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a b s t r a c t 

Convolutional neural networks (CNNs) are state-of-the-art computer vision techniques for various tasks, 

particularly for image classification. However, there are domains where the training of classification mod- 

els that generalize on several datasets is still an open challenge because of the highly heterogeneous data 

and the lack of large datasets with local annotations of the regions of interest, such as histopathology 

image analysis. Histopathology concerns the microscopic analysis of tissue specimens processed in glass 

slides to identify diseases such as cancer. Digital pathology concerns the acquisition, management and 

automatic analysis of digitized histopathology images that are large, having in the order of 10 0 ′ 0 0 0 2 
pixels per image. Digital histopathology images are highly heterogeneous due to the variability of the im- 

age acquisition procedures. Creating locally labeled regions (required for the training) is time-consuming 

and often expensive in the medical field, as physicians usually have to annotate the data. Despite the 

advances in deep learning, leveraging strongly and weakly annotated datasets to train classification mod- 

els is still an unsolved problem, mainly when data are very heterogeneous. Large amounts of data are 

needed to create models that generalize well. This paper presents a novel approach to train CNNs that 

generalize to heterogeneous datasets originating from various sources and without local annotations. The 

data analysis pipeline targets Gleason grading on prostate images and includes two models in sequence, 

following a teacher/student training paradigm. The teacher model (a high-capacity neural network) auto- 

matically annotates a set of pseudo-labeled patches used to train the student model (a smaller network). 

The two models are trained with two different teacher/student approaches: semi-supervised learning and 

semi-weekly supervised learning. For each of the two approaches, three student training variants are pre- 

sented. The baseline is provided by training the student model only with the strongly annotated data. 

Classification performance is evaluated on the student model at the patch level (using the local anno- 

tations of the Tissue Micro-Arrays Zurich dataset) and at the global level (using the TCGA-PRAD, The 

Cancer Genome Atlas-PRostate ADenocarcinoma, whole slide image Gleason score). The teacher/student 

paradigm allows the models to better generalize on both datasets, despite the inter-dataset heterogene- 

ity and the small number of local annotations used. The classification performance is improved both at 

the patch-level (up to κ = 0 . 6127 ± 0 . 0133 from κ = 0 . 5667 ± 0 . 0285 ), at the TMA core-level (Gleason 

score) (up to κ = 0 . 7645 ± 0 . 0231 from κ = 0 . 7186 ± 0 . 0306 ) and at the WSI-level (Gleason score) (up to 

κ = 0 . 4529 ± 0 . 0512 from κ = 0 . 2293 ± 0 . 1350 ). The results show that with the teacher/student paradigm, 

it is possible to train models that generalize on datasets from entirely different sources, despite the inter- 

dataset heterogeneity and the lack of large datasets with local annotations. 

© 2021 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

A

h

1

∗ Corresponding author. 

E-mail addresses: niccolo.marini@hevs.ch (N. Marini), juan.otaloramontenegro@hevs.c

tzori). 
1 Both authors contributed equally to this work. 

ttps://doi.org/10.1016/j.media.2021.102165 

361-8415/© 2021 The Authors. Published by Elsevier B.V. This is an open access article u
h (S. Otálora), henning.mueller@hevs.ch (H. Müller), manfredo.atzori@hevs.ch (M. 

nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

https://doi.org/10.1016/j.media.2021.102165
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2021.102165&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:niccolo.marini@hevs.ch
mailto:juan.otaloramontenegro@hevs.ch
mailto:henning.mueller@hevs.ch
mailto:manfredo.atzori@hevs.ch
https://doi.org/10.1016/j.media.2021.102165
http://creativecommons.org/licenses/by/4.0/


N. Marini, S. Otálora, H. Müller et al. Medical Image Analysis 73 (2021) 102165 

1

l

h

e

a

p

A

A

(

m

e

o

g

c

b

c

(

v

w

e

i

s

i

(

C

w

a

l  

t

a

p

l

p

l

i

i

l

i

s

e

u

i

s

q

c

p

s

s

e

f

i

t

d

d

e

i

d

p

t

Fig. 1. Example slides from The Cancer Genome Atlas-PRostate ADenocarcinoma 

dataset (TCGA-PRAD, above) and the Tissue Micro Array Zurich cores, (TMAZ, be- 

low). The slides from the TCGA-PRAD dataset are in the order of 10 0 ′ 0 0 0 2 pixels, 

while the slides from TMAZ dataset are images of 3100 2 pixels. 

a

s

a

t

p

i

a

d

m

t

2

e

i

i

d

g

w

d

s

m

g

c

g

h

T

a

c

M

(

A

. Introduction 

One of the current challenges in medical imaging and particu- 

arly in computational pathology is the management of the highly- 

eterogeneous data available to train robust deep learning mod- 

ls Cheplygina et al. (2019) and to overcome the lack of locally- 

nnotated (strongly-annotated) datasets. 

This lack of data persists despite the increasing amount of 

ublicly available datasets, such as TCGA (The Cancer Genome 

tlas) ( Tomczak et al., 2015 ) or TCIA (The Cancer Imaging 

rchive) ( Prior et al., 2013 ). Deep Convolutional Neural Network 

CNN) models are currently the backbone of the state-of-the-art 

ethods to analyze Whole Slide Images (WSIs) ( Jimenez-del Toro 

t al., 2017; Litjens et al., 2017 ). Convolutional neural networks 

ften need large locally-annotated datasets to train models that 

eneralize to unseen new data ( Komura and Ishikawa, 2018 ). Lo- 

al annotations (strong labels) are pixel-wise annotations, made 

y a pathologist. This type of annotation is expensive and time- 

onsuming to be produced. On the other hand, global annotations 

weak labels) are less expensive to be collected. They usually in- 

olve the image diagnosis (or staging/grading), that refers to the 

hole image, without any information about the region of inter- 

st that leads to the diagnosis. Creating large sets of annotated 

mages is a challenge for researchers in computational pathology 

ince performing very domain-specific annotations is essential. For 

nstance, Campanella et al. (2019) used 24’859 whole slide images 

not publicly available) with global annotations and Arvaniti and 

laassen (2018) used 886 tissue micro-arrays (publicly available) 

ith local annotations. However, large locally annotated datasets 

re scarce and only a few are publicly available, such as the Came- 

yon dataset ( Litjens et al., 2018 ). The scarcity is a consequence of

he annotation process: it is expensive, time-consuming and usu- 

lly requires experts (sometimes a consensus), so highly trained 

athologists. The Prostate cANcer graDe Assessment (PANDA) Chal- 

enge dataset 2 is to the best of our knowledge the largest available 

rostate image dataset with local annotations. The dataset was re- 

eased as part of a prostate cancer grading challenge in digitized 

mages, proposed during the MICCAI 2020 conference. The train- 

ng set includes 11’0 0 0 digitized whole slide images, eight times 

arger than the dataset proposed in the CAMELYON challenge. The 

mages originate from two medical centers (Radboud and Karolin- 

ka) and are annotated at the pixel-level by uro-pathologists. As of 

arly 2021, this dataset can not be used for publications, as it is 

nder embargo until the paper describing the data is published. 

One of the most prominent challenges in digital pathology 

s handling data heterogeneity, especially in data from various 

ources. The heterogeneity of digital pathology images is a conse- 

uence of the sample acquisition procedures. The acquisition pro- 

edure concerns the devices and the staining ( Schulte, 1991 ) ap- 

lied to the tissue before creating the actual image. The tissue 

amples are often stained with hematoxylin and eosin (H&E), con- 

idered the gold standard for staining in many situations ( Fischer 

t al., 2008; Titford, 2005 ). However, the staining procedure is not 

ully standardized. The lack of standardization can easily lead to 

nter-dataset heterogeneity. This heterogeneity makes it difficult for 

he models to generalize on external datasets. Models trained on a 

ataset often show a decrease in the performance when tested on 

ata originating from a different source ( Ström et al., 2019; Tellez 

t al., 2019; Otálora et al., 2019 ). An example of data heterogene- 

ty is shown in Fig. 1 with samples from two publicly available 

atasets. While there is an increasing amount of available digital 

athology data, it is still challenging to find reliable annotations 
2 https://www.kaggle.com/c/prostate- cancer- grade- assessment/overview . Re- 

rieved 17th of January, 2021 

s

2

2 
ccompanying these data. Valuable public datasets do exist: for in- 

tance, the Camelyon dataset for breast cancer ( Litjens et al., 2018 ) 

nd The Cancer Genome Atlas TCGA 

3 includes several datasets con- 

aining up to 500 whole slide images for individual organs, such as 

rostate 4 . The challenges in digital pathology are well represented 

n the TCGA datasets: images are usually without local annotations 

nd are highly heterogeneous. 

Despite the lack of annotations and the highly heterogeneous 

ata, recently proposed methods have shown partial success in 

edical image analysis when trained with small sets of annota- 

ions ( Bulten et al., 2020; Madabhushi et al., 2020; Shaw et al., 

020; Cheplygina et al., 2019; Campanella et al., 2019; Otálora 

t al., 2017; Tajbakhsh et al., 2016; Litjens et al., 2017; Arvan- 

ti et al., 2018 ), using techniques such as semi-supervised learn- 

ng, even though the generalization of models on heterogeneous 

atasets is still an open challenge. Semi-supervised learning al- 

orithms have recently shown their potential, leveraging large 

eakly-annotated and unlabeled datasets to create new annotated 

ata, given the small amount of locally-annotated data. Semi- 

upervised learning algorithms reach sometimes better perfor- 

ance than state-of-the-art supervised models on the large Ima- 

eNet dataset ( Yalniz et al., 2019 ). 

This paper is a novel approach in computational pathology, fo- 

using on prostate cancer, as it trains classification models that 

eneralize on datasets collected from several sources despite the 

ighly heterogeneous data and the lack of locally annotated data. 

his paper describes two semi-supervised teacher/student learning 

pproaches applied to the digital pathology task of prostate can- 

er classification, partly presented in Otálora et al. (2020a) and 

arini et al. (2020) . Two heterogeneous prostate cancer datasets 

the Tissue Micro-Arrays Zurich, TMAZ and The Cancer Genome 

rchive-PRostate ADenocarcinoma, TCGA-PRAD) are used. The 
3 https://www.cancer.gov/about-nci/organization/ccg/research/ 

tructural-genomics/tcga . 
4 https://portal.gdc.cancer.gov/projects/TCGA-PRAD . Retrieved 1st of January, 

020. 

https://www.kaggle.com/c/prostate-cancer-grade-assessment/overview
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://portal.gdc.cancer.gov/projects/TCGA-PRAD
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CGA-PRAD dataset (without local annotations) includes an equiv- 

lent number of pixels to the 588 images of the TMAZ dataset 

locally-annotated). 

