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Abstract

Phase-field modeling has already proved to be a suitable framework to predict the initiation and propagation of drying
racks in variably saturated porous media. In this paper, we focus on some fundamental modeling aspects which have not
et been given sufficient attention. In the first part, different formulations for the total energy, characterized by different
hoices for the coupling between the damage and the poro-mechanical fields, are evaluated based on their ability to lead
o qualitatively reasonable predictions for two benchmark cases of free and restrained desiccation. In the second part, for a
elected energy formulation, we conduct the variational analysis of the quasi-static damage evolution. Hereby, we focus on
estrained desiccation under a given capillary pressure distribution, resulting from the solution of Richards equation with either
ux-driven or pressure-driven boundary conditions. Extending the analysis in Sicsic et al. (2014) to the present case, we show

hat the damage evolution follows first a fundamental branch without localization, and then bifurcates into another branch with
amage localization, which leads to the initiation of periodic cracks. The analysis enables the computation of the drying crack
pacing as a function of material and loading parameters.

2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

eywords: Phase-field modeling; Desiccation cracks; Drying cracks; Period cracking; Brittle fracture

1. Introduction

The process of desiccation- or drying-induced cracking in porous media is ubiquitous in natural and man-made
aterials alike. It has been observed e.g. in clayey soils [1], blood [2], and hydrogels [3], among many others. Its

nvestigation is motivated by the need to understand the underlying mechanisms, characterize the crack patterns,
nd control the crack development [4].

The process is very complex, as it involves the deformation of the solid skeleton, the capillary action between the
olid and the fluids and the phase transitions (mainly evaporation of the in-pore fluid). Experimental studies, from
icroscale observations to field inspections, provided qualitative understanding of many aspects of the process,

ncluding influential factors, distinct stages, and crack patterns, see the recent review in [5]. It was found that
racking is sensitive to boundary conditions [6]; for example, in clayey soils, cracks will be generated during
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drying if the boundaries are restrained, see e.g. [1,7,5,8]. Cracking also depends on drying rate, layer thickness
and initial moisture content [9], flaws and small variations in strength of the material [10], and drying–wetting
cycles [11,12]. Most desiccation cracks are found to arise in opening mode [13] but cracks in mixed sliding and
opening modes are also observed [14,15]. Cracks are typically seen to initiate when the porous media is still (nearly)
fully saturated [16,17]. Finally, a large number of more or less equally spaced cracks are formed in elongated,
beam-like specimens, while a network of complex intersecting cracks is observed in square or rectangular slabs [18].

Modeling and simulation of desiccation cracking were pursued to interpret the experimental results and shed
ight on the key phenomena under various scenarios. A comprehensive review of the available approaches is not
ttempted here and can be found e.g. in [5]. As follows, we just highlight a few main categories of contributions
ased on continuum mechanical modeling and numerical discretization. The simplest approaches ignore hydro-
echanical coupling and prescribe an evaporation-induced shrinkage strain, leading to cracking in the solid skeleton,

ee e.g. [19]. Other investigations propose coupled hydro-mechanical models but do not incorporate cracking. E.g.,
he model in [20] considers linear moisture diffusion coupled to elasticity and can predict the evolution of moisture
ontent and deformation up to initiation of the first crack. The more complex model in [21] is based on a multi-phase
nd multi-species approach considering the interplay of solid, liquid and gas; once again results are meaningful
p to crack initiation. More recent contributions account for both hydro-mechanical coupling and fracture. The
pproaches to deal with cracks in the discretized setting range from lattice representations with strength criteria [22],
o interface elements within finite element analyses, where the interfaces feature strength criteria [23,24] or cohesive
ehavior [25–27], to finite elements with embedded cracks [28].

Computational approaches for desiccation fracture inherit the difficulties of the underlying methods to deal with
racks, including the need for explicit or implicit tracking of the discontinuities (a tedious task especially in three
imensions), the need for ad hoc criteria to handle initiation and any topological change of the crack surfaces such as
erging or branching and the need for contact formulations to deal with crack face interpenetration in compression.
he variational phase-field approach to fracture, pioneered in [29] as the regularization of Francfort and Marigo’s
ariational fracture formulation [30] and later recovered as a special family of gradient damage models [31,32],
rovides a natural solution to the above difficulties. The computational framework enabled by the variational phase-
eld formulation naturally encompasses both nucleation and propagation, and is able to handle crack topology of
rbitrary complexity in two and three dimensions, with no need for crack tracking procedures or for ad hoc criteria
o guide the occurrence of complicated changes in the crack topology. Due to these advantages, the formulation
ained wide application in various fields [33,34].

In standard phase-field models [29], the damage behavior is symmetric in tension and compression. More
omplex models have been developed to avoid crack interpenetration in compression and to obtain an asymmetric
ehavior in tension and compression as observed in experiments. The most widely used of these models [35,36], see
lso [37] for a review, include the decomposition (also denoted as split) of the strain energy density into active and
nactive parts, the first one considered responsible for driving the damage. E.g. in the model by Amor et al. [35],
deviatoric–volumetric split is chosen and damage is driven by the deviatoric strain energy and by the volumetric

train energy associated to positive volumetric strain; in the split by Miehe et al. [36], a spectral decomposition
f the strain tensor is performed, and damage is only driven by the contributions with positive eigenvalues. The
erformance of both models for several benchmark tests is compared in [33]. The development of a more flexible
nergy decomposition is still an active field of research [37,38].

In the context of cracking in multiphase porous materials with phase-field models, the early research mainly
ocuses on hydraulic fracturing in saturated porous media, e.g. [39–41], where cracks are triggered by a fluid
njection. In early attempts to simulate drying-induced cracks, the effect of drying is modeled by applying a
re-defined tensile isotropic inelastic strain and the phase-field approach successfully replicates crack patterns of
olloidal suspensions in unidirectional drying [42]. In [43], the coupling between solid deformation and moisture
ontent is considered analogous to the thermo-mechanical coupling induced by thermal expansion; consequently,
he phase-field variable is coupled to the mechanics through the total stress, as opposed to the coupling via
he effective stress formulated by the same authors for the case of hydraulic fracture. In [44], the governing
quations for isothermal variably saturated porous media are coupled with the evolution equation for the phase-field
ariable, whereby coupling is performed through the effective stress. In [45], two different energies are proposed for
esiccation- and hydraulic fracture, and coupling is performed via the total and the effective stress for the two cases,

espectively. However, the approach is non-variational, hence the stress and the damage criterion are not derived
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from the variational derivative of the same energy functional. A recent variational approach is proposed in [46],
leading to a phase-field model associated with the degradation of the retention properties of the porous medium.
The strain energy decomposition models also vary among these works. In the earlier papers [39,40,42], no split
of the strain energy density is introduced; the deviatoric–volumetric split is adopted in [44,45] while the spectral
decomposition is chosen in [41,43]. No fundamental analysis appears to have been carried out thus far regarding
the influence of different coupling choices and energy decompositions on the capability of a variational phase-field
model to realistically describe desiccation cracking, at least qualitatively.

One major advantage of the phase-field framework over some of the alternative approaches is that crack initiation
nd propagation can both be captured seamlessly. Nucleation of a crack is identified with the localization of the
hase-field variable. When considering local minimization as a criterion to select the stable states during a quasi-
tatic evolution, localization events are associated to the loss of the stability of the so-called homogeneous solution,
.e. the solution featuring a uniform damage level. The corresponding nucleation load is the one at which the
urrent solution branch ceases to be a local minimum of the energy [31,32,47]. The simplest analysis relying on
his approach determines the failure load of a one-dimensional bar under tension and studies the transition between
n initial solution with homogeneous damage and a bifurcated branch with a localized solution. Issues of uniqueness
nd stability for this case are investigated in [47–49]. In more complex problems, multiple cracks may be triggered
t the same time, sometimes forming a periodic array, such as in thermal shocks and in desiccation cracking [50,51]
note that, at the end of desiccation, the cracks form a network similar to thermal shock networks [8]). Capturing
hese complex solutions can take full advantage of the flexibility of the phase-field approach.

Thus far, a fundamental analysis of the nucleation of an array of cracks within the phase-field modeling
ramework has only been carried out for the thermal shock problem [51], departing from the analytical solution
f the heat equation for a constant thermal drop on the free surface of a two-dimensional semi-infinite domain. The
nalysis reveals that, if a sufficiently large temperature difference is applied, damage immediately takes place. In
n initial phase, the solution for both the displacement and the damage variable is homogeneous in the direction
arallel to the free surface. Later on, bifurcation occurs to a periodic solution, which suggests the initiation of
ultiple parallel cracks. It is reasonable to expect that qualitatively similar results can be found from the analysis

f a desiccation problem. However, some additional complications arise in this case, due to the lack of an analytical
olution, the more complex role played by hydraulic boundary conditions, and the wider range of possibilities for
he choice of the governing energy functional, as hinted to above.

