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Abstract: By leveraging the recent development of artificial intelligence algorithms, several med-
ical sectors have benefited from using automatic segmentation tools from bioimaging to segment
anatomical structures. Segmentation of the musculoskeletal system is key for studying alterations in
anatomical tissue and supporting medical interventions. The clinical use of such tools requires an
understanding of the proper method for interpreting data and evaluating their performance. The
current systematic review aims to present the common bottlenecks for musculoskeletal structures
analysis (e.g., small sample size, data inhomogeneity) and the related strategies utilized by different
authors. A search was performed using the PUBMED database with the following keywords: deep
learning, musculoskeletal system, segmentation. A total of 140 articles published up until February
2022 were obtained and analyzed according to the PRISMA framework in terms of anatomical struc-
tures, bioimaging techniques, pre/post-processing operations, training/validation/testing subset
creation, network architecture, loss functions, performance indicators and so on. Several common
trends emerged from this survey; however, the different methods need to be compared and discussed
based on each specific case study (anatomical region, medical imaging acquisition setting, study
population, etc.). These findings can be used to guide clinicians (as end users) to better understand
the potential benefits and limitations of these tools.

Keywords: medical imaging; ultrasonography; MRI; X-ray; CT; musculoskeletal system; anatomical
structures; segmentation; artificial intelligence; deep learning

1. Introduction

In recent years, several deep learning tools have been implemented for the segmen-
tation of anatomical structures to support a wide range of clinical applications for rapid
and high-precision evaluation. Deep learning tools for the segmentation of the muscu-
loskeletal system have been proposed to assist clinicians with applications in the field of
computer-assisted surgery [1,2]; the facilitation of clinical decision making for treatment
planning [3,4]; identification of biomarkers [5]; tissue landmarking [6]; model reconstruc-
tion [7–9], for example, non-invasive (in silico) simulation or virtual reality [10]; analysis
and quantification of structure properties (i.e., shape, area, volume, thickness, and other
texture features) [11,12]; body composition analysis [13–15] and bone assessment [11,16,17]
for the prognosis of health conditions in terms of risk profiling and stratification; and so on.

Image segmentation is a process used to simplify the representation and analysis of an
image and it consists of the classification of pixels to localize and delineate the shape of the
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objects represented [4,18]. The segmentation output highlights the anatomical region of
interest (ROI), i.e., a tissue, to increase the precision of a medical intervention. However,
the accuracy of manual segmentation depends on the skill and experience of the operator,
leading to significant intra- and inter-observer variability and time consumption, which are
critical bottlenecks in the workflow. This indicates the need for the creation of automated
solutions [4,7]. In this regard, artificial intelligence (AI) approaches, such as deep learning
(DL) have become increasingly popular methods for solving various automated computer
vision tasks, such as the abovementioned segmentation. The advantage of DL algorithms is
their ability to “learn” complex relationships from large datasets in a self-taught way, with
minimal operator-imposed assumptions and without explicit knowledge of the data in
terms of features to identify objects [4,19–21]. Prior to the recent advances in DL solutions,
intensity-based approaches were a common choice; however, they have limitations due
to the strong influence of imaging artifacts and variations in the intensity of different
organs, which leads to inconsistent and misleading interpretations of the results [22]. To
overcome these limitations, the deep learning paradigm with neural networks has been
successfully proposed.

The term neural network is derived from neuroscience and these algorithms mimic the
brain mechanism, that is, the brain is a gigantic network of neurons and the neural network
is a network of nodes [23]. A variety of neural networks can be achieved by combining
different node connections to learn the different features of an object and solve different
tasks. Computationally speaking, a node behaves in relation to a mathematical operator
(also known as an “activation function”) that receives input signals from the outside and
multiplies them by weight values that represent the associations of neurons (synapses)
and are updated during the training process. Multilayer neural networks are called deep
neural networks [23]. Each layer can extract specific information from an initial input (i.e.,
a bioimage). Subsequent layers of the network combine the information of the previous
layers, thus network architectures learn to detect features such as color and edges in their
early layers, while in deeper layers, networks learn to detect more complicated features
(with a more semantic meaning). In this way, the network learns from the data which
significant features to identify and segments the anatomical structures.