Prostate cancer is one of the most common cancers worldwide 5 

nd the gold standard adopted for its diagnosis is the Gleason 

core ( Pierorazio et al., 2013 ). Prostate cancer is the fourth most 

ommon cancer and in 2018 there were 1.28 million new diag- 

oses worldwide 6 . Prostate cancer is a highly heterogeneous dis- 

ase displaying several tumour features in glands and having high 

nter-rater variability among pathologists ( Berg et al., 2011; Arvan- 

ti et al., 2018; Tolkach et al., 2020; Nagpal et al., 2019 ). The Glea-

on score is used in clinical practice as a standard protocol when 

ssessing prostate adenocarcinoma. It is required for deciding on 

he treatment and for predicting the patient’s prognosis. The Glea- 

on scoring system describes the abnormality of cancer cells and 

he deformation of glands within a prostate needle biopsy or a 

iopsy after radical prostatectomy. Pathologists evaluate it based 

n the tissue structures observed on microscopic or digital im- 

ges of biopsies. The Gleason score is based on two steps: recog- 

izing the relevant Gleason patterns and evaluating the Gleason 

core, that is computed from the two most prominent patterns. 

he Gleason patterns aims to quantify the tumour aggressiveness 

nd disease prognosis to plan the treatment. The tissue struc- 

ures, the cell abnormality and the gland deformation allow dis- 

inguishing between Gleason patterns. The Gleason patterns vary 

rom 1 to 5 ( Chen and Zhou, 2016 ). Lower patterns are related to a

ore favourable condition, where the cells and the glands are bet- 

er differentiated. Higher patterns are related to poor conditions, 

here the cells and the glands are poorly-differentiated. Gleason 

atterns 1 and 2 are rarely identified within a core biopsy, as in 

hese cases biopsies are rarely taken. Gleason pattern 1 presents 

ell-differentiated small glands and small regions of stroma be- 

ween the glands. Gleason pattern 2 presents larger glands and 

ore stroma that is present between the glands. Gleason pattern 3 

resents distinct glands of variable sizes and cells that start to in- 

ltrate the surrounding tissue. Gleason pattern 4 presents poorly- 

ifferentiated glands and cells that invade the surrounding tissue. 

leason pattern 5 presents no recognizable glands and layers of 

ells within the surrounding tissue. The Gleason score is calculated 

y summing up the two most prominent Gleason patterns (GP) ob- 

erved in the tissue slide. The Union for International Cancer Con- 

rol 7 and the World Health Organization/International Society of 

rological Pathology 8 describe the guidelines for the Gleason pat- 

ern evaluation ( Montironi et al., 2005 ). In malignant prostate can- 

er, the Gleason score generally varies from 6 to 10 ( Epstein et al.,

016 ). 

The classification procedure described in this article is 

ased on the semi-supervised classification approach presented 

n Yalniz et al. (2019) . The approach is based on two models in

equence: the teacher model and the student model. The teacher is 

 large model that generates pseudo-labeled examples from unla- 

eled regions in the TCGA-PRAD dataset. It uses a high-capacity 

esNext model pre-trained with a dataset of one billion natu- 

al images retrieved from Instagram and fine-tuned with both 

eakly annotated images (from TCGA) and strongly-annotated tis- 

ue micro-array images. The student is a smaller model that is 

ubsequently trained with the pseudo-labeled examples provided 

y the teacher and then fine-tuned with the available local anno- 

ations from a separate dataset. The strategy is compared against 
5 https://www.cancer.net/cancer- types/prostate- cancer/statistics . Retrieved 24th 

f July, 2020. 
6 https://www.who.int/en/news-room/fact-sheets/detail/cancer . Retrieved 16th of 

arch, 2020. 
7 https://www.uicc.org/topics/prostate . Retrieved 13th of July, 2020. 
8 https://isupweb.org/isup/ . Retrieved 13th of July, 2020. 
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 fully-supervised approach as well as other variants of semi- 

upervised training. 

.1. Related work 

Data heterogeneity and lack of large annotated datasets are 

till open challenges in computational pathology. In addition to 

ully supervised approaches, several methods can help to tackle 

hese challenges, such as active learning, weakly-supervised learn- 

ng, transfer learning and semi-supervised learning. Table 1 sum- 

arizes the state-of-the-art methods used for prostate cancer clas- 

ification tasks. 

.1.1. Fully-supervised learning 

Fully supervised learning includes methods to train machine 

earning models using datasets where each of the samples is lo- 

ally labeled. Classification tasks require pixel-level labels. The lack 

f large datasets with local annotations is common in the med- 

cal domain and not limited to computational pathology. A few 

arge, locally-annotated datasets exist for computational pathol- 

gy and these were used in fully supervised approaches ( Arvaniti 

t al., 2018; Ström et al., 2019; Nagpal et al., 2019 ). The work 

f Arvaniti et al. (2018) presents a CNN trained using the pub- 

icly available Tissue-Micro Array Zurich dataset that was pixel- 

ise annotated by two pathologists. The CNN is trained to predict 

leason patterns, reaching κ= 0.55 as best result ( κ= 0.67 is the 

greement reached by the pathologists, where κ= 0 would mean to 

nly have by chance agreement). The predictions reported within 

 core are aggregated summing them up, in order to obtain the 

orresponding Gleason scores (GS6, GS7, GS8, GS9, GS10), reach- 

ng κ= 0.75 as best result ( κ= 0.71 is the agreement reached by 

he pathologists). The work of Ström et al. (2019) presents an en- 

emble of deep CNNs, trained using a cohort of the private Stock- 

olm 3 (STHLM3) dataset ( Grönberg et al., 2015 ), including 6682 

SIs in the training partition and 1631 WSIs in the test parti- 

ion, pixel-wise annotated by 23 expert pathologists. The ensem- 

le of networks is trained to classify benign and tumour tissue, 

eaching an AUC = 0 . 99 . The ensemble of networks is also trained

o predict Gleason patterns at the patch level (Benign, GP3, G4, 

5) and to aggregate them to evaluate the Gleason score (groups 

tated by the International Society of Urological Pathology (ISUP): 

S6, GS7 = 3+4, GS7 = 4+3, GS8,GS9-GS10), reaching κ= 0.83. The 

ork of Nagpal et al. (2019) presents a CNN, trained using private 

atasets from four medical centers, pixel-wise annotated by 19 ex- 

ert pathologists. The CNN is trained to classify benign and tumour 

issue, reaching an accuracy = 0.94. The CNN is also trained to 

redict Gleason patterns at the patch level (Benign, GP3, G4, G5), 

eaching an accuracy = 0.71. The Gleason score is assigned pro- 

iding the percentage for each of the Gleason patterns. The per- 

ormance is evaluated considering [GS6-GS7] vs. [GS-8,9,10] as the 

ask, reaching an accuracy = 0.92. 

.1.2. Active learning 

The research area that aims to reduce the labeling effort by 

ntroducing a human (or oracle) in the loop of training machine 

earning models is called active learning ( Settles, 2009; 2011 ). A 

ypical goal for an active learning system is to select the most 

elevant patches or images for training, therefore, avoiding un- 

ecessary labeling costs. Usually, the learning algorithm is pro- 

ided with a pool of unlabeled samples from which a model se- 

ects the samples to be annotated. The labels can be provided by 

 human expert and subsequently requested to be annotated and 

hen used for training the models. The samples are ranked accord- 

ng to informative measures ( Settles, 2009 ), such as entropy, or to 

uery strategies, aiming to discard uninformative patches. Appli- 

ations of active learning in medical imaging have focused on op- 

https://www.cancer.net/cancer-types/prostate-cancer/statistics
https://www.who.int/en/news-room/fact-sheets/detail/cancer
https://www.uicc.org/topics/prostate
https://isupweb.org/isup/


N. Marini, S. Otálora, H. Müller et al. Medical Image Analysis 73 (2021) 102165 

Table 1 

State of the art approaches regarding deep learning models for Gleason grading and Gleason scoring. For each of the reference articles, 

we present the task evaluated, the training, validation and testing partition used to evaluate the models, the results reached and the 

annotations used in the training are reported. The tasks are: tumour detection (benign vs. malignant tissue), Gleason grading (Benign, 

GP 3, GP4, GP5), Gleason scoring (GS6, GS7, GS8, GS9, GS10), ISUP Gleason scoring (GS6, GS7 = 3+4, GS7 = 4+3, GS8, GS9-10), low vs. 

high scoring (GS6,GS7 vs GS8,GS9,GS10). 

Reference Task Train dataset Test dataset Results Annotations 

Nagpal et al. (2019) Tumour detection 912 WSIs 752 WSIs ACC = 0.94 Strong 

Tolkach et al. (2020) Tumour detection 389 WSIs 279 WSIs ACC = 0.97 Strong, Weak 

Campanella et al. (2019) Tumour detection 24’859 WSIs 1784 WSIs AUC = 0.986 Weak 

Ström et al. (2019) Tumour detection 6682 WSIs 1631 WSIs AUC = 0.997 Strong 

Arvaniti et al. (2018) Gleason grading 641 TMAs 245 TMAs κ = 0.55 Strong 

Ström et al. (2019) Gleason grading 6682 WSIs 1631 WSIs κ = 0.67 Strong 

Otálora et al. (2021) Gleason grading 641 TMAs, 255 WSIs 245 TMAs κ = 0.55 Strong, Weak 

This work Gleason grading 641 TMAs, 255 WSIs 245 TMAs κ = 0.61 Strong, Weak 

Arvaniti and Claassen (2018) Low vs High Scoring 641 TMAs, 447 WSIs 245 TMAs AUC = 0.882 Strong, Weak 

del Toro et al. (2017) Low vs High Scoring 235 WSIs 46 WSIs ACC = 0.78 Weak 

Nagpal et al. (2019) Low vs High Scoring 580 498 WSIs ACC = 0.97 Strong 

Arvaniti et al. (2018) Gleason scoring 641 TMAs 245 TMAs κ = 0.75 Strong 

Bulten et al. (2020) Gleason scoring 1143 WSIs 245 TMAs κ = 0.71 Strong, Weak 

Nagpal et al. (2019) Gleason scoring 580 498 WSIs ACC = 0.71 Strong 

Otálora et al. (2021) Gleason scoring 641 TMAs, 255 WSIs 245 TMAs κ = 0.69 Strong, Weak 

This work Gleason scoring 641 TMAs, 255 WSIs 245 TMAs κ = 0.76 Strong, Weak 

Otálora et al. (2020b) ISUP Gleason scoring 290 WSIs 51 WSI κ = 0.44 Weak 

Bulten et al. (2020) ISUP Gleason scoring 1143 WSIs 100 WSIs κ = 0.91 Strong, Weak 

This work ISUP Gleason scoring 641 TMAs, 255 WSIs 46 WSIs κ = 0.45 Strong, Weak 
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imally selecting the patches that are annotated for the training 

f CNNs ( Otálora et al., 2017 ), reducing user interactions for im- 

ge segmentation Veeraraghavan and Miller (2011) and incremen- 

al fine-tuning of the CNN models ( Zhou et al., 2017 ). 