In this work, we focus on the variational phase-field modeling of desiccation cracking in initially water-saturated
layey soils. In the first part of the paper, we aim to address the consequences of different coupling choices in
he energy functional at the basis of the approach. Possible formulations for the total energy, characterized by
ifferent choices for the coupling between the damage and the poro-mechanical fields, are summarized into two
odel families. Then, they are evaluated based on their ability to lead to qualitatively reasonable predictions for two

enchmark cases, i.e. free and restrained desiccation. In the second part of the paper, inspired by the work of Sicsic
t al. [52], we carry out a semi-analytical study to evaluate the fundamental behavior of the phase-field models
elected from the previous evaluation. Hereby, we focus on restrained desiccation and conduct the stability analysis
f the quasi-static damage evolution, where the pore pressure is pre-derived by solving the Richards equation under
ither flux-driven or pressure-driven boundary conditions.

The remainder of this paper is structured as follows. The hydraulic problem for unsaturated soils is first briefly
ntroduced in Section 2. In Section 3, the free energy for an undamaged porous solid is expressed in two formats,
hich inspire the formulation of two variational model families for the porous solid with damage. In Section 4,

hese model families are evaluated on two simple setups, namely free and restrained drying, with respect to their
apability to qualitatively reproduce the expected behavior. Section 5 presents the analysis of the homogeneous
amaging phase and of the subsequent bifurcation, leading to the initiation of an array of cracks. Conclusions are
rawn in Section 6.

As follows, we report a brief overview of the notation. Vectors and second-order tensors are both denoted
y boldface fonts, e.g. u and ε for the displacement vector and strain tensor. Given a scalar valued function

f : x → f (x) ∈ R, we define its positive and negative parts as

⟨ f (x)⟩ =
f (x)

+
| f (x)|

, ⟨ f (x)⟩ =
f (x)

−
| f (x)|

. (1)
+ 2 2 − 2 2
3
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The Heaviside function is defined as

H (x) =

{
1, if x > 0
0, if x ≤ 0 (2)

For functions depending on one variable, a prime symbol denotes the first derivative with respect to that variable,
e.g. A′(α) =

dA
dα .

. The hydraulic problem for variably saturated porous media

In the formulation adopted in this paper, we consider linearly elastic porous materials and treat them as multi-
hase continua with the pores of the solid skeleton filled by liquid water and air. Considering the small thickness
f the samples tested in laboratories when studying desiccation cracking, air is assumed at constant atmospheric
ressure and negligible density (as per the so-called passive air phase assumption [53]). This implies also that in
he partially saturated zones the sorption equilibrium equation (e.g. [53]) reduces to pc = −prw, where pc is the

capillary pressure and prw the water pressure relative to the atmospheric pressure. For simplicity, this variable is
further indicated as pw. This equation states that capillary pressure can be approximated as negative water pressure
(or pore water traction).

2.1. Governing equations

As follows, we briefly recall the governing equations of the hydraulic problem considered uncoupled from the
mechanical problem and in absence of damage. This uncoupled setting will enable our semi-analytical derivations
at a later stage. Let us consider a body Ω ⊂ Rd , with d (equal to 2 or 3) as the number of space dimensions,
made of a variably saturated porous material whose current hydraulic state is characterized by its water pressure
pw : x ∈ Rd , t ∈ R+

→ pw(x, t) ∈ R. Within the bulk of the domain, the mass balance equation of the pore water
can be expressed as

∂

∂t
(φSw)+ divq = 0. (3)

n this equation, φ(x, t) is the Lagrangian porosity, Sw(x, t) the water degree of saturation, and q(x, t) represents
he filtration water velocity. The latter is related to the water pressure by the linear momentum balance equation
or the water, which, in the quasi-static case, amounts to Darcy’s law,

q =
kLkr

ρwg
(−∇ pw + ρwg) = k

(
−∇h +

g
g

)
(4)

here kL (x, t) is the hydraulic conductivity in saturated conditions, kr (x, t) the relative permeability, k = kLkr

he hydraulic conductivity in variably saturated conditions, ρw the water density, assumed constant, g the gravity
cceleration with magnitude g, and h(x, t) = pw/ (ρwg) the pressure head. The combination of Eqs. (3) and (4)
ives

∂

∂t

(
φ0Sw

)
+ div

[
k

(
−∇h +

g
g

)]
= 0, (5)

here we have taken φ ≃ φ0 with φ0 as the initial porosity.1 Note that Sw(x, t) and kr (x, t) (hence k(x, t)) are
on-linear functions of h(x, t). Thus Eq. (5), which is also known as the Richards equation, is a non-linear partial

1 In general, the Lagrangian porosity φ in Eq. (3) depends on the deformation of the porous solid through

φ = φ0
+ b

(
ϵ − ϵ0

)
+

1
N

(
Π − Π 0

)
,

in which φ0 is the initial porosity, ϵ = tr (ε) is the trace of the infinitesimal solid strain tensor ε with initial value ϵ0, Π is the effective pore
ressure (to be introduced later) with initial value Π 0, and b and N are material properties known as Biot’s coefficient and Biot’s modulus,
espectively [54,55]. For soils, it is commonly accepted that b ≃ 1 and N → ∞, so that the previous constitutive equation simplifies to

φ = φ0
+ ϵ − ϵ0 or ϕ = ϵ − ϵ0

ith ϕ = φ − φ0. If the solid is rigid or the volumetric strain of the solid is very small compared to the porosity, we can assume φ ≃ φ0

and there is no coupling between the pressure and the deformation.
4
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Fig. 1. Setup of the (a) hydraulic problem, (b) free desiccation and (c) restrained desiccation examples.

ifferential equation in the unknown function h (or, equivalently, pw). Using the chain rule, we can rewrite (5) as

C (h)
∂h
∂t

= div
[

k (h)
(

∇h −
g
g

)]
(6)

ith k (h) = kLkr (h) and C (h) = φ0 ∂Sw
∂h .

For the closure of the model, we adopt the van Genuchten constitutive equations [56], which relate the saturation
nd relative permeability to the pressure head as follows,

Sw (h) =

{
1 h ≥ 0
(1 − Sr ) Se (h)+ Sr h < 0

(7)

nd

kr (h) =

⎧⎨⎩1 h ≥ 0,
√

Se (h)
[
1 −

(
1 − S1/mvG

e (h)
)mvG

]2
h < 0,

(8)

here the effective saturation Se(x, t) is given by

Se (h) =
[
1 + (−αvGh)nvG

]−mvG (9)

ith mvG = 1 − 1/nvG . It follows that

C (h) = φ0 ∂Sw
∂h

=

{
0 h ≥ 0,
φ0 (1 − Sr )mvGnvGαvG

[
1 + (−αvGh)nvG

]−mvG−1
(−αvGh)nvG−1 h < 0.

(10)

he residual saturation Sr and the van Genuchten constants αvG and nvG are hydraulic constitutive parameters to
e determined by experiments.

Finally, we need to specify the boundary conditions of Dirichlet or Neumann type:

h = h̄ on ∂pΩ, q · n = q̄ on ∂qΩ (11)

ith ∂pΩ ∪ ∂qΩ = ∂Ω and ∂pΩ ∩ ∂qΩ = ∅, as well as the initial conditions

h = h0 for t = 0. (12)

.2. Solution for a simple setup

For the simple setup in Fig. 1a, the pressure head only depends on the vertical coordinate x2 (assumed positive
downward) and on the time t , hence we can write the head-based Richards equation as

C (h)
∂h
∂t

=
d

dx2

[
k (h)

(
dh
dx2

− 1
)]
. (13)

The boundary and initial conditions read

initial conditions: h = h0 for t = 0.
boundary conditions: h|x2=0 = h̄0 or q|x2=0 = q̄0,

¯

(14)

h|x2=H = hH or q|x2=H = q̄H .

5
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Table 1
Geometry and material parameters.

Property Symbol Value Units

Height H 0.05 m
water density ρw 1000 kg/m3

gravitational acceleration magnitude g 10 m/s2

Porosity φ0 0.41 –
Hydraulic conduct. (sat.) kL 9.80 · 10−9 m/s
Constant in v.G. relation αvG 0.028 m−1

Constant in v.G. relation nvG 1.3 –
Constant in v.G. relation Sr 0.15 –
Elastic modulus E 1104 kPa
Poisson’s ratio ν 0.0 –
Bulk modulus K 552 kPa
Critical stress σc 7.06 kPa
Unit damage dissipation w1 0.045 kPa
Length-scale parameter l 0.002 unless specified otherwise m

Fig. 2. Evolution of effective pore pressure, water pressure and saturation during (a–c) a flux-driven (q̄0 = −6 × 10−7 m/s) and (d–f) a
pressure-driven (h̄0 = −1.2 m) drying process.

Moreover, the geometry and material parameters are listed in Table 1. With the given boundary and initial conditions,
we solve the Richards equation with a finite difference scheme. After the pressure head profile h(x2) is derived at
a given t , the effective pore pressure Π (x2) = ρwgh(x2)Sw(h(x2)) is computed.

