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A B S T R A C T

Underwater acoustic communications are becoming a popular solution for underwater data communications
and telemetry, making the authentication of transmitted data a necessity. In this paper, we propose a physical-
layer authentication strategy for underwater acoustic networks (UWANs) with mobile devices. Such a scenario
is more challenging than classical authentication scenarios in static networks, because the mobility of the
receiver and/or transmitter implies that channel conditions slowly change over time. Thus, we cannot rely on
the statistics of channel features to be stationary. In our proposed strategy, we assume that the receiver can
rely on a set of sensors. We first extract a set of channel features, to be used to track the channel evolution
over time. We then develop a long short-term memory (LSTM)-based approach, where at each step the sensors
predict future feature values based on a learned model and on previously observed feature values. Next, each
sensor computes the prediction error and passes it on to the actual receiver, which makes a decision on the
signal authenticity through a generalized likelihood ratio test (GLRT). We model different classes of attacks
and test them using simulation data obtained via the Bellhop ray tracing software. Numerical results show that
our authentication mechanism successfully distinguishes between legitimate and impersonating transmitters,
even when considering challenging attacking scenarios where the attacker can successfully mimic the channels
between the legitimate transmitter and the sensors.
1. Introduction

Underwater acoustic networks (UWANs) exploit acoustic waves to
enable communications among devices under the sea surface. Never-
theless, the challenging underwater environment often constrains the
attainable data rate, and complex signal processing techniques are
needed at the receiver to handle the typically long channel impulse
responses, Doppler spread, and interference from other underwater
sources [1]. In this context, security protocols functioning at higher
protocol stack layers may yield additional overhead (e.g., adding sig-
natures on the message) that may reduce the already limited data
rate. Consequently, there has been a significant focus on physical layer
security (PLS), which operates at the physical layer and relies on the
statistical properties of the channel to provide security.

We tackle the authentication problem, where a receiver acts as
a verifier and must decide whether a received message has been
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transmitted by the legitimate transmitter or from an impersonating
attacker. PLS authentication algorithms can be divided into two classes:
source-based, and channel-based. In the source-based class, the re-
ceiver uses unique features added by the transmitter, (e.g., by its
hardware) as a fingerprint to authenticate the transmission. Instead,
with channel-based authentication, the receiver uses the channel im-
pulse (or frequency) response estimated from the received signal as a
fingerprint. This fingerprint is typically unique to the transmitter’s and
receiver’s location [2]. Hence, the channel impulse response measured
by an attacker not co-located with the legitimate transmitter will look
significantly different from the expected one. Thus, an initial received
packet, whose authenticity has been established by higher-layer cryp-
tographic techniques, provides the reference channel response, while
the subsequent packets, that are not protected by higher-layer authen-
tication mechanisms, are accepted as authentic if the newly estimated
channel response matches the reference one.
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However, in UWANs, devices are subject to continuous movements
induced, among others, by either the natural drift due to sea waves and
currents or the transmitter/receiver movements themselves, e.g., when
the transmitter and/or the receiver are autonomous underwater vehi-
cles (AUVs). Under these circumstances, the variation of the channel
over time can be significant, and any assumption on the channel’s time
stability becomes unrealistic.

In this paper, we propose a PLS authentication technique for under-
water acoustic communications to be used by an UWAN, specifically
designed to account for the time variability of the channel. To this end,
we consider a set of features extracted from the power delay profile as
authentication parameters.

These features include:

• the number of channel taps;
• the average tap power;
• the root mean square (RMS) delay;
• the smoothed received power;
• the power-weighted average tap delay.

This set of features was chosen since they are strongly related to the
positions of both the transmitter and the receiver [3,4]. The features
can be used to effectively distinguish between legitimate transmitter
and attacker by detecting anomalies on the measured channel, e.g., by
observing a channel that is associated with a position too far from the
position estimated in the previous step. Thus, they constitute a good
starting point for physical layer authentication (PLA). We remark that
the considered features belong to a channel-based authentication con-
text. This enables us to avoid, for instance, training the authentication
algorithm on a specific transmitter device (as would be instead required
when working with source-based features). Yet, the proposed approach
does not rely on the specific characteristics of the features, hence it may
be possible to add features from a source model context as well.

Instead of evaluating the features’ statistics, we evaluate their evolu-
tion over time, by computing a measure of coherence between currently
measured features, and previously measured ones. To do so, we apply a
recurrent neural network (RNN), specifically a long short-term memory
(LSTM) model, to track the changes in the authentication features. Each
sensor will then measure the prediction error and share it with the
receiver. The authentication check is then performed by comparing
a combination of the errors with a given threshold. Indeed, large
discrepancies between the predicted and the observed features indicate
an irregular behavior that hints at the start of a possible attack.

The main contributions of this paper are listed as follows.

• We propose a novel channel feature tracking strategy based on
RNNs, that makes it possible to track channel features without ex-
plicitly requiring knowledge about the transmitter’s movements.

• We merge the local prediction error estimates to verify the au-
thenticity of the transmission, based on the generalized likelihood
ratio test (GLRT).

• We test the performance of the proposed architecture via Bellhop
simulations, considering three attack classes: I) a static attacker;
II) a dynamic attacker whose trajectory follows the same model
as the legitimate receiver; and III) an attacker trying to replicate
the legitimate channel.

