE and RMSE.

In Chapter 5 we considered supply and demand curves as stochastic pro-
cesses with values in a functional space. We obtained a characterization result
regarding the conditions that guarantees that a linear transformation of a vec-
tor AR process is again an AR process both in finite and in infinite dimension,
and we applied these results to the model of Ziel and Steinert from |75].

We also found out that the model of Ziel and Steinert is a particular
case of the model proposed in paper [15|. In particular, in [75] the authors
applied a simple dimension reduction procedure to the price formation pro-
cess that is computational manageable. It means that for the prediction of
Tp11(+) the whole curves x,,(+) is replaced with the p most relevant evaluations
Tp(t1), xn(te), ..., x,(ty). The problem of the selection of the most relevant
points ti,ts,...,t, < [0, 1] is commonly known as variable selection problem.
In [15] the authors showed how to find relevant points of the curves in terms
of prediction accuracy. Applying the algorithm proposed in [15], we made an
observation that the point used by Ziel and Steinert are not optimal in this
sense (see Figure 5.4). So, one of the possibility for further research could be
to add the optimal choice of the points into approach proposed by Ziel and

Steinert.
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Appendix A: Matlab Code
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1 % Task I: CURVES APPROXIMATION

3 %create array of day between some dates

4 tic;

5 dl=datenum('2017-01-01","'yyyy-mm-dd"');

6 d2=datenum('2017-01-01",'yyyy-mm-dd");

7 d=d1:d2;

s quant_of days=length(d);

9 s = [num2str (M _supply),' and ',num2str(M_demand) |;
10 %approximate up to this price

11 % create columns for results

12 Eq_price_array=zeros (quant of daysx24,1);

13 Eq quant array=zeros(quant of daysx24,1);

14 Eq_ price_approx=zeros (quant of daysx24,1);

15 Eq_ quant_ approx=zeros (quant of daysx24,1);

16 Error price array=zeros(quant_ of days«24,1);
17 Error quantity array=zeros(quant of daysx24,1);
15 Hour name = zeros(quant of daysx24,1,'int8");
19 Date name = strings (quant of daysx24,1);

20 R=strings (quant of daysx24,1);

21 % create tables for statistics of coeffitient
22 Supply coeff = zeros(24«length(d), M_supply);
23 Demand coeff = zeros(24«length(d), M_demand);
24 counter=0;

25 for k=1:length(d)% cycle for each day of the year

26 filenamel = ['C:\ Users\maria\Work\Energy market\Matlab\2017 Offers and ...

Bids\',datestr (d(k),'yyyy-mm-dd'),'-OFF.txt"];

27 filename2 = ['C:\ Users\maria\Work\Energy market\Matlab\2017 Offers and ...

Bids\',datestr (d(k),'yyyy-mm-dd'),'-BID.txt"'];
28 datestr (d(k),'yyyy-mm-dd")
29 T _OFFERS = readtable (filenamel);
30 T BIDS = readtable (filename2);

31 for hour =1 : 1 : 24 % cycle for each hour of the day
32 numer row=24xcounter+hour;

33 %1 .read the information about this hour to pOff,pBid, qOff, gBid
34 indexes=find (T_BIDS.Hour—hour) ;

35 pBid=zeros (length (indexes) ,1);

36 gBid=zeros (length (indexes) ,1);

37 for j=1l:length(indexes)

38 pBid (j)=T _ BIDS.Price(indexes(j));

39 gBid (j)=T_ BIDS.Quantity (indexes(j));

40 end

41 indexes=find (T _OFFERS.Hour=hour) ;

42 qOff=zeros (length (indexes) ,1);

43 pOff=zeros (length (indexes) ,1);

44 for j=1l:length(indexes)

45 pOff(j)=T OFFERS.Price(indexes(j));

