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Abstract
TheMassivelyParallelComputation (MPC)model serves as a commonabstractionofmanymodern large-scale data processing
frameworks, and has been receiving increasingly more attention over the past few years, especially in the context of classical
graph problems. So far, the only way to argue lower bounds for this model is to condition on conjectures about the hardness of
some specific problems, such as graph connectivity on promise graphs that are either one cycle or two cycles, usually called
the one cycle versus two cycles problem. This is unlike the traditional arguments based on conjectures about complexity
classes (e.g., P �= NP), which are often more robust in the sense that refuting them would lead to groundbreaking algorithms
for a whole bunch of problems. In this paper we present connections between problems and classes of problems that allow
the latter type of arguments. These connections concern the class of problems solvable in a sublogarithmic amount of rounds
in the MPC model, denoted byMPC(o(log N )), and the standard space complexity classes L and NL, and suggest conjectures
that are robust in the sense that refuting them would lead to many surprisingly fast new algorithms in the MPC model. We
also obtain new conditional lower bounds, and prove new reductions and equivalences between problems in the MPC model.
Specifically, our main results are as follows.

– Lower bounds conditioned on the one cycle versus two cycles conjecture can be instead argued under the
L � MPC(o(log N )) conjecture: these two assumptions are equivalent, and refuting either of them would lead to
o(log N )-round MPC algorithms for a large number of challenging problems, including list ranking, minimum cut, and
planarity testing. In fact, we show that these problems and many others require asymptotically the same number of rounds
as the seemingly much easier problem of distinguishing between a graph being one cycle or two cycles.

– Many lower bounds previously argued under the one cycle versus two cycles conjecture can be argued under an even more
robust (thus harder to refute) conjecture, namely NL � MPC(o(log N )). Refuting this conjecture would lead to o(log N )-
roundMPC algorithms for an even larger set of problems, including all-pairs shortest paths, betweenness centrality, and all
aforementioned ones. Lower bounds under this conjecture hold for problems such as perfect matching and network flow.
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1 Introduction

The Massively Parallel Computation (MPC) model is
arguably the most popular model of computation that cap-
tures the essence of several very successful general-purpose
frameworks for massively parallel coarse-grained computa-
tions on large data sets, such as MapReduce [35], Hadoop
[86], Spark [88], and Dryad [54]. The main feature of this
model is that a single commodity machine of a large cluster
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cannot store the entirety of the input, but just a sublinear frac-
tion of it. This is an important restriction since we think of
the data set as being very large. The computation proceeds in
synchronous rounds, and in each of them the machines can
exchange data with each other with the sole restriction that
no one can send or receive more data than it is capable of
storing. The goal is to keep the total number of rounds as low
as possible.

This basic model has been intensively investigated in the
past decade, mostly from an algorithmic point of view—
see [7,8,11,12,15,17,19,21,24,27,32,33,42–45,47,48,52,59,
60,63,65,75,78] and references therein. It turns out that many
problems can be solved with an MPC algorithm that ter-
minates in O(log N ) rounds, where N denotes the input
size, usually by simulating knownPRAMalgorithms [47,59].
However, designing faster algorithms resisted the efforts of
many researchers. Recently, a few works managed to break
the O(log N ) barrier by relaxing a bit the constraint on
the memory size: specifically, they showed that some graph
problems allow for o(log N )-round solutions in the so-called
near-linear memory regime, whereby machines have memo-
ries of size Õ(n), where n is the number of nodes in the graph
[11,12,21,33,42].1 However, without this kind of relaxations
only a few problems are known to admit a o(log N )-round
algorithm [17,27,45,48].2 A fundamental question is thus
whether many known O(log N )-round algorithms can be
complemented with a tight lower bound.

Unfortunately, proving unconditional lower bounds—that
is, without any assumptions—seems extremely difficult in
this model, as it would imply a breakthrough in circuit com-
plexity: Roughgarden et al. [78] showed that, when enough
machines are available, proving any super-constant lower
bound for any problem in P would imply new circuit lower
bounds, and specificallywould separateNC1 from P—a long-
standing open question in complexity theory that is a whisker
away from the P versusNP question. This means that the lack
of super-constant lower bounds in the MPC model can be
blamed on our inability to prove some computational hard-
ness results.

In light of this barrier, the focus shifted to proving
conditional lower bounds, that is, lower bounds condi-
tioned on plausible hardness assumptions. One widely-
believed assumption concerns graph connectivity, which,
when machines have a memory of size O(n1−ε) for a con-
stant ε > 0, is conjectured to require Ω(log n) MPC rounds

1 Notice that this relaxes the sublinear constraint on the memory size
in the case of sparse graphs.
2 Some algorithms have been analyzed in terms of other parameters,
such as the diameter [8,9,19] or the spectral gap [14] of the graph. The
round complexity of these algorithms is o(log N ) in some cases, but it
remainsΩ(log N ) in general. In this paper we do not consider this kind
of parameterized analysis.

[15,59,75,78,87].3 The same conjecture is often made even
for the special case of the problem where the graph con-
sists of either one cycle or two cycles, usually called one
cycle versus two cycles problem. The one cycle versus two
cycles conjecture has been proven useful to show conditional
lower bounds for several problems, such asmaximal indepen-
dent set, maximal matching [43], minimum spanning trees in
low-dimensional spaces [7], single-linkage clustering [87],
2-vertex connectivity [9], generation of random walks [64],
as well as parameterized conditional lower bounds [19].4

However, it is not clear whether the one cycle versus two
cycles conjecture is true or not, and if not, what its refutation
implies. This situation is in contrastwith traditional complex-
ity theory, where a refutation of a conjectured relationship
between complexity classes would typically imply ground-
breaking algorithmic results for a large number of problems;
for example, if the P �= NP conjecture fails, then there would
be efficient (polynomial-time) algorithms for all problems in
NP, including a number of “hard” problems. To put it another
way, a conjecture like P �= NP is more robust in the sense
that it is extremely hard to refute—doing so requires a major
algorithmic breakthrough. The goal of this paper is to explore
conjectures of this nature in the MPC model.

1.1 Summary of contributions

In this paper we show many connections between problems
and classes of problems that lead to more robust conjectures
for the MPC model. In particular, we study the connections
between the class of problems solvable in a sublogarithmic
amount of rounds in theMPCmodel with O(N 1−ε)memory
per machine for some constant ε ∈ (0, 1) and up to poly-
nomially many machines, denoted by MPC(o(log N )), and
the standard space complexity classes L and NL. (Recall that
L and NL are the classes of decision problems decidable in
logarithmic space on deterministic and nondeterministic Tur-
ing machines, respectively.) The connection between MPC
and these complexity classes is enabled by a recent result
showing how Boolean circuits can be efficiently simulated
in the MPC model. In short, we present a set of observations
and reductions that suggest that L � MPC(o(log N )) and
NL � MPC(o(log N )) are two robust conjectures that might
play crucial roles in arguing lower bounds in theMPCmodel,
as they already imply tight conditional lower bounds for a
large number of problems. In particular, with some assump-

3 Observe that in the near-linear memory regime this conjecture breaks:
graph connectivity can be solved in O(1) MPC rounds [18].
4 The one cycle versus two cycles problem is usually stated such that, in
the case of two cycles, these have n/2 nodes each. However, we observe
that all the mentioned conditional lower bounds hold also when the two
cycles may have arbitrary lengths.
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tions on the total amount ofmemory (equivalently,machines)
available in the system, we can conclude the following.

1. Robustness: The one cycle versus two cycles conjec-
ture is robust, since it is equivalent to conjecturing that
L � MPC(o(log N )), and refuting this conjecture requires
showing o(log N )-round algorithms for all problems in
L. This class includes many important problems such as
graph connectivity, cycle detection, and planarity testing.

2. Equivalences: All L-complete problems are equiva-
lent in the sense that they require asymptotically the
same number of rounds. This means that the one cycle
versus two cycles problem, which is L-complete (see
“Appendix A.1”), is equivalent to many seemingly harder
problems, such as graph bipartiteness, minimum cut, and
formula evaluation (see problems in the bottom ellipse in
Fig. 1 for more). This also means that the conjectures on
the hardness of graph connectivity and on the hardness
of the one cycle versus two cycles problem are equiva-
lent. Additionally, all NL-complete problems and a few
others are also equivalent. These problems include st-
reachability, all-pairs shortest paths (both the directed and
undirected cases) on unweighted graphs, diameter, and
betweenness centrality (see problems in the top ellipse in
Fig. 1 for more).

3. New conditional lower bounds: Assuming the one
cycle versus two cycles conjecture (equivalently, L �
MPC(o(log N ))), there are no o(log N )-round algorithms
for all L-hard problems and a few other problems. This
implies new conditional lower bounds for more than a
dozen of problems, such as betweenness centrality, pla-
narity testing, graph bipartiteness, list ranking, formula
evaluation, and densest subgraph (see problems in the
big rectangle in Fig. 1 for more). Previously only a few
lower boundswere known, e.g., for single-linkage cluster-
ing [87] and maximum matching [70]. (Of course, lower
bounds for connectivity-related problems are trivially
implied by the one cycle versus two cycles conjecture.)
Most of our lower bounds are tight (e.g., lower bounds for
problems in the ellipses in Fig. 1).

