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A B S T R A C T   

Extreme precipitation heavily affects society and economy in Africa because it triggers natural hazards and 
contributes large amounts of freshwater. Understanding past changes in extreme precipitation could help us 
improve our projections of extremes, thus reducing the vulnerability of the region to climate change. Here, we 
combine high-resolution satellite data (1981–2019) with a novel non-asymptotic statistical approach, which 
explicitly separates intensity and occurrence of the process. We investigate past changes in extreme daily pre
cipitation amounts relevant to engineering and risk management. Significant (α = 0.05) positive and negative 
trends in annual maximum daily precipitation are reported in ~20 % of Africa both at the local scales (0.05◦) and 
mesoscales (1◦). Our statistical model is able to explain ~90% of their variance, and performs well (72% 
explained variance) even when annual maxima are explicitly censored from the parameter estimation. This 
suggests possible applications in situations in which the observed extremes are not quantitatively trusted. We 
present results at the continental scale, as well as for six areas characterized by different climatic characteristics 
and forcing mechanisms underlying the ongoing changes. In general, we can attribute most of the observed 
trends to changes in the tail heaviness of the intensity distribution (25% of explained variance, 38% at the 
mesoscale), while changes in the average number of wet days only explain 4% (12%) of the variance. Low- 
probability extremes always exhibit faster trend rates than annual maxima (~44% faster, in median, for the 
case of 100-year events), implying that changes in infrastructure design values are likely underestimated by 
approaches based on trend analyses of annual maxima: flexible change-permitting models are needed. No sys
tematic difference between local and mesoscales is reported, with locally-varying impacts on the areal reduction 
factors used to transform return levels across scales.   

1. Introduction 

Africa is highly vulnerable to climate change due to its high socio- 
economic sensitivity to extreme weather events (Di Baldassarre et al., 
2010; Liu et al., 2020; WMO, 2021). Extreme precipitation heavily af
fects society and economy because it triggers devastating natural haz
ards, such as floods and landslides (Nka et al., 2015; Igwe, 2018; 
Tramblay et al., 2020), and provides large amounts of freshwater to 
replenish groundwater resources (Samuels et al., 2009; Taylor et al., 
2013). Quantifying and understanding past changes in extreme precip
itation in Africa is thus of burning interest, because it helps improving 
our projections for engineering applications and risk and water re
sources management. 

According to the last Intergovernmental Panel on Climate Change 
Assessment Report (IPCC: Climate Change, 2021) only two African 

regions, i.e., western and eastern South Africa, exhibit increasing trends 
in heavy precipitation attributable to the human contribution since the 
1950s, although with a low confidence due to limited agreement. Due to 
the lack of long-term in-situ observations (Washington et al., 2006; Kidd 
et al., 2017), detection and attribution of trends in extreme precipitation 
in Africa proves rather uncertain, with sometimes contrasting results 
even for what concerns the direction of change (Cattani et al., 2018; 
Harrison et al., 2019). Nevertheless, numerous observational studies 
contribute to drawing the picture of heavy precipitation trends in Africa, 
typically examining high percentiles in the daily precipitation distri
bution (e.g., the 99th wet-day percentile) or the annual maximum daily 
amounts (RX1day or RX1), as detailed in the following. 

One of the most investigated regions is Sahel-West Africa, where 
many works reported a recovery in the precipitation amounts and heavy 
precipitation since the 1980s, after decades of shortage, probably caused 

* Corresponding author. 
E-mail address: f.marra@isac.cnr.it (F. Marra).  

Contents lists available at ScienceDirect 

Journal of Hydrology X 

journal homepage: www.sciencedirect.com/journal/journal-of-hydrology-x 

https://doi.org/10.1016/j.hydroa.2022.100130 
Received 2 March 2022; Received in revised form 7 July 2022; Accepted 10 July 2022   

mailto:f.marra@isac.cnr.it
www.sciencedirect.com/science/journal/25899155
https://www.sciencedirect.com/journal/journal-of-hydrology-x
https://doi.org/10.1016/j.hydroa.2022.100130
https://doi.org/10.1016/j.hydroa.2022.100130
https://doi.org/10.1016/j.hydroa.2022.100130
http://creativecommons.org/licenses/by/4.0/


Journal of Hydrology X 16 (2022) 100130

2

by an increased intensity and frequency of mesoscale convective systems 
(e.g., Taylor et al., 2017; Nicholson et al., 2018; Vischel et al., 2019; 
Diatta et al., 2020; Chagnaud et al., 2021). Similarly, increasing pre
cipitation amounts characterize western South Africa, particularly in the 
southern interior (Kruger and Nxumalo, 2017). Conversely, rainfall 
amounts decreased significantly in the Horn of Africa (Tierney et al., 
2015), especially during the March-May rain season. This was likely 
caused by natural multidecadal variability of the tropical Pacific sea 
surface temperatures (Lyon 2014) or by a human-induced increase in the 
Indian Ocean sea surface temperatures, which modulates the Warm Pool 
circulation (Williams and Funk, 2011). Statistically significant negative 
trends in precipitation amount and number of wet days in autumn were 
recently found over the east, central and north-eastern parts of South 
Africa (MacKellar et al., 2014; Kruger and Nxumalo, 2017). Central 
Africa experienced a significant decrease in total precipitation, which is 
likely associated with a significant decrease of the length of the 
maximum number of consecutive wet days (Aguilar et al., 2009). Here, 
the area of the Congo basin, one of the world’s most active thunderstorm 
regions where the second largest rainforest is situated, is witnessing a 
widespread increase in the boreal summer (June–August) dry season 
length since the 1980s (Jiang et al., 2019). 

