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The brain is a highly energy demanding organ, which accounts in humans for the
20% of total energy consumption at resting state although comprising only 2% of
the bodymass. The necessary delivery of nutrients to brain parenchyma is ensured
by the cerebral circulatory system, through the exchange of glucose and oxygen
(O2) at the capillary level. Notably, a tight spatial and temporal correlation exists
between local increases in neuronal activity and the subsequent changes in
regional cerebral blood flow. The recognized concept of neurovascular
coupling (NVC), also named functional hyperemia, expresses this close
relationship and stands at the basis of the modern functional brain imaging
techniques. Different cellular and molecular mechanisms have been proposed
to mediate this tight coupling. In this context, astrocytes are ideally positioned to
act as relay elements that sense neuronal activity through their perisynaptic
processes and release vasodilator agents at their endfeet in contact with brain
parenchymal vessels. Two decades after the astrocyte involvement in
neurovascular coupling has been proposed, we here review the experimental
evidence that contributed to unraveling the molecular and cellular mechanisms
underlying cerebral blood flow regulation. While traveling through the different
controversies that moved the research in this field, we keep a peculiar focus on
those exploring the role of astrocytes in neurovascular coupling and conclude
with two sections related to methodological aspects in neurovascular research
and to some pathological conditions resulting in altered neurovascular coupling.
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Introduction

The brain is populated by several cells, integrated in extracellular space and matrix to
compose brain active milieu (Semyanov and Verkhratsky, 2021). All these components work
in concert to ensure a proper cerebral function, contributing to processes such as
development and maintenance of neuronal connectivity, information transfer and
processing, metabolic supply, inflammatory responses and clearance of catabolites. A
peculiar, dynamic unit operating in the brain milieu is the neurovascular unit (NVU),
which comprises neurons, perivascular glia, mural cells, endothelial cells and extracellular
matrix proteins interacting to guarantee blood brain barrier function and modulate cerebral
blood flow (CBF).

Notably, the lack of energy storing in the cerebral tissue and the high level of energy
consumption underlie the necessity of a continuous and controlled blood flow supply to the
brain, in order to avoid permanent brain damage upon failure in the delivery of nutrients and
oxygen. CBF regulation explicates at different levels. First, the flow needs to remain stable in
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spite of changes in the systemic blood pressure, a process known as
cerebral autoregulation and mainly achieved through the myogenic
reflex, in which smooth muscle cells modify cerebrovascular
resistance to counterbalance pressure variations. This intrinsic
regulation has been shown to be more efficient to compensate
transient hypertension than hypotension (Brassard et al., 2017).
An additional regulatory mechanism intervenes to adjust systemic
arterial blood pressure and heart rate in case of a decrease of cerebral
perfusion, as highlighted by recent studies supporting a role of
astrocytes as intracranial baroreceptors, which sense hypoperfusion
and promote the homeostatic control of brain blood flow through
activation of the sympathetic system (Marina et al., 2020). Besides
these mechanisms related to changes in blood flow pressure, a more
local and tight bond links regional neural activity to CBF, in order to
match, both temporally and spatially, the energy supply to metabolic
demands. This fundamental relationship is named neurovascular
coupling (NVC).

Historical perspective: From 1880 to
the 2000s

The initial evidence on NVC dates back to the end of 19th
century, when the physiologist Angelo Mosso observed heartbeat
pulsations in the exposed brain of two adults presenting head
injuries. Thanks to his ingenious technical devices, he revealed a
correlation between the magnitude of these pulsations and the grade
of mental activities, concluding “We must suppose a very delicate
adjustment whereby the circulation follows the needs of the cerebral
activity. Blood very likely may rush to each region of the cortex
according as it is most active” (Mosso, 1880). 10 years later, the
pathologists Roy and Sherrington studied the regulation of CBF in
animals and postulated the metabolic hypothesis, which links
vascular supply to functional activity through a feedback
mechanism initiated by chemical products of cerebral metabolism
(Roy and Sherrington, 1890). Curiously, it was in the same years that
Santiago Ramón y Cajal, looking at the morphological features of
astrocytes in the architecture of brain milieu, imagined a role for
“perivascular neuroglial cells” in the local dilatation of vessels, as a
result of a putative mechanical movement of astrocyte endfeet
(Cajal, 1895). The absence of adequate technical tools long
represented the limiting step for an accurate study of regional
blood flow. Convincing experimental advancements were indeed
made through the years together with the development of new
technological approaches, such as autoradiography combined to
diffusible radioactive tracers in animals and humans (Freygang and
Sokoloff, 1959; Lassen et al., 1978). After more than one century
from the observations of Mosso, the development of functional
magnetic resonance imaging (fMRI) in humans ultimately
confirmed with high temporal and spatial resolution the main
concept of functional hyperemia, linking local CBF to neuronal
function (Raichle and Mintun, 2006).

