
Deviation Maximization for Rank-Revealing QR

Factorizations

Monica Dessole Fabio Marcuzzi

June, 6th 2021

Department of Mathematics “Tullio Levi Civita”
University of Padova

Via Trieste 63, 35131 Padova, Italy
e-mail: mdessole@math.unipd.it,marcuzzi@math.unipd.it

Abstract

In this paper we introduce a new column selection strategy, named
here “Deviation Maximization”, and apply it to compute rank-revealing
QR factorizations as an alternative to the well known block version of
the QR factorization with the column pivoting method, called QP3 and
currently implemented in LAPACK’s xgeqp3 routine. We show that the
resulting algorithm, named QRDM, has similar rank-revealing properties
of QP3 and better execution times. We present numerical test results
on a wide data set of numerically singular matrices, which has become a
reference in the recent literature.

1 Introduction

The rank-revealing QR (RRQR) factorization was introduced by Golub [15] and
it is nowadays a classic topic in numerical linear algebra; for example, Golub
and Van Loan [16] introduce Rank Revealing QR (RRQR) for least squares
problems where the matrix has not full column rank: in such a case, a plain QR
computation may lead to an R factor in which the number of nonzeros on the
diagonal does not equal the rank and the matrix Q does not reveal the range nor
the null space of the original matrix. Here, the SVD decomposition is the safest
and most expensive solution method, while approaches based on a modified QR
factorization can be seen as cheaper alternatives. Since the QR factorization
is essentially unique once the column ordering is fixed, these techniques all
amount to finding an appropriate column permutation. The first algorithm
was proposed in [6] and it is referred as QR factorization with column pivoting
(QRP). It should be noticed that, if the matrix of the least squares problem
has not full column rank, then there is an infinite number of solutions. We
must resort to rank revealing techniques which identify a particular solution as

1

ar
X

iv
:2

10
6.

03
13

8v
1

 [
m

at
h.

N
A

]
 6

 J
un

 2
02

1

“special”. QR with column pivoting identify a particular basic solution (with r
nonzeros, where r is the rank), while biorthogonalization methods [16], identify
the minimum `2 solution. Rank-revealing decompositions can be used in a
number of other applications [19].

The QR factorization with column pivoting works pretty well in practice,
even if there are some examples in which it fails, see e.g. the Kahan matrix [21].
However, further improvements are possible, see e.g. Chan [7] and Foster [14]:
the idea here is to identify and remove small singular values one by one. Gu and
Eisenstat [18] introduced the Strong RRQR factorization, a stable algorithm for
computing a RRQR factorization with a good approximation of the null space,
which is not guaranteed by QR factorization with column pivoting. Both can be
used as optional improvements to the QR factorization with column pivoting.
Rank revealing QR factorizations were also treated in [17, 8, 20].

Column pivoting makes it more difficult to achieve high performances in QR
computation, see [2, 3, 4, 23, 5]. The state-of-the-art algorithm for computing
RRQR, named QP3, is a block version [23] of the standard column pivoting and
it is currently implemented in LAPACK [1]. Other recent high-performance
approaches are tournament pivoting [9] and randomized pivoting [13, 28, 22].
In this paper we present a column selection technique, that we call “Devia-
tion Maximization”, and we propose it to derive QRDM, an alternative block
algorithm to QP3 for computing RRQR factorizations.

The rest of this paper is organized as follows. In Section 2 we motivate and
present this novel column selection technique; in Section 3 we define the Rank-
Revealing factorization, we review the QRP algorithm and then we introduce
QRDM, a block algorithm for RRQR by means of Deviation Maximization fur-
thermore, we give theoretical worst case bounds for the smallest singular value
of the R factor of the RRQR factorizations obtained with these two methods. In
Section 4 we discuss some fundamental issues regarding the implementation of
QRDM; in Section 5 we compare QP3 and QRDM against a relevant database of
singular matrices; finally, the paper concludes with Section 6 and an Appendix
with auxiliary results used in proofs.

1.1 Notation

In what follows we denote by O and I the zero and identity matrices respectively
with proper sizes (the former may even be rectangular). For any matrix A of
size m × n, we denote by [A]I,J the submatrix of A obtained considering the
entries with row and columns indices ranging in the sets I and J , respectively.
We make use of the so called “colon notation”, that is we denote by [A]k:l,p:q the
submatrix of A obtained considering the entries with row indices k ≤ i ≤ l and
column indices p ≤ j ≤ q. We use the shorthands [A]J and [A]p:q to indicate the
submatrices [A]1:m,J and [A]1:m,p:q respectively, where only the column index is
restricted. We also denote the (i, j)-th entry as aij (ai,j) or [A]ij ([A]i,j). The
singular values of a matrix A are denoted as

σmax(A) = σ1(A) ≥ σ2(A) ≥ · · · ≥ σmin(A) = σmin(m,n)(A) ≥ 0.

2

Given the vector norm ‖x‖p = (|x1|p + . . . |xn|p)1/p, p ≥ 1, we denote the family
of p-norms as

‖A‖p = sup
‖x‖p=1

‖Ax‖p.

We denote the operator norm by ‖A‖2 = σmax(A). When the context allows it,
we drop the subscript on the 2-norm. With a little abuse of notation, we define
the max-norm of A as ‖A‖max = maxi,j |aij |. Recall that the max-norm is not
a matrix norm (it is not submultiplicative), and it should not be confused with
the ∞-norm ‖A‖∞ = maxi

∑
j |aij |.

2 Subset selection by Deviation Maximization

Consider an m×n matrix A which has not full column rank, that is rank(A) =
r < n, and consider the problem of finding a subset of well conditioned columns
of A. Before presenting a strategy to solve this problem, let us first introduce
the notion of cosine matrix associated to a given matrix.

Definition 1. Let C = (c1 . . . ck) be an m × k matrix whose columns cj
are non-null. Let D be the diagonal matrix with entries Dii = ‖ci‖ , 1 ≤
i ≤ k, then the cosine matrix associated to C is defined as Θ = Θ(C) =(
CD−1

)T
CD−1 = D−1CTCD−1, and its entries are

θij =
cTi cj
‖ci‖‖cj‖

= cos(αij), 1 ≤ i, j ≤ k. (1)

where αij = α(ci, cj) is the angle between the pair ci, cj.

It is immediate to see that the cosine matrix Θ is symmetric, it has only
ones on the diagonal, and its entries range from −1 to 1. The main idea behind
Deviation Maximization is based on the following result.

Lemma 1. Let C = (c1 . . . ck) be an m×k matrix such that ‖c1‖ = maxj ‖cj‖,
and let Θ be the associated cosine matrix. Suppose there exists 1 ≥ τ > 0 such
that ‖cj‖ ≥ τ‖c1‖, for all 1 ≤ j ≤ k. Moreover, suppose that Θ is a strictly
diagonally dominant matrix with γ = mini(1−

∑
j 6=i |θij |) > 1− τ2 > 0. Then

σmin(C) ≥
√
γ + τ2 − 1 ‖c1‖.

Proof. Let us first show that if Θ is a strictly diagonally dominant matrix,
then the symmetric positive definite matrix CTC = DΘD, D = diag(‖ci‖) is
strictly diagonally dominant. This follows from Lemma 5, in the Appendix,
since |θii| = 1 for all 1 ≤ i ≤ k, and by hypothesis we have γ > 1− τ2.

Applying the bound (36), we have

σmin(CTC) ≥ (γ + τ2 − 1)‖c1‖2 ⇒ σmin(C) ≥
√
γ + τ2 − 1‖c1‖.

3

The result above shows quite clearly that the bound on the smallest singular
value of C depends on the norms of the column vectors and on the angles
between each pair of such columns. This suggests to choose k columns of A,
namely those with indices J = {j1, . . . , jk}, k ≤ r, such that the columns of the
corresponding submatrix C = [A]J have a large euclidean norm, i.e. larger than
the length defined by τ , and they are well separated, meaning that the cosines
of the pairwise angles are bounded by a parameter δ. The overall procedure is
called Deviation Maximization and it is presented in Algorithm 1.