Given the poor and uneven spatial coverage of monitoring stations 
over Africa, it was difficult to infer an overall significant trend in RX1 
and RX5 (the annual maxima at five consecutive days) (Westra et al., 
2013; Sun et al., 2021). Nevertheless, it was possible to detect a pre
dominance of positive trends for both indices from 1950 to 2018 in 
South Africa, where many ground stations are located (Westra et al., 
2013). Similarly, positive trends were reported for Kenya and western 
Ethiopia based on geostationary satellite observations, and negative 
trends for eastern Ethiopia (Gebrechorkos et al., 2019). At a pan-African 
level, statistically significant positive trends in the annual averages of 
the monthly maxima from the Rainfall Estimates on a Gridded Network 
(Contractor et al., 2020) were reported during 1980–2016 in West and 
East Africa, whereas negative and non-significant deviations charac
terize southern Africa (Robinson et al., 2021). 

Less is known about the changes in rarer extremes such as the 
amounts exceeded on average once in N years (termed N-year events or 
return levels), which are fundamental for engineering and risk manage
ment applications, and on the mechanisms behind these changes. The 
direct quantification of extreme return levels requires data series several 
times longer than the exceedance probability timescale; hence, statisti
cal extrapolation models need to be used, such as extreme value distri
butions (Coles, 2001). These models rely on the observed extremes, 
either the annual maxima or the values exceeding very high thresholds, 
and require relatively long records to achieve a reasonable accuracy 
(Katz et al., 2002). Despite being preferable to traditional trend detec
tion techniques (Zhang et al., 2004), quantifying changes between two 
periods is subject to large uncertainties because the temporal slices are 
usually short (Paeth et al., 2017). For example, De Waal et al. (2017) 
compared 50-year return levels from 76 rainfall stations in Western Cape 
(South Africa) estimated during 1980–2009 with those estimated during 
1950–1979, finding an increase in 63 % of the stations and a decrease in 
the remaining 37 %. 

Possible alternatives to this approach include nonstationary models 
in which changes of the distribution parameters are modeled using 
covariates, which are expected to be related to extreme precipitation, 
such as temperature (Tramblay et al., 2012; Nasri et al., 2016; Tramblay 
and Somot, 2018; Chagnaud et al., 2021). For the case of central and 
eastern Africa, Afuecheta and Omar (2021) tested a number of nonsta
tionary models for annual and monthly maxima of daily precipitation 
using time as covariate, and combined them with an analysis of trends in 
temperature extremes with the objective of improving crop resilience 
and flood risk management. These methods, however, require approxi
mations in order to reduce uncertainties. Typically, a-priori assumptions 
on the high-order statistical moments of the distribution (which are 
difficult to estimate under stationary conditions, let alone 

nonstationary) are used, such as the absence of temporal changes in 
some of the parameters (e.g., Prosdocimi and Kjeldsen, 2021). Evidence 
of different responses for extremes characterized by different severity 
(Schär et al., 2016; Pendergrass, 2018), however, challenges these as
sumptions. It has also been argued that stochastic climate variability 
may set a lower boundary to the uncertainty in the observed extremes, 
limiting the practical usefulness of these models (Serinaldi and Kilsby, 
2015; Fatichi et al., 2016). 

As an additional complication, changes in extremes may depend on 
the spatial scale of interest. This may alter the areal reduction factors 
that are used to convert in-situ estimates of extreme return levels to areal 
amounts associated to corresponding exceedance probabilities. These 
factors are of crucial importance for engineers and risk managers 
(Svensson and Jones, 2010). Evidence of a possible dependence on the 
spatial scale of the response of extremes to temperature is reported for 
many regions (Wasko et al., 2016; Lochbihler et al., 2017; Peleg et al., 
2018), raising the question whether this effect may have caused tem
poral changes in the extremes in Africa. 

Here, we address these challenges and try to improve our under
standing of the changes that occurred in multi-scale extreme return 
levels in Africa over the last decades. To do so, we combine long-term 
high-resolution satellite precipitation estimates with a novel statistical 
approach able to quantify changes in return levels relevant for engi
neering and risk management and to attribute the observed trends to 
changes in the events intensity and/or occurrence. While a similar 
framework was recently used to investigate extreme sub-daily precipi
tation in the eastern Italian Alps assuming spatial homogeneity of the 
trends (Dallan et al., 2022), to the authors’ knowledge, this is the first 
time this approach is applied over a wide area (here, continental) using 
distributed (here, satellite) information. Our application could over
come important limitations in the current state of the art for what 
concerns the attribution of observed trends in extremes to specific 
changes in precipitation climatology over wide ungauged regions of the 
Earth. 