Fig. 2 illustrates the vertical distribution of effective pore pressure, water pressure and saturation at different
time instances for a flux-driven and a pressure-driven case (in both cases, a zero flux boundary condition is applied
on the bottom surface). In the flux-driven case with outward flux, as the water continuously flows out from the top
(to represent in a simplified fashion the occurrence of evaporation), the water pressure reaches its minimum value
there. The capillary pressure pc = −pw is thus maximum on the top surface and decreases with increasing depth.
According to the van Genuchten equation, the saturation is also lowest on the top. With time, the water pressure
at any depth keeps decreasing and correspondingly, the soil becomes drier and drier until the residual saturation
is reached (not shown). In the pressure-driven case, a constant capillary pressure is applied on the top. Under the
pressure gradient, the water moves upwards such that the lower part of the domain becomes drier. This process

stops when the pressure is homogeneous in the whole domain (not shown).

6
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3. Variational damage problem

In this section, after introducing the free energy density of a variably saturated porous solid with no damage,
e propose two general forms of the total energy density functional for the damaged case within the framework
f variational phase-field models of brittle fracture [29,31,32]. Minimization yields the governing equations of the
rying damage problem, namely the linear momentum balance equations for quasi-static problems and the damage
volution equation. We show that two models from the literature are special instances of the proposed general forms.
y further specifying the two general forms, we propose two model families for variational phase-field modeling
f drying damage.

.1. Free energy density of a porous solid in the undamaged case

In this section, we consider a coupled hydro-mechanical setting to formulate the free energy density of a variably
aturated porous solid in absence of damage. The related classical expression of the free energy will inspire the
ubsequent extended formulation of the total energy density for a variably saturated porous solid in presence of
amage. Let us consider a body Ω ⊂ Rd made of a variably saturated porous material whose current state is
haracterized by the vector-valued displacement field u : x ∈ Rd , t ∈ R+

→ u(x, t) ∈ Rd , and the effective pore
ressure Π : x ∈ Rd , t ∈ R+

→ Π (x, t) ∈ R defined as2

Π (x, t) = Sw(x, t)pw(x, t). (15)

Assuming a geometrically linear model, the strain measure is the infinitesimal strain tensor,

ε (u, t) = ∇
su, (16)

with ∇
s (•) =

1
2

[
∇ (•)+ ∇

T (•)
]

as the symmetric gradient operator. With a standard volumetric–deviatoric decom-
position, we can write ε =

1
d ϵ I + εdev, with ϵ = tr (ε) as the volumetric strain and εdev as the deviatoric strain

ensor.
For this coupled poro-elastic problem, assuming incompressible solid grains (an assumption commonly made for

oils) and no initial total stress, σ 0
= 0, one can define the following free energy density functional3 [54]

G (ε,Π ) = ψ (ε)− ϕ(ε,Π ) (17)

here

ψ (ε) =
1
2
ε · Cε =

1
2

K ϵ2
+ µεdev · εdev, ϕ (ε,Π ) = Π ϵ. (18)

ere ψ (ε) is the elastic strain energy density, with C as the fourth-order elasticity tensor, K as the bulk modulus
nd µ as the shear modulus,4 and ϕ (ε,Π ) can be interpreted as the mechanical work produced by the effective

2 According to Dalton’s law, the effective pore pressure can be defined by

Π =

nβ∑
β=1

Sβ pβ ,

where the sum is carried out over the nβ fluids in pores, e.g. water and air. Due to the passive air phase assumption recalled at the beginning
of Section 2, this equation can be simplified as (15). Note that Coussy [54,55] proposes

Π = Sw pw − U (Sw)

where U (Sw) = −
∫ 1

Sw
pw (Sw) d Sw is to be computed numerically using the inverse pw(Sw) of relationship (7). It can be shown that for

our purposes, since first cracking occurs for values of saturation very close to 1, the values of U (Sw) are very small and (15) suffices.
In [57] it is also suggested to neglect the U (Sw) term as its incorporation becomes very cumbersome in dynamics.

3 In presence of initial strain ε0 (with volumetric component ϵ0) and effective pore pressure Π 0, in this section the following substitutions
should be made: ε with ε − ε0, ϵ with ϵ − ϵ0 and Π with Π − Π 0.

4 For d = 2, the Lamé constants are related to Young’s modulus E and Poisson’s ratio ν as

µ =
E

2(1 + ν)
and λ =

Eν
1 − ν2

and the bulk modulus is given by K = λ+ µ.
7
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pore pressure Π applied to the internal solid walls of the porous solid [55]. For the following discussion, we rewrite
his equation in a different but equivalent form as follows

G (εe,Π ) = ψ̃(εe) − ϕ̃(Π ) (19)

here the effective strain is introduced as

εe = ε −
Π

d K
I, (20)

nd

ψ̃(εe) =
1
2
εe · Cεe, ϕ̃(Π ) =

1
2
Π 2

K
. (21)

ote that although the first term ψ̃ has an analogous structure as ψ in (18), it depends not only on the solid strain
ut also on the effective pore pressure. Moreover, the second term ϕ̃ is now only dependent on the effective pore
ressure.

.2. Total energy density of a porous solid in the damaged case

In order to characterize the material state in a damage process, we introduce the irreversible scalar damage field
: x ∈ Rd , t ∈ R+

→ α(x, t) ∈ [0, 1], with the values 0 and 1 corresponding to an intact and a fully damaged
material, respectively. Inspired by Eq. (17), a quite general expression of the total energy density functional for the
damaged case can be proposed as

W (ε,Π , α,∇α) = A (α)ψ+ (ε)+ ψ− (ε)− B (α) ϕ+(ε, Π ) − ϕ−(ε, Π ) + w(α) +
1
2
w1l2

∇α · ∇α, (22)

with ψ = ψ+
+ψ− and ϕ = ϕ+

+ϕ− according to some chosen decomposition (possible options will be specified
later). This functional is composed of: the active and inactive parts of the solid strain energy density ψ±, depending
only on the solid strain; the active/inactive parts of the coupling energy density ϕ±, depending on both the solid
strain and the effective pore pressure, and the local and non-local damage dissipation terms depending on the damage
(or phase-field) variable α and on its gradient ∇α. The local term is represented by the monotonically increasing
function w(α) with w(0) = 0 and w(1) = w1 < ∞, known as local damage dissipation function. The constant w1

is the specific energy dissipation, representing the energy dissipated per unit volume to reach the fully damaged
state from the pristine material during a homogeneous process. The non-local term depends on the gradient of the
damage and contains an internal length scale parameter l.

The active parts of the energies are coupled with the phase-field variable by the degradation functions A(α) and
B(α), for which possible simple choices read

A(α) = (1 − α)a, B(α) = (1 − α)b a, b ∈ N. (23)

A general formulation of the total energy density functional alternative to (22), inspired by Eq. (19), may take the
form

W̃ (εe,Π , α,∇α) = Ã (α) ψ̃+ (εe)+ ψ̃− (εe)− B̃ (α) ϕ̃+(εe,Π ) − ϕ̃−(εe,Π ) +w(α) +
1
2
w1l2

∇α · ∇α. (24)

nce again, ψ̃ = ψ̃+
+ ψ̃− and ϕ̃ = ϕ̃+

+ ϕ̃−. Compared to Eq. (22), the key difference lies in the dependencies
f the energy contributions on their arguments. Note that, although ϕ̃ only depends on Π , its active and inactive
ortions may depend on εe if so does the decomposition. Analogous to the first form, the degradation functions
ay be chosen as

Ã(α) = (1 − α)ã, B̃(α) = (1 − α)b̃ ã, b̃ ∈ N. (25)

ote that the above choices of the degradation functions trivially fulfill the requirements [31]:

A (0) = B (0) = Ã (0) = B̃ (0) = 1, A (1) = B (1) = Ã (1) = B̃ (1) = 0, (26)

A′ ′ ˜ ′ ˜ ′
(α) < 0, B (α) < 0, A (α) < 0, B (α) < 0. (27)

8
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For the damage dissipation function, we adopt

w(α) = w1α, (28)

which yields a phase-field model of the AT1 type [58], characterized by an initially undamaged (elastic) response.

3.3. Uncoupled assumption and total energy

From now on, in order to enable the semi-analytical developments in the following sections, we uncouple the
hydraulic problem (illustrated in Section 2) from the elastic problem with damage. In other words, we first compute
the effective pore pressure by solving the Richards equation (5) with the van Genuchten equations (7), (8), and then
consider this pressure as an input when solving for solid deformation and damage. Thus, the total energy density
functionals in (22) and (24) are simplified as follows

W (ε, α,∇α;Π ) = A (α)ψ+ (ε)+ ψ− (ε)− B (α) ϕ+(ε;Π ) − ϕ−(ε;Π ) + w(α) +
1
2
w1l2

∇α · ∇α, (29)

W̃ (εe, α,∇α;Π ) = Ã (α) ψ̃+ (εe)+ ψ̃
− (εe)− B̃ (α) ϕ̃+(εe;Π ) − ϕ̃−(εe;Π ) +w(α) +

1
2
w1l2

∇α · ∇α. (30)

ith a slight abuse of notation, we have kept the same symbols for the involved functionals and denoted with a
emicolon the dependency on Π as a given (input) function rather than as an argument.