In more detail, in attacks I and II the attacker transmits signals from
its position, i.e., as if pretending that the legitimate transmitter has
moved to its location. Conversely, with attack III, the attacker forges
fake signals in an attempt to impersonate the legitimate transmitter. It
does so by exploiting a (partial) knowledge of the legitimate channel,
and by preprocessing its own transmission to make them as similar as
possible to the legitimate ones.

Our authentication approach provides a fundamental security primi-
tive for mission-critical scenarios. Among other examples, such scenar-
2

ios include: tactical settings; applications where coordination among
different actors may cause damage if disrupted; as well as trustful data
collection for environmental or equipment/infrastructure monitoring.
For instance, consider coordinated underwater vehicles: authenticated
message exchanges may avoid that bogus commands by an attacker
lead vehicles progressively off course, or into a collision. In the case of
data collection, e.g., from critical underwater infrastructure, unwanted
abnormal readings or alarms sent by an attacker can be rejected before
they lead to costly or disproportionate reactions. Moreover, physical
layer techniques help achieve secure authentication in multi-tenant
contexts, where heterogeneous underwater assets interact and cannot
be assumed to integrate the same hardware cipher.

This work extends the strategy we presented in [4]. In our previ-
ous work, we considered a Kalman filter-based approach, where the
innovation of the filter provides an authentication feature. However,
such an approach is limited, as it can be used only for features that
are a function of the distance between the transmitter and receiver.
Additionally, it requires a-priori knowledge about the transmitter (and
receiver) trajectory. In this paper, instead, we propose a method that
does not require knowledge about the relative movement between
transmitter and receiver, and that exploits a much broader set of
features, thus being more robust and secure. Even if an attacker knows
the actual distance between the two devices, it remains hard to predict,
e.g., the number of channel taps without an accurate knowledge of the
surrounding environment.

The rest of the paper is organized as follows. Section 2 surveys
related work on the authentication of underwater transmissions, includ-
ing physical layer approaches. Section 3 describes the system model.
Section 4 details our proposed authentication algorithm. Section 5
presents the simulation results. Finally, Section 6 draws concluding
remarks.

2. Related work

Several methods have been investigated to achieve authentication in
UWANs [5,6]. The straightforward approach would be to use the cryp-
tography algorithms used for terrestrial cabled or wireless networks.
However, Souza et al. explored the communication and computation
energy toll that terrestrial network authentication primitives may take
if directly applied to underwater network nodes for end-to-end authen-
tication [7]. The authors concluded that short and aggregate signature
schemes are recommended in underwater networks.

The work in [8] proposes a secure protocol suite for UWANs. As
a part of this suite, the authors advocate the use of message authen-
tication codes [9] to preserve message integrity, at the expense of
increasing the message length.

In [10], a game-theoretic approach fosters cooperation among net-
work nodes, by motivating them to improve the effectiveness of end-
to-end authentication schemes, which are seen as a key functionality of
future UWANs [11].

To reduce the complexity of underwater authentication, Yuan et al.
employ matrices of known structure as part of the process, to reduce
their memory occupancy and the computational cost of the authentica-
tion algorithm [12]. The proposed scheme achieves up to four orders of
magnitude less complexity than the standard RSA-based authentication.
With a similar purpose, Al Guqhaiman et al. propose a multi-factor
scheme based on zero-knowledge proofs via message authentication
codes [13]. Specifically, the codes depend not only on pre-shared
information but also on communication-related features such as the
MAC address of the node, the direction of arrival information, as well
as the hop count of the sender. Receiving a packet for which this data
does not match any of the features of the receiver’s neighbors causes
the receiver to label the packet as malicious, and to send an alert to its
own network neighborhood.

Zhang et al.’s approach [14] revolves around classical authenti-
cation schemes based on message exchanges and mandates the use
of lightweight primitives such as chaotic maps and hash functions.
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While being slightly lighter than competing schemes from the literature
from a computational point of view, the proposed scheme requires less
storage to work. Along the same line, in [15] the attacker impersonates
multiple network nodes at once (also known as a Sybil attack). Here,
the legitimate nodes attempt to identify the attacker’s malicious behav-
ior via its node ID and the data stored in the cluster head, which feeds
a hierarchical fuzzy system-based trust management model.

Recently, physical layer security approaches have been considered
both for authentication and for other security primitives such as key
exchange. Physical layer authentication often relies on the collection
of channel characteristics (e.g., features of the channel impulse re-
sponse) to tell apart transmissions by legitimate network members from
transmissions by an impersonating attacker.

Considering an underwater LOS environment with negligible multi-
path, Khalid et al. propose that the receiver keep a database of angles of
arrival for legitimate transmissions from a given node [16]. In this way,
the receiver can detect an attacker by comparing the angle of arrival of
its transmissions against the distribution of previously collected angles
of arrival. The matching evaluation metric is the Mahalanobis distance.
However, the work does not consider the case of a more powerful
attacker who can craft transmitted signals to change the estimated
angle of arrival at the receiver.

Aman et al. evaluate the capacity of underwater channels under
impersonation attacks [17], assuming that the legitimate receiver uses
distance as a feature to discriminate between a legitimate and an
impersonating transmitter. After modeling the dynamics of the com-
munications as a Markov chain, the authors numerically optimize the
optimum transmission rate for the legitimate transmitter and show that
a small neural network reproduces the optimization process well.