.1.3. Weakly-supervised learning 

The line of research that investigates how to best use image- 

evel diagnostic labels and other less expensive annotations, known 

n machine learning literature as weakly supervised learning , has re- 

ently shown promising results in computational pathology ( del 

oro et al., 2017; Arvaniti and Claassen, 2018; Li et al., 2019; 

tálora et al., 2020b; Campanella et al., 2019; Katharopoulos and 

leuret, 2019; van der Laak et al., 2019 ). Weak labels are often 

eadily available in digital pathology via the pathology reports but 

re less specific than local region annotations. Usually, weak la- 

els only summarize the pathologist’s main findings when ana- 

yzing the tissue slide or WSI, i.e., without any specific location 

r delineation of the regions used for the diagnosis. Weak labels 

sually refer to general categories such as cancer slide, benign tu- 

our slide, or a score in a grading system for a specific organ, e.g. 

he Gleason grade in prostate cancer ( del Toro et al., 2017 ). De-

ailed spatial specificity is often lacking in pathology reports since 

he relevant areas’ exact location is usually not given. The work 

f del Toro et al. (2017) presents a CNN, trained using a cohort 

f the publicly available TCGA-PRAD dataset, labeled with global 

nnotations. The CNN is trained to classify [GS6-7] vs [GS8-9-10], 

ssigning global labels to the relevant patches, selected using the 

lue ratio within the WSI. The CNN reaches an accuracy = 0.78 

or this binary problem. The work of Otálora et al. (2020b) com- 

ares several weakly supervised strategies for the fine-grained task 

f Gleason grading, reporting that the use of class-wise data aug- 

entation and a DenseNet architecture using transfer learning lead 

o a κ = 0 . 44 in a set of 341 WSIs from the TCGA-PRAD dataset.

he work of Arvaniti and Claassen (2018) presents a CNN architec- 

ure that combines weak and strong supervision for the task of low 

GS6,7) vs. high (GS8,9,10) Gleason score classification. Two pub- 

icly available datasets are used: TMAZ ( Arvaniti et al., 2018 ) and 

 cohort of TCGA-PRAD dataset. The model penalizes the weak su- 

ervision predictions, by weighing them using the predicted prob- 

bility and the weak label. Therefore, the patches classified with 

 Gleason score that do not correspond with the weak label con- 
4 
ribute less to the model’s gradient updates. The results showed 

n accuracy of 0.848 for the binary cancer detection task using 

47 WSIs. In the work of Campanella et al. (2019) , the authors use 

ransfer learning and a massive dataset of more than 44’0 0 0 WSIs 

from breast, prostate and skin) with report-level labels to train 

eakly supervised binary CNN classifiers to distinguish between 

ancer and non-cancer slides. The ImageNet pre-trained classifiers 

ere trained using a multiple instance learning paradigm, using 

ags in which the assigned label referred only to a non-empty sub- 

et of elements in the bag, accounting for the inherent label noise. 

ven though their results are a starting point for building screen- 

ng tools that help the pathologist to discard non-cancer slides, 

heir generalization to clinical scenarios (where data are highly- 

eterogeneous and Gleason score classification is evaluated instead 

f the binary tumour detection presented in the paper) has not 

een confirmed, yet. 

.1.4. Transfer learning 

Transfer learning includes a set of techniques adopted to ap- 

ly models on a task (or dataset), even if they were previously 

rained on another task (or dataset). Two main reasons motivate 

he adoption of transfer learning approaches. The first reason is 

hat the generic features, previously learnt, can be re-used for 

ifferent tasks or datasets ( Bengio, 2012; Otálora et al., 2021 ). 

he second reason is the accelerated learning process since the 

odels converge faster. Two approaches are mainly used in med- 

cal image analysis ( Litjens et al., 2017; Mormont et al., 2018; 

tálora et al., 2021 ). In the first approach, a model pre-trained 

n a dataset is used as the initialization for another model and 

hen fine-tuned on a new task or on a new dataset. The approach 

s usually adopted in digital pathology, where models trained on 

atural image datasets (often ImageNet) are fine-tuned. In the 

ork of Otálora et al. (2021) , the authors use transfer learning 

o combine strongly-annotated and weakly-annotated data from 

eterogeneous datasets to classify between prostate Gleason grad- 

ng, reaching performance comparable to the pathologists. In the 

econd approach, the models previously trained are used for ex- 

racting feature vectors from the data and a classifier is built 

nd trained on the top of this vector. In computational pathol- 

gy the first approach often shows better results than the second 

ne ( Mormont et al., 2018 ). 
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Table 2 

Number of patches for each Gleason pattern in 

the TMAZ dataset. 

Class/Set Training Validation Test 

Benign 2010 1350 127 

GP3 5992 1352 1602 

GP4 4472 831 2121 

GP5 2766 457 387 

Total 15’240 3990 4237 
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9 https://portal.gdc.cancer.gov/projects/TCGA-PRAD . Retrieved 20th of March, 

2020 
.1.5. Semi-supervised learning 

Semi-supervised learning can be defined as being in between 

nsupervised learning (training with datasets that do not have 

ny label) and fully-supervised learning (training with datasets in 

hich each example has a label associated). Recent work found 

hat unlabeled data can significantly improve generalization perfor- 

ance when used in conjunction with a small amount of labeled 

ata. Obtaining unlabeled datasets in the medical image analysis 

eld is reasonable task, since hospitals generate them routinely 

nd there are also many public data sources without annotations. 

or such tasks, semi-supervised learning can be of great practical 

alue ( Foucart et al., 2019 ). In the work of Yalniz et al. (2019) , the

uthors train a large ResNet model with 1 billion natural images 

rom Instagram. The trained model achieved state-of-the-art per- 

ormance in classification of the ImageNet dataset. In the work 

f Bulten et al. (2020) , the authors train a CNN with a semi-

upervised strategy for Gleason score classification. The CNN is 

rained using a private dataset including 1243 WSIs. A tumour de- 

ection CNN and a tumour segmentation CNN are used to generate 

ancer masks in pure Gleason pattern images (i.e. images where 

he primary and the secondary Gleason pattern are the same). The 

egions detected within masks are labeled with the Gleason pat- 

ern from the corresponding report. The CNN is evaluated for Glea- 

on scoring using an internal and an external test partition (the 

xternal test partition proposed by Arvaniti et al. (2018) ). On the 

nternal test set, the CNN reaches κ= 0.91. On the external test set, 

he CNN reaches κ= 0.71. 

In Tolkach et al. (2020) , the authors train a CNN with a semi-

upervised strategy for Gleason pattern classification. The CNN is 

rained using a private dataset including 389 WSIs as training par- 

ition, pixel-wise annotated by three pathologists and several co- 

orts from private datasets as test set. The CNN is trained for two 

asks: tumour detection (benign vs. tumour) and Gleason grad- 

ng. The CNN training for Gleason grading is semi-supervised. The 

odel is first trained with strongly-annotated patches that origi- 

ate from pure-GP WSIs and then it is used to annotate regions 

ithin WSIs where the primary Gleason pattern differs from the 

econdary Gleason pattern (considered as complex images by the 

uthors). The regions annotated are then used to fine-tune the 

NN. The CNN reaches κ = 0.96 in tumour detection and κ = 0.74 

n Gleason grading. 

In the recent work of Shaw et al. (2020) , the authors 

se a chain of teacher-student models based on the approach 

f Yalniz et al. (2019) to annotate patches of colorectal cancer. The 

uthors show that by using only a small fraction of the annotated 

ata the model could automatically use the trained students to an- 

otate the unlabeled patches. Their model achieves a comparable 

erformance to the fully-supervised learning approach. Neverthe- 

ess, their approach is tested using a homogeneous dataset only, 

eaving the question to the generalization of teacher-student mod- 

ls to unseen centres open. 

In a concurrent work Cheng et al. (2020) , the authors propose 

 teacher-student model for segmentation of breast cancer lesions 

n the Camelyon dataset. Their teacher model learns from embed- 

ings of spatially similar patches. Their model does not use the 

seudo-labels generated from their teacher-student paradigm as 

round truth for unlabeled samples but rather to counteract noisy 

abels in the ground-truth. The differences between the mentioned 

pproaches and the one described in this article is presented in the 

iscussion section. 

.2. Contribution 

As discussed in the above paragraphs, active, weakly and semi- 

upervised CNN models show feasible solutions to tackle classifica- 

ion tasks in computational pathology, particularly with the help of 
5 
ransfer learning approaches. The question that we address in this 

aper is: how can weakly annotated samples help to create strong 

egion annotations? Semi-supervised and weakly-supervised learn- 

ng are areas of active research in computational pathology with 

romising results ( Bulten et al., 2020 ). This study aims to provide 

ovel strategies to train models that generalize on heterogeneous 

atasets, using CNNs trained with pseudo-labeled data. Specifically, 

ur contributions in this paper are the following 

• We improve performance of fully-supervised models on the 

dataset proposed by Arvaniti et al. (2018) , using pseudo-labeled 

examples from a weakly-annotated dataset, i.e. without requir- 

ing additional manual annotations on unseen heterogeneous 

data. 
• We improve the generalization of CNN models on heteroge- 

neous datasets in a context of few annotations. 
• We study the overfitting in transfer learning when using several 

data sources for the supervision of the CNN models. 
• We propose and evaluate three training variants of deep CNN 

models using both strongly and weakly-annotated datasets for 

the task of Gleason grading. 

The rest of the paper is organized as follows: In Section 2 , the

eacher-student model is presented and the datasets used in the 

xperimental evaluation are described in detail. In Section 3 , the 

xperimental results of the strategies are shown, as well as the 

valuation varying the number of pseudo-labeled data included in 

he training of the student models. In Section 4 we discuss the re- 

ults and in Section 5 concluding remarks finish the paper. 

. Methods 

.1. Datasets 

Two openly accessible datasets are used for evaluating the 

eacher/student approaches. The datasets are highly heteroge- 

eous, so they are more similar to a real scenario, as shown 

n Fig. 1 . The datasets are the Tissue MicroArray dataset Zurich 

TMAZ) ( Arvaniti et al., 2018 ) and a subset of the TCGA-PRAD 

ataset 9 . Among all the articles shown in Table 1 , these two 

atasets are the only ones that are publicly available, even 

hough only TMAZ is already split in partitions. The TMAZ 

ataset ( Arvaniti et al., 2018 ) is composed of 886 prostate TMA 

ores that were scanned at the University Hospital of Zurich 

NanoZoomer-XR Digital slide scanner, Hamamatsu). Each core is 

100 2 pixels, scanned at magnification 40x (0.23 microns per 

ixel). The dataset includes pixel-wise local annotations of pathol- 

gists. It is partitioned into a training partition with 508 TMA 

ores, a validation partition with 133 cores and a testing partition 

f 245 cores. The composition of the dataset is shown in Table 3 .

he partitions are the ones presented in Arvaniti et al. (2018) : the 

raining partition includes cores from three different TMA arrays 

ZT111, ZT199, ZT204), while the validation partition and the test 

https://portal.gdc.cancer.gov/projects/TCGA-PRAD
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Table 3 

Number of TMA cores for each Gleason score in 

the TMAZ dataset. 

