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Abstract: Let R be a non-discrete Archimedean valuation domain, G an R-module, ϕ ∈ EndR(G). We compute
the algebraic entropy entv(ϕ), when ϕ is restricted to a cyclic trajectory in G. We derive a special case of the
Addition Theorem for entv, that is proved directly, without using the deep results and the difficult techniques
of the paper by Salce and Virili [8].
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1 Introduction
A sketchy definition of the concept of algebraic entropy for endomorphisms of Abelian groups was given in
a 1965 article by Adler-Konheim-McAndrew [1], dedicated to topological entropy. In 1975 this concept was
resumed and developed by Weiss [14], in a paper that related algebraic and topological entropies using Pon-
tryagin duality. In the algebraic context, as well as in other areas of mathematics and physics, entropy is
viewed as a measure of the “average disorder” created by a transformation when we repeatedly apply it. Fol-
lowing this philosophy, in [4] Dikranjan, Goldsmith, Salce and Zanardo thoroughly investigated the algebraic
entropy of [1] and [14]. In [4] the notionwasmainly used to get a better understanding of endomorphism rings
of Abelian p-groups. Thereafter, Salce and Zanardo [10] defined the algebraic entropy for R a commutative
ring, and used the rank as an invariant to deal with the case of torsion-free Abelian groups.Manymore papers
devoted to algebraic entropy in its different aspects have appeared since; for an ample list of references, see,
for instance, [3].

A central result for an algebraic entropy (however defined) is the Addition Theorem. It states that, given
an endomorphism ϕ of a left R-module M (R not necessarily commutative), and a ϕ-invariant submodule N
of M, the following formula holds

ent(ϕ) = ent(ϕ|N) + ent(ϕ̄)

where ϕ̄ is the endomorphism of M/N induced by ϕ. Starting with results in [4] and [10], Salce, Vámos and
Virili [7] proved that every algebraic entropy induced by a discrete length function satisfies the Addition
Theorem (see the preliminaries for the unexplained notions).

The present note is mainly motivated by a recent paper of Salce and Virili [8], where the authors proved
in full generality the Addition Theorem for the algebraic entropy induced by any length function, either non-
discrete or discrete. So, this important new result extends and completes the above recalled one of [7], that
was proved using methods applicable only to discrete length functions.

Northcott and Reufel [6] defined a length function for modules over a valuation domain R. In the case
where R is Archimedean non-discrete, i.e., its value group is a dense ordered subgroup ofR, we get the basic
example of a non-discrete length function. In the present paper, we in fact consider a valuation domain R of
this type, the length function Lv determined by the valuation v of R, and the algebraic entropy entv induced
by Lv.
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Let G be an R-module, ϕ ∈ EndR(G). Our main purpose is to compute entv(ϕ), when ϕ is restricted to a
cyclic trajectory in G (see the definitions in the first section). Of course, this computation, made in Theorem
4.5, may be helpful to determine entv(ϕ) on all of G. It is worth noting that a thorough knowledge of finitely
generated modules over valuation domains is needed to get this result. We remark that Proposition 4.4 was
used in [8] to prove the Uniqueness Theorem 7.3.

From Theorem 4.5 we also derive a special case of the Addition Theorem for entv, namely Proposition 4.7,
that is proved directly, without using the deep results and the difficult techniques of [8].

2 Preliminaries and definitions.
For the notions and basic results on the theory of valuation domains and their modules, in particular the
finitely generated ones, we refer to the book by Fuchs and Salce [5].

A general notion of length function was introduced by Northcott and Reufel [6]. This concept was inves-
tigated by Vámos [11], [12], by the author [15], and by Virili [13], in the context of Grothendieck categories. We
recall below the definition.

Let R be any ring. A length function L on Mod R is a map L : Mod R → R≥0 ∪ {∞} such that L(0) = 0,
L(M) = L(M′) whenever M ∼= M′, and

(1) L is additive, that is, for every short exact sequence 0 → A → B → C → 0 in Mod R we have L(B) =
L(A) + L(C);

(2) L is upper continuous, that is, for any M ∈ Mod R, L(M) is the sup of the lengths L(N), where N ranges
among the finitely generated submodules of M.

L is said to be discrete if its image (without ∞) form an ordered semigroup of R≥0 isomorphic to N;
otherwise, L is called non-discrete.

In what follows, R is an Archimedean valuation domain, i.e., the value group Γv of R is an ordered
subgroup of R. We denote by Q the field of fractions of R, by v the valuation on Q determined by R, and
by P the maximal ideal of R, i.e., P = {x ∈ Q : v(x) > 0}. Of course, under the present circumstances, P is the
unique nonzero prime ideal of R. We confine ourselves to non-discrete valuations, i.e., Γv is a dense subgroup
of R. If I is an ideal of the valuation domain R, we set v(I) = inf{v(r) : r ∈ I}.

A submodule N of the R-module M is said to be pure if N ∩ rM = rN for every r ∈ R (see [5], Ch.I). For
M an R-module, we denote by Ann(M) its annihilator. We define genM to be the minimal cardinality of a
generating system of M, when M is finitely generated; otherwise, we set genM =∞.

The next results on finitely generated modules over a valuation domain R were firstly proved in [9]; a
neat discussion on this subject may be found in [5], Ch.V.5. Let X be a finitely generated R-module; then
gen X = dimR/P(X/PX). Say gen X = n, and let {x1, . . . , xn} be a generating set for X. Then there exists a
reordering zi = xτ(i) of the generators xi (τ a suitable permutation of {1, . . . , n}) such that, setting Z0 = 0 and
Zi = ⟨z1, . . . zi⟩, for 1 ≤ i ≤ n, the following properties are satisfied

(a) each Zi is pure in X;
(b) for 1 ≤ i ≤ n, Zi/Zi−1 is isomorphic to R/Ai, where

A1 ⊆ A2 ⊆ · · · ⊆ An .