In [18], the authors propose to authenticate nodes based on a single
feature, the maximum time-reversal resonating strength, which mea-
sures how well a received channel impulse response matches those of
previous transmissions, stored in a pre-collected database. The authen-
tication mechanism is then based on the Neyman-Pearson likelihood
ratio test (LRT).

The approach in [19] considers a large dataset of underwater chan-
nel feature measurements and evaluates which features remain coher-
ent over time while becoming uncorrelated already over short dis-
tances. Assuming that several trusted nodes hear both the transmissions
of a legitimate node and those of an attacker, the proposed method
trains generalized Gaussian probability density functions (PDFs) to
represent the features of legitimate transmissions. Then, it coordinates
the trusted nodes to decide on whether an incoming transmission obeys
the previously learned statistics or not. The method is robust against
attackers that can precode their transmission to change the channel
perceived by multiple trusted nodes at the same time. The above
work was further extended in [3] to automatically extract the feature
statistics using a neural network, thereby avoiding the need to fit a
generalized Gaussian PDF to the channel data. Additionally, in [20]
both local training and global training solutions are considered. With
local training, each trusted node makes a local decision on authenticity,
and a sink uses a neural network to fuse the decisions, making it
unnecessary to communicate anything other than the local decisions.
Conversely, global training achieves better performance but requires
all trusted nodes to communicate the weights of their local neural
networks.

In contrast with the existing literature, we do not directly exploit
channel impulse response features to tell apart a legitimate node from
an attacker in our physical layer authentication approach. Rather,
we deploy an LSTM, which tracks the evolution of the chosen set of
authentication features and uses the prediction error to discriminate
between legitimate transmitter and attacker. This approach factors in
3

mobility by design.
3. System model

We consider three agents: a (legitimate) transmitter, a receiver, and
an attacker. The transmitter is mobile, e.g., an AUV, and periodically
transmits information to the receiver, via underwater acoustic channels.
The receiver can rely on a set of 𝑁 sensors, {𝑆1,… , 𝑆𝑁}. the attacker
is instead a malicious transmitter that aims to inject fake information
into the legitimate by impersonating the legitimate transmitter, sensing
proper signal via the underwater acoustic channel.

In turn, the aim of the receiver is then to exploit his 𝑁 sensors, to
decide whether a received packet comes from the legitimate transmitter
or the attacker. We assume the channel between the sensor 𝑆𝑛 and the
actual receiver to be error-free, authenticated, and integrity-protected.
Hence, the attacker cannot interfere with the collection of data from the
sensors to the logic making the authenticity decision (see Section 4). We
assume the sensors to be (at least loosely) synchronized. Considering
for instance a scenario where the sensors and The receiver are close
to each other, this may be achieved using a wired link. Alternatively,
it could be possible to synchronize the sensors using one of the many
schemes designed for underwater networks, e.g., [21].

In these conditions, the attacker impersonates the legitimate trans-
mitter by crafting signals with features similar to those of the legitimate
transmissions. We assume that the attacker has the advantage of know-
ing all the details and parameters of the authentication algorithm
and that they are also synchronized with the legitimate transmitter
and receiver. Moreover, the attacker can precode the transmissions to
reproduce any desired channel impulse response at any of the sensors.
We remark that these capabilities imply perfect knowledge of the
environment, e.g., the surface/bottom profile, as well as the sound
speed profile in the network area, and require channel estimation,
precoding, and the availability of multiple transceivers. Finally, they
also require considerable processing power to compute multiple ray
tracing outputs within a negligible amount of time. Thus, the scenario
we are considering is quite generous towards the attacker. Still, we
assume that the attacker does not know the exact location of the
legitimate transmitter, as the attacker can localize the transmitter using
the well-known approaches of [22], or matched field processing tech-
niques [23,24] that have limited accuracy. Thus, the attacker cannot
track the transmitter’s movements accurately. We model the attacker’s
estimate of the receiver’s 3D location vector as

�̂� Tx = 𝑷 Tx + 𝝐 , (1)

where 𝑷 Tx is the true location of the legitimate transmitter and 𝝐
models the localization error.

We consider an attacker employing three different strategies, with
increasing complexity, from time 𝑡att ,

Type I : the attacker is a malicious static transmitter, sending signals
to the sensors.

Type II : the attacker is a moving transmitter. During the attack, they
transmit signals while moving.

Type III : the attacker estimates the legitimate transmitter’s location
and exploits their knowledge of the attacker-sensors channels to
pre-compensate the channels.

We remark that, to the best of the authors’ knowledge, except for trivial
scenarios (e.g., leading to single-arrival channel impulse responses), it
is practically impossible to perfectly implement type-III attacks. Hence,
in a worst-case analysis fashion, we will also consider type-III attacks
as a lower bound on the performance of our authentication scheme.
We also remark that obtaining the position of the transmitter and
tracking its movements requires an additional effort by the attacker:
therefore, having a defense that leverages the legitimate user position
to authenticate the source strengthens security as it requires more

sophisticated attacks.
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Finally, we assume that an authenticated dataset is available for
training. This dataset can be collected either from previous operations
on the field, by relying on higher-layer authentication mechanisms to
act as a bootstrap for the protocol, or from simulation, e.g., by using a
ray tracer such as the Bellhop software [25], fed with high-resolution
environmental parameters.

