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a b s t r a c t 

Our brain processes the different timescales of our environment’s temporal input stochastics. Is such a temporal 
input processing mechanism key for consciousness? To address this research question, we calculated measures of 
input processing on shorter (alpha peak frequency, APF) and longer (autocorrelation window, ACW) timescales 
on resting-state high-density EEG (256 channels) recordings and compared them across different consciousness 
levels (awake/conscious, ketamine and sevoflurane anaesthesia, unresponsive wakefulness, minimally conscious 
state). We replicate and extend previous findings of: (i) significantly longer ACW values, consistently over all 
states of unconsciousness, as measured with ACW-0 (an unprecedented longer version of the well-know ACW- 
50); (ii) significantly slower APF values, as measured with frequency sliding, in all four unconscious states. 
Most importantly, we report a highly significant correlation of ACW-0 and APF in the conscious state, while 
their relationship is disrupted in the unconscious states. In sum, we demonstrate the relevance of the brain’s 
capacity for input processing on shorter (APF) and longer (ACW) timescales - including their relationship - for 
consciousness. Albeit indirectly, e.g., through the analysis of electrophysiological activity at rest, this supports 
the mechanism of temporo-spatial alignment to the environment’s temporal input stochastics, through relating 
different neural timescales, as one key predisposing factor of consciousness. 
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Glossary 
INTs: Intrinsic Neural Timescales. At rest, the brain shows a spatial pattern 
of different temporal durations during which activity remains correlated 
with itself. This has been linked to temporal input processing (temporal 
integration/segregation) and with self-organizing properties of complex 
dynamical systems such as the brain. 
ACW: Auto-Correlation Window. One of available methods to measure the 
length (in seconds) of INTs. It is computed as the time-lag at which the 
autocorrelation function of the EEG signal decays to its 0% value. 
APF: Alpha Peak Frequency. One of the most known features of the EEG 
signal, it describes the peak frequency in the alpha (7–13 Hz) frequency 
band. Distinguished from IAF (Individual Alpha Frequency), which is 
usually computed on the power spectrum from the whole duration of an 
EEG recording, APF takes into account the fluctuating behaviour of alpha 
frequency oscillations at the milliseconds scale. 

. Introduction 

Our conscious experience is naturally extended in time: a conscious
xperience progresses seamlessly through the direction defined by the
arrow of time ” and integrates (seemingly) without effort a vast array
f temporal scales that range from millisecond to seconds ( Kent and
ittmann, 2021 ). In fact, we are part of a complex environment which

s not only spatially structured (e.g., point correlations between two or
ore points in the visual field), but produces also time-varying inputs:

his results in an input space which is characterized by a variety of dif-
erent timescales, ranging from shorter to longer ones ( Golesorkhi et al.,
021b ). Recently, it has been proposed that the exploration of the neural
echanisms behind the interaction between these different timescales

re crucial to close the gap between current theories of consciousness
for a review, see Northoff and Lamme, 2020 ): however, the implications
f these processes for the development of a reliable index of conscious-
ess remain to be investigated. 

It is generally accepted that the brain has adapted to “align ” to the
tochastics of our spatial perceptual space (e.g., the statistics associated
o spatial information in our input environment) to maximize computa-
ional efficiency ( Simoncelli and Olshausen, 2001 ; Sterling and Laugh-
in, 2015 ; Tesileanu et al., 2020 ). Similarly, in order to properly encode
nd align to the different temporal regularities (timescales) of the ex-
ernal inputs, the brain itself shows different preferential timescales in
ts spontaneous activity: the so-called Intrinsic neural timescales (INTs)
 Golesorkhi et al., 2021b , 2021a ; Hasson et al., 2015 ; Wolff et al., 2022 ).
ecent studies show that INTs are key for processing and encoding in-
uts with a complex statistical structure like music, human language,
nd others ( Hasson et al., 2015 ; Himberger et al., 2018 ; Yeshurun et al.,
021 ): INTs seem to exert their influence on input processing through
emporal processing mechanisms such as temporal integration and seg-
egation – that is, when brain regions either pool together or distin-
uish two consecutive inputs based on a preferential temporal window
 Golesorkhi et al., 2021b ; Wolff et al., 2022 ). 

Do INTs have a role in yielding and maintaining consciousness? In-
eed, whether differences in the degree of temporal integration - in-
luding deficits affecting this specific mechanism – correspond to dif-
erences in the degree of the brain’s capacity for consciousness is still
n open question. Recent studies using fMRI ( Huang et al., 2018 ) and
EG ( Zilio et al., 2021 ) show abnormal prolongation of INTs in various
nconscious states such as anaesthesia, sleep, and unresponsive wake-
ulness state (UWS). These studies, albeit indirectly, draw a suggestive
ink between the breakdown of temporal input processing and loss of
onsciousness. 

Another index of temporal input processing is alpha peak frequency
APF), commonly measured as the peak in power in the alpha fre-
uency range (7–13 Hz) ( Angelakis et al., 2004 ). APF is linked specif-
cally to the mechanism of temporal precision and temporal resolu-
ion of sensory input processing (see ( Mierau et al., 2017 ) for a re-
iew): in fact, APF has been demonstrated to be systematically ac-
elerated as a function of task demands across several cognitive do-
ains ( Haegens et al., 2014 ; Hülsdünker et al., 2016 ), as a function
2 
f cortical engagement/disengagement at systems level ( Mierau et al.,
017 ), or more generally to a self-regulated dependence on input
tochastics ( Lefebvre et al., 2015 ). Additionally, APF displays a fluc-
uating behaviour at very short timescales, in the range of milliseconds
 Cohen, 2014 ): being a state-dependant signature of sensory input pro-
essing at many different levels of abstraction, it is only logical that
lpha rhythms will display a high temporal variability. This temporal
roperty of APF can be measured by an analysis method first developed
n ( Cohen, 2014 ) called “frequency sliding ”, which involves the compu-
ation of the first temporal derivative of the range-restricted phase time
eries of the neural signal: as a result, one can obtain a time series of in-
tantaneous frequencies in the selected range, which is useful to capture
ts variability at a fine-grained temporal resolution. 