Specifically, we: (a) quantify trends in extreme daily precipitation 
amounts and extreme return levels at the local and mesoscale; (b) 
investigate the mechanisms underlying the observed changes; and (c) 
quantify differences in the changes detected for annual maximum daily 
amounts and extreme return levels at different spatial scales. 

2. Methods 

2.1. Precipitation data 

This study is based on data from the Climate Hazards Group InfraRed 
Precipitation with Station (CHIRPS) version 2 (Funk et al., 2015), which 
covers the period 1981–2019 (39 years) with global land-only daily 
precipitation estimates at 0.05◦ resolution. This dataset is chosen as it 
represents one of the few options currently available to represent 
extreme daily precipitation at local and coarser scales for (i) a region 
where convection dominates extremes and for (ii) a sufficiently long 
time period to allow the investigation of temporal changes. In fact, other 
candidate satellite-based precipitation products generally start about 
two decades later, when passive microwave sensors were first deployed, 
and are subject to important temporal inhomogeneities in both number 
and type of sensors included in the estimation. Reanalysis products 
could represent an alternative but cannot resolve convective processes 
due to the insufficient resolution of the current models, and recent 
studies recommend the use of alternative sources when it comes to ex
tremes: “while we recommend caution for all products dependent on their 
intended application, this particularly applies to reanalyses which show the 
most divergence across results” (Alexander et al. 2020). 

The CHIRPS algorithm is based on infrared (IR) cold cloud duration- 
based precipitation estimates from the geostationary satellite constel
lation, and a rain gauge merging procedure. The high resolutions 
granted by IR are critical for sampling short-living local and mesoscale 
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convective systems, which are crucial in determining extremes even at 
the daily scale (Laing et al., 2008, 2011; Raghavendra et al., 2018), 
especially in arid regions (Morin et al., 2020). CHIRPS is regarded as a 
reference in terms of robustness and quality over Africa, and is largely 
used in climatological studies (e.g., Dinku et al., 2018; Satgé et al., 2020; 
Dembélé et al., 2020). It is characterized by sufficiently high resolution 
and long continuous and homogeneous records to allow multi-scale 
trend detection over a multi-decadal period. Although Harrison et al. 
(2019) pointed out that “a promising result for identifying regional changes 
is that numerous satellite products do well at interannual variations in pre
cipitation totals and number of rain days, even as well as some gauge-only 
products”, we limit here the possible impact of biases in the data by 
examining normalized quantities, namely (i) the average change rates 
(that is, the slope of a linear approximation of the trends normalized 
over the median value of the variable of interest), and (ii) the ratios 
between change rates. Similar assumptions have long been adopted for 
analyzing the scale dependence of extremes in remote sensing obser
vations (after Frederick et al., 1977). 

The Global Precipitation Climatology Center (GPCC) Full Data daily 
(v2020) is a 1◦ gridded dataset based on rain gauge observations (Ziese 
et al., 2020); being based on direct observations, as opposed to the in
direct retrievals of the IR estimates, it is expected to provide more ac
curate representations of extremes, albeit at coarser spatial scales. It 
covers the period 1982–2019 and is used here as a benchmark for the 
validation of the assumptions underlying our statistical model (Section 
2.4). 

2.2. Statistical model 

We estimate extreme return levels using a non-asymptotic statistical 
approach. The model relies on information from the so-called ordinary 
(as opposed to extreme) events, which are all the days with non-null 
precipitation amounts (wet days), assumed here as statistically inde
pendent (Marani and Ignaccolo, 2015; Zorzetto et al., 2016). The idea is 
that when the tail of the distribution of the wet-day amounts is known, 
an extreme value distribution describing the emerging extremes can be 
built from ordinary statistics, by explicitly considering the yearly sam
pling of wet days (Marani and Ignaccolo, 2015; Marra et al., 2020; 
Serinaldi et al., 2020). The approach directly captures and separates 
information on the wet-day intensity distribution and on wet-day 
occurrence frequency. 

Thermodynamics reasoning suggests that the exceedance probability 
of extreme daily precipitation amounts x decreases as a stretched- 
exponential (Wilson and Toumi, 2005), so that the right tail of the 
wet-day distribution can be parametrized with a cumulative distribution 
function in the form: 

F(x; λ, κ) = 1 − e
−

(
x
λ

)κ

(1) 

where λ is a scale parameter, and κ a shape parameter which defines 
the tail heaviness (sub-exponential for κ > 1, heavier-than-exponential 
for κ < 1; see Figure S1 in the Supporting Information for a visual 
interpretation). This tail model was supported by observations over 
different climatic regimes (e.g., Papalexiou et al., 2018; Marra et al., 
2019, 2020; Miniussi and Marra, 2021), including tropical Africa 
(Amponsah et al., 2022). Thresholds to define the tail typically ranged 
between the 75th and the 90th wet-day percentiles (Mediterranean and 
continental climates, respectively). 