4. Proposed protocol

We propose an authentication protocol composed of three steps.
After a training phase where each sensor trained its own predictor
(more details in Section 4.2), at time 𝑡:

1. Feature Extraction: each sensor, 𝑆𝑛, estimates the power-delay
profile {𝛱𝑛(𝑡, 𝜏)}, where 𝛱𝑛(𝑡, 𝜏) is the power of the tap with
delay 𝜏. Next, it processes the profile to extract the feature
vector 𝒙𝑛(𝑡);

2. Prediction Strategy: sensor 𝑆𝑛 computes

𝜹𝑛(𝑡) = �̂�𝑛(𝑡) − 𝒙𝑛(𝑡) , (2)

where �̂�𝑛(𝑡) is the output of the trained predictor.

3. Authenticity Verification: The receiver collects all prediction er-
rors. Additionally, to improve the performance of the scheme,
it can collect 𝑊 observations per sensor, concatenated into a
vector

𝜹(𝑡) = [𝛿1(𝑡),… , 𝛿1(𝑡 −𝑊 𝑇 ),… , 𝛿𝑁 (𝑡)⋯ , 𝛿𝑁 (𝑡 −𝑊 𝑇 )] , (3)

where for simplicity we assumed that the signals are collected
with a sampling period 𝑇 . Finally, the receiver computes the
decision variable 𝛾 = 𝑔

(

𝜹(𝑡)
)

, and tests the authenticity of the
packet as

̂ =

{

0, if 𝛾 < 𝜆 (packet from legitimate transmitter),
1, if 𝛾 ≥ 𝜆 (packet from the attacker.

(4)

The threshold 𝜆 is chosen a priori by the legitimate user. Let us
call  = 0 and  = 1 the case where the legitimate transmitter
or the attacker is sending signals, respectively. The false alarm (FA)
probability is

𝑝FA = 𝑃 [̂ = 1| = 0] , (5)

while the missed detection (MD) probability is

𝑝MD = 𝑃 [̂ = 0| = 1] . (6)

The threshold 𝜆 in (4) can be chosen to meet certain design crite-
ria. However, as feature statistics are typically available only for the
legitimate scenario, it is customary for the user to decide on a false
alarm probability 𝑝FA, and pick as 𝜆 the threshold value that yields this
probability. During the tests, it is possible to model a specific attack and
measure also the 𝑝MD. The trade-off between 𝑝FA and 𝑝MD is typically
evaluated by computing the detection error tradeoff (DET) curves.

Following the considerations in [20], the best solution would re-
quire us to jointly train both the local predictors and the verification
function 𝑔(⋅). Still, in practical circumstances, this is not a viable option
as it may be too computationally demanding for UWAN devices [20].
Thus, we resort to a divide-and-conquer approach, where we first
process the channel features and later send only the prediction errors
to the receiver.

Finally, we remark that, in principle, a federated learning-based
solution may speed up the training of the local predictors. Yet, the
statistical distribution of the features may vary significantly across
the sensors due to the very limited space correlation of underwater
4

acoustic channels. Hence the effort to adapt the online model to the t
local predictor could be equivalent to the one required when training
the predictors from scratch.

In the next Sections, we detail how steps 1–3 are implemented (see
Fig. 1).

4.1. Feature extraction

Sensor 𝑆𝑛 extracts from the power delay profile {𝛱𝑛(𝑡, 𝜏)} a set of
authentication features, 𝒙𝑛(𝑡) = [𝑥(1)𝑛 (𝑡),… , 𝑥(5)𝑛 (𝑡)], where 𝑥(𝑖)𝑛 (𝑡) is the
measurement of feature 𝑖, collected at time 𝑡 by sensor 𝑆𝑛.

To avoid unnecessary computations, we first zero out low-power
arrivals in the power-delay profile as

𝛱 ′
𝑛(𝑡, 𝜏) =

{

0, if 𝛱𝑛(𝑡, 𝜏) < 𝑇ℎ,
𝛱𝑛(𝑡, 𝜏), if 𝛱𝑛(𝑡, 𝜏) ≥ 𝑇ℎ.

(7)

where threshold 𝑇ℎ = 10−8 max𝜏 |𝛱𝑛(𝑡, 𝜏)| trims exceedingly low-power
arrivals that would be buried in noise.1

𝑛(𝑡) is then the set of delays of all channel arrivals that remain
after thresholding.

Concerning the actual set of features, we combine the set used
in [3,19] with the power-weighed average delay proposed instead
in [4]. In detail, we consider the channel impulse response features
defined in the following:

Number of channel taps, which hints at the spread of the acoustic
channel

𝑥(1)𝑛 (𝑡) = |𝑛(𝑡)| . (8)

Average tap power,

𝑥(2)𝑛 (𝑡) = 1
|𝑛(𝑡)|

∑

𝜏∈𝑛(𝑡)
|𝛱 ′

𝑛(𝑡, 𝜏)| , (9)

elative RMS delay, which reflects the delay spread of the channel,

𝑥(3)𝑛 (𝑡) =
(

1
|𝑛(𝑡)| − 1

∑

𝜏∈𝑛(𝑡),𝜏≠𝜏0

(𝜏 − 𝜏0)2
)1∕2

, (10)

where 𝜏0 is the delay of the first tap, i.e., 𝜏0 = min{𝜏 ∶ 𝜏 ∈ 𝑛(𝑡)}.

moothed received power, that tracks the variation of power over
time. In particular, let 𝑞𝑛,𝑡 be the power of a symbol received
by node 𝑛 at time instance 𝑡, and a user-defined parameter 0 ≤
𝛼 ≤ 1, thus