In parallel, the research on the cellular and molecular
mechanisms involved in this coupling was taking its early steps.
The first study on the role of astrocytes in NVC (Zonta et al., 2003a)
investigated the process of vasodilatation evoked by electrical
neuronal stimulation ex vivo and by sensory stimulation in vivo,
demonstrating a central role for neurotransmitter-dependent

activation in astrocytes of metabotropic glutamate receptors
(mGluRs). These G-protein coupled receptors (GPCRs) are
linked to the intracellular pathway of Ca2+ release from
endoplasmic reticulum. Consistently, perfusion with mGluR
agonist or direct activation of Ca2+ increases in patched
astrocytes was sufficient to trigger arteriole dilatation in cortical
slices. All protocols used to induce vasodilatation ex vivo were
significantly dependent on the release of cyclooxygenase (COX)
products, most likely prostaglandin E2, which is released by
astrocytes in a Ca2+-dependent process (Zonta et al., 2003b). The
involvement of astrocytes in NVC was supported by another study
performed in the somatosensory cortex (SSCx) of anesthetized adult
mice, where Ca2+ uncaging in astrocyte elicited a local hyperemic
response that was sensitive to specific COX-1 inhibitors. Similarly,
triggering neuronal activity via extracellular electrical stimulation
induced Ca2+ responses in astrocytes and resulted in arteriole
vasodilatation, significantly reduced by mGluR antagonists and
COX-1 inhibitors (Takano et al., 2006).

In both works, a residual vasodilatation persisted after inhibition
of COX pathway. The nature of the pathway mediating this residual
component was disclosed by a concomitant study in cortical slices,
which demonstrated that neuronal stimulation induces in astrocyte
endfeet the opening of big potassium (BK) channels, large
conductance calcium-activated K+ channels that mediate K+

efflux. The consequent increase in extracellular K+ concentration
([K+]o) activates inward rectifier potassium (Kir) channels in
smooth muscle cells (SMCs), resulting in cell hyperpolarization
and vasodilatation. Importantly, the concurrent inhibition of BK
channels and of COX activity resulted in a complete blockade of
neuronal activity-dependent vasodilatation (Filosa et al., 2006).
Figures 1A, B summarize the molecular pathways described by
these studies for astrocyte contribution to NVC.

Dilatation vs constriction

From these seminal works onwards, different lines of
controversy raised to dispute the involvement of astrocytes in
NVC. The first argument concerned the polarity of the vascular
response, since astrocyte activation in brain slices was found to
evoke also vasoconstriction (Mulligan and MacVicar, 2004; Metea
and Newman, 2006). In depth investigation of the factors affecting
dilatation/constriction balance revealed that the polarity of vascular
response to astrocyte stimulation depends on the resting arteriolar
tone (Blanco et al., 2008) and on the metabolic state of the cerebral
tissue (Gordon et al., 2008). Indeed, a physiological range of 30%–
40%myogenic tone favors vasodilatation, while a lower tone, such as
in brain slices lacking blood circulation, promotes constriction upon
the same vasoactive stimuli, e.g., mGluR activation or high [K+]o. On
the other hand, the enzymatic reactions controlling the synthesis of
vasoactive metabolites from arachidonic acid (AA) are sensitive to
oxygen concentration, resulting in a shift of vascular response
towards dilatation at physiological O2 levels and towards
constriction at higher levels. It is noteworthy that standard
procedures of O2 equilibration in slice experiments result in
supra-physiological oxygenation, thus making dilatation more
difficult to observe. Beyond affecting AA metabolism,
oxygenation levels influence NVC also by regulating glycolysis, in
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that O2 consumption accompanying neuronal activity boosts
anaerobic glycolysis. The consequent increase in the production
and release of lactate leads to a reduction of prostaglandin clearance
via the prostaglandin/lactate transporter, enhancing vasodilatation,
while the lower production of ATP results in an increased
availability of the vasodilator adenosine (Attwell et al., 2010).

