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Despite brain physiological functions or pathological dysfunctions relying on

the activity of neuronal/non-neuronal populations, over the last decades a

plethora of evidence unraveled the essential contribution of the microbial

populations living and residing within the gut, called gut microbiota. The gut

microbiota plays a role in brain (dys)functions, and it will become a promising

valuable therapeutic target for several brain pathologies. In the present mini-

review, after a brief overview of the role of gut microbiota in normal brain

physiology and pathology, we focus on the role of the bacteriumClostridioides

di�cile, a pathogen responsible for recurrent and refractory infections,

in people with neurological diseases, summarizing recent correlative and

causative evidence in the scientific literature and highlighting the potential

of microbiota-based strategies targeting this pathogen to ameliorate not only

gastrointestinal but also the neurological symptoms.
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Introduction

The brain is an organ composed of neuronal and non-neuronal cell populations

extremely interconnected in complex structural and functional networks that generate

and control our behaviors from perception to motor action. Being so complex, it

does not come as a surprise that a number of human pathological conditions involve

in fact brain dysfunctions. Although genetic and experience-dependent actors surely

control, modulate, and influence brain physiology and pathology, over the last decades

it became clear that the brain is not alone. Starting from the pioneering studies on

microbial ecology back in the 70s (Savage, 1977), the following scientific research

on the microbiome (or biome) shed light and revealed the essential contribution of

the microbial population living within the human body to the general physiological

functions and health of an individual (Liang et al., 2018). In particular, those living

and residing in the gastrointestinal tract (GIT) are referred to as gut microbiota,

weights in total approximately akin to the human brain and communicating with

the latter via the gut–brain axis where (i) microbial signals and metabolites are

transmitted across the intestinal epithelium and via different pathways such as the

trimethylamine (TMA)/trimethylamine N-oxide (TMAO), the short-chain fatty acids
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(SCFAs), and the primary and secondary bile acid (BAs)

pathways; (ii) the vagus nerve acts as communication pathway

(Rhee et al., 2009; Grenham et al., 2011); (iii) moreover,

bacteria themselves are able to synthesize and then regulate the

level of many neurotransmitters in the brain including major

(GABA and glutamate) and neuromodulatory ones (serotonin,

dopamine, and norepinephrine) (Desbonnet et al., 2010; Yano

et al., 2015; Liu et al., 2017; Strandwitz et al., 2019). For

these reasons, the gut microbiota and the brain influence

each other via a bidirectional axis (the gut–brain axis), where

the gut microbiota can exert control on brain functions in

normal physiological conditions (from neurodevelopment till

adulthood) and contribute to neurodevelopmental disorders

(i.e., autism, schizophrenia, and Rett syndrome) andmajor brain

diseases (i.e., Alzheimer’s and Parkinson’s diseases) (Grenham

et al., 2011; Biagi et al., 2014; Mulak and Bonaz, 2015; Strati

et al., 2016; Bonfili et al., 2017; Borghi et al., 2017; Vogt et al.,

2017; Scheperjans et al., 2018; Winter et al., 2018; Ma et al., 2019;

Deidda and Biazzo, 2021).

Brain and gut brain: From
neurophysiology and
neuropathology to
microbiota-based perspectives

Prenatally (in utero), the microbiota derived from the

mother can influence (i) fetal brain development by means

of metabolites reaching the fetus (Gomez De Aguero et al.,

2016; Li et al., 2020), (ii) the development of the brain–

blood barrier (Braniste et al., 2014), (iii) brain microglia cells

(Thion et al., 2018), and (vi) thalamo-cortical axons growth

(Vuong et al., 2020). Early in the postnatal life, the microbial

colonization of the infant gut, who inherits the own microbiota

via the first swallow and breastfeeding, keeps playing a role

in normal brain development and maturation of adult brain

functions. It has been demonstrated that animals with absent

microbiota throughout life (so-called germ-free animals) show

alterations in cognition, social behavior, and stress response

in the adult life (Cryan and Dinan, 2012). Later in life, the

gut microbiota can influence complex brain functions, such

as social interactions by acting on the nutritional behavior of

individual animals (Pasquaretta et al., 2018) and regulating

pain, anxiety, mood and cognition (Cryan and Dinan, 2012). In

mice, administration of Campylobacter jejuni triggers anxiety-

like behaviors through a vagal-mediated pathway (Goehler et al.,

2005). Patients with inflammatory bowel diseases display altered

(i) microbial diversity and (ii) anxiety and depression behaviors

(Barberio et al., 2021; Dubinsky et al., 2021).