Recent studies report a role for alpha frequency sliding in tempo-
al processing of incoming inputs, similarly to what has been put for-
ard for INTs: the speed of alpha frequency sliding predicts the tem-
oral resolution of visual perception ( Samaha and Postle, 2015 ), reg-
lates event-related desynchronization during a visual perception task
 Noguchi et al., 2019 ), tracks the insurgence of on- and off-thoughts
 Hua et al., 2022 ) and predicts more general temporal integration mech-
nisms ( Shen et al., 2019 ). These results support the hypothesis that the
uration of alpha cycles organizes the gating of incoming inputs. If that
s the case, one may hypothesize that the APF, based on alpha phase
ycles, is related to the temporal windows measured by ACW: but this
emains to be demonstrated on empirical grounds. This is further hinted
y the fact that both ACW and APF are related to input processing al-
eit on different timescales, e.g., shorter/single inputs ( Golesorkhi et al.,
021b ; Wolff et al., 2022 ; Zilio et al., 2021 ) and longer/input stochastics
 Hua et al., 2022 ; Mierau et al., 2017 ). Given the supposed relevance of
he interaction at different temporal processing neural mechanisms as
ey mechanisms of consciousness ( Northoff and Zilio, 2022a ) and that
oth ACW and input processing are altered during the loss of conscious-
ess ( Zilio et al., 2021 ), one would expect that its relationship with APF
s also altered, if not disrupted, in unconscious states ( Hight et al., 2014 ;
echinger et al., 2013 ). Based on the theoretical assumption that the in-
eraction between different neural mechanisms at shorter and longer
imescales are crucial for consciousness, we assumed that an APF-ACW
elationship in the conscious brain would be evident: however, their
elationship in the unconscious states remains unclear. 

The goal of the present high-density (256 channel) EEG study is to in-
estigate the relationship between longer and shorter neural timescales
hat are related to temporal input processing, as operationalized by
he autocorrelation window (ACW) ( Fallon et al., 2020 ; Honey et al.,
012 ; Raut et al., 2020 ; Smith et al., 2022 ), and APF, respectively, in
he spontaneous activity of both awake/conscious and unconscious. For
his purpose, we used resting-state EEG data recorded during induc-
ion with two different anaesthetic agents (sevoflurane and ketamine)
nd patients with disorders of consciousness (DoC) ( Giacino, 1997 ),
hich include unresponsive wakefulness state (UWS) and minimally

onscious state (MCS) ( Giacino and Schiff, 2009 ). This allowed us to
pecify the relevance of the intrinsic brain activity’s capacity for tem-
oral input processing on different timescales - including longer (ACW)
nd shorter (APF) ones – and how this relates to consciousness, e.g.,
s predicted by the temporo-spatial alignment mechanism postulated
y the Temporo-Spatial Theory of Consciousness (TTC) ( Northoff and
uang, 2017 ; Northoff and Zilio, 2022a ). We hypothesized that ACW
nd APF to be negatively related with each other in the awake/conscious
tate, whereas we assume a disrupted relationship during loss of con-
ciousness. 

Our approach can be sketched in three different points: 

i to investigate INTs using ACW during awake and unconscious states.
Applying a recently introduced longer version of the ACW, e.g.,
ACW-0 ( Golesorkhi et al., 2021a ; Smith et al., 2022 ), we hypothe-
sized abnormal ACW-0 prolongation in all unconscious states (UWS,
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MCS ( Giacino and Schiff, 2009 ), ketamine anaesthesia, sevoflurane
anaesthesia) compared to the fully awake or conscious state. 

ii probing APF ( “frequency sliding ”) in awake and unconscious states.
A shift towards slower resting-state EEG activity is well documented
in unconscious states, with prevailing power in the delta (0–4 Hz)
band at the expenses of the power in the alpha and theta (4–7 Hz)
bands ( Chennu et al., 2014 ; Engemann et al., 2018 ; Schiff et al.,
2014 ; Wutzl et al., 2021 ; Zilio et al., 2021 ). For this reason, we hy-
pothesized a group level shift towards the slower end of peak alpha
oscillations in unconscious states, as measured with APF, which to
our knowledge hasn’t been used yet to investigate consciousness. 

iii to investigate the relationship of ACW and APF in both awake and
unconscious states. In this study, we were interested specifically
in the intrinsic relationship between these two variables. In other
words, we are particularly interested in the covariation of the INTs
with respect to the oscillatory alpha component that is intrinsic
to the brain: for this reason, we used a channel-wise approach. A
channel-wise correlation is more akin to the observation of a gen-
eral mechanism on a group level ( Golesorkhi et al., 2021a ; He, 2013 ;
Huang et al., 2015 ), distinguishing it from the more common ap-
proach of subject-wise correlations, for which its source of variance
is to be found in the interindividual variability (which is not the aim
of this study). We hypothesized a significant correlation in the awake
state while, on the other hand, we hypothesized that ACW and APF
would no longer relate (e.g., correlate) in the different unconscious
states. ”

. Materials and methods 

.1. Participants 

.1.1. Anaesthesia datasets 

Ketamine – Before the anaesthetic administration, 5 min resting-state
EG recordings of 10 right-handed subjects undergoing general surgery
age 32.90 ± 9.48 years, 4 women), were collected in awake condi-
ion (eyes-closed). A Geodesics system (Ges300, EGI, USA) and a 256-
hannels electrode cap (HydroCel 130) (following 10–20 international
ystems) were used to collect the data. 

Subsequently, the same 10 subjects received a 1 mg/kg ketamine in-
usion, diluted in 10 ml of 0.9% normal saline for a 2 min period, until
hey reached an OAA/S (Observer’s Assessment of Alertness/Sedation)
core of 1. An ultrashort-acting opioid remifentanil (1 𝜇g/kg) and neuro-
uscular relaxant rocuronium (0.6 mg/kg) were given for endotracheal

ntubation. After having confirmed the anaesthetic induction, diluted
etamine was infused again for a 20 min period (1 mg/kg/h). Starting
rom 15 min after the loss of consciousness, the resting-state EEG sig-
al was acquired again for another 5 min. Earplugs were provided to
he subjects to avoid disturbance from environmental noise. For both
onditions, the EEG was acquired at a sampling rate of 1000 Hz and
he electrode impedance kept under 5 K Ω. All channels were referenced
nline to Cz. 

Sevoflurane – For the sevoflurane dataset, a similar protocol to the
ne described in the previous ketamine subsection was followed for 10
ifferent participants (age = 41.4 ± 13.10 years, 2 women), and their
EG signal was recorded with the same equipment already described
n the previous section. 8% sevoflurane was initially administered in
 L/min 100% oxygen until the subjects’ OAA/S score reached 1; then,
emifentanil (1 𝜇g/kg) and rocuronium (0.6 mg/kg) were administered
or the endotracheal intubation. After this induction step, the end-tidal
oncentration of sevoflurane was kept at 1.3 MAC (2.6%). 

For both anaesthetic agents, the electrocardiogram, non-invasive
lood pressure and pulse oximetry were monitored for the whole du-
ation of the experiment period. 