46 qOff(j)=T_ OFFERS.Quantity (indexes (j));

a7 end

48 Max price=400;%pOff(length (pOff))

49 %2 .calculate equilibrium price and quantity

50 [P_eq, Q _eq] = Equilibrium (pOff,pBid, qOff,gBid);
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%3.approximation of supply curve
Matrix coeff supply = Approx coeff(pOff,qOff ,M supply,Max price);
%4 .approximation of demand curve
pBid2=zeros (length (pBid)+1,1);
qBid2=zeros (length (gBid)+1,1);
pBid2(1)=0;
for j=2:length (pBid2)
pBid2(j)=pBid (j-1);
qBid2(j)=qBid(j-1);
end
qBid2 (1)=abs (sum(gBid) -sum(qOff) ) ;
Matrix coeff demand = Approx _coeff(pBid2,qBid2 ,M_demand, Max price) ;
%create functions as vectors
x=transpose (1:1:sum(qBid2));
Supply approx = zeros (length(x) ,1);
for n = 1:M_supply
Supply coeff(24+countert+hour ,n)=Matrix coeff supply(n,1);
Supply approx=Supply approx+Matrix coeff supply(n,1)«(erf((x-Matrix coeff supply
end
Demand approx = zeros (length(x),1);
for n = 1:M_demand
Demand coeff(24+ counter+hour ,n)=Matrix coeff demand(n,1);
Demand _approx=Demand_approx+Matrix coeff demand(n,1) «(erf ((x-Matrix_ coeff deman
end
Demand _approx = flipud (Demand approx) ;
for n = 2:(length (qOff))
qOff(n) = qOff(n)+qOff(n-1);
end
fOff=zeros(length(x),1);
i=1
i=1;
while (i<length(x)

) && (j<length (qOff))
while (i<length (
j

x)) && (x(i)<qOff(j))
fOff (i)=pOff(j);
i=it1;
end
=i+

end
pBid = flipud (pBid);
qBid = flipud (gBid);
for n = 2:(length(gBid))
qBid (n) = gBid(n)+qBid(n-1);
end
fBid=zeros (length (x) ,1);
i=L
i=1;
while (i<length(x)) && (j<length (gBid))
while (i<length(x)) && (x(i)<qBid(j))
fBid (i)=pBid(j);
i=i41;
end
=i+l
end
[M, I|=min (abs (fOff - {Bid));
P eq=1/2«(fOff(I)+fBid(1I));
Q_eq=1;

%5.intersection of approximated curves

y(n,2))/M

(n,2))/M
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[A,Ind]=min(abs (Supply approx-Demand approx));
P approx=1/2x(Supply approx(Ind)+Demand approx(Ind));
Q_approx=x(Ind);
%graphic of results
figurel = figure;
axesl = axes('Parent', figurel);
hold (axesl,'all');
xlabel (' Volume (MWh) ")
ylabel (' Price (P,/MWh)")
plot (x, fOff,'g' ,x,fBid,'r','linewidth',1.5)
plot (x,Supply approx,'r','linewidth',1.5); hold on;
plot (x,Demand approx,'b','linewidth',1.5); hold on;
axis ([0 60000 0 3500]);
Y%write results in row of the table
Eq_price array(numer row)=P eq;
Eq_quant array(numer row)=Q eq;
Eq price approx(numer row)=P approx;
Eq quant approx(numer row)=Q approx;
Error price array(numer row)=abs (P _approx-P_eq);
Error quantity array(numer row)=abs(Q_approx-Q eq);
Hour name(numer row)=hour;
Date name(numer row)=datestr (d(k),'yyyy-mm-dd');
end %end cycle for each hour of the day
counter=counter+1;
end
time=toc;
Max _error=max(Error price array);
Mean error = mean(Error price array);
R(1)=["time ' ,num?2str (time) ,' sec.'];
R(2)=['max er ', num2str (Max_error) |;
R(3)=['mean er = ', num2str(Mean error) |;
Table results = ..
table (Date _name,Hour name,Eq price array,Eq quant array,Eq price approx,Eq quant_ appr
namefile=['Expiriment with ' s, .xlsx"'];
writetable (Table results,namefile);
%for statistics
TablelCoeffDemand = table (Demand coeff) ;
namefile=[' Coeffitients for demand with ',s,' functions.xlsx"'];
writetable (TablelCoeffDemand , namefile);
TablelCoeffSupply = table(Supply coeff);
namefile=[' Coeffitients for supply with ',s,' functions.xlsx"'];

writetable (TablelCoeffSupply , namefile);

close all
Y%FUNCTIONS
function [outputl,output2] = Equilibrium (pOff,pBid, qOff, gqBid)
pBid = flipud (pBid) ;%bids need to be sort from
qBid = flipud (gBid) ;%the biggest price to the least
qBid2=zeros (length (gBid) ,1);
qBid2 (1)=gBid (1) ;
for j=2:length (qBid)
qBid2(j)—qBid (j)+qBid2(j-1);
end
qOff2=zeros (length (qOff) ,1);
qOff2 (1)=qOff(1);
for j=2:length (qOff)
qOf2 (j)=qOFE(j)+qOtf2 (j-1) ;