Defective brain developments had been associated with a

number of neurodevelopmental disorders, including, among

others, autism spectrum disorder (ASD), schizophrenia

spectrum disorders and Down syndrome (Di Cristo,

2007; Deidda et al., 2014, 2021). ASD is characterized by

deficits in social communication, social interaction and

restricted/repetitive behavioral patterns. GIT symptoms

represent common comorbidity in ASD (Molloy and Manning-

Courtney, 2003) and can worsen irritability and self-injury in

patients (Carr and Owen-Deschryver, 2007). GIT symptom

severity increases with the severity of ASD symptoms (Wang

et al., 2011; Kho and Lal, 2018). Navarro et al. (2016) described

that children with ASD represent a high percentage of patients

that reports also GIT dysfunctions (Navarro et al., 2016).

Apart from GIT symptoms, ASD is characterized also by

an altered gut microbiota profile (Cao et al., 2013) showing

higher levels of Desulfovibrio species, Bacteroides vulgatus, and

Clostridium bolteae (Finegold et al., 2010; Wang et al., 2012;

Pequegnat et al., 2013). Schizophrenia spectrum disorders

are characterized by positive symptoms, negative symptoms,

and cognitive symptoms. Gut microbiota alteration was

described in several clinical trials finding an increase in

Lactobacillus, Saccharophagus, Ochrobactrum, Tropheryma,

Halothiobacillus, Deferribacter, and Halorubrum (at the genus

level) (Schwarz et al., 2018). These trials found also a decrease

in Anabaena, Nitrosospira, and Gallionella (at the genus

level) (Schwarz et al., 2018) and an increase in Candida

albicans fungal species specifically in males (Severance et al.,

2016). In Rett syndrome, an X chromosome-linked dominant

neurodevelopmental disorder sharing features with ASD, GIT

and nutritional problems are common (Motil et al., 2012), as

well gut microbiota dysbiosis in terms of relative abundances

of both bacterial and fungal components (Strati et al., 2016).

Also, people with Down syndrome, the most frequent genetic

cause of intellectual disability caused by the trisomy of human

chromosome 21 (Bittles et al., 2007; Dierssen, 2012; Deidda

et al., 2015; Contestabile et al., 2017), show gut microbiota

dysbiosis with differences in Parasporobacterium spp. and

Sutterella spp, Veillonellaceae (Biagi et al., 2014).

Not only in neurodevelopmental disorders but gut

microbiota dysbiosis was widely reported also in major

neurodegenerative diseases. For example, Alzheimer’s disease

is the first most common form of dementia in elderly life

characterized by irreversible neurodegeneration impacting

learning and memory functions (Wimo et al., 2017). In this

pathology, the gut microbiota composition shows a decreased

number of Firmicutes and Actinobacteria and an increased

number of bacteria belonging to the Proteobacteria and

Bacteroidetes phyla (Vogt et al., 2017). Strikingly, microbiota

alterations might arise earlier than Alzheimer’s clinical

symptoms (Li et al., 2019).

Parkinson’s disease is the second most common

neurodegenerative disorder of aging (Disease et al., 2016),

it results primarily from the death of dopaminergic neurons

in the substantia nigra pars compacta in the basal ganglia,

and it impacts motor movements (Moore et al., 2005; Antony
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et al., 2013). GIT symptoms are common including abdominal

pain, bloating, and constipation (Abbott et al., 2001; Fasano

et al., 2015; Georgescu et al., 2016; Santos et al., 2019).