Finally, we define the total energy of the porous body in presence of damage as

E (u, α;Π ) =

∫
Ω

W (ε (u) , α,∇α;Π ) dΩ or Ẽ (u, α;Π ) =

∫
Ω

W̃ (εe (u) , α,∇α;Π ) dΩ (31)

where, for simplicity, the contribution of external forces is neglected.

3.4. Evolution problem

Let the body Ω be subjected to the time-dependent pressure head h̄t on ∂pΩ or to the time-dependent water flux
¯t on ∂qΩ . Within the uncoupled assumption, the solution of the hydraulic problem in Section 2 yields the pressure
head field ht (x) and thus the water pore pressure field pwt (x), along with the saturation field Swt (x), resulting in the
ffective pore pressure field Πt (x) through (15). In the time-discrete version of variational gradient damage models,
iven the damage field αp at the previous time-step tp and a (small) time increment ∆t > 0, the quasi-static

equilibrium displacement u and the damage field α at the new time step t = tp + ∆t are given by the solution of
the energy minimization problem

(u, α) = arg loc min
(û,α̂) ∈Ct ×D(αp)

Et (û, α̂), (32)

where

Et (u, α) = E(u, α;Πt ) (33)

and

Ct := {u ∈ H 1(Ω;Rd ) : u = ūt on ∂DΩ}, D(αp) := {α ∈ H 1(Ω;R) : αp ≤ α ≤ 1}

are the spaces of the admissible displacement and damage fields at time t from the previous state with damage
αp. Here H 1(Ω;Rd ) denotes the usual Sobolev space of functions with square integrable first derivatives taking
values in Rd , and ūt denotes the imposed displacement at time t on the Dirichlet boundary ∂DΩ of the mechanical
problem. In the energy minimization principle (32), loc min stands for local unilateral minimization, meaning that
the solution (u, α) ∈ Ct × D(αp) should be such that

∀(û, α̂) ∈ Ct × D(αp), ∃m̄ > 0 : ∀m ∈ [0, m̄] Et (u + m(û − u), α + m(α̂ − α)) − Et (u, α) ≥ 0. (34)

etaining only the first-order series expansion of the energy increment in (34) gives the following variational
nequality as a necessary condition for optimality:

′
ˆ ˆ
Et (u, α)(u − u, α̂ − α) ≥ 0, ∀(u, α̂) ∈ Ct × D(αp), (35)

9
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where

E ′

t (u, α)(v, β) :=
d

dm
Et (u + mv, α + mβ)

⏐⏐⏐⏐
m=0

denotes the directional derivative of the functional Et (u, α) in the direction (v, β).
By suitably selecting the variations v, β and applying standard localization arguments, one can show that, for

smooth solutions, the first-order optimality condition (35) is equivalent to the following equilibrium equation and
equilibrium boundary condition

divσ (ε, α;Πt ) = 0 on Ω , σ (ε, α;Πt ) n = 0 on ∂NΩ , (36)

where ∂NΩ is the Neumann boundary of the mechanical problem, and to the damage criterion

α − αp ≥ 0, Y (ε, α;Πt ) + ℓ2w1∆α ≤ 0, (Y (ε, α;Πt ) + ℓ2w1∆α)(α − αp) = 0 on Ω , (37a)

α − αp ≥ 0, ∇α · n ≥ 0, (∇α · n)(α − αp) = 0 on ∂Ω , (37b)

where n is the outer unit normal to the boundary ∂Ω , ∆α denotes the Laplacian of the damage field, and

σ (ε, α;Πt ) :=
∂W(ε, α,∇α;Πt )

∂ε
= A(α)

∂ψ+(ε)
∂ε

+
∂ψ−(ε)
∂ε

− B(α)
∂ϕ+(ε;Πt )

∂ε
−
∂ϕ−(ε;Πt )

∂ε
(38a)

Y (ε, α;Πt ) := −
∂W(ε, α,∇α;Πt )

∂α
= −A′(α)ψ+ (ε)+ B ′(α)ϕ+ (ε;Πt )− w′(α) (38b)

are the total Cauchy stress tensor and the damage energy release rate, respectively.
In a fully analogous fashion, we can derive the equilibrium equations, boundary conditions and damage criterion

or the total energy Ẽ , leading to

divσ (εe, α;Πt ) = 0 on Ω , σ (εe, α;Πt ) n = 0 on ∂NΩ , (39)

nd

α − αp ≥ 0, Y (εe, α;Πt ) + ℓ2w1∆α ≤ 0, (Y (εe, α;Πt ) + ℓ2w1∆α)(α − αp) = 0 on Ω , (40a)

α − αp ≥ 0, ∇α · n ≥ 0, (∇α · n)(α − αp) = 0 on ∂Ω , (40b)

where

σ (εe, α;Πt ) :=
∂W̃(εe, α,∇α;Πt )

∂εe

= Ã(α)
∂ψ̃+(εe;Πt )

∂εe
+
∂ψ̃−(εe;Πt )

∂εe
− B̃(α)

∂ϕ̃+(εe;Πt )
∂εe

−
∂ϕ̃−(εe;Πt )

∂εe
(41a)

Y (εe, α;Πt ) := −
∂W̃(εe, α,∇α;Πt )

∂α
= − Ã′(α)ψ̃+ (εe;Πt )+ B̃ ′(α)ϕ̃+ (εe;Πt )− w′(α) (41b)

(with a slight abuse of notation in using the same symbols for σ and Y in both cases). Equivalent conditions are
btained in a time-continuous setting as a consequence of an evolution principle based on irreversibility, energy
alance, and stability, see [31,32,59] for further details.

.5. Two model families

In the following section, we further specify the total energy forms of Section 3.3 and thus propose two model
amilies for drying damage problems. Besides, we discuss the relation of the proposed families to models previously
roposed in the literature. In this section, we focus on the volumetric–deviatoric split proposed in [35]. A discussion
or the spectral decomposition is reported in Appendix.

.5.1. Model family I, based on the decomposition of the strain
The first model family is based on Eq. (29), where the terms are specified as

ψ+ (ε) = µ εdev · εdev +
K
2

⟨ϵ⟩2
+
, ψ− (ε) =

K
2

⟨ϵ⟩2
−
,

+ −

(42)

ϕ (ϵ ;Π ) = Π ⟨ϵ⟩+ , ϕ (ϵ; Π ) = Π ⟨ϵ⟩− .

10
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The total Cauchy stress tensor results as

σ =
∂W
∂ε

= (1 − α)a
(
2µεdev + K ⟨ϵ⟩+ I

)
+ K ⟨ϵ⟩− I − (1 − α)b Π H (ϵ)I − Π H (−ϵ)I, (43)

nd the damage criterion reads

a (1 − α)a−1
(
µ εdev · εdev +

K
2

⟨ϵ⟩2
+

)
− b(1 − α)b−1Π ⟨ϵ⟩+ − w1 + w1l2∆α ≤ 0. (44)

his model family couples the damage both to the solid elastic strain energy and to the effective pore pressure. The
nderlying idea is that the work of the capillary pressure (the negative of the water pore pressure) must decrease
n presence of damage due to the loss of effectiveness in the capillary action. Correspondingly, damage degrades
oth the portion of the stress related to the solid strain (the so-called effective stress) and the portion related to the
ore pressure, although possibly with a different degradation function, to account for the mechanical degradation
f the solid skeleton and for the deterioration of the capillary action.

.5.2. Model family II, based on the decomposition of the effective strain
The second model is based on Eq. (30). After noticing that the deviatoric parts of effective and solid strain are

dentical, we adopt the following choices

ψ̃+ (εe;Π ) = µ εdev · εdev +
K
2

⟨ϵe⟩
2
+
, ψ̃− (εe;Π ) =

K
2

⟨ϵe⟩
2
−
,

ϕ̃+(ϵe; Π ) = H (ϵe)
Π 2

2K
, ϕ̃−(ϵe; Π ) = H (−ϵe)

Π 2

2K
.

(45)

here ϵe is the trace of the effective strain tensor. The resulting total Cauchy stress tensor is given by

σ =
∂W̃
∂εe

= (1 − α)ã
[
K ⟨ϵe⟩+ I + 2µεdev

]
+ K ⟨ϵe⟩− I, (46)

and the damage criterion reads

ã (1 − α)ã−1
[
µεdev · εdev +

1
2

K ⟨ϵe⟩
2
+

]
− b̃(1 − α)b̃−1 H (ϵe)

Π 2

2K
− w1 + w1l2∆α ≤ 0. (47)

he idea of this model family is similar to that of the previous one; the only difference is that here the sign of the
ffective volumetric strain discriminates between active and inactive contributions of the total energy in relation to
amage. In the following sections, this choice will be shown to have an important influence on the results.