A role for astrocyte Ca2+

Along the wave of a larger criticism on the physiological role of
gliotransmission, different publications questioned the dependency
of vasodilatation on astrocytic Ca2+, based on the lack of a
vasodilatory response upon selective chemogenetic activation of
astrocytes and on the preservation of arteriole dilatation upon
sensory stimulation in IP3R2-KO mice (Nizar et al., 2013; Takata
et al., 2013; Bonder and McCarthy, 2014). However, it should be
noted that chemogenetic activation of non-native receptors
expressed in astrocytes may not reproduce the spatial and
temporal features of a physiological Ca2+ response. On the other
hand, the dogmatic view of a complete Ca2+ signaling abolition in

IP3R2-KO astrocytes has been recently cracked thanks to the use of
genetically encoded calcium indicators (GECIs) of the GCaMP
family, which allow to capture Ca2+ signals in the whole astrocyte
territory (Shigetomi et al., 2013). Residual Ca2+ signals were indeed
revealed through GECIs in astrocytes from IP3R2-KO mice at the
level of thin processes (Srinivasan et al., 2015; Agarwal et al., 2017;
Okubo et al., 2019) and in endfeet (Del Franco et al., 2021).

GECIs allowed to address also the other major criticism moved
against a role for astrocyte Ca2+ in NVC, related to the timing of glial
responses to neuronal activation, often reported delayed of seconds
with respect to both neuronal activation and vasodilatation onset
(Nizar et al., 2013; Bonder and McCarthy, 2014; Tran et al., 2018).
While a pioneering study revealed a subset of fast responses to
sensory stimulation also with the chemical indicator Oregon Green
BAPTA-1 (Winship et al., 2007), later works supported this finding
with more reliable, selective expression of cytosolic GCaMP in
astrocytes. Ca2+ increases upon physiological neuronal
stimulation were indeed observed in astrocytic processes before
dilatation in the olfactory bulb (Otsu et al., 2015), in the retina
(Biesecker et al., 2016) and in the SSCx (Lind et al., 2018). The
membrane-bound probe Lck-GCaMP6f proved to be the more

FIGURE 1
Cellular and molecular mechanisms of neurovascular coupling. (A) Schematic of the components of the neurovascular unit at the capillary level. (B)
Major pathways of astrocyte contribution in NVC upon physiological conditions. (C,D) Dysregulation of neurovascular coupling upon different
pathological conditions, i.e., ischemic stroke and Alzheimer’s disease. Some of the insets provided in panel (B) are omitted for clarity in these panels. For
the same reason, the reduction in ATP production and the effects on K+

fluxes are indicated only in the astrocyte, but involve also the other cells.
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suitable to capture fast Ca2+ responses in astrocytic processes upon
whisker stimulation in awake mice, also from IP3R2-KO animals
(Stobart et al., 2018). In most cases, Ca2+ microdomains exhibiting
fast onset were a subset of all astrocytic responses occurring upon
neuronal activation. An important conclusion that we can derive
from these and other experimental works [see, for example,
(Institoris et al., 2022)] is that astrocytes display both fast and
delayed responses during functional hyperemia, most likely playing
different roles in initiating and maintaining vasodilatation. Many of
the studies concluding that astrocyte response is too slow to be
involved in vasodilatation onset present astrocyte response as an
average time course of all Ca2+ signals recorded in processes or
endfeet, thus diluting fast signals, whereas a more correct approach
requires isolating the subset of fast responses to characterize their
properties.

