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ABSTRACT: 

Fire is a common phenomenon in many forests and is considered an important ecological tool. Fire severity mapping presents an 

effective way to assess post-fire management intervention and is helpful in environmental and climate change research. The 

objective of this study was to determine the severity of a forest fire event that occurred from 24th to 27th October 2019 at Taibon 

Agordino using Sentinel-2A satellite images and creating a severity map suitable as a decision-making tool for post-fire management 

intervention. The Sentinel-2A satellite data was classified into the following five classes: Unburned, Low Severity, Moderate 

Severity, High Severity, and Shadow with the non-parametric Random Forest (RF) classifier, and the resulting classified image was 

validated using validation sites. The RF classifier was applied first to the ten original band reflectance of Sentinel-2. In a second step, 

additional variables were added to the classification, namely the digital elevation model (DEM), the slope, and five vegetation 

indices (i.e., Differenced Normalized Burn Ratio (dNBR), Relative Differenced Normalized Burn Ratio (RdNBR), Differenced Bare 

Soil Index (dBSI), Global Environmental Monitoring Index (GEMI) and Burn Area Index (BAI)) The inclusion of vegetation indices 

and DEM-related variables increased the classification accuracy from 99.26% to 99.61% and the overall accuracy from 70.51% to 

83.33%. In the classification with the ten original band reflectance, the variable of importance plot ranked the Red-Edge-3, Red, and 

SWIR 1 band reflectance as the top three most important input features, while for the classification with 17 variables, RdNBR, DEM 

and dNBR were the top three most important input features.  

1. INTRODUCTION

Forest fires are natural disturbances affecting forest ecosystems 

in many parts of the world. Fire is an essential component of 

natural dynamics in fire-dependent ecosystems, while in other 

ecosystems, it can lead to forest degradation and hinder 

ecosystem services provision. Fire severity mapping presents an 

effective way to assess post-fire conditions, providing helpful 

information for identifying priority areas for management 

interventions (Morresi et al. 2022). Furthermore, it could 

provide insights for understanding trajectories of vegetation 

recovery, biological legacies distribution, and eventually is 

helpful in environmental and climate change research. Most fire 

severity mapping studies using remote sensing were performed 

using MODIS imagery (see the review of Leblon et al., 2016). 

While MODIS imagery is available daily, the imagery has a too 

coarse resolution for a detailed fire severity map. Landsat series 

have also been used for fire severity mapping (e.g., Matricardi 

et al. 2010., Escuin et al. 2008., Wimberly, Reilly, 2007). The 

European Space Agency has recently launched the Copernicus 

Sentinel-2 satellite carrying the Multispectral Instrument (MSI) 

capable of acquiring images in 13 bands at higher spatial 

resolutions. Also, given the availability of two satellites (2A and 

2B), the revisiting time of the Sentinel-2 satellites allows a 

suitable temporal resolution (revisit time) of 5 days in the 

imagery acquisition (Li, Roy, 2017). Some studies tested 

Sentinel-2 imagery for burned area mapping (Filipponi 2018, 

DeSimone et al. 2020, Han et al. 2021, Fassnacht et al. 2021), 

but very few on fire severity mapping in southern Australia 

(Gibson et al. 2020), in Greece (Mallinis et al. 2018) or Spain 

(Quintino et al. 2018), and recently in the Western Italian Alps 

(Morresi et al. 2022). 

The objective of this study was to map the severity of a forest 

fire event that occurred in the Dolomites Mountains (Eastern 

Italian Alps) from 24th to 27th October 2018 at Taibon 

Agordino (Italy) using Sentinel 2A images and creating a 

severity map suitable as a decision-making tool for post-fire 

management intervention. Such mapping is quite challenging, 

given the rough topography of the area.  

