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Abstract

Seismic risk is one of the main problems in highly urbanized countries with a considerable
seismic hazard like Italy. To assess seismic risk of the built heritage, it is necessary to deepen
the knowledge of its components, vulnerability in particular. Vulnerability can be evaluated
through mechanical methods, which require detailed information on parameters that may affect
the seismic response. The implementation of such methods often results in time-consuming and
expensive investigations, thus making the risk assessment analysis very cumbersome.

In order to make this process easier and faster, remote sensing algorithms can be taken into
consideration. In this work, satellite images of areas of interest are automatically extracted via
open source online maps, as well as some preliminary information about the buildings detected
in the pictures. Afterwards, a filter is set in order to visualize only targeted building typologies
(e.g., residential buildings), and street view images are obtained for each selected building.
The images are then processed through feature extraction techniques, in order to predict the
number of stories of the buildings.

The remote and automated retrieval of this feature, along with other meaningful parameters,
could allow the association of a specific vulnerability level for each building, thus making on-
site surveys unnecessary, with a remarkable reduction in time and costs.
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1 INTRODUCTION

Seismic risk is one of the main problems in highly urbanized countries with a considerable
seismic hazard like Italy. Even more, seismic risk mitigation represents a major challenge to
reduce socio-economic impact of future earthquakes. To carry out seismic risk assessments, it
is necessary to deepen the knowledge of the different components of this risk.

Seismic risk is defined as the combination of seismic hazard (probability that a particular
earthquake occurs), exposure (number of people, quantity and value of buildings and goods)
and seismic vulnerability. The latter can be described as the propensity of a building to suffer a
certain level of damage after a seismic event. [1]

In order to assess seismic vulnerability of buildings, it can be useful to define fragility curves,
which correlate ground motion with the damage suffered by the buildings. In literature, many
approaches allow the calibration of fragility curves. Among others, analytical-mechanical
approaches define fragility based on structural models in order to simulate the seismic behavior
of buildings. [2-6]. However, when implementing mechanical methods to properly characterize
the behavior of buildings at a territorial scale, it is always necessary to collect a big amount of
structural data, such as material, construction period, height, as well as some more detailed
geometric features. Especially when dealing with large districts or even entire towns, the
investigation of these essential parameters often results in time-consuming and expensive
surveys, making the risk assessment analysis very cumbersome [7-8].

In order to make this investigation process faster and easier, artificial intelligence techniques
may be taken into consideration. For example, instance classification methods have already
been used to classify buildings and some of their features using street view images [9-10].
Further information such as building age and category has also been obtained by analyzing
morphology, neighborhood characteristics and urban patterns from topographic maps [11-16].
Some works have employed shadow detection techniques in satellite images, in order to
estimate building heights [17-19], while others combine maps and street level images to
perform the same task [20-23]. In general, it has become evident how artificial intelligence can
be useful for elaborating models that extract building information, and consequently for
carrying out risk management assessments [24].

In this paper, particular attention is paid to the retrieval of building footprints from satellite
images of areas of different sizes, as well as some preliminary geometric and typological
features. Subsequently, a methodology for estimating building heights (in terms of number of
stories) from street view images is presented, where image processing and feature extraction
techniques are used. The main steps of the algorithm are commented, along with the resolution
of the main obstacles that can be encountered when analyzing street view pictures.

2 AUTOMATED RETRIEVAL OF BUILDING FOOTPRINTS

When seismic risk analyses are to be carried out at a territorial scale, an important element
to assess is building exposure. This first step is necessary to understand how urbanized the area
is (how many buildings there are), as well as to identify the building typologies. A good estimate
of exposure, indeed, takes into account the different usages of buildings, as well as their
construction material, construction period, etc.

For this aim, a Python code was developed, in order to retrieve building footprints given a
specific satellite image.