Knowing F, it is possible to estimate rare daily precipitation associ
ated to extreme yearly non-exceedance probabilities p, such as the 100- 
year return levels with p = 0.99, by inverting the extreme value distri
bution: 

p(x) ≃ [F(x; λ, κ) ]n (2) 

where the average number of wet days in a year n is explicitly 
considered. This approach is known as Simplified Metastatistical 

Extreme Value, or SMEV (Marra et al., 2019; Marra et al., 2020; Ser
inaldi et al., 2020). 

As the model parameters are derived from a relatively large fraction 
of the wet-day amounts, they can be estimated for every year in the 
record, thus allowing us to quantify return levels at each year. These 
estimates will be obviously subject to large uncertainties, and will not be 
directly useful for engineering and risk management applications. 
However, using trend detection techniques, it is possible to evaluate the 
statistical significance of the changes in these quantities and quantify 
trend rates (e.g., Miniussi and Marani, 2020; Dallan et al., 2022). 

2.3. Parameter estimation 

In our application, we define as wet all daily amounts equal or 
exceeding 0.1 mm at 0.05◦ resolution, and assume independence of the 
wet day amounts (e.g., Zorzetto et al., 2016; Marra et al., 2019). Pa
rameters of the model are computed for every year j: nj is the number of 
wet days; λj and κj are computed by censoring (censoring the magnitude 
but retaining the weight in probability) the portion of data not belonging 
to the tail (Section 2.4), and using a least-square linear regression in 
Weibull-transformed coordinates (Marani and Ignaccolo, 2015). 

2.4. Validation of the model assumptions and definition of the tail 

Our statistical model is as good as its underlying assumption: the 
exceedance probability of heavy daily precipitation intensities decays as 
a stretched-exponential. This assumption is verified using a specific 
Monte Carlo test (Fig. 1), based on the one described in Marra et al. 
(2020). To have a quantitatively robust reference for extremes, we use 
the GPCC dataset. The test consists of: (i) estimating the model param
eters (λθ, κθ) by explicitly censoring all the observed annual maxima and 
the wet-day values below a given left-censoring threshold θ; (ii) sam
pling 103 random realizations of reality as if the model assumptions 
were true (nj wet days distributed as the estimated model (λθ, κθ) with 
j = 1,⋯,M representing years in the record); (iii) extracting the corre
sponding annual maxima; (iv) testing whether the observed annual 
maxima are likely samples from the model: if more than 5% of these 
annual maxima lie outside the 95% sampling confidence interval, the 
assumption of having stretched-exponential tail above the tested 
threshold is to be rejected. Iterating (i)-(iv) over different thresholds θ 
permits to identify the portion of the distribution tail which is well 
described by a stretched-exponential, that is the lowest threshold above 
which the model is never rejected. Left-censoring thresholds between 
the 50th and the 90th percentile are explored. If the stretched- 
exponential tail is rejected also for the highest left-censoring 
threshold, we consider the assumption as not verified. Because the tail 
is expected to be a climatic property and the test is subject to a level of 
stochasticity, the left-censoring thresholds used in the study are selected 
by smoothing the obtained values (1◦ resolution) over 3◦ × 3◦ windows 
and rounding to the closest 5th percentile. A schematic of the workflow 
is reported in Fig. 1. 

It is worth noting three aspects concerning this test. First, for the sake 
of the test, the stationarity assumption behind the test (a unique tail is 
tested using all the years) can be considered verified, even when sig
nificant trends are observed (Figure S2). Second, the test is robust: the 
probability of not rejecting stretched-exponential tails in presence of 
power-type tails, which are the most widely supported alternative to 
stretched-exponential tails for the case of precipitation, is zero or close 
to zero for thresholds lower than the 90th percentile; conversely, the 
probability of wrong rejection in presence of stretched-exponential tails 
can be close to 10% (Figure S3). Last, our definition of the left-censoring 
thresholds implies that the model parameters are not sensitive to small 
changes in the thresholds (see Marra et al., 2019). 
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2.5. Spatial scales 

Two spatial scales are examined: (i) local scale, represented by 
CHIRPS data at the original resolution (0.05◦, ~5 km at the equator); (ii) 
mesoscale, represented by the data aggregated to 1◦ resolution (~100 
km at the equator). To do so, a 1◦-aggregated value is computed for each 
wet day of the 0.05◦ pixels by spatially averaging the original data over 
the 20 × 20 surrounding pixels. 

2.6. Detection of temporal trends 

The non-parametric Mann-Kendall test (Mann, 1945) is used to test 
the statistical significance (level α = 0.05) of the trends in the model 
parameters, in the largest daily amounts observed (RX1) and modeled 
(RX1 modelled) in each year, and in the modeled return levels (100-year 
return levels are here shown), at both local and mesoscale. The 2-year 
return levels are the theoretical median of RX1 and are here used as 
model quantification of the change rate in the RX1 (RX1 modeled). 
Possible serial correlation in the data is accounted for by pre-whitening 
the data; it should be noted that correlation was small, and results 
without pre-whitening are indistinguishable. Yearly estimates of the 

distribution parameters may be subject to systematic biases, especially 
for what concerns the estimated tail heaviness (usually, tail heaviness is 
overestimated when few data are available for parameter estimation). 
To limit the impact of this issue, the magnitude of the trends is here 
quantified using the average change rate, computed as the ratio between 
the non-parametric Sen’s slope estimator (Sen, 1968) and the median 
value of the variable in the time series. This assumes that the biases in 
the estimated parameters are stationary. 