2. MATERIALS AND METHODS

2.1 Study area 

The study area is in the northeastern part of Taibon Agordino 

municipality (Lat. 43.92N; Long. 12.13E) (Figure 1). The study 

area has a typical dolomitic alpine vegetation mainly 

comprising of Norway spruce (Picea abies (L.) Karst.), pines 

(Pinus sylvestris L, P. mugo Turra), and European larch (Larix 

decidua Miller). Norway spruce is the dominant species. Due to 

the steepness of the slopes, the forest stands have preeminent 

protective rather than productive functions. The bedrock is 

predominantly dolomite, calcium, magnesium, and carbonate 

compound. The snow in the area begins to accumulate in 

December and lasts until the end of March in the valleys and up 

to August at the highest elevation. The area's elevation ranges 

between 698and 2294m above sea level. 
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Figure 1. Location of the study area in Taibon Agordino, 

Belluno Province, Italy  

 

2.2 Data 

The study uses two cloud-free (<10%) Sentinel 2 Level 1C 

images. The first image was acquired just before the fire and the 

second after the fire (Table 1). Both images were orthorectified 

top-of-atmosphere reflectance images having the UTM 32N 

map projection and the WGS84 datum. They had a swath width 

from nadir of 290 km and were acquired using the descending 

orbit 22. The study also uses a shapefile that delineates the fire 

perimeter provided by the Veneto regional administration and a 

Digital Terrain Model (DTM) that was downloaded from the 

ARPA-Veneto website (http://geomap.arpa.veneto.it/layers/ 

geonode%3ADTM_5M_GBO). The data has a 5m resolution 

distributed under the Creative Commons Attribution 3.0. We 

also used a set of geolocalized field pictures collected in situ 

that correspond to the different fire severity classes. Samples of 

ground pictures taken in the Unburned, Low Severity, Moderate 

Severity, High Severity areas are presented in Figure 2. 

 

Table 1.  Characteristics of the Sentinel-2 images used in the 

study 

Characteristics Pre-fire Image Postfire Image 

Tile Number 

L1C_T32TQS_ 

A008342_20181 

011T101020 

L1C_T32TQS_A

018180_2018121

5T101420 

Date of 

acquisition 

11/10/2018 15/12/2018 

Local time of 

acquisition 

12h20 14h20 

Cloud cover 

(%) 

7.04  9.55 

Sun zenith 

angle (o) 

54.21 70.53 

Sun azimuth 

angle with 

respect to the 

north (o) 

167.85 168.31 

 

 

 

 
Figure 2. Samples of ground pictures of the various fire 

severity classes. 

 

2.3 Methodology 

The methodology used in the study is described in Figure 3. 

First, the study area's pre- and post-fire Sentinel-2 imagery were 

subjected to atmospheric correction using Sen2cor version 2.9. 

Sen2cor is a Level-2A processor used to correct single-data 

Sentinel-2 Level-1C Top-Of-Atmosphere (TOA) products from 

the effects of the atmosphere in order to deliver a Level-2A 

Bottom-Of-Atmosphere (BoA) reflectance product (Main-

Knorn et al. 2017). The atmospheric correction is done using a 

set of look-up tables generated via libRadtran (Emde et al., 

2016). The resulting BoA reflectance images were produced at 

either 10m or 20m as a function of the band. The images having 

a 20m resolution were resampled to 10m using the RESAMP 

algorithm in PCI Geomatica.  

 

 
Figure 3. Flowchart of the methodology used in the study 

To further strengthen the separability between the classes and 

the accuracy of the classification, following Gibson et al. 

(2020), the following vegetation indices relevant to burned sites 

were computed using both the pre-and post-fire images:  

 

1) Differenced Normalized Burn Ratio (dNBR) (Li, Roy, 2017):  

dNBR = preNBR-postNBR   [1] 

where  

preNBR=    [2] 

postNBR =    [3] 
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2) Relative Differenced Normalized Burn Ratio (RdNBR) 

(Gibson et al. 2020)  

RdNBR=  [4] 

 

3) Global Environmental Monitoring Index (GEMI) (Pinty, 

Verstraete, 1992) 

GEMI=   [5]  

Where  

eta =   [6] 

 

4) Burn Area Index (BAI) (Chuvieco et al. 2002) 

BAI =   [7] 

 

5) Difference in Bare Soil Index (BSI) (Gibson et al. 2020) 

 

dBSI= postBSI-preBSI [8] 

where: 

preBSI=  [9]

