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Abstract. We give a general definition of a subadditive invariant i of Mod(R), where R is any ring,
and the related notion of algebraic entropy of endomorphisms of R-modules, with respect to i. We
examine the properties of the various entropies that arise in different circumstances. Then we focus on
the rank-entropy, namely the entropy arising from the invariant ‘rank’ for Abelian groups. We show
that the rank-entropy satisfies the Addition Theorem. We also provide a uniqueness theorem for the
rank-entropy.
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Introduction

The notion of entropy is ubiquitous. After its first appearance in thermodynamics in the
first half of the XIXth century, it received a rigorous mathematical definition in statistical
mechanics in the second half of the XIXth century. It was defined inside the mathematical
formalism of quantum mechanics developed by John von Neumann in the 1930’s, and then
by Shannon in the setting of information theory, starting from the middle of the XXth century.
Entropy has arisen recently in mathematical statistics, social sciences and life sciences.

Passing to mathematical subjects, entropy played a fundamental role in the ergodic theory
of dynamical systems, developed by the Russian school since the beginning of the 1950’s.
Entropy appeared also in topology, first in a paper by Adler-Konheim-McAndrew [AKM]
in 1965 for continuous self-maps of compact spaces. Later on, topological entropy was
extended to more general spaces and deeply investigated by many authors. We refer to the
notes by T. Ward [W] for a comprehensive presentation of these subjects.

Passing now to the algebraic setting, the algebraic entropy was introduced in the paper
[AKM] quoted above, where one can find just a sketch of its definition for endomorphisms of
Abelian groups. It was developed further in a paper by Weiss [W] in 1975, where some basic
properties have been proved. But Weiss was mainly interested in comparing the algebraic
entropy of an endomorphism φ of an Abelian group G, with the topological and the measure-
theoretic (with respect to the Haar measure) entropies of the adjoint map of φ restricted to
the Pontryagin dual of tG, the torsion subgroup of G. The definition of algebraic entropy
given in [AKM] has the intrinsic limitation of being useful only for torsion groups, since
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it trivializes for torsionfree groups. In order to overcome this limitation, Peters slightly
modified in 1979, [P], the definition of algebraic entropy, and proved a result similar to
Weiss’s result, comparing the new entropy of φ with the Haar-measure-theoretic entropy of
the adjoint map of φ itself, but only for automorphisms and under additional hypotheses.
Recently, the two authors thoroughly investigated, with D. Dikranjan and B. Goldsmith in
[DGSZ] and in [SZ], the algebraic entropy as defined in [AKM], and this has proved itself
to be a very useful tool in the study of endomorphism rings of Abelian p-groups.

In all these different contexts, the entropy is always viewed as a measure of “expansive-
ness” of a transformation and a tool to measure the expansion “at infinity”. So the technical
definition of entropy, which obviously changes depending on the physical or mathematical
setting one is dealing with, always involves the limit of a certain quantity, measured at the
n-th iteration of the transformation and divided by n.

The first goal of this paper is to extend the notion of algebraic entropy to the setting
of endomorphisms of modules over general unital rings (for a notion of algebraic entropy
in a completely different setting see [BV] and [Br]). Our first goal is to start a formal
development of the algebraic entropy associated with module theoretic invariants; this is
done in Section 1.

The measure-theoretic entropy of a measure-preserving transformation of a space X with
a measure μ, is defined in terms of finite measurable partitions of X . Passing to modules
over an arbitrary unitary ring R, in order to define the algebraic entropy of an endomorphism
of a module M , one needs, in analogy with the measure μ, a tool to “measure” the size of
the submodules of M . More precisely, the n-th iteration of the endomorphism, applied to a
submodule F , gives rise to a submodule called the n-th partial trajectory of F , whose size
is measured by an invariant.

In module theory there are many different invariants that measure various finiteness
properties of the modules. There are two minimal requirements that an invariant of Mod(R)
must satisfy in order to be able to associate an algebraic entropy to it. These two conditions
identify what we call a subadditive invariant (see Definition 1). Additional conditions on
the invariant ensure that the associated algebraic entropy is easily computable and more
manageable; for instance, if the invariant is additive (see Definition 2), then the asymptotic
growth of the n-th partial trajectories, measured by the invariant, becomes constant at large
iterations (see Proposition 1.10). Therefore, dealing with additive invariants, one can avoid
the calculation of the limit in order to compute the algebraic entropy of endomorphisms. We
will consider some typical examples of invariants of modules, such as the logarithm of the
cardinality, the rank, the minimal cardinality of a generating set, etc. We will see that some
invariants fit nicely in our general definition of algebraic entropy, and some other invariants
are not suitable for this purpose.

The properties satisfied by the different kind of invariants are the subject of Section 2.
The second goal of this paper is to investigate more carefully, in Section 3, the algebraic

entropy obtained by using the rank of an Abelian group as an invariant of Mod(Z). We
will call it the rank-entropy. We will show that it is a useful tool in the investigation of
torsionfree groups, and that it trivializes for torsion groups. So the rank-entropy can be
viewed as a counterpart of the algebraic entropy defined in [AKM] and investigated in
[DGSZ] and [SZ]. We will give characterizations of endomorphisms with zero and finite
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rank-entropy. A version of the Addition Theorem will also be proved. Finally, we provide an
axiomatic characterization of the rank-entropy, similar to that given for algebraic entropy
in [DGSZ]. In fact, we prove that the rank-entropy is the unique collection of functions
hG : End(G)→R≥0∪∞ (where G ranges in the class of Abelian groups) which satisfy five
characterizing conditions, including the Addition Theorem.

General references are the monographs [FS] for notions on modules, and [F] for notions
on Abelian groups.

1 Algebraic entropy related to invariants

Let us start with the following

Definition 1. Given a ring R, a subadditive invariant of Mod(R) is a map i : Mod(R)→
R≥0∪{∞} which is invariant under isomorphism and satisfies the following conditions:

(i) if M ≤ N are R-modules, then i(N/M )≤ i(N );
(ii) if M and M ′ are R-modules, then i(M +M ′)≤ i(M )+ i(M ′).

The usual conventions for ∞ are assumed. The invariant i is said to be faithful if i(M )= 0
implies M = 0.

Remark 1. We could substitute condition (i) in Definition 1 by the weaker condition: if
φ : N → N is an endomorphism of an R-module N and M ≤ N , then i(M )≥ i(φ M ). Some
points in the sequel should then be modified accordingly.

The notion of subadditive invariant defined above differs from the notion of invariant given
by Vámos [V], who required that the map i takes cardinal values, and that, for any pair of
modules M and N , the following equality holds:

(iii) i(M ⊕N )= i(M )+ i(N ).

Note that (i) and (iii) imply (ii), but (i) and (ii) do not imply (iii), as Example 1.5 shows.

Definition 2. An additive invariant of Mod(R) is a map i : Mod(R)→ R≥0 ∪ {∞} which
satisfies the following condition:

(iv) if 0→ M → N → N/M → 0 is an exact sequence in Mod(R), then i(N ) = i(M )+
i(N/M ).

Note that an additive invariant is subadditive and satisfies condition (iii), as well as the
following one:

(v) if M ≤ N are R-modules, then i(M )≤ i(N ).

Let i be a subadditive invariant of Mod(R) and let Fini denote the subclass of Mod(R)
consisting of the modules F such that i(F) < ∞. In view of the conditions (i) and (ii),
the class Fini is evidently closed under quotients and under finite sums. If i is an additive
invariant, then Fini is closed also under submodules and extensions. Fixed a module M , let
Fini(M ) denote the family of the submodules of M contained in Fin i.
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Example 1.1. If R is a field, for every vector space M over R let i(M )= dim(M ) if M is
finite-dimensional, otherwise let i(M )= ∞. Then i is a faithful additive invariant and Fini

is the class of finite-dimensional vector spaces.

Example 1.2. If R = Z, for every Abelian groups M set i(M ) = log |M | if M is finite,
otherwise set i(M )=∞.Then i is a faithful additive invariant, in view of Lagrange’s theorem,
and Fini is the class of all finite Abelian groups.