To retrieve the desired satellite image, the script provides two input possibilities: the user
can search a place by town/municipality, or can enter a pair of coordinates (latitude and
longitude) and distance radius R. In the first case, the program will also return the centroid of
the chosen town (in terms of latitude and longitude); in the second case, the program will extract
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the name of the municipality, region and country to which the chosen area belongs. The code
performs this task through the Static Maps service from the Mapbox API. Figure 1 shows two
example of satellite images: Figure 1a shows an image extracted for an entire town (Padova),
while Figure 1b displays an area centered in the point (45.409605, 11.888727) with a radius R
of 300 meters.

Padova (town level) Coordinates: (45.409605, 11.888727), R=300 m

a)

Figure 1: Satellite images for a) the town of Padova, b) an area centered in the point of coordinates
(45.409605, 11.888727) with a radius of 300 meters

The second step of the code involves the acquisition of the building footprints that can be
found in the satellite images. To do so, the OSM dependency is utilized, which provides access
to OpenStreetMap services. Particularly, the key “building” is selected, in order to extract only
this type of objects from the map. The two maps in Figure 2 show the building footprints related
to the satellite images shown in Figure 1.

Padova (town level) Coordinates: (45.409605, 11.888727), R=300 m

a)

Figure 2: Building footprints for a) the town of Padova, b) an area centered in the point of coordinates
(45.409605, 11.888727) with a radius of 300 meters
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This section of the code not only retrieves the building footprints, but also retains their floor
area, their centroid (latitude-longitude) and the labels of each building (such as
“accommodation”, “commercial”, “religious”, etc). All the data obtained are stored in a
DataFrame, where each row represents a building; they can be accessed and edited via
GeoPandas, an open source project that helps manage geospatial data in Python. Figure 3 shows
the building footprints from Figure 2b, with different colors according to their label.

Coord: (45.400605, 11.888727), R = 300 m
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Figure 3: Building footprints and their labels

In addition, the way in which data are stored makes it easy to filter them. As an example,
only residential buildings and their outbuildings are shown in colors in Figure 4, while other
building typologies are plotted in gray.

Coord: (45400605, 11.888727), R =300 m
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Figure 4: Building footprints and their labels, where only residential buildings and outbuildings are kept

As said before, for each building the centroid is known. Thanks to the Google Street View
API, it is possible to automatically obtain the fagade picture of a desired building, given its
centroid coordinates. The user can select the size of the output picture, the pitch (vertical angle)
and the heading (horizontal angle). In this work, the default size was chosen, i.e., 640x640
pixels. Also, no heading was specified: each time, a value is calculated that directs the camera
towards the specified location, from the point at which the closest photograph was taken. For
what concerns the pitch, an angle of 5° was selected, so that even taller buildings can fit in the

3840



Pietro Carpanese, Marco Dona, and Francesca da Porto

image taken (the default value would be 0°, which means flat horizontal). In Figure 5, some
examples of street view images associated to the area under consideration are shown. The code
could easily acquire the street view pictures for all the building footprints in the image, in a
fairly short computation time.

Figure 5: Examples of street view images obtained from the coordinates of the building footprints

3 AUTOMATED ESTIMATION OF BUILDING HEIGHTS

The workflow described in §2 leads to a good estimate of building exposure in a specific
area, in terms of number of buildings, building typology and total built-up area.

As said before, however, such information is not sufficient to predict the seismic
vulnerability and risk level of a urban district, since more building parameters should be
evaluated. In particular, previous works have shown that a good estimate of vulnerability can
be obtained by knowing at least the number of stories, the material and the construction period
of the buildings examined [5].

In this paper, the variable “number of stories” is examined. Specifically, an algorithm that
automatically retrieves the number of floors of buildings from street view images was
developed. Image processing and feature extraction techniques were implemented in this
algorithm.

3.1 Building detection with bounding boxes

The first step in this algorithm is the correct identification of buildings in the street view
image. To perform this task, other works have used Convolutional Neural Networks (CNNs)
that are able to detect and classify fagcade structures from street view pictures [9].