 [24] 

postBSI =  [10]

 [24] 

 

The post-fire imagery was classified with the non-parametric 

Random Forest (RF) classifier (Breiman 2001) into the 

following five classes: Unburned, Low Severity, Moderate 

Severity, High Severity, and Shadow. Since Random Forest is a 

supervised classifier, it requires delineating training areas, 

which was done for each fire severity class. In total, 59 training 

polygons were delineated for the five classes (Unburned, Low, 

Moderate, High, and Shadow) with the aid of an aerial 

photograph acquired in July 2019 over the study area. The 

training polygons were also used to compute the J-M distances 

between class pairs with the 10 Sentinel-2 band reflectance. The 

classifier was applied first to the ten original Sentinel-2 band 

reflectance. In a second step, additional variables were added to 

the classification, namely the digital elevation model (DEM), 

the slope, and the five vegetation indices. The classification was 

assessed by comparing the resulting classified image with an 

independent set of validation points extracted from photo-

interpretation of an aerial photograph taken after the fire and 

from GPS ground pictures. In the comparison, we used a total of 

780 randomly selected validation points. 

 

3. RESULTS AND DISCUSSION 

3.1 Class spectral separability 

The average J-M distance with all the Sentinel-2 bands is 1.965, 

indicating an excellent spectral separability between the classes 

(Table 2). The lowest separability was between the Unburned 

and Low Severity classes, with a value of 1.615. Although it 

falls below 1.9, the magnitude is still good enough considering 

the degree of similarity between the two classes, making it 

difficult to differentiate on the Sentinel-2 imagery. Indeed, both 

classes have similar reflectance, mainly in the red, red-edge, and 

near-infrared bands. The highest J-M distance (1.9999) was 

found between two class pairs: High Severity and Unburned 

classes, Shadow and High Severity classes. These classes share 

notable differences both physically and spectrally. Areas 

classified in the High Severity class are distinguished by 

extreme burns and total loss of foliage against unburned areas 

with healthy green foliage (Figure 2). Also, the Shadow class, 

which is a result of topography and nadir angle of the satellite 

when the image was taken, shows markedly different spectral 

characteristics from the High Severity Class. The difference in 

reflectance was most notable in almost all the bands, especially 

the green, red and red-edge bands. The reflectance of the High 

severity class is markedly higher across the bands but is 

distinctively prominent in the red, green, and blue (RGB) bands. 

Conversely, the reflectance of the moderate severity class is 

lowest in the RGB bands but more prominent in the red-edge 

and shortwave infrared bands. The Low severity and Unburned 

classes have low reflectance in the RGB bands but high 

reflectance in the red-edge, near-infrared, and SWIR bands. 

 

Table 2.  J-M distance between the classes computed with the 

ten Sentinel-2 band reflectance 

Class Unburned 
Low 

severity 

Moderate 

severity 

High 

severity 

Low  

severity 1.6153    
Moderate 

severity 1.9944 1.9395   
High 

severity 1.9999 1.9949 1.9856  
Shadow 1.9888 1.9996 1.9979 1.9999 

 

3.2 Classification 

The ten original band reflectance of the postfire Sentinel-2A 

image were imputed into the RF algorithm. The resulting 

confusion matrix of Table 3 shows that the classification 

achieved an overall accuracy of 99.27% and a kappa coefficient 

of 0.99. The lowest User’s accuracy (UA) (98.94%) and 

Producer’s accuracy (PA) (98.6%) correspond to the Unburned 

and Moderate Severity classes, respectively. Likewise, the 

highest User’s accuracy (99.64%) and Producer’s accuracy 

(100%) were recorded for the Moderate and High Severity 

classes, respectively. The inclusion of vegetation indices and 

DEM-related variables increased the classification accuracy 

from 99.26% to 99.61% (Table 3). The resulting classified 

image is presented in Figure 4. In the classification with the ten 

original band reflectance, the variable of importance plot ranked 

the Red Edge 3, Red, and SWIR 1 bands as the top three most 

important input features (Figure 5). The variable importance 

plot produced for the classification with all the variables ranked 

RdNBR, DEM, and dNBR as the top 3 most important variables 

(Figure 6).  