Example 1.3. Let R be a Dedekind domain and F a finitely generated torsion R-module.
Then F is isomorphic to a module of the form

⊕

1≤j≤k
R/P

ej
j
∼= ⊕

1≤j≤k
RPj/P

ej
j RPj

∼= ⊕

1≤j≤k
RPj/p

ej
j RPj ,

where ej ≥ 1, Pj ∈Max(R) for all j, and pj is an element of R generating the ideal PjRPj

of the localization RPj , which is a DVR. Using the above notation, let us consider the map
v : Mod(R)→N∪{∞} defined by setting: v(F)=∑1≤j≤k ej if F is finitely generated torsion,
and v(M ) =∞ if M is not finitely generated torsion. When R is local, i.e., a DVR, and F is
a cyclic torsion module, then v coincides with the value of the generators of the annihilator
ideal of F . From the theory of torsion modules over Dedekind domains it follows that the map
v is a faithful additive invariant. Finv is the class of the finitely generated torsion R-modules.

Example 1.4. When R=Z, for every Abelian group M set rk(M )= dimQ(M ⊗Q) if this
dimension is finite, otherwise set rk(M )=∞.Then rk is an additive invariant, but not faithful,
since rk(T ) = 0 for every torsion group T . Finrk is the class of all Abelian groups of finite
rank.

Example 1.5. If R is an arbitrary ring and M is a finitely generated R-module, let gen(M ) be
the minimal cardinal number of a generating set for M ; set gen(M )= ∞ if M is not finitely
generated. Then gen is a faithful subadditive invariant. It satisfies condition (iii) under the
assumption that R is commutative and local. In general it is not an additive invariant and
it does not satisfy condition (v). Obviously, Fingen is the class of all finitely generated
modules. It is worth noting that, for a suitable choice of the ring R, the invariant gen may
satisfy (iii) but not (v). For instance, take R to be a local commutative domain which is
Noetherian but not a DVR. Then R satisfies (iii), but, if I is a non-principal ideal of R, we
have gen(R) < gen(I )< ∞, hence (v) does not hold.

Example 1.6. If R is an arbitrary ring, let Gd(M ) denote the Goldie dimension of M (see
[FS], Ch. I). Then Gd is a faithful invariant which satisfies conditions (ii) and (iii), but, in
general, it does not satisfy (i). So the Goldie dimension is not a subadditive invariant, and
we shall not deal with it.

Example 1.7. Let R be a valuation domain and let M be an R-module. The Malcev rank
Mr(M ) of M is defined as the supremum of gen(N ), where N ranges over the set of the
finitely generated submodules of M . The invariant Mr is subadditive: in fact, it obviously
satisfies condition (i), and, since R is a valuation domain, also condition (ii) holds (see [FS],
Ch. XII). The invariant Mr obviously satisfies condition (v). It also satisfies (iii), since R is
local.
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Let now R denote a unitary ring and i a subadditive invariant of Mod(R).
Given an R-module M , an endomorphism φ : M→M and a submodule F of M belonging

to Fini(M ), we define, for every n> 0,

Tn(φ ,F)= F+φ F+ · · ·+φ n−1F ,

and

T (φ ,F)= ∑
n>0

Tn(φ ,F)= ∑
n≥0

φ nF .

The submodule T (φ ,F) is called the φ -trajectory of F , and Tn(φ ,F) is called the n-th partial
trajectory.

Note that, since F ∈ Fini, conditions (i) and (ii) imply that Tn(φ ,F)∈ Fini, as well.

Since Tn(φ ,F)≤ Tn+1(φ ,F)= Tn(φ ,F)+φ nF , using (i) and (ii) we get, for all n,m,

i(Tn+m(φ ,F))≤ i(Tn(φ ,F))+ i(φn(Tm(φ ,F)))≤ i(Tn(φ ,F))+ i(Tm(φ ,F)).

By a standard exercise in analysis (see, e.g., [Wa], Exercise 6.5, p. 42), the limit

Hi(φ ,F)= limn→∞i(Tn(φ ,F))/n

exists and coincides with the infimum of the sequence {i(Tn(φ ,F))/n : n> 0}.
Definition 3. Let i be a subadditive invariant of Mod(R) and φ : M →M an endomorphism
of M ∈Mod(R). The i-entropy of φ is defined as

enti(φ )= sup{Hi(φ ,F) : F ∈ Fini(M )}
and the i-entropy of M as

enti(M )= sup{enti(φ ) : φ ∈ EndR(M )} .

We have a first property for subadditive invariants which satisfy property (v).

Proposition 1.8. Let R be a ring and i a subadditive invariant of Mod(R) satisfying (v). If
M ∈ Fini, then enti(M )= 0.

Proof. Pick arbitrary φ ∈ EndR(M ) and F ≤ M . Since Tn(φ ,F)≤ M , for all n > 0, and
property (v) holds, we readily get Hi(φ ,F) ≤ limn→∞ i(M )/n = 0. Since φ and F were
arbitrary, we get ent(M )= 0.

If i is just a subadditive invariant, it is difficult in general to compute the i-entropy of an
endomorphism. But if i is an additive invariant, then this computation is made easier, since
one can avoid computing the limit in the definition. To see this, we need the next technical
lemma, which holds for any subadditive invariant, but which is particularly useful for the
additive ones. Given an endomorphism φ : M →M , for each F ∈ Fini(M ) and n≥ 1 we set

αn+1 = i

(
Tn+1(φ ,F)

Tn(φ ,F)

)

= i

(
φ nF

Tn(φ ,F)∩φ nF

)

.

In the present notation we have the following
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Lemma 1.9. If i is a subadditive invariant of Mod(R), then αn+1 ≤ αn for each n≥ 1.

Proof. Since φ and F remain unchanged during the proof, we write Tn in place of Tn(φ ,F).
The module φ nF/(Tn∩φ nF) is a quotient of the module Bn = φ nF/(φ Tn−1∩φ nF), since
φ Tn−1∩φ nF is contained in Tn∩φ nF . So αn+1≤ i(Bn) by the property (i) of the subadditive
invariant i. From φ Tn = φ Tn−1+φ nF we conclude that

Bn
∼= φ Tn

φ Tn−1

∼= Tn

Tn−1+ (Tn ∩Kerφ )
.

Since the latter group is a quotient of Tn/Tn−1, we conclude by the same argument that
i(Bn)≤ αn. Therefore αn+1 ≤ αn.

The preceding lemma allows us to control the growth of i(Tn(φ ,F)), as n increases, provided
that the invariant i is additive. In fact in such case we get

i

(
Tn+1(φ ,F)
Tn(φ ,F)

)

= i(Tn+1(φ ,F))− i(Tn(φ ,F)).

If, furthermore, the invariant i takes values in a subset of R with the minimum condition,
we have

Proposition 1.10. If i is an additive invariant with values in a subset of R≥0 order-
isomorphic to N, then

(i) Hi(φ ,F)= 0 if and only if i(T (φ ,F))= i(Tn(φ ,F)) for some n;

(ii) If i(T (φ ,F))> i(Tn(φ ,F)) for all n, then Hi(φ ,F)= α, where α = i(Tn+1(φ ,F))−
i(Tn(φ ,F)) for all n large enough.

Proof. Since i is additive, αn+1 = i(Tn+1(φ ,F))− i(Tn(φ ,F))) for each n. From Lemma 1.9
it follows that the decreasing sequence of the αn is stationary, hence, for n large enough,
we have that αn = α for a fixed non-negative real number α. Clearly α = 0 exactly
when i(Tn+1(φ ,F))= i(Tn(φ ,F))) for each n large enough, in which case i(T (φ ,F)) =
i(Tn(φ ,F))). If α > 0, then

Hi(φ ,F)= lim
k→∞

i(Tn+k (φ ,F))

n+ k
= lim

k→∞

i(Tn(φ ,F))+ kα
n+ k

= α.

The preceding proposition motivates the following

Definition 4. A subadditive invariant i is said to be discrete if its finite values form a subset
of R≥0 order-isomorphic to N.

