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ABSTRACT: In this paper we consider the problem of computing the Riemann Map 
of the plane unit disk D onto the Jordan domain bounded by the simple closed curve ζ 

containing the point w in the interior, and normalized by conditions </<,w(0) = w, g^¡w(0) > 0. 
To solve such problem, we consider a suitable functional equation involving ζ, w, g ^ 1 ο 
and we show that one can obtain ο ζ by applying a version of the Newton-Kantorovich 
method. 
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1. Introduction 

In this paper we consider the Riemann map of the unit disk O of the complex plane 
onto the plane domain enclosed by the simple Jordan curve ζ, and normalized by con-
ditions 

= < / i J 0 ) > 0 , 

where ω is a point of I[£], and we show that gçiW can be computed by applying the Newton-
Kantorovich method in a suitable function space. 

By [15], ο ζ depends real analytically on the pair ((", w) in a Schauder space setting 
(see also [10]), while the dependence of upon (ζ, w) has a lower degree of regularity (cf. 
[10], Lanza and Preciso [13, §3], Lanza and Preciso [14]). Thus, instead of trying to obtain 

as a limit of Newton iterates, we turn our attention to ° ζ, and we consider a system 
of functional equations involving ζ, w, g^1 ο ζ introduced and analyzed in [15] (see also [9]). 



1 32 Lanza de Cristoforis-Ragosin 

As it is well known, the conformai representation g^¡w relative to ζ, w can be determined 
explicitly for certain pairs (Co, Wo), as for example when Co is a circle, and WQ is its center. 
Then for a pair (ζ, w) = (Ci, u>i) we consider a homotopy (ζχ, ̂ λ)λ€[0ιι] °f (Co, wo) to (Ci,u>i), 
and we show that there exists a finite set of numbers {0 = Ao < Ai < . . . < A, = 1} of [0,1], 
such that o Cxfc can be computed by applying the Newton-Kantorovich method to 

the functional equation mentioned above, provided that gí"1 ' ο is known. 

The importance and the influence of the Riemann map in the applications is well known, 
and for a historical account, we refer to Gray [4] and Ullrich [18]. Several papers have been 
devoted to the boundary behaviour of the Riemann map, and more generally of univalent 
functions. For a modern presentation, we refer to Pommerenke [16] and to Wen [19]. 

The problem of the Riemann map has also been studied extensively by means of inte-
gral equations (see Gaier [2]). Probably, the most known among these equations is that of 
Theodorsen, which applies to star like domains. The Theodorsen equation has been success-
fully employed to compute numerically the Riemann map (cf. e.g., Gutknecht [5], Hübner [6] 
and references therein). In particular, in Hübner [6] the Newton method h eis been applied to 
the study of a nonlinear system which appears following a discretization of the Theodorsen 
integral equation. 

Among the contributions to the study of the Theodorsen equation we also mention that 
of von Wolfersdorf [20], who has reduced the Theodorsen equation to a nonlinear Riemann-
Hilbert problem in order to prove uniqueness. The system of integral equations which we 
examine is more complicated than the Theodorsen equation, but has the advantage of re-
quiring no restriction on the geometry of the domain, although it requires some regularity 
of the boundary of the domain. 

2. Technical Preliminaries and Notation 

The inverse function of a function / is denoted as opposed to the reciprocal of 
a complex-valued function g, which is denoted g~l. Throughout the paper, we make no 
formal distinction between complex numbers and pairs of real numbers, so for example if 
/ = { f i : f í ) is a map of R 2 to R 2 , and if / i + i f 2 is holomorphic in the complex variable 
X\ + ix2, then / ' denotes the complex derivative of / i + if2. We denote by D the open unit 
disk in C (or in R 2 ) , by Τ the boundary of D, and by clD the closure of D. We denote 
by 3Rz and by the real and the imaginary part of a complex number 2. By fT f(s) ds 
we understand the line integral of the function / of Τ to C computed with respect to the 
parametrization θ ι->· e'", θ e [0,2π], of Τ. By fTf(s) |ás| we understand the integral of / 
with respect to the ordinary measure |ds| on T. Let Ν be the set of nonnegative integers 
including 0. Let m € Ν. Τ, C) denotes the space of m times continuously difFerentiable 
functions from Τ to C, and C™'a(T, <C) denotes the subspace of C„m(T,C) of those functions 
which have m-th order derivatives that are Holder continuous with exponent a €]0,1] (the 
subscript ' * ' means that the derivatives are being taken with respect to the variable in T). 
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Let Β Ç C. We set 0?·α(Ύ,Β) = {f e C„m ' a(T,Q : / ( T ) C B}. If / e C,°'a(T,Q, 
we set | / | a Ξ sup { ^ j f f ' 1 : s,t € T , s φ i } . We endow C.m,Q(T,C) with its usual norm 
||/||m,« Ξ Σ7=ο s u p ( 6 T | ö J 7 ( 0 l + \Dmf\a- It is well-known that (C™'a(T, C), | | / | |m , a) is a 
Banach space. Similarly, we define Cm , a(clD, R) to be the space of m-times continuously 
differentiable real-valued functions in D such that all the partial derivatives up to order m 
admit a continuous extension to cl D, and such that the partial derivatives of order m are a-
Hölder continuous. By C m ' a (c lD,R 2 ) we understand (Cm , a(clD, R))2, and we take as norm 
of a pair of functions the sum of the norms of the components. It can be readily verified 
that the trace operator is linear and continuous from Cm , a(clD, R2) to C™'"(T,C) (cf. e.g., 
Lanza and Preciso [12, Lem. 2.8].) We endow a Cartesian product of normed spaces with 
the norm given by the sum of the norms of the components. Let X, y , Ζ be normed spaces. 
We denote by C. (X, the space of linear continuous operators of X to y endowed with its 
usual norm of the uniform convergence on the unit sphere of X. We denote by B ( X x J7, Z) 
the space of bilinear and continuous maps oi Χ χ y to Ζ endowed with its usual norm 
of the uniform convergence on the product of the unit spheres of X and [V· For standard 
definitions of Calculus in normed spaces, we refer for example to Berger [1] and to Prodi and 
Ambrosetti [17]. 