 

3.1 Validation 

When only the ten bands were used in the classification, we 

achieved an overall accuracy of 70.5% and a Kappa coefficient 

of 0.42 (Table 4). When the DEM metrics and the vegetation 

indices were added to the classification, the overall validation 

accuracy increased from 70.51% to 83.33% (Table 4). The 

highest Producer's validation accuracy (92.30%) and User's 

validation accuracy (92.30%) were recorded for the Unburned 

class (Table 4). The lowest User's validation accuracy (71.42%) 

occurred for the Shadow class. The lowest Producer's validation 

accuracy (68.42%) occurred for the Moderate Severity class 

(Table 4). 
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Table 3.  User’s and Producer’s classification accuracies as a 

function of the input features 

Class 

User’s accuracy  

(%) 

Producer’s accuracy 

(%) 

Ten 

bands 

All 

variables 

Ten 

bands 

All 

variables 

Unburned 98.95 98.95 98.95 99.47 

Low Severity 99.02 99.02 98.70 98.70 

Moderate 

Severity 

99.65 100.00 98.60 99.65 

High Severity 99.48 100.00 100.00 100.00 

Shadow 99.24 100.00 99.62 100.00 

Overall  

accuracy (%) 

99.26 99.61 99.26 99.61 

Kappa 

coefficient 

0.99 0.99 0.99 0.99 

 

 
Figure 4. Classified image produced by applying the Random 

Forest classifier to the original post-fire band 

images, associated vegetation indices, DEM, and 

slope data. 

 

 
Figure 5. Variable importance plot produced by applying the 

Random Forest to all the original band reflectance of 

the postfire Sentinel-2 image 

 

 

Figure 6. Variable Importance Plot produced by applying the 

Random Forest classifier to the postfire Sentinel-2 

original band reflectance, associated vegetation 

indices, the DEM, and slope.  

 

Table 4. User’s and Producer’s validation accuracies as a 

function of the input features 

Class User’s accuracy (%) Producer’s accuracy 

(%) 

Ten bands All 

variables 

Ten bands All 

variables 

Unburned 55.56 92.30 83.33 92.30 

Low  

severity 

82.60 78.57 73.08 88.00 

Moderate 

Severity 

68.75 86.67 57.89 68.42 

High  

Severity 

78.57 86.67 73.33 86.67 

Shadow 57.14 71.42 66.67 83.33 

Overall 

accuracy (%) 

70.51 83.33 70.51 83.33 

Kappa 

coefficient 

0.42 0.51 0.42 0.51 

 

4. DISCUSSION 

Our study showed that fire severity could be adequately mapped 

by applying the Random Forest supervised classifier to a 

combination of DEM metrics and Sentinel-2 raw band 

reflectance and associated vegetation indices. We achieved an 

overall classification accuracy of 99.61% and an overall 

validation accuracy of 83.33%. Mallinis et al. (2018) obtained 

an overall classification accuracy of 73.3% when applying a 

threshold method on Sentinel-2 imagery for mapping fire 

severity in Mediterranean forests in Greece. Our Kappa 

coefficient was 0.99 for the classification and 0.51 for the 

validation. Gibson et al. (2020) obtained Kappa coefficients 

ranging from 0.424 to 0.799 when applying Random Forests to 

Sentinel-2 images for mapping fire severities in Australia using 

various combinations of vegetation indices. Our better results 

with the inclusion of the vegetation indices agree with Gibson et 

al. (2020)’s study. We still observed some misclassifications 

between the Unburned and Low Severity classes due to the 

spectral similarity of both classes. Physically, low fire severity 

areas are marked by mild ground fire and therefore share 

significant physiological similarities such as healthy foliage, 
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greenness, etc. hence the resultant misclassification. The lower 

User’s validation accuracy (71.42%) for the Shadow Class is 

due to the difference in shadow effect on the Sentinel 2 data 

used for classification and the aerial photograph used for 

validation. Conversely, the delineation of Shadow class is 

helpful in this study in reducing classification error. Indeed, the 

shadow effect from satellite data obtained from optical sensors, 

especially in complex scenes, could influence radiance results if 

ignored (Leblon et al. 1996, Lachérade et al. 2008, Fujiwara et 

al. 2020) 

 

5. CONCLUSIONS 

The study assessed the severity of a forest fire event that 

occurred from 24th to 27th October 2018 at Taibon Agordino 

using Sentinel 2 imagery to create a severity map suitable as a 

decision-making supporting tool for post-fire management 

intervention. The fire severity map was produced by applying 

the Random Forest classifier to a combination of Sentinel-2 raw 

band reflectance, associated vegetation indices, and metrics. 