.5.3. Relation to existing models in the literature
In the work of Yoshioka and Bourdin [60], the total energy density reads5

W (ε, α,∇α;Π ) =
1
2
C

(
(1 − α) ε −

Π

3K
I
)

·

(
(1 − α) ε −

Π

3K
I
)

−
1
2
Π 2

K
(48)

hich can be reformulated as

W (ε, α,∇α;Π ) = (1 − α)2
(
µ εdev · εdev +

K
2
ϵ2

)
− (1 − α)Π ϵ + w1α +

1
2
w1l2

∇α · ∇α. (49)

his model can be obtained from Eq. (29) with a = 2, b = 1 and

ψ+ (ε) = µ εdev · εdev +
K
2
ϵ2, ψ− (ε) = 0,

ϕ+(ϵ, Π ) = Π ϵ, ϕ−(ϵ, Π ) = 0.
(50)

he difference with respect to model family I is the absence of an energy decomposition. Note that the model was
roposed for hydraulic fracture and not for drying fracture, which made such a decomposition unnecessary. The
otal Cauchy stress tensor is given by

σ =
∂W
∂ε

= (1 − α)2 (2µε + λϵI)− (1 − α)Π I (51)

5 The original formulation does not contain the last term 1
2
Π 2

K ; however, within the assumption of a given pressure field, this term has
no influence on the expression of the stress — hence on the equilibrium equations — nor on the damage criterion.
11
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and the damage criterion reads

2 (1 − α)

(
µ ε · ε +

λ

2
ϵ2

)
− Π ϵ − w1 + w1l2∆α ≤ 0, (52)

here both the solid strain and the effective pore pressure contribute to the crack evolution.
In the work of Cajuhi et al. [44], the following energy density6 is adopted:

W (ε, α,∇α;Π ) = (1 − α)2
(
µ εdev · εdev +

K
2

⟨ϵ⟩2
+

)
+

K
2

⟨ϵ⟩2
−

− Π ϵ + w1α +
1
2
w1l2

∇α · ∇α, (53)

n which damage is only coupled to the solid deformation and not to the effective pore pressure. This is a special
ase of model family I with a = 2 and b = 0, The total Cauchy stress tensor takes the form

σ =
∂W
∂ε

= (1 − α)2
(
2µεdev + K ⟨ϵ⟩+ I

)
+ K ⟨ϵ⟩− I − Π I (54)

nd the damage criterion

2 (1 − α)

(
µ εdev · εdev +

K
2

⟨ϵ⟩2
+

)
− w1 + w1l2∆α ≤ 0 (55)

is independent of the effective pore pressure.
Finally, the model in [45] does not give an explicit expression of the energy density. The expression of the stress

corresponds to that of model family II with ã = 2, however, the model in [45] being not variational, the damage
criterion is not derived from the same energy as the stress.

4. Evaluation of the phase-field model families I and II

In this section, for the desiccation process modeled in Section 2, we use the setups in Figs. 1b,c to examine the
performance of the variational damage model families introduced in Section 3 for two types of boundary conditions,
namely free and restrained desiccation. As observed in experimental tests on clayey soils [16,61,62], we expect no
damage in the first case and damage in the second case.

Throughout the analysis, to avoid through-thickness effects, we assume d = 2. The first evaluation of the
performance of the models is based on the computation of the effective pore pressure leading to the first occurrence
of damage. In pristine conditions, the damage variable and its derivatives are zero in the whole domain. According
to the Kuhn–Tucker conditions in Section 3.4, damage evolution starts when

−A′ (0) ψ+ (ε (Πc))+ B ′ (0) ϕ+ (ε (Πc) ;Πc)− w1 = 0
− Ã′ (0) ψ̃+ (εe (Πc) ;Πc)+ B̃ ′ (0) ϕ̃+ (εe (Πc) ;Πc)− w1 = 0

(56)

or model families I and II, respectively. We have denoted with Πc the effective pore pressure at first damage (named
s critical effective pore pressure from now on). Subsequently, other considerations are made on the damage mode.

.1. Free desiccation test

For the setup in Fig. 1b, assuming the hydraulic problem in Fig. 1a has been solved on the same domain as shown
n Section 2, we now solve the elasticity problem in absence of damage and compute the value of the effective pore
ressure for which the first damage occurs.

.1.1. Elasticity problem
For the setup in Fig. 1b, in which the porous material is free to deform, the boundary conditions read

u1|x1=0 = u2|x2=H = 0, σ12|x1=0 = σ12|x2=H = 0
σ · n|x1=L = σ · n|x2=0 = 0. (57)

hus, we immediately obtain

σ11 (x2) = σ22 (x2) = 0, σ eff
11 (x2) = σ eff

22 (x2) = Π (x2) < 0, (58)

6 The original formulation is fully coupled, i.e. the effective pore pressure field is not considered as an input, but solved along with the
displacement and the damage fields.
12
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where σ eff(x, t) is the effective stress tensor, with σ = σ eff
−Π I. This relationship is derived from the generalized

ffective stress principle for variably saturated soils proposed by Schrefler [63], see also [64,65], combined with
he passive air phase assumption [53]. During the drying process the sign of the effective pore pressure is negative
s per the results in Section 2; in the case of free drying this leads to negative effective stress components, i.e. to
ompression of the solid skeleton. From the effective stresses we can compute the horizontal and vertical strains
principal strains) as

ε11 (x2) =
1
E

(
σ eff

11 (x2)− νσ eff
22 (x2)

)
= ε22 (x2) =

1 − ν

E
Π (x2) < 0 (59)

where E and ν are the Young’s modulus and the Poisson’s ratio, respectively, and the volumetric strain

ϵ (x2) =
2 (1 − ν)

E
Π (x2) =

Π (x2)

K
< 0. (60)

hus the (purely volumetric) strain tensor corresponds to isotropic shrinkage.

.1.2. Effective pore pressure at first damage
Based on the solution of the elasticity problem, it is straightforward to check from (58) that no value of effective

ore pressure can ever lead to damage for any of the proposed model families. Hence, all models are able to
eproduce the absence of damage for the free desiccation case.

.2. Constrained desiccation test

We now repeat the previous analysis for the setup in Fig. 1c, where the horizontal deformation is prevented.

.2.1. Elasticity problem
For the setup in Fig. 1c the boundary conditions are:

u1|x1=0 = u1|x1=L = u2|x2=H = 0
σ12|x1=0 = σ12|x1=L = σ12|x2=H = 0
σ · n|x2=0 = 0.

(61)

he equilibrium equation in the vertical direction and the compatibility in the horizontal direction yield

dσ22 (x2)

dx2
= 0 and ε11 (x2) = 0. (62)

ue to the Neumann boundary conditions for x2 = 0, it is then

σ22 (x2) = 0 = σ eff
22 (x2)− Π (x2) . (63)

rom the stress–strain relationship follows

ε22 (x2) =
Π (x2)

λ+ 2µ
< 0 (64)

nd hence we can write the strain tensor and its deviatoric part,

ε (x2) =

[
0 0
0 ε22 (x2)

]
, εdev (x2) =

⎡⎢⎣ −
1
2
ε22 (x2) 0

0
1
2
ε22 (x2)

⎤⎥⎦ , (65)

s well as the volumetric strain and volumetric effective strain

ϵ (x2) = ε22 (x2) =
σ eff

22 (x2)
=

Π (x2)
< 0, ϵe (x2) =

−µΠ (x2)
> 0. (66)
λ+ 2µ λ+ 2µ (λ+ 2µ)(λ+ µ)
13
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Table 2
Summary of the response of model families I and II.

Model family 5c Crack mode

Free desiccation Restrained desiccation

I – −(2µ+ λ)

√
2w1

aµ
II

II – −

√
2(2µ+ λ)(µ+ λ)w1

µ(ã − 2b̃) + λb̃
, ã >

2
1 − ν

b̃ I/II

4.2.2. Effective pore pressure at first damage
For model family I, it is straightforward to determine the critical effective pore pressure such that (56)1 is satisfied

as

Πc = −(λ+ 2µ)

√
2w1

aµ
, (67)

so the model is able to predict damage initiation for a sufficiently large effective pore pressure regardless of the
choice of the parameters a (which influences Πc) and b (which plays no role for Πc). Note that a = 2 corresponds
to the model of Cajuhi et al. [44].

For model family II, the critical effective pore pressure is easily obtained as

Πc = −

√
2(λ+ 2µ)(λ+ µ)w1

µ(ã − 2b̃) + λb̃
(68)

nd has a real value if

ã >
2

1 − ν
b̃. (69)

t is immediate to check that the model in Yoshioka and Bourdin [60] cannot predict crack initiation under the given
etup (which it was not intended for).

.2.3. Damage mode
As shown in Eq. (66), in the restrained desiccation case, the volumetric strain is negative whereas the volumetric

ffective strain is positive. This implies that for model family I damage is driven purely by the deviatoric strain
nergy, whereas model family II predicts damage driven by a combination of volumetric and deviatoric strain
nergies. This aspect is relevant for the comparison to experimental results, which seem to indicate a predominance
f mode-I cracking or combined mode-I/II. Hence, at least qualitatively, the comparison is more favorable with
odel family II.

.2.4. Summary
Table 2 provides a summary of the results obtained in this section. The following observations can be drawn:

• For the free desiccation setup, the model families I and II result in no damage evolution, which is consistent
with the experimental evidence.