Also, gut microbiome dysfunctions are common (Hamano

et al., 1993; Clairembault et al., 2015; Hasegawa et al., 2015;

Keshavarzian et al., 2015; Klingelhoefer and Reichmann, 2015;

Mulak and Bonaz, 2015; Unger et al., 2016; Bedarf et al.,

2017; Hill-Burns et al., 2017; Parashar and Udayabanu, 2017;

Scheperjans et al., 2018; Sun and Shen, 2018; Breen et al., 2019;

Mihaila et al., 2019; Santos et al., 2019) with changes in the

gut bacterial abundances of microbes (such as Prevotellaceae

and Enterobacteriaceae) (Scheperjans et al., 2015), reduced

content of Dorea, Bacteroides, Prevotella, Faecalibacterium,

Bacteroides massiliensis, Stoquefichus massiliensis, Bacteroides

coprocola, Blautia glucerasea, Dorea longicatena, Bacteroides

dorei, Bacteroides plebeius, Prevotella copri, Coprococcus

eutactus, and Ruminococcus callidus, and an increased

content of Ruminococcus bromii, Christensenella, Catabacter,

Lactobacillus, Oscillospira, Bifidobacterium, Christensenella

minuta, Catabacter hongkongensis, Lactobacillus mucosae,

and Papillibacter cinnamivorans (Bedarf et al., 2017; Petrov

et al., 2017). Thereby, a plethora of evidence indicates that gut

microbiota dysfunctions populate brain pathologies in humans.

These pieces of evidence are more correlative than causative; in

fact, direct strong causative evidence is still lacking in the clinic

scientific literature and requires more investigations.

As far as the mechanisms underlying the link between the

gut microbiota and neurodegenerative disorders (Parkinson’s

and Alzheimer’s diseases) are concerned, these include gut

microbiota-induced chronic inflammation, autoimmune

dysregulation, protein misfolding, and defective protein

clearance (Padhi et al., 2022). The gut dysbiosis would ultimately

be responsible for triggering immune cell activation leading

to the disruption of the intestinal and the blood–brain barrier

permeability. In particular, the increased gut permeability would

allow to pathogenic bacteria to infiltrate and release metabolites

and endotoxins (e.g., the lipopolysaccharide, LPS) that can

trigger chronic systemic inflammation and neurodegeneration

(Brown, 2019).

The concept that gut microbiota affects also the brain and

that brain–gut communication dysfunctions might play a role in

the pathogenesis of neurological psychiatric disorders brought

to a general interest into the search for new therapeutic solutions

to tackle these pathologies, including prebiotics, synbiotics and

probiotics (Wang et al., 2016; Markowiak and Slizewska, 2017;

Deidda and Biazzo, 2021). For example, clinical studies exploited

the use of probiotics in ameliorating the core symptoms of

children with ASD: i) Kaluzna-Czaplinska and Blaszczyk (2012)

showed that probiotic Lactobacillus acidophilus controls the

level of D-arabinitol (a metabolite of most pathogenic Candida

species) (Kaluzna-Czaplinska and Blaszczyk, 2012), ii) Shaaban

et al. (2018) showed that probiotics Lactobacillus acidophilus,

Lactobacillus rhamnosus, and Bifidobacteria longum improved

the severity of autism and GIT symptoms (Shaaban et al., 2018),

while iii) Santocchi et al. (2020) showed that the De Simone

probiotic formulation (containing an eight-strain cocktail of

probiotics belonging to Lactobacillus, Bifidobacterium, and

Streptococcus genus) decreased the severity of ASD score in

the group of children without GIT symptoms (Santocchi et al.,

2020).

In clinical trials in people with Parkinson’s disease, (i)

Lactobacillus casei shirota improved stool consistency and

defecation (Cassani et al., 2011), (ii) Lactobacillus acidophilus

and Bifidobacterium infantis improved abdominal pain and

bloating (Georgescu et al., 2016), and (iii) a probiotic

mixture containing Lactobacillus acidophilus, Lactobacillus

reuteri, Bifidobacterium bifidum, and Lactobacillus fermentum

improved movement and metabolic parameters (Tamtaji

et al., 2019). In animal models of Parkinson’s disease,

Lacticaseibacillus rhamnosus HA-114 improved hippocampal-

dependent cognition deficits (Xie and Prasad, 2020).

In clinical trials in people with Alzheimer’s disease, a

mixed-species probiotic (including Lactobacillus acidophilus,

Lactobacillus casei, Bifidobacterium bifidum, and Lactobacillus

fermentum) improved the mini-mental state examination

(MMSE) scores (Akbari et al., 2016). Recent meta-analysis

studies showed an improvement in cognitive performance in

people with Alzheimer’s disease or mild cognitive impairment

administered with probiotics (Den et al., 2020). In animal

models of Alzheimer’s disease, Bifidobacterium breve strain A1

prevented the cognitive dysfunctions induced by Aβ (Kobayashi

et al., 2017), while Bonfili et al. (2017) showed that the SLAB51

probiotic formulation decreased the cognitive decline by means

of a reduction in brain damage (Bonfili et al., 2017).

