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Abstract: Weeds are one of the major issues in agricultural production and they are present in most
agricultural systems. Due to the heterogeneity of weed distribution, understanding spatial patterns
is paramount for precision farming and improving sustainability in crop management. Nevertheless,
limited information is currently available about the differences between conventional agricultural
(CV) weed spatial patterns and weed spatial patterns in conservation agricultural systems (CA);
moreover, opportunities to use unmanned aerial vehicles (UAV) and recognition algorithms to
monitor these differences are still being explored and tested. In this work, the opportunity to use
UAVs to detect changes in spatial distribution over time between CA and CV fields was assessed
for data acquisition. Acquired data were processed using maximum likelihood classification to
discriminate between weeds and surrounding elements; then, a similarity assessment was performed
using the ‘equal to’ function of the raster calculator. The results show important differences in spatial
distribution over time between CA and CV fields. In the CA field 56.18% of the area was infested
in both years when the field margin effect was included, and 22.53% when this effect was excluded;
on the other hand, in the CV field only 11.50% of the area was infested in both years. The results
illustrate that there are important differences in the spatial distribution of weeds between CA and CV
fields; such differences can be easily detected using UAVs and identification algorithms combined.

Keywords: plant infestation; remote sensing technology; no-till system; UAV; CA; CV

1. Introduction

Several studies identify weeds as one of the main constraints of plant production in
agriculture [1–4]. They are present in every field as remnants of the previous vegetation
contained in the soil’s seed bank. They can also be imported from other fields or infested
areas via natural dissemination propagated by wind, animals, or the plants themselves [5,6].
Seeds or other reproductive organs of different weed species can also be introduced during
various agricultural operations such as soil tillage, irrigation, and fertilization [7]. From the
time humans started practicing agriculture as a monoculture farming system, weeds have
always been the unwanted companions of crop fields [8]. Agricultural systems changed
and evolved over time, and weeds always seemed to find a way to adapt, survive, and
eventually even thrive in agricultural areas [9,10]. Climate change is currently regarded
as one of the most important drivers of weed flora composition modifications as a result
of increases in temperature and the level of CO2 that might promote the proliferation of
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certain weed species and their competition with crops in different agricultural management
systems [11–14]. Two of the most important and very different agricultural systems are
conventional (CV) and conservation (CA) agriculture. Conventional agriculture is charac-
terized by the use of different mechanical soil tillage operations [15], while conservation
agriculture excludes soil disturbance (no-till systems) or reduces it to a minimum, with
incentives to use crop residues and cover crops [16]. These differences in soil management
significantly impact the development of weed communities. In CV mechanical opera-
tions determine infinite cycles of burying and unearthing seeds present in the seed bank.
Therefore, seeds and other reproductive organs can be transported across the field during
different tillage operations.

In CA, especially in no-till management CA, there is no soil disturbance, or it is
considerably reduced compared to CV. Therefore, the seeds and other reproductive organs
remain on the soil surface, usually close to the mother plant [15,17,18].

Since it is known that weeds do not appear uniformly, but rather in patches across a
field [19,20], different field management practices might result in changes in weed spatial
distribution over time. As weed seeds and other reproductive organs can travel a greater
distance due to the different mechanical operations associated with CV, it is expected that
CV will display greater changes in weed patch distribution.

On the other hand, in CA where mechanical operations are minimal, seeds usually
remain very close to where they originated; therefore, the distribution of weed patches are
expected to be more stable over time [21,22].

In addition, differences in soil management can also lead to the formation of different
weed communities. In CA there is usually a predominance of annual weeds, opposed to
the predominance of perennial weeds in CV, which may contribute to the differences in
weed spatial distribution [23].