𝑥(4)𝑛 (𝑡) = 𝛼 𝑞𝑛,𝑡 + (1 − 𝛼) 𝑥(4)𝑛 (𝑡 − 𝑇 ) , (11)

where 𝑥(4)𝑛 (𝑡−𝑇 ) is the smoothed received power of the previous
symbol, received at time 𝑡 − 𝑇 .

ower-weighed average delay

𝑥(5)𝑛 = 1
�̄�𝑛(𝑡)

∑

𝜏∈𝑛(𝑡)
𝜏𝛱 ′

𝑛(𝑡, 𝜏) , (12)

where, as pointed out in Section 3, we assume all devices to be
synchronized, with

�̄�𝑛(𝑡) =
∑

𝜏∈𝑛(𝑡)
𝛱 ′

𝑛(𝑡, 𝜏) . (13)

Notice that the delay of the first arrival is strongly correlated to
the distance between the transmitting and receiving devices.

1 Alternatively, it would be possible to fix a predefined FA probability for
he discrimination of true vs. noise-induced peaks in the channel impulse
esponse and compute the threshold leading to such FA probability according
o the equations in [26].
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Fig. 1. High-level sketch of the proposed solution.
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The above features have a desirable property: they enable a good
eparation among channel responses generated by almost-stationary
ransmitters located at different positions [19] and they relate well
ith distance [4]. It remains possible to extend the feature set, e.g., by

onsidering the features of [27].

.2. Prediction strategy

In this Section, we describe both the prediction strategy and the pre-
ictor training. To track the evolution over time of the authentication
eature vector 𝒙(𝑡), each sensor exploits a LSTM RNN. Before introduc-

ing LSTMs we briefly review deep feedforward neural networks (NNs).
Deep NNs are composed of a series of layers, each possibly containing
several neuron units, yielding the so-called multi-layer perceptron model.
In particular, considering a NN composed of 𝑄 layers, the network is
said to be feedforward if the input of any neuron of the (𝑞+1)-th layer is
the collection of the output of the neurons in the 𝑞th layer. Additionally,
the NN is fully connected if the input of each neuron at layer 𝑞 + 1 is
a weighed sum of the outputs from all neurons of layer 𝑞. This is in
contrast to other NN architectures, such as convolutional NNs.

Each neuron is associated to a weight 𝒘(𝑞)
𝑘 , a bias 𝑏(𝑞)𝑘 , and an

activation function 𝑓 (𝑞)(⋅). Therefore, considering a feed-forward fully
connected NN, the output of the 𝑘th neuron of the 𝑞th layer is computed
as

𝑦(𝑞+1)𝑘 = 𝑓 (𝑞)(𝒘(𝑞)
𝑘 𝒚(𝑞) + 𝑏(𝑞)𝑘

)

. (14)

To implement a predictor, we consider a so-called regression task,
here the network has to compute the future feature from the past one.

n more detail, we model the predictor as a function 𝑓 , the output of the
ast layer for input 𝒙 is 𝒙′𝑛 = 𝒚(𝑄) = 𝑓 (𝒙). First, we model the network
rchitecture such that 𝒚(𝑄) has the same size as the input. The training
oss will then be the mean square error (MSE) loss

= ‖

‖

‖

𝑓
(

𝒙𝑛(𝑡 − 𝑇 )
)

− 𝒙𝑛(𝑡)
‖

‖

‖

2
. (15)

The NN is trained (i.e., optimized) using algorithms such as the adap-
tive moment estimation (ADAM), by setting as target {𝒙𝑛} for input
the corresponding {𝒙′𝑛}. The main issue of multilayer perceptron NNs
is that they have no memory buffer, and are thus unable to track the
evolution of the feature vector over time.

An alternative candidate to NNs is a Kalman filter, as we have
previously proposed in [4]. However, the Kalman filter requires knowl-
5

edge about both the state-transition and the evolution models [28, Ch.
Fig. 2. Scheme for the LSTM cell used to implement the predictor.

13]. Different from the power-weighed average delay, it is hard to
analytically relate the authentication features to the relative motion
between the transmitter and the receiver. We resort instead to RNNs,
focusing on LSTMs.

LSTM are provided with a set of cell states, where 𝒄𝑛 is the state
t time 𝑡𝑛. By exploiting the cell state, RNNs can learn the correlation,
nd thus the model governing the evolution of subsequent samples of
given metric over time. In detail, the architecture can be split into

hree gates, the forget, the input, and the output gate. The forget gate
ims to properly weigh the influence of the (past) cell state on the
ew cell state and the output, i.e., how much information should be
orgotten or maintained between one input and the next one. The input
ate takes in the input and updates the cell state, considering both the
urrent input, the output of the forget gate, and the previous output.
inally, the output gate computes the actual output from the updated
ell state and the current input. The training procedure for RNNs is
dentical to the one for the NNs, but all cell states are reset after each
raining sequence ends. More details about both NNs and RNNs can be
ound in [29, Ch. 6,9].

A sketch of an LSTM cell is reported in Fig. 2, where tanh(⋅) and 𝜁 (⋅)
re the hyperbolic tangent and sigmoid activation functions.

Finally, each sensor computes the prediction error 𝜹𝑛(𝑡) as in (2) and
ransmits it to the receiver.

