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Abstract— Network slicing is a key feature of 5G and beyond
networks, allowing the deployment of separate logical net-
works (network slices), sharing a common underlying phys-
ical infrastructure, and characterized by distinct descriptors
and behaviors. The dynamic allocation of physical network
resources among coexisting slices should address a challenging
trade-off: to use resources efficiently while assigning each slice
sufficient resources to meet its service level agreement (SLA).
We consider the allocation of time-frequency resources from
a new perspective: to design a control algorithm capable of
learning over the operating network, while keeping the SLA
violation rate under an acceptable level during the learning
process. For this purpose, traditional model-free reinforcement
learning (RL) methods present several drawbacks: low sample
efficiency, extensive exploration of the policy space, and inability
to discriminate between conflicting objectives, causing inefficient
use of the resources and/or frequent SLA violations during the
learning process. To overcome these limitations, we propose a
model-based RL approach built upon a novel modeling strategy
that comprises a kernel-based classifier and a self-assessment
mechanism. In numerical experiments, our proposal, referred
to as kernel-based RL, clearly outperforms state-of-the-art RL
algorithms in terms of SLA fulfillment, resource efficiency, and
computational overhead.

Index Terms— Radio access network (RAN) slicing, resource
allocation, model-based reinforcement learning (MBRL), online
learning.

I. INTRODUCTION

NETWORK slicing is a core feature of 5G networks that
allows the deployment of multiple logical networks over

a common physical infrastructure, each providing a specific
type of service, such as enhanced mobile broadband (eMBB)
or massive machine type communications (mMTC). These
logical networks, referred to as network slices, can be man-
aged and exploited by third party entities or tenants. Under
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this paradigm, the infrastructure provider has to assign the
necessary spectrum, backhaul, and computational resources to
each network slice to fulfill the service level agreement (SLA)
established with the tenant of that slice. The SLA specifies
a set of requirements on performance indicators, such as
throughput or latency, that depend on the tenant’s preferences
and service type. The allocation of resources should guarantee
that network slices are properly isolated from each other, but
this allocation should also be resource-efficient and elastic
under varying radio and network traffic conditions [1].

In the radio access network (RAN), the radio frequency (RF)
resources of each base station should be distributed among
the network slices of the users (UE) connected to that base
station, based on the states of the slices and their SLAs. The
state of a network slice is determined by its traffic descriptors,
its current distribution of resources, and the radio channel
conditions of its UEs, resulting in state observations that
can potentially involve multiple variables. For example, in an
eMBB slice, the observation could comprise the incoming
data rate, the delivered data rate, the buffered data, and the
resources occupied by each type of traffic, plus the channel
quality indicators per user flow. Besides, the SLAs involve a
diverse combination of requirements which can be defined in
terms of aggregated metrics. The SLA of an eMBB slice could
set an average delay objective for guaranteed bit rate (GBR)
flows whenever the resources occupied by this type of traffic
are below a predefined level. See [2] for other examples of
SLA configurations. Determining the minimum share of RAN
resources fulfilling a specific SLA in each observed state is a
challenging task, and is further complicated by the interactions
with the mechanisms operating within each slice on a per-flow
basis, such as scheduling algorithms or adaptive modulation
and coding schemes.

Our objective is to develop a control algorithm capable
of learning how to allocate RAN resources in an efficient
way, maximizing the amount of free resources available to
the infrastructure provider, while guaranteeing the SLAs of
the hosted tenants. A crucial feature of our proposal is its
plug-and-play capability, enabling it to learn on an operating
network (online learning), without any previous information
about the system’s response.

Reinforcement Learning (RL) has become the most widely
used control technique for radio resource management [3] in
general, and resource orchestration in network slices [4], [5]
in particular. The main limitation of previous works is their
use of a model-free RL (MFRL) approach, which can be
very effective if the agents are trained offline, either with a
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simulator or with samples obtained from the real system, but
is not especially suitable when the agents learn on a network
in operation (online learning). MFRL algorithms generally
require a large number of samples, which involves an extensive
exploration of policies, including inefficient ones. In our
scenario, this may lead to long training periods containing
multiple episodes of SLA violations and/or excessive resource
over-provisioning, which are detrimental to both the tenants
and the infrastructure provider.

We propose a novel approach to the problem of dynamic
allocation of RAN resources among network slices, and make
the following contributions:

• We present a new perspective that focuses on the impor-
tance of learning online (on the real system in operation),
efficiently (with few samples), and safely (degrading
as little as possible the QoS provided by the network
slices).

• To this aim, we use a model-based RL (MBRL) approach,
which overcomes much of the limitations of the usual
MFRL approaches. MBRL allows for greater sample effi-
ciency and gives us more control over the two objectives
pursued: maximizing the efficiency in the use of resources
and guaranteeing the SLA of the slices.

• We develop a novel modeling scheme comprising a
nonlinear classifier and an estimator of the classifier’s
accuracy. The classifier is based on a kernel-based online
learning scheme known as Projectron [6] that we enhance
with a sample augmentation strategy that exploits the
structure of our problem. As a result, we propose a novel
mechanism referred to as kernel-based RL (KBRL) aimed
at learning efficient resource allocation policies under
SLA constraints.

• We compare our proposal with state-of-the-art RL algo-
rithms by means of extensive simulations over diverse
environments, providing one of the most complete empir-
ical evaluations of RL in this application so far. Our
results show that KBLR systematically outperforms the
baselines in terms of resource usage, SLA fulfillment
guarantees and computational overhead.

The rest of this paper is organized as follows. Section II
discusses related work. The system under study is described
in Section III and the addressed problem is formulated in
Section IV. We provide the necessary preliminaries about
online learning with kernels in Section V, and then we present
our proposal in Section VI. The numerical results are provided
in Section VII and finally we summarize our conclusions in
Section VIII.

II. RELATED WORK

Network slicing has received considerable attention from the
research community and the industry during the last five years.
Survey papers like [1], [7], [8] provide an extensive coverage
of recent contributions on different aspects of this network
functionality. These papers also identify open problems and
research challenges in network slicing, including the one
addressed in our paper: to dynamically scale up/down the RAN
resources assigned to network slices so that SLA requirements

are met while the RF spectrum is efficiently utilized [1], [7].
In line with our proposal, [8] highlights the importance of the
computational overhead of these algorithms, arguing that small
computing times allow a more frequent update of the resource
allocation, thus improving the elasticity of the system.

Network slices make use of resources in all sections of
the underlying network, including RF spectrum, fronthaul,
backhaul, and computational resources for virtualized network
functions. Resource management in network slicing is there-
fore a broad topic, where we find related works focused on
different network elements such as computational resources
[9]–[11], radio resources [12], [13], or a combination of radio
and computational resources [14], [15]. Two main resource
management mechanisms have been studied: admission con-
trol for on-demand slice deployment [9], [15]–[17], and
dynamic resource scaling for active slices [11], [13], [18], [19].
Our proposal falls in the latter category.

Although a variety of techniques have been used for
resource management (e.g., queueing theory [17], Lagrange
methods for optimization [12], [20], Thompson sampling [21],
heuristic methods [22]), those based on artificial intelli-
gence (AI) are currently the most widely used. Indeed, AI is
considered a key architectural feature for providing resource
elasticity in future networks [5]. Consequently, RL is becom-
ing a standard approach for resource management in network
slicing. The main issues addressed by RL in this domain have
been: resource management for virtualized functions [9], [11],
[23]–[26], admission control of new slices [9], [15], [16],
handling of computational resources in mobile edge computing
(MEC) [11], [27], [28], UE scheduling [29], [30], and radio
resource allocation among network slices [13], [18], [19], [31],
[32], which is the problem addressed in this work.