These differences are important to consider, since as a result of technological improve-
ments, precision farming is becoming more and more important in Europe and the rest of
the world [24]. Currently, remote sensing technologies such as unmanned aerial vehicles
(UAV) are increasingly used as a tool for weed mapping in agricultural fields in different
parts of the world. Many studies were conducted to better understand the possibilities for
UAV use in monitoring and detecting weeds in agriculture, with interesting results [25–28].
Given that CA is becoming increasingly adopted globally, as it can reduce labor and fuel
costs, as well as time dedicated to cultivation [29], it is paramount to study its specificities
and how they influence weed flora. Since its introduction in the 1960s, CA has expanded to
180 million ha worldwide, representing 12.5% of global arable land in 2015/16; the trend
seems to be gaining momentum, considering that in 2013/14 the CA area was 157 million
ha [30,31]. Even though most of the area under CA is located in South America and in
parts of the world struggling with erosion and desertification, the area under CA is also
increasing in Europe. In Italy, the area under CA was 283,000 ha, according to the available
data [31].

Considering the differences in soil management between CV and CA, there might be a
need to implement precision weed control adaptation strategies. To accomplish this, it is
important to understand the evolution of weed spatial distribution caused by different field
management systems. Therefore, the general aim of the present research is to explore the
possibility of using a UAV to acquire high-resolution spatial data and a detection algorithm
to track and compare the evolution of weed patches in two experimental plots under CV
and CA (no-till) management over two consecutive years. The results should provide a
better understanding of changes in weed spatial distribution between CV and CA (no-till)
field management systems, leading to the development of better weed control strategies.

2. Materials and Methods
2.1. Study Site

For this study, two different experimental fields were designed; a CV managed field in
Pozzoveggiani locality 45◦20′38.51′′ N 11◦54′51.36′′ E, and a CA managed field in Legnaro
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45◦20′49.45′′ N 11◦57′12.44′′ E. Both fields are part of the ‘Lucio Toniolo’ experimental
farm of the University of Padua, and both are located in Legnaro, Padua Province, Veneto
Region, Italy (Figure 1).
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Figure 1. Position of the study sites in the Italian Veneto region.

The surface of both fields is predominantly flat and the soils are classified as Fluvic
Cambisols according to the FAO-UNESCO classification, which is common to the Venetian
flood plain [32]. The local climate presents sub-humid traits with an average temperature of
12 ◦C and approximately 800–850 mm/year of rainfall. Precipitation is mostly concentrated
in the autumn and spring, based on data from the Regional Agency for Environmental
Protection (ARPA); precipitation for the study period and the locality were also provided
by the aforementioned agency, and are presented in Figure 2.
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At the Pozzoveggiani field, mechanical measures are applied for soil tillage, while
the Legnaro field has been managed under no-till practices since 2014. Specifically, the
mechanical measures applied in the CV field were as follows: ploughing on 20th September
2018, and harrowing on 5th and 15th of October 2018, before Lolium multiflorum was sown.
The field was ploughed again on 1st of April 2020 and harrowed on 20th and 24th of April
2020, before soybean was sown. The area of the CV field is 5896.97 m2, while the area of
the CA field is 5643.68 m2; both fields are represented in Figures 3 and 4, respectively.
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2.2. UAV Survey

UAV flights were performed twice, in two consecutive years (2019 and 2020), for both
fields, for a total of four surveys. The UAV surveys were conducted using a DJI Matrice
200, equipped with DJI X5S sensor (21 M pixel CMOS) (DJI Sciences and Technologies
Ltd., Shenzhen, China). The flight plan was set at an altitude of 35 m from the ground;
image acquisition during the flight was set at 83% frontal and lateral overlap. For the
CA field, the first flight was executed on July 30th 2019 and the second on August 10th
2020, both times after the wheat (Triticum sp.) harvest. For the CV field, the first flight was
performed on September 12th 2019 after the harvest of Italian ryegrass (Lolium multiflorum),
and the second on May 29th 2020 before soybean was sown (Glycine max). For the creation
of the orthomosaics, Pix4D® Mappersoftware (Pix4D S.A., Prilly, Switzerland) was used,
providing four different orthophotos at a very high image resolution (2 mm) for further
analysis, as can be seen in Figures 3 and 4.