3. Results and discussion 

3.1. Tail properties of extreme daily precipitation over Africa 

The right tail of the distribution of daily precipitation amounts is 
found to be well described by a stretched-exponential model for ~87% 
of the continent (see Fig. 2), with definitions of the right tail ranging 
from the largest 50% of the wet day amounts (light blue in the Fig. 2a) to 
the largest 10% (dark blue). In the remaining ~13% of the continent 
(dotted areas), our test rejects the assumption of stretched-exponential 
tail within the tested ranges of tail definitions (50th to 90th percen
tiles). As mentioned above, this is in-line with synthetic experiments 

Fig. 1. Workflow of the test to verify the tail assumption and define the tail.  
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showing that, under the examined conditions (record length, yearly 
number of wet days), the test may provide ~5–11% false rejections (see 
Figure S3). However, in two regions (one in east Africa and one in 
southern Angola) the spatial clustering of these pixels suggests that 
extreme precipitation could have different types of tail or that tails could 
here consist in smaller fractions of the data (e.g., only the largest 5%). 
Nevertheless, since only few significant trends are detected in these 
areas (see next section), this is not expected to affect our results. After 
left-censoring, an average of at least 10 data points per year are available 
for parameter estimation in most of the continent (Fig. 2c), granting a 
proper estimation of the two tail parameters; fewer data points are 
available over the Sahara Desert and in other isolated areas in the 
eastern and southern portions of the continent. 

3.2. Trends in annual maximum daily precipitation 

The trends of the annual maximum daily precipitation (RX1) at the 
local scale are significant over 20.3% of the continent (Fig. 3a). The area 
in central Africa characterized by strong negative trends (area #4 in 
Fig. 3a) contributes ~60% of the significant trends; however, the reli
ability of the results is dubious because the area is almost completely 
devoid of ground observations. In particular, central Africa is a region 
where rain gauge data are scarce with consequences on the accuracy of 
the satellite precipitation products, which strongly rely on gauge data 
for their generation, as is the case of CHIRPS. The case of the central 
Africa will be further discussed below (Section 3.2.1). 

Without considering the central African area, ~37% of the signifi
cant trends is positive and ~63% negative. Positive trends are reported 
in the Sahel (#2), in Kenya and Tanzania (#5), and in the coastal regions 
of the Gulf of Guinea (#3) and of the Middle East (#1); negative trends 
are reported in the Middle East (#1), in inland areas of west Africa (#3 
and #2), in South Africa and Namibia (#6), and in the above mentioned 
region in central Africa extending from Sudan to Angola (#4). Similar 
trends are reported at the mesoscale (1◦; Figure S4). The fraction of 
significant trends in the six examined areas ranges from 15% to 20.1%, 
and reaches ~77% in area #4 (13.4–74% at the mesoscale), and are thus 
larger than the 5% false positives expected at the used significance level. 
The interested reader can find quantitative information on the param
eters estimated for the different areas in Table S1. These values are 
reasonable when compared to other studies in which stretched- 

exponential tails have been used (e.g., Marra et al., 2020; Miniussi 
and Marra, 2021); nevertheless, as discussed in Section 2.6, we deem 
their quantitative values less reliable than the average change rates 
examined here. 

Harrison et al. (2019) compared trends derived from multiple pre
cipitation products, including CHIRPS, finding no statistically signifi
cant change in the extremes. Direct comparison with their results is 
however difficult, because they focused on a small portion of the 
continent in which our results show no statistically significant trend (see 
Fig. 1 in Harrison et al., 2019). Similarly, Pfahl et al. (2017) reported an 
increase in RX1 from global climate models in central Africa for the 
period 1983–2000, a result difficult to compare with ours due to the 
different examined period and to the known deficiency of global models 
in resolving the convective processes that are key to extreme precipi
tation. The trends we observe, however, are in line with results from 
both Chaney et al. (2014), who reported positive trends in the Sahel 
region, and Mtewele et al. (2021), who used multi-sensor satellite esti
mates from the Tropical Rainfall Measurement Mission (TRMM) Multi
satellite Precipitation Analysis (TMPA) for the period 1998–2018 and 
found negative trends in both frequency and intensity of extremes in the 
western portion of central Africa. 

3.2.1. The case of the central Africa 
The area over which consistent negative trends in extremes are 

observed includes the tropical forests of the Congo basin and vast 
savannah regions (D’Onofrio et al., 2018). Since most of the precipitable 
water available in these regions is related to the forest or to other 
vegetation types (O’Connor et al., 2021), vegetation-precipitation 
feedbacks may represent an important mechanism behind these obser
vations (e.g., due to wildfire-generated aerosols or woody encroach
ment), a hypothesis to be explored more in detail in the future. 