More clinical information about the anaesthetized subjects can be
ound in ( Zilio et al., 2021 ) (see Table 2 ). 
3 
.1.2. Disorders of consciousness dataset 

Eighty-one participants with DOC (39 UWS and 42 MCS; mean
ge = 46.65 ± 15.89 years; sex-ratio = 2.24; aetiology: stroke = 43;
noxia = 7; traumatic brain injury = 31) underwent a recording session
f resting-state hd-EEG for a minimum of 5 min, using a 256-channel
ystem (GES 300, Electrical Geodesics, Inc., USA). EEG recording was
erformed at bedside: before the recording, examiners performed stan-
ard systematic procedures, such as the Arousal Facilitation Protocol
 Giacino et al., 2004 ), to induce wakefulness. To avoid the artifactual
ffects of altered arousal levels on spontaneous brain activity, no seda-
ive agent (mostly midazolam) was administered in the 24 h period that
receded the recording session. Any source of electronic noise was in-
pected and reduced at the source by the experimenter/physician who
erformed the EEG experiment; furthermore, to reduce environmen-
al noise, participants wore an additional pair of sound-shielding ear-
uffs (3 M Company). The severity of the disturbance of conscious-
ess was assessed on admission with the Glasgow Coma Scale (GCS)
 Teasdale and Jennett, 1974 ), while the differential diagnosis was per-
ormed by trained clinicians by repeated behavioural assessments using
he JFK Coma Recovery Scale–Revised (CRS-R) ( Giacino et al., 2004 ).
hrough the CRS-R, the clinicians evaluate 6 hierarchical items (testing
uditory, visual, motor, oro-motor, communication, and arousal func-
ionality), which results in a score that ranges from 0 to 23: systematic
vidence of behavioural responsiveness displayed in at least one of these
tems was sufficient to include a patient in the MCS category. A control
ample of 20 healthy participants (age 37.15 ± 11.29 years) also under-
ent a 5 min resting-state hd-EEG recording session. The same afore-
entioned 256-channel system (GES 300, Electrical Geodesics, Inc.,
SA) was used to record the healthy participants’ EEG signals. Partici-
ants were asked to lay on the bed and try to keep their eyes open, in
rder to mimic the experience of EEG recordings in DOC patients. EEG
ata was re-referenced online to Cz and acquired at a sampling rate of
000 Hz, while impedance of all electrodes was kept below 20 K Ω. 

Additional information about both datasets is summarized in Table 1
nd Table 2 . 

.2. Ethics statement 

Informed written consent before participation was obtained from all
articipants (or from their caregivers). This research was approved by
he Ethical Committee of the Huashan Hospital of Fudan University (ap-
roval number HIRB-2014–281) and conducted in accordance with the
eclaration of Helsinki guidelines. 

.3. Pre-processing 

Pre-processing and data analysis, including statistical analysis, were
arried on using in-house MATLAB software (The MathWorks, 2019b)
nd the EEGLAB toolbox ( Delorme and Makeig, 2004 ). 

For both anaesthesia and UWS/MCS datasets, we proceeded with
n identical pre-processing procedure. First, the data was resampled
o 250 Hz to reduce the computational cost of data analysis. Then, a
and-pass finite impulse response (FIR) filter between 0.5 and 40 Hz
Hamming window) was applied to the EEG channel data. Noisy chan-
els were identified and excluded from further analysis through a semi-
utomatic procedure. The criteria for the rejection procedure were as
ollows: we removed flatline channels (channels which showed no ac-
ivity for more than 5 s), correlated channels (with a correlation thresh-
ld at 0.8), low-frequency drifts, noisy channels and short-timed bursts
ot related to neural activity (threshold at sd = 5 for data portions rela-
ive to baseline). Next, bad channels were interpolated with a spherical
ethod and channel activity was re-referenced to the common average

eference. 
Stationary artifacts, such as those related to eye movements, mus-

ular noise and interferences from heart activity were dealt with by re-
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Table 1 

Summary statistics of the unconscious state EEG datasets used in this study. Pre- and post-induction clinical information about both 
anaesthesia datasets are included in ( Zilio et al., 2021 ). 

Dataset n (subjects) recording length (minutes) mean age (years) + SD sex (m/f ratio) n (channels) sampling rate (Hz) 

UWS 39 5 48,6 (15,7) 2,8 256 1000 
MCS 42 5 44,7 (16,1) 1,8 256 1000 
Ketamine 10 5 32,9 (9,4) 1,5 256 1000 
Sevoflurane 10 5 41,4 (13.1) 4 256 1000 

Table 2 

Additional information specific to the DoC dataset. Please note that “mean 
delay ” refers to the average number of days that separates the day of 
the electroencephalographic recording from the acute event (in the DoC 
cohort). 

Dataset mean delay (days) + SD anoxia (%) TBI (%) stroke (%) 

UWS 345 (402) 10,3 30,8 58,9 
MCS 428 (431) 7 45,3 47,7 
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oving those components identified by independent component analy-
is (ICA). 

.4. Estimating intrinsic neural timescales – The Auto-Correlation Window 

 0 (ACW-0) 

The length (in ms) of the INTs can be probed by the Auto-Correlation
indow. This metric has been defined in many different ways in the lit-

rature, and different methodological approaches can be pursued. For
his study, we chose to probe INTs at the channel level by computing the
CW-0 on the broadband preprocessed signal. Here, the ACW-0 is de-
ned as the first zero-crossing of the temporal auto-correlation function
ACF) of the EEG time series ( Golesorkhi et al., 2021a ): in simpler terms,
t is the exact time lag after which the ACF crosses its 0% value. Like-
ise, the ACW-50 is defined as the full-width length of the time lag after
hich the ACF crosses its 50%. We computed the temporal autocorrela-

ion with a lag of 0.5 s, with a sliding window approach (20 s windows
ith a 50% overlap, which equals to a 10 s step size), in concordance
ith ( Golesorkhi et al., 2021b ; Honey et al., 2012 ; Zilio et al., 2021 ).

t is worth underlining that regardless of the methodological choices
ne can make when computing these measures, its core topographical
roperties remain unchanged ( Golesorkhi et al., 2021a ). 

.5. Instantaneous alpha peak frequency (APF) 

As our hypothesis centred on the relationship between the INTs and
he spectral content in the alpha frequency range (7–13 Hz), we mea-
ured the dynamics of the peak alpha frequency oscillations with the
frequency sliding ” method developed by MX Cohen ( Cohen, 2014 ).
ere, we will briefly describe the procedure we implemented; for a com-
lete account of this procedure, we refer the reader to ( Cohen, 2014 ;
ulbinaite et al., 2017 ; Samaha and Postle, 2015 ). 