Radio resource allocation comprises two conflicting objec-
tives: 1) to maximize efficiency in the use of resources (spec-
trum efficiency, SE), and 2) to maximize the SLA satisfaction
rate (SSR). However, conventional RL formulations are limited
to a single objective function, and consequently these previous
works need to aggregate both objectives into a single one by
means of a weighted sum of both metrics (SE and SSR), or by
multiplying them [31]. The problem with this approach is that
it cannot establish a performance target on some objective,
e.g., to guarantee that the SSR remains above a desired level.
Moreover, the relative performances of SE and SSR vary from
one scenario to another (as shown in Section VII), and thus
a fine tuning of weights should be done by trial and error,
limiting the feasibility of this approach for online learning,
which is the challenge addressed by our proposal.

Algorithms like Q-learning, used in [19], or its deep learning
version, DQN, used in [18], are conceived for discrete action
spaces thus, as noted in [13], they become infeasible as the
number of network slices increases, since the number of
actions grows almost exponentially with the number of slices.
Note that [19] and [18] considered scenarios with relatively
small action spaces (2 and 3 network slices respectively).
To overcome this limitation, [13] proposes the use of nor-
malized advantage functions (NAF), a technique allowing the
use of DQN strategies for continuous action spaces. In fact,
transforming the discrete action space into a continuous one
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is a standard strategy for applying RL in this problem, and is
the one that we adopted to evaluate the RL baselines in our
experiments.

But the most distinctive feature of all these previous works
is the use of model-free RL methods, which require relatively
long training periods. Using a simulator for training MFRL
agents can be extremely costly, and does not offer sufficient
performance guarantees when agents are deployed in pro-
duction, since it is practically impossible to replicate all the
relevant aspects of a real network in a simulator. If the agents
are trained on a real operating network (online learning), the
system will experience poor performance during the learning
periods, because MFRL agents need to explore multiple poli-
cies before they converge to an efficient one. For example, the
distributional RL approach of [32] required between 5000 and
15000 steps to converge, and [31] trained its DQN-based
proposal during 2×106 steps before performing the evaluation
experiments. In contrast, we follow a model-based approach,
aimed at increasing the sample efficiency of the learning
process so that the control algorithm is suitable for online
learning. There are no precedents of this approach for dynamic
resource allocation among network slices. Previous online
learning proposals were focused on different network functions
(e.g., interference coordination and energy saving [33]–[35])
and used specific ad hoc mechanisms based on multi-armed
bandits [33], sequential likelihood ratio tests [34], or bayesian
models [35].

MBRL is known to be more sample efficient than
MFRL [36], [37] but also more demanding in terms of
computation. However, we propose a novel modeling strat-
egy involving an online learning classifier that reduces the
computational overhead dramatically, and helps our proposal
to outperform MFRL algorithms in this metric. In Section V
we review the principles of kernel-based online learning, and
provide references to related works on this topic.

The use of kernel-based online learning for the definition
of the model in an MBRL algorithm is a novel approach.
Nevertheless it should be emphasized that our proposal can
be complementary to previous ones. For example, our method
prescribes the amount of physical radio resources to be
assigned to each slice, but does not arrange them within the
time-frequency frame structure of the RF interface. For this
task, the heuristic scheme proposed in [22] can be used. Our
proposal can operate concurrently with an admission control
scheme for on-demand incoming slices, such as those devel-
oped in [15], [16], and with a mechanism for the allocation of
computational resources among slices [9], [26]. The promising
results shown in Section VII suggest that our proposal could be
extended to the control of additional resources (computation,
storage, backhaul, fronthaul) requiring elasticity and efficiency.

III. SYSTEM DESCRIPTION

We consider a typical cellular network system, similar to
the scenarios described in [13], [19], [31], [32], consisting of
a base station providing access to multiple UEs belonging to
K network slices. We consider downlink transmission on an
hexagonal cell. Figure 1 shows a schematic overview of the

Fig. 1. Diagram of controlled system. One base station transmitting downlink
in a hexagonal sector cell covering UEs belonging to three different RAN
slices. Each RAN slice is granted the exclusive use of a predefined subset
of RBs in each radio frame. During an observation period, spanning several
frames, the control system monitors the performance, and updates the RB
allocation for the next period according to the observed variables of the slices
and the SLA fulfillment indicators.

system for K = 3 slices. The radio interface between the
BS and the UEs is structured into frames, and each frame
is divided into time and frequency partitions: in the time
dimension, frames are divided into transmission time intervals
(TTIs), also referred to as subframes, and in the frequency
dimension, the bandwidth is divided into subcarriers. The
physical layer of 5G RANs provides high flexibility in the use
of waveforms and time-frequency frame structures, allowing
diverse configurations of the TTI duration and sub-carrier
spacing, known as numerologies. The selected numerology
depends on the deployed frequency band and on the desired
transfer service capabilities for the slice [2]. In our case,
we will assume a TTI duration of 1 ms and a sub-carrier spac-
ing of 15 MHz, but network slices using different numerolo-
gies can coexist in the radio frame.

Each network slice is assigned a subset of the
time-frequency resources of the radio interface. The smallest
time-frequency allocation unit is referred to as resource block
(RB), and consists of 1 TTI and 12 sub-carriers (1 ms × 180
MHz, in our setting). We consider, as [13], [18], [19], [31],
that the RBs assigned to a slice are used exclusively by that
slice, thus ensuring slice isolation. Consequently, each slice
runs its own scheduler for allocating its RBs among its users
in a per-TTI basis, in accordance to the characteristics of
the delivered service type (eMBB or mMTC). As shown in
Figure 1, the time-frequency resources allocated to each slice
consist of a group of RBs within each radio frame, sometimes
referred to as a tile, where a specific numerology can be
adopted.

The SLA defined for each slice depends on the service
requirements and the preferences of its tenant, and comprises a
set of configuration descriptors and key performance indicators
(KPIs) that can be very diverse. We will consider descriptors
of the authorized capacity for each slice (see [2]). For eMBB
slices, these descriptors can set specific limits to the average
number of RBs consumed by each type of traffic (non-GBR
and GBR) within the slice. In mMTC it is usual to define a
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limit on the maximum number of simultaneous active devices
(UE contexts). Key performance indicators can specify QoS
objectives such as maximum average delay or maximum buffer
length. Section VII contains the SLA specifications for eMBB
and mMTC slices used in our numerical simulations.

The number of RBs allocated to each slice can be scaled
up or down in periodic time instants referred to as decision
stages or steps, which are typically spaced by several frames.
At each stage, the control agent selects a control action that
specifies the number of RBs that will be available exclu-
sively to each slice until the next decision stage. Between
consecutive stages, the agent collects per-slice measurements
regarding user data traffic, channel quality conditions and SLA
compliance parameters. These observations are used by the
control agent to make the next decision and to learn about the
response of the system. Table I shows a set of variables that
can be measured in an eMBB or an mMTC slice. In the case
of eMMB, the observation comprises a differentiated subset
of variables for each type of traffic (GBR and non-GBR),
since each type is associated to a specific QoS requirement
in the SLA. These variables provide aggregated information
at the system level: incoming traffic rate, delivered traffic
rate, average resource occupation, average queue length, and
average signal to interference ratio (SINR). In mMTC, each
device is associated to a constant number of packet repetitions
related to its estimated pathloss [38]. Therefore, the observed
variables include the number of simultaneous UE contexts, the
average delay per UE, and the average number of remaining
packet repetitions per UE by the end of the previous stage.