Other authors recently highlighted a decrease in precipitation 
amounts and forest greenness over Congo, with an increase of the dry 
season length (Jiang et al., 2019; Zhou et al., 2014). Convection (from 
deep convection to mesoscale convective systems) is responsible for 
most of precipitation in this area, being the Congo Basin one of the three 
most convective regions in the world together with Amazonia and the 
Indonesian maritime continent. Raghavendra et al. (2018) used 35 years 
(1982–2016) of geostationary infrared brightness temperatures to 
explore the changes in the magnitude and area of cold cloud top 

Fig. 2. Tail properties of extreme precipitation in Africa. (a) Portion of wet-day amounts defining the stretched-exponential tail as identified using the test on the 
GPCC data (after the 3◦ × 3◦ smoothing); light blue shades represent areas in which the largest 50% (or more) of the data follow a stretched-exponential model, dark 
blue shades areas in which the largest 10% of the data follow a stretched-exponential model. Dotted pixels represent areas in which the test could not identify a 
stretched-exponential tail. (b) Fraction of pixels for which the stretched-exponential tail assumption is verified (inset) and, for the verified ones, fraction on pixels 
belonging to each tail definition. (c) Average yearly number of wet-days in the tail as defined using the proportions in (a). 
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temperatures as a proxy for the number and size of individual thun
derstorms at different intensities. The results suggest that larger and 
more intense thunderstorms are occurring in this area during the last 
decades, with an increase in the mean size of thunderstorms with lower 
cloud top temperature to the detriment of the mean size of thunder
storms with higher cloud top temperature. This contributes to a drier 
lower troposphere (and a wetter higher troposphere), a weaker ascent at 
both the lower and upper troposphere, and an overall reduction of the 
soil moisture. These changes were found to be associated with a sig
nificant decrease in April-May-June precipitation over the Congo Basin. 
More recently, Alber et al. (2021) analyzed the trend in thunderstorm 
activity from 1983 to 2018 exploiting the Gálvez-Davidson index. 
Feedback mechanisms are proposed to explain the observed thunder
storm intensification, which include the cooling and moistening of the 
mid-troposphere, drying and warming at the surface and lower tropo
sphere, and a decrease in vertical stability and convective inhibition. 
Despite the lower level of accuracy expected for CHIRPS estimates in this 
region, the above factors are conducive to the significant negative trend 
we observe for the past 40 years, which is also in agreement with rather 
independent satellite observations for the last ~20 years (Mtewele et al., 
2021). 

3.3. Evaluation of the statistical model 

Our statistical model proves robust at reproducing the observed 
trends both in qualitative (spatial patterns) and quantitative (explained 
variance) terms (Fig. 3b). Specifically, the model explains 89% of the 
variance (91% at the mesoscale) of the significant change rates (R2 

computed for all pixels in which the observed trend is significant). 
Notably, only 45% of the variance (43% at the mesoscale) is explained in 
area #4, while 76–90% of the variance (68–92% at the mesoscale) is 
explained in the other areas. Remarkably, the model run explicitly 
censoring the observed annual maxima (RX1), and thus providing in
dependent estimates of their trends, explains as much as 72% of the 
variance (67% at the mesoscale) of the significant trends in RX1 (Fig. 4). 
This suggests that the proposed statistical model could represent an 
opportunity for examining trends in extremes in situations in which the 
observed/modelled extremes are not fully trusted (e.g., Masunaga et al., 
2019; Rajulapati et al., 2020). These results support the use of the sta
tistical model to (i) investigate the relation between daily precipitation 
climatology and extreme and (ii) quantify trends in rare exceedance 
probabilities which cannot be extracted from observations alone, as 
detailed in the following sections. 

Fig. 3. Observed and modelled trends at the local scale (0.05◦). The average change rate of significant (Mann-Kendall test, α = 0.05) trends is shown. (a) Trends in 
the observed annual maximum daily precipitation (RX1); the fraction of pixels with significant trend is reported for the whole study area (bottom left) and for each 
area (bottom left in each box); (b) Modelled trends in RX1; R2 with the trends in observed RX1 is reported for the whole study area (bottom right) and for each area 
(top right in each box); the model explains 89% of the variance in the trends of observed RX1; (c) Modelled trends in the 100-year daily precipitation (q100); (d) 
trends in the scale parameter of the model (λ); changes in the scale explain 13% (0–34% depending on the region) of the variance in the trends of observed RX1; (e) 
Trends in the shape parameter of the model (κ); changes in tail heaviness explain 25% (0–78% depending on the region) of the variance in the trends of observed 
RX1; (f) Trends in the average yearly number of wet days (n); changes in the number of wet days explain 4% (1–32% depending on the region) of the variance in the 
trends of observed RX1. Observed and modelled trends at the mesoscale (1◦) are reported in Figure S4. 
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3.4. Link between changes in precipitation climatology and extremes 