Arterioles vs capillaries

An additional argument of dispute in the field arose in relation
to the initiation site of vasodilatation, both in terms of cortical depth
and vessel order. Since capillaries are not enwrapped in SMCs as
arterioles, their active involvement in CBF has long been debated.
Accordingly, the first studies investigated dilatation mostly at the
level of penetrating arterioles, following them from the pial surface
to the first cortical layers in both ex vivo and in vivo preparations.
However, several reports demonstrate that the presence of
contractile pericytes confers to capillaries the ability to regulate
CBF in response to neuronal activity (Biesecker et al., 2016; Mishra
et al., 2016; Khennouf et al., 2018). Most importantly, although
vessels of all branching orders show dilatation in response to sensory
stimulation, first order capillaries dilate before penetrating arterioles
(Hall et al., 2014; Cai et al., 2018). Vasodilatation propagates then to
upstream arterioles (and downstream into the capillary bed), most
likely through retrograde electrical signaling in the endothelium.
Indeed, since capillary endothelial cells express Kir channels, they
can sense extracellular K+ released by astrocytes and neurons and
transmit hyperpolarization along the vascular tree (Longden et al.,
2017). The vasodilatation occurring in the capillary bed was
estimated to produce 84% of the blood flow increase evoked by
neuronal activity (Hall et al., 2014). Research studies investigating
astrocyte role in the initiation of NVC should thus focus on the
capillary level, and indeed recent reports show that astrocytes are
involved in capillary- but not in arteriole-dependent control of CBF
in the SSCx (Mishra et al., 2016) and in the retina (Biesecker et al.,
2016). The former study nicely investigated the molecular pathways
involved in NVC at the different vascular compartments.
Vasodilatation evoked in capillaries was shown to depend on
astrocyte Ca2+ signaling mediated by P2X1 purinergic receptors,
followed by AA synthesis through phospholipase D and COX-1-
dependent production of PGE2 ultimately acting on EP4 receptors
(Figure 1B). The purinergic pathway mediating capillary
vasodilatation was confirmed in vivo upon sensory stimulation
(Mishra et al., 2016). The apparent conflict with respect to the
previously described role of mGluRs in mediating astrocyte response
to neuronal activity can be explained with developmental changes in
receptor expression profiles in astrocytes (Sun et al., 2013).
Conversely, the vasodilatory response evoked in arterioles was

independent of these pathways and it relied instead on the
activation of N-methyl-D-Aspartate receptors (NMDARs) and
nitric oxide synthase (NOS), suggesting a prominent role of
nitric oxide (NO) in the regulation of this vascular compartment.
Of note, NMDAR-dependent NO synthesis has been reported not
only in neurons but also in endothelial cells (Lu et al., 2019). While
the involvement of NO in NVC has been well documented in
different brain regions, it is commonly accepted that this
molecule exerts in the cortex a modulatory and permissive rather
than a direct role in NVC, by favoring vasodilatation through a
reduction in the synthesis of the vasoconstrictor 20-HETE, while it
directly evokes dilatation in the cerebellum (Attwell et al., 2010;
Lourenço and Laranjinha, 2021).

How to study astrocyte role in NVC

When facing the study of NVC, a fundamental aspect to be
considered is the methodological approach (Figure 2). In this
context, imaging techniques are an indispensable tool to properly
analyze and detect regional changes in CBF. For the purpose of this
review, we will focus on the applications related to two-photon laser
scanning microscopy (2P-LSM), that allow us to follow both Ca2+

signaling in brain cells and vascular responses. A widely used
approach couples the use of blood vessel labeling with GECIs to
image neuron, astrocyte or mural cell activity. To quantify
functional hyperemia, the most used parameter is the change in
vessel diameter, usually extracted from imaging data after correction
for movement artifacts in the xy plane. This measurement can also
be applied to transmitted light images. Another possibility is to
measure red blood cells (RBCs) velocity, which increases during
functional hyperemia, an approach particularly useful for small
capillaries in which assessing diameter changes is less reliable.
Both approaches, for instance, have been used in (Tran et al., 2018).