.3. Authenticity verification

In this section, we detail how the receiver exploits the prediction
rror 𝜹(𝑡), which collects the 𝑛 prediction error vectors 𝜹 (𝑡) from the 𝑛
𝑛
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sensors, to compute the test variable 𝛾. This will be in turn exploited
to verify the authenticity of the transmitter by using the test (4).

As mentioned in Section 3, we frame the problem using binary
hypothesis testing, considering 0 and 1 as the legitimate and the
under-attack scenario, respectively. In other terms, the problem is then
to distinguish between 𝜹(𝑡) ∈ 0 and 𝜹(𝑡) ∈ 1.

Given 𝜹, the optimal test, i.e., the test minimizing the 𝑝md for a fixed
alse alarm 𝑝FA, is the LRT

(𝜹) =
𝑝(𝜹|0)
𝑝(𝜹|1)

≷ 𝜑 . (16)

However, this test cannot be used in our scenario, as it requires the dis-
tributions of 𝜹(𝑡) in both the legitimate and the under-attack scenarios.
These distributions are not available, and cannot be estimated in real-
time. Additionally, even assuming the availability of the first 𝑝(𝜹|0),
.g., by running (as accurate as possible) simulations and measuring the
istribution from the dataset, the latter would require a detailed attack
odel, and thus also the knowledge of the specific attack chosen by the

ttacker.
As a common practice [30], we resort to the GLRT

(𝜹) = 𝑝(𝜹|0) ≷ 𝜑 . (17)

It is worth pointing out, that given enough training data, it is
ossible to implement such a test even using data-driven solutions, such
s the one-class least-squares support vector machines [31].

To model the statistical distribution of the prediction error, we
onsider a Gaussian overbound. In particular, we assume the prediction
rror components to be iid and Gaussian-distributed under 0, where
he 𝑖th component has distribution 𝛿𝑖(𝑡) ∼  (0, 𝜎2𝑖 ) and 𝜹(𝑡) ∼  (𝟎,𝜮).
ence, for a prediction error vector of size 𝐾, for the GLRT (17), it
ields

(𝜹) = 1
(2𝜋)𝐾

√

|𝜮|

exp
(

−1
2
𝜹T𝜮−1𝜹

)

≷ 𝜑 , (18)

which is equivalent2 to

′ (𝜹) =
𝐾
∑

𝑖=1

𝛿2𝑖
𝜎2𝑖

≶ 𝜑′ . (19)

We consider the following remarks. First, we see that such an
operation is essentially a normalization of each error term, leading to
a sum of squared standard normal variables (i.e., chi-square random
variables). Moreover, we remark that each variance 𝜎2𝑖 can be either
estimated a priori or from a dataset.

The GLRT is a sum: thus, instead of summing up all the (normalized)
terms at the receiver, it becomes possible to compute partial sums
at the sensors and transmit only these sums, reducing the amount of
communicated data.

The Gaussian hypothesis is reinforced when combining the predic-
tion error from multiple sensors and multiple instants of time, by the
central limit theorem. In Section 5, we will confirm that this assumption
is effective, as it enables us to detect the attacks compactly.

5. Numerical results

In this Section, we test the performance of the proposed RNN-
based authentication strategy. We first describe the simulation scenario
and modeling. Next, we check the performance of the predictor, by
verifying that, when under attack, different behavior is observed, which
can be used to distinguish between 0 and 1. Finally, we test the
performance of the overall scheme against all the considered attack
classes.

2 It requires a remapping of the thresholds but achieves the same 𝑝FA and
𝑝 .
6

MD
5.1. Simulation scenario

We evaluate the proposed approach by simulating underwater
acoustic communication channels via Bellhop [25]. In more detail,
we considered a region of the San Diego bay area (32◦52′34.5′′N,
17◦24′12.8′′W) of size equal to about 6 km × 6 km, having a depth
etween 250 and 650m.

At the start of each simulation, we randomly deploy the attacker
nd the receiver within the area. In particular, the receiver incorporates
our sensors arranged as a tetrahedral pyramid of base radius and
eight equal to 5m.

We consider the legitimate transmitter to be a moving device trans-
itting acoustic signals in broadcast, once every 𝛥𝑡 = 1 s. the legitimate

transmitter moves across the area according to a correlated Gauss–
Markov mobility model, starting at a random location, 𝑷A,0, with an
nitial velocity vector of magnitude 𝑣0 = ‖𝒗A,0‖ and direction drawn
niformly at random in an interval of 45◦ around due north. Once
very 𝛥𝑡, the legitimate transmitter’s location 𝑷A,𝑖 and velocity 𝒗A,𝑖 are

updated from step 𝑡𝑖−1 to 𝑡𝑖, as

𝑷A,𝑖 = 𝑷A,𝑖−1 + 𝒗A,𝑖𝛥𝑡, (20a)

𝒗A,𝑖 = 𝛼 𝒗A,𝑖−1 + 𝜼
√

1 − 𝛼2 , (20b)

where 𝑖 and 𝑖−1 refer to the current and previous location and velocity
update epochs, respectively, 𝛼 = 1−2 ⋅10−3 is the trajectory correlation
factor, and 𝜼 is a Gaussian noise vector having (fixed) independent
components of standard deviation [2, 2, 1]m∕s along the east–west,
north–south and depth dimensions, respectively. These choices lead to
correlated trajectories, which reproduce the uncertainty of drifting due
to currents and eddies. The lower variance along the depth dimension
models the typically more accurate depth-keeping capability of under-
water mobile devices. Fig. 3 shows the bathymetry map of the area, the
locations of the sensors, the attacker, and the legitimate transmitter’s
trajectory for one instance of our simulations.