For each channel, the previously preprocessed broadband EEG data
as bandpass filtered with a FIR filter, with 15% filter transition width.
hen, the analytic signal of the EEG data was obtained through the
ilbert transform, from which the phase angle time series were ex-

racted - for the phase angle at each timepoint is defined as the angle
etween the vector of the analytic representation of the time series with
he real axis. The instantaneous frequency is thus computed as the first
erivative of the phase angle time series obtained with the procedure
escribed so far. A median filter (filter order 10) was applied to the in-
tantaneous frequency time series in order to attenuate the noise effects
ue to brief “jumps ” in the phase angle time series, which are relevant
specially when computing instantaneous frequencies in a range with
elatively low power (as is often the case during unconscious states). 
4 
.6. Statistical analysis 

We tested whether significant differences in the medians of our
etrics, when contrasting conscious vs unconscious populations, were
resent: since data did not meet parametric assumptions, we resorted to
he non-parametric Wilcoxon rank-sum test. The threshold level for the
ejection of the null hypothesis was set to 5%. 

Levene’s test was used to test for significant differences in the vari-
nce of the ACW-0 against the ACW-50 values. The Benjamini-Hochberg
rocedure was used throughout this study to correct for false discovery
ate ( Benjamini and Hochberg, 1995 ). 

Correlation coefficients between variables like ACW-0 and APF were
omputed using Spearman’s rho test; this choice was driven by the fact
hat we did not have a priori hypothesis on whether the interaction be-
ween variables is purely linear or nonlinear. P-values for Spearman’s
ho were computed using permutation distributions of the samples. To
est for significant differences between Spearman’s rho coefficients be-
ween populations, we developed a non-parametric permutation test.
articularly, to produce a null distribution of correlation coefficients
or this permutation test, channel-level variables were randomly reshuf-
ed between subjects for 10,000 iterations. At each iteration, the Spear-
an’s rho was computed for the reshuffled data for both variables and

onditions, obtaining two coefficients; the difference between these two
ariables was computed and assigned to the i th permutation distribu-
ion position. Eventually, for each pairwise comparison, a p-value was
omputed as the number of times the permutation distribution showed
alues more extreme than the difference in the test correlation coeffi-
ient. The significance level threshold was set to 5%. 

.7. Data/code availability statement 

Data used in this article are subjected to sharing restrictions due to
rivacy issues regarding sensitive clinical data. 

MATLAB (R2019a release) was used for this study. Most of
he data analysis was conducted using the EEGLAB ( http://sccn.
csd.edu/eeglab/ ) toolbox, an open-source MATLAB package. Custom
ATLAB scripts used in this study are available upon reasonable re-

uest. 
Relevant code to replicate our analysis is freely available at http://

ww.georgnorthoff.com/code . 

. Results 

.1. Prolongation of ACW-0 during anaesthesia with ketamine and 

evoflurane 

Following previous studies, which highlight that ACW-0 contains
igher information content than ACW-50 ( Golesorkhi et al., 2021a ;
mith et al., 2022 ), we tested if we could replicate similar results in
ur healthy sample. ACW-0 showed a significantly wider distribution
han that of ACW-50 (Levene’s W = 20.0752; p < 0.001), which im-
lies a higher informative content of ACW-0 and supposedly a better
nter-individual discrimination. For this reason, we chose ACW-0 over
CW-50 to test our hypotheses. 

We next investigated ACW-0 in the subjects under anaesthesia. A
revious study showed longer ACW-50 in anaesthesia (and other dis-

http://sccn.ucsd.edu/eeglab/
http://www.georgnorthoff.com/code
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Fig. 1. ACW-0 values in ketamine and sevoflurane. 
(a-b) Swarm charts for the subject-wise average length of ACW-0 in sevoflurane and ketamine, compared to values of the same cohort during wakefulness. ACW-0 is 
measured in seconds. In all swarm charts presented in this study, ∗ represent p < 0.05, ∗ ∗ represents p < 0.01 and ∗ ∗ ∗ represents p < 0.001. n.s., when shown, stands 
for “non-significant ” ( p > 0.05). (c-d). Topoplots for the channel-wise difference in ACW-0 values between anaesthetized and wakeful states. The colormap shows, 
at each channel, the difference in ACW-0 between the two groups (anaesthetized – awake). Non-significant channels ( p > 0.05 after FDR correction) are greyed out 
from the topoplot. 
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rders of consciousness) ( Zilio et al., 2021 ); this leaves open whether
hey also show changes in ACW-0. Group-wise, ACW-0 was significantly
onger during the anaesthetized condition compared to awake states, in
oth sevoflurane (mean(Ans) = 0.2069s, mean(Aw) = 0.1477s; p < 0.05)
nd ketamine (mean(Ans) = 0.2804s, mean(Aw) = 0.2105s; p < 0.05)
 Fig. 1 , a-b). These findings suggest that the anaesthetic state lengthens
he average intrinsic neural timescales. It should also be noted that while
CW-0 showed large inter-subject variability in the awake state, this was
o longer the case in ketamine, where subjects showed a more similar
istribution in their ACW-0. Together, our findings show a general pro-
ongation of INTs in both pharmacologically-induced unconscious states
nd less inter-individual differences of ACW-0 in ketamine. 

.3. Decreased alpha peak frequency in anaesthetic states 

We next investigated alpha peak frequency (APF), that is frequency
liding, in both awake and anaesthetic state. We obtained alpha peak
5 
requency values in the awake state and compared them to the values
bserved in the anaesthetized state. Here, the average APF showed sig-
ificantly lower values than during awake states: this applied to both
evoflurane (mean (Ans) = 8.7151 Hz, mean (Aw) = 9.9429 Hz; p <
.01) and ketamine (mean(Ans) = 8.2676 Hz, mean (Aw) = 9.641 Hz;
 < 0.001) ( Fig. 2 a). Together, these findings clearly indicate generally
lower APFs in both ketamine and sevoflurane. 

.4. Relationship of autocorrelation window and alpha peak frequency in 

wake and anaesthetic states 

How are the temporal windows, measured by ACW-0, related
o the input processing indexed by APF? To explore their re-
ationship, we carried out a channel-wise analysis (i.e., averag-
ng values across subjects in order to obtain a single value for
ach electrode, instead of grand-averaging across electrodes to ob-
ain a subject’s statistical summary for that particular measure
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Fig. 2. Instantaneous frequency in the alpha frequency range (7–13 Hz) in ketamine and sevoflurane. 
(a-b) Swarm charts for the subject-wise average speed of APF in sevoflurane and ketamine, compared to values of the same sample during wakefulness. APF is 
measured in Hz. In all swarm charts presented in this study, ∗ represent p < 0.05, ∗ ∗ represents p < 0.01 and ∗ ∗ ∗ represents p < 0.001. (c-d). Topoplots for the 
channel-wise difference in APF values between anaesthetized and wakeful states. The colormap shows, at each channel, the difference in APF between the two 
groups (anaesthetized – awake). Non-significant channels ( p > 0.05 after FDR correction are greyed out from the topoplot. 
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 Gutiérrez-Tobal et al., 2021 )). We first computed ACW-0 and APF
n a channel-based way (rather than subject-based way). These
hannel-based results (not shown here) generally agree with the
bove described subject-wise analyses for both sevoflurane (ACW-0:
ean(Ans) = 0.2069s, mean (Aw) = 0.1477s; p < 0.001; instantaneous

lpha frequency: mean(Ans) = 8.7151 Hz, mean (Aw) = 9.9429 Hz;
 < 0.01) and ketamine (ACW-0: mean(Ans) = 0.2471s, mean
Aw) = 0.2105s; instantaneous alpha frequency: mean(Ans) = 8.2676,
ean (Aw) = 9.6410; p < 0.001). 