We collect in the following Lemma a few facts we need on the space C™,a(T, C). A proof 
can be effected by elementary computations which we omit. 

LEMMA 2.1. Let τη € Ν, α €]0,1], Then the following statements hold. 

(i) I f f e C i { T , q , then 

(2.2) | / ( ί ι ) - / ( ί 2 ) | < | | | / Ί Ι ο | ί ι - ί 2 | V t „ i 2 e T . 

(ii) 

(2.3) IMU-1,. < 2-"ir |M|m Vu 6 C T ( T , q . 

(iii) There exists climiC( > 0 such that 

(2.4) I K u | | m , „ < c l i m , Q | M | m , a | M | m i a v u , ® e c . m " e ( T , q . 

Furthermore, we can take ci:o,a = ci,i,o = 2 1 - α π . 
(iv) There exists C2,m,a > 0 such that 

(2.5) ||ïï||m,Q < « w I M k - , I I ^ I U < 1 + g ' " ' " I M U « , | | ^ | | m , a < 1 + ^ m > n | M | m . a , 

for all u 6 C.m,0,(T,C). If m = 1, then we can take c2, l i0 = 1 + 22"°. 

(v) I f f & Cl"(T,Q, then | / ( i , ) - f(t2) - / ' ( ί 2 ) ( ί , - t2) \ < i\f'\a\tl - t2\^° for all tu 

t2 € T. 
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(vi) There exists a function <£>i,m,a of [0, +oo[x]0, +oo[ to ]0 ,+oo[ such that 

||l/fc||m,a < ¥ > i ,m , a [ P I U , a , m i n | f c | ] , 

for all k G C™' a (T,C) which satisfy |/c| > 0 on T , and such that ^i,m,a[®i)î/i] < 

Vi,m,o[®2!yi\> when 0 < x\ < 12, 0 < 1/2 < Hi- In particular, if m = 1 we can take 

y] = 2Γ1 (1 + 2(as/y) + 2 (1/y)3). 

We note that the value of the constants of the previous lemma is not optimal. We now 

give a formal definition of a curve. A regular curve is often defined as an equivalence class 

of regular parametrizations. However, for our purposes, it is necessary to distinguish among 

the different parametrizations. Thus we define a curve of class C ' to be a map ζ of class CI 

from the boundary Τ of the unit disk D to C. By a simple curve of class CJ , we understand 

an injective map of class C» from Τ to C. Also, a curve ζ should not be confused with C(T). 

By a simple contradiction argument, it can be readily verified that the following holds 

(cf. [8, p. 124], Lanza and Antman [11, p. 1201].) 

LEMMA 2.6. The set 

Ζ = j e € CiíT.Q : 1[ζ] = i n f e r i : Μ 6 Τ , s J > 0 J 

coincides with the set of simple curves of class Cl with everywhere nonvanishing tangent 

vector. The nonlinear map /[·] of T , C ) to ]0,+oo[ is continuous, and the set Ζ is open 

in Cl(T,Q. 

If ζ is a simple closed curve of class C ' , we denote by ![("] the bounded open connected 

component of C \ CC^)· We now introduce the following notation. We denote by ind[£] the 

Cauchy index (winding number) of the map θ i-y ζ(β'ΰ), θ G [0,2π[, with respect to any of 

the points z of I . Thus 

The map ind[·] is well-known to be constant on the open connected components of Ζ in 
C . ^ T . Q . Clearly, ind[C] G { - 1 , 1 } for all ζ G Ζ. 

Since we need to estimate the distance of an element of Ζ from the boundary of Z , we 
introduce the following Lemma, whose validity can be readily verified by exploiting the 
definition of /[·], Lemma 2.1, (i), and the triangle inequality. 

LEMMA 2.7. The following statements hold. 

(i) If h G Ζ, then l[h] < minT|A'|. 
(ii) If h£ Ζ and h{ Τ ) = T , then l[h} > fminT|/i'|. 