C. di�cile in brain pathologies

Clostridioides difficile (C. difficile) is an anaerobic gram-

positive spore-forming bacterium emerging as an important

pathogen in humans and being responsible for major infections

in hospitalized patients (Eyre et al., 2013). It produces

toxins (enterotoxin and cytotoxin which disrupts cytoskeleton

signal transductions) that give rise to diarrhea, inflammation,

dehydration, abdominal pain, loss of appetite, and nausea in

infected patients (Di Bella et al., 2016). C. difficile eradication is

difficult to achieve because of its high resistance to antibiotics

that only recently begins to be elucidated (O’grady et al.,

2021;Wickramage et al., 2021). Fecal microbiota transplantation

(FMT), namely the transplant of fecal stools from healthy donors

into infected patients (Zhang et al., 2018; Biazzo and Deidda,

2022), represents nowadays the tool used for the eradication of

recurrent and refractory (where antibiotic treatment has failed)

C. difficile infections in the GIT (Rossen et al., 2015), and also

in other pathological conditions such as in ulcerative colitis and

obesity (Carlucci et al., 2016).
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TABLE 1 Summary of the studies related to the potential involvement of C. di�cile in brain pathologies.

Brain pathology Main findings Selected references

Autism Spectrum Disorders (ASD) Dysbiosis in the gut microbiota composition with an overrepresentation of

Clostridioides species in autistic children in comparison to healthy control
Finegold et al., 2002; Song et al., 2004;

Critchfield et al., 2011; Navarro et al., 2016

Improvement of diarrhea, communication and behavioral symptoms upon

vancomycin administration in children with severe ASD
Molloy and Manning-Courtney, 2003

Parkinson’s disease People within 2 years from the first diagnosis with C. difficile infection were

at increased risk to develop the disease
Kang et al., 2020

Alzheimer’s disease Fecal microbiota transplantation improved gastrointestinal, cognitive and

mood symptoms together with eradication of C. difficile in two patients
Hazan, 2020; Park et al., 2021

Multiple sclerosis Fecal microbiota transplantation resolved C. difficile infection and

improved constipation and neurological symptoms in four patients
Borody et al., 2011; Makkawi et al., 2018

As far as C. difficile in brain pathologies is concerned

(Table 1), different studies found out a major dysbiosis in

the gut microbiota composition in children with ASD in

comparison with control (Finegold et al., 2002; Navarro et al.,

2016) with an overrepresentation of Clostridioides species and

underrepresentation of Bifidobacteria (Finegold et al., 2002;

Song et al., 2004; Critchfield et al., 2011). The main limitation of

these studies relies on the fact that pyrosequencing studies were

exploited reporting alterations at the level of the Clostridium

genus without verifying whether there is an actual alteration in

the relative abundance of C. difficile.

The link between C. difficile infection and ASD is far

to be elucidated. In mankind, administration of vancomycin,

the drug of choice for C. difficile infections, improved

diarrhea, but also communication and behavioral symptoms

in children with severe ASD; however, these improvements

regressed after drug withdrawal (Molloy and Manning-

Courtney, 2003) suggesting that the C. difficile infection

might be in part responsible. Studies in animal models found

out that (i) mice treated with the short-chain fatty acid

called propionic acid, a metabolite produced by Clostridioides

species, develop autistic-like behaviors (Shultz et al., 2015),

thereby identifying a possible causal link between the pathogen

and ASD. However, propionic acid is produced by several

taxa, not just C. difficile, thereby limiting the result of

the study.

Concerning major neurodegenerative diseases, a Swedish

population-based cohort study investigated whether C. difficile

could represent a causative agent for Parkinson’s disease by

exploring the association between infection history and future

disease risk. The study found out that people within 2 years from

the first diagnosis with C. difficile infection were at increased risk

to develop the disease in comparison with the group without the

infection. Instead, in longer follow-up (more than 2 years), the

infection was not associated with Parkinson’s disease occurrence

(Kang et al., 2020).