Class/Set Training Validation Test 

Benign 61 42 12 

GS6 158 35 79 

GS7 (3 + 4) 47 14 28 

GS7 (4 + 3) 18 11 23 

GS8 119 15 84 

GS9 - 10 105 16 19 

Total 508 133 245 

Table 4 

Number of patches for each Gleason pattern se- 

lected in the TCGA-PRAD dataset (used only for 

pre-training the teacher model). 

Class/Set Training Validation Test 

Benign 1710 840 460 

GP3 28’919 15’443 4000 

GP4 48’398 22’500 13’633 

GP5 8000 4000 3000 

Total 87’027 42’783 23’093 

s

s

T

t

F

W

t  

t

A

t

s

s

f

s

(

c

m

h

s

2

2

p

Y

n

o

a

l

F

m

c

a

s

m

i

c  

l

e

i

(

i

m

p

t

s

r

l

t

i  

w

2

2

(

p

h

i

a

v

w

t

2

t

c

c

i

l

l

(

p

a

(

t

s

i

t

d

t

2

2

s

r

d

a

fi

i

i

C

2

s

v

w

et include both only one array (respectively ZT76 and ZT80). This 

mall amount of arrays implies a visual homogeneity between the 

MAZ cores, mostly regarding the stain colour and tissue struc- 

ures, as shown in Fig. 1 . TCGA-PRAD includes 449 WSIs (Formalin- 

ixed Paraffin-Embedded, FFPE), scanned from several centers. The 

SIs are scanned at magnification 40x and they can easily be in 

he order of 10 0 ′ 0 0 0 2 pixels per image. WSIs are provided with

he corresponding pathologist reports, but without any annotation. 

 subset of 301 WSIs was manually labelled, as the label extrac- 

ion process is time-consuming. The labels, the primary and the 

econdary Gleason patterns, are used as weak labels. The subset is 

plit into a training partition (171 WSIs) representing 145 patients 

rom 19 medical centres, a validation partition (84 WSIs), repre- 

enting 70 patients from 21 medical centres, and a test partition 

46 WSIs), representing 38 patients from 12 medical centres. The 

omposition of the dataset is shown in Table 5 . The number of 

edical centres implies that the visual appearance of the WSIs is 

ighly heterogeneous, mostly regarding the stain colour and tissue 

tructures, as shown in Fig. 1 . 

.2. Data analysis pipeline 

.2.1. Teacher/student paradigm 

The training schema is based on the teacher/student paradigm, 

reviously used by Lee (2013) ; Hady and Schwenker (2013) ; 

alniz et al. (2019) . The paradigm involves two convolutional 

eural networks, named the teacher and the student model. An 

verview of the training schema is illustrated in Fig. 2 . 

The teacher model is a high-capacity neural network, trained to 

nnotate pseudo-labeled samples within weakly-annotated or un- 

abeled data. The pseudo-labels are created in the following way. 

or each of the samples without local annotations the teacher 

odel computes a probability array. It labels the sample as the 

lass with the highest probability. The pseudo-labels are used as if 

 human expert had performed the annotation ( Lee, 2013 ). A sub- 

et of the pseudo-labels includes labels where the ground truth 

atches the real class (relevant labels), while the other subset 

ncludes labels where the ground truth does not match the real 

lass (noisy labels) ( Yalniz et al., 2019; Han et al., 2018 ). The

atter labels influence the learning process negatively ( Natarajan 

t al., 2013; Karimi et al., 2019 ). With high-capacity models, it 
6 
s possible to better separate relevant labels from the noisy ones 

 Han et al., 2018 ). High-capacity models can be trained from large 

mage datasets with weak labels, such as hashtags from vast social 

edia datasets. Yalniz et al. (2019) et al. show how very large ca- 

acity CNN models trained with a large amount of data outperform 

he low-capacity CNN models trained with standard datasets. The 

tudent model is a small neural network in terms of number of pa- 

ameters (compared to the teacher) and it is trained using pseudo- 

abeled and/or strongly-annotated data depending on the student 

raining variant. The student model is designed to be efficient (fast 

n the evaluation of the inputs ( Chen et al., 2019 )) at testing time,

ith a performance comparable to that of the teacher ( Guo et al., 

019 ). 

.2.2. Teacher/student approaches 

Two approaches for the teacher/student paradigm are presented 

see Fig. 2 ): the semi-supervised learning and the semi-weakly su- 

ervised learning. The difference between the approaches concerns 

ow the teacher model is trained. In the semi-supervised learn- 

ng approach, the teacher model is trained only with strongly- 

nnotated data (solid lines in Fig. 2 ). In the semi-weakly super- 

ised learning approach, the teacher model is pre-trained with 

eakly-annotated data (dotted line in Fig. 2 ) and then it is fine- 

uned with strongly-annotated data (dashed line in Fig. 2 ). 

.2.3. Student training variants 

Each teacher/student approach is evaluated using three variants 

o train the student model ( Fig. 2 ). The student training variants 

oncern how the pseudo-labeled and strongly-annotated data are 

ombined for training the student model. A fully-supervised learn- 

ng approach is also evaluated as the baseline for the methods. 

Student training variant I In the student training variant I (blue 

ine in Fig. 2 ), the student model is trained using only the pseudo- 

abeled data. 

Student training variant II In the student training variant II 

green line in Fig. 2 ), the student model is pre-trained using the 

seudo-labeled data and then it is fine-tuned using the strongly- 

nnotated data. 

Student training variant III In the student training variant III 

magenta line in Fig. 2 ), the student model is trained using both 

he pseudo-labeled data and the strongly-annotated data in the 

ame training phase. 

Fully-supervised training approach In the fully-supervised learn- 

ng approach of the student training (grey dashed line in Fig. 2 ), 

he student model is trained using only the strongly-annotated 

ata. This approach provides a baseline to evaluate the student 

raining variants. 

.3. Experimental setup 

.3.1. Image preprocessing 

The images of both datasets are pre-processed with the same 

trategy: they are tiled into patches, the background regions are 

emoved and finally the patches are extracted and selected. 

Tiling is required since modern GPU hardware cannot han- 

le a very large image size due to limited memory. The images 

re initially split into patches of 750x750 pixels at 40x magni- 

cation. They are then down-sampled to 224x224 pixels as it 

s the required size for using the pre-trained networks, follow- 

ng an approach similar to the one proposed by Arvaniti and 

laassen (2018) . Several patch size configurations were tested: 

24x224, 250x250, 50 0x50 0, 750x750 and 1’0 0 0x1’0 0 0 pixels. A 

ize of 750x750 pixels was chosen by visual inspection as it pro- 

ides enough context to capture the morphology of the glands 

hile also keeping details of the cancer cells. The approach is 
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Fig. 2. Scheme for the training of the teacher (top) and the student (bottom) models. Two approaches of the paradigm are shown: the semi-supervised learning (solid line), 

the semi-weakly supervised learning (dotted line). They influence the training of the teacher model. For each of the two approaches, three student training variants are 

presented. The different colours represent the three student training variants described. They are compared with a fully-supervised learning approach of the student model 

(dashed grey line). 
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Fig. 3. Scheme for the selection of the patches from TCGA-PRAD WSIs. Patches from 

TCGA-PRAD are ranked according to the Blue Ratio (left part of the Figure) and 

according to the predictions made by the teacher model (right part of the Figure). 

For each WSI, the 500 top-ranked patches (brown line) and the 100 bottom-ranked 

patches (purple line) according to Blue Ratio are included in the training partition 

of the teacher model. The 500 top-ranked patches are used to test the performance 

of the student model at the WSI-level. The teacher model makes predictions on the 

patches from TCGA-PRAD. The patches with the highest predictions (grey line) are 

labeled as pseudo-labels, to train the student model, as described in 2.2.1 . 
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pplied to both datasets. The patches are tiled at 40x magnifica- 

ion because this is the only magnification available for the images 

rom the TMAZ data. Patches corresponding to the background re- 

ions are not considered in the analysis since they are not informa- 

ive. In the TMAZ images, the background is removed according to 

he pathologist annotations. In the TCGA-PRAD images, the back- 

round is removed using tissue masks generated with the HistoQC 

ool ( Janowczyk et al., 2019 ). On TCGA images, HistoQC is also used

o curate the WSIs, by detecting and removing pen-markings man- 

ally made by the pathologists. The patch extraction and selection 

rocesses are different, as the datasets have different characteris- 

ics in terms of image size, resolution and type of annotations. In 

he TMAZ dataset, 30 patches (with possible overlapping) are ran- 

omly extracted from each TMA core. The patches are selected so 

hey contain at least 60% tissue. The number of patches extracted 

s chosen considering the size of the patches (750x750), the over- 

apping between them and the size of the cores (3100x3100). In 

he TCGA-PRAD dataset, the WSIs are divided into grid cells (with- 

ut overlapping) and then the patches are densely extracted. The 

umber of patches extracted varies between 400 and 12’000 per 

SI, depending on the size of the WSIs and the amount of back- 

round. Two sets of TCGA-PRAD patches are used for training the 

odels: the first set is used for training the teacher model, while 

he second set is used during the training of the student model. 

he first set is composed of patches used as weakly-annotated 

ata that are used to pre-train the teacher in the semi-weakly su- 

ervised learning approach. The TCGA-PRAD dataset has no pixel- 

ise local annotations and therefore it is not possible to distin- 

uish between healthy and cancer tissue. In this case, the patches 

re labeled with the primary Gleason pattern of the correspond- 

ng WSI. In order to reduce the noise due to the use of weak la-

els, only a subset of the patches is selected to train the teacher 

odel. The subset of the patches is selected using the Blue-Ratio 

BR) technique ( Chang et al., 2012 ). BR ranks patches starting with 

ense nuclei regions first, avoiding patch extraction from areas 

ithout nuclei, such as those containing fat or connective tissue. 

he patches are sorted in decreasing order by their BR and only 

he ones with the highest and the lowest values are selected for 

ach WSI. The second set is composed of patches used as unla- 

eled data and the teacher automatically annotates all of them. In 

rder to reduce noise in the labeling, only the top-ranked sam- 

les are selected for training the student model. A probability array 

s created with the softmax probability of each sample. For each 

lass, the probability array is sorted in descending order by the 

lass probability and the first K top-ranked samples are selected. 
n

7 
denotes the number of patches from each class selected by the 

eacher model. 