The largest portion of variance explained by the model is to be 
ascribed to the distribution tail heaviness (shape parameter of the 
stretched exponential distribution κ, which is negatively correlated to 
extreme return levels; see Figure S1) with 25% explained variance (38% 
at the mesoscale; Fig. 3e and Figure S4e). Changes in the scale of the 
distribution λ explain 13 % of the variance (21% at the mesoscale), and 
changes in the number of wet days 4% (12% at the mesoscale) (Fig. 3d 
and f; Figure S4d and S4f). This implies that, at both scales, the trends in 
extremes are mostly related to changes in the distribution of daily pre
cipitation amounts, rather than to changes in the occurrence frequency 
of storms and, mostly, in the proportion of very extreme events. An 
interesting exception is the Sahel (area #2), where the number of wet 
days explains 11% of the variance versus 0% of the tail heaviness. This 
confirms previous findings based on in-situ and satellite observations 
(Panthou et al., 2014; Taylor et al., 2017; Chagnaud et al., 2021). 
Possible physical explanations are associated with changes in sea surface 
temperature, convective available potential energy, and vertical wind 
shear, and are discussed by Biasutti (2019), and Tramblay et al. (2020). 
Noting that a uniform scaling of extreme precipitation with temperature 
(such as 7% ◦C− 1 expected according to the Clausius-Clapeyron relation; 
e.g., O’Gorman and Schneider, 2009) translates into a change in the 
scale parameter only, the trends we observe in the model parameter 
imply that severity-dependent scaling factors are essential to adequately 
capture the complex dependences of extreme precipitation, and that 
trends in extreme return levels are likely different from the trends one 
can detect using observed annual maxima. 

3.5. Different changes of annual maxima and extreme return levels at 
local and mesoscales 

Significant trends in the 100-year return levels (q100) derived from 
the statistical model are shown in Fig. 3c (Figure S4c for the mesoscale). 
Overall, 19.6% of the continent experienced significant changes in the 
100-year events. This implies that the stochastic uncertainties charac
terizing yearly estimates of extreme return levels as high as the 100-year 
events using our model is comparable to the one characterizing annual 
maxima. The spatial patterns of these changes largely follow the ones of 
RX1, with no cases of opposing trends, but their magnitude is always 
(99.99% of the significant pixels) greater (Fig. 5). Trend rates in the 100- 
year events in Africa since 1981 have been ~44% stronger (in median) 
than the ones in RX1, both at local and mesoscales. This is consistent 
with previous findings based on extreme precipitation-temperature 
scaling, observations, and models in several regions of the Earth (e.g., 
Myhre et al., 2019; Kelder et al., 2020; Lenderink et al., 2021; Visser 
et al., 2021). 

The ratio between change rates of extremes at local and mesoscales 
can be interpreted as a proxy of the changes in extreme storm structure, 
and is directly related to the areal reduction factors (Fig. 6). The pre
viously reported redistribution of moisture toward the storm center in 
response to global warming (e.g., Wasko et al., 2016; Armon et al., 2022) 
translates into expected stronger positive trends at the local scale, or 
stronger negative trends at the mesoscale. This is qualitatively 
confirmed in areas #3 (positive trends) and #6 (negative), and implies 
an increased reduction of extremes with area in some parts of eastern 
Africa and southern Africa (Fig. 6b and d). However, other regions 
present opposite behaviors, such as area #1 (both positive and negative 
trends), area #2 (positive) and area #4 (negative). This smoothing 
translates into a decreased reduction of extremes with area, and con
firms previous findings based on the Sahel (Vischel et al., 2019). Overall, 

Fig. 4. Empirical validation of the model assumptions: trends in RX1 modelled explicitly censoring the observed RX1. Average change rate of significant (Mann- 
Kendall test, pvalue < 0.05) trends in RX1 modelled by explicitly censoring the observed annual maxima at local (a) and mesoscales (b). The fraction of pixels with 
significant trend is reported for the whole study area (bottom left) and for each area (bottom left in each box); R2 with the trends in observed RX1 is reported for the 
whole study area (bottom right) and for each area (top right in each box). The censored model reproduces 72% of the variance (67% at the mesoscale) in the 
significant trends of the observed RX1. 
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the distribution of these ratios is rather dispersed, so that local situations 
might largely differ from the behaviors highlighted here; specific cases 
need to be examined individually. 

When interpreting our results in terms of risk assessment and water 
resources management, we should consider systems that respond to 
daily or sub-daily extreme rainfall, such as floods and flash-floods in 
catchments with areas up to a few thousand square kilometers, or 
landslides and debris flows in headwater catchments and steep slopes. 
The faster changes in extreme return levels, here demonstrated by the 
100-year events, imply that changes in the potential occurrence of these 
hazards could have happened faster than what measured by usual trends 
on RX1. The strong positive trends observed in Area #2 (Sahel) and #5 
(eastern Africa), for example, could be indicative of a quick increase in 

the probability of flood and landslides in these areas over the past de
cades, as perhaps exemplified by recent events (Wainwright et al., 
2021). Similarly, the change we report in the areal reduction factors can 
suggest different changes between landslides/flash-flood risk, which 
respond to local precipitation, and flood risk/water availability, which 
are mostly impacted by the volumes of precipitation over relatively vast 
areas. However, it should be recalled that rainfall is far from being the 
only factor affecting these processes (e.g., Sharma et al., 2018). Addi
tional work based on hydrological models or slope stability models able 
to include observed trends in extremes, antecedent conditions, and other 
relevant processes is needed to thoroughly address these issues 
quantitatively. 