Let us summarize the control sequence: at each decision
stage n, the control agent receives the observation vector of
each slice (containing the variables of Table I), and the KPIs
of each slice (allowing the agent to assess whether or not the
slice’s SLA has been fulfilled during the last decision period).
Based on these observations, the agent selects a resource
allocation with which the system will operate until the next
decision stage. The control objective is to allocate the RBs
as efficiently as possible while ensuring that the SLAs are
fulfilled with high probability.

IV. PROBLEM DEFINITION

A. Observations and Actions

Let K denote the set of K active network slices coexisting
in the RF interface, and let C denote the total number of RBs
to be allocated among the slices. At each decision stage n =
1, 2, . . . , the control agent receives the per-slice observations
gathered between stages n − 1 and n, denoted by s

(i)
n−1, for

each network slice i ∈ K. The combination of the K slice
observations at stage n, denoted by sn = (s(1)

n , . . . s
(K)
n ),

is the system observation. Note that s
(i)
n is a vector containing

samples of the variables defined in Table I, which are random
variables since they are obtained by aggregating and/or aver-
aging the realizations of multiple stochastic processes during
the TTIs elapsed between stages n−1 and n. These processes
are, for example, the arrival and departure of UEs to the cell,
the GBR or non-GBR traffic generated by each UE, the data
buffered at each UE, or the SINR measurements on each

TABLE I

EXAMPLE OF SLICE OBSERVATIONS

channel. Therefore, we will use the uppercase notation S
(i)
n to

refer to the slice observation as a random (multi-dimensional)
variable, and the lowercase notation s

(i)
n to denote a particular

sample of the random variable S
(i)
n . Note also that sn is

not the state of the system, which is extremely complex to
define since it involves multiple UEs, protocol layers, traffic
flows, propagation conditions, and so on. Instead, it is a
partial observation comprising system-level variables that can
be sufficient to make decisions on the allocation of bandwidth
resources to network slices.

At decision stage n, the control agent selects the number of
RBs a

(i)
n to be allocated to each slice i ∈ K. The combination

of all the assignments an = (a(1)
n , . . . a

(K)
n ) denotes the control

action at n. Note that, since the decisions of the controller are
determined by random variables, S

(i)
n for i ∈ K, the per-slice

allocations are also random variables, A
(i)
n , while a

(i)
n refers

to a specific value.
For each slice i, we define an indicator function I(i) that

informs the controller about the SLA fulfillment on a per-stage
basis: I(i)(s(i)

n , a
(i)
n ) = 1 if the SLA of slice i has been violated

between decision stages n and n + 1, and I(i)(s(i)
n , a

(i)
n ) =

0 otherwise. Note that the function I(i) condenses all the KPIs
that have been defined in the SLA. For instance, in an eMBB
slice, if the system has not been able to meet either the GBR
QoS level or the non-GBR QoS level, the indicator function for
that slice will return 1. It will return 0 only if all the specified
QoS levels have been satisfied during the observation period.

B. Control Policy

The decisions of the control agent are determined by its
policy π, defined as a function that receives the system
observation sn−1, and provides the control action an with
the resource allocation per slice. Given the random system
dynamics, and an initial distribution of the slice observations
S

(1)
0 , . . . S

(K)
0 , the policy π determines a random sequence

of observation-action pairs S
(i)
0 , A

(i)
1 , S

(i)
1 , A

(i)
2 , S

(i)
2 , . . . for

i ∈ K. These K sequences constitute a trajectory of the
system. In our setting, a policy is admissible if it prescribes
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only actions that comply with
∑

i∈K a
(i)
n ≤ C and a

(i)
n ≥ 0 for

i ∈ K (admissible actions). The set of admissible policies is
denoted by Π.

C. Constrained Markov Decision Process Formulation

Using the above definitions, the problem of finding an
efficient policy for the control agent can be formulated as
a constrained Markov decision process (CMDP) [39]. The
objective of our CMDP is to find a policy π ∈ Π that
minimizes the average amount of allocated resources, while
the average number of SLA violations per slice is kept under
a desired bound δ:

min
π∈Π

lim
N→∞

1
N

Eπ

[
N∑

n=1

K∑
i=1

A(i)
n

]

s.t. lim
N→∞

1
N

Eπ

[
N∑

n=1

I(i)(S(i)
n , A(i)

n )

]
≤ δ, for all i ∈ K

(1)

where Eπ denotes the expected value with respect to the
distribution of the trajectories under policy π. Note that the
capacity constraint is implicitly included by considering only
admissible policies π ∈ Π, and all the QoS objectives of
each slice are accounted for in its indicator function I(i).
This CMDP cannot be directly addressed because the system
dynamics is unknown and the state of the system is not
directly observable. Even without these limitations, the large
dimension of the state and control spaces would render any
numerical approach infeasible.

D. Markov Decision Process Formulation

In order to apply RL methods, it is necessary to reformu-
late (1) as an MDP by removing the SLA constraints and
including them into the objective. The usual approach [13],
[18], [29], [32] is to add an SLA violation counter to the
objective function as a penalty term, multiplied by a weight
factor λ. The resulting MDP is:

min
π∈Π

lim
N→∞

1
N

Eπ

[
N∑

n=1

K∑
i=1

[
A(i)

n + λI(i)(S(i)
n , A(i)

n )
]]

. (2)

The term
∑K

i=1(a
(i)
n +λI(i)(s(i)

n , a
(i)
n )) is interpreted as the

cost incurred by the system at stage n. This cost term can be
also denoted by −rn(sn,an), expressing the total (negative)
reward of the observation-action pair sn,an. The problem (2)
is an average cost MDP because it aims at minimizing the
average cost per stage (or maximizing the average reward per
stage). However, most RL methods address discounted MDPs.
We can reformulate (2) as a discounted MDP as follows:

max
π∈Π

lim
N→∞

Eπ

[
N∑

n=1

γnrn(Sn,An)

]
; (3)

where γ is a discount factor, and Sn,An denote the (random)
observation-action pair visited by the system trajectory at
stage n. The discounted MDP (3) aims at maximizing the
expected return, defined as the sum of the discounted rewards
along the system trajectory.

E. Solution Strategies

1) Model-Free RL: Model-free RL methods assume that the
transition dynamics of the system is unknown. Their main idea
is to estimate the expected return in (3) by taking samples
of the trajectory. In order to do this, these methods build a
parametric estimator of the expected return using, for example,
a deep neural network. Policy gradient algorithms include a
parametric policy, and estimate the gradient of the expected
return with respect to the policy parameters. This makes
it possible to gradually adjust these parameters by making
gradient descent updates (see [40] for a coverage of RL
techniques). The last 5 years have been particularly productive
in terms of novel algorithms of this type. In Section VII we
briefly review the state-of-the-art MFRL algorithms that we
use as baselines in our performance evaluation experiments.

2) Model-Based RL: Model-based RL typically relies on
learning the transition dynamics of the system instead of the
optimal state values and/or policies [36], [37]. The main task
of the learning process is to fit an approximation of the true
transition function, given the states and the actions observed
from the real system. Once a model is learned, the agent can
use it to predict the expected return of each action in each
observed state. Consequently, at each decision stage, the agent
can evaluate multiple candidate action sequences, and select
the optimal one to use.

Our approach, instead of learning the transition dynamics,
learns the effects of these dynamics on the SLA violation
indicator functions I(i) for i ∈ K. In particular, we build,
for each slice i, a model h

(i)
n that predicts whether a given

assignment a
(i)
n will fulfill the SLA, given the observation

s
(i)
n−1 received at the end of the previous stage. Note that this

strategy does not generate multi-step trajectories, i.e., we do
not predict S

(i)
n , S

(i)
n+1 . . ., and therefore the agent will only be

able to plan over a one-stage horizon. Although this strategy
generally leads to suboptimal solutions, it allows us to address
the original problem (1) instead of the modified one (2),
resulting in better empirical results compared to model-free RL
approaches (which are farsighted), as shown in Section VII.