2.3. Weed Classification

For weed classification operations SAGA GIS open-source software (version 7.6.2)
was used. The classification was performed using the Maximum Likelihood Classification
(MLC) algorithm, part of the supervised classification for grids option of the aforemen-
tioned program. The MLC was chosen for its ability to discriminate between weeds and
the surrounding elements, as indicated by different authors [33–35]. MLC is based on two
principles: that the cells in each class sample in the multidimensional space are normally
distributed, and on the Bayes theorem of decision making. Considering these two princi-
ples, for each cell corresponding to a single pixel, statistical probability is computed for
each class to determine the association of every single cell to a specific class. The MLC rep-
resents a classification in which a pixel with the maximum likelihood is classified into the
corresponding class [36,37]. The MLC requires a raster file and a sample classification with
defined classes as input data, according to which it will produce the maximum likelihood
classification [37,38]. Two classes were used for classification: weed and non-weed. As
only the weed category was of interest for further analysis, the non-weed category was
disregarded. When classification was completed, the newly produced classification was
imported into the ArcGIS® Pro program (v2.2.0 Environmental Systems Research Institute
(ESRI), Redlands, CA, USA) as a raster file. With the help of the raster calculator function
(part of the spatial analyst toolbox that allows the creation and execution of map algebra
expressions) it was possible to find the same areas in each field in both years by comparing
the two raster files from different years. The ‘equal to’ function (==) performs a relational
‘equal to’ operation on two inputs on a cell-by-cell basis, returning 1 for cells where the first
raster equals the second raster, and 0 for cells where it does not, as shown in Figure 5 and
Equation (1) [39].

Equal Raster = Raster 1 == Raster 2 (1)

where Equal Raster contains the pixels that are classified as weeds in both Raster 1 and
Raster 2.
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Therefore, if the same pixel was classified as weeds in both years (in two raster files),
the result will be 1, while if it was classified as weeds in only one year the result will be
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0; the order of the raster files is not important. These values in numeric format can be
found in the attribute table of the raster files [39]. After the equal area was determined, it
was possible to calculate the percentage of weed distribution difference in the same field
comparing two years using a simple Equation (2).

x = a*100
b

(2)

where x represents the percentage of area that was covered with weeds in both years, a is the
area that was defined as equal, and b is the total area covered with weeds in the second year.

3. Results

Weed presence differed between the CA and the CV fields; the CA field under no-till
management was more infested. Weed presence in the CA field in 2019, 2020, and in both
years is shown in Figure 6.

Sustainability 2022, 14, x FOR PEER REVIEW 8 of 16 
 

 

3. Results 
Weed presence differed between the CA and the CV fields; the CA field under no-till 

management was more infested. Weed presence in the CA field in 2019, 2020, and in both 
years is shown in Figure 6. 

 
Figure 6. Weed presence in the CA field in 2019 (a), 2020 (b), and in both years (c). 

In 2019, the infested area of the CA field, including field margins, was 159 m2, while 
in 2020 that area grew to 227.73 m2. The overlapping area (infested in both years) is equal 
to 127.94 m2, which corresponds to 56.18% of the infested area from 2020. Therefore, it 
seems that in addition to expanding, in 2020 weeds colonized areas that were not infested 
in 2019, while some areas that were infested in 2019 were weed free in 2020. 

Figure 6. Weed presence in the CA field in 2019 (a), 2020 (b), and in both years (c).



Sustainability 2022, 14, 6324 8 of 15

In 2019, the infested area of the CA field, including field margins, was 159 m2, while in
2020 that area grew to 227.73 m2. The overlapping area (infested in both years) is equal to
127.94 m2, which corresponds to 56.18% of the infested area from 2020. Therefore, it seems
that in addition to expanding, in 2020 weeds colonized areas that were not infested in 2019,
while some areas that were infested in 2019 were weed free in 2020.

In terms of cardinal directions, in 2019 the infestation was mainly concentrated along
the western sector, due to the presence of the field margin; other weed areas are localized in
the central and southern sector of the parcel (Figure 6a). The northern and eastern sectors
of the field were much less infested. In 2020, the infestation appears to remain stable in
the previously infested regions; however, it heterogeneously increased in the eastern and
northern sectors (Figure 6b).