Corollary 1.11. If i is a discrete additive invariant, then the i-entropy of every endomorphism
and of every module is either a maximum or ∞.

In the next example we show that Proposition 1.10 is not applicable to discrete subadditive
invariants which are not additive. Recall the notion of “right shift endomorphism” of a
countable direct sum M =

⊕
n≥0 Hn of copies Hn of the same module H (see also [DGSZ]).
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The right shift endomorphism σ : M →M is defined extending the following assignments:
for all n≥ 0, if a ∈ Hn, then σ(a)= a ∈ Hn+1.

The next example will show that, in general, the i-entropy of the right shift of a countable
direct sums of copies of the same module H , with i(H )< ∞, does not coincide with i(H ).
However, when either i = rk or i = log |− | (see Examples 1.4 and 1.2), the entropy of the
right shift actually coincides with i(H ). Note that in the example we make use of the invariant
gen, which does not satisfy condition (iii).

Example 1.12. Let R be a Dedekind domain admitting a non-principal ideal I . Let M =
⊕

j∈N Ij , where Ij = I for all j. Let σ : M → M be the right shift. As the only torsion
submodule of M is {0}, the v-entropy of σ is 0, where v is the additive invariant defined in
Example 1.3. If i = rk, as in Example 1.4, for every n ≥ 1 and every non-zero submodule
F of M of finite rank we have that rk(Tn+1(σ,F)/Tn(σ,F)) = 1, hence Proposition 1.10
yields entrk(σ) = 1 = rk(I ). Let now i = gen, and let F = I1. For every n ≥ 1 we have
gen(Tn+1(σ,F)/Tn(σ,F))= 2, as gen(I ) = 2, but we cannot apply Proposition 1.10, since
the invariant gen is only subadditive. Indeed, we have

gen(Tn(σ,F))= gen(I1⊕· · ·⊕ In)= gen(R(n−1) ⊕ J ),

where J = I1 · · ·In, in view of the Steinitz property. Note that gen(R(n−1) ⊕ J ) equals either
n or n+1, according as J is principal or not. It follows that

Hi(σ,F)= limn→∞ gen(Tn(σ,F))/n= 1,

while gen(Tn+1(σ,F)/Tn(σ,F))= 2.

The next lemma provides a useful inequality for additive invariants. It will be applied to
obtain a similar inequality for i-entropies in Proposition 2.1, but an additional assumption
on i will be needed there.

Lemma 1.13. If i is an additive invariant of Mod(R), φ : M →M is an endomorphism of
M ∈Mod(R) and N is a φ -invariant submodule of M , then, for every F ∈ Fini(M ) we have

Hi(φ ,F)≥ Hi(φ̄ , (F+N )/N )+Hi(φ |N ,F ∩N ),

where φ̄ : M/N →M/N is the induced endomorphism.

Proof. For each n consider the exact sequence

0→ Tn(φ ,F)∩N→ Tn(φ ,F)→ (Tn(φ ,F)+N )/N→ 0.

Since i is additive and (Tn(φ ,F)+N )/N = Tn(φ̄ , (F+N )/N ), we get

i(Tn(φ ,F))= i(Tn(φ ,F)∩N )+ i(Tn(φ̄ , (F+N )/N )).

Since Tn(φ |N ,F∩N ) is a submodule of Tn(φ ,F)∩N and the invariant i satisfies condition
(v), we deduce that

i(Tn(φ ,F))≥ i(Tn(φ̄ , (F+N )/N ))+ i(Tn(φ |N ,F ∩N )).

Dividing by n and passing to the limit we get the desired inequality.
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2 Properties of the i-entropy

In what follows, R will be an arbitrary unital ring, i a subadditive invariant of Mod(R), and
φ : M →M an endomorphism of an R-module M . We will prove some basic properties of
the i-entropy of φ ; only the first three properties hold without additional hypotheses on the
invariant i.

(1) Let θ : M →M ′ be an isomorphism of R-modules. Then enti(φ )= enti(θ φ θ−1).

If F ′ ∈ Fini(M ′), for each n we have Tn(θ φ θ−1,F ′) = θ Tn(φ ,θ−1F ′). Thus, applying the
invariant i, dividing by n and passing to the limit, we get Hi(θ φ θ−1,F ′) = Hi(φ ,θ−1F ′).
From this equality the conclusion follows easily, since F ′ ∈ Fini(M ′) if and only if θ−1F ′ ∈
Fini(M ).

(2) if φ : M →M is an automorphism, then enti(φ )= enti(φ−1).

It is immediate to check that Tn(φ ,F)= φ n−1Tn(φ−1,F) for all n and for each F ∈ Fini(M ),
from which we derive Hi(φ ,F)= Hi(φ−1,F), hence the desired equality follows.

(3) enti(φ )≥ enti(φ |H ) for every φ -invariant submodule H of M .

This fact follows from the inclusion Fini(H )≤ Fini(M ).

(4) For each k ≥ 1, we have enti(φ k ) ≥ k · enti(φ ), and the equality holds whenever i
satisfies condition (v), in particular if it is an additive invariant.

Let us pick F ∈ Fini(M ). For each k,n≥ 1 we have

Tnk (φ ,F)= Tn(φ k,Tk (φ ,F)).

Setting F ′ = Tk (φ ,F), we deduce that

k ·Hi(φ ,F)= k · limn→∞i(Tnk (φ ,F))/nk

= limn→∞i(Tn(φ k ,F ′))/n=Hi(φ k,F ′)≤ enti(φ k ),

hence k · enti(φ )≤ enti(φ k). Conversely, we have

enti(φ )≥Hi(φ ,F)= lim
n→∞

i(Tnk (φ ,F))/nk

= lim
n→∞

i(Tn(φ k ,Tk(φ ,F)))/nk =Hi(φ k,F ′)/k.

If i satisfies condition (v), then Tn(φ k ,F) ≤ Tn(φ k ,F ′) implies that i(Tn(φ k,F)) ≤
i(Tn(φ k ,F ′)). Therefore we get enti(φ ) ≥ Hi(φ k ,F)/k, hence we can conclude that k ·
enti(φ )≥ enti(φ k).

(5) If φj : Mj→Mj are endomorphisms (j= 1,2) and i is a subadditive invariant satisfying
condition (iii), then enti(φ1⊕φ2)≥ enti(φ1)+enti(φ2). Equality holds when i satisfies
also property (v), in particular, if it is an additive invariant.

If Fj ∈ Fini(Mj) (j = 1,2), using (iii) it is easily seen that

Hi(φ1,F1)+Hi(φ2,F2)=Hi(φ1⊕φ2,F1⊕F2),
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hence enti(φ1⊕φ2)≥ enti(φ1)+enti(φ2). Assume now that property (v) is satisfied by i. For
any given F ∈ Fini(M1⊕M2), let Fj be the projection of F onto Mj (j= 1,2).As F≤F1⊕F2,
we get

Hi(φ1⊕φ2,F)≤ Hi(φ1⊕φ2,F1⊕F2) =Hi(φ1,F1)+Hi(φ2,F2),

hence the opposite inequality also holds.

Property (5) does not hold for invariants that do not satisfy condition (iii). For instance,
consider the entropy associated with the invariant gen on Mod(Z), which we denote by
entgen. Consider the right shift σ of the Abelian group

⊕
n≥0 Gn, where Gn = Z/6Z for

all n ≥ 0. It is easy to check that entgen(σ) = 1 and that σ = σ2⊕σ3, where σ2 is the right
shift of the 2-component of G and σ3 is the right shift of the 3-component of G. Clearly
entgen(σ2)= 1= entgen(σ3), hence property (5) does not hold for entgen.

For the next property we need a new notion.

Definition 5. We say that a subadditive invariant i of Mod(R) is liftable if, given H ≤ K
in Mod(R) such that i(K/H ) < ∞, there exists F ≤ K such that K/H = (F +H )/H and
i(F)< ∞.

Note that, if i is a liftable subadditive invariant, then the class Fini is closed under extensions.

(6) If i is a liftable subadditive invariant, and H is a φ -invariant submodule of M , then
ent(φ̄ )≤ ent(φ ), where φ̄ is the endomorphism of M/H induced by φ .