(iii) If he Z, h G Cl'(T,q, ||A' - A'llo < then l[h] > l[h] - §|| h' - h% > 0, and 
ind[A] = ind[A]. 
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(iv) if ζ e z , w e i [ à C e c ; ( T , Ç ) , « € c , ||C - Clio < f [CL IIC - Cito + - ώ| < 

minx |C(·) — then ζ G Ζ, and w G I[C]· 

Then we have the following uniform estimate for the Cauchy integral, which we prove by 

a standard argument developed in Gakhov [3, p. 38]. We first introduce some notation. We 

set 

(2.8) L ( í i , í j ) = { e € T : \s - < 2\t, - t2\}, 

for all t2 6 T, and we understand that a line integral on L(<i,f2) or on Τ \ L ( í i , í 2 ) is 

computed with respect to the parametrization θ ι-> e'e defined on a suitable interval of the 

real line of length less or equal to 2ττ. 

PROPOSITION 2.9. Let m e Ν \ {0}, a €]0,1[. Then there exists a function y?2,ro|0[·, ·] 

of [0, +oo[x]0, +oo[ to ]0, +oo[ such that 

Vi] 

if 0 < χι < x2, 0 < y2 < yu and which satisfies the following inequality 

(2.10) l | C [ M L , „ < v W I I M k a , W ] I M U , 

for all u € C„m 'a(T,C), h € C™-°(T,Q f| z< w h e r e 

( 2 , 1 ) Vi 6 T. 

τ 

If τη = 1, then we can take 

(2.12) ψ2χα[χ, y] = 2 - 1 + * V 4 ( 2 0 P a + 4), 

where the real number pa defined by equality 

_ 1 f f |<fa| f | f l -<2 l - a ι j , 
P a = * " M i r ^ T R U M ) i l ^ M 

/ ΐ ^ Η / γ τ - ' * ™ } JT\L(tut2) Μ - <2Γ UT\L((„<2) S ~ ¿2 J 

is finite. 

PROOF. The finiteness of pa can be easily verified. We now estimate ||C[/¡, «]||o,c for 

« e C° ' a (T,C) , h e C , ,1 'e(T,Q η Ζ. Since 
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for each fixed t G T, then inequality (2.5) and the definition of l [ h ] imply that 

(2.14) l | C [ M l l o < WUh'Womr'p* + 2 - 1 N l o . 

We now estimate the Holder quotient |C[A,u]|a. For all 11, (2 Ç Τ with t i φ t 2 , we have 

(2.15) C [ M ] ( * i ) - C [ M ( < 2 ) = 

z™ JL(h,t2) h(s) - hiu) W 2m JUtM his) - h(u) 
, j _ f (u^-ujhmitj-hjh)) 

2« yTWlA, (h(s) - h(h))(h(s) - hit,)) ( 1 

+ / l { ! 2 i ' u ! 1 ! ^ * ) ds + 2-1«(t1)ind[A] - 2-1«(i2)ind[/ l]. 

Furthermore 

h\s) ds 
^ è l i ¿ΈΙ Jf T\L(í,,í2) H s ) - H h ) 

— [ 
2πι J j 

(k'(s) - h'(t2))(s - tt) - (h(s) - h(t2) - h'(t2)(s - U)) ds + 
T\L( Í„ Í 2 ) (h(s) - h(t2)){s - t2) 

ds 
+ J - / 2πι JTX / T \ L ( Í „ Í 2 ) s - t 2 

Since /[A] < ||A'||0, and | | s - t2\ < \s - í , | < 2|s - t2\, for all tut2 G Τ and for all 
s G Τ \ h(ti,t2), then Lemma 2.1 (i), (v), inequality (2.14), and equalities (2.15), (2.16), 
imply that 

(2.17) l |C[Ml lo ,c < Ι Μ Ι ο , α (9pa(/[/î])"2||/l'||o>ct + P a + 1) , 

for all u G C ° ' a ( T , Q , A G C,1 ,a(T,C) Π Ζ . We now assume that u G C.m,Q(T,€) and that 
A G C™'a(T, Ç) Π Ζ . By standard computations, we have 

(2.18) 4- ( c l h , "KO) = C [A,u'/A'] {t)h'(t). dt 
We now observe that by Lemma 2.1 (iii) and by (2.18) the following holds 

(2.19) ||C[A,ti]||m,0 < \\C[h,u]\\0 + c, .m_ l i a ||C [ M ' / A H L - i , . | |/i ' | |m-i,a· 

Then by equality (2.13) and by the definition of l [ h ] , we have 

(2.20) ||C[A, u]||o < | |u||m,a ( - ( ¡ [ h m U * + • 
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If τη = 1, then Lemma 2.7 ( i ) and inequality |l/ft'|a - |/»'U(m>n W\)~2, and inequalities 

(2.17), (2.19), (2.20) imply the validity of inequality (2.10) with V2,i,«[·,·] as in (2.12). To 

prove the statement for m > 1, we proceed by induction on m. Since minx \h'\ > l[h], Lemma 

2.1 (ii), (iii), (v i ) , inequalities (2.19) and (2.20), and the inductive assumption of existence 

of ν32,τη-ι,α[·ι ·] imply the existence of ψ2,m,o[·, ·] as in the statement. • 

Then we have the following. 