• For the restrained desiccation setup, both model families result in damage evolution for an effective pore
pressure exceeding (in absolute value) a critical effective pore pressure Πc, which is again consistent with the
experimental evidence. The existence of a real value of Πc poses restrictions on the choice of the coefficients
ã and b̃ in model family II, whereas it holds irrespective of the choice of a and b (natural numbers) in model
family I.

• Damage initiation results from the pure deviatoric strain energy for model family I, and from a combination of
volumetric and deviatoric strain energies for model family II. This suggests that model family II better relates
to the experimental evidence of mode-I or combined mode-I/II cracking [8,15].

ased on the above assessment, we choose model family II for the subsequent analysis.
14
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5. Homogeneous damage and onset of localization in restrained desiccation

In this section, we concentrate on model family II with ã = 2 and b̃ = 0. At each time, the effective pore
ressure field is computed upfront by solving the hydraulic problem as shown in Section 2.2. For the restrained
esiccation setup, along the lines of [51] for the restrained thermal problem, we first seek a fundamental solution
ith homogeneous damage (i.e. damage invariant with respect to the x1 coordinate, parallel to the surface of the

slab). Then we look for the bifurcated solution, which represents the onset of the localization phenomena leading
to the periodic crack pattern observed in the experiments.

5.1. Homogeneous solution for damage evolution

As follows, we seek a fundamental solution with homogeneous damage (i.e. damage invariant with respect to
x1). We first formulate the related one-dimensional boundary value problem, and then solve it numerically.

5.1.1. Theoretical formulation
In the solution of the Richards equation for the desiccation problem, the boundary conditions are applied as

illustrated in Section 2.2 prescribing a negative water pressure or an outflux on the top surface. For both cases, at a
given instant of time, the capillary pressure and the absolute value of the effective pore pressure decrease gradually
along the depth of the slab. Hence, the minimum (or maximum in absolute value) effective pore pressure is reached
on the top surface and we denote it as Π0t = Πt (x2 = 0). For later use, we introduce the dimensionless variables

Ft (x2) =
Πt (x2)

Π0t
, θ =

Πc

Π0t
(70)

ith Ft (x2) ≤ 1.0. θ measures the ratio between the critical effective pore pressure and the minimum one, which
eflects the mildness of the drying phenomenon. The lower θ , the more intense is the drying. Note that θ is a
unction of time, θt , in flux-driven desiccation and is a constant, θ̄ , in pressure-driven desiccation. If |Π0t | < |Πc|,

or θ > 1, the critical effective pore pressure is not reached anywhere in the slab, hence the elastic solution in
Section 4.2.1 is valid and no damage occurs. This happens in flux-driven desiccation at early instants of time, or in
pressure-driven desiccation at all times if θ̄ > 1. However, if |Π0t | > |Πc|, or θ < 1, it can be easily seen that the
damage criterion is violated within a region 0 < x2 < x̂t . Looking at the time evolution of Πt (x2) in Fig. 2, it is
also evident that x̂t grows over time, so that it is reasonable to assume damage to occur within this region. Since
he effective pore pressure only depends on x2 and t , we also expect a damage field αt (x2).

Inserting this form into (62) and (61), we immediately find out that the displacement and strain fields in the
amaged case are the same as in the elastic solution,

εt (x2) =

[
0 0
0 ε22t (x2)

]
, εdevt (x2) =

⎡⎢⎣ −
1
2
ε22t (x2) 0

0
1
2
ε22t (x2)

⎤⎥⎦ , (71)

ith

ε22t (x2) =
Πt (x2)

λ+ 2µ
< 0, (72)

hereas the total stress tensor field becomes

σ t (x2) = [1 − αt (x2)]2 [K ϵet (x2)I + 2µεdevt (x2)] . (73)

n order to find αt (x2), we note that the damage criterion (47) with ã = 2 and b̃ = 0 reads

[1 − αt (x2)]
µΠ 2

t (x2)

(λ+ 2µ)(λ+ µ)
− w1 + w1l2α′′

t (x2) ≤ 0 (74)

hich, using Eq. (68), can be rewritten as7

[1 − αt (x2)]F2
t (x2)− θ2

+ θ2l2α′′

t (x2) ≤ 0 (75)

7 It is straightforward to show that Eq. (75) is also valid for model family I, provided that Eq. (67) is used to compute Π .
c
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Fig. 3. Evolution of (a) effective pore pressure Π and (b) damage variable α for the flux-driven case.

Assuming that damage is only non-zero for 0 ≤ x2 < x̂t , where x̂t is still unknown, we conclude that αt (x2) must
satisfy the differential equation

[1 − αt (x2)]F2
t (x2)− θ2

+ θ2l2α′′

t (x2) = 0, 0 ≤ x2 ≤ x̂t , (76)

with boundary conditions

α′

t (0) = 0, αt
(
x̂t

)
= 0, α′

t

(
x̂t

)
= 0. (77)

5.1.2. Numerical results
As follows, we provide numerical results for the homogeneous damage evolution in both flux-driven and pressure-

driven desiccation. The hydraulic problem is the same as in Section 2.2 and all geometry and material parameters
are given in Table 1. The critical effective pore pressure computed by Eq. (68) reads Πc = −7.05 kPa.

We start with the flux-driven case, adopting an outflux of 6 × 10−7 m/s as in [44,45,66], leading to the time
evolution of the effective pore pressure in Fig. 3a. When the effective pore pressure at the top exceeds the critical
value Πc, the damage variable starts to evolve. To compute the damage variable, we then use at each time instant
a shooting method, which solves numerically the initial value problem represented by Eq. (76) with boundary
conditions (77)2,3 and searches for the value of x̂t that satisfies (77)1. Fig. 3b illustrates the damage profiles
corresponding to the pressure profiles at selected time instants. All curves show that the damage variable decreases
with the depth. The damage depth x̂t increases with time while the magnitude of the damage variable αt at any
given depth also grows, thus automatically satisfying irreversibility of damage evolution which is not explicitly
enforced.

Now we consider the pressure-driven case with θ̄ < 1, where three constant pressure heads, i.e. h̄0 =

−1.2 m, −1.8 m or −10 m, are applied on the top boundary. The corresponding drying mildness ratios, according
to Eq. (70), are θ̄ = 0.59, 0.39, 0.09. Moreover, five different length-scale parameters ranging from 1 × 10−3 m
to 1 × 10−5 m are tested for each θ̄ , see Fig. 4. Also in this case, the damage variable always decreases with the
depth. Comparing the curves corresponding to a given length-scale parameter and different θ̄ , we conclude that for
more intense drying (lower θ̄ ), the maximum damage variable at the top is larger, and the damage depth is also
larger. Comparing curves obtained for the same pressure head and different length-scale parameters, we notice that
the damage field converges towards a limit one as l approaches zero. From Eq. (75) for l → 0, we obtain that

αt (x2 = 0) → 1 − θ̄2 and Π (x̂) → Πc for l → 0. (78)

5.2. Bifurcation

Along the lines of Sicsic et al. [52], we now investigate the stability of the solution with homogeneous damage
obtained in Section 5.1. The objective is to find out whether and when the solution can bifurcate from the

fundamental branch (homogeneous damage) to another branch (localized damage).

16



C. Luo, L. Sanavia and L. De Lorenzis Computer Methods in Applied Mechanics and Engineering 410 (2023) 115962

(

5

f

F

T

N

d

w

A

Fig. 4. Damage profile in the depth direction at t = 1 × 10−4 s for three pressure-driven cases: (a) θ̄ = 0.59 (h̄0 = −1.2 m), (b) θ̄ = 0.39
h̄0 = −1.8 m), and (c) θ̄ = 0.09 (h̄0 = −10 m).

.2.1. Theoretical formulation
In order to evaluate the stability of the solution, we consider the second directional derivative of the energy

unctional of Eq. (31)2 at (ut , αt ) in the direction (v, β) as

E ′′

t (ut , αt )(v, β) =

∫
Ω

{[
Ã (αt )

∂2

∂ε2 ψ̃
+ (εe (ut ))+

∂2

∂ε2 ψ̃
− (εe (ut ))

]
· (ε (v)⊗ ε (v))

+ 2 Ã′ (αt )
∂

∂ε
ψ̃+ (εe (ut )) · ε (v) β

+

[
Ã′′ (αt ) ψ̃

+ (εe (ut ))− B ′′ (αt ) ϕ
+ (εe (ut ))

]
β2

+ w1l2
∇β · ∇β

}
dΩ .

(79)

or the model in Section 3.5.2 with ã = 2, b̃ = 0, we specifically obtain

E ′′

t (ut , αt )(v, β) =

∫
Ω

{
(1 − αt )2 2µεdev (v) · εdev (v)+ (1 − αt )2 H (ϵe (ut ))K ϵ2(v)

+ H (−ϵe (ut ))K ϵ2(v) − 8(1 − αt )µεdev (ut ) · εdev (v) β
− 4 (1 − αt ) K ⟨ϵe (ut )⟩+ ϵ (v) β
+ 2µεdev (ut ) · εdev (ut ) β

2
+ K ⟨ϵe (ut )⟩

2
+
β2

+ w1l2
∇β · ∇β } dΩ .