We run a Monte-Carlo simulation, including several realizations of
the above scenario, with different initial random locations and tra-
jectories. Additionally, we tested different initial velocity magnitudes,
with 𝑣0 = 0.5, 1, and 1.5m∕s. In total, we generated 20 simulations
or each initial velocity magnitude 𝑣0; each simulation lasts 12 000 s,

corresponding to a total of 12 000 power-delay profiles collected per
simulation.

We assume that, for each simulation, there is an initial training
period when each sensor 𝑆𝑛 receives data only from the legitimate
transmitter. In each simulation, each sensor collects a total of 12 000
(legitimate) feature vectors, and uses the first 30% to train the neural
networks. The rest of the data is then used as a test set. Concerning
the features’ parameters, after manual tuning we set the smoothing
received power coefficient (11) to 𝛼 = 0.5.

We implemented the attacks described in Section 3. In particular,
for type III attacks, we note that it is not feasible to pre-compensate all
channels towards all the sensors at the same time, even with dedicated
hardware. Thus, even if the attacker can perfectly estimate the channel
towards sensor 𝑖, this will still introduce errors to the other spoofed
channels. We modeled this effect by translating the attacker’s uncer-
tainty about the legitimate transmitter’s location into an uncertainty on
the channel that should be reproduced by the attacker to impersonate
the legitimate transmitter successfully at each sensor.

In more detail, we displace the legitimate transmitter uniformly at
random within a radius of either 𝜖 = {50, 100, 200}m over the azimuthal
plane, and within a depth of ±20m from the legitimate transmitter’s
actual location. These values are representative of realistic errors ob-
tained via localization schemes based on matched field processing [23].
For each random displacement, we recompute the channel impulse
response at each of the sensors.

Finally concerning the LSTM architectures, we designed the RNN to
be lightweight, thus composed only of two layers: a LSTM layer with
10 cells, and a fully connected layer with 5 neurons.
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Fig. 3. Example of simulation scenario showing the location of the attacker and the sensors, and a sample trajectory for the legitimate transmitter. The background colors convey
the local depth. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
5.2. Single sensor prediction

First, we present the results of the prediction strategy considering
only sensor 𝑆1 for both a legitimate and an under-attack scenario, to
show that the predictors exhibit an anomalous behavior when under
attack.

In particular, we consider a type III attack, where the attacker can
replicate the legitimate transmitter channel with a localization error
𝜖 = 100m. Fig. 4 reports the predictions for each channel-related metric
in both the legitimate and the under-attack cases, compared with the
ground truth. The attack starts at 𝑡att = 1000. First, we notice that the
predictors can correctly track the features’ behavior over time, as no
relevant errors between predicted and ground truth values are shown.
Next, anomalous behaviors are exhibited by the predictor when the
attack starts, as noticeable increases of the predictor’s fluctuations are
observed after 𝑡att . Indeed, this shows that our predictor can be used
for authentication purposes. The smoothed received power and power-
weighted delay perform better in terms of security, as they have a clear
bias to the ground truth. On the other hand, these features also present
more errors with respect to the ground truth, which may lead to higher
false alarms, with respect to the other three. Thus, we can conclude
that there is no advantage and, as long as the receiver does not have
limitation on the number of features to be tracked, the best solution is
to include as many features as possible.

5.3. Authentication verification

Here, we report the results of the authentication procedure testing
the effectiveness of the proposed procedure in both legitimate and
under attack.

First, about the prediction results of Fig. 4, we want to check
whether the prediction error is a valid metric to distinguish legitimate
transmissions from fake ones. Fig. 5 reports the cumulative distribution
function (CDF) the norms of the normalized predictions error measured
at each sensor, considering a window of size 𝑊 = 1, and the Type I
attack. We draw two key observations. First, it may be possible to
7

effectively distinguish the attacker from the legitimate transmissions
at the local level. Next, there may be some fluctuations in the perfor-
mance among different sensors: for instance, in this simulation, the best
performance is achieved by sensor 4. So we can conclude that there are
in general benefits in sharing the prediction errors between the sensors
as, in the worst case, all the sensors could achieve the performance of
the best one.

Next, we evaluate the data aggregation at the receiver and the GLRT
performance, in terms of DET curves, measuring the 𝑝MD as a function
of 𝑝FA, for all the attacks described in Section 3 and different scenario
parameters. As a means of comparison, we consider an authentication
scheme inspired by [19]. Namely, we consider a model where the
verifier uses part of the dataset to estimate the feature distribution
and then performs a GLRT on the measurement to be tested to verify
the authenticity of a message. In more detail, each sensor exploits
the training dataset to estimate the distribution pdf of each feature
in the legitimate case, �̂�𝑖(𝑥|0), by using kernel density estimation
(KDE). Next, assuming all the features to be statistically independent,
the authenticity of measured channel 𝒙𝑛 is verified by computing the
(local) GLRT

′(𝒙𝑛) =
5
∑

𝑖=1
log �̂�𝑖(𝒙𝑛|0) ≷ 𝜑′ . (21)

To test the performance of the KDE-based scheme we ran 100 sim-
ulations: on each simulation, we used the first 3000 measurements con-
tained in the training dataset to estimate each pdf �̂�𝑖(𝑥|0). Concerning
the testing dataset, the legitimate part includes 1000 measurements
subsequent to the ones of the training dataset, whereas, for the under-
attack case, we considered the 1000 measurement collected after an
attack of Type I.