The use of deep learning segmentation algorithms for medical applications needs to
be discussed based on the computational strategies implemented for their development. In
this way, the clinician, as an end user, does not obtain false interpretations of the results.
For this reason, the aim of this investigation was to analyze the current state-of-the-art
solutions for segmentation, with a focus on musculoskeletal structures, using deep learning
approaches. The novelty of this work is to provide clinical experts with an overview of
the challenges that have been faced in previous studies in the literature and the related
solutions that have been implemented to develop an automated artificial intelligence tool
that is capable of investigating (segmenting) musculoskeletal structures from bioimages
and designed to meet today’s clinical needs. These results contribute to our understanding
of the limits and advantages of the use of such tools in clinical practice.

2. Materials and Methods

The results of this systematic review were reported according to the Preferred Re-
porting Items for Systematic Reviews and Meta-Analyses (PRISMA) [24]. A search was
performed in the PUBMED database that included articles published up until February 2022.
The following keywords were included: deep learning, musculoskeletal system, segmenta-
tion (title). In total, 140 articles were obtained as the query output and they were reviewed
with an initial selection of the titles and abstracts, against the inclusion/exclusion criteria by
two reviewers, L.B. and A.P. Works concerning animal studies, brain/nerves/heart/gastric
apparatus/eyes (globes, orbital fat)/osteoclasts/myofibers/skin segmentation, scanned-
film mammograms/staining imaging, not in English, not found available online in full
text, not concerning anatomical structures, and where segmentation was not the main topic
(e.g., publicly available database articles) were excluded. A total of 112 relevant articles
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were fully or partially (if articles include only a partial discussion on the current topic)
revised by the same reviewers. Of these, a total of 101 articles were considered eligible for
the current dissertation (these are reported in the tables below and the approximate per-
centages, in accordance with the exclusion criteria). Another 14 documents (articles/books)
were added to support the general discussion (not reported in the tables below and the
percentages, not in accordance with the exclusion criteria). The PICO framework was used
to guide the evaluation of the studies. Four other independent and expert reviewers (two
engineers, F.U., C.G.F. and two clinicians, C.S., C.P.) supplemented this systematic review
with additional evaluations.

3. Results

In general, deep learning models are trained/validated/tested using two elements: a
set of labeled data (annotated images recognized as ground truth/gold standard) and a
neural network architecture that contain many layers [21].

Starting with the pipeline of a generic deep learning tool for the segmentation of
musculoskeletal structures from medical images, the purpose of this section is to present
the main challenges and the related solutions that have been implemented in the literature
for tool development.

3.1. Musculoskeletal Structures and Medical Imaging

The literature shows that deep learning algorithms have been developed for different
imaging modalities for the segmentation of a variety of musculoskeletal structures. In
terms of anatomical structures, we found solutions for the following: 33% were related to
the lower limbs (bones, muscles, joint, knee cartilage/meniscus/ligament), 8% to the upper
limbs (bones, shoulder muscles, tendons), 34% to the trunk (vertebrae, disc, muscles, ribs),
3% pelvis (bones, muscles), 14% to the head (bony orbit, mandible, maxilla, temporal bone,
skull), and 8% to the whole body (bones, muscles). Concerning medical imaging, 39% of
the studies used magnetic resonance imaging (MRI), 9% used ultrasonography (US), 41%
used computed tomography (CT), 9% used X-ray, and 2% used pluri-imaging modalities
(see Table 1).

Table 1. Musculoskeletal anatomical structures and related bioimaging techniques investigated with
deep learning approaches for object segmentation.

Anatomical Structures Medical Imaging References

Lower Limb

MRI [5,7,19,25–46]
US [3,47–49]
CT [4,50–52]

X-ray [53]

Upper Limb
MRI [54–57]
US [58,59]

X-ray [17,60]

Trunk

MRI [11,18,61–67]
CT [14–16,68–83]

MRI, CT, X-ray [84]
X-ray [12,85–88]

Head

MRI [89]
CT [6,8–10,90–96]

CT, MRI [97]
X-ray [98]

Pelvis CT [13,20,99]

Whole body US [1,2,100,101]
CT [102–105]
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In relation to the imaging modality, the main difficulties are attributed to factors such
as variable image contrast, the inherent heterogeneity of the image intensity, image artifacts
due to motion, spatial resolution (e.g., in low-resolution images, the cervical vertebrae
become a single, connected spinal region which is misleading to the investigation) [26,87].
Therefore, some authors [2,18,62] have integrated multimodal imaging information to
combine the benefits of individual modalities.