Let K/H be a submodule of M/H such that i(K/H )<∞. Take F ≤M as in the definition
above. Then for each n we have

Tn(φ̄ ,K/H )= (Tn(φ ,F)+H )/H ∼= Tn(φ ,F)/(Tn(φ ,F)∩H ),

hence Hi(φ̄ ,K/H )≤Hi(φ ,F). The desired inequality follows.

Note that the invariants of the Examples 1.1, 1.4 and 1.6 above are all liftable. On the other
hand, the invariants of Examples 1.2, 1.3 and 1.7 are not liftable. For the invariant log|− |,
in the notation of Definition 5, consider H = nZ and K = Z. In a similar way one sees
that the invariant in Example 1.3 is not liftable. For the invariant Mr, consider the natural
epimorphism of Zp-modules

⊕
ℵ0

Zp →Z(p∞); note that Mr(Z(p∞))= 1. As a matter of
fact, Example 1.11 in [DGSZ] provides an endomorphism which does not satisfy property
(6) with respect to the invariant log|− |.
We will give now a result which is the starting point to prove the Addition Theorem. It is
worth noting that it holds for additive liftable invariants.

Proposition 2.1. Let i be a discrete additive liftable invariant of Mod(R), φ : M → M an
endomorphism of M ∈Mod(R) and N a φ -invariant submodule of M . Then

enti(φ )≥ enti(φ̄ )+ enti(φ |N )

where φ̄ : M/N →M/N is the induced endomorphism.

Proof. The properties (3) and (6) above allow us to assume that both enti(φ̄ ) and enti(φ |N )
are finite. By Corollary 1.11, both these entropies are reached as a maximum. Since i is
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liftable, there exists a submodule F1 of M such that i(F1) < ∞ and enti(φ̄ ) = Hi(φ̄ , (F1+
N )/N ). There is also a submodule F2 of N such that i(F2)< ∞ and enti(φ |N )= Hi(φ ,F2).
Set F = F1+ F2; then obviously enti(φ̄ ) = Hi(φ̄ , (F +N )/N ). Furthermore Hi(φ ,F2) ≥
Hi(φ ,F ∩N ) ≥ Hi(φ ,F2), where the first inequality is due to the fact that Hi(φ ,F2) is a
maximum, and the latter since i satisfies condition (v). Thus from Lemma 1.13 we deduce
that

Hi(φ ,F)≥ Hi(φ̄ , (F+N )/N )+Hi(φ ,F∩N ).

Since enti(φ )≥Hi(φ ,F), the conclusion follows.

In order to get the next property (7) of the right shifting map, we need another notion.

Definition 6. We say that a subadditive invariant i of Mod(R) is small if, given F ∈
Fini(

⊕
j∈J Mj), where J is an arbitrary index set, there exists a finite subset J ′ of J such that

F ≤⊕j∈J ′Mj .

It is immediate to see that the invariant i is small exactly if all modules in Fin i are small
(for the notion of small object of an additive category see [FS], p. 51). The invariants
in the Examples 1.1–1.5 are small, but the invariant Mr in Example 1.7 is not (to get a
counterexample for Zp-modules, we may construct an embedding β : Z(p∞)→⊕ℵ0

Z(p∞)
such that the composite of β with any projection is nonzero).

As the final part of Example 1.12 shows, the next property is not satisfied by the invariant
gen.

(7) Let i be a small discrete additive invariant. Let σ :
⊕

ℵ0
K→⊕ℵ0

K be the right shift.
Then enti(σ)= i(K ).

Let F ≤⊕ℵ0
K be such that i(F)<∞. The smallness of i ensures that F ≤ F ′=

⊕
j≤n K . By

property (v), Hi(σ,F)≤ Hi(σ,F ′) and clearly Tn+1(σ,F ′)/Tn(σ,F ′) ∼= K , hence Hi(σ,F ′)
= i(K ), by Proposition 1.10. Thus the conclusion easily follows.

Our last property deals with endomorphisms with infinite i-entropy. Its statement and its
proof are similar to those of [DGSZ, Theorem 1.12]; we sketch the proof for the sake of
completeness.

(8) Let i be a small discrete additive invariant. Let M =
⊕

n≥1 Mn be a countable direct
sum of modules Mn such that i(M1)> 0 and there is an embedding φn : Mn→ Mn+1

for every n. Then there exists an endomorphism φ of M such that enti(φ )=∞.

Let σ : M →M be the right shift relative to the embeddings φn,

σ(x1 ,x2, . . .,xn, . . .)= (0,φ1(x1),φ2(x2), . . .,φn(xn), . . .),

where the xn ∈Mn are almost all zero. Let ˙⋃
k≥1Ik =N be a partition of N, where, for each

k ≥ 1, Ik = {ik1< ik2< · · ·< ikn< · · ·} is an infinite increasing sequence of positive integers.
For each k ≥ 1, set Ak =

⊕
n∈Ik

Mn, so that M =
⊕

k≥1 Ak ; each Ak has a right shifting
endomorphism σk : Ak → Ak induced by the embeddings ψkn : Mikn → Mik,n+1 obtained by
composing the maps φn. Let φ =⊕kσk : M →M be the endomorphism which is the direct
sum of the endomorphisms σk . For every k ≥ 1, we have Hi(σk ,Mik1)= i(Mik1), by property
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(7), and, since i is additive, we have i(Mik1)≥ i(M1)> 0. Let us define now, for each n≥ 1,
the submodule of M :

Fn =
⊕

k≤n
Mik1 .

Obviously Hi(φ ,Fn)= ∑k≤n Hi(σk ,Mik1)≥∑k≤n i(Mik1)≥ n · i(M1). We derive that

enti(φ )= supF∈Fini (M )Hi(φ ,F)≥ supn≥1Hi(φ ,Fn)=∞.

All the subadditive invariants considered so far were discrete. Let us give an example of a
subadditive invariant which is not discrete.

Example 2.2. We refer to [FS, V] for definitions and results on finitely generated modules
over valuation domains which we need in the present example.

Let R be a valuation domain whose value group is a dense subgroup of R. For every ideal
I of R, let v(I )= inf{v(r) : r ∈ I}. Note that for the zero ideal we have v(0)=∞, and for the
maximal ideal P of R we have v(P) = 0, since the value group of R is dense in R. For the
sake of simplicity, we assume that R is almost maximal (although analogous results hold
in a general situation). Then every finitely generated R-module F is a direct sum of cyclic
submodules

F =
m⊕

i=1
R/Ii,

where the Ii are ideals of R (possibly equal to zero). The above decomposition is unique, up
to isomorphism. Then we set

δ (F)=
m
∑

i=1
v(Ii).

Note that, if some ideal is zero, say Ij = 0, then δ (F) = ∞. We define the invariant δ of
M ∈Mod(R) as

δ (M )= sup{δ (F) : F ≤M ,F ∈F (R)}
(recall that F (R) denote the class of finitely generated R-modules).

From [FS, V], we know that δ (F) ≤ δ (F ′) if F ≤ F ′ are finitely generated. Hence the
above definition is consistent. Moreover, from the definition of δ , we at once get δ (F1⊕
F2)= δ (F1)+δ (F2). We easily derive that the invariant δ satisfies condition (i). Moreover,
for M ,N ∈ Mod(R), we have δ (M ⊕N ) = δ (M )+ δ (N ). In fact, the definition readily
yields δ (M ⊕N ) ≥ δ (M )+ δ (N ). Let now F ≤ M ⊕N be finitely generated. Then F ≤
F1⊕F2, where F1,F2 are the projections of F onto M and N , respectively. It follows that
δ (F)≤ δ (F1⊕F2) = δ (F1)+δ (F2) ≤ δ (M )+δ (N ). Since F was arbitrary, we conclude
that δ (M ⊕N )≤ δ (M )+δ (N ), and the desired equality follows.

Thus δ satisfies (i) and (iii), hence it also satisfies (ii), and so it is a subadditive invariant.
Of course, δ is not discrete, since it takes values in the value group of R.