C O R O L L A R Y 2.21. Let m, η G N \ { 0 } , α e ]0 , l [ . Let h G C . m ' ° ( T , Q Π Ζ. Let r > 0 

be such that {/i G C™ , 0 , (T,Ç) : ||h - h\\m,0 < r | C Z, then i n f ^ . ; , ^ a<r l[h] > 0, and the 

following two inequalities hold. 

(2.22) sup 
{/leCr^tT.q: ||A-fc||m,a<r/2} 

1 Í :U.\TÍ ( VÁt) - VÁS)\ J„ 
^ ] U { s ) U \ h { t ) - h { s ) ) d S 

τ 3—1 

< -
2 nnn 

" ( η - I ) 
Jf ψϊ,τη,α „ , Q + r , inf l[h] 

||Λ—Â||„..<,<r π ι li τη,a I I II uj ||m,ai 
i=1 

for all u,vu... ,vn e C , m , a (T ,€ ) , and 

(2.23) sup 
{AeCr'°(T,q: ||A-Ä||m,a<r/2} 

- i m m i t i 111) J* 2™ J K ' V h(t) - h(s) J 
τ 

<(1 + t ) 
2"n" 

( ñ - ^ j 
ΤΓ "ψ2,τη,α l||ft||m,c. + r, inf l[h] 
1 1 ΙΙΑ-'ΊΙπ.,ο^Γ 

Π ι 
i=1 

for all w g C ,™" 1 ' 0 (T ,C) such that Jw{s)ds = 0, and for all vu... ,vn G C,m 'Q (T,C) . 
τ 

P R O O F . Since the imbedding of the space C,m ' a (T ,C ) into the space C„m (T ,C) is compact, 

then the set j/i G C„m ' " (T ,C) : ||ft - A||m,a < r | is compact in C i ( T , C ) . Then we point 

out as in Lanza and Preciso [12, p. 389], that the continuous function /[·] of C\(T, C) to 

]0 ,+oo[ is strictly positive on {h € C™ , a ( T ,C ) : ||/î — À||mìCt < r| , and that accordingly 

inf||A-À|U,a<r llhi > 

We now turn to the proof of inequalities (2.22), (2.23). By Lanza and Preciso [12, Prop. 

4.1], the nonlinear operator C [ · , · ] of (C , " " a (T ,C ) Π Ζ ) χ C ,m ' a (T ,Ç ) defined by (2.11) is 

complex-analytic. Thus by fixing u, and by exploiting the Cauchy inequalities for holomor-

phic operators (cf. e.g., Berger [1, p. 88] and Prodi and Ambrosetti [17, p. 85]), one can 
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(2.24) sup 
s u p K C [ M K - - - , V ) 

VI v„eCr"0(T,Q IM|m,cr · · · ||«n||m,o 
t., 

< 2nnnr~n · sup ||C[/i,tí]||m,Q. 
l|A-ft|U,a<r 

Then by Proposition 2.9 and by the formula for ÔJC[h,u] (cf. Lanza and Preciso [12, 

Prop. 4.1]), one obtains (2.22). To obtain (2.23) by (2.22) it sufficies to note that if 
β 

w e C?~Ua(T,C) and / io(s) ds = 0, then the equality U{e'6) = J w(eil-)ieiidi defines 
τ o 

an element U € C , m ' a ( T , C ) , such that U' = w, and for which ||t/||m,„ < π||ωι||0+ ||to||m_i,a < 

( 1 + π ) · Η | Μ _ ι , 0 . • 

3. The Newton-Kantorovich approximation scheme 

As we have anticipated in the Introduction, we plan to obtain s '^/^joCi by a given (Ci, ">i) 

in the set 

= { ( c , w ) e ( c r - ° ( T , q n z ) x c - . w e i [C] } 

by assuming that 0 Co is known for some (Coi^o) € £m,c«, and by assuming that there 

is a homotopy (Ca, μά)α£[ο i]' (Co> wO ) a n d (Cii ω ι ) ι with λ ι-»· (ζχ,ιυχ) continuous from [0,1] 

to Sm>a. 
To do so, we first introduce a functional equation of the form 

Q[C,to,ft] = 0, 

and such that the set of solutions of such equation coincides with the set of triples (ζ,νυ,ίι), 
where (ζ,ιυ) is an arbitrary element of Sm<a, and where h = ξ o ζ. We do 

so in Theorem 3.1, by taking Q equal to the operator I l j o P introduced in Theorem 3.1 

(see (3.2).) Then we show that for each ( ( x ,wx ) of the homotopy there exist σ(ζλι„λι/,λ) > 0 

and > 0, where h\ = /i[Ca,wa], such that if (Ç,w) € £m,a satisfies inequality ||( — 