3.2. The Challenges of Database Construction

Bioimaging “mining” for clinical purposes could be extremely powerful under cer-
tain circumstances that rely on raw data acquisition, selection and processing, to solve
bottlenecks such as a small sample size and data inhomogeneity.

3.2.1. Strategies for a Small Sample Size

The success of any deep learning approach is highly dependent on the availability of
a quality dataset (of labeled images) to train the network by using many samples (“big
data”) [100]. Then, once the network has been successfully trained/validated/tested,
it can be used directly on new images acquired during the clinical routine. To build
the ground truth (mask images), the reference data are manually or semi-automatically
segmented, coarsely or finely. This process usually involves laborious manual labeling,
where annotations are performed by experienced observers. Using multiple annotators
may offer a more reliable representation of multicenter studies (where different guidelines
may be present). However, as reported by Brown et al. 2020 [106], it is also likely that
manual segmentation is imperfect, which consequently affects the accuracy of the network
performance. Therefore, a proper number of images should be acquired to ensure intra-
and inter-operator reliability. Although we frequently found there was a scarcity of labeled
training data, it is difficult to obtain a large and publicly available dataset due to the security
of patient information, data privacy, lack of data-sharing practices between institutions,
and so on [100].

The risk in training a network with a small set of data is that it can degenerate into an
overfitting problem, when a significant gap between training and testing error occurs and
the network is extremely sensitive to small changes in data representation.

Data augmentation, which consists of artificially increasing the number of training
samples, is commonly implemented to solve the problem of overfitting and to boot net-
work efficiency. The choice of its implementation is very context-specific. In this survey,
data augmentation was performed by approximately half of the authors, and most of the
time this involved applying various image processing techniques (i.e., more than 90%
of them applied affine transformations) to the dataset (see Figure 1). Other recent tech-
niques for data augmentation include various generative approaches. Among them, the
generative adversarial network (GAN) is a deep learning method that identifies the in-
trinsic distribution of a dataset and exploits it to generate realistic synthetic samples [100].
Nikan et al. 2021 [10] reported that in case of samples with a low resolution, image artifacts
or variations due to acquisition with different scanners, the data augmentation process also
has the advantage of increasing the robustness of the model itself.

To manage small sample datasets, another solution is the transfer learning technique,
which was implemented in more than 10% of the analyzed papers. The aim of transfer
learning is to make a pre-existing algorithm reusable for a new dataset since it consists of
using a pre-trained network (trained with another contextual dataset), and customizing it
to the specific segmentation task so that the algorithm will only learn specific features for
the new data (e.g., new data coming from new centers) [21] (see Table 2).
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Table 2. Computational solutions to manage small sample datasets.

Computational Solution Type References

Data Augmentation Affine transformations
[9,13,20,27,29,31,32,37,39–43,50–

55,57,58,63,64,66,67,70,72,79–82,84–
88,90,91,93,96–99,101,103,104,107]

Transfer Learning - [8,31,38,39,44,45,48,57,82,88,96]

3.2.2. Image Pre-Processing Techniques for Uniform Data Distribution

One of the biggest problems related to building the database is that the data often
comes from different hospitals, it has been acquired with different devices, it has different
resolutions/noises/illumination, and lacks repeatability; thus, the data includes large
variations among different subjects/the same subjects monitored at different times, and
therefore the dataset must be pre-processed [17,108]. In general, for optimal computer
visual outcomes, attention to image pre-processing is required so that the image features can
be improved by eliminating unwanted falsification [109]. So as to not alter the informative
content of the images, it is essential to know the properties and the potential variability
of the anatomical structure to be segmented, the studied population, the questions being
investigated, and the robustness of the subsequent processing and analysis steps. For
instance, in the case of image intensity normalization, the tissue taken as a consistent
reference should always be present in the image and unlikely to be affected by pathological
processes [106].

More than half of the authors (57%) implemented a pre-processing phase before the
deep learning training step. The most commonly implemented pre-processing techniques
were normalization; histogram equalization, which is used to increase the contrast of the
image by spreading its intensity values; and intensity-based/dimensional-based filtering
(see Figure 2).