The invariant δ is not faithful. In fact, δ (R/P) = 0, since v(P) = 0. More generally,
δ (V )= 0 for every R/P-vector space V .
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If M =
⊕∞

n=1 R/In, we have δ (M )=∑∞
n=1 v(In). Thus M ∈ Finδ if the series of the v(In)

converges. In such case we know that entδ (M )= 0, in view of Proposition 1.8.
However, it is interesting to note that we may have entδ (M ) = 0 even for a direct sum

of cyclic modules M /∈ Finδ . For instance, we may construct M =
⊕∞

n=1 R/In, where I1 <
I2 < · · · , such that the partial sums sn of the series defined by δ (M ) are asymptotic to√

n. Let us take any φ ∈ EndR(M ) and compute its entropy. Pick any 0 = x ∈ M . Using
results on finitely generated R-modules, one can prove that, for all n > 0, δ (Tn(φ ,x)) ≤
v(I1)+ · · ·+ v(In) = sn ∼ √n. It follows that, for any F ≤ M finitely generated by, say, k
elements, we have δ (Tn(φ ,F)≤ k

√
n, for all n> 0. Then

Hδ (φ ,F)≤ lim
n→∞

k
√

n/n= 0.

We conclude that entδ (φ )= 0, hence also entδ (M )= 0, since φ was arbitrary.

3 The rank entropy

In this section we focus on the entropy obtained from the additive invariant i = rk defined
by the rank (see Example 1.4); we will call it the rank-entropy and will denote it by entrk.
Accordingly, the set of the subgroups of finite rank of the Abelian group M will be denoted
by Finrk(M ), and Hi(φ ,F) by Hrk(φ ,F).

Recall that, given an endomorphism φ : M → M , by definition we have entrk(φ ) =
sup{Hrk (φ ,F) : F ∈ Finrk(M )}. As in the preceding sections, we denote by F (M ) the set
of the finitely generated subgroups of M .

We start with a simple observation.

Lemma 3.1. Let M be an Abelian group and φ ∈ End(M ). Then entrk(φ ) = supF∈F (M )
Hi(φ ,F).

Proof. A finitely generated subgroup has finite rank, hence supF∈F (M )Hrk(φ ,F)≤ entrk(φ ).
Conversely, let F be a subgroup of finite rank of M . Then F contains a free essential
submodule H of the same rank and for all n> 0 we have:

rk(Tn(φ ,F))= rk(Tn(φ ,H )).

In fact, the tensor product commutes with finite sums and rk(φ nF) = rk(φ nH ) for all n,
since F/H torsion implies that φ nF/φ nH is torsion for all n. Consequently, Q⊗Tn(φ ,F)=
Q⊗Tn(φ ,H ). Hence the conclusion follows.

The proof of the preceding lemma shows that the invariant rk is liftable; it is obviously small,
too, hence the rank-entropy satisfies all the properties (1)–(8) considered in the preceding
section, since rk is additive, as noted before.

In the following lemma, point a) reduces the investigation of the rank-entropy to tor-
sionfree groups, and point b) shows that it trivializes for torsion groups. Hence, as noted
in the introduction, the rank-entropy is a counterpart of the entropy obtained from the in-
variant log |− |, introduced by Adler-Konheim-McAndrew in [AKM], which trivializes for
torsionfree groups.
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Lemma 3.2. Let φ : M →M be an endomorphism of the Abelian group M . Then
a) entrk(φ )= entrk(φ̄ ), where φ̄ : M/tM→M/tM is the induced endomorphism, tM being

the torsion subgroup of M ;
b) if M is a torsion group, then entrk(φ )= 0.
c) If N is a φ -invariant subgroup of M such that M/N is a torsion group, then entrk(φ )=

entrk(φ |N ).

Proof. a) The inequality entrk(φ )≥ entrk(φ̄ ) holds by property (6). Conversely, let F be
a finitely generated subgroup of M , and let F̄ = (F + tM )/tM . Then for each n we have:
Tn(φ̄ , F̄)= (Tn(φ ,F)+ tM )/tM , hence rk(Tn(φ̄ , F̄)= rk(Tn(φ ,F)). Dividing by n and pass-
ing to the limit, we deduce that Hrk(φ ,F) = Hrk(φ̄ , F̄), hence the inequality entrk(φ ) ≤
entrk(φ̄ ) also holds.
b) is a trivial consequence of a).
c) The inequality entrk(φ )≥ entrk(φ |N ) holds by property (3). Conversely, let F be a finitely
generated subgroup of M ; then there exists a non-zero r ∈ Z such that rF ≤ N . Since
rTn(φ ,F)= Tn(φ |N , rF) for all n> 0, it follows that Hrk(φ ,F)= Hrk(φ |N , rF), so it is easy
to conclude that the inequality entrk(φ )≤ entrk(φ |N ) also holds.

In view of Lemma 3.2. a), from now on we will consider only endomorphisms of torsionfree
groups.

If N is a subgroup of a torsionfree group M , we denote as usual by N∗ the purification of
N in M , i.e., the subgroup of M satisfying the condition N∗/N = t(M/N ).

Lemma 3.3. Let φ : M → M be an endomorphism of the torsionfree group M , N a φ -
invariant subgroup of M , φ̄ : M/N →M/N the induced endomorphism. Then
a) N∗ is a φ -invariant subgroup of M ;
b) entrk(φ |N )= entrk(φ |N∗);
c) entrk(φ̄ )= entrk(φ̄∗), where φ̄∗ : M/N∗ →M/N∗ is the induced endomorphism.

Proof. a) Let x ∈ N∗. Then rx ∈ N for some 0 = r ∈N, so rφ (x)= φ (rx)∈ N , which shows
that φ (x) ∈ N∗.
b) Immediate consequence of Lemma 3.2, c), since N∗/N is a torsion group.
c) Immediate consequence of Lemma 3.2, a), since N∗/N is the torsion subgroup of M/N .

The next lemma gives two particular versions of the so-called “Addition Theorem”, that will
be proved in the general form in the subsequent Theorem 3.11.

Lemma 3.4. Let φ : M → M be an endomorphism of the torsionfree group M , N a φ -
invariant pure subgroup of M , φ̄ : M/N →M/N the induced endomorphism.
a) If entrk(φ̄ )= 0, then entrk(φ )= entrk(φ |N ).
b) If N has finite rank, then entrk(φ )= entrk(φ̄ ).

Proof. a) By property (3), it is enough to prove that Hrk(φ ,F)≤ entrk(φ |N ), for any finitely
generated subgroup F of M . In view of Proposition 1.10, the hypothesis ensures that there
exists an integer m such that

rk(Tm(φ̄ , F̄))= rk(T (φ̄ , F̄))
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where F̄ = (F+N )/N . It follows that

(φ mF+N )/N ≤ (Tm(φ ,F)+N )∗/N ,

and therefore φ mF ≤ (Tm(φ ,F)+N )∗. Since F is finitely generated, there exists a finitely
generated subgroup F1 of N such that φ mF ≤ (Tm(φ ,F)+F1)∗, hence for every positive
integer k we derive

φ m+kF ≤ φ k(Tm(φ ,F)+F1)∗ = (φ kTm(φ ,F)+φ kF1)∗.

Thus we get φ kTm(φ ,F)≤ (Tm(φ ,F)+Tk(φ ,F1))∗, so that

rk(Tm+k (φ ,F))≤ rk(Tm(φ ,F)+Tk(φ ,F1)).

Dividing by m+ k and passing to the limit with respect to k we derive

Hrk(φ ,F)≤Hrk(φ |N ,F1)≤ entrk(φ |N ),

as desired.

b) By property (6), it is enough to prove that Hrk(φ ,F)= Hrk(φ̄ , F̄), where F is any as-
signed finitely generated subgroup of M , and F̄ = (F+N )/N . For each integer m we have
Tm(φ̄ , F̄) = (Tm(φ ,F) + N )/N ∼= Tm(φ ,F)/(Tm(φ ,F) ∩ N ), hence rk(Tm(φ ,F) ≤
rk(Tm(φ̄ ,F))+ rkN . Since N has finite rank, dividing by m and passing to the limit we
get the desired equality.