Second, we searched for topographic effects by comparing the topo-
raphic patterns of ACW-0 and APF ( Fig. 1 , c-d; Fig. 2 , c-d). We observe
hat a main effect for ACW-0 for both anaesthetic agents was over oc-
ipital channels, with more electrodes being significantly different in
evoflurane with respect to ketamine. On the other hand, all channels
ere significantly slower in the alpha frequency range for both ketamine

nd sevoflurane. k  

6 
Third, to investigate the relationship between these two measures,
.e., ACW-0 and APF, in the awake state, we correlated their channel-
ise results described in the first two steps. In the awake condition, as

xpected, the correlation was moderate and highly significant ( Fig. 3 ,
-b), being negative in the awake states of both subject groups (Spear-
an’s rho (sevoflurane) = - 0.44, p < 0.001; Spearman’s rho (ke-

amine) = - 0.41, p < 0.001): a longer ACW-0 value, which signified a
onger decay of the signal’s autocorrelation function, is related to slower
scillatory activity in the alpha frequency range. Hence, longer tempo-
al windows, i.e., longer ACW-0, decrease and thus slow down alpha
requency. 

Fourth, when probing the same relationship during anaesthetized
tates, the correlation analysis between ACW-0 and instantaneous alpha
requency on the same subjects yielded a weak correlation ( Fig. 3 , c-d)
n the sevoflurane condition (Spearman’s rho = 0.26, p < 0.001) while in
etamine the correlation was not significant at all (Spearman’s rho = -
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Fig. 3. Relationship of ACW-0 and mean instantaneous alpha frequency in awake and anaesthetic state. State-dependency of the correlation between ACW-0 and 
APF: a negative channel-wise correlation in the awake subjects ( p < 0.001) (a) and a slightly positive one in the same subjects after sevoflurane administration ( p 
< 0.001) (c). Same within-subjects change of direction from a negative ( p < 0.001) (b) to a non-significant correlation ( p > 0.05) (d) in ketamine. Please note that 
here, the linear fit is only shown for visualization purposes and does not represent a linear relationship between the two variables (since Spearman’s rank correlation 
does not assume linearity). 
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.02, p > 0.05). Finally, a permutation test was carried out to make
ure the difference in the correlation coefficients between awake and
naesthetic states was not spurious: with this method, the difference was
ignificant for sevoflurane ( p < 0.05) but not for ketamine ( p = 0.0559).

Together, these findings show a negative relationship between the
ength of the ACW-0 and the alpha peak frequency in the awake state.
onger ACW-0 is related to lower alpha peak frequency. This was ob-
erved only in the awake state whereas this relationship was no longer
resent or disrupted during loss of consciousness caused by sevoflurane
nduction, as confirmed by our rather stringent statistical test. On the
ther hand, even if we observed the same effect for ketamine (at least
ualitatively speaking), this effect did not meet our strict statistical re-
uirements for significance: however, we do not exclude that this might
ell be due to our small sample size and to the present poor understand-

ng of subjective experiences during ketamine induction ( Vlisides et al.,
018 ), and we warrant that further studies are needed to clarify this
istinction. 

.5. Relationship of autocorrelation window and alpha peak frequency in 

nresponsive wakefulness (UWS) and minimally conscious state (MCS) 

Is the loss of the relationship of ACW-0 and instantaneous alpha fre-
uency specific to anaesthesia, or can its disruption also be observed in
ther altered states of consciousness (as in UWS and MCS)? To show
hat our results were consistently related to a general characteristic of
oss of consciousness (rather than reflecting drug-related effects), we
pplied the same pipeline previously described to an EEG dataset of 81
oC subjects including both UWS and MCS. 

First, group-wise and channel-wise, both UWS and MCS groups
howed significantly longer ACW-0 values when compared to
7 
ealthy controls (Healthy Controls - HC mean = 0.18394s; UWS
ean = 0.32004 s; MCS mean = 0.30513 s; HC vs UWS: p <

.001; HC vs MCS: p < 0.001), validating and extending previous
esults ( Zilio et al., 2021 ). No significant differences in ACW-0
ere observed when comparing UWS and MCS subjects ( p > 0.05)
 Fig. 4 a). 

Second, the mean instantaneous alpha peak frequency was signifi-
antly lower in both UWS and MCS compared to healthy controls (HC
ean = 9.8589 Hz; UWS mean = 8.9334 Hz; MCS mean = 8.9483 Hz;
C vs UWS: p < 0.001; HC vs MCS: p < 0.001). As in the case of ACW-
, no significant difference in instantaneous alpha frequency was ob-
erved between the two patients’ groups, i.e., UWS and MCS ( p > 0.05)
 Fig. 4 b). 

Third, based on the finding that both ACW-0 and APF are altered in
WS and MCS, we investigated their relationship. We correlated these

wo variables at the channel level, as we did in the anaesthesia dataset.
eplicating our results in the awake subjects of the anaesthesia datasets,
e again show negative correlation of ACW-0 and APF in the healthy

ontrol group ( Fig. 5 a) (Spearman’s rho = - 0.42, p < 0.001). As in the
naesthetic states, we did not observe significant correlation of ACW-0
nd APF in the UWS group ( Fig. 5 , c) (Spearman’s rho = 0.11, p < 0.05),
hile the MCS group showed significant correlation but in a positive -

ather than negative – direction ( Fig. 5 , c) (Spearman’s rho = 0.40, p
 0.001) ( Fig. 5 ). The permutation test confirmed that the difference
etween the correlation coefficients yielded by the healthy subjects and
he DoC group was not spurious (UWS vs. HC: p < 0.001; MCS vs HC:
 < 0.001) while the difference was not significant between UWS and
CS ( p > 0.05). 