4. A more robust conjecture: For NL-hard problems, we
can argue lower bounds under the more robust NL �
MPC(o(log N )) conjecture. These problems include per-
fect matching, single-source shortest paths, diameter, and
network flow (see problems in the small rectangle in
Fig. 1 for more). Note that, since L ⊆ NL, the NL �
MPC(o(log N )) conjecture ismore robust (i.e., safer,more
likely to be true) than its counterpart with L.

Problems hard under the L � MPC(o(logN)) conjecture

Problems equivalent under O(1) MPC rounds

Graph Connectivity

One Cycle vs. Two Cycles

st-connectivity # Connected Components

Connected ComponentsMinimum Spanning Forest

Cycle Detection

Order Between Vertices

List Ranking

Formula Evaluation

Planarity Testing Graph BipartitenessMinimum Cut

Out-degree 1 st-reachability

Densest Subgraph Single-Linkage Clustering

Problems hard under the NL � MPC(o(logN)) conjecture

Problems equivalent under O(1) MPC rounds

st-reachability

Shortest PathStrong Connectivity

Directed Cycle Detection

SSSP APSP

DiameterRadius

Median

Betweenness Centrality

Perfect Matching
Circuit Evaluation

Network Flow

Fig. 1 A classification of the complexity of some prominent problems
in theMPCmodel. Problems in the top ellipse are on unweighted graphs

1.2 Related work

Fish et al. [40] were perhaps the first to establish a connection
between the MPC model and classical complexity classes.
Besides the introduction of a uniform version of the model,
they showed that constant-roundMPCcomputations can sim-
ulate sublogarithmic space-bounded Turing machines, and
then proved strict hierarchy theorems for the MPC model
under certain complexity-theoretic assumptions.

Roughgarden et al. [78] discuss connections between the
MPC model and Boolean circuits. They show that stan-
dard degree arguments for circuits can be applied to MPC
computations aswell, and specifically that anyBoolean func-
tion whose polynomial representation has degree d requires
Ω(logs d) rounds of MPC using machines with memory s.
This implies an Ω(logs n) lower bound on the number of
rounds for graph connectivity. Perhaps more interestingly,
the authors show a barrier for unconditional lower bounds
by observing that, if enough machines are available, then
proving any super-constant lower bound in the MPC model
for any problem in P would imply new circuit lower bounds,
and specifically would separate NC1 from P, thus answer-
ing a notorious open question in circuit complexity. This
result follows by showing that, with a number of available
machines polynomial in the number of input nodes of the
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circuit, NC1 circuits can be efficiently simulated in the MPC
model. We observe that their argument readily generalizes to
show that any bounded fan-in Boolean circuit of depth d and
of polynomial size can be simulated in O(�d/ log s�) MPC
rounds. Very recently, Frei and Wada [41] prove the same
result improving over the amount of machines required for
the simulation—from linear to strongly sublinear in the size
of the circuit.

Given the difficulty of proving lower bounds for all algo-
rithms, one can (a) prove lower bounds for restricted classes
of algorithms, or (b) prove conditional lower bounds: assume
one lower bound, and transfer the conjectured hardness to
other problems via reductions (with common examples being
the theory of NP-hardness and its more recent analogue for
problems in P, usually called fine-grained complexity the-
ory). Both paths give a deep understanding and warn us what
not to try when designing algorithms.

Within the first line of inquiry, Pietracaprina et al. [74]
prove lower bounds for matrix multiplication algorithms
that compute all the n3 elementary products (thus ruling
out Strassen-like algorithms). Similar kinds of limitations
are required by Beame et al. [15], Jacob et al. [55], Im and
Moseley [51], and Assadi and Khanna [13] to prove lower
bounds for st-connectivity, list ranking, graph connectivity,
and maximum coverage, respectively. Of a similar flavor are
the results of Afrati et al. [3], who show, for a fixed number of
rounds (usually a single round), space-communication trade-
offs.

Within the second line of inquiry fall [7,9,64,87], which
use the conjecture on the hardness of graph connectivity
as a hardness assumption for proving conditional lower
bounds for other problems such as minimum spanning
trees in low-dimensional spaces, single-linkage clustering,
2-vertex connectivity, and generating random walks, respec-
tively. Recently, Ghaffari et al. [43] present conditional lower
bounds for other key graph problems such as constant-
approximatemaximummatching, constant-approximate ver-
tex cover, maximal independent set, and maximal matching.
Their lower bounds also rest on the hardness of graph con-
nectivity, hold for a wide class of MPC algorithms, and are
obtained by applying a new general framework (later revised
in [31]) that allows one to lift (unconditional) lower bounds
from the classical LOCALmodel of distributed computing to
the MPC model. Assuming the same conjecture, Behnezhad
et al. [19] show a parameterized lower bound of Ω(log D)

for identifying connected components in graphs of diameter
D. By observing that a couple of specific NC1 reductions
can be simulated in O(1) MPC rounds, Dhulipala et al. [36]
show that if a variant of graph connectivity on batch-dynamic
graphs can be solved within a certain amount of rounds, so
can all the problems in P. A conditional lower bound fol-
lowing a different kind of argument is given by Andoni et
al. [8], who show that an no(1)-round MPC algorithm that

answers O(n + m) pairs of reachability queries in directed
graphs with n nodes and m edges can be simulated in the
RAM model yielding faster Boolean matrix multiplication
algorithms. Very recently, Chung et al. [28] show, using
techniques from the data structures and cryptography litera-
ture, that there exist functions whose computation, assuming
the validity of a popular methodology for designing crypto-
graphic constructions, is essentially not parallelizable in the
MPC model.

Several other models have been developed in the quest
to establish rigorous theoretical foundations of (massively)
parallel computing, with the PRAM being one of the most
investigated. The MPC model is more powerful than the
PRAM since PRAMalgorithms can be simulated in theMPC
model with constant slowdown [47,59], and some problems
(such as sorting or evaluating the XOR function) can be
solved much faster in the MPC model.

Valiant’s bulk-synchronous parallel (BSP) model [83]
anticipated many of the features of MPC-type computations,
such as the organization of the computation in a sequence
of synchronous rounds (originally called supersteps). Sev-
eral papers (e.g., [2,22,46,67,80]) explored the power of this
model by establishing lower bounds on the number of super-
steps or on the communication complexity required by BSP
computations, where the latter is defined as the sum, over
all the supersteps of an algorithm, of the maximum num-
ber of messages sent or received by any processor. Lower
bounds on the number of supersteps are usually of the form
Ω(logh N ), where h is the maximum number of messages
sent or received by any processor in any superstep.

Another model aiming at serving as an abstraction for
modern large-scale data processing frameworks is the k-
machine model [61]. Inspired by message-passing models
in distributed computing, the k-machine model features k
available machines, and in each round any pair of machines
is allowed to communicate using messages of a given size.
Hard bounds on the point-to-point communication lead to
very strong round lower bounds in this model [61,71,72].

The congested clique (see, e.g., [37]) is a model for net-
work computations bearing some similarities with the MPC
model. On one hand, algorithms for this model can be simu-
lated in the MPC model—under some specific conditions on
the size of the local memories [18,42,50]. On the other hand,
analogously to the MPC model, proving a super-constant
unconditional lower bound in the congested clique for a prob-
lem in NP would imply better circuit size-depth tradeoffs for
such a problem than are currently known [37]. This induced
further investigations of the model under the lens of com-
plexity theory [62].

Recently, a variant of the MPC model called Adaptive
Massively Parallel Computation (AMPC) model has been
introduced with the main motivation of alleviating the (con-
ditional) hardness results of the original model. The AMPC
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model extends the MPC model by storing all the messages
sent within a round in a distributed hash table; in the fol-
lowing round, each machine can read arbitrary values from
this hash table, subject to the same constraints on the amount
of communication as in the original model. This extension
allows for new graph algorithms with much lower—usually
constant—round complexities compared to the best-known
solutions in the MPC model [20].

2 Preliminaries

2.1 TheMPCmodel

TheMassively Parallel Computation (MPC)model is a theo-
retical abstraction capturing the main distinguishing aspects
of several popular frameworks for the parallel processing of
large-scale datasets. It was introduced by Karloff, Suri, and
Vassilvitskii [59], and refined in subsequent work [7,15,47].

In this model the system consists of p identical machines
(processors), eachwith a localmemory of size s. If N denotes
the size of the input, then s = O(N 1−ε) for some con-
stant ε > 0, and the total amount of memory available in
the system is p · s = O(N 1+γ ) for some constant γ ≥ 0.
(Clearly, p · s ≥ N must also hold.) The space size is mea-
sured by words, each of Θ(log N ) bits. Initially, the input
is adversarially distributed across the machines. The com-
putation proceeds in synchronous rounds. In each round,
each machine performs some computation on the data that
resides in its local memory, and then, at the end of the round,
exchanges messages with other machines. The total size of
messages sent or received by each machine in each round is
bounded by s.5 The goal is to minimize the total number of
rounds.