x, Error_j
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end
p_between supl dem=pBid(1)-pOff(1);
=1
while p_ between supl dem > 0
=it
g=qBid2(j);
i=1;
while gq>qOff2 (i)
i=i 1
end
p_between supl dem=pBid(j)-pOff(i);
end
if p between supl dem < 0
Q_eq=qBid2(j-1);
P eq=pOff(i);
end
if p between supl dem =— 0
Q_eq=qBid2(j);
P _eq=pOff(i);
end
outputl=P_eq;
output2=Q eq;
end

function [outputl]| = Approx coeff(price,quant,M supply,Max price)
[p,a] = Simplier data(price ,quant,Max price);%to make less data
q99—=9;
for n = 2:length(qq)
qq(n) = qq(n)+qq(n-1);
end
M=M _supply;
Q=qq(length(qq)) ;% amount of electicity

%| Matrix coeff, time, price array|=datainterpolation (M,p,q);

an_matr=zeros (4 ,M+1);
%1 - price, 2 - amount of this price
%3 - where this price finishes 4 - number of jumps before this price
an_matr (1, M+1)=p(length(p));
an_matr (3, M+1)=qq(length(qq));
an_matr (2, M+1)=q(length(q));
an_matr (4 ,M+1)=1;% to count first and last price
an_matr(4,1)=1;
i=1;
for num = 0:M-1

Price jump=an_ matr (1 ,M-num+1)/(M-num) ;

3=0;

while (i<length(p)) && (p(length(p)-i)>an matr (1l ,M-num+1)-Price jump)

i=it1;
=i+l

end

an_matr(1,M-num)=p(length(p)-i);

an_matr (2, M-num)=q(length(q)-i);

an_matr (3, M-num)=qq(length(q)-i);

an_matr (4 ,M-num+1)=an_matr (4 ,M-num+1)+j ;
end
Matrix coeff = zeros(M,3);
for i = 1:M
Pl=an matr(1,i);
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P2=an matr(1,i+1);
J=an matr(4,i+1);
center=an_matr (3, i);
if J =1
Matrix coeff(i,:)=[(P2-P1)/2,center ,0.5];

end

if J>1
h=4;
[datax ,dataf ,center]=onestepdata (P1,P2,h,p,q);
al=(P2-P1) /2;
a2=center;
a3=1,/3000;
a4=P1;
z0 = [a2 a3];
F = Q(z,zdata)al«(erf(z(2)«(datax-hxz(1)))+1)+ad;
[z,resnorm ,—,exitflag ,output] = lsqcurvefit (F,z0,datax,dataf);%optimization
Matrix coeff(i,:)=[al,hxz(1),1/2z(2)];
end
end
outputl=Matrix coeff;
end
function [outputl, output2] = Simplier data(pOff,qOff,Max price)
ql=qOff;
pl=min(round (pOff) ,Max price);
m=1;% m is a number of different prices
for i=2:length(pl)
if (pl(i)#pl(i-1))

m=m+1;

end

end

p = zeros(m,1);

q = zeros(m,1);

k=1;

for i=1mm
p(i)=pl(k);
q(i)=al(k);
k=k+1;

while (k<length(pl)) && (pl(k)=—pl(k-1))
a(i)=a(i)+al(k);

k=k+1;
end
end
q(length (q))=min(q(length(q)),10000);
outputl=p;
output2=q;

end
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% Task II: PRICE PREDICTION
%0One variavle forecast
filename = ['Eq_ quant2017.xlsx'];%with weekday dummy
MAPE=zeros (24,1);
MAE=zeros (24,1);
RMSE=zeros (24,1) ;
for hour=1:1:24
Table = readtable (filename);
data=table2array (Table(:,hour));
data O=data (1:304);
E=zeros(7,1);% 1 - sunday, 2 - monday, ... 7 - saturday
for day=1:1:7
i=day ; %first day - Sunday
count =0;
while i < (304+1)
E(day)=E(day)+data_0(i,:);
i=i+7
count=count+1;
end
E(day)=E(day)/count;
end
% make E=0
for day=1:1:7
i=day ; %first day - Sunday
while i < (304+1)
data_ 0(i)=data_ 0(i)-E(day);
i=i+7;
end
end
Mdl = arima(1,0,0);
EstMdl = estimate (Mdl,data_0(1:304));
Coef ar=cell2mat (EstMdl.AR) ;
constant = EstMdl.Constant ;
Result=zeros (61,1);
Error=zeros (61,1);