Given h
(i)
n , we could approximately address the CMDP

problem (1) as a one-step lookahead control problem, obtain-
ing a model predictive controller (MPC) [40] in which the
observation-action pairs must satisfy the SLA of each slice
according to h

(i)
n for i ∈ K. However, this approach does not

take the violation rate bound δ into account. An insufficiently
accurate predictor could cause excessive SLA violations.

We need to define the error function e(i) as the probability
that the prediction given by h

(i)
n , on a given pair (s(i)

n , a
(i)
n ),

is a false negative:

e(i)(h(i)
n , s

(i)
n−1, a

(i)
n )

= P

(
I(i)(S(i)

n , a(i)
n ) = 1

∣∣h(i)
n (s(i)

n−1, a
(i)
n ) = 0

)
. (4)

Note that, by convention, we are associating the null hypoth-
esis to the absence of any SLA violation in stage n, i.e.,
I(i)(S(i)

n , a
(i)
n ) = 0. Therefore, e(i) denotes the probability of

a type II error.
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We have transformed the problem into a one-step lookahead
control problem, in which each control action an should
be admissible, and each element a

(i)
n in an should be SLA

compliant according to h
(i)
n with an error probability bounded

by δ:

min
a
(1)
n ...a

(i)
n

K∑
i=1

a(i)
n ;

s.t. e(i)(h(i)
n , s

(i)
n−1, a

(i)
n ) ≤ δ for i ∈ K,

a(i)
n ≥ 0 for i ∈ K,∑

i∈K
a(i)

n ≤ C. (5)

It is straightforward to decompose the above problem into
K sub-problems, facilitating its online operation. As we will
describe in the following section, the error functions e(i) will
be also learned online, and thus the controller will use the
learned functions ê

(i)
n instead.

V. PRELIMINARIES

This section starts by describing the fundamentals of online
learning for classification, and then explains how kernel-based
online learning can be used for nonlinear classification, focus-
ing on the algorithm that learns h

(i)
n in our proposal.

A. Online Learning

An online learning algorithm aims at learning a mapping
h : X → R from a sequence of examples (xn, yn), n =
1, . . . , N , where xn ∈ X is called an instance and yn ∈ R is
called a label. In a linear binary classification task, the goal
is to learn a linear classifier h : X → {−1, +1} such that
h(xn, θ) = sgn(�θ,xn�), X is typically a d-dimensional vector
space, θ ∈ R

d is a weight vector to be learned, �·, ·� denotes
the dot product, and sgn(z) is an indicator function that outputs
+1 when z > 0 and −1 otherwise. The function h is called the
hypothesis (function) or the (prediction) model, and is denoted
by hn at stage n.

The main feature of online learning is that learning takes
place in rounds or stages. At each stage n = 1, 2, . . .,
an instance xn is presented to the algorithm, which predicts
a label ŷn ∈ {−1, +1} using the current hypothesis function:
ŷn = hn(xn). Then, the correct label yn is revealed, and the
learner can measure the suffered loss, which in online binary
classification can be given by the hinge-loss �((xn, yn); hn) =
max(0, 1 − ynhn(xn)). Whenever the loss is nonzero, the
learner updates the prediction model hn according to an
algorithm-specific strategy. The classic goal of online learning
is to minimize the regret of the learner’s predictions against
the best fixed model in hindsight. The regret is defined as
follows:

RN =
N∑

n=1

�((xn, yn); hn)− inf
h∈H

N∑
n=1

�((xn, yn); h) (6)

where H denotes the model space. For example, in linear
classification, H is the set of functions of the form h(x, θ) =
sgn(�θ,x�) for θ ∈ R

d. Note that the second term in (6) is

the loss suffered by the optimal model h∗ ∈ H that can only
be known in hindsight after seeing all the examples. Regret
minimization formalizes the concept of sample efficiency.

B. Online Learning With Kernels

If the online algorithm needs to learn a nonlinear model h,
one way to introduce nonlinearity is by the use of kernels
[41], [42]. In this case H is known as a Reproducing Kernel
Hilbert Space (RKHS) and is defined by a kernel function
κ : R

d×R
d → R. The kernel κ(x,x�) expresses the similarity

between x and x�, among other required properties [42], and
allows us to write the hypothesis function hn as a kernel
expansion as follows:

hn(x) =
∑

xn∈Xn

αnκ(xn,x) (7)

where αn are coefficients (typically αn = yn), and Xn is
defined as the set of instances for which a prediction error
occurred (and thus hn was updated), that is Xn = {xt, 0 ≤
t ≤ n|ŷt �= yt}. The set Xn is called the support set.

The usual update step (see, e.g., the Kernelized Perceptron
in [41]), involves adding the new instance xn+1 to the support
set Xn+1 = Xn ∪ {xn+1} and updating the hypothesis
function as hn+1 = hn + yn+1κ(xn+1, ·). This functional
update expresses the addition of a new term yn+1κ(xn+1,x)
to the summation in (7). One critical issue of this strat-
egy is the unbounded growth of the support set Xn, which
increases the computational and space complexity over time.
To address this drawback, one possible strategy is to set an
upper bound (budget) on the cardinality |Xn| of the support
set, and include a budget maintenance strategy to select
which instance to remove when |Xn| reaches the budget [43].
An alternative, and more effective strategy is the use of
projected hypothesis.

The hypothesis projection technique was introduced with
the Projectron algorithm [6] and works as follows. Before
adding an instance xn+1 to the support set, a temporary
hypothesis is constructed as h�

n+1 = hn + yn+1κ(xn+1, ·).
Additionally, a projected hypothesis h��

n+1 is obtained by
computing the values for the coefficients αn in expression (7)
that best approximate h�

n+1 using the existing instances in
the RKHS Xn. We say that h��

n+1 is the projection of h�
n+1

onto Xn. If the distance between h��
n+1 and h�

n+1 is below
some threshold η, the next hypothesis will be h��

n+1, and
the support set will remain unchanged. Otherwise, the next
hypothesis will be h�

n+1 and the support set will incorporate
xn+1. Algorithm 1 summarizes the Projectron algorithm.

VI. KERNEL-BASED ONLINE LEARNING FOR MBRL

A. Elements of the Proposal

Our proposal is based on the following operating principles:
• One-step lookahead planning: the agent selects, at each

decision stage, a control action addressing the problem
formulated in (5) which is a one-step version of the
CMDP (1).

• Model-based RL: in order to address (5), the agent
learns a model of the system, instead of a policy or a
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Algorithm 1 Projectron

1: Initialize Xn ← ∅, h0 ← 0
2: for n = 1, 2, . . . do
3: Receive new instance xn

4: Predict ŷn ← sign(hn−1(xn))
5: Receive label yn

6: if yn �= ŷn then
7: h�

n ← hn−1 + ynκ(xn, ·)
8: h��

n ← projection of h�
n onto the space Xn

9: γn ← h��
n − h�

n

10: if �γn� ≤ η then
11: hn ← h��

n

12: Xn ← Xn−1

13: else
14: hn ← h�

n

15: Xn ← Xn−1 ∪ {xn}
16: end if
17: else
18: hn ← hn

19: Xn ← Xn−1

20: end if
21: end for

value function. The model is intended to predict whether
the SLAs will be fulfilled or violated in each slice i,
for any given state-action pair. Our modeling strategy
includes a self-assessment procedure that computes the
error function estimators ê

(i)
n , so that the constraint in (5)

can be taken into account.
• Online learning for classification: the model consists of a

set of K classifiers, one per slice, that are learned online.
From any state-action pair, the observation variables that
correspond to a particular slice constitute the input for
the classifier associated with that slice.