We will need the following

Lemma 3.5. Let φ : M →M be an endomorphism of a group M , which is the direct limit
of a directed family of φ -invariant subgroups Mσ. Then entrk(φ )= supσ entrk(φ |Mσ).

Proof. The inequality entrk(φ )≥ supσ ent rk(φ |Mσ) follows from property (3). For the con-
verse inequality, let F be a finitely generated subgroup of M ; it is enough to prove that
Hrk(φ ,F)≤ entrk(φ |Mσ) for some σ. But this is obvious, since F embeds into Mσ for some
σ, and property (1) holds.

We give now some characterizations of the endomorphisms of zero rank-entropy. In what
follows, if φ is an endomorphism of a torsionfree group M and x ∈M , we write T (φ ,x) for
the φ -trajectory of the subgroup generated by x.

Theorem 3.6. Let φ : M→M be an endomorphism of the torsionfree group M .The following
conditions are equivalent:
a) entrk(φ )= 0;
b) for every x ∈M , rk(T (φ ,x)) is finite;
c) M is the union of a well-ordered smooth ascending chain of pure φ -invariant subgroups

Mσ (σ < λ ), such that M0 = 0 and rk(Mσ+1/Mσ) is finite for all σ.
d) φ is point-wise algebraic, i.e., for every x ∈M there exists a polynomial f , depending

on x, with rational (or, equivalently, integral) coefficients, such that f (φ )(x)= 0.
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Proof. a) ⇒ b). Since entrk(φ ) = 0, it follows, in particular, that Hrk(φ ,x)= 0 for every
x ∈M . Then Proposition 1.10 (i) shows that rk(T (φ ,x))= rk(Tn(φ ,x)), for some n> 0. Then
we are done, as Tn(φ ,x) is a free finitely generated group. (Note that we cannot conclude
that T (φ ,x) is finitely generated, since it could happen that Tn(φ ,x)< T (φ ,x) for all n.)

b) ⇒ c). We construct the submodules Mσ by transfinite induction on σ, starting with
M0 = 0. Assume that Mσ has been already constructed, and that M =Mσ. Pick a non-zero
element x+Mσ ∈M/Mσ. Let Mσ+1 be the purification of T (φ ,x)+Mσ. Clearly Mσ+1 is
φ -invariant in M and rk(Mσ+1/Mσ) is finite, since, by hypothesis rk(T (φ ,x)) is finite, hence
(T (φ ,x)+Mσ)/Mσ ∼= T (φ ,x)/T (φ ,x)∩Mσ also has finite rank. At limit ordinals σ define
Mσ as the union of the Mρ for ρ < σ.

c)⇒ a). Let φσ : Mσ→Mσ be the map induced by φ for each σ. If we show that entrk(φσ)= 0
for all σ < λ , then we get entrk(φ )= 0, applying Lemma 3.5. In fact, at non limit ordinals
σ+1, from Proposition 1.8 we get entrk(φσ+1) = 0, since rk(Mσ+1/Mσ) is finite. At limit
ordinals, we apply Lemma 3.5.

b)⇔ d). Let n denote the degree of the polynomial f ; then f (φ )(x) = 0 amounts to say
that φ n(x) ∈ Tn(φ ,x)∗, which is equivalent to b).

Remark 2. The equivalence a)⇔ d) in Theorem 3.6 has its analog for entropies of endo-
morphisms with respect to the invariant log |− |, see Proposition 2.4 of [DGSZ]. However,
it is worth remarking that this equivalence fails, in general.

On the one hand, we consider the invariant δ for modules over a valuation domain R with
value group dense in R, as defined in Example 2.2. Up to a factor logp, this invariant actually
extends the invariant log |− |, acting on Zp-modules (compare also with the invariant v of
Example 1.12). Let us show that, for suitable M ∈Mod(R) and φ ∈ EndR(M ), we may have
ent(φ )= 0, even if φ is not point-wise algebraic over the field of quotients Q of R.

We get a first obvious example if we take a R/P-vector space V of countable dimension,
and the right shift σ ∈ EndR(V ). It is readily proved that the shift cannot be point-wise
algebraic, but entδ (σ)= 0, since δ (V )= 0.

A second, more significant, example is given by a module M =
⊕∞

n=1 R/In, where the
partial sum sn of the series defined by δ (M ) is asymptotic to

√
n, and I1 < I2 < · · ·. Then

the shift σ is an endomorphism of M , that cannot be point-wise algebraic. However, at the
end of Example 2.2 we have proved that entδ (M )= 0, hence, in particular, entδ (σ)= 0.

On the other hand, we consider the invariant gen for modules over the Noetherian local
ring R = K [X ,Y ](X ,Y ), where K is a field and X ,Y are indeterminates. Let us regard the
field of quotients Q of R as an R-module, and the multiplication by φ = X /Y as an element
of EndR(Q). Of course, φ = X /Y is algebraic over Q. However, entgen(φ ) > 0. In fact,
consider the cyclic R-module F = R. In the present circumstances, it is an easy exercise to
check that Tn(φ ,F)∼= (X ,Y )n−1, for all n > 0. Since gen((X ,Y )n)= n+1, we at once get
Hgen(φ ,F)= 1, and therefore entgen(φ )≥ 1, as required.

Given an endomorphism φ : M →M of the torsionfree group M , we define the subset tφ M
of M as

tφ M = {x ∈M : rk(T (φ ,x))<ℵ0},
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which is clearly the maximum φ -invariant subgroup N of M such that entrk(φ |N ) = 0. The
subgroup tφ M is called the φ -torsion part of M , and is obviously pure in M . We say that M
is φ -torsion (respectively, φ -torsionfree), if M = tφ M (respectively, tφ M = 0). A condition
equivalent to those of Theorem 3.6 is that M is φ -torsion. A straightforward computation
shows that the quotient group M/tφ M is φ̄ -torsionfree, where φ̄ ∈ End(M/tφM ) is the
induced map.

In order to simplify the notation, from now on we will make a little abuse of language.
Namely, if φ is an assigned endomorphism of a torsionfree group M and H is φ -invariant, we
will just say that M/H is φ -torsion, when M/H is torsion with respect to the map induced
by φ .

We examine now the basic examples of endomorphisms of torsionfree groups of rank-
entropy 1, namely, the right shifts.

Example 3.7. 1) Consider the free group of countable rank M =
⊕

n≥1 xnZ. Let σ be the
endomorphism right shift of M defined by the assignments σ(xn) = xn+1 for all n ≥ 1.
Then easy calculations show that entrk(σ) = 1, M = T (σ,x1) and tφ M = 0, i.e., M is a
φ -torsionfree group.

2) Consider the free group of countable rank M =
⊕

n∈Z xnZ.Let ψ be the endomorphism
right shift of M defined by the assignments ψ(xn) = xn+1 for all n ∈ Z. Also in this case
entrk(ψ) = 1 and tψM = 0, but M strictly contains T (ψ,x)∗ for every x ∈M ; furthermore,
M/T (ψ,x)∗ is a ψ-torsion group.

The situation of Example 3.7 is typical of endomorphisms of rank-entropy 1, as shown by
Lemma 3.8.

In the next results, we will make use of the following simple fact. If φ is an endomorphism
of a torsionfree group M and x ∈M , the rank of the φ -trajectory T (φ ,x) is infinite if and
only if the elements x,φ (x),φ 2(x), . . . are linearly independent.

Lemma 3.8. Let φ : M→M be an endomorphism of the torsionfree group M .The following
are equivalent:
a) entrk(φ )= 1;
b) there exists 0 = x ∈M such that T (φ ,x)=

⊕
n≥0 φ n(x)Z is a free group of countable

rank and both M/T (φ ,x) and M/T (φ ,x)∗ are φ -torsion.