.3.2. Dataset composition 

TMAZ patches The patches selected from the TMAZ dataset are 

sed as strongly-annotated data for training and testing both mod- 

ls. The dataset includes four classes: benign, Gleason pattern 3, 

leason pattern 4 and Gleason pattern 5. The detailed number of 

atches (divided per class) is reported in Table 2 . 

TCGA-PRAD patches TCGA-PRAD patches are used to train the 

eacher model, to train the student model and to test the student 

odel at the WSI-level, as shown in Fig. 3 . The patches used to 

rain the teacher model include the 500 top-ranked and the 100 

ottom-ranked patches per WSI regarding BR. These patches are 

sed as weakly-annotated data. The label assigned to each patch is 

he corresponding primary Gleason pattern included in the medi- 

al report. However, TCGA-PRAD does not include WSIs with be- 

ign as primary Gleason score. Only Gleason pattern 3, Gleason 



N. Marini, S. Otálora, H. Müller et al. Medical Image Analysis 73 (2021) 102165 

Table 5 

Number of WSIs for each Gleason score in the 

TCGA-PRAD dataset. 

Class/Set Training Validation Test 

GS6 13 20 5 

GS7 (3 + 4) 42 10 6 

GS7 (4 + 3) 30 14 11 

GS8 37 12 13 

GS9 - 10 49 28 11 

Total 171 84 46 
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10 https://pytorch.org/hub/pytorch _ vision _ densenet . Retrieved 20th of March, 2020 
11 https://pytorch.org/ . Retrieved 20th of March, 2020 
12 https://userinfo.surfsara.nl/systems/hpc-cloud . Retrieved 7th of February, 2020 
attern 4 and Gleason pattern 5 are represented, as prostatec- 

omies are not performed for lower Gleason patterns. Several num- 

ers of patches (100, 250, 500, 750,1000) selected with the BR 

ere tested. Visual inspections allowed to verify that 500 is the 

umber that guarantees patches with nuclei, avoiding the selec- 

ion of patches with stroma. For each of the WSIs, 100 patches 

ith very low BR were selected and labeled with the benign class 

o that the model could be trained with samples labeled in four 

lasses, similar to the strongly-annotated data. The detailed num- 

er of patches (divided per class) is reported in Table 4 . The 

atches used to train the student model include the patches an- 

otated with the highest predictions by the teacher model. These 

atches are used as pseudo-labeled data. The set includes four 

lasses: benign, Gleason pattern 3, Gleason pattern 4 and Glea- 

on pattern 5. The training partition of the pseudo-labeled data 

ncludes different subsets, each one with a different number of 

amples for each class ( K). The subsets are incrementally added to 

he partition. Different K values are tested in the paper. The first 

ubset includes the top K-ranked samples, for each of the classes. 

ach of the following subsets added to the partitions includes the 

ext top K-ranked samples per class. The K values tested vary be- 

ween 10 0 0 and 10’0 0 0 pseudo-annotated patches for each class. 

he difference between two consecutive K values is 10 0 0, i.e. the 

rst subset has 10 0 0 patches per class and the second one 20 0 0

atches per class etc. The highest K value tested is 10’0 0 0, then the 

iggest subset has 10’0 0 0 samples pseudo-labeled for each class. 

he validation partition of the pseudo-labeled data includes 80 0 0 

atches (2’0 0 0 for each class). The testing partition of the pseudo- 

abeled data includes 80 0 0 patches (2’0 0 0 for each class). The 

atches used to test the student model include the 500 top-ranked 

atches per WSI regarding BR. The patches are used as unlabeled 

ata. The student model predicts Gleason patterns for each patch 

nd aggregates the predictions in order to have primary and sec- 

ndary Gleason patterns for the WSI. TCGA-PRAD does not include 

enign images, therefore the analysis of the top-ranked patches al- 

ows to exclude patches including stroma or healthy tissue. 

.3.3. Data analysis implementation 

The teacher and the student are implemented according to the 

eacher/student paradigm, with the same software and hardware 

olutions and trained with the same strategy. 

The paradigm includes the architecture size of the CNN adopted 

s model. The teacher model is a Resnext50_32x4d ( Xie et al., 

017 ) implemented by Yalniz et al. (2019) . The choice of the 

eacher model is made considering the paradigm constraints (the 

eacher must be a high-capacity model) and the classification per- 

ormance of the model. Therefore, the teacher model has up to 22 

illion parameters and it guarantees high-level classification per- 

ormance. The network is initialized with weights of the model 

re-trained with the YFCC100M dataset ( Thomee et al., 2015 ) us- 

ng 1 billion Instagram images and their corresponding hashtags. 

he choice of using pre-trained networks is made to speed up the 

odel convergence during the training. The student model is a 

enseNet121 ( Huang et al., 2016 ) implemented within the PyTorch 
8 
ramework 10 . The choice of the student model is made consider- 

ng the paradigm constraints (i.e. to have a model smaller than 

he teacher and fast in the evaluation of the inputs). The student 

odel has up to 7 million parameters and it guarantees classifi- 

ation performance comparable with the one of the teacher. The 

etwork is initialized with weights of the model pre-trained with 

mageNet ( Deng et al., 2009 ) using 1 million natural images. Both 

rchitectures are modified using a classifier different from the orig- 

nal one. The original networks were pre-trained with datasets in- 

luding samples from 10 0 0 classes. Therefore they had 10 0 0 nodes 

n the last dense layer (1’0 0 0 is the number of classes in the

ataset). The new classifier used in both models has only four out- 

ut nodes in the last layer, equal to the number of Gleason pat- 

erns. 

The teacher and the student models are implemented using the 

yTorch framework 11 and using the Cartesius cluster as infrastruc- 

ure, provided by the SURFsara High Performance Computing cen- 

re (HPC) 12 . PyTorch is a framework developed for deep learning 

esearch. The version adopted is 1.1.0. Pytorch is used to write our 

xperiments in a high-level language that uses the computational 

ower of the graphics processing unit (GPU) and its application 

rogramming interface. The Cartesius cluster contains more than 

30 nodes, each equipped with two Tesla K40m GPUs. The models 

re trained using two GPUs for each CNN. 

The strategy adopted for training the teacher and the student 

odels concerns the hyperparameters of the networks and the so- 

ution adopted for facing the non-deterministic condition of the 

raining. 

The hyperparameters adopted are selected considering the con- 

ergence of the models (evaluated on the validation partition). The 

atch size is chosen considering the samples in the training parti- 

ion. If the partition includes a large number of samples (i.e. more 

han 60’0 0 0 samples), a batch size of 128 samples is selected. If 

he partition includes a smaller number of samples (fewer than 

0’0 0 0 samples), a batch size of 32 samples is chosen, in order to

educe the effort in terms of time to train the models. The num- 

er of epochs is chosen considering the performance on the val- 

dation partition. When the model is tested with a large dataset 

e.g. weakly-annotated dataset), it is empirically observed that the 

odel converges within 10 epochs and that it reaches the mini- 

um value in the loss function. When the model is tested with 

 smaller dataset, it is empirically observed that the model con- 

erges within 15 epochs and reaches the minimum value in the 

oss function. A grid search algorithm ( Chicco, 2017 ) allows to 

dentify the optimal values (i.e. the values that allow the CNN to 

inimize the loss function on the validation partition) for the hy- 

erparameters (i.e. optimizer algorithm, the learning rate and the 

ecay rate). The optimizer selected is Adam (Adam and SGD were 

ested). The learning rate selected is 10 −3 ( 10 −2 , 10 −3 , 10 −4 , 10 −5 

ere tested). The decay weight selected is 0 ( 10 −3 , 10 −4 , 10 −5 ,

0 −6 , 10 −7 , 10 −8 , 0 were tested). 

The teacher can be trained with weakly-annotated or with 

trongly-annotated data. In the first case (pre-training of the 

eacher model), the model is trained for ten epochs, with a batch 

ize of 128 samples (the partition includes more than 87’0 0 0 sam- 

les). In the second case, the model is trained for fifteen epochs, 

ith a batch size of 32 samples. The student is trained for fif- 

een epochs for each of the training variants with a batch size 

f 32 samples. The loss function in each epoch minimizes the 

ross-entropy loss function between the predicted class and the 

round truth label. At the end of each epoch, the loss func- 

https://pytorch.org/hub/pytorch_vision_densenet
https://pytorch.org/
https://userinfo.surfsara.nl/systems/hpc-cloud
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Fig. 4. Results for the average performance of the student training, trained with 

the semi-supervised learning approach (the teacher model is trained with strongly- 

annotated data). They are measured by the κ as a function of the amount of 

pseudo-labeled data used to train the student model. The sub-figure A includes the 

performance evaluated in Gleason grading at patch level using the TMAZ test data, 

the sub-figure B includes the performance evaluated in Gleason scoring at TMA core 

level using the TMAZ test data, the sub-figure C includes the performance evaluated 

in Gleason scoring at the WSI level, using the TCGA-PRAD test data. 

p

b

ion is evaluated on the validation partition of the corresponding 

ataset. The model weights are saved only when the loss func- 

ion is lower than the loss function in previous epochs. When the 

eacher model is trained with weakly-annotated data, the valida- 

ion partition includes the validation partition of the TCGA-PRAD 

ataset presented for the teacher model (Paragraph 2.3.2 ). When 

he teacher model is trained with strongly-annotated data, the 

alidation partition includes the validation partition of the TMAZ 

ataset (Paragraph 2.3.2 ). In all the student training variants pre- 

ented ( Section 2.2.3 ), the validation partition includes the valida- 

ion partition of the strongly-annotated dataset (i.e. TMAZ) (Para- 

raph 2.3.2 ) and the validation partition of the pseudo-labeled 

ata (Paragraph 2.3.2 ). The validation partitions are evaluated sep- 

rately. The choice of using both datasets during the evaluation is 

ade to avoid that the model overfits on one of the two datasets. 

n this case, the model weights are saved only when the loss func- 

ion is the lowest one for both partitions within an epoch, com- 

ared with the loss functions of the other epochs. 

The training of the models is not deterministic because of the 

tochastic gradient descent optimizer (Adam optimizer) used to 

rain the models and also partially because of the probabilistic 

ate applied to the data augmentation (presented in Section 2.3.4 ). 

n order to limit the non-deterministic effects introduced in the 

raining, both models are trained ten times in each step of the 

ipeline, except for the training of the teacher model in the semi- 

eakly supervised learning approach (see Section 2.2.2 ). In the 

emi weakly-supervised learning approach, the teacher model is 

re-trained with weakly-annotated data only once because of the 

arge number of patches within the dataset. Considering the train- 

ng and the validation partitions, the pre-training is made with up 

o 130’0 0 0 patches, while in the other steps of the pipeline, fewer

han half of the patches are used for training the models. In both 

eacher/student approaches ( Section 2.2.2 ), the teacher model se- 

ected to annotate the unlabeled data among the ten repetitions is 

he one that shows the best performance in κ , both in the TMAZ 

alidation partition (Paragraph 2.3.2 ) and in TCGA-PRAD validation 

artition (Paragraph 2.3.2 ). This criterion is selected considering 

he inter-dataset heterogeneity so that the model can generalize 

n both datasets, avoiding a model overfitting on one of them. In 

MAZ, the two approaches are tested at the patch level, while in 

CGA-PRAD, they are tested at the WSI level, as described in Para- 

raph 2.3.5 . In the student training variant II ( Section 2.2.3 ), the

tudent model selected to be fine-tuned with strongly-annotated 

ata is the one that shows the best performance in κ , in the TMAZ 

alidation partition (Paragraph 2.3.2 ). 