Algorithm 1 Deviation Maximization J = DM(A,u, τ, δ)

1: J = {j : j = max u}
2: I = {i : ui ≥ τ max u, i 6= j}
3: set kmax = card(I)
4: compute the cosine matrix Θ associated to [A]I
5: for i ∈ I do
6: if |θi,j | < δ, ∀j ∈ J then J = J ∪ {i}
7: end if
8: end for

More precisely, let us define the vector u containing the column norms of
A, namely u = (ui) = (‖ai‖), for i = 1, . . . , n. The set J of column indices
is initialized at step 1 with the column index corresponding to the maximum
column norm, namely

J = {j : j = argmax u} .
At step 2, we identify a set of “candidate” column indices I to add in J by
selecting those columns with a large norm with respect to the threshold τ , that
is

I = {i : ui ≥ τ max u, i 6= j} , (2)

and we compute the cosine matrix associated to the corresponding submatrix
Θ = Θ([A]I) at step 4. With a loop over the indices of the candidate set I, an
index i ∈ I is inserted in J only if the i-th column forms a large angle (i.e. the
corresponding cosine is small) with the columns whose index is already in J . In
formulae, we ask

|θi,j | < δ, for all j ∈ J.
At the end of the iterations, we have J = {j1, . . . , jk}, with 1 ≤ k ≤ kmax, where
kmax is the cardinality of the candidate set I, and we set C = [A]J . Notice that
the following choice of the parameter δ, namely

δ ≤ δmax :=
τ2

kmax − 1
, (3)

yields a submatrix C = [A]J that satisfies the hypotheses of Lemma 1 for a fixed
choice of parameters δ and τ . Indeed, for every j ∈ J , this choice ensures∑

i∈J
i 6=j

|θij | < (k − 1)δmax = (k − 1)
τ2

kmax − 1
≤ (kmax − 1)

τ2

kmax − 1
= τ2,

4

and hence, the corresponding gap γ of diagonal dominance of the cosine matrix
ΘJ,J of C satisfies

γ = 1−
∑

j∈Jj 6=i

|θij | > 1− τ2,

fulfilling the hypotheses of Lemma 1 and, therefore, we have

σmin(C) = σmin([A]J) ≥
√
γ + τ2 − 1 max

i
u > 0. (4)

Let us briefly comment the choice of the parameter τ : on one hand, its value
should be small in order to get a large candidate set I; on the other hand,
equation (3) shows that a large value of kmax = card(I) implies a small value of
δmax, which likely yields a smaller k = card (J). Notice that when δmax is equal
(or close) to zero, only pairwise (nearly) orthogonal columns are accepted to be
inserted in the set J , and it is unlikely to find matrices with pairwise (nearly)
orthogonal columns in real world problems.

The procedure here presented exploits diagonal dominance in order to ensure
linear independence. In practice, this often turns out to be a too strong condition
to be satisfied, and as a result the number k of columns found is usually way
smaller than the rank r. Indeed, diagonal dominance is sufficient but obviously
not necessary, so in the final algorithm we choose a weaker condition.

The Deviation Maximization may be adopted as a block pivoting strategy
in various algorithms that deal with subset selection. Actually, an effective and
efficient strategy to choose δ and τ must be tied in practice to the properties of
the specific algorithm that uses the Deviation Maximization as pivoting strategy.
In this work we successfully apply the Deviation Maximization block pivoting
to the problem of finding a Rank-Revealing QR decomposition, but e.g. the
authors experimented also a preliminary version of this procedure in the context
of active set methods, see [10, 11].

3 Rank-Revealing QR decompositions

Let us introduce the mathematical formulation for the problem of finding a rank-
revealing decomposition of a matrix A of size m × n. We say that the matrix
A has numerical rank 1 ≤ r ≤ min(m,n) if σr+1(A)� σr(A) and σr+1(A) ≈ ε,
see [8], where ε is the machine precision. Let Π denote a permutation matrix of
size n, then we can compute

AΠ = QR = (Q1 Q2)

(
R11 R12

O R22

)
, (5)

where Q is an orthogonal matrix of order m, Q1 ∈ m× r and Q2 ∈ m× (m− r),
R11 is upper triangular of order r, R12 ∈ r× (n−r) and R22 ∈ (m−r)× (n−r).
The QR factorization above is called rank-revealing if

σmin(R11) = σr(R11) ≈ σr(A),

5

or
σmax(R22) = σ1(R22) ≈ σr+1(A),

or both conditions hold. Notice that if σmin(R11)� ε and ‖R22‖ is small, then
the matrix A has numerical rank r, but the converse is not true. In other words,
even if A has (min(m,n)−r) small singular values, it is not guaranteed that any
permutation Π yields a small ‖R22‖. It is easy to show that for any factorization
like (5) the following relations hold

σmin(R11) ≤ σr(A), (6)

σmax(R22) ≥ σr+1(A). (7)

The proof follows is an easy application of the interlacing inequalities for singular
values [26], namely

σk(A) ≥ σk(B) ≥ σk+r+s(A), k ≥ 1,

which hold for any (m− s)× (n− r) submatrix B of A. In fact we have

σmin(R11) = σmin

(
R11

O

)
= σr([QTAΠ]1:m,1:r) ≤ σr(QTAΠ) = σr(A),

σmax(R22) = σmax(O R22) = σ1([QTAΠ]r+1:m,1:n) ≥ σr+1(QTAΠ) = σr+1(A).

We also used the invariance of the singular values under orthogononal transfor-
mations and under the insertion of a zero block, see equations (27-29) in the
Appendix. Ideally, the best rank-revealing QR decomposition is obtained by
the column permutation Π which solves

max
Π

σmin(R11). (8)

However, the problem above clearly has a combinatorial nature. Therefore,
algorithms that compute RRQR usually provide (see, e.g. [8, 20]) at least one
of the following bounds

σmin(R11) ≥ σr(A)

p(n)
, (9)

σmax(R22) ≤ σr+1(A)q(n), (10)

where p(n) and q(n) are low degree polynomials in n. These are worst case
bounds and are usually not sharp. We provide a bound of type (9) in Sec. 3.3.

3.1 QR factorization with column pivoting

Let us introduce the QR factorization with column pivoting proposed by Businger
and Golub [6], which can be labeled as a greedy approach in order to cope with
the combinatorial optimization problem (8). Suppose at the s-th algorithmic

6

step we have already selected s < r well-conditioned columns of A, which are
moved to the leading positions by the permutation matrix Π(s) as follows

AΠ(s) = Q(s)R(s) = Q(s)

(
R

(s)
11 R

(s)
12

R
(s)
22

)
, (11)

where R
(s)
11 is an upper triangular block of size s × s, and the blocks R

(s)
12 and

R
(s)
22 have size s× (n− s) and (m− s)× (n− s) respectively. The block R

(s)
22 is

what is left to be processed, and it is often called the “trailing matrix”. Let us

introduce the following column partitions for R
(s)
12 , R

(s)
22 respectively

R
(s)
12 = (b1 . . .bn−s) ,

R
(s)
22 = (c1 . . . cn−s) .

We aim at selecting, within the n−s remaining columns, that column such that

the condition number of the block R
(s+1)
11 is kept the largest possible. Formally,

we would like to solve

σmin

(
R

(s)
11 bj

cj

)
= max

1≤i≤n−s
σmin

(
R

(s)
11 bi

ci

)
. (12)

Using the following fact

σmin

(
R

(s)
11 bj

cj

)
= σmin

(
R

(s)
11 bj

‖cj‖

)
,

which is a simple consequence of the invariance of singular values under left
multiplication by orthogonal matrices and the insertion of null rows, see (29) in
the Appendix, and using the bound (32), we can approximate (up to a factor√
s+ 1) the smallest singular value as

σmin

(
R

(s)
11 bj

cj

)
≈ min

h

∥∥∥∥∥eT
h

(
R

(s)
11 bj

‖cj‖

)−1
∥∥∥∥∥
−1

,

where eh is the h-th element of the canonical basis of Rs+1.
Using this result, as argued in [8], the maximization problem (12) can be

solved approximately by solving

j = argmax
1≤i≤n−ns

‖cj‖ ≈ argmax
1≤i≤n−ns

σmin

(
R

(s)
11 bi

ci

)
.

The resulting procedure is referred as QR factorization with column pivoting,
and it is presented in Algorithm 2. This algorithm can be efficiently implemented
since the column norms of the trailing matrix can be updated at each iteration
instead of being recomputed from scratch. This can be done [16] by exploiting
the following property

Qa =

(
β
c

)
1

m− 1
⇒ ‖a‖2 = ‖Qa‖2 = β2 + ‖c‖2,

7

Algorithm 2 QR with column pivoting QRP (A)

1: initialize the vector u of squared norms
2: for s = 0, . . . , n− 1 do
3: j = argmaxi[u]s+1:n

4: move the j-th index to the leading position on A and u
5: compute the Householder reflector v(s) w.r.t. [A]s:m,s

6: update the trailing matrix [A]s:m,s+1:n− = v(s)(v(s))T [A]s:m,s+1:n

7: update the partial column norms u
8: end for

which holds for any orthogonal matrix Q and any vector a of order m. Therefore,

once defined the vector u(s) whose entry u
(s)
j is the j-th partial column norm of

AΠ(s), that is the norm of the subcolumn with row indices ranging from m−ns
to m, and initialized u

(1)
j = ‖aj‖2, with 1 ≤ j ≤ n, we can perform the following

update

u
(s+1)
j =

{√
(u

(s)
j)2 − r2

sj , s+ 1 ≤ j ≤ n, 2 ≤ s ≤ n,
0, j < s+ 1,

(13)

where rij is the entry of indices (i, j) in R(s), 1 ≤ i ≤ m, 1 ≤ j ≤ n. The
partial column norm update allows to reduce the operation count from O(mn2)
to O(mn). Actually, the formula (13) cannot be applied as it is because of
numerical cancellation, and it needs to modified, see e.g. [12] for a robust
implementation. A block version of Algorithm 2 has been proposed [23], and it
is currently implemented in LAPACK’s xgeqp3 routine, that we will use in the
numerical section for comparison.