Meanwhile, cropping and resizing methods (downsizing) were generally used to save
memory space and are fundamental to match the dimensional requirements of the network
input. When the region of interest (foreground) is small in relation to the background, then
operations (such as resampling, downgrade in resolution, cropping) do not preserve the
informative content of the tissue, thus leading to the loss of object details and surrounding
relative contextual data. Instead, a two-pass run is a potential solution, where the native
image should be processed in the first pass to allow the network to learn other significant
determinants that may not be detected in the pre-processed one [14] (see Table 3).
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Table 3. The most implemented pre-processing techniques.

Computational Solution References

Normalization/histogram equalization [1,12,13,15,17–19,25,26,28,31–33,39,40,55,59–
61,63,70,73,80,85,86,90,91,104]

Intensity-based/dimensional-based filtering [3,6,12,17,28,54,70,86]

As reported by Klein et al. in 2019 [103], sometimes it is necessary to perform expen-
sive pre-processing and post-processing phases. For example, computer-aided diagnosis
systems (which are rapidly developing with the help of modern computer-based methods
and new medical-imaging modalities) generally require image pre-processing for image en-
hancement [110]. When there is no need for complex processing refinement, as highlighted
by Norman et al. [5], there is a noteworthy improvement in performance time.

3.2.3. Training/Validation/Testing Subsets Assignment

There are several strategies that are applied for the splitting of training/validation/
testing subsets from the ground truth collection. In general, a training set is used for model
training and construction, a validation set is used to monitor the model training process
and observe the training effects, a test set is used to assess the generalization capabilities
of the model [17]. In the case where the network is tested on a group of images that are
greatly different from those used for training, the performance may decrease significantly.
Generally, training/validation/testing subset assignment is performed by proportional
splitting (e.g., 70%: 15%: 15%).

As reported by Goodfellow et al. 2016 [111], one procedure that uses all the examples
in the estimation of the mean test error is k-fold cross validation, which was adopted by
more than 20% of the authors in this survey. With this method, k-times a dataset is split
into k equally sized subsets (one used for validation, the others are used for training). This
process is then repeated k times. Then, the performance must be evaluated on a different
test set. According to Rampun et al. 2019 [112], in some cases it is not necessary to perform
a cross-validation, for example, when the number of training images is sufficient because
cross-validation is extremely time consuming.
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A bottleneck that should be considered in both of the abovementioned methods, is
the redundancy in the data content. Redundant information can occur, for example, in the
case of patients with multiple scans or images where the background is more prevalent
compared to the foreground [10]. The latter issue can be solved through patch-based
techniques, but as argued by Chen et al. 2019 [50], patch-based deep learning approaches
have two main drawbacks. First, the receptive field of the network (region of an image
in which the network is “sensitive” to features extraction) to the chosen patch-size is
limited, and may only consider the local context. Second, the time required to run complex
patch-based methods makes the approach infeasible when the size and number of patches
are large.

In addition to the above considerations, to acquire representative subsets,
Ackermans et al. 2021 [69] suggested the importance of discarding potential outliers. On
the other hand, as noted by Liebl et al. 2021 [76], it is also essential that the database be as
complete as possible with anatomical variants to allow for the development of robust and
accurate segmentation algorithms.

3.3. Neural Network Architectures Applied to Musculoskeletal Structures Segmentation

The segmentation of anatomical structures can be performed based on the availability
of bioimaging datasets through 2D or 3D approaches; however, combining the benefits of
both solutions remains a challenge. The main reason the 2D method is popular is that it
does not require an oversized dataset (using each slice as a network input, thus increasing
the number of images, and consequently improving the performance and generalization
of the network) and it is also very economical in terms of its computational and memory
requirements. However, a 2D method does not fully utilize all sequence information (for
example, between slices). This limitation could be overcome by using a 3D network capable
of improving the continuity of the sequential slices and better segmentation of the small
parts of the organs [4,113].

As trade-off strategies, the models could be trained by alternating the input batches
by using batches of different planes (axial, sagittal, coronal) in such a way that the net-
work learns to segment structures independent of the viewing direction, as proposed by
Klein et al. 2019 [103]. Alternatively, a mixed two-steps algorithm could be implemented:
a 2D organ volume localization network, followed by a 3D segmentation network, as
discussed by Balagopal et al. 2018 [4].

In fact, over the years, various network architectures have been developed to segment
musculoskeletal structures. One of the most popular models of the convolutional neural
network (CNN), a type of artificial neural network that is widely used in the imaging
domain, is the U-Net graph in its original form as proposed by Ronneberger et al. 2015 [114]
or a modified version, which is utilized to solve 2D or 3D tasks. In this survey, the U-
Net-based network was chosen by more than 60% of the authors (see Table 4). Indeed, as
reported by Zhou et al. 2020 [11], the U-Net deep learning architecture has been proven to
be effective in biomedical image segmentation tasks, even with limited data availability.