.3.4. Data augmentation 

Class-wise data augmentation (CWDA) is applied during the 

raining of the CNN models. The class-wise data augmentation 

s composed of three kinds of operations and it is applied for 

voiding overfitting. The three operations are rotation, flipping and 

olour augmentation. Rotation augmentation is applied with ran- 

omly rigid rotations (90,180,270 degrees). Flipping augmentation 

s applied flipping the image vertically and/or horizontally. Colour 

ugmentation is applied shifting the hue, saturation and bright- 

ess values of the original image. The colour augmentation pa- 

ameters are selected according to the parameters suggested by 

anowczyk 13 . The parameters for the colour augmentation are: the 

ue shift is limited to be between -9 and 9, the saturation shift 

s limited to be between -25 and 25 and the brightness shift 

s limited to be between -10 and 10. Each of these operations 

s applied to the training images, with a probability of 0.5. The 
13 http://www.andrewjanowczyk.com/employing- the- albumentation- library- in- 

ytorch- workflows- bonus- helper- for- selecting- appropriate- values/ . Retrieved 8th 

f January, 2020 

c

d  

C

p

9 
ipeline is implemented using the Albumentations open-source li- 

rary ( Buslaev et al., 2020 ). 

Overfitting can be caused by the unbalanced distribution of the 

lass distribution within the datasets and by the small amount of 

ata available ( Tables 2 , 3 , 4 , 5 ), particularly for the TMAZ dataset.

lass-wise data augmentation (CWDA) is also used to solve this 

roblem, by augmenting classes that are less frequently repre- 

http://www.andrewjanowczyk.com/employing-the-albumentation-library-in-pytorch-workflows-bonus-helper-for-selecting-appropriate-values/
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Fig. 5. Results for the average performance of the student models with the 

semi-weakly supervised learning approach (the teacher model is pre-trained with 

weakly-annotated data and it is fine-tuned with strongly-annotated data). They are 

measured by the κ as a function of the amount of pseudo-labeled data used to 

train the student model. Sub-figure A includes the performance evaluated in Glea- 

son grading at the patch level using the TMAZ test data, the sub-figure B includes 

the performance evaluated in Gleason scoring at TMA core level using the TMAZ 

test data, sub-figure C includes the performance evaluated in Gleason scoring at 

the WSI level, using the TCGA-PRAD test data. 
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ented in a stronger way. The implementation is based on the open 

ccess repository of Ufoyn 

14 . 

.3.5. Evaluation 

The models are evaluated on the classification of the Gleason 

core and the Gleason patterns of histopathological images given 

he image patches. The quadratic weighted Cohen Kappa score ( κ) 
14 https://github.com/ufoym/imbalanced-dataset-sampler . Retrieved 6th of Febru- 

ry, 2020 

r

p

5

10 
s used for assessing the model performance. The optimal Kappa is 

 and a random distribution would be 0, as kappa is normalized 

y agreement by chance. The average and the standard deviation 

f the κ of the models are reported. The Gleason pattern classifi- 

ation task is evaluated at the patch-level, while the Gleason score 

lassification is evaluated at the core level (for TMAZ) and at the 

SI level (for TCGA-PRAD). The Gleason score is evaluated aggre- 

ating the Gleason patterns classified at the patch level using a 

ajority voting system. The most frequently predicted class is se- 

ected as primary Gleason score, while the second most frequently 

redicted as secondary Gleason pattern. The majority voting has 

wo main drawbacks. The first drawback regards the fact that the 

ajority voting does not work well for the TMAs or the WSIs 

here the primary and the secondary Gleason patterns coincide. In 

he TCGA-PRAD dataset, the drawback is handled in the following 

ay: if the predominant pattern is represented in more than twice 

he amount of patches as the second pattern, it is considered to 

e both the primary and the secondary Gleason pattern. The sec- 

nd drawback regards noisy patches that can influence the voting. 

ot all the patches include tissue (e.g. stroma or healthy tissue) 

hat belongs to one of the four classes analyzed in this paper (be- 

ign, Gleason pattern 3, Gleason pattern 4, Gleason pattern 5). The 

odel is trained to classify one of these classes and the predictions 

an thus introduce noise. This drawback is limited selecting only 

atches from un-healthy tissue (500 patches) for each WSI, using 

he Blue-Ratio, as explained in Section 2.3.1 . The majority voting 

ollows the revised grading system ( Pierorazio et al., 2013 ) pro- 

osed by the American Urology Association 

15 . In the TMAZ dataset, 

n order to make results comparable, the majority voting approach 

sed is the one adopted by Arvaniti et al. (2018) . 

The κ measures the agreement between raters. The quadratic 

eighted Cohen Kappa score is adopted because it penalizes pre- 

icted values far from their actual class stronger: 

= 1 −
∑ 

i, j w i, j O i, j 
∑ 

i, j w i, j E i, j 

, w i, j = 

(i − j) 2 

(N − 1) 2 

he same formula is applied to both Gleason patterns and Glea- 

on scores. i, j are the ordered patterns, N = 4 is the total number 

f Gleason patterns ( N = 5 is the total number of Gleason scores). 

 i, j , is the number of images that were classified with a pattern 

score) i by the first rater and j by the second. E i, j denotes the 

xpected number of images receiving rating i by the first expert 

nd rating j by the second. The quadratic term w i, j penalizes the 

atings that are not close to the right value. When the predicted 

leason pattern (score) is far from the ground-truth class, w i, j gets 

loser to 1. E.g. if the ground truth of a patch is Gleason pattern 5

nd it is predicted as Gleason pattern 4, it is penalized less than if 

he predicted class is benign. 

Cohen’s κ is usually adopted in prostate classification to assess 

he level of agreement in multiclass problems ( Berg et al., 2011; Ar- 

aniti et al., 2018; Ström et al., 2019; del Toro et al., 2017; Otálora 

t al., 2020b ), as shown in Table 1 . The inter-pathologist agreement 

n prostate cancer classification can be used as an overall reference 

r baseline for evaluating the models. In Arvaniti et al. (2018) , two 

athologists pixel-wise annotated 245 tissue micro arrays. They 

eached κ = 0.67 in Gleason grading, while κ = 0.71 in Glea- 

on scoring. In Tolkach et al. (2020) , three pathologists pixel-wise 

nnotated 453 large tumour images from a cohort of TCGA-PRAD 

ataset. They reached κ = 0.70 in Gleason grading. 
15 https://www.auanet.org/education/auauniversity/education-products-and- 

esources/pathology- for- urologists/prostate/adenocarcinoma/ 

rostatic-adenocarcinoma-gleason-grading-(modified-grading-by-isup . Retrieved 

th of February, 2020 

https://github.com/ufoym/imbalanced-dataset-sampler
https://www.auanet.org/education/auauniversity/education-products-and-resources/pathology-for-urologists/prostate/adenocarcinoma/prostatic-adenocarcinoma-gleason-grading-(modified-grading-by-isup
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Table 6 

Performance measured for the semi-supervised learning ap- 

proach evaluated in κ . For each of the student training variants, 

the peak value and the corresponding number of pseudo-labeled 

patches per class are reported. The results that are statistically 

significant (compared with the baseline) are reported with an 

asterisk ( ∗). 

Training approach κ-score # pseudo-labels 

Gleason grading: TMAZ dataset 

Fully-supervised 0.5667 ± 0.0285 –

Training variant I 0.4643 ± 0.0385 9000 

Training variant II 0.6127 ±0.0133 ∗ 10’000 

Training variant III 0.6086 ± 0.0176 ∗ 3000 

Gleason scoring: TMAZ dataset 

Fully-supervised 0.7186 ± 0.0306 –

Training variant I 0.6284 ± 0.0492 9000 

Training variant II 0.7645 ±0.0231 ∗ 9000 

Training variant III 0.7562 ± 0.0293 ∗ 9000 

Gleason scoring: TCGA-PRAD dataset 

Fully-supervised 0.2293 ± 0.1350 –

Training variant I 0.4529 ±0.0512 ∗ 7000 

Training variant II 0.3981 ± 0.1085 1000 

Training variant III 0.4353 ± 0.0483 ∗ 8000 
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Table 7 

Performance measured for the semi-weakly supervised learning 

approach evaluated in κ . For each of the student training vari- 

ants, the peak value and the corresponding number of pseudo- 

labeled patches per class are reported. The results that are sta- 

tistically significant (compared with the baseline) are reported 

with an asterisk ( ∗). 

Training approach κ-score # pseudo-labels 

Gleason grading: TMAZ dataset 

Fully-supervised 0.5667 ± 0.0285 –

Training variant I 0.5062 ± 0.0487 9000 

Training variant II 0.6067 ± 0.0152 ∗ 8000 

Training variant III 0.6104 ±0.0158 ∗ 5000 

Gleason scoring: TMAZ dataset 

Fully-supervised 0.7186 ± 0.0306 –

Training variant I 0.6517 ± 0.0437 9000 

Training variant II 0.7516 ± 0.0274 ∗ 7000 

Training variant III 0.7588 ±0.0192 ∗ 7000 

Gleason scoring: TCGA-PRAD dataset 

Fully-supervised 0.2293 ± 0.1350 –

Training variant I 0.3593 ± 0.0496 ∗ 8000 

Training variant II 0.4121 ±0.0963 ∗ 5000 

Training variant III 0.4065 ± 0.0725 ∗ 9000 
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. Results 

The tested semi-supervised learning and semi-weakly super- 

ised learning approaches improve the student model performance 

oth in Gleason grading and Gleason scoring compared with the 

ully supervised learning approach. The improvement is statisti- 

ally significant, as the results are tested also using the Wilcoxon 

ank-Sum test ( Wilcoxon, 1992 ). The Wilcoxon Rank-Sum test is 

sed for determining if two probabilistic populations have the 

ame distribution (null hypothesis). If the test confirms the null 

ypothesis ( p-value > 0.05), it means that the populations have 

he same distribution. If it rejects the null hypothesis ( p-value < 

.05) the populations are assumed to have different distributions. 