Part of the controversies related to the vascular site of dilatation
onset—arterioles vs capillaries—probably originate from a poor
agreement on what to consider capillary or arteriole (Iadecola,
2017). Arterioles are wrapped by a continuous layer of SMCs
while capillaries have sparse pericytes of different morphologies
(Attwell et al., 2016; Hartmann et al., 2022). Researchers can thus
take advantage of genetic mouse models with selective labeling of
mural cells (Hill et al., 2015) to discriminate between arterioles and
capillaries. An alternative strategy is the use of the artery-specific dye
Alexa Fluor 633, that has been shown to selectively bind elastin fibers
in arterial walls (Shen et al., 2012). A common strategy to label the
lumen of cerebral vasculature involves tail-vein or retro-orbital
injection of dextran-based dyes in blood plasma. In this case, the
identification of vessel type is based on diameter criteria, with
capillaries defined as vessels with an inner diameter of less than
10 µm (Attwell et al., 2016), or on the basis of the branching order,
with the arteriole being the zero order and capillaries the successive
orders (Zambach et al., 2021).

Functional hyperemia can be studied in both in vivo and ex vivo
preparations. The first works on the role of astrocytes in NVC have
been obtained mostly from brain slice preparations (Zonta et al.,
2003a; Filosa et al., 2006; Gordon et al., 2008), which represent a
widely used approach to study the molecular mechanisms of NVC
due to the easy application of pharmacological compounds.

Frontiers in Network Physiology frontiersin.org04

Lia et al. 10.3389/fnetp.2023.1162757

https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2023.1162757


However, the absence of a physiological synaptic activity and the
artificial supply of energy substrates, i.e., oxygen and glucose,
necessarily affect vasomotor activity (Gordon et al., 2011).
Furthermore, the lack of a basal tone due to the absence of both
intraluminal flow and intravascular pressure requires overcoming
this limitation, through pretreatment of slices with constrictor
agents (Filosa et al., 2006; Mishra et al., 2016) or cannulation of
penetrating arterioles (Kim and Filosa, 2012). Nowadays, technical
advancements allow to perform 2P-LSM experiments also in vivo
preparations. Due to optical limitations and surgical complexity,
these experiments have been classically performed in superficial
cortical layers, although specific surgeries for hippocampal region or
the use of GRIN lenses open new perspectives to study NVC in
deeper brain regions (Gu et al., 2014; Chien et al., 2021). In vivo
experiments led in some cases to different conclusions with respect
to ex vivo studies. Since most studies are performed in anesthetized
mice, an important confounding factor could be the use of
anesthetics, which exert deleterious effects on both astrocyte Ca2+

activity (Thrane et al., 2012) and vascular reactivity (Tran and
Gordon, 2015). For these reasons, raising the bar to an in vivo
awake experimental approach avoids this possible source of
controversies. NVC can be studied in vivo upon direct
stimulation of brain activity by sensory stimulation (Institoris
et al., 2022), or upon specific cell type stimulation. Over the past
decades, optogenetics has been established as one of the most
powerful ways to drive the activation of specific brain cells
(Deisseroth, 2015). In the case of NVC research, caution is
mandatory since a recent study proved that light per se induces
vasodilatation in the neocortex and in the olfactory bulb by directly
affecting Ca2+ activity in arteriolar SMCs (Rungta et al., 2017).
Therefore, the use of optogenetics in this field requires proper
control experiments to avoid artifacts. Another way to tackle the
specific contribution of different cell types is to employ genetic tools
to modulate specific intracellular pathways. For astrocytes, one of
the most used approach is the chemogenetic activation via designer
receptors exclusively activated by designer drugs (DREADDs),
which increase intracellular Ca2+ specifically in astrocytes by
using an exogenous compound, typically clozapine N-oxide
(CNO) (Adamsky et al., 2018). Conversely, other tools were

recently developed to attenuate astrocyte Ca2+ activity, such as
CalEx and iβark, which hamper Ca2+ signals in astrocytes
respectively by extruding Ca2+ or by attenuating Gq GPCR
signals (Yu et al., 2018; Nagai et al., 2021). In order to apply
these tools in NVC research, control experiments with
appropriate GECIs are needed to verify their efficacy in silencing
localized Ca2+ activity in astrocyte processes and endfeet.