Remark 1. Geometric interpretation: Introduce the following block column

partitioning R(s) = (R
(s)
1 R

(s)
2), Q(s) = (Q

(s)
1 Q

(s)
2), and recall that we have

R
(
Q

(s)
1

)
= R

(
R

(s)
1

)
R
(
Q

(s)
2

)
= R

(
R

(s)
1

)⊥
.

where R(B) denotes the subspace spanned by the columns of a matrix B. Every
unprocessed column of A rewrites as

aj = Q
(s)
1 bj−s +Q

(s)
2 cj−s,

where Q
(s)
1 bj−s and Q

(s)
2 cj−s are the orthogonal projection of aj on R

(
R

(s)
1

)
and R

(
R

(s)
1

)⊥
respectively. The most linearly independent column ai from

the ones already processed can be seen as the one with the largest orthogonal
projection of the complement on the subspace spanned by such columns, namely

max
i≥s

∥∥∥∥PR(
R

(s)
1

)⊥ai

∥∥∥∥ = max
i≥1

∥∥∥Q(s)
2 ci

∥∥∥ .
8

However, the matrix Q(s) is never directly available unless it is explicitly com-
puted. We then settle for the the solution of the maximization problem

max
i≥1
‖ci‖.

3.2 QR factorization with Deviation Maximization pivot-
ing

Consider the partial factorization in eq. (11), and now suppose at the s-th
algorithmic step we have already selected ns, with s ≤ ns < r, well-conditioned

columns of A, so that R
(s)
11 has size ns × ns, while blocks R

(s)
12 and R

(s)
22 have

size ns × (n− ns) and (m− ns)× (n− ns) respectively. The idea is to pick ks,
with ns+1 = ns + ks ≤ r, linearly independent and well-conditioned columns
from the remaining n − ns columns of A, which are also sufficiently linearly
independent from the ns columns already selected, in order to keep the smallest
singular value of the R11 block as large as possible. We aim at selecting those
columns with indices j1, . . . , jks that solve

σmin

(
R

(s)
11 bj1 . . . bjks

cj1 . . . cjks

)
= max

1≤i1,...,iks≤n−ns

σmin

(
R

(s)
11 bi1 . . . biks

ci1 . . . ciks

)
.

(14)
Of course, this maximization problem has the same combinatorial nature as
problem (8), so we rather solve it approximately. We propose to approximate the
indices {j1, . . . , jks

} that solves problem (14) with the indices selected by means
of the Deviation Maximization procedure presented in Algorithm 1 applied to

the trailing matrix R
(s)
22 . For the moment, consider the parameter τ and δ fixed

accordingly to equation (3). More efficient choices will be widely discussed
in Section 5. For sake of brevity, we will denote by B = (bj1 . . .bjks

) and
C = (cj1 . . . cjks

) the matrices made up of the columns selected, and by B̄
and C̄ the matrices made up by the remaining columns. The rest of the block
update, which we detail below, proceeds in a way similar to the recursive block
QR. Let Q̃(s+1) be an orthogonal matrix of order (m− ns) such that(

Q̃(s)
)T

C =

(
T
O

)
∈ R(m−ns)×ks , (15)

where T is an upper triangular matrix of order ks. The matrix Q̃(s+1) is obtained
as a product of ks Householder reflectors, that we represent by mean of the so-
called compact WY form [25] as

Q̃(s) = I− Y (s)W (s)(Y (s))T ,

where Y (s) is lower trapezoidal with ks columns and W (s) is upper triangular of
order ks. This allows us to carry out the update of the rest of trailing matrix,
that is (

Q̃(s)
)T

C̄ =

(
T̄

R
(s+1)
22

)
∈ R(m−ns)×(n−ns−ks), (16)

9

by means of BLAS-3 kernels, for performance efficiency. Denoting by Π̃(s) a
permutation matrix that moves columns with indices j1, . . . , jks to the current
leading positions, we set Π(s+1) = Π(s)Π̃(s) and

Q(s+1) = Q(s)

(
I

Q̃(s)

)
∈ Rm×m,

then the overall factorization of AΠ(s+1) takes the form

Q(s)

(
R

(s)
11 B B̄

C C̄

)
= Q(s+1)

 R
(s)
11 B B̄

T T̄

R
(s+1)
22

 , (17)

where, for the successive iteration, we set

R
(s+1)
11 =

(
R

(s)
11 B

T

)
∈ Rns+1×ns+1 ,

R
(s+1)
12 =

(
B̄
T̄

)
∈ Rns+1×(n−ns+1),

with ns+1 = ns + ks. The resulting procedure is called QR factorisation with
Deviation Maximization pivoting and it presented in Algorithm 3.

Algorithm 3 QR with Deviation Maximization pivoting QRDM(A, τ, δ)

1: set ns = 0 and initialize the vector u of squared norms
2: while ns < n do
3: {j1, . . . , jks} = DM([A]ns+1:m,ns:n, [u]ns+1:n, τ, δ)
4: move columns {j1, . . . , jks

} to the leading positions of A and u
5: for l = 1, . . . , ks do
6: compute the Householder reflector v(ns+l) w.r.t. [A]ns+l:m,ns+l

7: update the remaining columns [A]ns+l:m,ns+l+1:ns+ks
− =

v(ns+l)(v(ns+l))T [A]ns+l:m,ns+l+1:ns+ks

8: end for
9: compute the compact WY representation of v(ns+1), . . . ,v(ns+ks)

10: block update [A]ns+1:m,ns+ks+1:n− =
Y (s) (W (s))T (Y (s))T [A]ns+1:m,ns+ks+1:n

11: update the partial column norms u
12: ns = ns + ks
13: end while

Last, we point out that the partial column norms can be updated at each
iteration also in this case with some straightforward changes of equation (13),
namely

u
(s+1)
j =

√√√√(u

(s)
j)2 −

ns+1∑
l=ns

r2
lj , ns+1 < j ≤ n, ns+1 ≤ n,

0, j ≤ ns+1.

10

The QRP algorithm has the particular feature that the diagonal elements of
the final upper triangular factor R are monotonically non increasing in modulus.
This property cannot be guaranteed by the QRDM algorithm, as by other re-
cently proposed pivoting strategies [9]. In practice, there are small fluctuations
around a non-increasing trend.

3.3 Worst-case bound on the smallest singular value

Let us denote by σ̄(s) the smallest singular value of the computed R
(s)
11 block at

step s, that is

σ̄(s) = σmin

(
R

(s)
11

)
.

Notice that it corresponds exactly to the s-th singular value of R
(s)
11 computed

with the standard column pivoting, while it corresponds to the ns-th singular

value when R
(s)
11 is computed with the Deviation Maximization. Let us first

report from [8] an estimate of σ̄(s+1) for QRP.

Theorem 1. Let R
(s)
11 be the upper triangular factor of order s computed by

QRP. We have

σ̄s+1 ≥ σs+1(A)
σ̄s

σ1(A)

1√
2(n− s)(s+ 1)

.

Before coming to the main result, we introduce the following auxiliary Lemma.

Lemma 2. With reference to the notation used for introducing the block parti-
tion in (17), we have

σmin(T) ≥
√
γ + τ2 − 1√
n− ns+1 + 1

σns+1
(A). (18)

Proof. Consider following column partitions T = (t1 . . . tk), T̄ = (tk+1 . . . tn−ns
),

R
(s+1)
22 = (rk+1 . . . rn−ns), and set rj = 0, for 1 ≤ j ≤ k. Moreover, let

T = {ti,j}, with 1 ≤ i ≤ j ≤ k, and T̄ = {ti,j} with 1 ≤ i ≤ k, 1 ≤ j ≤ n− ns.
First, notice that by eq. (7) we have∥∥∥∥ tk,k tk,k+1, . . . , tk,n−ns

0 R
(s+1)
22

∥∥∥∥ ≥ σns+1
(A).