For problems defined on graphs, the input size N is equal
to n+m, where n is the number of nodes of the graph andm
is the number of edges. When considering graph problems,
in this paper we assume s = O(n1−ε). This regime of mem-
ory size, usually called strongly sublinear memory regime, is
always in compliance with the aforementioned constraint on
the size of the local memory, even when graphs are sparse,
for which the constraint is the most restrictive.

The value of parameter ε can be chosen by the end user.
In particular, when solving problem A on input instance I
through a reduction to problem B on input instance I ′ of
increased size, a call to the procedure for B should set the
value of this parameter to a constant ε′ ∈ (0, 1) such that
|I ′|1−ε′ = O(|I |1−ε).

Since we want to relate the MPC model to classical com-
plexity classes, onemustmake sure that themodel is uniform,

5 This means that there is no computation performed on the fly on
incoming data.

bywhichwemean, roughly speaking, that the samealgorithm
solves the problem for inputs of all (infinitely many) sizes.
Fish et al. [40] dealt with this issue observing that Karloff et
al.’s original definition of the model [59] is non-uniform,
allowing it to decide undecidable languages, and thus by
reformulating the definition of the model to make it uniform.
Building on that reformulation, and letting f : N → R+ be
a function, we define the class MPC( f (N )) to be the class
of problems solvable in O( f (N ))MPC rounds by a uniform
family of MPC computations.

2.2 Circuit complexity background

In this section we review the Boolean circuit model of com-
putation.Ann-input,m-outputBoolean circuitC is a directed
acyclic graph with n sources (i.e., nodes with no incoming
edges), called input nodes, and m sinks (i.e., nodes with no
outgoing edges). All non-source nodes are called gates, and
are labeled with one among AND, OR, or NOT. The fan-in
of a gate is the number of its incoming edges. The size ofC is
the total number of nodes in it. The depth of C is the number
of nodes in the longest path in C .

Note that to decide an entire language, which may contain
inputs of arbitrary lengths, we need a family of Boolean cir-
cuits, one for each input length. In other words, the Boolean
circuit is a naturalmodel fornon-uniform computation.When
wewant to establish relationships between circuit classes and
standard machine classes, we need to define uniform circuit
classes, with a restriction on how difficult it can be to con-
struct the circuits. The usual notion of uniformity in this case
is that of logspace-uniformity: a family of circuits {Cn}n∈N
is logspace-uniform if there is an implicitly log-space com-
putable function mapping 1n to the description of the circuit
Cn , where implicitly log-space computable means that the
mapping can be computed in logarithmic space—see next
section for the definition of logarithmic space.

Definition 1 ([10,81]) For i ≥ 1, NCi is the class of lan-
guages that can be decided by a logspace-uniform family of
Boolean circuitswith a polynomial number of nodes of fan-in
at most two and O(logi n) depth. The class NC is ∪i≥1NCi .

The complexity classes ACi and AC = ∪i≥0ACi are
defined exactly asNCi andNC except that gates are allowed to
have unbounded fan-in. Hence, for every i ∈ N, NCi ⊆ ACi .
By replacing gates with large fan-in by binary trees of gates
each with fan-in at most two, we also have ACi ⊆ NCi+1.

2.3 Space complexity background

Space complexity measures the amount of space, or mem-
ory, necessary to solve a computational problem. It serves
as a further way of classifying problems according to their
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computational difficulty, and its study has a long tradition,
which brought several deep and surprising results.

Particularly relevant to this paper are some low-space
complexity classes, and specifically, classes of problems that
can be solved with sublinear memory. In order for this to
make sense—sublinear space is not even enough to store the
input—one must distinguish between the memory used to
hold the input and the working memory, which is the only
memory accounted for. Formally, we shall modify the com-
putational model, introducing a Turing machine with two
tapes: a read-only input tape, and a read/write working tape.
The first can only be read, whereas the second may be read
and written in the usual way, and only the cells scanned on
the working tape contribute to the space complexity of the
computation. Using this two-tape model, one can define the
following complexity classes.

Definition 2 ([10,81]) L is the class of languages that are
decidable in logarithmic space on a deterministic Turing
machine. NL is the class of languages that are decidable in
logarithmic space on a nondeterministic Turing machine.

Informally, logarithmic space is sufficient to hold a con-
stant number of pointers into the input and counters of
O(log N ) bits (N is the length of the input), and a logarithmic
number of boolean flags.

As for other complexity classes, problems complete for L
or NL are defined to be the ones that are, in a certain sense,
the most difficult in such classes. To this end, we first need
to decide on the kind of reducibility that would be appropri-
ate. Polynomial-time reducibility would not be very useful
because L ⊆ NL ⊆ P, which implies that every language in
L (resp., NL), except ∅ and Σ∗, would be L-complete (resp.,
NL-complete). Hence we need weaker versions of reduction,
ones that involve computations corresponding to sub-classes
of L and NL. One notion of reducibility that makes sense
for the class L is that of NC1 reducibility [30], where NC1 is
the class of languages decidable in logarithmic depth by a
uniform family of Boolean circuits of bounded fan-in.

Definition 3 A language B is L-complete if (1) B ∈ L, and
(2) every A in L is NC1 reducible to B.

NC1 reducibility has been defined in [29]. In the literature
reductions of even-lower level than NC1 are used to identify
meaningful notions of L-completeness. Examples are pro-
jections and first-order reductions. For example, the class
first-order logic, denoted as FO, equals the complexity class
AC0, and since AC0 ⊂ NC1, a first-order reduction is strictly
stronger than an NC1 reduction.

A good choice for the class NL is to use log-space
reductions, that is, reductions computable by a deterministic
Turing machine using logarithmic space—specifically, in a
log-space reduction all the desired bits of the output function

can be decided in logarithmic space; see [10,81] for a more
formal definition of log-space reducibility.

Definition 4 ([10,81]) A language B is NL-complete if (1)
B ∈ NL, and (2) every A in NL is log-space reducible to B.

Following standard terminology we say that a language
is L-hard (under NC1 reductions) (resp., NL-hard (under
log-space reductions)) if it merely satisfies condition (2) of
Definition 3 (resp., Definition 4).

In “Appendix A” we recall some known results on the
space complexity of several fundamental problems.

3 Massively parallel computations and space
complexity classes

In this section we recall a recent result showing that Boolean
circuits can be efficiently simulated in the MPC model, and
then we build on it to derive new results and conjectures.

3.1 Efficient circuit simulation in theMPCmodel

We now recall the main result in [41] which, roughly speak-
ing, says that any bounded fan-in Boolean circuit of depth
d and of polynomial size can be simulated in O(�d/ log s�)
MPC rounds. This result is already implicit in [78], where it
is achieved by a simple simulation whereby each gate of the
circuit is associatedwith amachinewhose responsibility is to
compute the output of the gate. This requires the availability
of a number of machines linear in the size of the circuit.
Very recently, Frei and Wada [41] came up with a more
sophisticated strategy, which uses only a strongly sublin-
ear amount of machines. Their strategy employs two distinct
simulations: for NC1 circuits they exploit Barrington’s well-
known characterization of NC1 in terms of bounded-width
polynomial-size branching programs, and thus simulate such
branching programs in a constant number of rounds; for
the higher levels of the NC hierarchy, the Boolean circuits
themselves are directly simulated, suitably dividing the com-
putation into the simulation of sub-circuits of depthO(log n),
each to be accomplished in O(1) rounds.

The authors work in the original model of Karloff et al.
[59], but their result seamlessly applies in the refined MPC
model.

Theorem 1 ([41]) Let DMPCi denote the class of problems
solvable by a deterministic MPC algorithm in O(logi N )

rounds with O(N 1−ε) local memory per machine and
O(N 2(1−ε)) total memory. Then,

NCi+1 ⊆ DMPCi

for every i ∈ N and for every ε ∈ (0, 1/2). (When i = 0,
the result holds also for ε = 1/2.)
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Setting i = 0, we have the following.

Corollary 1 The class NC1 can be simulated in O(1) MPC
rounds with O(N 1−ε) local memory per machine and
O(N 2(1−ε)) total memory, for any constant ε ∈ (0, 1/2].

Since NC1 ⊆ L ⊆ NL ⊆ NC2 (see, e.g., [73]), an imme-
diate by-product of Theorem 1 is that some standard space
complexity classes can be efficiently simulated in the MPC
model.

Corollary 2 The classNC2, and thus the classes L andNL, can
be simulated in O(log N ) MPC rounds with O(N 1−ε) local
memory per machine and O(N 2(1−ε)) total memory, for any
constant ε ∈ (0, 1/2).

Corollary 2 implies that many important problems, e.g.
most of those listed in “Appendix A” (excluding those not
known to be in L or NL, such as perfect matching), can be
solved in O(log N ) MPC rounds.

3.2 New consequences of circuit simulations

In this section we discuss new consequences of the fact that
the MPC model is powerful enough to efficiently simulate
general classes of Boolean circuits.

Theorem 2 Consider the MPC model where the size of the
local memory per machine is O(N 1−ε) for some constant
ε ∈ (0, 1/2], and assume that Ω(N 2(1−ε)) total memory is
available. Let f : N → R+ be a function. Then, if any L-hard
problem can be solved in O( f (N )) MPC rounds, so can all
the problems in the class L. Moreover, either all L-complete
problems can be solved in O( f (N )) MPC rounds, or none
of them can.