Ca II m,» + |íü — WA I < σ«Λ,™Λ,/ΐλ)> 'hen equation Q[C,u>,/i] = 0 has exactly one solution h 

such that II h — h\||mi„ < Γζλι/,λ, which can be expressed as the limit of appropriate Newton 

iterates (see Theorem 3.20.) To prove the convergence of the Newton iterates, we apply 

a result of Kantorovich and Akilov [7], which requires estimates of first and second order 

partial differentials of the operator Q . We obtain such estimates in Theorem 3.4, and in 

Proposition 3.16. Finally, we show that there exists 0 < σ < inf^e[o,i]
 a(C\,w\,h\)i a n < i that 

accordingly there exist finitely many numbers 0 = λ 0 < λχ < . . . < A, = 1 such that 

supj.=1 , II Ca» - CA»_,||m,a + - | < σ, and such that /¡[(a*, u>aJ can be computed 

by knowing (CAk_,, , MCa/,_,> w'a*.,]), a s limit of Newton iterates. Thus we can obtain 

MCa,,m>a,] in up to q steps. 
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We now introduce the functional equation for (ζ, w, UJ]), by means of the following 

Theorem, which summarizes a part of Propositions 3.5, 3.7, 3.12, 5.3 of [15]. 

THEOREM 3.1. Let a e]0,1[, m € Ν \ {0 } . Let A be the set defined by 

A = j(C,w,/i) e C,m,a(T,q xC χ C,m,a(T,Q Z,h 6 Z, 

-«•»-ι 
Let Ρ be the nonlinear operator of A to C,m'Q(T,R) χ C χ R χ C™'a(T,R) defined by 

P{C,w,h}(t) = (P,[C,w,h](t))l=h23A = 

U (Ç,->w->h) € A, and if P[£,iu,/i] = 0, then h = g ο ζ ξ and in particular, 
h is a bijection of Τ onto T. Conversely, if (ζ, w) € £m,a, then (£, w, u>]) G A and 

/i[C;Hl = 0. The domain A of Ρ is open in the (real or complex) Banach space 
CT'a(T,Q χ C χ C.m'°(T,Q. 

The nonlinear operator h[-, ·] of £m¡a to C™'a(T,T) ΓΙ Z, which takes (C,w) to /i[£, uj], is 
real analytic. 

Let (C,io,h) € A, h(T) = T. Let be the map o/C,m,a(T,R) χ C χ R χ (̂ (Τ,Κ) to 
itself defined by 

for all ( f ,u ,ß , b) € C.m'a(T,R) χ C χ R χ C.m'a(T,R). If((,w,h) e A, then equation 

(3.2) Π ί , ο Ρ K,w,h] = 0, 

is satisfied if and only if P [ ( , w, /i] = 0. The differential dh {Π^ ο Ρ } [(, w, h] is a linear 
homeomorphism of C™,a(T,C) onto the image 

V" h •a = j (./>,/?, 6) e (7Γ·α(Τ,Κ) X C χ R X : J L j f f(s) j ^ d s = oj 

of the operator Π^. 
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In view of the previous Theorem, for a given (ζ, w), the corresponding Ιι[ζ, w\ is the only 
zero of the map ft η->· IIj o P[£, w, ft] in the set of ft's such that (ζ, w, ft) is still in the domain 
A of Π^ o P . Again, by Theorem 3.1, if ((, w) is close enough to ( ( , w), then the solution 
ft[£,u>] is close to ft[£,ù)]. We now show that there exists > 0 depending only on (£,ft), 
and cr^ ^j^ > 0 depending only on (C,w,h ) , such that if the distance of (ζ, w) and (ζ, w) is 
less than f ^ ^ j j then ft[C,w] lies in a ball centered at ft and with radius r^ j , and ft[C,u>] 
is a limit of the Newton iterates relative to the operator ft ι-> Π^ ο Ρ[ζ,ω, ft], and with 
initial point ft. To do so, we will exploit the Newton-Kantorovich Theorem in the form of 
Kantorovich and Akilov [7, Thm. 6, p. 708], which requires an estimate of the norm of the 
inverse of the linearized operator ο Ρ}[ζ, w, h], and of the norm of first and second 

order partial differentials of Π^ ο Ρ in a neighborhood of ( ( , w, ft). Thus as a first step, we 
provide such estimates, and we start with that concerning the linearized o P}[C, ώ, ft]. 

We observe that if ft € Z, ft(T) = T, then the following elementary inequality holds 

(3.3) ^ í 
2mJTn 'h(s) 

ds < sup l/l, 
τ 

for all / e C° ,C,(T, Q . Then we have the following. 

THEOREM 3.4. Let a e ]0 , l [ , m e N \ { 0 } . Let (C ,é , f t ) € A be a zero of P . Then the 
following inequality holds. 

(3.5) 

where 

( ö 4 n Ä o p } [ c > , f t ] ) 
(-i) 

£(ν?'·0,£7Γ'°(Τ,0) 
< oi[C,à,A], 

(3.6) a ^ C . i í . Á l E c ^ l ^ t l Ñ J - ' t l + f K c ^ + l W . c , [||ft||m,Q + π" 1/^],2" 1/[ft]] χ 

r"~ "» .a . l ] l|Á||^l,m-l,e [||CIU,«,/[C]] + ^ Κ } ) ' 1 l|Â|U,a + 

+ 1 + 2jr(/[Á])-V2,m^ [\\MU« + n-HÑa-'m] ||ft||m,a}||ft|U,a. 