Table 4. The most common deep learning network architecture applied to musculoskeletal structures,
matched with bioimaging techniques.

Network Architecture Medical Imaging Reference

U-Net

MRI [5,7,11,19,25,27,31–
42,44,46,55,57,64,65,89,107]

US [49,100,101]

CT [4,9,13,15,16,59,69,71–73,76–
81,83,90,91,93–95,99,103–105]

X-ray [12,17,53,60,85–88,98]
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However, the choice of network architecture is driven by the case under study, which
could guide the implementation of a new ad hoc design with a customized structure, as
chosen by Kuang et al. 2020 [61].

To further improve the segmentation capability of the network, one design architecture
strategy that could be considered is the introduction of an attention module, as proposed
in [31,39]. Attention mechanisms can support the model to invest more resources in
important areas of the structures present in an image, thus focusing on regions instead of
analyzing the entire field of view. For models with moderate network depth, adding an
attention module can improve the performance.

3.4. Network Training/Validation/Testing Process

Once the dataset and the network architecture have been defined, then the network
should be trained/validated and tested to evaluate its performance through the use of
different score indices.

In supervised learning, network training is the process where the segmented images,
as the net output, are compared with a group of labeled images, as the net input, until the
convergence between input and output is obtained (as error reduction). In other words,
supervision means that each input image is coupled with a label, and this association
is learned from the network to predict a specific output. During the learning process,
the network weights are updated to reduce the error between the experts’ annotation
(ground truth/labeled images) and the network prediction. This error is then evaluated and
quantified through validation and testing processes. According to the concepts discussed
in the previous sections regarding data labeling and weights update, Figure 3 reports a
more detailed representation of the training/validation/testing process.
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To reduce the burden of manual pixel-level annotations, so-called “weak” supervision
has also attracted significant interest since, as explained by Kervadec et al. 2019 [115], it
consists of annotating images in the form of partial or uncertain labels (e.g., bounding
boxes, points, scribbles, or image tags).
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3.4.1. The Network Learning Process

During the training process, the difference between the expected output and the pre-
dicted one is estimated by the loss function. The training loss is used to update the weights
and biases, while the validation loss determines whether the learning rate parameter (which
regulates the way the network learns the problem, where a higher learning rate means
faster but also sub-optimal training) is lowered or the training is stopped [99]. In fact,
if the validation loss plateaus, according to different authors, the model training can be
terminated [19] or the learning rate decays [4].

The most common loss functions used by the papers reported in this survey were the
DICE function or variants (27%), cross entropy or variants (23%), or a combination of both
(7%), see Table 5. Weighted terms in the loss function are a strategy that is utilized to solve
class imbalance problems, and to make sure that different objects equally contribute to
its quantification.

Table 5. Loss functions most frequently used for the segmentation of musculoskeletal structures.

Loss Function Reference

DICE function or related variants [4,7,8,10,12,15,19,31,37–
39,46,49,50,52,55,57,59,67,72,73,80,85,91,94,99,101]

Cross entropy or variants [1,2,4,5,9,26,28,29,32,33,36,43,50,51,71,74,87,88,93,97,100,105,107]

A combination of DICE + cross entropy loss function [25,35,40,48,82,90,103]

3.4.2. The Network Performance

Comparing different deep learning architectures is a difficult task, and a network
performance that is comparable to human observers could be considered a strong indicator
of practical clinical utility [116]. However, different authors have chosen disparate per-
formance indicators to evaluate the results according to each specific case. For example,
as reported by Ackermans et al. 2021 [69], for a clinically useful algorithm that identifies
patients at high risk for sarcopenia, the number of false negatives should be as low as
possible as this represents a harmful health condition if not treated. Conversely, we may
be willing to tolerate slightly more false positives, as sarcopenia treatment involves better
nutrition and more functional activity, which are unlikely to harm anyone.

Thus, to validate the process, it is important to compare the selected technique with
manual segmentation and with other network architectures. The most used indices to
quantify network performance in terms of the overlap between ground truth and network
predictions were the DICE index (DSC) (85%), Intersection over Union (IoU or Jaccard
Index) (30%), Hausdorff distance (HD) (18%), and surface distance (SD) (18%). The HD
and SD indices are generally used in case of 3D model reconstruction from multiple slices
segmentation (see Table 6).