Proof Both claims follow directly from the definitions of L-
hardness and L-completeness, and from Corollary 1. Let A
be an L-hard problem that can be solved in O( f (N )) MPC
rounds.Bydefinition of L-hardness, every problem in L isNC1

reducible to A. By assumption, ε ∈ (0, 1/2] andΩ(N 2(1−ε))

total memory is available, and thus, by Corollary 1, an NC1

reduction can be simulated in O(1) MPC rounds, giving
the first claim. Therefore, in particular, if any L-complete
problem can be solved in O( f (N )) MPC rounds, so can all
the other L-complete problems. In other words, either all L-
complete problems can be solved in O( f (N )) MPC rounds,
or none of them can. ��

We remark that in Theorem 2 no assumption is placed
on the function f (N ), which therefore can be of any form,
even a constant. Hence, Theorem 2 says that all the known
L-complete problems such as graph connectivity, graph
bipartiteness, cycle detection, and formula evaluation, are
equivalent in the MPC model, and in a very strong sense:

they all require asymptotically the same number of rounds.
(Analogous equivalences are common in computer science,
e.g., in the theory of NP-completeness and, at a finer-grained
level, in the recent fine-grained complexity theory, where
equivalence classes of problems within P, such as the APSP
class [84,85], are established.) Thus, this simple result pro-
vides an explanation for the striking phenomenon that for
these well-studied problems we seem unable to break the
O(log N ) barrier in the MPC model. It also implies that the
conjectures on the hardness of graph connectivity and on
the hardness of the one cycle versus two cycles problem are
equivalent, at least when Ω(N 2(1−ε)) total memory is avail-
able.

The next theorem provides an even stronger barrier for
improvements in the MPC model.

Theorem 3 Consider the MPC model where the size of the
local memory per machine is O(N 1−ε) for some constant
ε ∈ (0, 1/2], and assume that Ω(N 2(1−ε)) total memory
is available. Let f : N → R+ be a function. If any L-hard
problem can be solved in O( f (N ))MPC rounds, then either
all NL-complete problems can be solved in O( f (N )) MPC
rounds, or none of them can. Moreover, if any NL-hard and
any L-hard problem can be solved in O( f (N ))MPC rounds,
so can all the problems in the class NL.

Proof Let A be an L-hard problem that can be solved in
O( f (N )) MPC rounds. Then, by Theorem 2, every prob-
lem in the class L can be solved in O( f (N )) MPC rounds
and thus, in particular, every log-space reduction can be
computed in O( f (N )) MPC rounds. By definition of NL-
completeness, every problem in NL, and thus, in particular,
anyNL-complete problem, is log-space reducible to any other
NL-complete problem, and this proves the first statement.

Let B be an NL-hard problem that can be solved in
O( f (N )) MPC rounds. By definition of NL-hardness, every
problem inNL is log-space reducible to B. Since we have just
argued that if any L-hard problem can be solved in O( f (N ))

MPC rounds, so can any log-space reduction, the second
statement follows. ��

Once again, we stress that in Theorem 3 no assumption is
placed on the function f (N ), which therefore can be of any
form, even a constant.

Theorem 3 indicates that, unless L = NL, in the MPC
model the connectivity problem on directed graphs, which
is both NL-complete and L-hard, is strictly harder than on
undirected graphs in the sense that breaking the current log-
arithmic barrier, if possible, would be strictly harder.

Notice that we also have the following weaker, but sim-
pler to prove, result: if any problem NL-complete under
NC1 reductions (such as st-reachability) can be solved in
O( f (N )) MPC rounds, so can all the problems in the
class NL. This follows directly from the definition of NL-
completeness under NC1 reductions and from Corollary 1.
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Notice also that the result in Theorem 3 can be extended
with the same proof to complexity classes wider than NL,
such as NC2 or P, for which hardness is defined in terms of
log-space reducibility as well.

3.2.1 New conjectures

The common belief that problems such as graph connectivity
and list ranking cannot be solved in o(log N ) MPC rounds,
along with the equivalence result of Theorem 2, justify the
following conjecture.

Conjecture 1 No L-hard problem can be solved in o(log N )

MPC rounds with O(N 1−ε) local memory per machine, for
any constant ε ∈ (0, 1), not even with a polynomial amount
of total memory. Equivalently,

L � MPC(o(log N )).

We now show the claimed equivalence.

Proposition 1 The two statements in Conjecture 1 are equiv-
alent.

Proof We shall argue that if any of the two statements
is wrong, so is the other, and vice versa. Assume L ⊆
MPC(o(log N )). Then, some L-complete, and hence L-hard,
problem is contained in MPC(o(log N )), that is, it can be
solved in o(log N ) MPC rounds. To show the other direc-
tion, assume that there exists an L-hard problem that can be
solved in o(log N )MPC roundswith a polynomial amount of
total memory. Then, by Theorem 2, every problem in L can be
solved in o(log N ) MPC rounds, i.e., L ⊆ MPC(o(log N )).��

Wewould like to remark that, in light of Theorem 2, Con-
jecture 1 is totally equivalent to the preceding conjectures on
the hardness of graph connectivity or of the one cycle versus
two cycles problem [15,59,75,78,87]; however, Theorem 2
significantly strengthens the evidence for such conjectures.

Likewise, Theorem 3 provides a justification for the fol-
lowing conjecture.

Conjecture 2 No NL-hard and L-hard problem can be solved
in o(log N ) MPC rounds with O(N 1−ε) local memory per
machine, for any constant ε ∈ (0, 1), not even with a poly-
nomial amount of total memory. Equivalently,

NL � MPC(o(log N )).

We now show the claimed equivalence.

Proposition 2 The two statements in Conjecture 2 are equiv-
alent.

L

NL

MPC(o(logN))

Fig. 2 Conjectured relationships among classes L, NL, and
MPC(o(log N ))

Proof We shall argue that if any of the two statements
is wrong, so is the other, and vice versa. Assume NL ⊆
MPC(o(log N )). Then, in particular, st-reachability can be
solved in o(log N )MPC rounds. Since st-reachability is both
NL-hard and L-hard, this contradicts the first statement. To
show the other direction, assume that there exists an NL-hard
and L-hard problem that can be solved in o(log N ) MPC
rounds with a polynomial amount of total memory. Then, by
Theorem 3, every problem in NL can be solved in o(log N )

MPC rounds, i.e., NL ⊆ MPC(o(log N )). ��
Figure 2 depicts the conjectured relationships among L,

NL, and MPC(o(log N )). Observe that since L ⊆ NL, Con-
jecture 1 implies Conjecture 2. Hence, unless L = NL,
Conjecture 2 is weaker than Conjecture 1, and thus more
likely to be true.

We stress that breaking either conjecture would have vast
consequences because of the large number of fundamen-
tal problems contained in L and NL. This is somewhat in
contrast, e.g., to the Strong Exponential Time Hypothesis
(SETH), a popular hardness assumption on the complexity of
k-SAT used to prove a plethora of conditional lower bounds,
especially in the realm of polynomial-time algorithms [84],
whose refutation would have more limited algorithmic con-
sequences.

These twoconjectures canbeused as a base for conditional
lower bounds in the MPC model, in the same way as the one
cycle versus two cycles conjecture was used as a hardness
assumption in [7,9,19,43,64,87].

4 Reductions and equivalences in massively
parallel computations

In this section we discuss two equivalence classes of prob-
lems and some conditional lower bounds in the MPC model.
The two equivalence classes both contain problems equiva-
lent to each other under O(1)-roundMPC reductions and for
which the best known upper bound is O(log N ) rounds, but
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differ in terms of the low-space computational complexity
characterization of the problems they contain.

As a consequence of the results of Sect. 3, most of these
reductions and equivalences follow fromknownhardness and
completeness results for low-space complexity classes such
as L and NL.

We will also show novel, simple reductions and equiva-
lences in the MPC model. Some of such reductions crucially
require the availability of up to polynomially manymachines
(equivalently, a total amount of memory up to polynomial in
the input size), which are used to host up to a polynomial
number of copies of the input data. The quick creation of so
many input replicas can be achieved through the use of a sim-
ple two-step broadcast procedure, as shown in the following
lemma.

Lemma 1 The input data can be replicated up to a polyno-
mial number of times in O(1) MPC rounds.

Proof Assume that initially all the input data is held by the
first β consecutively numbered machines. (This is without
loss of generality since sorting can be done deterministically
in O(1) MPC rounds [47].) We use a basic two-step broad-
cast procedure to replicate the contents of each machine in
O(N 1−ε) othermachines.Any polynomial-factor replication
can thus be achieved by repeating the procedure a constant
amount of times.

