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under Transverse Harmonic Confinement

Luca Salasnich
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We study a dilute gas of attractive bosons confined in a harmonic cylinder, i.e. under cylindric
confinement due to a transverse harmonic potential. We introduce a many-body wave function
which extends the Bethe ansatz proposed by McGuire (J. Math. Phys. 5, 622 (1964)) by including
a variational transverse Gaussian shape. We investigate the ground state properties of the system
comparing them with the ones of the one-dimensional (1D) attractive Bose gas. We find that the
gas becomes ultra 1D as a consequence of the attractive interaction: the transverse width of the
Bose gas reduces by increasing the number of particles up to a critical width below which there is
the collapse of the cloud. In addition, we derive a simple analytical expression for the simmetry-
breaking solitonic density profile of the ground-state, which generalize the one deduced by Calogero
and Degasperis (Phys. Rev. A 11, 265 (1975)). This bright-soliton analytical solution shows near
the collapse small deviations with respect to the 3D mean-field numerical solution. Finally, we show
that our variational Gauss-McGuire theory is always more accurate than the McGuire theory. In
addition, we prove that for small numbers of particles the Gauss-McGuire theory is more reliable
than the mean-field theory described by the 3D Gross-Pitaevskii equation.

PACS Numbers: 03.75.Kk

I. INTRODUCTION

A three-dimensional (3D) dilute Bose gas is well de-
scribed by the mean-field Gross-Pitaevskii theory [1,2],
while in the 1D regime quantum fluctuations become
important and an appropriate theoretical treatment re-
quires beyond mean-field approaches [3]. Recently, we
have investigated, for a bosonic cloud of atoms, the
crossover from 3D to 1D induced by a strong harmonic
confinement in the transverse cylindric radial direction
[4–7]. In particular, by using a generalized Lieb-Liniger
theory [8,7], based on a variational treatment of the
transverse width of the repulsive Bose gas, we have ana-
lyzed the transition from a 3D Bose-Einstein condensate
to a 1D Tonks-Girardeau gas of impenetrable bosons.
In this paper we consider the case of an attractive Bose

gas under cylindric transverse harmonic confinement. We
introduce a trial wave fuction that is a variational ex-
tension of the 1D exact Bethe ansatz [10] proposed by
McGuire [11] for the 1D gas of bosons with attractive
contact interaction. We show that, contrary to the 1D
theory where the transverse width is constant and equal
to the characteristic length of harmonic confinement, our
theory predicts that the transverse width of the gas re-
duces by increasing the interatomic strength up to a criti-
cal value for which there is the collapse of the system. We
investigate also the solitonic axial density profile of the
Bose gas with a fixed center of mass, comparing it to the
1D profile and also to the 3D mean-field Gross-Pitaevskii
theory.

II. TRANSVERSE GAUSSIAN ANSATZ

The Hamiltonian of a gas of N interacting identical
Bose atoms confined in the transverse cylindric radial
direction with a harmonic potential of frequency ω⊥ is
given by

Ĥ =

N
∑

i=1

(

−
1

2
∇2

i +
1

2
(x2i + y2i )

)

+

N
∑

i<j=1

V (ri, rj) , (1)

where V (ri, rj) is the inter-atomic potential. In the
Hamiltonian we use scaled units: energies are in units
of the energy h̄ω⊥ of the transverse confinement and
lengths in units of the characteristic harmonic length
a⊥ = (h̄/(mω⊥))

1/2.
The determination of the N -body wave function

Ψ(r1, ..., rN ) that minimizes the energy

E = 〈Ψ|Ĥ |Ψ〉 =

∫

Ψ∗ĤΨ d3r1...d
3
rN (2)

of the system is a very difficult task. Nevertheless, due
to the symmetry of the problem, a variational trial wave
function can be written in the form

Ψ(r1, ..., rN ) = f(z1, ..., zN)

N
∏

i=1

exp
(

−
x2

i
+y2

i

2σ2

)

π1/2σ
, (3)

where σ is a variational parameter of the Gaussian trans-
verse wave function [13], that gives the effective trans-
verse length of the Bose gas. In addition, by considering
a dilute gas with a mean particle spacing much larger
than the interaction radius we set