The best accuracies were achieved when the classification was 

done with the original band reflectance, associated vegetation 

indices, DEM, and slope data, with a classification accuracy of 

99.61% and a validation accuracy of 83.33%. The confusion 

matrix shows that there is still some confusion between the 

Moderate and High Severity classes. This study presents 

preliminary results on the use of Sentinel 2 imagery to map fire 

severity classes in the case of a fire in an alpine forest at Taibon 

Agordino, Belluno Province, Italy. Further work may be 

necessary to test the methodology in other locations in Italy and 

elsewhere. Additional work is also needed to correct the 

reflectance for the topography effect. 

 

REFERENCES 

Breiman, L. 2001. Random forests. Mach. Learn., 45, 5–32. 

 

Chuvieco, E, Martín, M.P., Palacios, A., 2002. Assessment of 

different spectral indices in the red-near-infrared spectral 

domain for burned land discrimination. Int. J. Remote Sens. 23, 

5103–5110, doi:10.1080/01431160210153129. 

 

De Simone, W., M. Di Musciano, V. Di Cecco, G. Ferella, A.R. 

Frattaroli. 2020. The potentiality of Sentinel-2 to assess the 

effect of fire events on Mediterranean mountain vegetation, 

Plant Sociology 57(1), 11–22, DOI 10.3897/pls2020571/02 

 

Emde, C., Buras-Schnell, R., Kylling, A., Mayer, B., Gasteiger, 

J., Hamann, U., Kylling, J., Richter, B., Pause, C., Dowling, T., 

Bugliaro, L. 2016. The libRadtran software package for 

radiative transfer calculations (version 2.0.1). Geosci. 

ModelDev., 9, 1647–1672, doi:10.5194/gmd-9-1647-2016. 

 

Escuin, S., Navarro, R., Fernández, P. 2008. Fire severity 

assessment uses NBR (Normalized Burn Ratio) and NDVI 

(Normalized Difference Vegetation Index) derived from 

LANDSAT TM/ETM images. Int. J. Remote Sens., 29, 1053–

1073, doi:10.1080/01431160701281072. 

 

Fassnacht, F.E. Ewald, E.S. Schmidt-Riese, T. Kattenborn, J.-H. 
Andez. 2021. Explaining Sentinel 2-based dNBR and RdNBR 

variability with reference data from the bird’s eye (UAS) 

perspective, Int. J. Appl. Earth Obs. Geoinformation, 95, 

102262 

 

Filipponi, F. 2018. BAIS2: Burned Area Index for Sentinel-2, 

Proceedings 2nd International Electronic Conference on Remote 

Sensing, Proceedings 2,364, doi:10.3390/ecrs-2-05177 

 

Fujiwara, T., Takeuchi, W. 2020. Simulation of Sentinel-2 

bottom of atmosphere reflectance using shadow parameters on a 

deciduous forest in Thailand. ISPRS Int. J. Geo-Information, 9, 

582, doi:10.3390/ijgi9100582. 

 

Gibson, R., Danaher, T., Hehir, W., Collins, L. 2020 A remote 

sensing approach to mapping fire severity in south-eastern 

Australia using Sentinel 2 and Random Forest. Remote Sens. 