The infested area of the CV field is represented in Figure 7.
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Moreover, an increment of the infested area can also be observed between years, as
in the CA field. In 2019, the infested area occupied 63.1 m2, while in 2020, the area was
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77.53 m2. On the other hand, the area infested in both years was only 8.92 m2, correspond-
ing to 11.50% of the infested area from 2020. In main cardinal terms the CV field was mostly
infested in the northern, central, and eastern sectors, while the southern and western sectors
were less infested. In 2020, the infestation shifted more to the south and west of the field,
probably as a result of tillage operations.

Therefore, the results indicate important differences in weed distribution change
between CV and CA managed fields, as shown in Figure 8.
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As shown in Figure 8, the percentage of area that was infested in both years is higher
in the CA field (56.18%) than in the CV field (11.50%).

Removing the area near the CA field margin infestation drastically changed the
percentages of infestation, as shown in Figure 9.

Excluding the field margin, the infested area in 2019 occupied 57.55 m2, instead of
159 m2 with field margin included. In 2020, the infested area excluding the field margin
was greater than in 2019, reaching 128.29 m2 (227.73 m2 with field margin included). These
results highlight the influence of the field margin on the weed infestation of no-till fields,
and point out the necessity to pay attention to its management.

Excluding the field margin of the CA field, the area infested in both years was 28.90 m2

that corresponded to 22.53% with respect to 127.94 m2 that corresponded to 56.18% with
the field margin.

Even though the area infested in both years was reduced by excluding the field margin
effect of the no-till management field, in Figure 10 it can be seen that the CA field area
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infested in both years is still higher than that of the CV field. Indeed, excluding the field
margin, the area infested in both years in the CA field was almost twice that of the CV field.
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4. Discussion

Limited information about tracking the change in weed distribution comparing differ-
ently managed fields is documented in the literature, especially considering that most of
the research is based on tracking invasive weed species’ distribution change, which may
have severe implications on human lives and agricultural production under the changing
climate [40–42]. Yet both in Europe and globally, there is a rising trend in the use of modern
technologies that are becoming ever more available and user-friendly to support precision
agriculture, including weed monitoring for precision weed control [43]. Therefore, these
technologies can be used in a rather simple but reliable way, to detect spatial changes in
time in different field management systems, offering both scientific and practical informa-
tion for decision-makers. The results obtained were expected; they are in accordance with
what is known about the influence of soil management on the distribution of reproductive
plant material [44–46].

Moreover, the two fields differ in weed species composition. While in the CV field
the weed community mainly consists of Sorghum halepense and Abutilon theophrasti, in the
CA field, there was a higher species richness consisting of Digitaria sanguinalis, Abutilon
theophrasti, Amaranthus retroflexus, Chenopodium album, and small amounts of several other
species. In contrast, the field margin was heavily populated with Sorghum halepense. This
finding is in accordance with several studies indicating that no-till systems often have
richer weed species communities compared to CV managed fields [47–49]. This difference
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in weed species richness could be one of the reasons for different field infestations between
CV and CA fields; weeds can easily proliferate considering the abundance of precipitation
during the study period. Moreover, the presence of an irrigation canal in the CA field is
probably responsible for a highly developed field margin.

Still, the use of UAVs for weed detection in different agricultural systems is well
known [28,50,51], as is the use of different algorithms, including MLC, that can recognize
weed patches with a high degree of accuracy, enabling better weed control strategies [52–54].
Therefore, the results obtained by the approach used in this study indicates that UAVs
and detection algorithms can be valuable tools for tracking weed distribution changes,
even considering the specific realities of different cropping systems. Furthermore, in the
future or in areas where experimentation is permitted, these maps could be used for aerial
spraying weed control operations performed using a UAV [55] to indicate the areas more at
risk of infestation.