Error percent=zeros(61,1);
)7

Date_name = strings (61,1
D = datetime(2017,11,30);
for i=1:1:61
Past=data(303+1) -E(weekday (D+i-1));
Forecast=EstMdl.Constant+Coef ar+Past+E(weekday (D+i));
error=abs(data(304+1i)-Forecast);
Result (i)=Forecast;
Error(i)=error;
Error percent (i)=Error(i)«100/data(304+1);
Date name(i)=datestr (D+i, 'yyyy-mm-dd');

end

Table results = table (Date name, data(305:365) ,Result , Error , Error percent);

namefile=['ForecastEq price 2month hour',int2str (hour),'.xlsx'];
writetable (Table results,namefile);

MAPE( hour )=mean ( Error percent);

RMSE( hour )=sqrt (mean( Error. ~2));

MAE( hour )=mean( Error) ;

end
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% Multivariable forecast

M _supply=10; %number of basis function 5,10,15,20

for hour=1:1:24

s = num2str (M _supply) ;

namefile=['Supply coeff with ',s,'functions Hour',int2str (hour),'.xlsx'];
%Table = readtable('Supply coeff with 5functions Hourl2.xlsx ');
Table = readtable (namefile);

data centers=table2array (Table(: ,M supply+2:2«M _supply+1));
data prices=table2array (Table(:,2: M _ supply));

Yos

Mdl centers = varm(M _supply,7) ;

EstMdl centers = estimate(Mdl centers,data centers(1:334,:));
%2 Forecast

Result=zeros (31,2«M _supply) ;

Error=zeros (31,2M _supply) ;

Date _name = strings(31,1);

D = datetime(2017,12,01);

for 1i=1:1:31
%centers
Forecast centers=EstMdl centers.Constant;
for j=1:1:7
Past=transpose (data centers(334+i-j,:));
Forecast centers=Forecast centers+EstMdl centers.AR{j}xPast;
end
error=abs(data centers(334+i,:) -transpose (Forecast centers));
Result (i ,M_supply+1:2«M _supply)=transpose (Forecast centers);
Error(i,M_supply+1:2«M _supply)=error;
Date name(i)=datestr (D, 'yyyy-mm-dd');
Y%prices
Result (i ,M_supply)=350;
D=D+1;
end
%prices
for j=1:1:(M_supply-1)
data=data prices (:,j);
Mdl = arima(7,0,0);
EstMdl = estimate (Mdl,data(1:334));
Coef ar=cell2mat (EstMdl.AR) ;
constant = EstMdl.Constant;
for i=1:1:31
Past=[data(333+1);data(332+41i);data(331+1);data(33041);data(329+1i);data(328+41);data(327
Forecast=EstMdl.Constant+Coef arxPast;
error=abs(data(334+1i)-Forecast);
Result (i, j)=Forecast;
Error(i,j)=error;
end
end
Table results = table (Date name, Result , Error);
namefile=['Forecast Supply',s, 'fun Hour',int2str (hour),'.xlsx'];
writetable (Table results,namefile);

%for futher step

Table_results = table (Date_name, Result);

namefile=['Forecast CoefSupply',s, 'fun Hour',int2str (hour),'.xlsx'];
writetable (Table results,namefile);

end

PRICES=zeros (24x61,2) ;

+1) ];
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MAE=zeros (24,1);
RMSE=zeros (24,1) ;
MAPE=zeros (24,1) ;

M _supply=5;

for hour=1:1:24

s = num2str (M _supply) ;

namefile=['Supply coeff2 with ',s,'functions Hour',int2str (hour),'.xlsx'];
%Table = readtable('Supply coeff with 5functions Hourl2.xlsx ');

Table = readtable(namefile);

K=2+M supply;

data=zeros (365 ,K);

data (:,1:M_supply)=table2array (Table (: ,2: M _supply+1));

data (: ,M_supply+1:K)=table2array (Table(: ,M_ supply+2:K+1))/1000;

namefile=['Eq quant2017.xlsx"'|;