Let Hn = {h(1)
n , . . . , h

(i)
n } and En = {ê(1)

n , . . . , ê
(i)
n }

denote the set of hypothesis functions and the set of error
function estimators in step n, respectively. The input variables
of the agent are the amount of radio resources C, the max-
imum number of resources per slice, denoted by amax =
(a(1)

max, . . . , a
(i)
max), and the reliability factor, δ̄ = 1 − δ,

characterizing the accuracy objective of the estimators.
As shown in Figure 2 and Algorithm 2, our proposal, kernel-

based RL (KBRL), is structured into three modules:
1) A controller that generates, at each stage n, a con-

trol action vector an = (a(1)
n , . . . , a

(i)
n ) based on the

observed state at the end of the previous stage sn−1 =
(s(1)

n−1, . . . , s
(i)
n−1), and on the system model determined

by Hn and En. The controller provides two additional
vectors: ŷn = (ŷ(1)

n , . . . , ŷ
(K)
n ), with the SLA viola-

tion predictions for all slices in stage n, and mn =
(m(1)

n , . . . , m
(K)
n ) containing the security margins for

each slice. These vectors are necessary for updating En
as explained later in subsection VI-C.

2) The H-learner, which runs K online learning algorithms
for classification, in parallel, one for each of the K
hypothesis functions in Hn. These functions are updated

Fig. 2. Diagram of the proposed control system.

at every stage, based on sn−1, an, and the array of
observed labels yn.

3) The E-learner, which updates the K estimators in En,
taking ŷn, yn, mn as inputs, and providing En+1

as output. This module monitors the accuracy of the
classifiers learned by the H-learner module.

Note that at each decision stage, n, Algorithm 2 performs one
step of the for loop, where each module intervenes once.

Algorithm 2 KBRL

1: Inputs: C, δ̄, amax = (a(1)
max, . . . , a

(i)
max)

2: Initialize H1 = {h(1)
1 , . . . , h

(i)
1 }, E1 = {ê(1)

1 , . . . , ê
(i)
1 }

3: Observe s0

4: for n = 1, 2, . . . do
5: (an,mn, ŷn)← Controller(Hn, En, sn−1)
6: Apply an and observe yn and sn

7: Hn+1 ← H-learner(Hn,yn, sn−1, an)
8: En+1 ← E-learner(En, ŷn,yn,mn)
9: end for

B. H-Learner: Online Learning for Classification

To increase the learning efficiency of h
(i)
n , we introduce a

sample augmentation strategy, for which we use the following
assumption.

Assumption 1: Given an initial set of conditions for a slice
i ∈ K, summarized in s

(i)
n−1, if the SLA of slice i is fulfilled

in stage n with a resources assigned to it, then the SLA is
also fulfilled with a� > a resources. Conversely, if the SLA is
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not fulfilled with a resources, then it is also not fulfilled with
a�� < a resources.

This assumption simply reflects a desirable feature of the
underlying schedulers that allocate the resources among the
UEs within each slice: more available resources can only
improve the quality of service provided to the UEs.

As shown in Algorithm 3, the H-learner receives, for each
slice i ∈ K, the s

(i)
n−1, a

(i)
n pair, and the observed label y

(i)
n .

When y
(i)
n = 0, meaning that no SLA violation happened

in slice i during stage n, Assumption 1 implies that any
action a > a

(i)
n would have provided the same label. There-

fore, we can augment the number of samples by generating
additional instances xn = (s(i)

n−1, a) for a = a
(i)
n , . . . , a

(i)
max

associated to label y
(i)
n = 0. Similarly, when the observed label

is y
(i)
n = 1, we insert new instances with a = 0, . . . , a

(i)
n .

Algorithm 3 H-Learner

1: Parameters: amax = (a(1)
max, . . . , a

(i)
max)

2: Inputs: Hn = {h(1)
n , . . . , h

(i)
n }, yn = (y(1)

n , . . . , y
(i)
n ),

sn−1 = (s(1)
n−1, . . . , s

(i)
n−1), an = (a(1)

n , . . . , a
(i)
n )

3: Outputs: Hn+1 = {h(1)
n+1, . . . , h

(i)
n+1}

4: for i = 1, . . . , K do
5: if y

(i)
n = 0 then

6: for a = a
(i)
n , . . . , a

(i)
max do

7: xn ← (s(i)
n−1, a)

8: h
(i)
n+1 ← Projectron update with xn and y

(i)
n

9: end for
10: else
11: for a = 0, . . . , a

(i)
n do

12: xn ← (s(i)
n−1, a)

13: h
(i)
n+1 ← Projectron update with xn and y

(i)
n

14: end for
15: end if
16: end for

C. E-Learner: Estimating the Classification Error Probability

In order to estimate the prediction accuracy for each action,
we use the following structural result that is a direct conse-
quence of Assumption 1.

Proposition 1: Given an initial set of conditions for a slice
i ∈ K, summarized in s

(i)
n−1, if two actions a < a� are predicted

to fulfill the SLA: h
(i)
n (s(i)

n−1, a) = h
(i)
n (s(i)

n−1, a
�) = 0, then

e(i)(h(i)
n , s

(i)
n−1, a

�) ≤ e(i)(h(i)
n , s

(i)
n−1, a).

Proof: For any s
(i)
n−1, a, and a�, with a < a�,

if I(i)(S(i)
n , a) = 1, I(i)(S(i)

n , a�) can be either 1 or 0. But,
from Assumption 1 if I(i)(S(i)

n , a) = 0, then I(i)(S(i)
n , a�) =

0, thus E

[
I(i)(S(i)

n , a)|s(i)
n−1, a

]
≥ E

[
I(i)(S(i)

n , a�)|s(i)
n−1, a

�
]
.

If s
(i)
n−1, a, and a�, are such that h

(i)
n (s(i)

n−1, a) =
h

(i)
n (s(i)

n−1, a
�) = 0 then E

[
I(i)(S(i)

n , a)|h(i)
n (s(i)

n−1, a) = 0
]
≥

E

[
I(i)(S(i)

n , a�)|h(i)
n (s(i)

n−1, a
�) = 0

]
, which by definition is

equivalent to e(i)(h(i)
n , s

(i)
n−1, a) ≥ e(i)(h(i)

n , s
(i)
n−1, a

�). �

Given the conditions of Proposition 1, if a is the smallest
action predicted to fulfill the SLA of slice i, we say that a�

has a security margin of a� − a. The security margin m
(i)
n for

a given action a
(i)
n is defined as follows:

m(i)
n = a(i)

n −min{a : h(i)
n (s(i)

n−1, a) = 0}. (8)

By Proposition 1, the larger the security margin, the
smaller the classification error probability e(i). Therefore,
to obtain an estimator of e(i), we compute the average
prediction error associated to all (positive) security margins
m = 0, 1, . . . , amax, for each slice. For a given m, the
error probability estimator, denoted by ê

(i)
n (m), approximates

e(i)(h(i)
n , s

(i)
n−1, a

�), where a� has a security margin of m.
As shown in Algorithm 4, the E-learner receives, for each

slice i, the prediction ŷ
(i)
n , the true label y

(i)
n , and the security

margin used in stage n, m
(i)
n . Since e(i) corresponds to a Type-

II error, ê(i) is only updated when ŷ
(i)
n = 0. Therefore, the

prediction error at stage n is equal to y
(i)
n and we can update

the estimator ê(i) for a given m as

ê
(i)
n+1(m) = (1 − β)ê(i)

n (m) + βy(i)
n (9)

where β is the learning rate. The E-learner uses a sample
augmentation strategy similar to the one discussed in the
previous subsection. If y

(i)
n = 0 (meaning that the SLA is

fulfilled) for a given m
(i)
n , by Assumption 1, we can update ê

(i)
n

with y
(i)
n = 0 for m = m

(i)
n , . . . , a

(i)
max. Similarly, if y

(i)
n =

0 we can update ê
(i)
n with y

(i)
n = 1 for m = m

(i)
n , . . . , a

(i)
max.