* Cl,m-l,aCl.Tn,a£^1l,m)Q jJI'MIm.c 

3 

PROOF. If (/,ω,β,ύ) e K " ' a , then by [15, Thm. 2.1, Proofs of Prop. 4.3 and 5.3] we have 

that μ = ^ / . {Π^ o Ρ}[£, ύ, h](f, ω, β, ό)^ is delivered by the formula 

h'(s) 7(0-7W 
(3.7) 

h(t) 2πι J ^Jh(s)) (h(s) - h(t)) 
ds } + 

ind[ft] f^(s)/g'^Ch(s))}h'(s) ind[ftl r ~h'(s)b(s) J 

Η—r I = ds + olí) Η- I —= ds+ 
2π J h(s) W 4 πι J his) 

τ τ 
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ind A 

J h'(s)(b(s) - 6 ( 0 ) 

2πί J his) - hit) 
τ 

ds • / 3 - S . 
ind \h h'(s)f(s) 

2πί J h2(s) 
τ 

1 f 
ί J 

ds 

where 

7(0 = 
τ 

Ht) 

By Lemma 2.7, by Corollary 2.21 with r = π 1l[h], by observing that J , ds = 0, and 

by equality ύ o h = we have 

(3.8) 

and 

ind A 
2 / h'(s) 7 ( 0 - 7 W 

¿ < - , * ( Ä W ) Ä ( i ) - Ä ( 0 
di 

Χ («2,m,α + 1)^2,m,α ll^llm.a + 7Γ_1/[Λ], 2 

< 2π(/[^])"1(1 + 7Τ)Χ 

! ( 0 " Ί I M U , Il m— Ι,α 

(3.9) 
ind [h\ fh'(s)(b(s)-b(t)) 

h{s) - h(t) 

L J Í 
2 ni J 

ds < 

2ir(/[A])" W * I || A||m,a + n~H[h\, 2"1 m,a||w||m,a· 

By applying the Maximum Principle to the function we obtain 

(3.10) < sup 
s€T 

= sup 
seT 

h'(s) 

C(s) 
< ( ' [ ί ] Γ Ί Η Ι ^ · 

By inequality (3.3), and by equality A ( Τ ) = T , and by the obvious equality ||c||miQ = |c|, for 

all c G C, we have 

(3.11) 
ind Α / · 9 { 7 ( - ) Μ - ( Λ ( β ) ) } Α ' ( Λ ) 

2π 

< sup 

/ cm 

h(s) 

7(s)h'(s) = sup 
set 

• ds 

7 ( - )A ' ( e ) 

< 

C'W 
<( ' [C]r ,Hfc||m.-(M + 2||/||m.<,)) 

and 

(3.12) 
ind ñ f h'(s)f(s) 

2πί J h2(s) 
ds < \ß\ + ll/IU,a 
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(3.13) < c l i m J ( λ Η (|w| + 2||/i|m,a) 

Then by Lemma 2.1, and by equality (3.7) and inequalities (3.8)-(3.13), we deduce the 

validity of inequality (3.5). • 

We now turn to estimate the partial differentials of I l j ο Ρ on a closed ball centered at 

( C , w , h ) G A, and contained in A. The following elementary Lemma provides an explicit 

upper bound for a possible radius of such ball. 

LEMMA 3.14. Let a e ]0 , l [ , m € N \ {0 } . Let (ζ,ύ,ϊι) £ A be a zero of P . Let Γξ^ = 

2 _ 1 inf { l , 2 f J , δ{ξ<ύ Κ) = 2" 1 inf { 2 , 2 π " 1 / [ ά min t 6 T |C>) - 4 " } , ™th 

^30-1(||C||O + 1 ) - 1 ( M O + 1)-15R 
ind[h] f C(s)h'{s) 

ds 

Let 

= |(C,«>,A) e C r ° ( T , C ) X c X c r ' Q ( T , Q : 

C - C + | ω - ώ | / Ϊ - Λ Μ Ilm,α II Ilm,α I 

Then Β^ ύ ^ Ç A, and 

ί η ί Ι Μ Ι „ 0 < ^ ™ η τ Ι / ι ' - 2 _ 1 ' 

inf; ||c_(-||m ο+|„-ώ|<{(ί mini£T Kit) -w\>2 1 min,6T |c(<) - , 

PROOF. Clearly, Κ(Ί) = T . If mmT\h\ > 2" 1 , ||h - h\U < 2 " \ ||C - Clio < 1, then we have 

< 

(3.15) < 4 { l ie - Cllo||Ä'||o||Ä2||o + IKIIollÂ' - Λ'|ΙοΙ|Α2ΙΙο + ΙΚΙΙοΙΙΛ'ΙΙοΙΙΛ2 - À2||o} 

<i0(||Cllo + i)(||Â'||o + i)(||C-ello + ||Ä-ÄIIO. 