Together, these findings show that ACW-0 and APF negatively cor-
elate in the healthy subjects, which confirms the findings related to
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Fig. 4. ACW-0 and average speed of alpha oscillations in disorders of consciousness (DoC). 
(a) Swarm charts showing the subject-wise average length of ACW-0 across UWS, MCS subjects and healthy controls. (b) Same visualization but for the average 
instantaneous alpha frequency. (c-e) Topoplots for the channel-wise statistical comparison of the ACW-0 length between healthy and UWS subjects (c), healthy and 
MCS (d), UWS and MCS (e). (f-h) Topoplots for the channel-wise statistical comparison of the average instantaneous alpha frequency between healthy and UWS 
subjects (f), healthy and MCS (g), UWS and MCS (h). The colormap shows, at each channel and for each measure, the differences between the respective groups 
compared. Non-significant channels ( p > 0.05 after FDR correction) are greyed out from the topoplot. 
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onscious subjects shown in Section 3.4 . In contrast, their correlation is
isrupted in both MCS and UWS, again consistent with the disruption
f their relationship observed during loss of consciousness caused by
naesthetic induction ( Section 3.4 ). 

.6. Power does not drive the relationship between INTs and the speed of 

lpha oscillations 

Through the Hilbert transform, it is possible to obtain two features
rom the resulting EEG analytic signal: its phase angle and power time
eries. This raises the question of whether the correlations of ACW and
PF in our data are driven by the phase angle or the power contained

n the signal of APF. Following a slight modification of the method by
8 
 Cohen, 2014 ), we therefore conducted additional analyses to isolate
hese two components in the APF. 

To ensure that the negative APF-ACW correlation in the healthy sam-
le was driven by the phase-based frequency content of the signal, and
ot by its power – as the power in the alpha frequency range differs
onsistently between different states of consciousness – we calculated
he instantaneous power by itself (i.e., independent of the phase-related
rocesses) in the same frequency range (7–13 Hz), in a similar fashion
o the frequency sliding method implemented here: the only exception
s that, after applying the Hilbert transform, the power was obtained
which is obtained by squaring the amplitude of the analytic signal) in-
tead of the phase angle driving the instantaneous frequency, for which
ts computation - unlike that of pure power - relies on the phase signal
omponent ( Cohen, 2014 ). 
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Fig. 5. Relationship of ACW-0 and mean instantaneous alpha frequency in the DoC cohort. 
Channel-wise correlations in the DoC cohort. A state-dependant correlation between the two variables is observed: from a negative correlation in healthy subjects, 
( p < 0.001) (a) and a moderately positive one in MCS patients ( p < 0.001) (b) to a very weak correlation ( p < 0.05) (c) in UWS. Please note that the linear fit is only 
shown for visualization purposes (as in Fig. 3 ). 
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Correlating the average instantaneous power in the alpha range with
CW-0 yields a very weak correlation (Spearman’s rho = − 0.18; p <
.001, see Supplementary Mat.) in the healthy control group. The sig-
ificant correlation was absent also in the other unconscious state sam-
les (see Supplementary Mat.): this suggests that the contribution of the
ower itself to our previous APF-ACW correlation was minimal to absent
at least with our analysis method. 

Together, these data strongly suggest that the observed difference be-
ween conscious and unconscious states - with regard to the ACW-0/APF
elationship - is mainly driven by their differences in the phase-based in-
tantaneous alpha frequency component, whose effect dissociates from
hat of the instantaneous power in the same frequency range. This hints
t the possibility of a phase-related process in mediating the relationship
f APF and ACW. 

. Discussion 

We here investigated the relationship of intrinsic neural timescales
INTs) and the alpha peak frequency (APF) in conscious and unconscious
tates. We show that INTs, as measured by ACW-0, and the dynamic
ehaviour of APF, are significantly related to each other in the awake
tate. In contrast, such correlation is no longer present in our four dif-
erent unconscious state EEG datasets. Given that both ACW and APF
re known to mediate input processing, our findings support the rele-
ance - although indirectly - of the brain’s intrinsic capacity for tem-
oral processing across different timescales, e.g., longer and shorter,
or consciousness; this lends further support to the importance of the
9 
rain’s temporo-spatial alignment to external environmental inputs for
onsciousness as postulated by the TTC ( Northoff and Huang, 2017 ;
orthoff and Zilio, 2022b ). 

Since here we dealt with indices of temporal processing that span
cross different timescales (the shorter ones of APF and longer ones
epresented by ACW-0), our working hypothesis is also in line with the
heoretical frameworks that put forward a key role for the interaction
f different neural timescales in predisposing adequate states/levels of
onsciousness ( Kent and Wittmann, 2021 ; Northoff and Zilio, 2022a ).
n fact, many theories of consciousness operationalize consciousness
y the analysis of discrete snippets of “functional ” times ( Northoff and
amme, 2020 ), but often the continuous temporal nature of conscious-
ess is underrated – including the interaction of neural mechanisms at
ifferent timescales. Therefore, the exploration of this continuous na-
ure of the conscious experience represents the rationale of this present
tudy. 

.1. Prolongation of intrinsic neural timescales in unconscious states 

Our results show that an abnormal prolongation of the INTs matches
oss of consciousness in the EEG signal of subjects across different un-
onscious states (i.e., two different anaesthetic agents and DoC); this
s in line with previous studies in EEG ( Zilio et al., 2021 ) and fMRI
 Huang et al., 2018 ). We extend these prior findings by using a differ-
nt proxy metric for the assessment of INTs, e.g., ACW-0 rather than
CW-50, which was not yet computed on these unconscious states. It

s important to underline that, in ( Zilio et al., 2021 ), ACW-50 was used
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nstead of ACW-0: we argue that this is further confirmation for the fact
hat the ACW, regardless of which of the slightly different methodolo-
ies available in the literature (ACW-0 vs. ACW-50), consistently yields
onger values when consciousness is lost, either partially or totally. In
act, the difference between the two ACW metrics lies only in the ob-
erved time-lag after the computation of the autocorrelation function
ACF) of the neural signal (the time at which the autocorrelation func-
ion (ACF) reaches its 0% value for the ACW-0, as opposed to its 50%
alue for the ACW-50): hence, they measure distinct degrees of auto-
orrelative patterns of the neural activity - that is, shorter and longer
nes. 

Our results further support and confirm the key role of ACW in high-
ighting fundamental mechanisms of consciousness, including its capac-
ty for input processing ( Zilio et al., 2021 ). Specifically, the abnormally
ong windows in the unconscious state suggest abnormally high tempo-
al integration of inputs across different time points ( Golesorkhi et al.,
021b ; Wolff et al., 2022 ) while, unlike in healthy subjects, there is min-
mal temporal segregation of inputs – this may lead to rather blurry and
ndifferentiated perception and cognition of the inputs without their
ifferentiation from each other ( Northoff and Zilio, 2022b ). Addition-
lly, we report a suppression of the inter-subject variability of average
CW-0 values in ketamine with respect to the awake condition, while

his was not the case for sevoflurane. Hence, at least qualitatively, it
eems that ketamine abolishes inter-individual differences, contrary to
hat can be observed in the sevoflurane subjects, which hints at a pos-

ible differential response of INTs mechanism to different anaesthetic
gents. 