From eq. (30), we have∥∥∥∥ tk,k tk,k+1, . . . , tk,n−ns

0 R
(s+1)
22

∥∥∥∥2

≤ (n−ns+1+1) max

{
t2k,k, max

j≥k+1

(
‖rj‖2 + t2k,j

)}
.

Since t2k,j ≤ ‖tj‖2, for all 1 ≤ j ≤ n − ns, and computing the maximum on a
larger set of indices we have

max

{
t2k,k, max

j≥k+1

(
‖rj‖2 + t2k,j

)}
≤ max

{
‖tk‖2, max

j≥k+1

(
‖rj‖2 + ‖tj‖2

)}
≤ max

j≥1

(
‖rj‖2 + ‖tj‖2

)
.

11

From equations (15-16), for all 1 ≤ j ≤ n− ns, we have

‖cj‖2 = ‖rj‖2 + ‖tj‖2,

and, finally, since ‖t1‖2 = ‖c1‖2 = maxj ‖cj‖2 and by using Lemma 1, we get∥∥∥∥ tk,k tk,k+1, . . . , tk,n−ns

0 R
(s+1)
22

∥∥∥∥2

≤ (n− ns+1 + 1)‖c1‖2 ≤
n− ns+1 + 1

γ + τ2 − 1
σ2

min(C).

We can conclude by noticing that σmin(T) = σmin(C), since the two matrices
differ by a left multiplication by an orthogonal matrix.

By the interlacing property of singular values, we have

σ̄(s+1) ≤ min

{
σ̄(s), σmin

(
B
T

)}
,

thus the bounds on σ̄(s) and σmin(T) are, by themselves, not a sufficient condi-
tion. Let us introduce the following result, which provides a bound of type (9)
for QRDM.

Theorem 2. Let R
(s)
11 be the upper triangular factor of order ns computed by

QRDM. We have

σ̄(s+1) ≥ σns+1(A)
σ̄(s)

σ1(A)

1√
2(n− ns+1)ns+1

√
γ + τ2 − 1

k2ns
.

Proof. Let us drop the subscript and the superscript on the inverse of R
(s)
11 and

its inverse
(
R

(s)
11

)−1

, which will be denoted as R and R−1 respectively. Then,

the inverse of matrix R
(s+1)
11 is given by(

R
(s+1)
11

)−1

=

(
R−1 −R−1BT−1

T−1

)
.

Let us introduce the following partitions into rows

F = R−1BT−1 =

 fT1
...

fTns

 , R−1 =

 gT
1
...

gT
ns

 , T−1 =

 hT
1
...

hT
k

 .

The idea is to use eq. (32), that is

σ̄(s+1) ≤ min
h

∥∥∥∥eT
h

(
R−1 F

T−1

)∥∥∥∥−1

≤ √ns+1σminσ̄
(s+1),

to estimate the minimum singular value up to a factor
√
ns+1. For 1 ≤ h ≤ ns+1

we have ∥∥∥∥eT
h

(
R−1 F

T−1

)∥∥∥∥2

=

{
‖gh‖2 + ‖fh‖2, h ≤ ns,
‖hh−ns‖2, h > ns.

12

We can bound ‖gh‖ using eq. (32) again, which gives

σ̄(s) ≤ min
h

(
‖gh‖−1

)
≤
√
nsσ̄

(s).

In particular, for every 1 ≤ h ≤ ns, we get

σ̄(s) ≤ min
h

(
‖gh‖−1

)
≤ ‖gh‖−1

,

and thus we have

‖gh‖ ≤=
1

σ̄(s)
=

1

σmin(R)
= σmax(R−1) = ‖R−1‖.

Similarly, we can bound ‖hh−ns
‖ by ‖T−1‖. Let us now concentrate on bounding

‖fh‖. We have

‖fh‖2 ≤ ‖fh‖1 =

k∑
l=1

|fhl| =
k∑

l=1

∣∣∣∣∣
k∑

i=1

[R−1B]hi[T
−1]il

∣∣∣∣∣
=

k∑
l=1

∣∣∣∣∣∣
k∑

i=1

ns∑
j=1

[R−1]hj [B]ji[T
−1]il

∣∣∣∣∣∣
≤

k∑
l=1

k∑
i=1

ns∑
j=1

∣∣[R−1]hj
∣∣ |[B]ji|

∣∣[T−1]il
∣∣

≤
k∑

l=1

k∑
i=1

ns∑
j=1

∥∥R−1
∥∥

max
‖B‖max

∥∥T−1
∥∥

max

= k2ns
∥∥R−1

∥∥
max
‖B‖max

∥∥T−1
∥∥

max

≤ k2ns
∥∥R−1

∥∥ ‖B‖ ∥∥T−1
∥∥

=
k2ns
σ̄(s)

‖B‖
∥∥T−1

∥∥ ,
where we use the following facts ‖x‖2 ≤ ‖x‖1, and ‖A‖max ≤ ‖A‖, see (31).
Moreover, we can write

‖gh‖2 + ‖fh‖2 ≤
1

(σ̄(s))2
+

k4n2
s

(σ̄(s))2
‖B‖2

∥∥T−1
∥∥2

=
σ2

min(T) + k4n2
s ‖B‖

2

(σ̄(s)σmin(T))2
≤ ‖T‖

2 + k4n2
s ‖B‖

2

(σ̄(s)σmin(T))2

≤ 2k4n2
s

(σ̄(s)σmin(T))2
max

{
‖T‖2, ‖B‖2

}
≤ 2k4n2

s

(σ̄(s)σmin(T))2
‖A‖2,

where, in the last inequality, we used the interlacing property and the invariance
under matrix transposition of the singular values. In fact

σ1(A) ≥ σ1

(
B
T

)
= σ1

(
BT TT

)
≥ max {σ1(B), σ1(T)} .

13

Hence, we get
1√

‖gh‖2 + ‖fh‖2
≥ σ̄(s)σmin(T)√

2k2nsσ1(A)
.

If σ̄(s) is a good approximation of σns
(A), we can suppose that σ̄(s)/σns

(A) ≈ 1,
and we can write

√
ns+1σ̄

(s+1) ≥ min

{
min
h
‖hh‖−1,min

h

1√
‖gh‖2 + ‖fh‖2

}

≥ min

{
1,

σ̄(s)

√
2k2nsσ1(A)

}
σmin(T)

=
σ̄(s)

√
2k2nsσ1(A)

σmin(T).

Finally, using Lemma 2, we get

σ̄(s+1) ≥ σns+1(A)
σ̄(s)

σ1(A)

1√
2(n− ns+1)ns+1

√
γ + τ2 − 1

k2ns
,

which is the desired bound.

This shows that even if the leading ns columns have been carefully selected,
so that σ̄(s) is an accurate approximation of σns

(A), there could be a potentially
dramatic loss of accuracy in the estimation of the successive block of singular
values, namely σns+1(A), . . . , σns+1(A), just like for the standard column piv-
oting. In fact, it is well known that failure of QRP algorithm may occur (one
such example is the Kahan matrix [21]), as well as for other greedy algorithms,
but it is very unlikely in practice.

3.4 Termination criteria

In principle, both QRP and QRDM reveal the rank of a matrix. In finite
arithmetic we have (

R̂
(s)
11 R̂

(s)
12

R̂
(s)
22

)
, (19)

where R̂
(s)
ij is the block R

(s)
ij computed in finite representation, for i = 1, 2, j = 2.

If the block R̂
(s)
22 is small in norm, then it is reasonable to say that the matrix

A has rank ns, where ns is the order of the upper triangular block R̂
(s)
11 . Golub

and Van Loan [16] propose the following termination criterion∥∥∥R̂(s)
22

∥∥∥ ≤ ε1 ‖A‖ , (20)

where ε1 is a parameter depending on the machine precision ε. Notice that even
if an R22 block with small norm implies numerical rank-deficiency, the converse

14

is not true in general: an example is the Kahan matrix [21]. Since the 2-norm
is not directly available, we make use of the inequalities (30). Let us write the

column partition R̂
(s)
22 = (ĉ1 . . . ĉn−ns

). We have∥∥∥R̂(s)
22

∥∥∥ ≤ √n− ns max
i
‖ĉi‖ , max

i
‖ai‖ ≤ ‖A‖ .