Thus the statement follows by Lemma 2.7, by inequality (3.15), and by the triangular in-

equality. • 

C h' 
~h2 h2 

Then we have the following. 
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PROPOSITION 3.16. Let a €]0,1[, m € Ν \ { 0 } . Let (ζ, w,~h) € A be a zero of P . Let 

the constants r^, and the ball be defined as in Lemma 3.14· Then 

(3.17) sup ||%eA{II¡ioP}[C,u;,fc]|L < o2 fc.tô.Âl , 
«,<",Λ)€Β(<>ίι) L J 

where 

Bx ξ ß ( (C . m ' " (T ,Q χ C) χ Cr ' a (T ,C) ,C. m , a (T > R) χ C χ R χ C,m , a(T,R)), 

a2 [c,«>,ft] ξ 2 7 C j . ( c w + 1 )φ2,π,,α [||M|m,a + 2r<-iÄ,2"1/[ft]] + 6 . 

Furthermore, 

(3.18) sup o P}[C, ω, Α]|| < a3 Ιζ ,ΰ,Κ] , 
(C L J 

where 

B2 = Β ( (C,m 'a(T,Q)2 ,C.m ' c ,(T,R) χ C χ R χ C„m 'a(T,R)), 

a3 [C.tô.fc] ξ {8r7?(c2 i m ,a + l ) V w [||Ä||m,a + 2r(-Ä,2"»/[Ä]] + 

+ 2 o | ( | | C | | m , a + ¿(ζ,Λ,Λ)) + 2 c l , " > , « c 2 , m , a , 

and 

(3.19) sup |kc,«){n&oP}[C,ti»,Ä]|| < θ 4 [C,«>,Ä] , 
where 

C = £ ( C . m ' a ( T , Q χ C,C,m , 0 ,(T,R) χ C χ R χ C,m,c ,(T,R)), 

a4 [c,tô,Â] = 2 r r ï ( c w + l)<^>2,m,a [||Â||m̂  + 2Γξίι,2~11[ϊι}] ||/i||m,a + 2. 

PROOF. Since B^ Λ ^ is connected, ind[/ì] is constant for (ζ ,w,h) £ B ^ ύ , and thus we 
can assume that it is identically equal to one. Then by Lanza and Preciso [12, Prop. 4.1], by 
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[15, Lemma 4.1], and by elementary Calculus (see also [15, Prop.'3.7], where dhΡ has been 

computed), we have 

o P}[C, w, /i](f, η, μ) = 

( - * { * / λ } + h S » { i J i f Λ · 

f t t M î l d J ^ f t P d s X , o V 2πι J ft(s) ' I 2πϊ J n̂ U) I ' / ' Τ I T ) J 

for all (ξ, η, μ) € C,m 'Q(T,Q χ C x C, m ' a (T,Q, and for all ( ζ , w , h ) G and thus by 
Lemma 2.1, by Corollary 2.21 with r = 2 r ^ , by inequality (3.3), and by Lemma 3.14, we 
have 

o P}[C,tü, A]||Bi < 2rr>(cs,m,a + 1)^2,m,Q [||Λ||7η,α + 2Γ<-Λ ,2- Ι/Ν] + 6 . 

Thus, we can deduce the validity of (3.17). Again by Lanza and Preciso [12, Prop. 4.1], and 
by elementary Calculus, we have 

02{Πϋ o P}[C, u,, Η](μι,μ2) = ("» { è / + 

+ á / » { S / C ( s ) { " ¡ ( t ) ' l ώ } 

+ à f C ( s d a , 2 9 { ¿ f / , M - M Ö + ^ ( O M ö ) , 

for all (μι ,μ 2 ) 6 (C™'a(T, C))2, and for all (ζ,να,Η) G Then by Lemma 2.1, by 
Corollary 2.21 with r = by inequality (3.3), and by Lemma 3.14, we have 

||^{nA°P}[C,w,/i]||B2 < 8r7?(c2,m,a + lV2 ,m ,Q [||Ä||m,a + 2r^,2-1/[Ä]] ||C||m,a+ 

+20I ICI I + 2 c, 

and thus we have (3.18). Finally, we consider (3.19). By elementary Calculus, we have 

2πι J P W πι J h(s) - h(t) j h{t) 

i f((s)h'(s)ds f ι / - f ^ v w d e i Λ 2 ^ 7 Ä(S) \ 2 ™ / Ä'W j ' j ' 
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(3.21) 
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for all (ξ, η) e C, m , a (T,Q χ C, and for all ||C - Cll + |«> - ώ| < δ(ξιύλ). Then by equality 

(2.13), by Lemma 2.1, by Corollary 2.21 with r = 2r¿ -h, by inequality (3.3), and by Lemma 

3.14, we have 

o P>[C,«»,ä]||£ < 2rrì(c2 ,m ,a + 1)^2,m,e [||Ä|U,„ + 2r(-¿, 2"1/[/ì]] ||Â||m,e + 2. 

Then (3.19) follows. • 

We are now ready to prove the following. 