Algorithm 4 E-Learner

1: Parameters: β, amax = (a(1)
max, . . . , a

(i)
max)

2: Inputs: En = {ê(1)
n , . . . , ê

(i)
n }, ŷn = (ŷ(1)

n , . . . , ŷ
(i)
n ), yn =

(y(1)
n , . . . , y

(i)
n ), mn = (m(1)

n , . . . , m
(i)
n )

3: Outputs: En+1 = {ê(1)
n+1, . . . , ê

(i)
n+1}

4: for i = 1, . . . , K do
5: if ŷ

(i)
n = 0 then

6: if y
(i)
n = 0 then

7: for m = m
(i)
n , . . . , a

(i)
max do

8: ê
(i)
n+1(m)← (1− β)ê(i)

n (m)
9: end for

10: else
11: for m = 0, . . . , m

(i)
n do

12: ê
(i)
n+1(m)← (1 − β)ê(i)

n (m) + β
13: end for
14: end if
15: end if
16: end for

D. Controller

Algorithm 5 shows how the controller uses the classifiers in
Hn and the error estimators in En to select the action at stage
n. For each slice i ∈ K, the controller selects the minimum
security margin m

(i)
n that, according to ê

(i)
n , attains an error

probability below δ. Then, it looks for the minimum action
for which the classifier ê

(i)
n estimates no SLA violation, and



494 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 22, NO. 1, JANUARY 2023

Algorithm 5 Controller

1: Parameters: C, δ̄, amax = (a(1)
max, . . . , a

(i)
max)

2: Inputs: Hn = {h(1)
n , . . . , h

(i)
n }, En = {ê(1)

n , . . . , ê
(i)
n },

sn−1 = (s(1)
n−1, . . . , s

(i)
n−1)

3: Outputs: an = (a(1)
n , . . . , a

(i)
n ), mn = (m(1)

n , . . . , m
(i)
n ),

ŷn = (ŷ(1)
n , . . . , ŷ

(i)
n )

4: for i = 1, . . . , K do
5: m

(i)
n ← min{m : ê

(i)
n (m) ≤ 1− δ̄}

6: a
(i)
n ← −1 and ŷ

(i)
n ← 1

7: while ŷ
(i)
n = 1 and a

(i)
n < a

(i)
max do

8: a
(i)
n ← a

(i)
n + 1

9: ŷ
(i)
n ← h

(i)
n (s(i)

n−1, a
(i)
n )

10: if ŷ
(i)
n = 0 then

11: m
(i)
n ← min(m(i)

n , a
(i)
max − a

(i)
n )

12: a
(i)
n ← a

(i)
n + m

(i)
n

13: end if
14: end while
15: end for
16: if

∑
i a

(i)
n > C then

17: for i = 1, . . . , K do
18: ā(i) ←  Ca(i)

�
i�∈K a(i�) �

19: m
(i)
n ← m

(i)
n − (a(i)

n − ā(i))
20: a

(i)
n ← ā(i)

21: ŷ
(i)
n ← h

(i)
n (s(i)

n−1, a
(i)
n )

22: end for
23: end if

increments this action by m
(i)
n . In case a

(i)
n surpasses a

(i)
max,

m
(i)
n is downsized so that a

(i)
n = a

(i)
max.

When the solution to the K sub-problems does not fit
the global resource constraint,

∑
i∈K a

(i)
n > C, we project

the solution onto the space of admissible actions. This is
done by computing the set of actions ā(1), . . . , ā(i) such that∑

i∈K ā
(i)
n = C, and ā(i)

C = a(i)
�

i�∈K a(i�) .

E. Complexity

The most time-consuming part of the proposed method is
the Projectron update (Algorithm 1), whose time complexity,
analyzed in [6], is O(|Xn|2) (recall that |Xn| denotes the
cardinality of the support set). |Xn| tends to increase over time
but, in our experiments, it remained at relatively low values
(accumulating fewer than 60 elements after 40000 learning
steps). The H-learner (Algorithm 3) performs K Projectron
updates, resulting in a time complexity of O(K|Xn|2). The
E-learner (Algorithm 4) updates, at most, C values of e

(i)
n

per slice. Similarly, the controller (Algorithm 5) assesses,
at most, C values of a

(i)
n per slice (assuming a

(i)
max = C

for all i). The resulting time complexity of KBRL is thus
O(K|Xn|2 + 2KC) which is smaller, in practice, than the
time complexity of a backpropagation step in deep RL algo-
rithms, O(nlayersn

3
neurons), where nlayers is the number of

layers and nneurons is the number of neurons per layer.
In Section VII we show a detailed empirical evaluation of
the per-stage execution time of each algorithm.

TABLE II

SIMULATION PARAMETERS

VII. NUMERICAL EVALUATION

We have conducted extensive simulation experiments to
evaluate our proposal and compare it with state-of-the-art
RL baselines. The simulation environment was developed
in Python1 to emulate the allocation of RBs among several
RAN slices. Each slice is devoted to one type of communi-
cation, either eMBB or mMTC, characterized by its traffic
model and its SLA. The traffic generator of an eMBB slice
simulates the arrival and departure of GBR and non-GBR
UEs, characterized by constant bit rate and variable bit rate
traffic flows respectively, according to the parameters shown
in Table II. The traffic source of an mMTC slice simulates
1000 devices, each characterized by a transmission period
and a number of packet repetitions. For each device, these
two parameters are randomly selected from the sets shown
in Table II. The nominal received power at the UE uses the
macro cell propagation model for urban areas described in
Section 4.5 of TR 36.942 [44]. Frequency-selective fading
is generated by drawing samples from datasets containing
fading traces. Our simulator uses the datasets of the ns-3
simulator [45] corresponding to usual fading/mobility models
(pedestrian A, Typical Urban, Vehicular A, as defined in
Annex B.2 of TS 36.104 [46]). For each new arrival, the
simulator randomly selects one of the datasets, and generates a
random integer as the first index from which to draw samples
from the selected dataset. Within each slice, a proportional
fair scheduler allocates the RBs among the UEs of that slice,
according to their buffer state reports and their SNR estima-
tions. Given the SNR estimated by the UE, the transmitter

1The code of the simulator, the proposed algorithm, and the scripts for repli-
cating the experiments can be downloaded from https://github.com/jjalcaraz-
upct/network-slicing.
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TABLE III

SERVICE LEVEL AGREEMENTS (SLAS)

selects a Modulation and Coding Scheme (MCS) aiming to a
block error rate (BLER) below 0.1. The spectral efficiency
of the selected MCS, with the number of allocated RBs,
determines the number of bits transmitted (transport block
size) from the UE queue. It should be highlighted that we
conducted the experiments using a different strategy for the
generation of SNR samples based on the dataset obtained
in [47], and the results were very similar, which suggests that
the channel modeling details are not of crucial importance in
the evaluation and comparison of the algorithms. Note that the
slice resource allocation operates on a larger time scale and
at a higher system level than the scheduling algorithms, and
consequently its performance is relatively decoupled from the
channel models.