Table = readtable (namefile);

data (: ,K)=table2array (Table (:,hour))/1000;%the last center is the equilibrium quantity
of electricity

Mdl = varm(K,1) ;

EstMdl = estimate (Mdl,data (1:304,:));

Coef ar=cell2mat (EstMdl.AR) ;

constant = EstMdl.Constant ;

Result=zeros (61,1);

Error=zeros (61,1);

Error percent=zeros(61,1);
)

Date name = strings (61,1);

D = datetime(2017,11,01);
for i=1:1:61
Past=data(303+1i,:) ;
Forecast=EstMdl.Constant+Coef arxtranspose(Past);
Price = data(304+i, M _supply);
Result (i)=Forecast (M _supply);
Error(i)=abs(Result(i)-Price);
Error percent (i)=Error(i)«100/Price;
PRICES((i-1)*24+hour,1)=Price;
PRICES ((i-1)+24+hour,2)=Result(i);
Date name(i)=datestr (D, 'yyyy-mm-dd');
D=D+1;
end
Y%prediction of demand
for i=1:1:61
Past=data(303+i,:) ;
Forecast=EstMdl.Constant+Coef arxtranspose(Past);
Demand = data(304+i ,K)*1000;
Result (i)=Forecast (K) »1000;
Error (i)=abs(Result(i)-Demand) ;
Error percent (i)=Error(i)*100/Demand;
Date name(i)=datestr (D, 'yyyy-mm-dd');
D=D+1;
end
MAPE(hour )=mean( Error _percent);
RMSE( hour )=sqrt (mean( Error. ~2));
MAE( hour )=mean( Error) ;
Table results = table (Date name, data(305:365, M _supply) ,Result ,Error ,Error percent);
namefile=['Forecast two month Second method hour',int2str (hour),' with
",int2str (K),'parameters.xlsx'];
writetable (Table results,namefile);

end
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Appendix B: SQL Code
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27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

SET GLOBAL innodb_buffer pool_size=402653184;
USE electicity offer bid;

CREATE TABLE all offer bid (day VARCHAR(50), hour INT, quantity FLOAT, price FLOAT,
type VARCHAR(50));

LOAD DATA INFILE 'C:/ProgramData/MySQL/MySQL Server 8.0 /Uploads/all offers.txt' INTO ...
TABLE all offers FIELDS TERMINATED BY ';' LINES TERMINATED BY "\n'";

SELECT » FROM all offer bid;

SELECT hour, quantity , price FROM all offer bid WHERE day="2014-01-01" AND type LIKE ...
"Y%0FF%"

SELECT hour, quantity , price FROM all offer bid WHERE day="2014-01-01" AND type LIKE ...
"%BID%" ;

CREATE TABLE 2014-01-01-OFF AS SELECT hour, quantity , price FROM all offer bid WHERE ...
day="2014-01-01" AND type LIKE '%OFF%';

CREATE TABLE new table AS SELECT hour, quantity, price FROM all offer bid WHERE ...
day="2014-01-01" AND price < 1 AND type LIKE '7%0OFF%' AND hour=1;

SELECT » INTO OUTFILE 'C:/ProgramData/MySQL/MySQL Server 8.0/Uploads/name.xls' FIELDS ...
TERMINATED BY '\t' LINES TERMINATED BY '\n' FROM new table;

STR_TO_DATE(" August 10 2017", "9 %d %Y");

count number of rows

SELECT COUNT(x) FROM all bids2017;

SELECT COUNT(x) FROM all offers2017 WHERE daydate LIKE '2017-12%";
SELECT COUNT(x) FROM all bids2017 WHERE day LIKE '2017-12%";
string to date

SELECT STR_TO_DATE(2017-01-01, '%Y-%m%d') FROM all_offers2017;

declare @Qmy date datetime

set @Qmy date = '20170101"
while @my_date < '20171231"
begin

CREATE TABLE bid2018-02-05-BID AS SELECT day, hour, quantity, price FROM all bids
WHERE day LIKE '2013%"';
set @my date = dateadd(dd, 1, @Qmy date)

end

CREATE TABLE test (day DATE, hour INT, quantity FLOAT, price FLOAT);

LOAD DATA INFILE 'C:/ProgramData/MySQL/MySQL Server 8.0/Uploads/test.txt ' INTO TABLE ...
test FIELDS TERMINATED BY ';' LINES TERMINATED BY "\n'";