Therefore, the stopping criterion (20) holds if

√
n− ns max

i
‖ĉi‖ ≤ ε1 max

i
‖ai‖ . (21)

Notice that the contrary does not hold. In Section 5 we test this practical
stopping criterion (21) and discuss the following two choices:

ε1 = ε n, (22)

ε1 = ε
√
n. (23)

4 Implementation issues

In this section we discuss implementation aspects of the QRDM procedure. In
particular, we address the following issues

1. the practical computation of the candidate set I defined in (2);

2. the efficient computation of the cosine matrix Θ defined in (1);

3. make a less restrictive choice of the parameters τ and δ (3), without af-
fecting the robustness of the computed QR;

4. the structure of the pivoting, which has a significant impact on the cost
of the algorithm.

Let us first focus on some details of the implementation of the Deviation Max-
imization presented in Algorithm 1.

The candidate set I can be computed with a fast sorting algorithm, e.g.
quicksort, applied to the array of partial column norms.

The most expensive operation in Algorithm 1 is the computation of the
cosine matrix in step 4. If we write the matrix A by columns A = (c1 . . . cn),
then the cosine matrix Θ has entries θij = cTi cj‖ci‖−1‖cj‖−1, for i, j ∈ I.
Therefore we have

Θ = D−1[A]TI [A]ID
−1,

where D = diag(‖cj‖), with j ∈ I. The matrix Θ is symmetric, thus we only
need its upper (lower) triangular part. This can be computed in two ways

(i) we first form the product U1 = [A]ID
−1, and then we compute Θ = UT

1 U1;

(ii) we first form the product U2 = [A]TI [A]I , and then we compute Θ =
D−1U2D

−1.

15

The former approach requires m × n additional memory to store U1 and it
requires m2k2

max flops to compute U1 and (2m − 1)kmax(kmax − 1)/2 flops for
the upper triangular part of UT

1 U1, while the latter does not require additional
memory since the matrix U2 can be stored in the same memory space used for
the cosine matrix Θ, and it requires (2m− 1)kmax(kmax − 1)/2 flops the upper
triangular part of U2 and kmax(kmax − 1) flops for the upper triangular part of
D−1U2D

−1. Therefore, we recommend the second approach, even if it requires
to write an ad hoc low level routine which is not implemented in the BLAS
library.

In order to limit the cost and the amount of additional memory of Algorithm
1, we propose a restricted version of the Deviation Maximization pivoting. If
the candidate is given by I = {jl : l = 1, . . . , kmax}, we limit its cardinality to
be smaller or equal to a machine dependent parameter kDM , that is

I = {jl : l = 1, . . . ,min(kmax, kDM)}. (24)

We refer to the value kDM as block size, and we discuss its value in terms of
achieved performances in Section 5.

Notice that the Deviation Maximization requires the inversion of the diag-
onal matrix D = diag(‖cj‖), with j ∈ I This operation may cause numerical
instabilities when ‖cj‖ is close to the working precision ε, which is likely to be
true when the decomposition has revealed the numerical rank, i.e. ns ≥ r. In
such a case, the computation of D−1 would be totally inaccurate. Hence, we
require

max
i
‖ci‖ > O(ε), (25)

in order to carry out the Deviation Maximization procedure.
We now describe the most crucial aspects of a practical implementation

of the rank-revealing QRDM presented in Algorithm 3. First, the Deviation
Maximization block pivoting cannot be carried out when the maximum partial
column norm of the trailing matrix is of the order of the working precision ε,
that is when (25) holds. In such case, a practical implementation switches from
the Deviation Maximization block pivoting to another one, e.g. the standard
column pivoting. Let us now detail how to choose τ and δ. In practice, as we
detail in Section 5, it is desirable to relax the requirements given by Lemma 2
on the choice of the values for τ and δ, since their theoretical bounds turn out
to be very demanding with a consequent limitation of the performance of the
overall factorization. On the other side, if we settle for any choice of τ, δ with
1 ≥ τ, δ ≥ 0, then the Deviation Maximization may identify a set of numerically
linear dependent columns. In order to overcome this issue, we incorporate an
additional check in the Householder procedure at step 9 of Algorithm 3. The
modified procedure is presented in Algorithm 4.

Recall that the columns chosen by the Deviation Maximization at the s-th
algorithmic step satisfy

‖[A]ns:m,ns+j‖ ≥ τ max
i>ns

‖[A]ns:m,i‖ =: εs, (26)

16

Algorithm 4 Modified QR with Deviation Maximization QRDM2(A, τ, γ, ε)

1: set ns = 0 and initialize the vector u of squared norms
2: while ns < n do
3: {j1, . . . , jks

} = DM([A]ns+1:m,ns:n, [u]ns+1:n, τ, γ)
4: move columns {j1, . . . , jks

} to the leading positions of A and u
5: for l = 1, . . . , ks do
6: compute the Householder reflector v(ns+l) w.r.t. [A]ns+l:m,ns+l

7: update the remaining columns [A]ns+l:m,ns+l+1:ns+ks− =
v(ns+l)(v(ns+l))T [A]ns+l:m,ns+l+1:ns+ks

8: if l + 1 < ks and ‖[A]ns+l+1:m,ns+l+1‖ < εs then break
9: end if

10: end for
11: compute the compact WY representation of v(ns+1), . . . ,v(ns+l)

12: update the trailing matrix [A]ns+1:m,ns+ks+1:n− =
Y (s) (W (s))T (Y (s))T [A]ns+1:m,ns+ks+1:n

13: update the partial column norms u
14: ns = ns + l
15: end while

for all j ∈ J . The prior check introduced at step 8 breaks the Householder
procedure when a partial column norm ‖[A]ns+l:m,ns+l‖ becomes smaller than
εs defined above, in other words, if the l-th column is not sufficiently linearly
independent from the subspace spanned by the first l− 1 columns already pro-
cessed. Different choices of εs are possible, e.g. a small and constant threshold.
However, numerical tests show that the choice (26) works well in practice. In
this case, the Householder reduction to triangular form terminates with l < k
Householder reflectors, and the algorithm continues with the computation and
the application of the compact WY representation of these l reflectors. At the
next iteration, the pivoting strategy moves the rejected column from the leading
position, if necessary.

As we show in Section 5, this break mechanism enables us to choose τ and
δ rather simply and to obtain the best results in execution times.

Last, we discuss the structure of the permutations employed in the QR
fectorization, which has a significant impact on the cost of the algorithm. The
structure of the column exchanges determines the structure of Π(s) and hence the
cost of the QR factorization update. Recall at the s-th algorithmic step we have
to move columns of indices j1, . . . , jks to the leading positions ns+1, . . . , ns+ks.
We prefer permutations consisting of a sequence of cyclic shifts, that is a cyclic
permutation involving only two elements and fixing all the others. In this way,
the application of Π(s) requires only m additional memory slots, that is the
memory needed to swap two columns. Obviously, the less columns to swap the
less the work involved in memory communications. A strategy that can easily
be implemented consists in swapping the ns+i-th column with the ji-th column,
for i = 1, . . . , ks.

17

5 Numerical experiments

In this section we discuss the numerical accuracy of QRDM and compare it with
QP3 and the SVD decomposition. Particular importance is given to the values
on the diagonal of the upper triangular factor R of the RRQR factorization,
which are compared with the singular values of the R11 block and with the
singular values of the input matrix A. We use the implementation of QP3
provided by LAPACK’s xgeqp3 routine. The tests are carried out on a subset
of matrices from the San Jose State University Singular Matrix Database, which
were used in other previous papers on the topic, see e.g. [9, 18]. We show results
coming from two subsets of this collection, that we call:

• “small matrices”, 261 numerically singular matrices with m ≤ 1024, n ≤
2048, whose indices where obtained with the following Matlab pseudocode

1: ind = SJget;
2: index = find (index.ncols> 32 & ind.ncols<= 2048 & ind.nrows<=

1024);
3: [~, k] = sort (ind.ncols (index));
4: index = index(k);

• “big matrices”, 247 numerically singular matrices with m > 1024, n >
2048, whose indices where obtained with the following Matlab pseudocode

1: ind = SJget;
2: index = find (index.ncols> 32 & ind.ncols> 2048 & ind.nrows> 1024

);
3: [~, k] = sort (ind.ncols (index));
4: index = index(k(1:247));

For each matrix A, we denote by σi the i-th singular value of A computed
with the LAPACK’s xgejsv routine, and by nr the numerical rank computed
with the option JOBA=’A’: in this case, small singular values are comparable
with round-off noise and the matrix is treated as numerically rank deficient.
As the pivoting used in QRDM does not guarantee that the diagonal values of
the factor R are monotonically non-increasing in modulus, for each matrix we
denote by di the i-th largest value among the first nr diagonal entries consid-
ered with positive sign. The results provided by QP3 for the two collections are
summarised in Figures 1 and 2. We show that the order of magnitude of the
ratios di/σi ranges from 10−1 to 101 for the “small matrices” (Fig. 1a) and “big
matrices” collections (Fig. 1b), i.e. the positive diagonal value di approximate
the corresponding singular value σi up to a factor 10, for i = 1,≤, nr. Moreover,
we compare σi(R11), that is the i-th singular value of R11 = [R]1:nr,1:nr

com-
puted by LAPACK’s xgejsv, with σi, namely the corresponding singular value
of A, by taking into account the ratios σi(R11)/σi for the “small matrices” (Fig.
2b) and “big matrices” collections (Fig. 2b). These results confirm that QP3
provides an approximation of the singular values up to a factor 10.