In both classification tasks the best performance is reached 

ith the semi-supervised learning approach. Figs. 4 and 5 show 

he performance of the training/student approaches presented. 

n each figure, the performance is presented for the three stu- 

ent variants and the fully-supervised baseline described in 

ection 2.2.3 . The performance is measured as a function of the 

mount of pseudo-labeled data used to train the student model, as 

escribed in Section 2.3.5 . Each figure includes three curves and 

 constant line. The curves represent the student training vari- 

nts, as presented in Section 2.2.3 . The blue curve represents the 

erformance obtained with the student training variant I (training 

he student only with pseudo-labeled data). The green curve rep- 

esents the performance obtained with the student training vari- 

nt II (pre-training the student with pseudo-labeled data and fine- 

uning it with strongly-annotated data). The magenta curve rep- 

esents the performance obtained with the student training vari- 

nt III (training the student with both pseudo-labeled data and 

trongly-annotated data). The constant line (grey dashed line) rep- 

esents the fully-supervised learning approach (training the stu- 

ent only with strongly-annotated data). 

Fig. 4 and Table 6 show the performance of the semi-supervised 

earning approach. Fig. 4 includes three sub-figures: 4 .A, 4 .B and 

 .C. Two student training variants exceed the baseline: student 

raining variant II and student training variant III. In sub- Fig. 4 .B, 

he models are evaluated for Gleason scoring on the TMAZ test 

artition, at TMA core level. Two student training variants exceed 

he baseline: student training variant II and student training vari- 

nt III. In sub- Fig. 4 .C, the models are evaluated in Gleason scor-

ng on the TCGA-PRAD test partition, at WSI level. All the student 

raining variants exceed the baseline. Table 6 summarizes the peak 
11 
esults for the semi-supervised learning approach, highlighting the 

nes that are statistically significant. 

Fig. 5 and Table 7 show the performance of the semi- 

eakly supervised learning approach. Fig. 5 includes three sub- 

gures: 5 .A, 5 .B and 5 .C. In Fig. 5 .A, the models are evaluated for

leason grading on the TMAZ test partition at the patch level. Two 

tudent training variants exceed the baseline in κ: student train- 

ng variant II and student training variant III. In Fig. 5 .B, the mod-

ls are evaluated for Gleason scoring on the TMAZ test partition, at 

MA core level. Two student training variants exceed the baseline 

n κ: student training variant II and student training variant III. In 

ig. 5 .C, the models are evaluated for Gleason scoring on the TCGA- 

RAD test partition, at WSI level. All the student training variants 

xceed the baseline. 

Table 7 summarizes and the peak results for the semi-weakly 

upervised learning approach, highlighting the ones that are sta- 

istically significant. 

Fig. 6 shows confusion matrices of the CNNs (among all the 

epetitions) that reach the highest performance in Gleason grading 

nd Gleason scoring tasks. They are all obtained using the semi- 

upervised learning approach. For each task, the matrix with the 

aw values (on the left) and the normalized matrix are shown 

on the right). Fig. 6 .A shows confusion matrices of the best CNN 

n Gleason grading, evaluated in TMAZ. Fig. 6 .B shows confusion 

atrices of the best CNN in Gleason scoring, evaluated on TMAZ. 

ig. 6 .C shows confusion matrices of the best CNN in Gleason grad- 

ng, evaluated on TCGA-PRAD. 

. Discussion 

Although deep learning is the state-of-the-art technique in 

lassification tasks, it is not easy to train models that general- 

ze well on varying datasets, particularly when data are highly- 

eterogeneous and few data with local annotations are avail- 

ble. The teacher/student approaches presented in this paper al- 

ow training models that reach high performance in prostate can- 

er classification, improving the performance of a CNN (compared 

ith a CNN trained only with strongly-annotated data), generalize 

ell on different heterogeneous datasets, facing the inter-dataset 

eterogeneity and overcoming the lack of large datasets with local 

nnotations. 

Prostate cancer classification is still an open challenge in dig- 

tal pathology despite much work on the topic. The analysis 
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Fig. 6. Confusion matrices of the CNN models that show the highest performance in the tasks proposed in the paper. Sub-figure (A) includes the best CNN on Gleason 

grading in TMAZ, sub-figure (B) includes the best CNN on Gleason scoring in TMAZ, sub-figure (C) includes the best CNN on Gleason scoring in TCGA-PRAD. For each sub- 

figure, two confusion matrices are shown: on the left, the confusion matrix with the raw predictions of the CNN, on the right the confusion matrix with the normalized 

predictions. 
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sually involves two tasks: Gleason grading and Gleason scor- 

ng. Several approaches were developed: fully-supervised learn- 

ng approaches ( Arvaniti et al., 2018; Ström et al., 2019; Nag- 

al et al., 2019 ), weakly supervised ( del Toro et al., 2017; Ar-

aniti and Claassen, 2018; Otálora et al., 2020b; Campanella 

t al., 2019 ) and semi-supervised approaches ( Bulten et al., 2020; 

olkach et al., 2020 ). Fully-supervised learning shows that CNNs 

eed large datasets with local annotations to be trained and to 

uarantee high performance. Unfortunately, large datasets usu- 

lly come without local annotations, since producing them re- 

uires a large amount of work. Furthermore, it is hard to col- 

ect locally-annotated heterogeneous data, as datasets often orig- 

nate from a single medical source (e.g. Arvaniti et al. (2018) ; 

tröm et al. (2019) ; Nagpal et al. (2019) ). Weakly-supervised learn- 

ng approaches aim to reduce the dependency from local anno- 

ations, using global annotations as weak labels. However, the 

eak labels introduce noise in training, and therefore a large 

mount of data is needed to reach high performance, as shown 
12 
n Campanella et al. (2019) . In del Toro et al. (2017) ; Arvaniti and

laassen (2018) ; Otálora et al. (2020b) the authors applied weakly- 

upervised learning using subsets of a publicly available dataset 

TCGA-PRAD). In order to achieve comparable performance, the ex- 

eriments required a number of pixels that are 500 times larger 

han the locally annotated dataset (TMAZ). Semi-supervised learn- 

ng approaches aim to alleviate the lack of large datasets with 

ocal annotations and train models that generalize better to het- 

rogeneous datasets. The published literature that builds on top 

f the semi-supervised techniques for histopathology (particularly 

n prostate cancer) using the teacher/student paradigm shows an 

ppreciable level of technical sophistication, such as the work 

y Cheng et al. (2020) , Shaw et al. (2020) , Bulten et al. (2020) and

olkach et al. (2020) . There is literature that builds on top 

f the semi-supervised techniques for histopathology using the 

eacher/student paradigm, namely the work of Cheng et al. (2020) , 

haw et al. (2020) , Bulten et al. (2020) and Tolkach et al. (2020) .

ere, we want to discuss significant similarities and missing 
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Table 8 

Comparison between Arvaniti et al. (2018) , Bulten et al. (2020) 

and this work on TMAZ dataset, for both Gleason grading and 

Gleason scoring. The comparison involves the performance of best 

CNN trained and the average of ten CNNs (if reported). 

Work Best result Average result 

Gleason grading: (inter-pathologist agreement κ= 0.67) 

Arvaniti et al. (2018) κ = 0.55 not reported 

This work κ = 0.6613 κ = 0.6127 ±0.0133 

Gleason scoring: (inter-pathologist agreement κ= 0.71) 

Arvaniti et al. (2018) κ = 0.75 not reported 

Bulten et al. (2020) κ = 0.72 not reported 

This work κ = 0.8124 κ = 0.7645 ±0.0231 
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oints from these papers, as well as in our proposed method. 

n Cheng et al. (2020) , the authors train a teacher/student model 

or a segmentation task, exploiting partially labeled WSIs us- 

ng spatially related patches to filter out noisy model predic- 

ions. The authors show that their strategy improves the fully- 

upervised baseline. The CNN is evaluated on a homogeneous ex- 

ernal prostate dataset, showing an improvement in segmentation 

erformance. A homogeneous dataset does not account for the re- 

listic spectra of variations in clinical scenarios, where WSIs can 

e scanned with different scanners and have heterogeneous vi- 

ual appearance (as we have previously shown on TCGA-PRAD). 

n the work of Shaw et al. (2020) the authors train a chain 

f teacher-student models to annotate image regions of colorec- 

al cancer. Their model showed an impressive sample complex- 

ty by using only a small fraction (less than 1%) of the annotated 

ata to achieve comparable performance to the fully-supervised 

odel with 100% of the labels. Nevertheless, their experimental 

etup lacks validation on unseen centers. An interesting possible 

alidation for future work is to perform teacher/student model 

raining using only one center and comparing it with the re- 

orted inter-center performance. In Bulten et al. (2020) , the au- 

hors train a U-net based network to generate and to pseudo- 

abel prostate cancer regions. They use pure Gleason Pattern WSIs 

where the primary and the secondary Gleason patterns coin- 

ide) to reduce the noisy labels and avoid annotations with the 

rong patterns. The model reaches very high performance in 

he internal test set and pathologist level performance on the 

MAZ dataset (used as external test partition). However, this work 

uffers of the same experimental problem shown in the other 

ork, since TMAZ originates from one single medical source: 

he model is not validated on a heterogeneous external dataset. 

n Tolkach et al. (2020) , the authors train a model to classify 

leason patterns using a large dataset with pixel-wise annotated 

atches. The model is used to annotate unseen data from com- 

lex patterns (where primary Gleason pattern differs from sec- 

ndary Gleason pattern) and to fine-tune the model. The model is 

ested on both an internal test partition and on a TCGA-PRAD co- 

ort. Even though the model is tested on a heterogeneous external 

ataset it does not exploit data heterogeneity during the training, 

ince it is used to pseudo-annotate images from the same medical 

enter. 

Despite the noticeable differences in the individual technical 

omponents of each presented teacher/student approach, it is note- 

orthy that in Cheng et al. (2020) and Shaw et al. (2020) , the stu-

ent models always outperform the fully-supervised baseline. Fur- 

hermore, in the work of Shaw et al. (2020) , the authors show that

hen using 100% of the labeled data, the student’s performance is 

nferior to the one obtained with fewer labels. This result suggests 

hat there can be a substantial amount of noise in the full dataset 

nd that the student can distil a right amount of labels to reduce 

ts inclusion in the model. 

The semi-supervised and semi-weakly supervised approaches 

resented in this paper show better performance than a 

ully-supervised learning approach and other published ap- 

roaches ( Arvaniti et al., 2018; Bulten et al., 2020 ) tested on the

MAZ dataset. In Gleason grading, the fully-supervised approach 

btains κ= 0.5667 ± 0.0285, while the semi-supervised approach 

btains κ= 0.6127 ± 0.0133 and the semi-weakly supervised ap- 

roach κ= 0.6104 ± 0.0158. In the Gleason scoring task, evalu- 

ted on TMAZ, the fully-supervised approach obtains κ= 0.7186 

0.0306, while the semi-supervised approach obtains κ= 0.7645 

0.0231 and the semi-weakly supervised approach κ= 0.7588 ±
.0192. In the Gleason scoring task, evaluated on the TCGA-PRAD, 

he fully-supervised approach obtains κ= 0.2293 ± 0.1350 semi- 

upervised approach obtains κ= 0.4529 ± 0.0512 and the semi- 

eakly supervised approach κ= 0.4121 ± 0.0963. 
13 
The models trained with the semi-supervised 

earning approach outperform the models proposed 

y Arvaniti et al. (2018) and Bulten et al. (2020) in both Gleason 

rading and Gleason scoring, evaluated on the TMAZ test partition, 

s reported in Table 8 . 