.2. Slowing down of alpha peak frequency in unconscious states 

In addition to ACW, we also investigated dynamic phase angle-
ased APF, i.e., frequency sliding, for the first time in unconscious
tates. We show a significant slowing of the speed of oscillations in
he alpha (7–13 Hz) range, in line with previous studies showing
hanges in static power-based APF ( Klimesch, 2012 ; Labonte et al.,
022 ; Lechinger et al., 2013 ). Like ACW, APF has been linked to in-
ut processing, albeit on a much shorter timescale. Specifically, APF
s involved in crucial perceptual mechanisms such as cognitive control
 Hülsdünker et al., 2016 ), gating of information ( Benwell et al., 2019 ;
ecere et al., 2015 ; Gulbinaite et al., 2017 ) and perceptual temporal
esolution ( Noguchi et al., 2019 ; Samaha and Postle, 2015 ; Shen et al.,
019 ): it has been proposed that the duration of an alpha cycle works
s an internal “clock ” that is aligned to the statistical temporalities and
he demands coming from the perceptual environment, which is con-
tantly updated - as is shown by its fluctuating behaviour and its covari-
tion with overt perceptual temporal resolution ( Cecere et al., 2015 ;
amaha and Postle, 2015 ). Furthermore, in the context of DoC, matters
re more complicated: models of recovery of consciousness based on
orticothalamic integrity outline a series of intermediate spectral phe-
otypes between the prevalence of delta activity, that is normally asso-
iated to behavioural unresponsiveness, and the recovery of “healthy ”
lpha peaks ( Forgacs et al., 2017 ). However, the nature of this dataset
which does not contain multiple recordings from the same subject

 prevents us from following the trajectory of the participant’s recov-
ry of consciousness, which makes it harder to locate group level dif-
erences that arise from different levels of corticothalamic pathway in-
egrity. However, a general slowing of activity restricted to the alpha
requency range can be expected: in fact, previous literature reports sig-
ificantly slower alpha oscillations during loss of consciousness, which
lso covaries with behavioural responsiveness ( Fingelkurts et al., 2012 ;
limesch, 2012 ; Labonte et al., 2022 ; Lechinger et al., 2013 ). We ex-

end these findings by applying the “frequency sliding ” method to un-
onscious state EEG datasets which, to our knowledge, was not explored
et in the literature. 

In this study, we did not observe any meaningful difference between
he length of the INTs in the UWS and MCS groups: this might be inter-
10 
reted as a limiting factor in our methodology. Recently, the assumption
hat the contrast of these two clinical conditions serves as a minimal con-
rast for consciousness has been challenged (see ( Hermann et al., 2021 )
or a deeper analysis on these matters). Current clinical methods for the
ssessment of consciousness (through the detection of significant signs
f behavioural responsiveness from the patient) may, in restricted occa-
ions, limit the statistical power of measures that don’t specifically tar-
et neural correlates of behavioural responsiveness, because of the im-
ossibility of detecting covert consciousness with such diagnostic scales
 Kondziella et al., 2020 ): for this reason, the relative lack of predictive
ower in the “raw ” values of INTs in distinguishing UWS and MCS is
o be expected. Instead, the consistency of our results across DoC and
naesthesia indicate that the abnormal prolongation of ACW-0 values is
ltimately related to loss of consciousness. 

.3. State-dependency of the correlation of longer (ACW-0) and shorter 

APF) timescales in conscious and unconscious states 

Our key finding is that, as we hypothesized, the regular relationship
hat exists at rest between INTs and the instantaneous speed of alpha
scillations during awake conscious states is disrupted during loss of
onsciousness: this is observed in at least three different unconscious
tates (UWS, MCS and sevoflurane anaesthesia). The negative correla-
ion shown in the healthy awake subjects suits expectations, since a gen-
ral slowing down of intrinsic oscillations is logically compatible with
onger timescales of neural activity: this, to our knowledge, was never
ssessed empirically until now. We argue that this points out the im-
ortance of the relationship between longer (ACW-0) and shorter (APF)
imescales in the conscious brain, which seems to provide an intrinsic
ross-scale temporal organization or structure of neural activity. 

Furthermore, the disruption of this negative relationship is far from
rivial, since the direction of change of ACW-0 and APF values is pre-
erved in unconscious states (ACW-0 gets longer and APF gets slower
ven during these states). The intrinsic dynamic relationship between
eural oscillations and the preferential timescales of neural activity is
egarded as a crucial factor that can be observed in the search for the
eural predisposing factors of consciousness (NPC) according to the
TC framework ( Northoff and Huang, 2017 ; Northoff and Zilio, 2022b ).
ere, we observed a correspondence between the abolishment of con-

ciousness and the loss of these intrinsic dynamic ACW-APF relationship,
hich may alter the dynamic background or context of our subjective

xperience, i.e., phenomenal consciousness ( Northoff and Zilio, 2022b ).
ence, our findings on ACW-0, APF and their relationship are consis-

ent over the DoC and the anaesthesia samples; this strongly suggests
hat they are related to the state of consciousness rather than the under-
ying cause, e.g., anaesthetic agent or brain lesion. 

Most importantly, a remark is needed to interpret the lack of sta-
istical significance in our ketamine sample. Unlike most anaesthetic
gents, ketamine is known to induce a “dissociative ” state ( Domino and
arner, 2010 ) even at sub-anaesthetic doses: patients are - at least be-

aviourally - not responsive to environmental inputs, but preserve a
ose-dependant degree of awareness, which sometimes results in reports
f conscious, dream-like experiences ( Collier, 1972 ) after the anaes-
hetic’s effects wear out. In fact, recent studies have produced evidence
f spatio-temporal patterns of neural activity comparable to those ob-
erved in awake subjects ( Sarasso et al., 2015 ) - or even more complex
han in wakefulness ( Li and Mashour, 2019 ) - which makes a case for
he presence of covert, but rich, internal conscious experiences during
etamine, despite of the complete observed unresponsiveness. Our cor-
elational results are not dissonant with such interpretations, since we
o not observe a statistically significant change in the relationship be-
ween ACW and APF during ketamine-induced loss of consciousness. In
ight of this interpretation, the prolongation of INTs and the average
lowing down in the alpha frequency range dynamics could be more re-
ated to the predisposition for adequate levels/states of consciousness; on
he other hand, their relationship, similarly to neural complexity mea-
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ures such as the perturbational complexity index (PCI), could be re-
ated to the actual realization of a conscious experience. Alternatively,
ne might also interpret the lack of significance in our ketamine sample
s resulting from the combination of unfavourable factors, such as our
tringent statistical testing and a current poor understanding of subjec-
ive experiences during ketamine-induced loss of consciousness. 