Before providing similar results for QRDM, let us discuss the sensitivity of
parameters τ and δ to the rank-revealing property (9). To this aim, we set a

18

0 50 100 150 200 250

10 1

100

101

min
max

(a)

0 50 100 150 200 250

10 1

100

101

min
max

(b)

Figure 1: Ratio di/σi, minimum (red) and maximum (blue) values for QP3 on
the set “small matrices” (a) and “big matrices” (b).

0 50 100 150 200 250

10 1

100

min
max

(a)

0 50 100 150 200 250

10 1

100

min
max

(b)

Figure 2: Ratio σi(R11)/σi, minimum (red) and maximum (blue) values for
QP3 on the set “small matrices” (a) and “big matrices” (b).

19

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

10.5

9.0

7.5

6.0

4.5

3.0

1.5

0.0

(a)

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

12.0

12.5

13.0

13.5

14.0

15.0

(b)

Figure 3: Order of magnitude of the minimum min(ri/σi) over all matrices (a)
and cumulative execution times for QRDM (b) in function of the parameters τ
and δ on the “small matrices” data set.

grid G of values G(i, j) = (δi, τj) = (0.05 i, 0.05 j), with i, j = 0, . . . , 20, and
we consider the R factor obtained by QRDM for each matrix in the “small
matrices” collection and for each choice δ = δi, τ = τj .

Figure 3a shows the order of magnitude of the minimum among all matrices
of the minimum ratio min1≤i≤nr ri/σi for each grid point of G. We see that the
positive diagonal elements provide an approximation up to a factor 10 of the
singular values for a wide range of parameters, corresponding to the light gray
region: in practice, it is sufficient to avoid the extreme cases τ = 0 and δ = 1.
Indeed, the presence of a wrong diagonal element inR, i.e. too small with respect
to the corresponding singular value, is avoided thanks to the additional check
proposed in (26), which possibly breaks the Householder triangularization. This
suggests that any choice of 1 ≥ τ > 0 and 1 > δ ≥ 0 may lead to a rank-revealing
QR decomposition. In this way, even a greedy setting of the algorithm is viable:
if τ is almost zero and δ near one, the Deviation Maximization pivoting collects
as much columns as possible. Therefore, for an optimal parameters choice, we
look at execution times.

Figure 3b shows the cumulative execution times for all tests in the “small

20

0 50 100 150 200 250

10 1

100

101

min
max

(a)

0 50 100 150 200 250

10 1

100

101

102

min
max

(b)

Figure 4: Ratio di/σi, minimum (red) and maximum (blue) values for QRDM
on the set “small matrices” (a) and “big matrices” (b).

matrices” collection for each grid point of G. It is evident that best performances
are obtained toward the right-bottom corner, in correspondence of the dark gray
region, confirming that a greedy approach is convenient. However, a too greedy
choice of the parameters may yield less accurate ratios di/σi in a very few cases.
Hence, we suggest a safer choice: from now on we set τ = 0.15 and δ = 0.9,
which are the optimal values for the validation set here considered.

Figures 4 and 5 summarize the results provided by QRDM for the two col-
lections with this parameters’ choice. In particular, the positive diagonal entries
approximate the singular values up to a factor 10 for all matrices in the “small
matrices” (Fig. 4a) and “big matrices” (Fig. 4b) collections, while the singular
values of R11 provide an approximation up to a factor 102 for few matrices in
the “small matrices” (Fig. 5a) and “big matrices” (Fig. 5b) collections.

Let us now consider QRDM with a stopping criterion. We show the ac-
curacy in the determination of the numerical rank, and the benefits in terms
of execution times, when the matrix rank is much smaller than its number of
columns. Recall that QRDM switches to the scalar pivoting when the partial
column norms are not sufficiently large (25), affecting the algorithm’s perfor-
mance. We consider the stopping criterion in (21)-(22): the numerical rank is
this case is given by the number of columns processed by QRDM and we denote
it by nQRDM

r .
Figure 6 shows the ratio

(
nQRDM
r − nr

)
/nr, where nr is the number of sin-

gular values larger than εn‖A‖ = εnσ1, for all matrices in the “small matrices”
(Fig. 6a) and “big matrices” (Fig. 6a) collections. The computed rank is ac-
curate in nearly all cases. We also considered the stopping criterion in (21)
with the choice (23), which turned out to be less accurate. Figure 6a shows
a case in which nQRDM

r overestimates nr with a relative error of about 45%.

21

0 50 100 150 200 250

10 2

10 1

100

min
max

(a)

0 50 100 150 200 250

10 2

10 1

100

min
max

(b)

Figure 5: Ratio σi(R11)/σi, minimum (red) and maximum (blue) values for
QRDM on the set “small matrices” (a) and “big matrices” (b).

This is a pathological case, however. The matrix involved shows a gap in the
singular values distribution and, immediately after, a group of singular values
just below the value εn‖A‖. The corresponding diagonal entries of the matrix
R obtained by QRDM show the same gap, but the stopping criterion (21)-(22),
which approaches the quantity εn‖A‖ from below, does not detect so accurately
the crossing of the threshold. Anyway, since the diagonal entries of R describe
well the corresponding gap in the singular values, even in this case, the ap-
plications can correctly truncate the R factor in post-processing and form the
corresponding Q factor.

Finally, we compare the performances of QP3 with those of QRDM in terms
of their execution times. Figure 7 shows the speedup of QRDM over QP3,
namely the ratio tQP3/tQRDM , where tQP3 and tQRDM are the execution times
(in seconds) of QP3 and QRDM respectively, in function of tQP3. We see
that QRDM can achieve an average speedup of 4× for medium/large matrices
(corresponding to higher execution times). This result is a consequence of a
higher BLAS-3 fraction of work provided by QRDM against QP3. Indeed,
in order to compute the block Householder reflector, QP3 must update the
partial column norms and identifies the next pivot by computing the maximum
column norm, while QRDM selects a block of pivot columns at once. The
former strategy relies on BLAS-2 operations, while the latter mostly on BLAS-
3 operations.

Moreover, the stopping criterion gives an additional advantage for matrices
whose numerical rank is much smaller than their number of columns. It may
also be interesting to consider a comparison with an implementation of QP3
with the same stop criterion, but this is beyond the scope of the present work.

Last, let us discuss briefly the effect of the block size kDM introduced to

22

0 50 100 150 200 250
0.00

0.25

0.45

(a)

0 50 100 150 200 250
0.10

0.05

0.00

0.05

(b)

Figure 6: relative error on the computed numerical rank for QRDM on the set
“small matrices” (a) and “big matrices” (b).

10 1 100 101 102

time QP3 (s)

0

2

4

6

8

10

sp
ee

du
p

time QP3/QRDM
time QP3/QRDM with stop

Figure 7: Execution time (s) of QP3 vs the ratio between the execution times
of QP3 and QRDM (red) or QRDM with stop criterion (blue).

23

limit the cardinality of the candidate set in equation (24). This parameter
depends on the specific architecture, mainly in terms of cache-memory size,
and typical values are kDM = 32, 64, 128. We observed that there is an optimal
value of kDM , in sense that it gives the smallest for a fixed experimental setting,
and its computation is similar to the well-known BLAS block size computation
practice, which is out of scope of this paper. For sake of clarity we say that
on our personal computer we observed the optimal value kDM = 64, but other
choices gave similar performances, e.g. kDM = 32.

6 Conclusions

In this work we have presented a new subset selection strategy we called “Devi-
ation Maximization”. Our method relies on cosine evaluation in order to select
a subset of sufficiently linearly independent vectors. Despite this strategy is not
sufficient by itself to identify a maximal subset of linearly independent columns
for a given numerically rank deficient matrix, it can be adopted as a column piv-
oting strategy. In this work we introduced the Rank-Revealing QR factorization
with Deviation Maximization pivoting, briefly called QRDM, and we compared
it with the Rank-Revealing QR factorization with standard column pivoting,
briefly QRP. We have provided a theoretical worst case bound on the smallest
singular value for QRDM and we have shown it is similar to available results
for QRP. Extensive numerical experiments confirmed that QRDM reveals the
rank similarly to QRP and provides a good approximation of the singular val-
ues obtained with LAPACK’s xgejsv routine. Moreover, we have shown that
QRDM has better execution times than those of the BLAS-3 version of QRP
implemented in LAPACK’s xgeqp3 routine in a large number of test cases. The
software implementation of QRDM used in this article is available at the URL:
https://github.com/mdessole/qrdm.