Environ, 240, 111702, 13 p. doi:10.1016/j.rse.2020.111702 

 

Han, A., Qing, S., Bao, Y., Na, L., Bao, Y., Liu, X., Zhang, J., 

Wang, C. 2021. Short-term effects of fire severity on vegetation 

based on Sentinel-2 satellite data. Sustainability 13, 432. 

https://doi.org/10.3390/su13010432 

 

Lachérade, S., Miesch, C., Boldo, D., Briottet, X., Valorge, C., 

Le Men, H. 2008. ICARE: A physically-based model to correct 

atmospheric and geometric effects from high spatial and 

spectral remote sensing images over 3D urban areas. Meteorol. 

Atmos. Phys., 102, 209–222, doi:10.1007/s00703-008-0316-5. 

 

Leblon, B., Gallant, L., Granberg, H. 1996. Effects of 

shadowing types on ground-measured visible and near-infrared 

shadow reflectances. Remote Sens. Environ., 58, 322–328, 

doi:10.1016/S0034-4257(96)00079-X. 

 

Leblon, B., San-Miguel-Ayanz, J., Bourgeau-Chavez, L., Kong, 

M. 2016. Remote sensing of wildfires. In Land Surface Remote 

Sensing: Environment and Risks, pp. 55–95 ISBN 

9780081012659 

 

Li, J., Roy, D.P., 2017. A global analysis of Sentinel-2a, 

Sentinel-2b, and Landsat-8 data revisit intervals and 

implications for terrestrial monitoring. Remote Sensing, 9(9), 

902, 17 p. doi:10.3390/rs9090902 

 

Main-Knorn, M., Pflug, B., Louis, J., Debaecker, V., Müller-

Wilm, U., Gascon, F. 2017. Sen2Cor for Sentinel-2. In SPIE 

Proceedings Volume 10427: Image and Signal Processing for 

Remote Sensing XXIII, Lorenzo Bruzzone, Editor(s), 1042704 

(2017), , p. 12. doi: 10.1117/12.2278218 

 

Mallinis, G., Mitsopoulos, I., Chrysafi, I. 2018. Evaluating and 

comparing Sentinel 2A and Landsat-8 Operational Land Imager 

(OLI) spectral indices for estimating fire severity in a 

Mediterranean pine ecosystem of Greece. GIScience Remote 

Sens., 55 (1), 1–18, doi:10.1080/15481603.2017.1354803. 

 

Matricardi, E.A.T., Skole, D.L., Pedlowski, M.A., 

Chomentowski, W., Fernandes, L.C. 2010. Assessment of 

tropical forest degradation by selective logging and fire using 

Landsat imagery. Remote Sens. Environ., 114, 1117–1129, 

doi:10.1016/j.rse.2010.01.001. 

 

Morresi, D., Marzano, R., Lingua, E., Motta, M., Garbarino, M. 

2022. Mapping burn severity in the western Italian Alps through 

phenologically coherent reflectance composites derived from 

Sentinel-2 imagery. Remote Sens. Environ., 269, 112800, 

doi:10.1016/j.rse.2021.112800 

 

Pinty, B., Verstraete, M.M. 1992. GEMI: a non-linear index to 

monitor global vegetation from satellites. Vegetatio, 101, 15–20 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1115-2022 | © Author(s) 2022. CC BY 4.0 License.

 
1119

https://spie.org/Publications/Proceedings/Volume/10427
https://spie.org/Publications/Proceedings/Volume/10427
https://spie.org/profile/Lorenzo.Bruzzone-16300
https://doi.org/10.1117/12.2278218


 

Quintano, C., A. Fernández-Manso, O. Fernández-Manso, 2018. 

Combination of Landsat and Sentinel-2 MSI data for initial 

assessing of burn severity, Int. J. Appl. Earth Obs. 

Geoinformation, 64 (2018) 221–225 

 

Wimberly, M.C., Reilly, M.J. 2007. Assessment of fire severity 

and species diversity in the southern Appalachians using 

Landsat TM and ETM+ imagery. Remote Sens. Environ., 108, 

189–197, doi:10.1016/j.rse.2006.03.019. 

 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1115-2022 | © Author(s) 2022. CC BY 4.0 License.

 
1120



© 2022. This work is published under 
https://creativecommons.org/licenses/by/4.0/(the “License”).  Notwithstanding
the ProQuest Terms and Conditions, you may use this content in accordance

with the terms of the License.