Table 6. Performance indicators most frequently used for the segmentation of musculoskeletal structures.

Performance Indicators Reference

DSC [3–15,18–20,25,27–29,31–60,62,63,67–71,73,76–80,82–
84,86–94,96–101,103–105,107]

HD [4,6,10,18,28,34,41,44,47,48,52,58,68,73,86,90,91,96]

IoU [2,3,7,9–11,18,28,33–35,47,48,50,52,57,59,67,68,72,73,77,
78,81,85,88,89,93,101,103]

SD [4,18,26,29,32,34,37,40,41,44,46,51,73,79,90,91,104,107]
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Another way to quantify the network performance is the run time of the predic-
tions since it is crucial for the clinical real-time applicability of the tool. As evaluated by
Ackermans et al. 2021 [69], the segmentation timing may also vary greatly in relation to
different hardware.

An additional drawback in terms of timing efforts, is the tuning of the network hyper-
parameters (parameters set by users to control the learning process), which is performed for
model optimization (such as the previously mentioned learning rate). This operation can be
done based on a grid search or random search process [18], e.g., by trial and error [10,68,69].
Bayesian optimization is another method that is computationally less expensive than a
grid search and that often converges to an optimal solution more rapidly than a random
search [18,19].

Nonetheless, some authors have highlighted that network convergence could also be
influenced by factors not strictly related to software or hardware development, such as the
clinical conditions of patients under evaluation. For example, as demonstrated by Hemke
et al. 2020 [13], a variation in accuracy can occur when a network trained with images from
overweight subjects is applied to images from subjects with a low body mass index (BMI).

3.4.3. Post-Processing Operations

After the abovementioned steps, different post-processing strategies could be imple-
mented to ensure a more accurate outcome, to improve consistency, to refine the predictions,
and correct mislabeling errors. Different post-processing techniques were selected by 18%
of the surveyed authors for segmentation refinement (with morphological operations such
as erosion/dilation or with dimensional thresholding) (see Table 7).

Table 7. The most common post-processing operations.

Aim Computational Solution Reference

Segmentation refinement Morphological operations (erosion, dilation . . . ) [12,13,26,59,80,91,101]

Dimensional Thresholding [10,12,15,17,25,26,36,73,95,104,107]

In any case, after the segmentation process, it is crucial to restore the properties of the
original image, both in terms of resizing and resolution, as neural networks generally work
with square matrices.

4. Discussion

Starting with the pipeline of a generic deep learning tool for the segmentation of
musculoskeletal structures from medical images, the purpose of this systematic review was
to offer a quick overview to clinical experts of the solutions proposed in the literature to
fulfill the segmentation task, and to better clarify the potentiality and limitations in the
usage of similar tools to complement their daily practices.

The results demonstrated that several solutions have been proposed in recent years
for the segmentation of musculoskeletal structures for a variety of body parts (lower limbs,
trunk, upper limbs, head, pelvis) with different bioimaging modalities (CT, MRI, X-ray, US)
for clinical application, where automation is key to reduce the human effort involved in
manual annotations (which are time consuming and prone to errors). Such tools should
perform reliable and fast object characterization through a user-friendly interface, reduce
costs and contribute to large-scale clinical process management and scale-up.

Tool feasibility relies, on a case-by-case basis, on its application, the anatomical struc-
ture to be analyzed and the bioimaging technique used for the investigation. The train-
ing/validation/testing of segmentation algorithms on non-public and single-institution
datasets makes the comparison with published results infeasible due to the different
conditions—in terms of the quantity of test images, the imaging parameters and hard-
ware, the pathological status (or none) of the patients, and so on [116]. Therefore, the
network should be trained/validated/tested with different inputs (in terms of the scanner
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setup/manufacturer, patient group, etc.) with the aim of simulating the variability of
clinical practice. Moreover, to reduce redundancy, uniform data distribution and avoid
biases that could lead to the misinterpretation of net outcomes, the database construction
pipeline needs to include some fundamental operations such as the pre-processing step
(which was implemented by >50% of the surveyed authors) and discarding the outliers.
However, these operations must be performed without altering the information content
in the image. In light of the above considerations, it is crucial to acquire a large amount
of reliable data, or where not possible, to implement solutions such as data augmentation
(which was chosen by 50% of the authors in the current survey and implemented by >90%
of them through affine transformations) to enlarge the sample size and avoid problems
such as overfitting.