Our future work will focus on applying the Deviation Maximization as pivot-
ing strategy to other problems which require column selection, e.g. constrained
optimization problems, on which the authors successfully experimented a pre-
liminary version in the context of active set methods for NonNegative Least
Squares problems, see [10, 11].

References

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Don-
garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and
D. Sorensen. LAPACK Users’ Guide. Society for Industrial and Applied
Mathematics, Philadelphia, PA, third edition, 1999. ISBN 0-89871-447-8
(paperback).

[2] C. Bischof and P. Hansen. A block algorithm for computing rank-revealing
QR factorizations. Numerical Algorithms, 2:371–391, 10 1992. doi: 10.
1007/BF02139475.

24

https://github.com/mdessole/qrdm

[3] C. Bischof and G. Quintana-Ort́ı. Computing Rank-Revealing QR Fac-
torizations of Dense Matrices. ACM Trans. Math. Softw., 24:226–253, 06
1998. doi: 10.1145/290200.287637.

[4] C. Bischof and G. Quintana-Ort́ı. Algorithm 782: Codes for Rank-
Revealing QR Factorizations of Dense Matrices. ACM Transactions on
Mathematical Software, 24:254–257, 07 1998. doi: 10.1145/290200.287638.

[5] J. R. Bischof. A block QR factorization algorithm using restricted pivoting.
In Supercomputing ’89:Proceedings of the 1989 ACM/IEEE Conference on
Supercomputing, pages 248–256, 1989. doi: 10.1145/76263.76290.

[6] P. Businger and G. H. Golub. Linear Least Squares Solutions by House-
holder Transformations. Numer. Math., 7(3):269–276, June 1965. ISSN
0029-599X. doi: 10.1007/BF01436084.

[7] T. F. Chan. Rank revealing QR factorizations. Linear Algebra and its
Applications, 88-89:67 – 82, 1987. ISSN 0024-3795. doi: https://doi.org/
10.1016/0024-3795(87)90103-0.

[8] S. Chandrasekaran and I. C. F. Ipsen. On Rank-Revealing Factorisations.
SIAM Journal on Matrix Analysis and Applications, 15(2):592–622, 1994.
doi: 10.1137/S0895479891223781.

[9] J. Demmel, L. Grigori, M. Gu, and H. Xiang. Communication Avoiding
Rank Revealing QR Factorization with Column Pivoting. SIAM Journal
on Matrix Analysis and Applications, 36:55–89, 01 2015. doi: 10.1137/
13092157X.

[10] M. Dessole, F. Marcuzzi, and M. Vianello. Accelerating the Lawson-Hanson
NNLS solver for large-scale Tchakaloff regression designs. Dolomites Re-
search Notes on Approximation, 13:20 – 29, 2020. ISSN 2035-6803. doi:
http://dx.doi.org/10.14658/PUPJ-DRNA-2020-1-3.

[11] M. Dessole, F. Marcuzzi, and M. Vianello. dCATCH—A Numerical Pack-
age for d-Variate Near G-Optimal Tchakaloff Regression via Fast NNLS.
Mathematics, 8, 7 2020. doi: https://doi.org/10.3390/math8071122.

[12] Z. Drmač and Z. Bujanović. On the Failure of Rank-Revealing QR Factor-
ization Software – A Case Study. ACM Trans. Math. Softw., 35(2), July
2008. ISSN 0098-3500. doi: 10.1145/1377612.1377616.

[13] J. A. Duersch and M. Gu. Randomized QR with Column Pivoting. SIAM
Journal on Scientific Computing, 39(4):C263–C291, 2017. doi: 10.1137/
15M1044680.

[14] L. V. Foster. Rank and null space calculations using matrix decomposition
without column interchanges. Linear Algebra and its Applications, 74:47–
71, 1986. ISSN 0024-3795. doi: https://doi.org/10.1016/0024-3795(86)
90115-1.

25

[15] G. Golub. Numerical Methods for Solving Linear Least Squares Problems.
Numer. Math., 7(3):206–216, June 1965. ISSN 0029-599X. doi: 10.1007/
BF01436075.

[16] G. Golub and C. Van Loan. Matrix Computations (4th ed.). Johns Hop-
kins Studies in the Mathematical Sciences. Johns Hopkins University Press,
2013. ISBN 9781421407944.

[17] G. Golub, V. Klema, and G. W. Stewart. Rank degeneracy and least
squares problems. Technical Report STAN-CS-76-559, Department of Com-
puter Science, Stanford University, 1976.

[18] M. Gu and S. C. Eisenstat. Efficient Algorithms for Computing a Strong
Rank-Revealing QR Factorization. SIAM Journal on Scientific Computing,
17(4):848–869, 1996. doi: 10.1137/0917055.

[19] P. C. Hansen. Rank-Deficient and Discrete Ill-Posed Problems: Numerical
Aspects of Linear Inversion. Society for Industrial and Applied Mathemat-
ics, USA, 1999. ISBN 0898714036.

[20] Y. P. Hong and C.-T. Pan. Rank-Revealing QR Factorizations and the
Singular Value Decomposition. Mathematics of Computation, 58(197):213–
232, 1992. ISSN 00255718, 10886842.

[21] W. Kahan. Numerical linear algebra. Canadian Mathematical Bulletin, 9:
757–801, 1966.

[22] P. Martinsson. Blocked rank-revealing QR factorizations: How randomized
sampling can be used to avoid single-vector pivoting. 05 2015.

[23] G. Quintana-Ort́ı, X. Sun, and C. H. Bischof. A BLAS-3 Version of the QR
Factorization with Column Pivoting. SIAM Journal on Scientific Comput-
ing, 19(5):1486–1494, 1998. doi: 10.1137/S1064827595296732.

[24] M. Radons. Direct solution of piecewise linear systems. Theoretical Com-
puter Science, 626:97–109, 2016. ISSN 0304-3975. doi: https://doi.org/10.
1016/j.tcs.2016.02.009.

[25] R. Schreiber and C. VanLoan. A Storage-Efficient WY Representation for
Products of Householder Transformations. SIAM Journal on Scientific and
Statistical Computing, 10, 02 1989. doi: 10.1137/0910005.

[26] R. Thompson. Principal submatrices IX: Interlacing inequalities for sin-
gular values of submatrices. Linear Algebra and its Applications, 5(1):
1–12, 1972. ISSN 0024-3795. doi: https://doi.org/10.1016/0024-3795(72)
90013-4.

[27] J. Varah. A lower bound for the smallest singular value of a matrix. Linear
Algebra and its Applications, 11(1):3 – 5, 1975. ISSN 0024-3795. doi:
https://doi.org/10.1016/0024-3795(75)90112-3.

26

[28] J. Xiao, M. Gu, and J. Langou. Fast Parallel Randomized QR with Column
Pivoting Algorithms for Reliable Low-Rank Matrix Approximations. pages
233–242, 12 2017. doi: 10.1109/HiPC.2017.00035.

A Auxiliary results

For sake of completeness, let us list in this appendix some useful facts we often
used in this work. In order to help the reader, some results are stated together
with the proof, others are simply reported and referenced.

A.1 About Singular Values

Let A be an m×n matrix, and recall that the singular values of A are the roots
of the largest min(m,n) eigenvalues of ATA or AAT . This is quite evident using
the SVD decomposition A = UΣV T , where U and V are unitary matrices of
order m and n respectively, and Σ is an m×n pseudo-diagonal matrix (its extra-
diagonal elements are null). Since ATA = V ΣT ΣV T and AAT = UΣΣTUT ,
where ΣT Σ and ΣΣT are diagonal matrices of order n and m respectively, but
they clearly share the same diagonal elements up to index min(m,n). For any
orthogonal matrix Q of order m, we have

ATA = ATQTQA = (QA)TQA, (27)

therefore the singular values of A and those of QA are equal. On the other
hand, if Q is an orthogonal matrix of order n, we have

AAT = AQQTA = AQ(AQ)T . (28)

This holds in particular for any permutation matrix Π, hence column or row
permutations do not change the singular values of a matrix. We also have(

AT OT
)(A

O

)
=
(
OT AT

)(O
A

)
= ATA+ OTO = ATA, (29)

hence the singular values of a matrix do not change if we add a null block of
rows or columns to a matrix A.