V (ri, rj) = Γ δ(3)(ri − rj) , (4)
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where Γ = 4πas/a⊥, with as the s-wave scattering length
of the inter-atomic potential. This pseudo-potential gives
the correct dilute gas limit and a well-posed variational
problem by choosing a smooth trial wave function. Under
transverse harmonic trapping a confinement-induced res-
onance has been predicted by Olshanii [9] at |as|/a⊥ ≃ 1,
i.e. when the absolute value of the highest bound-state
energy of a realistic inter-atomic potential approaches
the confining transverse energy. Therefore the pseudo-
potential of Eq. (4) can be used in the range |as|/a⊥ ≪ 1,
a regime where the effects of confinement-induced reso-
nance are negligible.
By inserting Eq. (3) into Eq. (2), using Eq. (4) and

integrating over x and y, the total energy reads

E = Ez + E⊥ , (5)

where the longitudinal axial energy is

Ez = 〈f |
N
∑

i=1

−
1

2

∂2

∂z2i
+

Γ

2πσ2

N
∑

i<j=1

δ(zi − zj)|f〉 . (6)

It is important to stress that the 1D Hamiltonian that
appears in the previous expresssion is exactly the Hamil-
tonian studied by Lieb and Liniger [8] for positive inter-
action strength (Γ/(2πσ2) > 0) and by Mc Guire [11] and
by Calogero and De Gasperis [12] for negative interaction
strength (Γ/(2πσ2) < 0). The transverse radial energy is
instead given by

E⊥ =
1

2
(
1

σ2
+ σ2)N . (7)

As previously stressed, with the ansatz of Eq. (3) we have
recently analyzed [6] the repulsive case (as > 0) by using
the Lieb-Liniger exact result [8] for the longitudinal axial
energy. Here we consider the attractive case (as < 0) and
set Γ/2πσ2 = −γ/σ2 with γ = 2|as|/a⊥.

III. GAUSS-MCGUIRE ANSATZ

McGuire [11] proposed the following Bethe ansatz [10]
for the axial many-body wave function

f(z1, ...zN) = CN

∏

1≤i<j≤N

exp

(

−
1

2

γ

σ2
|zi − zj |

)

, (8)

where CN is the normalization constant and γ/σ2 is the
strength of the contact δ interaction in the 1D Hamilto-
nian of Eq. (6). According to the exact result of Mcguire
[11] the axial energy Ez of Eq. (6) reads

Ez = −
1

24

γ2

σ4
N(N2 − 1) . (9)

Using this expression the total energyE of our 3D system
can be rewritten as

E = −
1

24

γ2

σ4
(N2 − 1)N +

1

2
(
1

σ2
+ σ2)N . (10)

In the weak-coupling 1D limit, where the transverse
width σ ≃ 1, one recovers the 1D result obtained by
McGuire [11] plus the constant transverse energy, that is
1 in units of h̄ω⊥.
In our approach the energy depends on the variational

parameter σ. The minimization of the energy E with
respect to σ gives the equation

σ6 − σ2 +
1

6
γ2(N2 − 1) = 0 . (11)

One easily finds that this algebric equation admits real
solutions with d2E/dσ2 > 0 if and only if

1

31/4
≤ σ ≤ 1 . (12)

Below the value σ = 1/31/4 there are no stable solutions
and the ground state becomes the collapsed state, i.e.
the configuration with σ = 0 and energy E = −∞. The
critical strength, corresponding to σ = 1/31/4, is

γ(N2 − 1)1/2 =
2

31/4
≃ 1.52 . (13)
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FIG. 1. Comparison between our variational Gauss-
McGuire theory (GMG) and the McGuire theory (MG)
for the attractive Bose gas in a harmonic cylinder. Up-
per panel: transverse width σ. The unstable branch
(d2E/dσ2 < 0) of Eq. (11) is shown as a dotted line.
Lower panel: energy per particle E/N . γ = 2|as|/a⊥ is
the inter-atomic strength and N is the number of parti-
cles.

In the upper panel of Fig. 1 we plot the trans-
verse width σ obtained from Eq. (11) as a function of
γ(N2 − 1)1/2 (solid line). While in the 1D case σ is
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constant (dashed line), our variational Gauss-McGuire
(GMG) method shows that the attractive Bose gas is
actually ultra 1D: the width σ decreases by increasing
the interaction strength up to the collapse. In the lower
panel of Fig. 1 we plot the energy per particle E/N as
a function of γ(N2 − 1)1/2. We compare our variational
energy given by Eqs. (10,11) with the McGuire (MG)
energy given by Eq. (10) and σ = 1. As expected the
variational GMG energy is lower than the MG energy
giving a better determination (upper bound) of the true
ground state of the many-body system.
It is important to observe that the axial McGuire wave

function is invariant by a global translation of the posi-
tions of the particles. As shown by Calogero and De-
gasperis [12], and also by Castin and Herzog [14], the
wave function of Eq. (8) can be normalized by imposing
that its center of mass zcm is fixed, namely