Proof. a)⇒ b) Since entrk(φ )= 1, there exists an element x ∈M such that rk(T (φ ,x))=ℵ0,
in view of Theorem 3.6. Then x,φ (x),φ 2(x), . . . are linearly independent, hence T (φ ,x) =
⊕

n≥0 φ n(x)Z is a free group of countable rank. Since φ acts as the right shift on T = T (φ ,x),
from Example 3.7, 1) we get entrk(φ |T )= 1. Then, from Proposition 2.1 we get entrk(φ̄ )= 0,
where φ̄ : M/T → M/T is the induced endomorphism. Moreover, Lemma 3.3, c) shows
that 0= entrk(φ̄ )= entrk(φ̄∗), where φ̄∗ : M/T∗ →M/T∗ is the induced map, hence we are
done.

b)⇒ a) Apply Lemma 3.4, a) to the submodule N = T (φ ,x)∗ and recall that entrk(φ |N )=
1, by Example 3.7, 1) and Lemma 3.3, b).

The next lemma is the main technical ingredient in the proof of Theorem 3.10.
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Lemma 3.9. Let φ : M →M be an endomorphism of the torsionfree group M , N a pure φ -
invariant subgroup of M , and φ̄ : M/N→M/N the induced endomorphism. If entrk(φ̄ )> 0,
there exists an element x ∈M such that M ≥N ⊕ (

⊕
n≥0 φ n(x)Z), where φ n(x) = 0 for all n.

Proof. By Theorem 3.6, there exists x̄= x+N such that the trajectory T (φ̄ , x̄) has countable
rank. This implies that the partial trajectory Tn(φ̄ , x̄) is free of rank n, for all n> 0, hence

T (φ̄ , x̄)= (T (φ ,x)+N )/N =
⊕

n≥0
φ̄ n(x̄)Z,

where φ̄ nx̄ = 0̄ for all n ≥ 0. An easy computation shows that the elements {φ n(x)}n are
independent and that N ∩⊕n≥0 φ n(x)Z = 0.

We can now prove the main result of this section.

Theorem 3.10. Let φ : M → M be an endomorphism of the torsionfree group M . The
following conditions are equivalent:
a) entrk(φ )= k for a positive integer k;
b) there exists an ascending chain of φ -invariant pure subgroups of M

tφ M = N0 < N1 < N2 < · · ·< Nk =M

such that entrk(φi) = 1 for all 1 ≤ i ≤ k, where φi : Ni/Ni−1→ Ni/Ni−1 is the map
induced by φ , and entrk(φ |Ni)= i for all i ≤ k;

c) there exist k elements x1,x2, . . .,xk ∈ M such that their trajectories T (φ ,xi) =⊕
n≥0 φ n(xi)Z, 1≤ i ≤ k, are free of countable rank and independent: ∑i≤k T (φ ,xi) =⊕
i≤k T (φ ,xi). Furthermore, setting S = (

⊕
i≤k T (φ ,xi))∗, the quotient group M/S is

φ -torsion.

Proof. a)⇒ b) We construct the subgroups Ni by induction on i. For i= 0 we have nothing
to prove. Assume that i> 0 and Ni−1 has been already constructed. Then the endomorphism
φ̄i−1 of M/Ni−1 induced by φ cannot have zero rank-entropy, otherwise Lemma 3.4, a) would
imply entrk(φ )= entrk(φ |Ni−1)= i−1< k, a contradiction. Hence, in view of Lemma 3.9,
there exists xi ∈ M such that its trajectory Ti = T (φ ,xi) is free of countable rank, and
Ti +Ni−1 = Ti ⊕Ni−1 is the direct sum of two φ -invariant subgroups. Recall also that
entrk(φ |Ti)= 1, since φ acts as the right shift on Ti. Then property (5) ensures that

entrk(φ |Ti⊕Ni−1 )= entrk(φ |Ti)+ entrk(Ni−1)= 1+ i−1= i.

Let us define Ni as the subgroup of M containing (Ti⊕Ni−1)∗ such that

Ni/(Ti⊕Ni−1)∗ = tφ (M/(Ti⊕Ni−1)∗).

Since (Ti⊕Ni−1)∗ is a pure φ -invariant subgroup of M , so also is Ni. Now we show that
entrk(φi)= 1. Consider the exact sequence

0→ (Ti⊕Ni−1)∗/Ni−1→ Ni/Ni−1→ Ni/(Ti⊕Ni−1)∗ → 0.

Since the third term is φ -torsion, the entropy of its endomorphism induced by φ has zero rank-
entropy.Therefore, by Lemma 3.4, a), entrk(φi) equals the rank-entropy of the endomorphism
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induced by φ on (Ti⊕Ni−1)∗/Ni−1. By Lemma 3.3, b) we can disregard the purification,
hence

entrk(φi)= entrk(φ |Ti) = 1,

as desired. Finally, Lemma 3.4, a) and the exact sequence

0→ (Ti⊕Ni−1)∗ → Ni→ Ni/(Ti⊕Ni−1)∗ → 0

show that entrk(φ |Ni)= entrk(φ |Ti⊕Ni−1)= i, as proved above.
It remains to check that we actually have M = Nk . In fact, by construction we have

entrk(φ |Tk⊕Nk−1 )= k = entrk(φ |(Tk⊕Nk−1)∗ ), and so M/(Tk ⊕Nk−1)∗ is φ -torsion, in view of
Proposition 2.1; hence, by definition, Nk =M .
b)⇒ a) is trivial.
a)⇒ c) Let m be a positive integer such that there exist elements x1,x2, . . .,xm ∈M such that
their trajectories Ti = T (φ ,xi)=

⊕
n≥0 φ n(xi)Z are free of countable rank and independent:

∑i≤m Ti =
⊕

i≤m Ti. Note that Lemma 3.8 ensures that at least the case m = 1 is possible.
Moreover entrk(φ |Ti)= 1, for 1 ≤ i ≤ m, as observed above. Since entrk(φ |T1⊕···⊕Tm)= m,
by property (5), and entrk(φ )≥ entrk(φ |T1⊕···⊕Tm), we must have m≤ k. Let us now assume
m to be maximum with respect to the above requirement; let us verify that m= k. Assume
for a contradiction that m < k. Let N = (T1⊕ · · ·⊕ Tm)∗; then entrk(φ |N ) = m < k, by
Lemma 3.3, b), and therefore the rank-entropy of the induced endomorphism on M/N cannot
be zero, in view of Lemma 3.4, a). Thus we are in the position to apply Lemma 3.9, and we
can find xm+1 ∈M such that T (φ ,xm+1) is free of countable rank, and M ≥ N ⊕T (φ ,xm+1).
But this contradicts the maximality of m, impossible.Thus m= k and the preceding argument
shows that the quotient group M/(T1⊕· · ·⊕Tk )∗must be φ -torsion. The desired conclusion
follows.
c)⇒ a) From Lemma 3.4, a) we deduce that entrk(φ )= entrk(φ |S), which equals k, in view
of Lemma 3.3, b), property (5) and Example 3.7, 1).

The above theorem has some remarkable consequences, that have their analogues for the
algebraic entropy of endomorphisms of Abelian p-groups, defined by the invariant log|−|,
which was discussed in [DGSZ]. The first one is the so-called “Addition Theorem”.

Theorem 3.11 (Addition Theorem). Let φ : M→M be an endomorphism of the torsionfree
group M , let H be a φ -invariant subgroup of M , and let φ̄ : M/H →M/H be the induced
endomorphism. Then we have

entrk(φ )= entrk(φ̄ )+ entrk(φ |H).

Proof. By Lemma 3.3 we may assume that H is pure in M . If either entrk(φ̄ ) or entrk(φH ) is
infinite, the conclusion follows from Proposition 2.1. Thus let us assume that entrk(φ |H) =
h and entrk(φ̄ ) = k (h,k ∈N). By Theorem 3.10, H contains a subgroup A = (

⊕
1≤i≤k

T (φ ,xi))∗ (xi ∈H ), such that H/A is φ -torsion. In a similar way, M/H contains a subgroup
B/H = (

⊕
1≤j≤k T (φ̄ , ȳj))∗ (yj ∈M ) such that M/B is φ -torsion. Note that, by Lemma 3.9,

B/H = (
⊕

1≤j≤k T (φ ,yj)⊕H )∗/H . Let us set

K = (
⊕

1≤i≤h
T (φ ,xi))⊕ (

⊕

1≤j≤k
T (φ ,yj))
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and note that K∗ ≤ B. Then entrk(φ |K∗)= h+k, by property (5) and Lemma 3.3, b). In view
of Lemma 3.4, a), it suffices to prove now that M/K∗ is a φ -torsion group. Consider the
exact sequence

0→ B/K∗ →M/K∗ →M/B→ 0.