Let c be a sufficiently large positive constant. For each
i ∈ [β], machine i logically partitions its memory contents
in cN 1−ε parts, one for each word. Then, machine i sends
the j-th word to the (β + (i − 1)cN 1−ε + j)-th machine.
Finally, each of these machines broadcasts the word received
frommachine i to all the other machines in the range β+(i−
1)cN 1−ε +1, . . . , β + icN 1−ε , thus yielding a factor-cN 1−ε

replication of the contents of each machine. ��

4.1 An equivalence class for undirected graph
connectivity

In this section we discuss the MPC equivalence class for
graph connectivity in undirectedgraphs.This problem,which
asks to determine whether a given undirected graph is con-
nectedor not,was oneof thefirst problems to be shown L-hard
under (uniform) NC1 reductions [30], and then it was placed
in L by the remarkable algorithm of Reingold [76]. Exploit-
ing the results of Sect. 3, we know that one can recycle all
the reductions that have been developed in classical com-
plexity theory for showing hardness and completeness for
class L in the MPC model as well, since these can all be sim-
ulated in O(1) MPC rounds with O(N 2(1−ε)) total memory.
This immediately implies that the class of L-complete prob-
lems forms an equivalence class in the MPC model as well.
Specifically, for example, either all the following problems
can be solved with a sublogarithmicMPC algorithm, or none

of them can:6 graph connectivity, connectivity for promise
graphs that are a disjoint union of cycles, st-connectivity,
st-reachability for directed graphs of out-degree one, cycle
detection, order between vertices, formula evaluation, and
planarity testing.

Recycling (some) old SL-completeness resultsManymore
problems can be placed in thisMPC equivalence class almost
effortlessly: this is the case for some problems complete for
the class symmetric logarithmic space (SL), a class defined
by Lewis and Papadimitriou [66] to capture the complexity
of undirected st-connectivity before this was eventually set-
tled by the breakthrough of Reingold. Completeness in SL is
defined in terms of log-space reductions, and st-connectivity
is one complete problem for it. Since L ⊆ SL, Reingold’s
algorithm made these two classes collapse, thus widening
the class L with many new problems. However, complete-
ness for SL does not translate into completeness for L, since
the latter is defined in terms of a lower-level kind of reduc-
tion. Luckily, some of the log-space reductions devised to
show hardness for SL turn out to be actually stronger than
log-space. This is the case, e.g., of testing whether a given
graph is bipartite (or, equivalently, 2-colorable), as we show
next.

Lemma 2 Graph bipartiteness is equivalent to
st-connectivity under O(1)-round MPC reductions, with
O(n1−ε) local memory per machine for some constant ε ∈
(0, 1), and O(n(n + m)) total memory.

Proof Jones et al. [57] showed that testing whether a graph is
non-bipartite is equivalent to st-connectivity under log-space
reductions. We will now argue that both reductions can be
simulated in O(1) MPC rounds.

We start by showing that st-connectivity reduces to graph
bipartiteness in O(1) MPC rounds. The idea is to make use
of the fact that a graph is bipartite if and only if it has no
cycle of odd length. Given an instance G = (V , E), s, and
t of st-connectivity, we build a new graph G ′ = (V ′, E ′)
where

V ′ = {u, u′ : u ∈ V } ∪ {e, e′ : e ∈ E}
∪{w} (with w /∈ V ∪ E)

and

E ′ ={{u, e}, {e, v}, {u′, e′}, {e′, v′} : e = {u, v} ∈ E} ∪
{{s, s′}, {t, w}, {t ′, w}}.

Then observe that G ′ contains an odd-length cycle, and
hence is not bipartite, if and only if s is connected to t in

6 See “Appendix A” for precise definitions of the various problems, as
well as for references.
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G. Nodes and edges of G ′ can be easily generated in O(1)
rounds, and stored with O(n(n + m)) total memory. Since
|V ′| = O(n2), when working with G ′ the size of the local
memory is set to n2(1−ε′) where ε′ ∈ (0, 1) is a constant
such that n2(1−ε′) = O(n1−ε). Then, an O( f (n))-round
algorithm for graph bipartiteness translates into an O( f (n))-
round algorithm for st-connectivity.

We now show that graph bipartiteness reduces to st-
connectivity in O(1) MPC rounds. Given an instance G =
(V , E), the idea is to construct a new graph G ′ by creating
two copies of each node, call them copy 0 and copy 1, and
then for any edge {u, v} ∈ E , connecting copy 0 of u to copy
1 of v and vice versa. This can be trivially done in O(1)MPC
rounds. It can be observed that G is not bipartite if and only
if there is some node w such that copy 0 of w is reachable
from copy 1 of w. To take care of the phrase “there is some
node w”, n copies of G ′ are created and new nodes s and t
are introduced. Then s (resp., t) is connected to copy 0 (resp.,
copy 1) of the i-th node in the i-th copy of G ′. By Lemma 1,
this can be accomplished in O(1)MPC rounds as well. Then
G is not bipartite if and only if there is a path between nodes
s and t in this graph. ��

A good source of problems complete for SL is [6].
From decision to search problems Complexity classes

such as L contain problems phrased as decision problems.
Nevertheless, it is often easy to transform a decision problem
into its search version—perhaps at the price of a large amount
of total memory requirements. As an example, consider the
problem called order between vertices (ORD), which, given
a directed path specified by giving for each node its succes-
sor in the path, and two distinguished nodes a and b, asks to
determine whether a precedes b. ORD is the decision ver-
sion of list ranking, the problem of obtaining a total ordering
from a given successor relation [38]. It is easy to argue the
following equivalence.

Lemma 3 List ranking is equivalent to order between ver-
tices under O(1)-roundMPC reductions, with O(n1−ε) local
memory per machine for some constant ε ∈ (0, 1), and
O(n3) total memory.

Proof Order betweenvertices trivially reduces to list ranking.
We now argue that list ranking is reducible under O(1)-round
MPC reductions to ORD when there are polynomially many
available machines. The reduction is as follows: (1) create(n
2

)
replicas of the n inputs across the machines; by Lemma 1

this takes O(1) MPC rounds; (2) in parallel, solve ORD for
each pair of nodes, one pair for each input replica; (3) each
of n designated machines outputs the rank of a distinct node
u by counting the number of yes/no outputs for ORD for the
pair (u, v), for each v �= u: doing this is tantamount to doing
summation, which can be done in O(1) MPC rounds by [26]
and Corollary 1. ��

Graph Connectivity

# Connected Components

Connected Components

st-connectivity

Minimum Cut

Minimum Spanning Forest

Fig. 3 Constant-round reductions among graph connectivity and
related problems. Dashed arrows correspond to trivial reductions

Non-pairwise reductions Sometimes back-and-forth
reductions between two problems are not known. In this case
their equivalence may nevertheless be established through
a series of reductions involving related problems. As an
example, we now show that a bunch of problems related to
graph connectivity are all equivalent under O(1)-roundMPC
reductions. Besides graph connectivity and st-connectivity,
these are determining the connected components of an undi-
rected graph, counting the number of connected components
(# connected components), finding a minimum-weight span-
ning forest (MSF), and finding a minimum cut. See Fig. 3.
Recall that a connected component of an undirected graph
is a maximal set of nodes such that each pair of nodes is
connected by a path, and it is usually represented by a label-
ing of nodes such that two nodes have the same label if and
only if they are in the same connected component. A mini-
mum spanning forest of a weighted graph is the union of the
minimum spanning trees for its connected components. In
the minimum cut problem we have to find a partition of the
nodes of a graph into two disjoint sets V1, V2 = V \ V1 such
that the set of edges that have exactly one endpoint in V1 and
exactly one endpoint in V2 is as small as possible.

Lemma 4 Graph connectivity, st-connectivity, # connected
components, connected components, minimum spanning for-
est, and minimum cut are all equivalent under O(1)-round
MPC reductions, with O(n1−ε) local memory per machine
for some constant ε ∈ (0, 1), and Õ(n2m(n + m)) total
memory.

Proof The reductions from graph connectivity to detecting
the number of connected components, to MSF, and to min-
imum cut are obvious. The reductions from # connected
components to connected components and to MSF are also
obvious. We already mentioned that there is a non-obvious
low-level equivalence between graph connectivity and st-
connectivity, shown by Chandra et al. [26].

Log-space reductions to st-connectivity from MSF and
from connected components were given by Nisan and Ta-
Shma [69] for showing that the class SL is closed under

123



Equivalence classes and conditional hardness in massively parallel computations 175

complement. Here we will argue that these reductions can
be simulated in O(1) MPC rounds.

We first discuss how to reduce connected components to
st-connectivity. The reduction is to evaluate, for each node
s, st-connectivity for every other node t in the graph. Then,
the label � assigned to node s is

�(s) = min
t∈V {ID of node t such that t is connected to s}.

ByLemma 1 and by the fact that themin function can be eval-
uated inO(1) rounds (by [26] andCorollary 1), this reduction
can be accomplished in O(1) MPC rounds.

We now discuss how to reduce MSF to st-connectivity.
This is based on the following simple property shown in
[69], implicitly used in several other similar reductions
[4,8,49,71]: an edge e = {u, v} is in the minimum-weight
spanning forest if and only if u is not connected to v in the
graphmade up of all edges having lower weight than e. Then,
by Lemma 1, in O(1) rounds the input graph can be repli-
catedm times across the available machines, and then testing
whether a designated edge e is in the (unique) minimum-
weight spanning forest of G can be done in parallel for each
edge of the graph.