(80)

he solution obtained from Eqs. (39) and (40) is stable if the second directional derivative satisfies

E ′′

t (ut , αt )(û − ut , α̂ − αt ) > 0, ∀(û, α̂) ∈ Ct × D(αp). (81)

ext, we adopt for the variations v = û − ut and β = α̂ − αt the ansatz

v =
Πt x̂t

2 (µ+ λ)

[
V k

1 (x2) sin
(
ωk x1

)
e1 + V k

2 (x2) cos
(
ωk x1

)
e2

]
,

β = Bk (x2) cos
(
ωk x1

)
,

(82)

where ωk
=

kπ
L

, k is a natural number denoting the number of waves within the length L , and V k
1 , V k

2 , Bk are
imensionless coefficients. The ansatz for v automatically satisfies the boundary conditions

v1|x=0,L = 0,
∂v2

∂x1

⏐⏐⏐⏐
x1=0,L

= 0, (83)

hereas the ansatz for β fulfills the Neumann boundary condition in Eq. (40), i.e.

∂β

∂x1

⏐⏐⏐⏐
x1=0,L

= 0. (84)

ccording to the definition of the damage depth, x̂t , we also take

β = 0 for x2 > x̂t . (85)

We now introduce the following dimensionless variables

ξ =
x2
, κ = ωk x̂t , τ =

x̂t
, (86)
x̂t l
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which are all time-dependent through the damage depth. Thus, the second directional derivative in (80) can be
rewritten as

E ′′

t (Vκ , Bκ ) = (2µ+ λ)
L
2
ωk

θ2 x̂tSκ (Vκ , Bκ ), (87)

here

Sκ = Sκ0→1 + Sκ1→H/x̂t
(88)

ith

Sκ0→1 =

∫ 1

0

(1 − ατ )
2

1 − ν2

[
κ2V κ2

1 + V κ′2
2 + 2νκV κ

1 V κ′
2 +

1
2
(1 − ν)

(
V κ′

1 − κV κ
2

)2
]

+ 4 (1 − ατ ) κFτV κ
1 Bκ +

[
F2
τ +

(
θκ

τ

)2
]

Bκ2
+

(
θ

τ

)2

Bκ′2dξ

Sκ1→H/x̂t
=

∫ H/x̂t

1

1
1 − ν2

[
κ2V κ2

1 + V κ′2
2 + 2νκV κ

1 V κ′
2 +

1
2
(1 − ν)

(
V κ′

1 − κV κ
2

)2
]

dξ.

(89)

From (87) it is clear that the positiveness of the second directional derivative is equivalent to that of Sκ . Here we
proceed as in Sicsic et al. [52] and study the positiveness of Sκ by comparing with zero the smallest eigenvalue of
the corresponding discrete quadratic form. To this end, we first compute the second integral in (89), and, assuming
the damage depth to be much smaller than the height of the sample, we approximate it as follows

Sκ1→H/x̂t
≈ Sκ1→∞

=

∫
∞

1

1
1 − ν2

[
κ2V κ2

1 + V κ′2
2 + 2νκV κ

1 V κ′
2 +

1
2
(1 − ν)

(
V κ′

1 − κV κ
2

)2
]

dξ. (90)

e then minimize this integral over all Vκ of sufficient regularity by solving the Euler–Lagrange equations{
(ωk)2V κ

1 + ωkνV κ′
2 −

1
2 (1 − ν)(V κ′′

1 − ωk V κ′
2 ) = 0

−ωkνV κ′
1 − V κ′′

2 −
1
2

(
ωk V κ′

1 − (ωk)2V κ′
2

)
= 0

(91)

with boundary conditions

V κ
1 (1) = A, V κ

2 (1) = C, V κ
1 (∞) = V κ′

1 (∞) = V κ
2 (∞) = V κ′

2 (∞) = 0. (92)

sing the following ansatz functions

V κ
1 = Ae−κ(ξ−1)

+ Bκ (ξ − 1) e−κ(ξ−1), V κ
2 = Ce−κ(ξ−1)

+ Dκ (ξ − 1) e−κ(ξ−1), (93)

rom (91), we obtain

B = D =
1 + ν

3 − ν
(C − A) , (94)

hich leads to

V κ
1 =

[
A +

1 + ν

3 − ν
(C − A) ω (ξ − 1)

]
e−ω(ξ−1), V κ

2 =

[
C +

1 + ν

3 − ν
(C − A) ω (ξ − 1)

]
e−ω(ξ−1). (95)

Thus,

min
Vκ∈H1(1,∞)2

Sκ1→∞
=

2κ
(1 + ν) (3 − ν)

[
V κ2

1 (1)+ (1 − ν) V κ
1 (1) V κ

2 (1)+ V κ2
2 (1)

]
, (96)

nd our next objective is to investigate the positive definiteness of

S̄κ =

∫ 1

0

{
(1 − ατ )

2

1 − ν2

[
κ2V κ2

1 + V κ′2
2 + 2νκV κ

1 V κ′
2 +

1
2
(1 − ν)

(
V κ′

1 − κV κ
2

)2
]

+ 4 (1 − ατ ) κFτV κ
1 Bκ +

[
F2

+

(
θκ

τ

)2
]

Bκ2
+

(
θ

τ

)2

Bκ′2
}

dξ

+
2κ [

V κ2
1 (1)+ (1 − ν) V κ

1 (1) V κ
2 (1)+ V κ2

2 (1)
]
.

(97)
(1 + ν) (3 − ν)

18



C. Luo, L. Sanavia and L. De Lorenzis Computer Methods in Applied Mechanics and Engineering 410 (2023) 115962

w
d
f

w
τ

I
o

5

K

Fig. 5. Contour of the minimal eigenvalue µ1 for a flux-driven case, q̄ = 6 × 10−7 m/s (the yellow area is for a stable solution where
µ1 > 0).

The fundamental branch is stable if the quadratic form S̄κ is positive definite for any κ ∈ R+. Computationally,
e can assess stability by computing the sign of the minimum eigenvalue of the matrix associated to the spatially
iscrete counterpart of S̄κ . Hence, we discretize V κ

1 , V κ
2 and Bκ with linear shape functions and a uniform mesh

or ξ ∈ [0, 1], express the discrete quadratic form as

S̄κh = V · (KκV) , (98)

here V is the vector of the nodal degrees of freedom, and seek the smallest eigenvalue of the matrix Kκ at a given
and κ ,

µ1(τ, κ) = min eig (Kκ) . (99)

f µ1 > 0 for any κ ∈ R+, the fundamental solution is stable and no bifurcation occurs. Otherwise, the positiveness
f the second directional derivative of the energy is not guaranteed and bifurcation may take place.

.2.2. Numerical results
With the effective pore pressure and the damage variable derived in the last numerical examples, we can construct
κ for a given κ and compute its minimum eigenvalue µ1. Under either flux-driven or pressure-driven boundary

conditions for increasing time, we can use the bisection algorithm to find the smallest τ such that µ1 = 0 for a
fixed κ . By repeating the calculation for varying κ , the critical curve µ1(τ, κ) = 0 is determined.

We first consider the flux-driven case in Section 5.1.2, for which the distribution of the effective pore pressure
and the fundamental (homogeneous) solution for the damage variable are shown in Fig. 3. We compute µ1 for
t ∈ [5, 18] s and κ ∈ [0.2, 4.0], and draw the contour plots for µ1(t, κ) and µ1(τ, κ) in Fig. 5. These figures
show the critical curve µ1 (t, κ) = 0 or µ1 (τ, κ) = 0; the shaded area is characterized by a positive minimum
eigenvalue µ1. These contours also reveal that approximately when t < 6 s, or τ < 1.2, µ1 is positive for any
κ , thus, the homogeneous solution is stable. The earliest time where µ1 becomes negative is tb = 6 s (τb = 1.2)
and the corresponding value of κ is κb = 1.26. It should be mentioned that the above time is the moment when a
bifurcated solution becomes possible. However, the homogeneous solution may still hold, hence, bifurcation does
not necessarily occur at this moment.

For a pressure-driven case we obtain analogous contours, see Fig. 6. For a mild drying intensity θ̄ = 0.59
(h̄0 = −1.2 m), the bifurcation time tb is around 0.7 s and the corresponding scaled time τb and scaled frequency
κb are both around 1.2. The evolution of µ1 as a function of τ for different values of κ is given in Fig. 7. The
minimum eigenvalue at a given κ is positive for small τ and decreases with time. A larger κ corresponds to a larger
initial µ1, but also to a higher rate of decrease.

In Fig. 8 we plot τ (κ) as obtained from the critical curve µ1 (κ, τ ) = 0 for five different values of the drying
mildness ratio θ̄ . The minimum of each curve has coordinates κb, τb corresponding to the given θ̄ . These coordinates
are plotted in Fig. 9 as functions of θ . The behavior of τb is non-monotonic (Fig. 9a), whereas the corresponding
frequency κb monotonically increases (i.e. the spacing of the initial cracks decreases) as the drying intensity increases
(θ̄ decreases), see Fig. 9b.
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(

Fig. 6. Contour of the minimal eigenvalue µ1 for a pressure-driven case, θ̄ = 0.59 (h̄ = −1.2 m) (yellow area is for a stable solution where
1 > 0).