In this specific case, however, a complete detection of buildings is not necessary. In fact, to
estimate the number of stories, only a single vertical strip of windows could be sufficient. For
this reason, a script that selects the appropriate bounding box was developed. A bounding box
is a rectangle that fully encloses an object in a digital image; in this case, the bounding box is
set to include one or two vertical strips of windows (optionally including the door), going from
the bottom of the building (e.g pavement line) to the rooftop (e.g skyline). In this way, the rest
of the code will only have to deal with a smaller portion of the detected building, thus reducing
the computation time and possible overlapping errors.

3841



Pietro Carpanese, Marco Dona, and Francesca da Porto

The method used to detect a bounding box relies on the Hough transform. The Hough
transform is a feature extraction technique often used in digital image processing, whose main
purpose is the identification of lines in the image [25].

Firstly, only the vertical Hough lines are taken into consideration, with a range of slopes
between -15° and +15°, where a 0° represents a perfectly vertical line (green lines in Figure
6b). By doing so, vertical strips of windows can be easily defined.

Secondly, the ground and the sky must be detected. Also in this step, the Hough transform
is utilized, keeping only the lines whose slope is between 60° and 90° (both positive or
negative). These values were chosen to make it possible to detect the base and the rooftop of a
building, even when the street view image is not perfectly frontal. For detecting the skyline
(blue line in Figure 6b), only the top half of the street view image is considered, while for the
bottom line of the building (red line in Figure 6b) only the bottom half is kept. The fact that the
street view images are acquired with pitch angles of 5° helps to remove part of the pavement,
which is an irrelevant element for creating the bounding box.

The code was written in MATLAB, and more information about the parametric
representation of lines with the Hough transform can be found in the algorithms section of the
mathworks page.

In Figure 6¢, it can be seen that from a rather complex street view image (with more than
one building, a car, a gate, trees), the algorithm is able to crop only the part of the picture that
will be useful for the estimation of the number of stories.

Original street view image Bounding box lines Cropped image

b)

Figure 6: Example of a bounding box

3.2 Feature extraction for estimating the number of stories

Now that only a meaningful part of the street view image has been selected, the algorithm
can proceed with the estimation of the number of stories. The key concept of this step is that
the top and bottom of every door and window (or row of windows) must be detected, so that
they can be associated with the presence of a floor.

To begin with, the raw Google Street View image has to be processed. Firstly, the original
picture is turned into a grayscale image, and then an edge detection method is implemented.
Edge detection is an image processing technique for finding the boundaries of objects within
images, which works by detecting discontinuities in brightness. This technique is commonly
used for image segmentation and data extraction. In this work, a Canny edge detection method
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is implemented [26]. This method finds edges by looking for local maxima of the gradient of
the grayscale image, which is calculated using the derivative of a Gaussian filter. The Canny
method is one of the most suitable to detect true edges. The result is a binary (black and white)
image, as shown in the example of Figure 7c for a bounding box image.

Secondly, morphological operations are applied to the binary image. These operations can
process images based on shapes, so that each pixel in the image is adjusted based on the value
of other pixels in its neighborhood. In particular, the following morphological operations are
used: skeleton, which removes pixels on the boundaries of objects but does not allow objects to
break apart; thin, which thins objects to lines; spur, which removes pixels starting from the end
of any branch as well as the two ends of the main skeleton; and lastly clean, which removes
isolated pixels. Essentially, all these operations allow a simplification of the binary image,
where only the main lines are kept (as can be seen in Figure 7d).

The final step is the window (and consequently floor) detection. Once again, the Hough
transform was used to detect horizontal lines, as described in §3.1. Out of all the lines that are
found, the ones that are too close to each other (i.e., at a distance of less than 20 pixels) are
grouped together, and only one of them is kept. This solution was adopted in order to avoid
detecting the same line twice, since the border of a window may be associated with multiple
Hough lines. In addition, the script eliminates intersecting lines, which are usually caused by
obstacles in front of the actual window or door, such as the branches of a tree.

Figure 7 shows the general workflow that has just been explained. In Figure 7a, the original
street view image is shown, as obtained from Google Street View. Figure 7b shows the
bounding box that selects only the main door and one strip of windows. Figure 7c shows the
result of applying the Canny Edge method to the bounding box image, while in Figure 7d
morphological operations are applied to the binary image. Lastly, Figure 7e represents the
feature extraction step, where the Hough transform technique is used to identify the lines
delimiting doors and windows.