Finally, we discuss how to reduce minimum cut to # con-
nected components. This is based on the parallelization of
Karger’s celebrated contraction algorithm [58]—hence this is
a randomized reduction, which works with high probability.
Recall that Karger’s algorithm repeats O(n2 log n) times the
process of contracting randomly chosen edges, one by one,
until only two nodes remain. By assumption, we have enough
machines to replicate the input graph those many times in
O(1) MPC rounds (by Lemma 1) and run the O(n2 log n)

trials in parallel. Identifying the minimum cut from these
results can be done in O(1) MPC rounds.

The question is therefore how to run a single time the con-
traction algorithm. To this end, it is convenient to work with
the following equivalent reformulation of the contraction
algorithm—see [58, Section 3.1]. First, generate a random
permutation of the m edges. Generating a random permuta-
tion can be done in O(1) rounds by having each processor
take one edge and assign it a score chosen uniformly at ran-
dom from a sufficiently large range of integers, and then by
sorting these scores. Then, imagine contracting edges in the
order in which they appear in the permutation until only two
nodes remain—this is equivalent to the original formulation
of the contraction algorithm. With a sufficiently high proba-
bility, a random permutation will yield a contraction to two
nodes which determine a particular minimum cut. Then, con-
sider any such permutation. The key property is that it has a
prefix such that the set of edges in this prefix induces two con-
nected components (the two sides of the cut), that any prefix
which is too short yields more than two connected compo-

nents, and that any prefix which is too long yields only one.
Hence, with enough machines available, we can determine
the correct prefix by examining all the m prefixes of each
permutation in parallel. ��

We can now summarize all the results of this section.

Theorem 4 The following problems are all equivalent under
O(1)-round MPC reductions, with O(n1−ε) local mem-
ory per machine for some constant ε ∈ (0, 1), and
Õ(n2m(n + m)) total memory: graph connectivity, con-
nectivity for promise graphs that are a disjoint union of
cycles, st-connectivity, st-reachability for directed graphs of
out-degree one, cycle detection, order between vertices, for-
mula evaluation, planarity testing, graph bipartiteness, list
ranking, # connected components, connected components,
minimum spanning forest, and minimum cut.

Conditional hardness: L-hard problems. Finally, there
are problems known to be L-hard, but not known to be
in L, such as densest subgraph and perfect matching (see
“Appendix A”). Since for these problems only one-way
reductions from problems in L are known, we don’t know
whether they are part of the equivalence class of undirected
graph connectivity.

4.2 An equivalence class for directed graph
connectivity

In this section we discuss the MPC equivalence class
for graph connectivity in directed graphs. The problem
corresponding to st-connectivity in directed graphs is st-
reachability, that is, the problem of detecting whether there
is a path from a distinguished node s to a distinguished node
t in a directed graph. st-reachability is the prototypical com-
plete problem for NL [10,73,81].

By Definition 4, hardness in class NL is defined with
respect to log-space reducibility, but we do not knowwhether
log-space computations can be simulated in o(log N ) MPC
rounds—in fact, in Section 3 we conjecture they cannot.
However, it turns out that many of the known log-space
reductions that establish NL-hardness of problems can be
simulated in O(1)MPC rounds. This is the case, for example,
of the reductions between st-reachability and shortest path,
the other canonical example of NL-complete problem which,
given an undirected (unweighted) graph, two distinguished
nodes s and t , and an integer k, asks to determine if the length
of a shortest path from s to t is k.

Lemma 5 Shortest path on unweighted graphs is equivalent
to st-reachability under O(1)-round MPC reductions, with
O(n1−ε) local memory per machine for some constant ε ∈
(0, 1), and O(n(n + m)) total memory.
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Proof We first show that st-reachability can be reduced to
shortest path inO(1)MPCrounds. For an integer k wedenote
the set of integers {1, 2, . . . , k} by [k]. Given a directed graph
G = (V , E) and two designated nodes s and t , we create a
new (undirected) layered graph G ′ = (V ′, E ′) where

V ′ = {vi : v ∈ V , i ∈ [n]}

and

E ′ ={{vi , vi+1} : v ∈ V , i ∈ [n − 1]} ∪
{{ui , vi+1} : (u, v) ∈ E, i ∈ [n − 1]}.

It is easy to see that there is a directed path from s to t in G
if and only if there is a path of length n − 1 from s1 to tn in
G ′.

We now show the other direction. Given an undirected
graph G = (V , E), two designated nodes s and t , and an
integer b ∈ [n − 1], we create a new directed layered graph
G ′ = (V ′, E ′) where

V ′ = {vi : v ∈ V , i ∈ [b]}

and

E ′ ={(vi , vi+1) : v ∈ V , i ∈ [b − 1]} ∪
{(ui , vi+1) : {u, v} ∈ E, i ∈ [b − 1]}.

Then again it is easy to see that the length of a shortest path
from s to t is at most b if and only if there is a directed path
from s1 to tb in G ′. If the length is at most b then one can
determine if it is exactly b by repeating the same construction
with b − 1 in place of b.

In both directions, nodes and edges of G ′ can be easily
generated in O(1) rounds, and stored with O(n(n + m))

total memory. Since |V ′| ≤ n2, when working with G ′ the
size of the local memory is set to n2(1−ε′) where ε′ ∈ (0, 1) is
a constant such that n2(1−ε′) = O(n1−ε). Then, an O( f (n))-
round algorithm for one problem translates into an O( f (n))-
round algorithm for the other, and vice versa. ��

There are other NL-complete problems that can be shown
to be equivalent under O(1)-round MPC reductions. Some
examples are directed cycle detection, by a simple adaptation
of the preceding reductions, and strong connectivity, which
follows from a result in [26].We suspect that many other log-
space reductions are actually (or can easily be translated into)
O(1)-round MPC reductions, thus enabling us to enlarge the
equivalence class for graph connectivity in directed graphs
almost effortlessly by leveragingknown results in complexity
theory.

When this is not possible, one might have to devise novel
reductions. We now do so for some important shortest-
path-related problems as well as for some graph centrality
problems.

4.2.1 New fine-grained MPC reductions: constant-round
equivalences between graph centrality problems,
APSP, and diameter

In this section we prove a collection of constant-round equiv-
alences between shortest path and many other problems on
weighted graphs.

First, some preliminaries. In a graph problem, the input
is an n-node m-edge (directed or undirected) graph G =
(V , E) with integer edge weights w : E → {−M, . . . , M}
where M = O(nc) for some positive constant c. G is
assumed to contain no negative-weight cycles. Let d(u, v)

denote the (shortest-path) distance from node u ∈ V to node
v ∈ V , that is, the minimum over all paths from u to v of
the total weight sum of the edges of the path. If there is no
path connecting the two nodes, i.e., if they belong to differ-
ent connected components, then conventionally the distance
is defined to be infinite.

The fundamental all-pairs shortest paths (APSP) problem
is to compute d(u, v) for every pair of nodes u, v ∈ V . In
the (sequential) RAM model, APSP has long been known
to admit an O(n3) time algorithm. Despite the long history,
no algorithm that runs in time O(n3−ε) for some constant
ε > 0 is known, and it is conjectured that no such algo-
rithm exists [84,85]. This conjecture is commonly used as
a hardness hypothesis in fine-grained complexity theory to
rule out faster algorithms than those currently known for
several problems [84]. Beyond such APSP-hardness results,
some important problems have been shown to be equivalent
to APSP, in the sense that either all such problems admit
O(n3−ε) time algorithms, or none of them do [1,84,85].

These equivalences and most hardness results under the
APSP hypothesis rely on a reduction from APSP to the neg-
ative triangle problem, which asks whether a graph has a
triangle with negative total weight. Although negative tri-
angle can be easily solved in O(1) MPC rounds thanks to
Lemma 1, a key building block in the reduction from APSP
[85] is a well-known equivalence [39] betweenAPSP and the
distance product problem of computing the product of two
matrices over the (min,+) semiring (also known asmin-plus
matrix multiplication); unfortunately, in the reduction from
APSP to distance product there are �log n� of such matrix
products (by using the “repeated squaring” strategy), and
this takes O(log n) MPC rounds—which is likely to be best
possible, for a reason that will be clear in the next paragraph.
Hence in the MPC model we cannot rely on a reduction to
negative triangle to prove equivalences to APSP or related
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SSSP Diameter Radius Median Betweenness Centrality

Shortest Path

APSP

Fig. 4 The constant-round reductions shown in this section. Dashed
arrows correspond to trivial reductions

hardness results: we need sublogarithmic fine-grained reduc-
tions.

Hence we shall follow a different path, by reducing from
the shortest path problem. Given a weighted graph, two dis-
tinguished nodes s and t , and an integer k, shortest path
is the problem of determining if the distance of a shortest
path from s to t is k. This problem is NL-complete, even for
undirected and unweighted graphs [23]. (This also explains
why the repeated matrix squaring discussed in the previous
paragraph is best possible under Conjecture 2.) As we will
show shortly, it turns out that shortest path is reducible in
O(1) MPC rounds to several fundamental graph problems,
includingmany graph centrality problems defined in terms of
shortest paths. Then, by crucially exploiting the availability
of many machines, we will argue that APSP is O(1)-round
reducible to shortest path. Obvious reductions to APSP com-
plete the picture and establish the equivalence of all these
problems under O(1)-round MPC reductions. See Fig. 4 for
a complete summary.