The performance obtained with the semi-supervised approach 

re slightly higher than the one of the semi-weakly supervised 

pproach, considering the peak values in Gleason grading and 

coring reported in Tables 6 and 7 . The difference can be ex- 

lained with the pseudo-labeled patches annotated by the teacher 

odel. In the semi-supervised learning approach, the teacher 

odel provides pseudo-labeled patches that are less noisy than 

he patches of the other approach. This is particularly true con- 

idering the performance of the models trained with the train- 

ng variant I (only pseudo-labeled patches) in Gleason scoring, 

valuated on TCGA-PRAD: in the semi-supervised approach, the 

odels reach κ= 0.4529 ± 0.0512 as peak value, while in semi- 

eakly supervised approach, the models reach κ= 0.3593 ± 0.0496. 

he patches provided by the teacher are a consequence of the 

raining schema used. The teacher is trained only with strongly- 

nnotated data in the semi-supervised learning approach, while 

therwise it is first pre-trained with weakly-annotated data and 

hen it is fine-tuned with strongly-annotated data. Therefore, the 

eakly-annotated dataset used for pre-training the teacher model 

n the semi-weakly supervised learning approach can lead to noisy 

atches. The classification performance of the models depends on 

he amount of pseudo-labeled data used for training. A trade-off

etween the two is identified. As shown in Section 2.3.2 , one of 

he most critical parameters for the paradigm is the number of 

seudo-labeled patches ( K parameter) used for training the student 

odel. As expected, including the pseudo-labeled data improves 

he performance, since the dataset is larger and it includes data 

rom different sources. However, the performance is not monoton- 

cally increasing, considering the amount of pseudo-labeled data 

sed for training the student model. Since pseudo-labeled data can 

e noisy, the more pseudo-labeled data are collected the higher is 

he noise in the training data. When data are too noisy, the perfor- 

ance can also decrease. This is the case for the work presented: 

or each of the student variants tested a peak value in κ is iden- 

ified. For each of the models, the peak value corresponds to the 

ubset of pseudo-labeled data where the noisy labels are less rep- 

esented than in the other subsets. 

The teacher/student approaches allow alleviating the inter- 

ataset heterogeneity, mitigating the overfitting and allowing the 

odels to generalize on datasets from several sources. The inter- 

ataset heterogeneity leads to models that adapt their weights on 

he data used for training them. The overfitting lowers the model 

erformance when it is trained on a dataset and is evaluated on 

nother one (from a different source). It happens for both the 

MAZ dataset (fully-supervised learning approach of the student) 

nd the TCGA-PRAD dataset (student training variant I). The over- 

tting influences less strongly the student training variant II and 
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Fig. 7. A few examples of the pseudo-labeled patches, annotated by the teacher model. For each of the classes, the upper row includes the top-ranked patches, while the 

bottom row includes the lowest probabilities. For each of the patches the probability of belonging to the class is shown. The Xe-Y is an abbreviation for X × 10 −Y . 
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t is limited adopting the student training variant III. The student 

odel trained only with TMAZ patches (fully-supervised learning 

pproach) obtains good results when it is tested on the test par- 

ition of the same dataset ( Fig. 4 .A,B and Fig. 5 .A,B, dashed line)

ut it fails to generalize on the TCGA-PRAD dataset ( Fig. 4 .C and

ig. 5 .C, dashed line). The student model trained only with TMAZ 

atches and tested on the TCGA-PRAD dataset reaches close to the 

owest performance. The student model trained only with pseudo- 

abeled data (student training variant I) obtains excellent perfor- 

ance when it is tested on an internal test partition ( Figs. 4 .C

nd 5 .C, blue curve) but it fails to generalize on the TMAZ dataset

 Figs. 4 .A,B and 5 .A,B, blue curve). The same thing happens for

oth the teacher/student paradigm approaches. The student model 

rained only with pseudo-labeled patches and tested on the TMAZ 

ataset has the lowest performance. The inter-dataset heterogene- 

ty leads to overfitting also for the student training variant II but in 

his case it is less strong than the previous examples. In this stu- 

ent training variant, the student model is trained in two steps. 

irst, it is pre-trained with pseudo-labeled data and then it is 

ne-tuned with strongly-annotated data. The model first adapts its 

eights on the pseudo-labeled data and then it adapts its weights 

n strongly-annotated data. For the TMAZ dataset the student 

raining variant II obtains among the best performance when it is 

ested on its test partition ( Figs. 4 .A ,B and 5 .A , green curve) but it

ails to generalize well on the TCGA-PRAD dataset ( Figs. 4 .C, 5 .C,

reen curve). Considering both approaches, the model trained with 

his student training variant and tested on the TCGA-PRAD dataset 

as a better performance than the fully-supervised learning ap- 

roach. However, in the semi-supervised learning approach, it is 

xceeded by 0.096 in κ , compared with the same model trained 

sing the student training variant I (only with pseudo-labeled 

ata). The overfitting is limited using the student training vari- 

nt III. In this student training variant, the model is trained com- 

ining both the pseudo-labeled and the strongly-annotated data. 

n this case, the performance is good both for the Gleason score 

nd Gleason pattern classification ( Figs. 4 .A ,B,C, 5 .A ,B,C, magenta 

urves). In Gleason pattern classification, this student training vari- 

nt reaches the best result in the semi-weakly supervised learning 

pproach ( Fig. 5 .A, magenta curve) and a performance similar to 

he best in the semi-supervised learning approach ( Fig. 4 .A, ma- 

enta curve). The same models generalize well in the TCGA-PRAD 
14 
ataset ( Figs. 4 .C and 5 .C, magenta curves). In both approaches, the 

esults are similar to the ones obtained with the student training 

ariant II regarding the evaluation at patch level, but much better 

egarding the evaluation at the WSI level. 

The teacher/student approaches allow overcoming the lack of 

arge datasets with locally-annotated data. Locally-annotated data 

re needed to train CNNs but only small datasets with local anno- 

ations are available. The approaches exploit large amounts of un- 

abeled or weakly-annotated data that are publicly available, auto- 

atically annotating them with pseudo-labels. Fig. 7 shows a set of 

seudo-labeled patches from the teacher model, trained with the 

emi-supervised learning approach. For each class, the upper row 

ncludes some of the top-ranked patches, while the bottom row 

ncludes a few of the patches with the lowest probabilities. The 

op-ranked patches match the corresponding tissue morphology. 

The methods shown in the paper can be still improved, even 

hough they reach high performance and outperform models from 

ther approaches evaluated on the same datasets. Fig. 6 shows the 

est CNN trained for Gleason grading and scoring (both on TMAZ 

nd TCGA-PRAD). The matrices show that the models have poorer 

erformance in distinguishing between benign and Gleason pattern 

 when evaluated on TMAZ at patch level ( Fig. 6 .A), in distinguish-

ng between benign and Gleason score 6 when evaluated in TMAZ 

t core level ( Fig. 6 .B) and in predicting high risk Gleason scores 

n TCGA-PRAD ( Fig. 6 .C). Figs. 4 and Fig. 5 show that the mod-

ls sometimes have large confidence intervals and unstable perfor- 

ance, especially when evaluated in TCGA-PRAD. The large con- 

dence intervals can occur due to the aggregation method used 

o evaluate the primary and the secondary Gleason patterns and 

o the heterogeneous datasets used to train and test the models. 

he aggregation is made with a majority voting method and it in- 

olves patches that may include large portions of stroma (since 

he patches are the top-ranked within a WSI according to BR). 

espite stroma and healthy tissue representing most of the tis- 

ue within an image, they are not very important for the diagno- 

is process, since the diagnosis is made considering cancer tissue 

hat occupies only a smaller portion of the images. Therefore, the 

ggregation algorithm considers also portions of stroma in the di- 

gnosis that a pathologist would discard. The models that show 

he largest confidence intervals and most unstable performance are 

he ones trained with data from a dataset and evaluated on an- 
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ther dataset. It can be explained considering that the datasets 

sed are heterogeneous and that the models tend to adapt their 

eights on the training data. In Fig. 4 .A,B and Fig. 5 .A,B the mod-

ls trained with variant I (only pseudo-labeled patches from TCGA- 

RAD) have the largest confidence interval, since they are evalu- 

ted on TMAZ. The models trained with variant II and III include 

atches from TMAZ in the training partitions, therefore the per- 

ormance are more stable and have smaller confidence intervals 

hen the models are evaluated in TMAZ. In Fig. 4 .C and Fig. 5 .C the

odels trained with variant II (pre-training with pseudo-labeled 

atches from TCGA-PRAD and fine-tuning with strongly-annotated 

atches from TMAZ) have the largest confidence interval and un- 

table performance, since they are evaluated on TCGA-PRAD. 

. Conclusion 

Training classification models that generalize on several 

atasets raises questions when data are highly-heterogeneous and 

nly limited amounts of locally-annotated data are available. In 

his paper, two teacher/student approaches (semi-supervised learn- 

ng and semi-weakly supervised learning) allow to train CNN mod- 

ls that generalize on datasets from varied sources. The approach 

llows to improve the performance of the CNN, to face inter- 

ataset heterogeneity and to overcome the lack of large datasets 

ith local annotations. The approaches are evaluated for Gleason 

attern and Gleason score classification. They are compared with a 

ully-supervised learning approach and other approaches. In both 

ases, the models trained with the teacher/student paradigm im- 

rove their performance compared with a fully-supervised learn- 

ng used to train the models. In particular, the models trained 

sing the semi-supervised approach show the best performance 

or both Gleason pattern and Gleason score classification. The 

eacher/student paradigm allows to face the inter-dataset hetero- 

eneity and to limit the overfitting during the training of the 

odels. The models trained with the approach generalize on both 

atasets used in this paper, the TMAZ and the TCGA-PRAD. The 

pproach allows to overcome the lack of large locally-annotated 

atasets to train the models, exploiting a large amount of un- 

abeled and/or weakly-annotated data to automatically generate 

seudo-labeled data. In future work, the teacher/student paradigm 

ill be applied to different types of tissues and different K values 

ill be tested. K values, larger than the ones presented in this pa- 

er, will be tested in the future to make it possible to learn with

 large amount of weakly-annotated or unlabeled data, building 

ore robust and more accurate CNNs. The code and all the pre- 

rained models will be made publicly available on Github ( https: 

/github.com/ilmaro8/Semi _ Supervised _ Learning ) upon paper pub- 

ication. The pseudo-labeled data are available from the corre- 

ponding author on request. 
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