Fig. 5. Extreme daily precipitation return levels changed faster than annual maxima. (a) Relative magnitude of increasing (blue shades) and decreasing (brown 
shades) trends between extreme return levels (here 100-year events are shown, q100) and annual maximum daily precipitation (RX1) at the local scale (0.05◦); (b) 
Ratio between the average change rate of q100 and RX1 in the six areas at the local scale (median, inter-quartile range and 5-95th percentile range are shown); the 
number of considered pixels (both trends are significant) is reported next to each boxplot; (c) Relative magnitude of increasing and decreasing trends between q100 
and RX1 at the mesoscale (1◦); (d) Ratio between the average change rate of q100 and RX1 in the six areas at the mesoscale; the number of considered pixels (both 
trends are significant) is reported next to each boxplot. In all panels, only pixels in which both trends are significant (Mann-Kendall test, α = 0.05) and concordant 
(discordant trends are found in ≤ 7 pixel) are shown. 
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4. Conclusions 

Changes in annual maximum daily precipitation and low-probability 
extremes relevant for engineering and risk management that occurred 
over Africa since 1981 are examined using a high-resolution satellite 
precipitation product (CHIRPS Version 2) and a novel non-asymptotic 
statistical approach based on ordinary (as opposed to extreme-value) 
statistics. Temporal trends in annual maxima (RX1) and extreme re
turn levels at local scales (0.05◦) and mesoscales (1◦) are detected, 
quantified, and compared, and are then attributed to changes in wet-day 
occurrence and characteristics of the wet-day intensity distribution. 

Roughly 20% of the continent experienced significant trends (Mann- 
Kendall, α = 0.05) in annual maxima (RX1), with both positive (Sahel, 

Kenya and Tanzania, coastal regions of the Gulf of Guinea, coastal re
gions of the Middle East) and negative (Middle East, inland areas of west 
Africa, South Africa and Namibia, and a vast region in central Africa 
extending from Sudan to Angola) changes. 

The statistical model explains 89% (91% at the mesoscale) of the 
variance in the observed change rates of RX1, and 72% (67% at the 
mesoscale) of the variance when run with explicit censoring of the 
observed annual maxima. It can thus be trusted for investigating causal 
relations between wet-day intensity distribution and number of wet 
days, on one side, and extremes on the other, and to quantify past trends 
in rare exceedance probabilities. Provided its assumptions are met, it 
could represent a viable option for examining trends in situations in 
which the observed/modelled extremes are not fully trusted. Here, we 

Fig. 6. Different changes in extreme precipitation at the local and mesoscale. (a) Relative magnitude of the increasing (blue shades) and decreasing (brown shades) 
trends between local (0.05◦) and mesoscale (1◦) for the annual maximum daily precipitation (RX1); (b) Ratio between the average change rate of RX1 at local and 
mesoscale in the six areas (median, inter-quartile range and 5-95th percentile range are shown); the number of considered pixels (both trends are significant) is 
reported next to each boxplot; (c) Relative magnitude of the increasing and decreasing trends between local and mesoscale for extreme return levels (here 100-year 
events are shown, q100); (d) Ratio between the average change rate of q100 at local and mesoscale in the six areas; the number of considered pixels (both trends are 
significant) is reported next to each boxplot. In all panels, only pixels in which both trends are significant (Mann-Kendall test, α = 0.05) are shown (all trends 
are concordant). 

F. Marra et al.                                                                                                                                                                                                                                   



Journal of Hydrology X 16 (2022) 100130

10

evaluated the validity of the model assumption using observational data 
and a robust Monte Carlo-based statistical test. 

Changes in the tail heaviness of the wet-day intensity distribution, 
that is the proportion between heavy and extreme events, explain most 
(25%) of the variance in the changes in RX1, as opposed to 13% of the 
intensity distribution scale parameter and 4% of the number of wet days. 
These results imply a differential rate of change between RX1 and rarer 
extremes: extreme return levels changed faster than RX1 (~44% faster 
for the case of 100-year events), both for positive and negative trends. 
Increased reduction of extremes with area, suggesting a redistribution of 
moisture toward the storm center, is reported for coastal areas of the 
Gulf of Guinea (positive trends) and southern Africa (negative), while an 
opposite behavior is found for the Middle East (positive and negative 
trends), Sahel (positive), and central Africa (negative). These results 
imply locally-dependent impacts on the areal reduction factors used to 
derive extreme return levels at the areal scale (e.g., at the catchment 
scale). 

Our quantitative results depend on the ability of CHIRPSv2 to 
represent changes in the wet-day precipitation intensities and in pre
cipitation occurrence, key features of our model, and on the local ade
quacy of the stretched-exponential tail model and of the assumptions 
underlying the trend analyses, but are robust with respect to stochastic 
uncertainties and errors in the satellite estimation of extreme 
precipitation. 
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