In view of what has been discussed so far, it is also crucial to elabo-
ate on the mathematical relationship between ACW-0 and APF, in order
or a better understanding of our correlation results. In fact, it is stated
n the Wiener-Khinchin theorem ( Chatfield, 2003 ) that, under a few as-
umptions (such as that of wide-sense stationarity of the time series),
he power spectral density of a signal is equal to the spectral decompo-
ition (usually in the form of a Fourier transform) of its autocorrelation
unction. This observation would lead to a sort of “trivialization ” of our
orrelation results in our healthy population. 

However, the sole fact that the correlation is disrupted in different
tates of unconsciousness works as a preliminary hint, suggesting that
he relationship between these two exact measures is far from stereo-
ypical. Speculating on the variables that could mediate this atypical
elationship, we argue that the clear contribution of the slope of the 1/f
pectral aperiodic component of the EEG signal ( He, 2014 ), to the result-
ng ACW values has shown in a recent study ( Zilio et al., 2021 ), hints at
he possibility that these scale-free dynamics may serve as a shared back-
round for both the ACW and APF of a neural signal, thus contributing
o a modulation of their relationship ( Wainio-Theberge et al., 2022 ). We
uggest that future studies, especially simulation analyses that take into
ccount the oscillatory dynamics and the network structure of the brain
for instance, oscillator models such as the Kuramoto model ( Bick et al.,
020 ; Cabral et al., 2014 ) or computational frameworks like The Virtual
rain software ( Sanz-Leon et al., 2015 ) – will shed a light on the mathe-
atical relationship between these two measures and eventually inform

n which parameters can modulate this relationship. 

.4. Relation to theories of consciousness 

Our study aligns well with theories of current consciousness, most
otably the TTC. Temporo-spatial alignment is a key mechanism which
argets the brain’s input processing, namely, how it adapts and thereby
ligns its own dynamic to the stochastics of the environmental (and
odily) inputs at different timescales. We show that two measures of
nput processing, ACW and APF operating at distinct timescales, are
elated in the awake state whereas they are prolonged, slowed down
nd disrupted in the unconscious state. Albeit indirectly, this suggests
 key role of the dynamic of input processing at different timescales
or consciousness, thus supporting the assumption of temporo-spatial
lignment. However, our findings may also be related (and reconciled)
o theories of consciousness that associate the sustained and integrative
rain activity that is generated after an input is consciously processed
 Dehaene and Changeux, 2011 ; Mashour et al., 2020 ): by integrating
otions from these different theories of consciousness, conscious cog-
ition may well be facilitated or even sustained by the right balance
etween the different intrinsic computational timescales at which the
rain preferentially works during conscious states. 

Moreover, our findings support the recent claim of the need to con-
ider and integrate different timescales on both neural and phenome-
al levels ( Northoff and Zilio, 2022a ; Kent and Wittmann, 2021 ). We
herefore advocate for the importance, as stated in the first paragraph
f this discussion, of a methodological approach that integrates the in-
estigation of consciousness over different timescales, as we tentatively
ursued in this study. This has been proposed as an important step to
econcile various theories of consciousness ( Northoff and Zilio, 2022a ),
ncluding the Integrated Information Theory (IIT) ( Oizumi et al., 2014 ;
ononi et al., 2016 ): this is a promising approach since, for instance, IIT
hares with TTC the assumption of integrative spatiotemporal mecha-
isms of neural activity as key for consciousness. 
11 
.5. Limitations 

Thus far, we have underlined the relevance of one’s capacity for tem-
oral input processing as a necessary (but not sufficient, coherent with
he concept of NPC) condition for adequate levels of consciousness; how-
ver, we need to emphasize how resting-state studies, such as this one,
lthough useful to assess levels of consciousness ( Kondziella et al., 2020 ;
in et al., 2015 ) can only link indirectly these two aspects of the human
rain. Only with task data can this relationship be properly investigated,
specially on how phase-related processes are involved and to eventu-
lly quantify how it actually impacts the phenomenology of subjective
xperience. 

Another limitation is related to the pioneering stage at which this
tudy has been developed. Consciousness research has only recently
tarted to involve intrinsic brain activity in its theoretical frameworks
nd it has been argued that even so, its temporal dimension is often ne-
lected in many popular theories - apart from some exceptions ( Kent and
ittmann, 2021 ) - and thus there is still room for improvement for its

ractical diagnostic/prognostic use in clinical settings; future studies
ill need to synthesized these findings in a quantitative way, such that
hysicians could use it in their clinical practice. 

Lastly, in this study we use all of the sensor space information that
s contained in the hd-EEG data of our samples. It is well known how
oth of our measures have a particular topography, especially regarding
he prominent occipital distribution of alpha oscillations ( Mantini et al.,
007 ; Mierau et al., 2017 ) and the postero-anterior spatial gradient of al-
ha peak frequencies ( Mahjoory et al., 2020 ) which are well known fea-
ures of the EEG signal. For this reason, sensor data may not be enough
o capture the spatial topography of the relationship between INTs and
PF, which may be very important in understanding the underlying cir-
uitry behind these temporal mechanisms: source-level analysis will be
rucial in solving this issue and may yield more accurate information,
hich in turn could prove resourceful to improve on the diagnostic and
rognostic issues that affect people with DoCs. 

. Conclusions 

Our brain allows us to process environmental inputs, including their
emporal stochastics, across different timescales. Taken together, our re-
ults show how two measures of input processing operating on shorter
APF) and longer (ACW) timescales are related to each other in the
wake fully conscious state. In contrast, when we lose consciousness
as in anaesthesia and UWS/MCS), their relationship deviates from the
egative correlation shown in healthy awake states: we suggest that this
ight be due to the abnormal ACW prolongation and slowing-down of
PF, which we have shown is characteristic of unconscious states, but

uture studies are needed to clarify the implications of this deviation.
hese findings further support the key role of the brain’s capacity of

nput processing on different timescales for consciousness. This is well
n line with the assumption of temporo-spatial alignment, i.e., our ca-
acity to process and connect to external environmental inputs, being
ne of the four key mechanisms of consciousness as postulated in the
emporo-spatial Theory of Consciousness (TTC). Future studies com-
ining ACW and APF with specific psychological tasks and phenomeno-
ogical reports are warranted to substantiate the neuro-phenomenal im-
lications of temporo-spatial alignment. 
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