The link between C. difficile and brain pathologies has not

been elucidated yet, but possible mechanisms recently come

out in the spotlight. For example, it has been recently shown

that C. difficile alters the metabolism of the neurotransmitter

dopamine in the mouse brain, thus interfering with those

cognitive functions that involve the neuromodulatory action of

dopamine, such as motivation and memory consolidation in

rodents (Vinithakumari et al., 2022). Thus, C. difficile might

exert a control on the brain with a mechanism similar to those

one exploited already by other micro-organisms that alter the

level of neurotransmitters, for example, Lactococcus bacteria

(Strandwitz et al., 2019), Bifidobacterium infantis (Desbonnet

et al., 2010), orToxoplasma gondii (Luder et al., 1999).Moreover,

being C. difficile a pathogen synthetizing toxins, the mechanisms

that ultimately lead impacting the brain might likely imply those

already described for other bacteria which toxins can lead to a

proinflammatory state (Brown, 2019).

Microbiota-targeted strategies
targeting C. di�cile in brain
pathologies

As far as microbiota-based strategies targeting C. difficile

are concerned, when used to resolve infections caused by C.

difficile in people with neurological diseases, FMT proved to be

effective also in ameliorating neurological symptoms (Evrensel

and Ceylan, 2016; Wortelboer et al., 2019; Vendrik et al., 2020;

Xu et al., 2021).

Few clinical trials exploited FMT intervention in ASD and

reported improvements in GIT and behavioral symptoms (Kang

et al., 2017, 2019), although the authors did not specifically enroll

children with ASD affected also by C. difficile infection.

Following a study in a mouse model of Alzheimer’s disease

showing positive results on Aβ and tau pathology obtained after

FMT from control mice (Sun et al., 2019), Park et al. (2021) very
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recently exploited the FMT strategy in a person with Alzheimer’s

disease diagnosed with C. difficile infection. Since the classic

antibiotic therapy failed in resolving the infection, the patient

received two FMTs using fecal samples obtained from a healthy

donor. After the transplantation, the author reported a general

improvement of GIT symptoms together with elimination of C.

difficile in the stools. More interestingly, to what it concerns the

neurological aspect, the authors reported a general improvement

in cognitive and mood symptoms (i.e., non-verbal learning,

short-termmemory and attention) (Park et al., 2021). Afterward,

another work recapitulated the latter findings in a person with

Alzheimer’s disease who received FMT from his wife (Hazan,

2020). Altogether, these studies show that FMT might be taken

into account when considering strategies aimed at efficiently

tackling C. difficile infection and also improving GIT and

cognitive deficits in people with Alzheimer’s disease.

As far as multiple sclerosis is concerned, two studies

explored FMT effects in four patients affected also by C.

difficile infection (Borody et al., 2011; Makkawi et al., 2018).

As reported in Alzheimer’s disease, fecal stools derived from

healthy donors resolved not only the infection caused by

C. difficile but also improved constipation and neurological

symptoms. Surprisingly, some patients showed also progressive

improvement of leg paranesthesia and were eventually able to

walk for long distances without help.

Antibiotic use is surely a primary risk factor for infection

caused by C. difficile, but whether other medications could

have an impact is not fully explored yet. In a recent study,

Lalani et al. (2020) investigated in a group of US veterans

whether the use of antidepressant and GABAergic drugs could

contribute as a risk factor for the development of infections

caused by C. difficile. The study found that antidepressant

drug use was not correlated with risk of infection; instead,

GABAergic drug use (benzodiazepines in particular) was

associated (Lalani et al., 2020). C. difficile also been shown

to result in severe brain infarction and thromboembolism

(Kumar et al., 2021), but very few information is currently

available and further investigations are needed to deeper study

the correlation.

Conclusion

Altogether, gut microbiota dysbiosis results in unbalanced

microflora composition and plays a role in influencing brain

functions and a number of brain pathologies (Deidda and

Biazzo, 2021). In particular, C. difficile infection populates

brain pathologies and the remarkable amelioration of clinical

brain-related symptoms following C. difficile eradication in

the gut could open up as a future perspective, the possibility

of therapeutic interventions based on the exploitation of gut

microbiota-targeted therapy for brain diseases to be used in the

first place rather than being used as parallel therapy when also

GIT dysfunctions are involved.
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