Looking at Figure 7e, the estimation of number of stories is immediate, since every couple
of lines represents a different floor. Moreover, the code automatically computes this parameter,
by taking into account the final number of lines, diving it by two and rounding this value down.

Step 1: Step 2: Step 3: Step 4:
Original street view image Bounding box | Canny edge | Morphological | Hough lines

detector operations (stories)

a) b)

Figure 7: Main steps of the algorithm to estimate the number of stories of a building from street view images
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3.3 Particular case: bounding box for hidden buildings

The code described in §3.2 works with a good degree of accuracy when the building is
completely visible, and the facade can be seen from a frontal or near-frontal perspective.
However, many Google Street View images contain pictures of buildings that are partially
hidden or covered by obstacles. In order to cope with this problem, some adjustments were
made in the algorithm. Here, the case where a tree blocks part of the picture is commented.

In the example provided in Figure 8a, tree branches and leaves occupy almost the entire top
half of the picture. When applying the Canny edge detector to this type of images, a lot of noise
(in terms of blobs and irregular shapes) is generated in association with these objects, as can be
seen in Figure 8b. This may affect the performance of the code, since the Hough transform
method may mistake lines belonging to the branches for window lines.

Fortunately, the building that has to be detected (the one in the middle) is not concealed, and
the base and rooftop are both visible behind the tree, as well as the door and the windows. For
this reason, some specific morphological operations can be performed, so that the lines and dots
belonging to the leaves are deleted, and the algorithm is able to operate only with lines
associated to the actual building. In particular, the operation called branchpoints is used, which
finds lines connected to the main objects of the image. Subsequently, the branchpoints are
enlarged, in order to really separate the lines. Then, the branchpoints are erased from the
original binary image to leave just the single, unbranched lines, as shown in Figure 8c. Lastly,
the blobs that are formed by less than n pixels can be deleted (in this work, a value of 30 pixels
was chosen), and the result is shown in Figure 8d. In this last image, it is clear how the noise
due to the tree ca be almost completely removed, maintaining only the main lines of the building
under consideration. Figure 8¢ shows the bounding box related to the building, and it can be
noticed how the algorithm can detect the facade without being influenced by the tree or other
elements.

d) - e)

Figure 8: Example of bounding box for a street view image with an obstacle (tree)
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4 CONCLUSIONS

An algorithm that automatically retrieves satellite images from a pair of coordinates or a
town name was discussed. The code also returns the building footprints that can be found
in the image, together with their coordinates, areas, and labels. These data can be edited,
and the resulting map can be filtered. The following part of the algorithm uses the
coordinates of the buildings found in the area to acquire street view images.

A second algorithm was presented, to estimate the number of stories of the buildings found
from the previous code. The street view images obtained before are the input of this
algorithm. Firstly, the code creates a bounding box that selects only the part of the building
that is sufficient to estimate its number of stories. Secondly, the number of stories is
evaluated through image processing and feature extraction techniques, particularly the
Canny edge detection method, morphological operations and the Hough transform. In
addition, some particular cases where the building is hidden by obstacles were treated.

The work presented in this paper is in phase of validation. The code works best for
buildings that can be seen from a frontal perspective, although some expedients were
adopted for images that do not have the same characteristics. However, a more systematic
validation should be carried out, involving different areas, different territorial scales, and
different building typologies.

This work fits into the wider context of automated seismic risk assessment. In order to
carry out risk analysis, the estimation of the height parameter is not sufficient to achieve
an acceptable level of accuracy. Other variables will have to be evaluated, first of all
construction period and material. Once all these parameters are known, it will be possible
to estimate seismic vulnerability more accurately and automatically at a territorial scale.
Therefore, this algorithm could represent a useful tool for authorities in the field of seismic
risk management, and it could make on-site surveys unnecessary, with a remarkable
reduction in time and costs.
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