In the simulated scenarios, the allocation of radio resources
among the RAN slices is updated every 50 radio subframes,
and the duration of each subframe is 1 ms. Therefore, the
elapsed time between consecutive decision stages is 50 ms.
Three main scenarios have been considered for the experi-
mental evaluation:

• Scenario 1: 5 eMBB slices sharing 200 RBs per sub-
frame.

• Scenario 2: 3 eMBB and 2 mMTC RAN slices. 150 RBs
per subframe.

• Scenario 3: 1 eMBB and 4 mMTC RAN slices. 100 RBs
per subframe.

Besides, an additional scenario has been defined for experi-
ments requiring a smaller action space:

• Scenario 4: 1 eMBB and 1 mMTC RAN slice. 70 RBs
per subframe.

The SLAs for the eMBB and mMTC slices of all scenarios are
summarized in Table III. The number of observed variables,
which is determined by Table I in Section III, is 50, 36, 22
and 13 for scenarios 1, 2, 3 and 4 respectively.

A. RL Baselines

We compare our proposed KBRL controller against the
following algorithms, considered state-of-the-art baselines in
RL:

• Deep Q-Networks (DQN) [48] is the deep learning
version of Q-learning, a classical model-free off-policy
RL algorithm. As discussed in Section II, Q-learning and
DQN have been used for the allocation of RBs among
network slices by [19] and [18], respectively. Neverthe-
less, its application is limited to scenarios with a small

action space, i.e., with only 2 or 3 slices. Consequently,
the comparison of KBRL with DQN was conducted only
in scenario 4.

• Trust region policy optimization (TRPO) [49] is a
model-free deep policy gradient algorithm that updates
policies while satisfying a constraint on how different the
new and old policies are allowed to be. This difference
is expressed in terms of Kullback-Leibler Divergence.

• Proximal policy optimization (PPO) [50] is a variant of
the TRPO idea, that uses a simpler technique to estimate
the difference between policies. Two implementations
have been used: PPO1 and PPO2, described in [51].

• Twin delayed DDPG (TD3) [52] is an off-policy deep
actor-critic algorithm. It is an improvement over deep
deterministic policy gradient (DDPG) [53].

• Soft actor critic (SAC) [54] is an off-policy deep actor-
critic algorithm that incorporates the idea of entropy
regularization, and generally achieves better empirical
performance than DDPG.

• Synchronous advantage actor critic (A2C) [55] is
an on-policy deep actor-critic algorithm. It can execute
multiple instances of the algorithm in parallel, although
this feature is not applicable in online learning, where
only one instance of the environment is available.

• Normalized Advantage Function (NAF) is a technique
for extending deep Q networks DQN) to continuous
actions spaces, proposed in [56], and used in [13] for
RB allocation among network slices.

In our experiments, we have used the implementations of
the RL algorithms provided by Stable Baselines [51], which is
an improved version of the OpenAI Baselines [57]. For NAF,
which is not included in these libraries, we have used the
Keras-RL implementation [58].

B. Online Performance

To evaluate and compare our proposal with all the RL
baselines, the simulation experiments were designed as fol-
lows. In each scenario we executed 30 simulation runs for
each algorithm. Each run comprises two consecutive phases:
the learning phase and the inference phase. During the learn-
ing phase, which lasts 40000 decision stages (equivalent to
33.3 minutes of simulated time), the algorithms learn from
the interaction with the system, starting without any prior
knowledge of the system’s response. This situation is equiva-
lent to the establishment of new network slices, or an update
of the SLAs of existing slices. The evaluation of this phase is
critical since the objective of our proposal is to learn while the
network is operating, minimizing the negative effects of this
learning on the service offered. During the inference phase,
lasting 10000 steps (8.3 minutes of simulated time), the RL
algorithms are no longer learning, and they simply use the
policies obtained in the learning phase to make RB allocation
decisions at each step. This phase models a situation where
the network slices remain stable beyond the 40000 steps of the
learning phase, and its objective is to compare our proposal
to the baselines once they have been previously trained. This
evaluation has been done for the sake of completeness, even
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Fig. 3. Results for scenario 1. From left to right: SLA violations per stage, cumulative SLA violations, and total RBs allocated. Each plot shows the per-stage
average of 30 simulation runs and its confidence interval with a 90% confidence level.

Fig. 4. Results for scenario 2. From left to right: SLA violations per stage, cumulative SLA violations, and total RBs allocated. Each plot shows the per-stage
average of 30 simulation runs and its confidence interval with a 90% confidence level.

Fig. 5. Results for scenario 3. From left to right: SLA violations per stage, cumulative SLA violations, and total RBs allocated. Each plot shows the per-stage
average of 30 simulation runs and its confidence interval with a 90% confidence level.

though its interest is restricted to scenarios where changes
in the network slices are infrequent. The performance of the
algorithms is characterized by the following metrics:

1) The number of SLA violations per stage. This metric
ranges from 0 to 5 (the number of network slices).

2) The cumulative number of SLA violations, obtained
by aggregating the previous SLA violations during the
learning episode, is equivalent to the regret, allowing us
to compare the learning rate of the algorithms.

3) The amount of allocated resources, ranging from 0 to
the maximum RBs per subframe in each scenario. This
metric allows us to compare the spectral efficiency of
the algorithms.

The proposed algorithm has been evaluated for two values
of the reliability factor: δ̄ = 0.97 and δ̄ = 0.99, to assess its
impact on the performance. For the baselines, we considered
two values of the penalty factor, λ = 100 and λ = 1000,
and found the second one to be more effective in avoiding
SLA violations during the learning phase, which is crucial
in an online learning setting. Besides, we also evaluated the
baselines under normalized rewards (between −1 and +1),
resulting in better performance for TD3 and NAF, whose
results use this configuration.

Figure 3 shows the performance of the algorithms in
scenario 1 during the first 20000 steps of the learning
phase. For each metric, we plot the average value and the
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Fig. 6. Performance during the inference phase. Confidence intervals are depicted for each metric with a 95% confidence level.

Fig. 7. Average number of adjustments per stage in each scenario.

confidence interval for a 90% confidence level. The results
for scenarios 2 and 3 are presented in Figures 4 and 5
respectively. It is evident that KBRL largely outperforms
even the best baselines in terms of SLA fulfillment, and
also shows greater efficiency in the use of resources. These
results show the effectiveness of our model-based approach
for learning efficient policies with much fewer samples than
MBRL algorithms.2 Moreover, the model used by KBRL is
aimed at minimizing exploration, which prevents the selection
of over-provisioning actions as well as under-provisioning
actions from the early stages of the learning process. Another
consequence of this design is that the performance of KBRL
remains consistent across the different scenarios, while the
performance of the RL baselines shows notable variations from
one scenario to another.

Let us see how the algorithms compare during the infer-
ence phase. For this phase, we evaluated the two conflicting
objectives of the problem: the average SLA violations per
stage, and the average resource occupation (average number
of used RBs divided by the total number of RBs) and then,
to facilitate the visualization of the performance, we repre-
sented both metrics in a Euclidean axis for each scenario.
Figure 6 shows the results, where the average performance
of each algorithm corresponds to a point, and centered on the
point is the confidence interval of each metric in its respective
dimension.