Finally, technological advancements allow the study of brain
dynamics in freely moving animals through the use of miniaturized
microscopes, thus avoiding the need for the head restrained
configuration required for awake 2P-LSM experiments. Recently,
a first application of this approach has been shown in the context of
cortical injury (Lin et al., 2022). Studies in this direction will
probably shed new light on NVC mechanisms in different brain
regions coupled with different behavioral contexts and possibly also
in pathological conditions.

NVC and pathology

Ischemic stroke

Ischemic stroke occurs when a blood vessel is blocked by a clot
or embolus. Poststroke patients show decreased NVC that lasts up
to a decade after the initial infarct (Krainik et al., 2005; Lin et al.,
2011) and different experimental evidences indicate dysregulation
of vascular control (Figure 1C). Ex vivo models of cerebral
ischemia based on the application of hypoxic conditions
revealed rapid depolarization of neuronal and glial cells
resulting from changes in the extracellular ion concentration
and resembling spreading depression (Müller and Somjen,
2000). In the ischemic core, acute ATP depletion indeed
impairs the activity of Na+/K+-ATPase and opens ATP-sensitive
potassium channels, resulting in substantial [K+]o increase (Dreier
and Reiffurth, 2015; EbrahimAmini et al., 2022). While a moderate
elevation of extracellular K+ is a powerful vasodilatory signal due to
its hyperpolarizing effect, [K+]o exceeding 20 mM can result in a
diffuse constriction of local vasculature by direct depolarization of
mural cells (Filosa et al., 2006).

FIGURE 2
Methodological approaches to study NVC inmice. (A) Schematic viewof different experimental approaches, from slice experiments to freelymoving
animals with miniscopes. (B) Distinction between arteriole, covered by smooth muscle cells, and capillary, covered instead by perycites. (C) Examples of
two fluorescent dyes to label blood vessels. Alexa-Fluor 633 (magenta) selectively labels arterioles while fluorescein dextran (green) labels the lumen of
both arterioles and capillaries. Image adapted from Shen et al., 2012. (D) Analytical approaches to measure NVC. Top, measurement of RBCs
velocity. Adapted from Chaigneau et al. (2003). Bottom, measurement of vessel diameter. Adapted from Cai et al., 2018.
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Beside [K+]o, other vasoactive players can influence the
vascular response after stroke. A recent work employed
transient middle cerebral artery occlusion (MCAO) as a stroke
model to investigate the capillary hyperemic response in brain
regions outside the ischemic core. The results reveal an
impairment in NVC in the peri-infarct cortex 1 day after
MCAO, which could be reverted by inhibiting the synthesis of
the vasoconstrictor 20-HETE. Consistently, cortical 20-HETE
levels were increased after MCAO, in agreement with
observations from stroke patients (Li Z. et al., 2021). The
dysregulation of 20-HETE levels most likely reflects a decrease
in NO production, which affects the balance of the vasoactive
compounds derived from AA by reducing the established
inhibitory action of NO on 20-HETE synthesis.

Alzheimer’s disease

Alzheimer’s disease (AD) is the most common
neurodegenerative disorder worldwide, characterized by
progressive cognitive impairment and memory loss. Common
hallmarks are extracellular amyloid-β (Aβ) oligomers and
plaques, and intraneuronal accumulation of neurofibrillary tangles.