The comparison between different methods has to be discussed on the basis of each
specific case study (anatomical region, medical imaging acquisition setting, study popula-
tion and so on); however, some common trends emerged from this investigation. These
included the network architecture (>60% of authors chose U-net, in its original or modified
version), loss function (27% chose the DICE function or variants, 23% chose cross entropy or
variants, 7% chose a combination of both), post-processing refinement (18% of the authors
used morphological operations or dimensional thresholding) and outcome indicators (85%
DSC, 30% IoU, 18% HD, 18% SD) to evaluate the goodness of predictions.

Bottlenecks such as small sample size, data inhomogeneity and imprecise segmen-
tation could be solved by data augmentation and pre- and post-processing operations,
respectively, but the impact of such computational solutions should be considered in regard
to the results to avoid false interpretations. Moreover, the accuracy of the predictions of an
algorithm is a meaningful quantity not only when obtaining high values but also when
the network learning process has been properly designed, with training as exhaustive as
possible in regard to the variance of real cases, as encountered in daily practice.

Deep learning is a widely used solution due to its ability to learn the useful representa-
tion of an object from a bioimage in a self-learned way and without prior super-imposition
of user-designed features (thus exceeding the limitations of traditional machine learning
methods). For instance, this is the reason why vertebra segmentation relies on the integrity
of intervertebral discs and is limited in the case of disc disease. In other words, a thoracic
vertebra is identified not only due to its intrinsic features, but also due to the fact that it
lies close to a disc (the disc is an extrinsic feature for vertebra that becomes a “landmark
for the network” in this specific case of backbone segmentation). This also explains the
limitation incurred when using patch-based approaches, where only limited contextual
information is extracted and concur with outcomes predictions. Thus, the deep learning
paradigm allows us to simultaneously investigate multiple pieces of information from an
input, and to understand the way they are integrated and mutually influenced by each
other. Therefore, network learning from huge amounts of data might suggest new biomark-
ers as predictors of musculoskeletal diseases through bioimaging analysis (potentially
overcoming the limitations of human perception).

A “deep” knowledge of the workflow for tool development could support the evalu-
ation of current or new software solutions for clinical applications, where the paradigm
of the “patient at the center” requires tailored analysis and optimized settings. A seg-
mentation tool could potentially increase the effectiveness of a physical therapy (i.e., laser,
radial shock waves, etc.) if it could perform real-time parameter tuning, precisely based on
each specific scenario and the conditions of the musculoskeletal structure, thus focusing
the intervention on the precise level of the altered structure itself. In practice, a similar
deep learning segmentation tool could help to guide clinicians in a customized investiga-
tion of the structures potentially implicated in a specific condition, in planning the best
intervention, in re-evaluating treatments’ effectiveness and in monitoring their follow up.

The purpose of the current survey was to provide clinicians with a quick overview of
the milestones for developing deep learning tools and to understand their applicability.
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The challenge of this type of research was to overcome the problem of the different
nomenclatures used by different authors to define the same topic, to identify common
strategic solutions (e.g., network architectures, performance indicators and so on) and
report the relative percentages (if significant).

The limitations of this type of research include the focus on the analysis on the muscu-
loskeletal system and on the segmentation tasks. Further research could be conducted on
other systems and tasks such as classification.

The search could also be extended to other topics such as network optimization
(linking the performance of the techniques with the overall training and error optimization
strategies) and publicly available databases for network training/validation/testing.

Future work could also include numerical statistics (in terms of performance indicators
resulting from different tools) and the definition of a rating scale that compares different
items (for example, the effect of computational tricks such as increasing the data with data
augmentation, versus collecting more images from clinical procedures).

5. Conclusions

In conclusion, the clinical application of deep learning tools for musculoskeletal
structure segmentation should be considered in the light of the strategies implemented
for their development, to correctly explain their outcomes and evaluate their implications
in the clinical domain. The availability of deep learning modules, integrated in medical
devices for the segmentation of musculoskeletal structures could hasten and refine the
precision of the treatment with the evolution of tailored devices, thus reducing human error
and improving patient quality of life, while offering a new perspective of interpretability in
the medical imaging domain and moving towards new frontiers in medical care.
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