Fig. 7. Evolution of the minimal eigenvalue µ1 for different values of the scaled frequency κ in the pressure-driven case with θ̄ = 0.59
h̄ = −1.2 m).

Fig. 8. Critical bifurcation curves in pressure-driven cases with different values of the drying mildness ratio θ̄ .

5.2.3. Finite element simulation results
Finally, we compare the one-dimensional numerical results for the pressure-driven case with two-dimensional

finite element simulations. The geometry and material parameters are those of Section 5.1.2, see Fig. 1(a, c) and
¯
Table 1. A constant water pressure, h0 = −0.8 m, is applied to the top boundary and the remaining hydraulic
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Fig. 9. Dimensionless bifurcation time and corresponding frequency as functions of θ̄ in pressure-driven cases.

Fig. 10. Damage variable along the top boundary before/after the first bifurcation time for a pressure-driven case, h̄ = −0.8 m. (a)
TOLST = 10−10, (b) TOLST = 10−9.

boundary conditions are as in Fig. 1(a). At each time step (∆t = 0.1 s), we first compute the water pressure by
solving the hydraulic problem, then we solve the mechanical equations for the displacement field and the damage
variable using a staggered solution scheme, which is stopped when a tolerance TOLST = 10−10 is met on the
residual norm. Within the staggered scheme, each of the two sub-problems (solving for the displacement or the
damage) is iteratively solved with the Newton–Raphson method, using a tolerance TOLNR = 10−11 on the residual
norm. To enforce irreversibility of the damage variable, we use the penalty method as proposed in [67].

The first bifurcated solution is found at time 6.1 s, see Fig. 10a, and the corresponding wave number is 12.
When plotting the corresponding point on the contour of µ1(τ, κ) in Fig. 11, we find the point to be exactly located

n the critical line determined in the previous section. Interestingly, if TOLST is lowered to 10−9 (a value much
ower than those typically adopted in the literature [48,67]), we obtain the blue point, thus we overestimate τb and
nderestimate κb. This high sensitivity of the estimate of the bifurcation point to the tolerance of the staggered
cheme is probably due to the very small values of the damage variable variation at bifurcation, as evident from
ig. 10, as well as to the fact that instability in critical conditions may but does not necessarily have to occur.

With TOLST = 10−10, we also carry out the finite element computations for the flux-driven case in Section 5.2.2.
he time increment is 0.025 s, and the first bifurcated solution is found at 5.65 s. The damage variable field features

hirteen waves along the top boundary, see Fig. 12a. Also in this case, the corresponding point (τ, κ) is located on
he critical line µ1 = 0 in the contour of the minimal eigenvalue, see Fig. 12b.

. Conclusions

Phase-field modeling has already proved to be a suitable framework to predict the initiation and propagation of
rying cracks in variably saturated porous media. In this paper, we focused on fundamental modeling aspects which
ad not yet been given sufficient attention: i. the influence of different choices for the coupling between the damage

nd the poro-mechanical fields and for the energy decomposition on the capability of a variational phase-field model
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Fig. 11. Contour of the minimal eigenvalue µ1 for the pressure-driven case, h̄ = −0.8 m. The shaded area denotes a stable fundamental
solution as µ1 > 0. The red point corresponds to the finite element prediction with TOLST = 10−10, whereas the blue point is obtained for
TOLST = 10−9. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. (a) Damage variable along the top boundary before/after the first bifurcation time for a flux-driven case q̄ = 6 × 10−7m/s (b)
Contour of the minimal eigenvalue µ1 for the flux-driven case. The shaded area denotes a stable fundamental solution as µ1 > 0. The red
point corresponds to the finite element prediction with TOLST = 10−10. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

to realistically describe desiccation cracking, at least qualitatively; ii. the prediction of nucleation of a periodic array
of cracks as a result of the loss of stability of a fundamental solution with homogeneous damage distribution.

In the first part of the paper, we summarized possible formulations for the total energy, characterized by different
coupling and energy decomposition choices, into two model families, each with two free parameters. We then
evaluated these families based on their ability to lead to qualitatively reasonable predictions for two benchmark
cases, i.e. free and restrained desiccation. We found out that family II, based on coupling of the damage field with
the total stress and on an energy decomposition related to the sign of the effective strain, leads to qualitatively
reasonable predictions for both benchmark cases, as well as to damage initiation under mixed-mode conditions.

In the second part of the paper, we extended the analysis of Sicsic et al. [52], valid for thermal shock problems, to
restrained desiccation under a given capillary pressure distribution, resulting from the solution of Richards equation
with either flux-driven or pressure-driven boundary conditions. Through the variational analysis of the quasi-static
damage evolution, we showed that this evolution follows first a fundamental branch without localization, and then
bifurcates into another branch with damage localization, which leads to the initiation of a periodic array of cracks.
The analysis enables the computation of the instant of time leading to crack initiation, as well of the corresponding
crack spacing, as functions of geometry, material and (hydraulic) loading parameters. These results were found
to be in excellent agreement with those of finite element simulations, provided that a sufficiently low tolerance is
adopted for convergence of the alternate minimization scheme (much lower than typical tolerances adopted in the
current literature).

Future research will concentrate on the fully coupled version of the proposed phase-field modeling approach

and on the numerical solution of the related desiccation problem, as well as on the comparison with available
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experimental results, towards the ultimate goal of quantitatively predicting desiccation cracking in partially saturated
orous media. Another interesting research direction would be the determination of the parameters of the (inherently
acroscopic) phase-field model based on the consideration of the complex phenomena taking place at lower

bservational scales.
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ppendix. Discussion about the spectral decomposition

Here, we discuss the model families I and II with the spectral decomposition for the two cases in Section 4.
ith this decomposition, the active and inactive strain energies are defined as [36]

ψ+
= µ ⟨γi ⟩

2
+

+
1
2
λ ⟨ϵ⟩2

+
, ψ−

= µ ⟨γi ⟩
2
−

+
1
2
λ ⟨ϵ⟩2

−
. (100)

where γi are the eigenvalues of the strain tensor ε. Analogous to Eq. (42), we propose the total energy density
functional for model family I as

W (ε, α,∇α;Π ) = (1 − α)a
(
µ ⟨γi ⟩

2
+

+
1
2
λ ⟨ϵ⟩2

+

)
+ µ ⟨γi ⟩

2
−

+
1
2
λ ⟨ϵ⟩2

−
− (1 − α)bΠ ⟨ϵ⟩+ − Π ⟨ϵ⟩−

+ w1α +
1
2
w1l2

∇α · ∇α.

(101)

According to the definition of the effective strain in Eq. (20), we further propose the functional of model family II
as

W̃ (εe, α,∇α;Π ) = (1 − α)a
(
µ

⟨
γ e

i

⟩2
+

+
1
2
λ ⟨ϵe⟩

2
+

)
+ µ

⟨
γ e

i

⟩2
−

+
1
2
λ ⟨ϵe⟩

2
−

− (1 − α)b̃
[

H (ϵe)
Π 2

2K

]
− H (−ϵe)

Π 2

2K
+ w1α +

1
2
w1l2

∇α · ∇α.

(102)

here γ e
i are the eigenvalues of the effective strain tensor. For the free desiccation case in Section 4.1.1, the

igenvalues of the solid strain and the effective strain are

γ1 = γ2 =
Π

2K
< 0, γ t

1 = γ t
2 = 0. (103)

hus, for both model families, the material stays indefinitely elastic because the corresponding active energies are
lways zero. For constrained desiccation in Section 4.2.1, there exists no critical effective pore pressure for model
amily I, being

ψ+(ε) = 0, ϕ+(ε,Π ) = 0. (104)

Thus, model family I based on the spectral decomposition is unable to simulate drying cracks under restrained
boundary conditions. For model family II, we first derive the principal effective strains as

γ e
1 (x2) =

λΠ (x2)

2(λ+ µ)(λ+ 2µ)
< 0, γ e

2 (x2) = −
Π (x2)

2(λ+ µ)
> 0 (105)

and the corresponding crack criterion is then given by

(ã
µ(λ2

+ 6λµ+ 4µ2)
− b̃

1
)Π 2

c − w1 = 0. (106)

4(λ+ µ)2(λ+ 2µ)2 2K

23



C. Luo, L. Sanavia and L. De Lorenzis Computer Methods in Applied Mechanics and Engineering 410 (2023) 115962
The critical effective pore pressure is real if

ã >
2(λ+ µ)(λ+ 2µ)2

µ(λ2 + 6λµ+ 4µ2)
b̃ =

2(1 + ν)
ν3 − 2ν2 + 1

b̃. (107)

E.g. for ã = 2 and b̃ = 0, the critical effective pore pressure is computed as

Π̃c = −(1 − ν)

√
w1 E(1 + ν)

(−ν2 + ν + 1)
. (108)
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