We now formally define the problems we are going to
investigate. The eccentricity ε(v) of a node v is the greatest
distance between v and any other node. It can be thought of
as how far a node is from the node most distant from it in
the graph. The diameter of a graph is the greatest distance
between any pair of nodes or, equivalently, the maximum
eccentricity of any node in the graph, that is,

diam(G) = max
u∈V max

v∈V d(u, v).

The radius of a graph is the minimum eccentricity of any
node, that is,

radius(G) = min
u∈V max

v∈V d(u, v),

and a node with minimum eccentricity is called a center of
the graph. The distance sum of a node u is the sum of the dis-
tances from u to all the other nodes, that is,

∑
v∈V d(u, v).7

In a (strongly) connected graph, the closeness centrality of a
node u is the normalized inverse of its distance sum, that is,

CC(u) = n − 1
∑

v∈V d(u, v)
.

7 This is sometimes also called the farness of u.

A node with maximum closeness centrality, i.e., a node that
minimizes the sum of the distances to all other nodes is called
a median of the graph, and the value

min
u∈V

∑

v∈V
d(u, v)

is defined as the median of the graph. The betweenness cen-
trality of a node u is defined as

BC(u) =
∑

s,t∈V \{u},s �=t

σs,t (u)

σs,t
,

where σs,t is the total number of distinct shortest paths from
s to t , and σs,t (u) is the number of such paths that use u
as an intermediate node. Informally, betweenness centrality
measures the propensity of a node to be involved in shortest
paths.

We start by showing the simple fine-grained equivalence
between APSP and shortest path.

Lemma 6 APSP is equivalent to shortest path under O(1)-
round MPC reductions, with O(n1−ε) local memory per
machine for some constant ε ∈ (0, 1), and O(n2(n + m))

total memory.

Proof The reduction from shortest path to APSP is obvious.
The other direction is also immediate when we have enough
machines, and specifically O(n2(n + m)) total memory: by
Lemma1we can create 2

(n
2

)
copies of the input graph in O(1)

MPC rounds, and then in parallel, one pair for each copy,
compute the shortest path for each (ordered, if the graph is
directed) pair of nodes. ��

In the following results we will use roughly the same
reduction.We startwith the problemof determining the diam-
eter of a graph.

Lemma 7 Shortest path is O(1)-round MPC reducible to
diameter, with O(n1−ε) local memory per machine for some
constant ε ∈ (0, 1), and O(n + m) total memory.

Proof We start with the case of undirected graphs. Given an
instance of shortest path, the idea is to alter the input graph
by sticking two new and sufficiently long paths to nodes s
and t , so that the path of largest total weight includes both s
and t .

This is sufficient if the original graph G is connected;
otherwise, the diameter is infinite, and from this information
we cannot determine the length of a shortest path from s to t .
Hence, we shall first make G connected in a way that alters
the distance between s and t only if they are not connected
in G. Since the distance between any two nodes can be at
most (n − 1)M , this can be achieved by adding to the graph
a new node v and n edges of weight nM between v and any
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s t

. . . b

. . . a

v

Fig. 5 Reduction from shortest path to diameter. Nodes and edges of
the original graph G are in black, whereas nodes and edges added in
the reduction are in gray

other node. Then, we append two additional chains to s and
t , each with 2n edges of weight M , and denote this modified
graph by G ′. See Fig. 5.

This reduction can be performed in O(1) MPC rounds, it
increases the number of nodes and the number of edges by
O(n), and themaximum absolute weight by a factor of O(n).
Therefore, any MPC algorithms that runs in O( f (n,m))

rounds in the new graph G ′ can be used to solve the orig-
inal instance G in O( f (O(n),m + O(n))) = O( f (n,m))

rounds.
Observe that the diameter of the modified graph G ′ must

include the two chains appended to s and t . Hence any algo-
rithm for the diameter when executed on graph G ′ always
returns 4nM plus the shortest-path distance between s and t
in G ′. By construction, the latter quantity, which we denote
by α, is at most (n − 1)M if s and t are connected in G, and
(exactly) 2nM otherwise. Thus the answer to shortest path
is α if the diameter of G ′ is at most 4nM + (n − 1)M , and
infinity otherwise.

In the directed case, we use the same weighted graph G ′
as before, adding one parallel edge for each edge, both with
the same weight but with opposite directions. The rest of the
algorithm is the same and its analysis is analogous to the
undirected case. ��

Observe that st-connectivity in undirected or directed
graphs can also be reduced to diameter, with the same reduc-
tion. However, in undirected graphs st-connectivity is only
L-hard, while shortest path is NL-hard.

Lemma 8 Shortest path is O(1)-round MPC reducible to
radius, with O(n1−ε) local memory per machine for some
constant ε ∈ (0, 1), and O(n + m) total memory.

Proof We start with the case of undirected graphs. Given an
instance of shortest path, we will construct the graph G ′ of
Fig. 5 used in the reduction from shortest path to diameter,
and then we will modify G ′ to obtain a new graph G ′′ such
that radius(G ′′) = diameter(G ′).

The graph G ′′ is obtained from G ′ by creating a second
copy of it, and then by contracting node b of the first copy
of G ′ with node a of the second copy of G ′. (Recall that the
contraction of a pair of nodes vi and v j of a graph produces
a graph in which the two nodes v1 and v2 are replaced with
a single node v such that v is adjacent to the union of the
nodes to which v1 and v2 were originally adjacent.) This
reduction can be performed in O(1)MPC rounds, it increases
the number of nodes by O(n) and the number of edges by
O(m), and themaximumabsoluteweight by a factor ofO(n).

Let c be the node resulting from this contraction. It is easy
to see that c is the center of this newly constructed graph G ′′:
in fact, by the symmetry of G ′′ and by the assignment of the
edge weights, any other node has higher eccentricity. Thus,
radius(G ′′) = diameter(G ′), and hence we can proceed as in
the proof of Lemma 7.

In the directed case, we use the same weighted graph G ′′
as before, adding one parallel edge for each edge, both with
the same weight but with opposite directions. The rest of the
algorithm is the same and its analysis is analogous to the
undirected case. ��
Lemma 9 Shortest path is O(1)-round MPC reducible to
median, with O(n1−ε) local memory per machine for some
constant ε ∈ (0, 1), and O(n + m) total memory.

Proof We start with the case of undirected graphs. Given
an instance of shortest path, we construct the graph G ′′ as
in the reduction from shortest path to radius (see proof of
Lemma 8), and computemedian(G ′′). Then, we shall editG ′′
by adding two nodes, a′ and b′, as well as two edges, {a, a′}
and {b, b′}, both of weight M . We call the resulting graph
G ′′′. This reduction can be performed in O(1) MPC rounds,
it increases the number of nodes by O(n) and the number
of edges by O(m), and the maximum absolute weight by a
factor of O(n).

Then, we compute median(G ′′′). Since node c is the
median of both G ′′ and G ′′′, we immediately have that

median(G ′′′) − median(G ′′) = d(c, a′)(= d(c, b′))
= radius(G ′′) + M

= diameter(G ′) + M,

and hence we can proceed as in the proof of Lemma 7.
In the directed case, we use the same weighted graphs G ′′

and G ′′′ as before, adding one parallel edge for each edge,
both with the same weight but with opposite directions. The
rest of the algorithm is the same and its analysis is analogous
to the undirected case. ��

Now we consider the evaluation of the betweenness cen-
trality of nodes. In contrast to the previous reductions, in the
following one we shall create n copies of the reduction graph
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leveraging Lemma 1, and then perform some computation in
parallel.

Lemma 10 Shortest path is O(1)-round MPC reducible to
betweenness centrality, with O(n1−ε) local memory per
machine for some constant ε ∈ (0, 1), and O(n(n + m))

total memory.

Proof Once again, we start with the case of undirected
graphs. In the directed case we use the same weighted graph
adding one parallel edge for each edge, both with the same
weight but with opposite directions, with an analogous anal-
ysis.

Given an instance of shortest path, we construct the graph
G ′ of Fig. 5 as in the reduction from shortest path to diameter.
Then, we modify the weights of the edges of G ′ in such a
way that exactly one shortest path exists from any node to any
other node, and that the length of the original shortest path
in G can be easily recovered. To this end, since by assump-
tion the weights of the edges are integers, it is sufficient to
increase the weight of each edge of the starting graph G by
a real value chosen independently and uniformly at random
from the interval [1/n5, 1/n2]. (This can be achieved by hav-
ing each edge pick, independently and uniformly at random,
an integer from the set of integers [n2, n5], hence the proba-
bility that any two edges have chosen the same number is at
most

(m
2

)
/(n5 − n2 + 1) < 1/nΩ(1).) This reduction can be

performed in O(1) MPC rounds, it increases the number of
nodes and the number of edges by O(n), and the maximum
absolute weight by a factor of O(n).