Since M/B is φ -torsion, by Lemma 3.4, a), it is enough to check that B/K∗ is φ -torsion,
namely, that entrk(φ̄ |B)= 0, where φ̄ |B : B/K∗ → B/K∗ is the map induced by φ . Indeed, by
Lemma 3.3, entrk(φ̄ |B) coincides with the rank-entropy of the endomorphism induced on

(
⊕

1≤j≤k
T (φ ,yj)⊕H )/K ,

which clearly vanishes, since H/A φ -torsion implies that H/(
⊕

1≤i≤h T (φ ,xi)) is φ -torsion.

Remark 3. Let us observe that for the invariant gen the Addition Theorem does not hold.
For instance, consider the Zp-module A=

⊕
ℵ0

Zp and its shift endomorphism σ. Then the
restriction σ|pA and the induced endomorphism σ̄ : A/pA→ A/pA are the shifts of pA and
A/pA, respectively. It is readily seen that 1= entgen(σ)= entgen(σ|pA)= entgen(σ̄), hence

entgen(σ)< entgen(σ|pA)+ entgen(σ̄),

and the addition theorem does not hold.
Indeed, we have seen that the formula in Proposition 2.1 is not valid for the invariant gen.

This depends on the fact that gen is not additive.

Corollary 3.12. Let φ : M →M be an endomorphism of the torsionfree group M and let
H and K be two φ -invariant subgroups of M such that M =H +K. Then

entrk(φ )= entrk(φ |H )+ entrk(φ |K)− entrk(φ |H∩K ).

Proof. Consider the exact sequence

0→ H ∩K→ H ⊕K → H +K =M → 0

where x ∈ H ∩K maps to (x,−x) ∈H ⊕K and (x,y) ∈ H ⊕K maps to x+y. The endomor-
phism φ |H ⊕φ |K : H ⊕K → H ⊕K sends the image of H ∩K in H ⊕K into itself, hence it
induces the endomorphism φ on M . Apply now the Addition Theorem.

Corollary 3.13. Let φ : M →M be an endomorphism of the torsionfree group M , let F ≤M
be a finitely generated subgroup of rank m, and let T = T (φ ,F). Then entrk(φ |T )≤m.

Proof. We argue by induction on rk(F)=m. If rk(F)= 1, say F = xZ, then T = T (φ ,x) has
either finite rank, in which case entrk(φ |T ) = 0, or T =

⊕
n≥0 φ n(x)Z. In the latter case, φ

acts on T as the right shift, and therefore entrk(φ |T )= 1. Assume now that m> 1; then F =
xZ⊕F1, where rk(F1)=m−1, and T = T (φ ,x)+T (φ ,F1)= T0+T1. Applying Corollary
3.12 to T ,T0,T1 we get entrk(φ |T )≤ entrk(φ |T0)+entrk(φ |T1). Since entrk(φ |T0)≤ 1 and, by
induction, entrk(φ |T1)≤ m−1, the desired inequality follows.
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It is worth noting that there exist indecomposable torsionfree groups G of infinite rank
which admit non-trivial endomorphisms (i.e., not multiplications by rational numbers) of
zero rank-entropy. For instance, take any reduced subring A of a number field. By Corner’s
theorem [C] there exists a torsionfree group G of countable rank such that End(G) ∼= A;
more generally, one can construct G such that rk(G) is an arbitrarily large cardinal, satisfying
suitable conditions (see [GT], Theorem 12.3.4, p. 428). Since A is an integral domain, G
is indecomposable, and every endomorphism of G has zero rank-entropy by Theorem 3.6,
since A is algebraic over Q, hence pointwise algebraic.

Our last result shows the uniqueness of the rank-entropy, once some “minimal” conditions
are satisfied.

Theorem 3.14. The rank-entropy is the unique collection of functionshG : End(G)→R≥0∪
{∞}, where G ranges over the class ofAbelian groups, which satisfy the following conditions:
(i) the Addition Theorem holds, i.e., given an endomorphism φ : G→G and a φ -invariant

subgroup H of G, then hG(φ ) = hH (φ |H)+ hG/H (φ̄ ), where φ̄ : G/H → G/H is the
induced endomorphism;

(ii) hG is invariant under conjugation, i.e., if θ : G→G′ is an isomorphism, then hG(φ )=
hG′ (θ φ θ−1) for all φ ∈ End(G);

(iii) hG(φ )= 0 for all φ ∈ End(G), whenever rk(G) is finite;
(iv) given φ ∈ End(G), if G is a direct limit of φ -invariant subgroups Gα , then hG(φ ) =

supα hGα (φ |Gα );
(v) if G =

⊕
n≥1 Kn, with Kn = K for all n, and σ : G→G is the right shift, then hG(σ) =

rk(K ).

Proof. The fact that the rank-entropy satisfies conditions (i)–(v) is proved, respectively, in
Theorem 3.11, property (1), Theorem 3.6, Lemma 3.5 and property (7).

Conversely, we want to prove that hG(φ )= entrk(φ ) for every endomorphism φ : G→G.
By (i) and (iii) from one side, and by Theorem 3.11 and Proposition 1.8 on the other side,
we can assume that G is torsionfree of infinite rank.

Let us first assume that entrk(φ )= k <∞. If entrk(φ )= 0, then Theorem 3.6 ensures that
G is the union of a well-ordered smooth ascending chain of pure φ -invariant subgroups
Gσ (σ < λ ), such that G0 = 0 and rk(Gσ+1/Gσ) is finite for all σ. By condition (iii) we
have hGσ+1/Gσ (φσ) = 0 for all σ, where φσ ∈ End(Gσ+1/Gσ) is the map induced by φ .
Using (i) and (iv) we immediately deduce that hG(φ ) = 0, as desired. Assume now that
entrk(φ ) = k > 0. By Theorem 3.10, there exists an ascending chain of φ -invariant pure
subgroups of G

tφ G = N0 < N1 < N2 < · · ·< Nk =G

such that entrk(φi)= 1 for all 1≤ i≤ k, where φi : Ni/Ni−1→Ni/Ni−1 is the map induced by
φ , and entrk(φ |Ni)= i for all i≤ k. It is enough to prove that hN0 (φ |N0)= 0 and hNi/Ni−1

(φi)=
1 for i > 0, and then to iterate applications of condition (i). Since entrk(φ |N0) = 0, the
preceding argument shows that hN0 (φ |N0) = 0. To simplify the notation, for i > 0 we set
M =Ni/Ni−1 and ψ = φi.Then, applying Lemma 3.8 to M and ψ, we can find x ∈M such that
T (ψ,x)= T is free of countable rank, and ent(ψ̄)= 0, where ψ̄ ∈ End(M/T ) is the induced
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endomorphism. Then hM/T (ψ̄) = 0, as seen above, and hT (ψ|T ) = 1, since ψ acts on T as
the right shift, and condition (v) holds. Using condition (i) we get hM (ψ)= hNi/Ni−1

(φi)= 1,
as desired.

Let us observe that, if T = T (φ ,F) is the trajectory of a finitely generated subgroup F of
G, from the above argument we get entrk(φ |T ) = hT (φ |T ), since Corollary 3.13 shows that
entrk(φ |T )< ∞.

Let us now assume that entrk(φ )=∞. Since G is the direct limit of the φ -trajectories Tα
of finitely generated subgroups Fα (α < λ ), and entrk(φ |Tα ) = hTα (φ |Tα ) for all α, using
Lemma 3.5 and condition (iv) we get ∞= entrk(φ )= supα entrk(φ |Tα )= supα hTα (φ |Tα ) =
hG(φ ), as desired.
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