THEOREM 3.20. Let a e]0,1[, m € N\ {0 } . Let (ζ,w,h) e A be a zero of P. Let 
be equal to the minimum of the following four numbers: 

;,Â (4ai[C,w,A]a4[C,w,fc]) , ^16αι [C, w, Ä]2a3[C, ώ, ftja-iIC, hfj . 

If(C,w) e C?'a(T,C) X C, and if ||< - C||m,c + \w - ώ| < then equation 

(3.22) ΠίθΡ[( ,ω,/ι] = 0 

in the unknown h has one and only one solution /ι[ζ, ω] ξ C™'a(Τ, C), such that \\h — /i||m,Q < 
Γξ^. Furthermore, the Newton iterates 

H0 = h, 

Hj+i = Hj (aA{nÄ o P}[<, u;, h]j ο Π* o P[C, w, Ηά], for j > 0, 

converge to in C™ ,a(T,C) and satisfy the inequality 

(3.24) \\Hj - MC, Η I k * < (2β1Κ,ώ,Α]α3[ί ,ώ,Λ])"1 ^ e R 

PROOF. As we have announced, our result will follow by applying the Newton-Kantorovich 
'modified' method in the formulation of Kantorovich and Akilov [7, Thm. 6, p. 708]. We 
first note that if ||( — (||m,a + |u> — ώ| < then by the Mean Value Inequality, and by 
Theorem 3.4, and by inequality (3.17), and by definition of σ^ ώ we have 

(¿fc{n s o P}[C, « ; , * ] ) 
τ λ ' - 1 ) ! < 

< {ar 2 [Cñ,h] - a2[Cw,h}(ll( - CIUa + ¡w - wl)J 1 < 2 α^,ώ,Λ] . 



146 Lanza de Cristoforis-Rogosin 

Similarly, 

(3-25) | | n i oP[C ,w ,A] | | m a < a4[C,w,h\°(i,*,h)· 

By Proposition 3.16, we have 

(3.26) ||όΛ
2{Π^ o P}[C,u,,fc]||02 < o3[C,tö,Ä] V(C,t»,Ä) € 

Thus we have 

( f t {Π* O P}[C, «7, Ä]) " o n ¡ o P[C, W, h] 

( f t ^ o P}[( , w , o 0 P}[C, w, h] 

X 
m,Q 

<β<\, 
β((σΓ'° (T,c)) ,c™·" (t,c>) 

for all C, w, h such that ||C - CIU.c + — ώ| < V f a f t , \\h ~ À||m,a < r ^ , and where the 

constant β is defined by β Ξ (2α i [C, w, /i]03[ζ, w, /i]^ (2ai[C, w, Ä]a4[C, w, h\<r^ Λ . Fur-

thermore, we have 1 - λ/1 - 2/3 < 2β, and thus 

(3.27) ^ ~ 2ß2a, [C, w, h]a4[ξ, w, h]<r{iiil-h) < . 

Then we can invoke Kantorovich and Akilov [7, Thm. 6, p. 708] to deduce that the New-
ton iterates of (3.23) converge to a solution of equation I I j ο P[C, w, h\ = 0 in the ball 
j / i € C™'a(T,C) : \\h-h\\ < r ^ j and that (3.24) holds. By Lemma3.14, the triple (C, w, h) 
belongs to A. Thus, by Therorem 3.1 such solution coincides with and the proof is 
complete. • 

Then we have the following. 

THEOREM 3.28. Let τη e Ν \ {0}, α €]0,1[. Let A be a continuous map of [0,1] to 
£m,a. Let Λ(λ) ξ (ζχ,ινχ), for all X € [0,1]. Then there exist q € Ν and 0 = λ0 < 
Ai < · · · < λ, = 1, with Xk — Xk-1 = q'1, k = 1 ,·•• ,q, such that Λ [Caj=, u>a*] can be 
obtained by {Cxk_¡,wxk_¡,h [Ca^,lOj^J), as a limit of the Newton iterates of (3.23), with 
( ί , ώ , / ι Κ , ώ ] ) Ξ (ζχ^,ινχ^,Η u ^ . J ) . 

PROOF. It suffices to note that the continuity of Λ[·, ·] on €m¡a inferred by Theorem 3.1, 
the continuity of || - ¡|m,Q on C™'a(T,C), the continuity and positivity of /[·] on Z , of 
K {τϋτ 1 It C ds} o n a n d o f m ' n ' eT ICM - «Ί o n £m,cr, imply that minAe[0ilj/[Ca] > 
0, minx6[o,i] I [h [Ca, ι^λ]] > 0, maxA<=[o,i] ||CaIU,o < +00, maxAe[0,i] \\h [Ca, u>a] ||m,a < +00, 
minA6[o,i] min i 6 T |Ca(í) - wx\ > 0, 

min 
λε[ο,ι] l. 2ττ ι Λ h[Cx,wx]2{s) J 
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Then by the definition of a¿ [£χ,w\,h [Ca> «>>]], with j g {1 , · · · ,4}, (see Theorem 3.4 and 
Proposition 3.16), and by the definition of (see Theorem 3.20), and by Lemma 2.7 
(i), we deduce that infAe[o,i] σΚλ,'«λΛλ) > a n d the proof is complete. • 
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