Now we create n − 1 more copies of this graph, which by
Lemma 1 can be done in O(1)MPC rounds, and compute the
betweenness centrality of each node ofG, in parallel on each
copy of the graph. Since there is a single shortest path from
any node to any other node, the betweenness centrality of a
node u is the total number of shortest paths in the graph that
use u as an intermediate node. Consider the (unique) shortest
path from s to t , and let A be the set of its nodes. Let B = V \A
be the remaining nodes of G. Then observe that (i) for any
node u ∈ A, BC(u) ≥ 2n ·2n, since u is an intermediate node
in each shortest path from any of the 2n nodes of the chain
appended to s to any of the 2n nodes of the chain appended
to t ; and (ii) for any node u ∈ B, BC(u) ≤ (n

2

)
. Hence, to

compute the shortest path from s to t in G it is sufficient to
consider only the nodes whose betweenness centrality is no
less than 4n2, and return the sum of the floors of the weights
of all edges with both endpoints in this set of nodes. This can
be easily done in O(1) MPC rounds. ��

An immediate consequence of these results is the follow-
ing.

Proposition 3 Shortest path, SSSP, APSP, diameter, radius,
median, and betweenness centrality are all equivalent under

O(1)-round MPC reductions, with O(n1−ε) local memory
per machine for some constant ε ∈ (0, 1), and O(n2(n+m))

total memory.

Proof The two reductions involving SSSP are obvious. The
reduction from diameter (or radius) to APSP is also obvious,
since determining the maximum (or minimum) in a set of
values can be easily done in O(1)MPC rounds. The theorem
then follows from Lemmas 6, 7, 8, 9, and 10. ��

It is interesting to observe that this equivalence class
includes problems, such as SSSP and APSP, that in the
(sequential) RAM model have vastly different complexities,
and that an analogous reduction from APSP to diameter in
the RAM model seems elusive [1].

We can now summarize all the results of this section.

Theorem 5 The following problems are all equivalent under
O(1)-round MPC reductions, with O(n1−ε) local memory
per machine for some constant ε ∈ (0, 1), and O(n2(n+m))

total memory: st-reachability, strong connectivity, directed
cycle detection, unweighted shortest path, unweighted SSSP,
unweighted APSP, unweighted diameter, unweighted radius,
unweighted median, and unweighted betweenness centrality.

Conditional hardness: problems hard for NL under O(1)-
round MPC reductions. Finally, there exist problems known
to be hard for NL under AC0, and thus NC1 and O(1)-round
MPC, reductions, but not known to be in NL. Some exam-
ples are perfect matching (even in bipartite graphs), network
flow, and circuit evaluation [26]. Since for these problems
only one-way reductions from problems in NL are known,
we don’t know whether they are part of the equivalence class
of directed graph connectivity.

5 Open problems

The present work can be naturally extended in several direc-
tions. One obvious direction is to prove more conditional
lower bounds based on the conjectures of this paper, and to
show more equivalences between problems.

Several results of this paper, from the connections between
MPC computations and space complexity of Section 3 to the
reductions of Section 4, crucially require the availability in
the system of a total amount of memory super-linear in the
size of the input. These results have no implications for the
more interesting case of low total memory—that is, linear
or near-linear in the input size.8 Hence, it would be interest-
ing to establish equivalence classes and show implications

8 For instance, since the circuit simulation results in [41,78] use super-
linear total memory, the barrier for unconditional lower bounds they
imply falls for the linear total memory case, for which it is therefore
still open the possibility of proving unconditional lower bounds.

123



180 D. Nanongkai, M. Scquizzato

s a′ a b′ b t −→ s a′ a b′ b t

s b′ b a′ a t −→ s b′ b a′ a t

Fig. 6 Reduction from order between vertices to one cycle versus two cycles

that hold under more severe restrictions on the total amount
of available memory. (Obtaining low-round reductions with
linear or near-linear total space seems to require completely
new techniques for several of the problems considered in this
paper, though.)

Finally, it is tempting to speculate that improved algo-
rithms for any of the problems discussed in this paper could
have significant consequences in other models of compu-
tation, such as falsifying some widely-believed conjecture
in complexity theory. Identifying new consequences of their
falsification would add further weight to the conjectures of
this paper.
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Appendix

A Space complexity of fundamental prob-
lems

Here we report what is known about the space complexity
of several fundamental problems. Two good sources of prob-
lems complete for L or NL are [30,57].

Graph Connectivity: L-complete: L-hard [30, Theorem 3],
and in Lbyvirtue of the remarkable algorithmofReingold

[76]. Remains L-complete for promise graphs that are a
disjoint union of cycles [30, Theorem 3].

st-connectivity: L-complete, by virtue of a non-obvious
equivalence with graph connectivity under projection
reducibility shown by Chandra et al. [26].

st-reachability for directed graphs of out-degree one: The
out-degree one version of st-reachability. It is L-complete
[56].

Order Between Vertices: Given a directed path, specified
by giving for each node its successor in the path, and
two distinguished nodes a and b, Order Between Ver-
tices (ORD), sometimes also called Path Ordering, asks
to determine whether a precedes b. ORD is L-complete
[38].

Formula Evaluation: A formula is a circuit where each gate
has fan-out (out-degree) exactly one, where the underly-
ing algebraic structure is the Boolean algebra. Hence a
formula is a circuit whose underlying graph is a tree.
Formulas represent computations where the results of
subcomputations cannot be used more than once. It is
easy to see that Boolean formula evaluation is in L. A
seminal paper by Buss shows that Boolean formula eval-
uation belongs to NC1 [25]. However, for this result it
is crucial that the Boolean formula is given as a string
(for instance its preorder notation), and not as a tree in
pointer representation (e.g., by the list of all edges plus
gate types). For the latter representation, the problem is
L-complete [16].

CycleDetection: L-complete, evenwhen the given graph con-
tains at most one cycle [30].

Planarity Testing: Is a given graph planar? Allender and
Mahajan [5] showed that this problem is hard for L under
projection reducibility (even for graphs of maximum
degree 3), and that it lies in SL. Thus, by the result of
Reingold [76], planarity testing is L-complete.

Densest Subgraph: Given an undirected graph and a number
k, is the density of a densest subgraph at least k? Observe
that cycle detection is a special case of this problem with
k = 1, and thus densest subgraph is L-hard.

st-reachability: This is st-connectivity in directed graphs,
that is, the problem of detecting whether there is a path
from a distinguished node s to a distinguished node t in
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a directed graph. It is denoted STCON, and also known
as directed st-connectivity, graph reachability, PATH, or
graph accessibility problem (GAP). It is the prototyp-
ical complete problem for NL [10,73,81]. (This result
was first proved by Jones [56], and is implicit in [79],
where STCON is called the “threadable maze” problem.)
It remainsNL-complete for the stronger case of first-order
reductions [53]. It is L-hard [66,79], but not known to be
in L. In Eulerian directed graphs (i.e., directed graphs
where each node has in-degree equal to its outdegree) it
is in L [77].

Strong Connectivity: NL-complete: equivalent to
st-reachability under AC0 reductions [26].

Shortest Path: Given an undirected (unweighted) graph, two
distinguished nodes s and t , and an integer k, the problem
of determining if the length of a shortest path from s to t
is k is NL-complete [23].

Directed Cycle Detection: Given a directed graph, does it
contain a directed cycle? NL-complete [81].

2SAT: NL-complete [73, Theorem 16.3].
NFA/DFA Acceptance: NL-complete [81].
PerfectMatching:NL-hard, even in bipartite graphs, because

of a AC0 reduction from st-reachability [26]. (Also
L-hard, even on k-trees [34, Lemma 5.1].) It is a long-
standing open question to determine whether perfect
matching is in NC (despite some recent substantial
progress [82]).

Bipartite Matching, Network Flow: Equivalent under AC0

reductions to bipartite perfect matching [26], and thus
NL-hard.

Circuit Evaluation: It is P-complete under AC0 reductions
[26], and thus also NL-hard and L-hard.

A.1 L-completeness of the one cycle versus two
cycles problem

In [30, Theorem 3] it is shown that graph connectivity when
the given graph is known to be a disjoint union of cycles is L-
hard. A careful inspection of the reductions used to establish
this result reveals that the problem remains hard even when
the graph is known to be made up of either one or three
cycles. By reducing from a different problem, we now show
that graph connectivity remains hard even when the graph is
known to be made up of either one or two cycles.9

Proposition 4 Graph connectivity for promise graphs that
are either one cycle or two cycles is L-complete.

Proof Membership in L is guaranteed by the algorithm of
Reingold [76]. To show L-hardness, we shall exhibit an NC1

reduction from order between vertices. Given an instance

9 Graphs are allowed to have parallel edges, that is, cycles with two
edges.

(G, a, b) for order between vertices, we build a new graph
G ′ as follows: (1) the two arcs pointing to a and to b, denoted
(a′, a) and (b′, b), respectively, are removed, (2) the direction
of each of the remaining n − 3 arcs is discarded, and (3)
edges {s, a}, {a′, b′}, and {b, t} are added, where s denotes
the source and t the sink of G, respectively. See Fig. 6. This
construction is an NC1 reduction. The resulting graph G ′
consists of two cycles if a precedes b in G, and of one single
cycle otherwise. ��
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