∫

δ(z − zcm)|f |2 dz1...dzN = N . (14)

The density of particles with respect to zcm is then given
by

ρ(z) =

∫

δ(zcm)δ(z1 − z)|f |2 dz1 ... dzN . (15)

Following Calogero and Degasperis [12] we immediately
find

ρ(z) =
γ

σ2

N−1
∑

l=1

(−1)l+1l(N !)2 exp
(

−γlN |z|/σ2
)

(N + l − 1)!(N − l− 1)!
. (16)

For N ≫ 1 this formula can be approximated by

ρ(z) =
γN2

4σ2
sech2

(

γN

2σ2
z

)

, (17)

that is the first term in a 1/N expansion of the previ-
ous expression. Obviously, only for σ = 1 the Eq. (16)
gives the 1D solitonic profile predicted by Calogero and
Degasperis [12]. In our variational GMG scheme σ is not
constant and must be determined using the Eq. (11).

IV. COMPARISON WITH THE 3D GPE

Here we compare the GMG wave function with the
fully 3D Hartree wave function, from which one obtains
the 3D Gross-Pitaevskii equation (GPE). The 3D Hartree
approximation is obtained by setting

Ψ(r1, ..., rN ) = N1/2
N
∏

i=1

ψ(ri) . (18)

Inserting this many-body wave function into Eq. (2) with
Eq. (4), after integration one finds the Gross-Pitaevskii
energy functional

E[ψ(r)] = N

∫

ψ∗

[

−
1

2
∇2 +

1

2
(x2 + y2)

−
1

2
2πγ(N − 1)|ψ|2

]

ψ d3r . (19)

By minimizing this energy functional with respect to ψ(r)
with the constraint of the normalization

∫

|ψ|2d3r = 1
one finds the familiar mean-field 3D GPE given by

[

−
1

2
∇2 +

1

2
(x2 + y2)− 2πγ(N − 1)|ψ|2

]

ψ = µ ψ , (20)

where µ is the chemical potential fixed by the normal-
ization. We solve the stationary GPE by using a finite-
difference Crank-Nicolson predictor-corrector algorithm
with imaginary time [15].
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FIG. 2. Density profile ρ(z) of the bright soli-
ton solution obtained with three different theories:
Gauss-McGuire (GMG), McGuire (MG) and the Gross-
Pitaevskii equation (GPE).Four values of the interaction
strength: (a) γ(N − 1) = 0.7; (b) γ(N − 1) = 0.9; (c)
γ(N − 1) = 1; (d) γ(N − 1) = 1.2. N is the number of
particles and γ = 0.001.

In Fig. 2 we plot the solitonic density profile of the
GPE and compare it with the profile of GMG theory, i.e.
Eq. (16) with σ given by Eq. (11). We insert also the soli-
tonic profile of the MG theory, i.e. Eq. (16) with σ = 1.
Up to the collapse our GMG solitionic profile is close to
the GPE one; there are instead relevant deviations with
respect to the MG soliton (which does not collapse). Our
numerical integration of the GPE gives the collapse for
γ(N − 1) ≃ 1.35 in agreement with previous computa-
tions [16] and not too far from the analytical prediction
of Eq. (13). The GPE critical strength is very close
to the analytical prediction γ(N − 1) = 4/3 ≃ 1.33 of
the non-polynomial Schrodinger equation (NPSE) [4,5].
However the NPSE is not an exact variational equation:
it was obtained from the GPE by neglecting some space
derivatives (for details see [4] and [17]).
The results of Fig. 2 are obtained by setting γ = 0.001.

In Fig. 3 we use the same value of γ, that is relevant for
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the experiments performed with Bose-Einstein conden-
sates of 7Li atoms [18,19]. Fig. 3 shows the energy per
particle E/N , the chemical potential µ, the density per
particle ρ(0)/N , and also the transverse width σ of the
soliton as a function of the number N of bosons. The
GMG energy (solid line) is always close to the GPE en-
ergy (dotted line) and near the collapse the energy differ-
ence slightly increases. Chemical potentials and densities
have a similar behavior. Fig. 3 shows that for a large
number N of bosons the MG theory (dashed lines) dif-
fers with respect to the other two theories: for N > 750
deviations are clearly visible.
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FIG. 3. Bright soliton properties. Comparison among
different theories: Gauss-McGuire (solid line), McGuire
(dashed line) and the Gross-Pitaevskii equation (dotted
line). (a) Energy per particle E/N . (b) Chemical po-
tential µ. (c) Axial density per particle ρ(0)/N at the
origin. (d) Transverse width σ at z = 0. N is the num-
ber of particles and γ = 0.001.