Let us now list and prove some inequalities involving the 2-norm of a matrix
A = (a1 . . .an).

Lemma 3. For any matrix A we have

max
i
‖ai‖2 ≤ ‖A‖2 ≤

√
nmax

i
‖ai‖2. (30)

Proof. Let ei be the i-th element of the canonical basis of Rn. Then Aei = ai,
and the left-hand inequality is proved. For the right-hand inequality, consider
x ∈ Rn, then

Ax =
∑

xiai ⇒ ‖Ax‖2 ≤
∑
|xi|‖ai‖2.

27

Apply Cauchy-Schwarz inequality and take ‖x‖ = 1 to conclude

‖Ax‖2 ≤ ‖x‖2
√∑

i

‖ai‖22 ≤
√
nmax

i
‖ai‖2.

The followings are easy consequences of the result above.

Corollary 1. For any matrix A we have

‖A‖max ≤ ‖A‖2 ≤
√
mn‖A‖max. (31)

Proof. Let ai be the i-th column of A. Then we have

‖ai‖ =
√
a2
i1 + · · ·+ a2

im ≤
√
mmax

j

√
a2
ij =

√
mmax

j
|aij |,

and, for any 1 ≤ j ≤ m, we have

‖ai‖ ≥
√
a2
ij = |aij |.

Apply these inequalities to (30) to conclude.

Corollary 2. If A is a nonsingular and its inverse is partitioned into rows as

A−1 =

 bT
1
...

bT
n

 ,

then
σmin(A) ≤ min

i
(‖bi‖−1

2) ≤
√
nσmin(A). (32)

Proof. The Lemma above applied to A−T yields

max
i
‖bi‖2 ≤ ‖A−T ‖2 ≤

√
nmax

i
‖bi‖2, (33)

from which we deduce the left-hand inequality

min
i

(‖bi‖−1
2) ≥ 1

‖A−T ‖2
=

1

‖A−1‖2
= σmin(A). (34)

For the right-hand inequality, consider x ∈ Rn, then

‖A−1x‖22 =

∥∥∥∥∥∥∥
bT

1 x
...

bT
nx

∥∥∥∥∥∥∥
2

2

=
∑
i

(
bT
i x
)2 ≤∑

i

‖bi‖22 ‖x‖
2
2 ,

28

where we used Cauchy-Schwarz inequality. We have

‖A−1‖22 = max
‖x‖2=1

‖A−1x‖22 ≤ max
‖x‖2=1

∑
i

‖bi‖22 ‖x‖
2
2 =

∑
i

‖bi‖22 ≤ nmax
i
‖bi‖22 ,

from which we deduce

min
i

(‖bi‖−1
2) ≥

√
n

‖A−1‖2
=
√
nσmin(A).

A.2 About Strictly Diagonally Dominant matrices

A matrix A is said to be Strictly Diagonally Dominant (SDD) by rows if

|aii| >
∑
j 6=i

|aij |,

for all i. We say A is SDD by columns if AT is SSD by rows. The following
result is taken from [24].

Lemma 4. Let Θ = I− S, with ‖S‖∞ < 1
2 . Then Θ−1 exists, it has a positive

diagonal and it is strictly diagonally dominant.

Proof. In this case Neumann series converges, and we have

Θ̄ = Θ−1 =

∞∑
k=0

(I−Θ)k =

∞∑
k=0

Sk = I +

∞∑
k=1

Sk, (35)

hence

max
i

∑
j

|θ̄|ij =
∥∥Θ̄
∥∥
∞ =

∥∥∥∥∥I +

∞∑
k=1

Sk

∥∥∥∥∥
∞

≤ 1 +

∥∥∥∥∥
∞∑
k=1

Sk

∥∥∥∥∥
∞

< 2,

since
∥∥∑∞

k=1 S
k
∥∥
∞ ≤

∑∞
k=1

∥∥Sk
∥∥
∞ ≤

∑∞
k=1 ‖S‖

k
∞ <

∑∞
k=1

1
2

k
= 1. Moreover,

we also have that

1 >

∥∥∥∥∥
∞∑
k=1

Sk

∥∥∥∥∥
∞

= max
i

∑
j

∣∣∣∣∣
∞∑
k=1

Sk
ij

∣∣∣∣∣ ≥∑
j

∣∣∣∣∣
∞∑
k=1

Sk
ij

∣∣∣∣∣ ≥
∣∣∣∣∣
∞∑
k=1

Sk
ij

∣∣∣∣∣ ,
for all choices of i, j. Considering eq. (35) entrywise, we get

θ̄ij =

(∞∑
k=0

Sk

)
ij

= Iij +

∞∑
k=1

Sk
ij ,

29

implying that θ̄ii > 0. Moreover, we have

θ̄ii −
∑
j 6=i

∣∣θ̄ij∣∣ = 1 +

∞∑
k=1

Sk
ii −

∑
j 6=i

∣∣∣∣∣
∞∑
k=1

Sk
ij

∣∣∣∣∣
>
∑
j

∣∣∣∣∣
∞∑
k=1

Sk
ij

∣∣∣∣∣+

∞∑
k=1

Sk
ii −

∑
j 6=i

∣∣∣∣∣
∞∑
k=1

Sk
ij

∣∣∣∣∣
=
∑
j 6=i

(∣∣∣∣∣
∞∑
k=1

Sk
ij

∣∣∣∣∣−
∣∣∣∣∣
∞∑
k=1

Sk
ij

∣∣∣∣∣
)

+

∣∣∣∣∣
∞∑
k=1

Sk
ii

∣∣∣∣∣+

∞∑
k=1

Sk
ii

=

∣∣∣∣∣
∞∑
k=1

Sk
ii

∣∣∣∣∣+

∞∑
k=1

Sk
ii ≥ 0,

therefore Θ̄ is a strictly diagonally dominant matrix with a positive diagonal.

Corollary 3. Let A = α(I− S), with α > 0 and ‖S‖∞ < 1
2 . Then A−1 exists,

it has a positive diagonal and it is strictly diagonally dominant.

Proof. Apply Lemma 4 to I−S, then (I−S)−1 is SDD with a positive diagonal,
and so is α−1(I− S)−1 = A−1.

Let us state some results, for the proof see [27]. Let A be SDD by rows, and
set α = mini |aii| −

∑
j 6=i |aij | > 0. Then

‖A−1‖ < 1

α
⇒ ‖A−1‖−1 = σmin(A) > α. (36)

If A is SDD both by rows and columns, and β = minj |ajj | −
∑

i 6=j |aij | > 0,
then

‖A−1‖−1 = σmin(A) ≥
√
αβ.

If A is block diagonally dominant, i.e.

A = {Aij} , 1 ≤ i, j ≤ n ‖Aii‖−1
∞ >

∑
j 6=i

‖Aij‖∞,

and α = mini ‖Aii‖−1
∞ −

∑
j 6=i ‖Aij‖∞, then

‖A−1‖∞ <
1

α
.

Lemma 5. Let A be an n × n strictly diagonally dominant matrix, with γ =
mini 1 −

∑
j 6=i |aij/aii| > 0. Let D = diag(d1, . . . , dn), and let 1 ≥ τ > 0 such

that |di| ≥ τ d̄ > 0, where d̄ = maxi |di| > 0, for all i. The matrix DAD is SDD
if γ > 1− τ2.

30

Proof. We have (DAD)ij = didjaij . For all 1 ≤ i ≤ k, we have∑
j 6=i

|didjaij | = |di|
∑
j 6=i

|djaij | ≤ |di|d̄
∑
j 6=i

|aij | ≤ d̄2
∑
j 6=i

|aij |,

and hence

d2
i |aii| −

∑
j 6=i

|didjaij | ≥ τ2d̄2|aii| − d̄2
∑
j 6=i

|aij |

= d̄2

τ2|aii|+ |aii|(1− τ2)− |aii|(1− τ2)−
∑
j 6=i

|aij |

= d̄2|aii|(γ − (1− τ2)) > 0,

where the last inequality holds iff

γ > 1− τ2.

31

	1 Introduction
	1.1 Notation

	2 Subset selection by Deviation Maximization
	3 Rank-Revealing QR decompositions
	3.1 QR factorization with column pivoting
	3.2 QR factorization with Deviation Maximization pivoting
	3.3 Worst-case bound on the smallest singular value
	3.4 Termination criteria

	4 Implementation issues
	5 Numerical experiments
	6 Conclusions
	A Auxiliary results
	A.1 About Singular Values
	A.2 About Strictly Diagonally Dominant matrices