The findings of the training phase are observed also in the
inference phase. The relative performance of the baselines
varies notably from one scenario to another. For example,

2We believe that our proposal could be applicable to other resource
allocation problems beyond network slicing. This issue is open for future
research.

we see that PPO1 is the best baseline in scenario 1 in terms
of SLA fulfillment but is outperformed by TD3 with regard
to resource efficiency. In scenario 3, PPO1 is the baseline
using the fewest resources, but four of the baselines (TD3,
TRPO, PPO2 and SAC) attain a lower SLA violation rate.
In sharp contrast, KBRL performs consistently across the three
scenarios: its SLA violation rate is almost negligible, clearly
outperforming all of the baselines in every scenario, while
using fewer resources than all or most of the baselines. Not
surprisingly, KBRL with δ̄ = 0.99 uses more resources than
KBRL with δ̄ = 0.97, because a higher reliability factor results
in a larger security margin (m(i)

n defined in Section VI), and
thus more resources are assigned to the network slice.

To better understand KBRL operation, it is illustrative to
evaluate two additional metrics specific to this algorithm. The
first one is the rate at which KBRL generates solutions exceed-
ing the available resources C, thus requiring to be adjusted
as detailed in Algorithm 5. We use the term adjustments to
refer to these events. Figure 7 shows the average number of
adjustments per decision stage on each scenario, including
the confidence intervals with a 90% confidence level. As we
can see, the adjustment rate is generally below 0.1. For a
given scenario, if we used a smaller C, we would obtain
a higher adjustment rate, but we consider that operating at
a relatively low adjustment rate is indicative of a proper
dimensioning of the system, i.e., the existing resources are
enough to accommodate all the slices, fulfilling the required
SLA, and leaving room to absorb occasional traffic peaks. Note
that, thanks to the security margins, the SLA violation rates
(shown in Figure 6) are clearly smaller than the adjustment
rates.

The second metric of interest for KBRL evaluation is
the accuracy of the online classifiers. Figure 8 depicts the
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Fig. 8. Empirical prediction accuracy of the KBRL classifiers.

Fig. 9. Results for scenario 4 during the learning phase.

estimated accuracy of the online classifier in KBRL. For each
stage, the plots show the average number of classifier hits
with its confidence interval. Consistently with previous results,
the accuracy tends to increase during the episode, and the
accuracy values for δ̄ = 0.99 are generally above those for
δ̄ = 0.97.

To conclude our evaluation of KBRL, we show how it
compares to an optimal performance, which was estimated
using an oracle mechanism. The oracle operates as follows:
at each decision stage n, it conducts an exhaustive search over
all the possible allocations. For each allocation an, the system
is simulated up to decision stage n + 1, to assess the SLA
fulfillment for all the slices. For all the allocations evaluated,
the simulation starts from the same system state. Once the
best allocation a∗

n is found (i.e., the one fulfilling the SLAs
using the fewest resources), the system advances up to the
next stage n + 1, and the searching process for a∗

n+1 starts.
Note that the oracle control is infeasible for implementation
in a real system, since it requires prescient knowledge of
all the stochastic processes involved and is computationally
cumbersome. In fact, it is not scalable even for simulation, due
to the exponential growth of the action space with the number
of slices. Consequently, KBRL and the oracle were compared
only in scenario 4, which comprises only 2 network slices,
resulting in a relatively small action space (556 actions). This
feature makes this scenario useful for the evaluation of DQN,
which was used by previous works [18], [19] for RB allocation
among network slices. As a reference, we also include the
results of NAF, which was used in [13] to overcome the
limitations of DQN in this problem. For the RL baselines,
we consider a learning phase lasting 20000 steps, and an
inference phase of 4000 steps.

Figure 9 compares the performance of the RL algorithms
(the baselines and KBRL) during the training phase. We see
that DQN outperforms NAF in this scenario. Note that NAF
needs to approximate the discrete action space as a continuous
one, which may impact its performance. As in previous
scenarios, KBRL is capable of learning with a negligible
amount of SLA violations, outperforming both baselines in
this metric.

Figure 10 shows the performance of the oracle policy in
comparison to KBRL, NAF and DQN. In the experiments
summarized in this figure, NAF and DQN are already in
the inference phase (i.e., they have been trained previously
for 20000 steps), while KBRL is in the learning phase.
We see that the oracle policy perfectly fulfills the SLAs using
roughly 50% of the resources used by the RL agents. This
illustrates the inherent difficulty of the problem due to its
stochastic nature. We also observe that, although the baselines
improve their performance in the inference phase, KBRL still
outperforms them in SLA fulfillment even without previous
training.

C. Computational Overhead

A usual concern regarding the deployment of reinforcement
learning algorithms is the computational overhead that these
algorithms may introduce in the system. This is especially rel-
evant in our online learning setting, in which RL agents need
to learn from scratch on the operating network, updating their
policies/models between decision stages. In this subsection
we show an empirical evaluation of the per-stage computation
time of our proposal and the RL baselines, both in the learning
phase and in the inference phase. For each scenario and each
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Fig. 10. Comparison with the estimated optimal solution in scenario 4. DQN and NAF operate in the inference phase.

Fig. 11. Execution time per decision stage during the learning phase.
Confidence intervals are depicted on top of each bar for a 90% confidence
level.

phase, we measured the execution times of the algorithms in
30 learning episodes. The experiments were conducted on an
Intel Xeon E5-2650V3 CPU.

Figure 11 shows the average execution time per stage
consumed by each algorithm in each scenario during the
learning phase. As expected, when scenarios are associated to
observations of larger dimension, the execution time is longer.
This effect is particularly noticeable in the baseline algorithms,
where the execution time doubles from scenario 3 to 2, and
from 2 to 1. It is also evident that our proposal introduces
much less computational overhead than the baselines during
the learning phase. It should be noted that these algorithms,
including our proposal, are implemented for experimentation
purposes, and are not optimized for production in terms of
execution time. What these results show is that computational
overhead is not a major obstacle for the deployment of
our algorithm, and even less so if a production-optimized
implementation is used.

Figure 12 shows the execution time per decision stage
during the inference phase. As expected, the baselines notably
reduce their computation time in this phase, since the actions
are simply obtained by forward propagation on the policy’s
neural network. The time required by KBRL is in the same
order of magnitude of the baselines. The outlier results of

Fig. 12. Execution time per decision stage during the inference phase.
Confidence intervals are depicted on top of each bar for a 90% confidence
level.

NAF are probably due to implementation differences (recall
that NAF uses the Keras-RL implementation instead of Stable
Baselines).

VIII. CONCLUSION

This work has shown that a model-based RL approach can
efficiently manage the allocation of RAN resources among net-
work slices, and is especially well suited for online operation.
Our proposal, KBRL, combines a one-step lookahead model
predictive control with a model that comprises two elements,
a classifier and an accuracy estimator for the classifier, both
of which are learned from scratch while the network is in
operation. This structure for an MBRL agent is novel and
presents several advantages: i) it benefits from the high sample
efficiency of existing online learning algorithms (in our case,
we use a kernel-based algorithm known as Projectron); ii) it
enables a sample-augmentation strategy that further enhances
the sample efficiency of the learning process; and iii) it
manages all the system objectives in parallel (resource effi-
ciency and SLA fulfillment for each slice). These advantages
largely outweigh the potential sub-optimality associated with
the use of a one-step horizon by the control agent, as shown
by our numerical results. In our experiments, we compared
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KBRL with state-of-the-art RL algorithms, all of which are
farsighted, in different scenarios. KBRL outperformed all of
the baselines in terms of resource efficiency, SLA fulfillment,
and computational overhead, during online learning episodes.
We believe that the simplicity and efficiency of our proposal
make it suitable for the joint management of various RAN
slice resources (e.g., RBs, backhaul capacity, computational
resources). This future research line raises interesting chal-
lenges such as designing a model capable of handling the
interactions between the different parts of the infrastructure.
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