The panel (d) of Fig. 3 shows that the transverse width
σ decreases by increasing N for both the GPE and the
GMG theory; however σ stays always of the order of one
up to the collapse. Note that the transverse width σ ob-
tained by using the GPE depends on the axial coordinate
z. In the plot we choose σ at z = 0, that is the lower
value of the transverse width.
The variational principle says that the lowest energy

indicates the most accurate solution. The variational
principle applies when different variational solutions for
the same Hamiltonian are compared. In our case, the
Hamiltonian is given by Eq. (1) with Eq. (4) and the
three variational solutions are: the GMG one given by
Eq. (3) and Eq. (8), the MG one given by Eq. (3) with

σ = 1 and Eq. (8), and the GPE one given by Eq. (19).
For N = 1 the three theories give the same value of en-
ergy: E/N = 1. The top panel of Fig. 3 shows that for
a large N the GPE gives the lowest energy. We expect
that for a small N the GMG theory and the MG theory
are more reliable than the GPE. To verify this predic-
tion we choose a larger value of γ, namely γ = 0.01, and
calculate numerically the GPE energy of Eq. (19) for all
integer values of N up the the collapse. The results are
shown in Fig. 4 where we plot the energies for increasing
values of N .
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FIG. 4. Energy per particle E/N as a function of the
number N of bosons. Comparison among different theo-
ries: Gauss-McGuire (solid line), McGuire (dashed line)
and the Gross-Pitaevskii equation (filled circles). Here
γ = 0.01.

For 1 < N < 40 the GMG energy (solid line) and
the MG energy (dashed line) are indistinguishable but
both lower than the GPE energy (filled circles). Around
N = 60 the GPE energy becomes lower then the MG en-
ergy but still higher than the GMG energy. Only around
N = 100 the GPE energy becomes smaller than the
GMG energy. At N = 136 there is the collapse of the
GPE solitonic solution while the GMG soliton collapses
at N = 153. Just before the collapse of the GPE solu-
tion, i.e. for N = 135, the relative difference ∆R between
GPE energy and GMG energy is 0.79%, while ∆R be-
tween GPE energy and MG energy is 2.68% (see also the
upper panel of Fig. 5).
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FIG. 5. Energetic relative difference ∆R (percentual)
as a function of the number N of bosons. Circles: ∆R be-
tween McGuire and Gauss-McGuire. Filled squares: ∆R

between Gross-Pitaevskii equation and Gauss-McGuire.
Triangles: ∆R between Gross-Pitaevskii equation and
McGuire.

Similar results are obtained by setting γ = 0.001. Here
the energetic relative difference ∆R between GPE and
MG theory changes sign around N = 270. Instead ∆R

between GPE and GMG theory changes sign aroundN =
480. Just before the collapse of the GPE solution, i.e for
N = 1334, ∆R is 2.86% and 1.00% respectively.
To better study beyond mean-field effects we perform

numerical calculations for various values of γ in the inter-
val [0.01, 0.1]. The results are reported in Fig. 5, where
we plot the energetic relative difference ∆R for three val-
ues of the inter-atomic strength γ. The figure shows that
the energy of the GMG theory is always smaller than
the energy of the MG theory; in fact, their relative dif-
ference ∆R (curves with circles) is always positive. The
behavior of the curves in the three panels reveals that by
growing γ the range of N reduces and the range of ∆R

increases. The curves with triangles (GPE energy mi-
nus GMG energy) and also the curves with filled squares
(GPE energy minus MG energy) show that by fixing the
number N of particles and increasing the strength γ, the
beyond mean-field effects become more important. Fig.
5 shows that for γ = 0.05 and γ = 0.1 the GMG theory
gives a lower energy than the GPE up to the collapse. We
find that the critical strength γs beyond which the GMG
theory is better than the GPE for all N is γs = 0.044;
in this regime the critical number Nc of particles for the
collapse predicted by the GMG theory is more reliable
than the GPE one.

V. CONCLUSIONS

We have introduced a beyond mean-field many-body
wave function which describes dilute attractive bosons
under transverse harmonic confinement. This variational
approach, that we have called Gauss-McGuire theory,
gives simple analytical formulas for the ground-state en-
ergy and the solitonic density profile. These formulas
are in good agreement with the numerical results of the
3D mean-field theory. By comparing the ground-state
energies, we have verified that for small numbers of par-
ticles the Gauss-McGuire theory is better than the 3D
mean-field theory while the 3D mean-field theory is more
reliable for a large number of particles and a small inter-
atomic strength.
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