INSERT INTO test (day, hour, quantity, price) VALUES ('2017-01-01', 1,0,0);

INSERT INTO test (day, hour, quantity, price) VALUES (STR TO DATE(2017-01-01,
Y-%m%d ), 1,0,0);

declare @Qmy date datetime
set @my date = '20170101"
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while @my date < '20171231"

begin
INSERT INTO test (day, hour, quantity, price) VALUES ('2017-01-01', 1,0,0);;
set @my date = dateadd(dd, 1, @Qmy date)

end

delimiter #
create procedure cikll ()

begin

declare v_max int unsigned default 1000;

declare v_counter int unsigned default O;

truncate table foo;

start transaction;

while v_counter < v_max do
insert into foo (val) values ( floor (0 + (rand() * 65535)) );
set v_counter=v_counter+1;

end while;

commit ;

end #

delimiter ;

UPDATE all offers2017 SET day = str to date( day, '%Y-%m%d' );
CONVERT VARCHR TO DATE IN THE TABLE+t+

ALTER TABLE all offers2017 ADD COLUMN daydate DATE AFTER day ;

UPDATE all_offers2017 SET daydate = STR TO DATE( day, '%Y-%m%d');

SELECT % INTO OUTFILE 'C:/ProgramData/MySQL/MySQL Server
8.0/Uploads/all offers20172.txt"' FIELDS TERMINATED BY '\t' LINES TERMINATED BY ...
"\n' FROM all offers2017;

DESCRIBE all_offers2017;

ALTER TABLE all offers2017 DROP COLUMN day ;

SELECT 1 day

SELECT » FROM all offers2017 WHERE daydate='2017-01-01";

CREATE PROCEDURE

DELIMITER. //

DROP PROCEDURE IF EXISTS save day test//

CREATE PROCEDURE save day _test ()

BEGIN

DECLARE my date DATE DEFAULT '20170101";

WHILE my date < '20170103' DO

DECLARE my name VARCHAR(10) DEFAULT

DROP TEMPORARY TABLE IF EXISTS tmp deals;

CREATE TEMPORARY TABLE tmp deals

SELECT hour, quantity , price FROM all offers2017 WHERE daydate=my date and hour=1;
SELECT » INTO OUTFILE 'C:/ProgramData/MySQL/MySQL Server 8.0/Uploads/"my name"-OFF.txt'

FIELDS TERMINATED BY ' ;' LINES TERMINATED BY '\n' FROM tmp deals;
set my date = ADDDATE(my date, INTERVAL 1 DAY);
END WHILE;

END//




98

99

101

102

103

104

105

106

107

108

114

115

116

117

118

119

120

126

127

128

129

130

136

137

138

139

140

141

DELIMITER;

CALL save day test();

DELIMITER //
DROP PROCEDURE IF EXISTS count week days//
CREATE PROCEDURE count_week_days (OUT paraml INT)
BEGIN
DECLARE num INT DEFAULT 0;
paraml=num;
WHILE my date < '2017-01-02' DO
SELECT COUNT(x) INTO paraml FROM all offers2017 WHERE daydate=my date;
set my date = ADDDATE(my date, INTERVAL 7 DAY) ;
END WHILE;
END;
//
DELIMITER ;

CALL count_week days(@a) ;
SELECT @a;

DELIMITER //
DROP PROCEDURE IF EXISTS save day bids//
CREATE PROCEDURE save day bids ()
BEGIN
DECLARE my date DATE DEFAULT '2017-01-01";
WHILE my date < '2017-12-31" DO
SET @file date=CAST(my date AS CHAR);
DROP TEMPORARY TABLE IF EXISTS tmp deals;
CREATE TEMPORARY TABLE tmp _deals
SELECT hour, quantity , price FROM all bids2017 WHERE day=Qfile date;
SET @tmp sql= CONCAT("SELECT 'Hour', 'Quantity', 'Price' UNION ALL
SELECT » INTO OUTFILE 'C:/ProgramData/MySQL/MySQL Server
8.0/Uploads /", @file date,"-BID.txt"'
FIELDS TERMINATED BY ';' LINES TERMINATED BY '\n' FROM tmp deals");
PREPARE s1 FROM @tmp sql;
EXECUTE sl
DEALLOCATE PREPARE s1 ;
set my date = ADDDATE(my date, INTERVAL 1 DAY);
END WHILE;
END;
//
DELIMITER ;

call save day bids();
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