Neurovascular dysfunction is an early event in the pathogenesis
of AD, involved in a positive feedback loop described by the two-hit
vascular hypothesis, in which vascular abnormalities favor AD
pathogenesis and Aβ burden contributes to worsen CBF function
and regulation (Zlokovic, 2011; Zhu et al., 2022). Along with
neurons, the other cells composing the neurovascular unit can
degenerate or alter their signaling pathways in AD (Figure 1D).
Consistent with the central role of capillaries in NVC, pericyte loss in
AD mouse models contributes to NVC impairment, besides
inducing BBB breakdown (Sagare et al., 2013; Kisler et al., 2017).
In addition, accumulation of Aβ in the proximity of pericytes
induces reactive oxygen species (ROS) production, which evokes
the release of the strong vasoconstrictor endothelin-1 (ET-1)
(Nortley et al., 2019).

The accumulation of Aβ oligomers around cerebral vasculature
has been known since the 70s (Mandybur, 1975). Recent electron
microscopy studies revealed that vascular Aβ develops in ring-like
structures around vessels inducing a physical displacement of
astrocyte endfeet, thereby reducing the ability of astrocytes to
regulate vascular tone. In these conditions, also mural cell
response to vasoactive compounds is dampened, presumably due
to the stiffness of Aβ rings (Kimbrough et al., 2015). AD
development is also associated with astrocyte reactivity, resulting
in transcriptional and morphological changes in astrocytes
(McConnell et al., 2019). It is worth mentioning that
transcriptome analysis in astrocytes from AD patients revealed
expression changes in 32 genes associated with Ca2+ signaling
(Simpson et al., 2011). Consistently, early astrocyte calcium
dysfunction is found in different AD mouse models, with both
hyperactivity and hyporesponsiveness reported (Kuchibhotla et al.,
2009; Lines et al., 2022; Åbjørsbråten et al., 2022; Lia et al., 2023).
Along this line, an attenuated astrocyte endfeet response to neuronal
stimulation has been recently suggested to contribute to NVC
impairment in APP mice, in which reactive oxygen species (ROS)
were also involved (Li L. et al., 2021).

Another crucial NVC pathway affected in AD models relates to
the role of K+ channels in initiating and propagating the
hyperpolarization that drives vasodilatation. Recent studies on
different AD mouse models report a reduction in the activity of
endothelial Kir 2.1 channels, resulting in altered vascular responses
to extracellular K+ (Hakim and Behringer, 2020; Li L. et al., 2021;
Mughal et al., 2021). In the context of AD, the reduction in NVC has
been linked also to a deficiency in tissue plasminogen activator
(tPA), a serine protease which is physiologically implicated in the
release of NO upon NMDAR activation. The interaction of tPA with
NMDARs is indeed necessary for the increase of NOS activity
induced by NMDAR activation (Anfray et al., 2020), and tPA-
KO mice present a reduced CBF upon whisker stimulation (Park
et al., 2008). Interestingly, tPA activity is reduced in both AD human
brain samples (Angelucci et al., 2022) and in a mouse model of AD,
where an increased tPA inhibition has been associated with the
attenuation of NVC following whisker stimulation (Park et al.,
2020), consistently with an impairment of NO pathway. Lower
expression of NOS was also found in the hippocampus of patients
affected by AD, while no differences were reported in the
cerebellum, in line with the fact that this region is affected at
later stages of the disease (Liu et al., 2014; DeTure and Dickson,
2019).

Conclusion

At the end of this journey across 20 years of NVC history and
research, we believe that the controversies raised in this field
stimulated a positive scientific debate that ultimately refined the
comprehension of the underlying mechanisms. Science improves
our knowledge as long as we are both open to doubts and rigorous in
performing experiments dealing with them, underlining the
importance of choosing the appropriate tools to study NVC.

While this review focuses on the role of astrocytes in NVC, it is
not meant to claim that these cells are the exclusive players involved.
Similarly, the main pathways presented here do not exclude parallel
mechanisms, which can have a modulatory or a primary role in
different brain regions or in specific tissue conditions, with the role
of NO derived from neurons or endothelial cells being an example of
this concept. It is highly conceivable that the brain has evolved a
redundancy of mechanisms to secure NVC through the involvement
of different cell types and different molecular pathways. The
ongoing research is expected to further deepen our
understanding of these mechanisms, and hopefully to provide
new strategies to face neurovascular impairment in different
brain diseases.
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