Fig. 6 reports the DET curves obtained using the KDE-based check
compared with a guessing check, where the receiver randomly decides
whether the measurement is legitimate or not. Indeed the naive check
is not a viable option as the performance is almost comparable to the
guessing check. This is because the measurements 𝒙𝑛 can be associated

with a (highly) non-stationary random process, thus the distribution
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Fig. 4. Predicted features, �̂�(𝑖)𝑛 (𝑡), in a scenario with only legitimate transmissions (orange) compared to a scenario where an attack of Type III with 𝜖 = 100m, taking place after
1000 s of operation (blue), compared to the ground truth measurement 𝑥(𝑖)𝑛 (𝑡) (black, dashed). (For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)
t
w

easured on the first part of the dataset is different from the one
ssociated with the second part. This motivates us to look for solutions
hat do not rely on the actual feature distribution but on the (coherence
ith) the feature evolution over time. Additionally, we notice that the
ecision locally taken by each sensor does not bear relevant informa-
ion, therefore even collecting the decisions from multiple sensors will
ot allow the receiver to distinguish between attacker and legitimate
ransmitter effectively.

Fig. 7 reports instead the results with 𝑊 = 10 for 𝑣0 = 1m∕s,
for the attacks of type I, II, and III when using the proposed check.
In more detail, we consider two cases for the Type III attack, where
the attacker is characterized by channel reproduction accuracies A)
𝜖A = [0, 50, 50, 100]m, or B) 𝜖B = [0, 100, 200, 200]m. For example, in
8

case A), this means that the attacker can perfectly reproduce the first p
feature while reproducing the remaining features with an error as if
the attacker estimated the location of the legitimate transmitter within
a radius of respectively 50, 50, and 100m from the actual location. As
expected, the proposed attack achieves the best performance against
the type I attack, followed by the II and III. Concerning the type III
attacks, scenario A) results are harder than those of scenario B), as we
are assuming that fewer errors are introduced by the attacker. Still,
even in this worst-case analysis, it is possible to distinguish between
the legitimate transmitter’s and the attacker’s signals.

Fig. 8 reports instead the results obtained for the attack of type
II, considering 𝑊 = 10 but training the network on either the same
rajectory of the test or on a different trajectory. We observe that,
hile the first case expectedly achieves slightly better results, good

erformance is still achieved even in the latter case. This confirms
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Fig. 5. CDF of the norm of the prediction errors 𝜹𝑛(𝑡), measured at different receivers, in the legitimate (yellow) and under attack scenarios (purple). The 𝑥-axis has been limited
for graphical purposes, as the CDF for the under-attack case converges to 1 at 𝑥 ≫ 12. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
Fig. 6. DET curves for as single sensors against the Type I attack. Comparison between
KDE-based check (red) and guessing strategy (red, dashed). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

that the neural network correctly learns the statistical properties of the
authentication features (which exhibit highly different patterns in the
presence of an attack, see Fig. 4), rather than specializing in a specific
trajectory. This could be a solution to a scenario where we have limited
training data, as it means that it could be possible to train the networks
on simulated data and then either directly use that on deployed sensors
at sea, or to have offline training and, after the actual deployment, a
short online training to refine the networks.
9

Fig. 9 reports instead the results focusing on the (easier to launch)
Type-I attack but considering as legitimate receiver velocities 𝑣0 = 0.5,
1, and 1.5m∕s. While no relevant performance change is observed for
𝑣0 = 0.5 and 1m∕s, a slightly worse performance is achieved for
𝑣0 = 1.5m∕s. Still, we expect the algorithms to perform worse for high
movement velocity, as the channel becomes more unstable and difficult
to predict. As the prediction error increases, there starts to be room for
the attacker to launch a successful attack.

6. Conclusions

We proposed a physical layer-based authentication algorithm for
UWAN where the legitimate transmitter is a mobile device. The receiver
employs a set of sensors equipped with a previously trained LSTM
network to track the evolution of the considered channel feature set.
Next, the receiver collects all prediction errors and then exploits them
through the GLRT to decide whether the signal is legitimate or fake,
i.e., transmitted by the legitimate transmitter or by the attacker.

Numerical results have been obtained using the Bellhop ray-tracing
software. A first batch of results confirms that the LSTMs is (𝑖) able to
correctly track the channel features over time and (𝑖𝑖) exhibits anoma-
lous behavior when the attack starts. This confirms that LSTMs can
be used for authentication purposes even in the challenging scenario
where the attacker can impersonate the legitimate transmitter at one
of the sensors.

Next, we tested the performance of the scheme in different attack
scenarios, with different levels of feasibility, and evaluated the resulting
DET curve. Our results prove that the proposed protocol can detect both
naive attacks, and more sophisticated attacks feasible only when the
attacker has many more resources than the legitimate devices.
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Fig. 7. DET curves for the Type I, II, and III attacks, for a velocity 𝑣0 = 1m∕s, with 𝑊 = 10 samples.
Fig. 8. DET curves for the Type II attack, for a velocity 𝑣0 = 1m∕s, with 𝑊 = 10 samples using a network trained on (part of the) testing dataset, and on a different trajectory.
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