Lastly, the edges of the fields are often observed to have a higher density of weed
infestation than the more central areas of the fields [56]. This was particularly evident in
the no-till field. This result is apparently related to a reduction in agricultural inputs near
the field borders and/or the dissemination of weeds from the ditch and the surrounding
landscape. This was very well observed in the CA field by the methods used in this
study, and it strongly influenced the results. Since the field margin is considered a ruderal
site and is managed differently compared to the field, good identification of the field
margin obtained using the image analysis allowed its exclusion from further analysis. The
comparison was repeated without considering the area of the CA field margin in order to
include only the weed distribution data from the arable area.

5. Conclusions

The results obtained showed that the methodology for tracking weed spatial changes
in time, as proposed in this paper, can be a reliable and very useful tool. Indeed, using the
UAV and the identification algorithms it was possible to deduce the level of stability of
weed patches over time in the fields under different management systems. Furthermore,
the simplicity of this approach should allow stakeholders and decision-makers to apply it
with minimal training. The results also point out the evident differences between spatial
distribution in fields under different management conditions over time. While constant
mechanical operations in the CV field seem to directly influence the seedbank and the
transport of reproductive plant material across the field, those elements are not present or
are severely reduced in the no-till system. Seeds disseminated or introduced in the fields
under different agricultural systems experience different conditions, affecting their spatial
distribution, germination, emergence, and longevity. Some of these specific conditions are
the lack of seed burial and the permanent residual soil cover in the CA field, which are not
present in the CV field. Considering that precision weed control using site-specific methods
is already applied both in CV and in CA, changes in spatial distribution could affect the use
of these methods. Considering the low stability of weed patches over time in CV, it would
be imperative to perform UAV monitoring surveys every year in order to identify the weed
patches for satisfactory site-specific weed control. However, if spatial aggregation for many
weed species persists from year to year in no-till systems, maps made in one year could
be used as a point of reference for precision weed control in the following years. Indeed,
considering that weed patches in CA remain more stable, those specific areas of the field
are quite suitable for weed development. In those places, weed–crop competition will be
higher, resulting in severe yield loss. Therefore, it might be possible to have satisfactory
weed control results in CA fields without the need to perform UAV surveys every year.
Results obtained in this experiment also highlight another important issue of CA fields:
the field margins. The influence of field margins on field infestation can be quite high;
therefore, it is important to dedicate more attention to weed control practices applied close
to the margin.
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Further research is needed, including long term studies on many fields with different
weed communities, to better understand changes in weed distribution over time and in
different climatic conditions. Moreover, the temporal stability of patch distribution studies
should consider species-specific behavior and also the influence of field margins. For all
these possible future research studies, the methods described in this study provide an easy
and highly precise solution.
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54. Nikolić, N.; Rizzo, D.; Marraccini, E.; Ayerdi Gotor, A.; Mattivi, P.; Saulet, P.; Persichetti, A.; Masin, R. Site and time-specific early
weed control is able to reduce herbicide use in maize—A case study. Ital. J. Agron. 2021, 16. [CrossRef]

55. Sarri, D.; Martelloni, L.; Rimediotti, M.; Lisci, R.; Lombardo, S.; Vieri, M. Testing a multi-rotor unmanned aerial vehicle for spray
application in high slope terraced vineyard. J. Agric. Eng. 2019, 50, 38–47. [CrossRef]

56. Alignier, A.; Petit, S.; Bohan, D.A. Relative effects of local management and landscape heterogeneity on weed richness, density,
biomass and seed rain at the country-wide level, Great Britain. Agric. Ecosyst. Environ. 2017, 246, 12–20. [CrossRef]

http://doi.org/10.1890/1051-0761(2001)011[1586:WAASCR]2.0.CO;2
http://doi.org/10.1080/01431161.2016.1252475
http://doi.org/10.1016/j.compag.2014.02.009
http://doi.org/10.3390/rs13101869
http://doi.org/10.4081/ija.2021.1780
http://doi.org/10.4081/jae.2019.853
http://doi.org/10.1016/j.agee.2017.05.025

	Introduction 
	Materials and Methods 
	Study Site 
	UAV Survey 
	Weed Classification 

	Results 
	Discussion 
	Conclusions 
	References