The above sequence of ideals is determined by X, and is called the annihilator sequence of X. Note that
Ai = Ann(zi + Zi−1). We say that

0 = Z0 < Z1 < · · · < Zn−1 < Zn = X

is a pure-composition series of X.

Now we recall some basic facts proved in [6] (see also [15]).
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(1) There exists a non-trivial length function Lv onMod R such that Lv(R/I) = v(I), for every ideal I of R.
In particular, Lv(R) =∞.

(2) If X is finitely generated with annihilator sequence A1, . . . , An, then Lv(X) =
∑︀n

i=1 v(Ai).

Since we assume that Γv is a dense subgroup of R, it is clear that Lv is not discrete.
Let us observe that Lv(M) =∞wheneverM is not a torsionmodule: in fact, in that caseM contains a copy

of R, hence∞ = Lv(R) ≤ Lv(M) ≤ ∞. It follows that Lv is not significant outside the category of the torsion
R-modules.

We recall now the usual definition of algebraic entropy induced by a length function, applying it to Lv
(cf. [10]).

Let G be an R-module and denote by fL(G) the family of its submodules N such that Lv(N) is finite (we
just say that N has finite length). If ϕ ∈ EndR(G), for every positive integer n and every F ∈ fL(G) we set

Tn(ϕ, F) = F + ϕF + ϕ2F + . . . + ϕn−1F.

Tn(ϕ, F) is said to be the partial n-trajectory of F.
The submodule of G

T(ϕ, F) =
∑︁
n>0

Tn(ϕ, F) =
∑︁
n≥0

ϕnF

will be called the ϕ-trajectory of F. The ϕ-trajectory of an element x is just the ϕ-trajectory of the cyclic
submodule Rx, and, obviously, it coincides with the smallest ϕ-invariant submodule of G containing x. It is
simply denoted by T(ϕ, x), and called the cyclic ϕ-trajectory generated by x.

Given the submodule F of finite length and the endomorphism ϕ of G, for each n ≥ 1 we take the real
number

Hn(ϕ, F) = Lv(Tn(ϕ, F)),
and define

H(ϕ, F) = limn→∞
Hn(ϕ, F)

n .

Since Lv is a length function, the above limit exists and is finite.
We define the algebraic entropy induced by Lv (algebraic v-entropy, for short) of an endomorphism ϕ of

G as
entv(ϕ) = supF∈fL(G)H(ϕ, F).

Property (2) says that every finitely generated torsion R-module has finite length. The converse is not true
when the valuation v is non-discrete. Indeed, under the present circumstances we have v(P) = 0, hence,
by the definition, Lv(R/P) = 0, and therefore any R/P-vector space V has length 0, not just the finitely
generated ones. Less obvious examples of R-modules not finitely generated but with finite length may be
found in Example 2.2 of [10] (see also Example 4.5 of [8]).

Naturally, it should be desirable to compute the algebraic entropy taking not all the submodules of finite
length, but just the finitely generated ones. This is possible by Proposition 4.2 of [8], proved for any ring R
and any length function L ofMod R. We restate that result just for the case we are interested in.

Proposition 2.1. ([8]) In the above notation, if G is a torsion R-module and ϕ ∈ EndR(G), we have

entv(ϕ) = supN∈F(G)H(ϕ, N),

where F(G) denotes the set of the finitely generated submodules of G.

In what follows, we will always compute the entropy confining ourselves to finitely generated torsion sub-
modules. Indeed, if M contains a torsion-free finitely generated submodule, then entv(ϕ) = ∞ for every
0 ≠ ϕ ∈ EndR(G). Note also that entv(ϕ) = 0 for every 0 ≠ ϕ ∈ EndR(N), when N is a finitely generated
torsion R-module: indeed, in this case ϕ is annihilated by a monic polynomial with coefficients in R, and
therefore T(ϕ, N) is finitely generated (cf. the proof of Proposition 4.1).

We end this section observing that entv satisfies the standard basic properties of every algebraic entropy
induced by a length function (e.g., see [10]). We don’t recall those properties, since we won’t need them.
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3 Computation of v-entropies.
The aim of this section is to get a good description of the cyclic ϕ-trajectories contained in the torsion R-
module G, where ϕ ∈ EndR(G).

To simplify the notation, in what follows, for assigned ϕ ∈ EndR(G) and x ∈ G, we will denote by Tn the
n-partial trajectory Tn(ϕ, x).

Proposition 3.1. Let G be a torsion R-module, ϕ ∈ EndR(G), x ∈ G. If the ϕ-trajectory T(ϕ, x) is not finitely
generated, then gen Tn = gen⟨x, ϕx, . . . , ϕn−1x⟩ = n for every n > 0.

Proof. Let us assume, for a contradiction, that gen Tm < m for somem > 0. Then
∑︀m−1

i=0 aiϕix = 0, for suitable
ai ∈ R not all in P. From this relation it follows that there exist polynomials p0, p1, with p0 monic, such that
p0(ϕ)x = λp1(ϕ)x, where λ ∈ P. Now take k > 0 large enough such that λkx = 0. This is possible, since R is
archimedean. Then we get pk0(ϕ)x = pk1(ϕ)(λkx) = 0. We conclude that x is annihilated by pk0(ϕ), where pk0
is a monic polynomial, of degree h, say, and so Tn ⊆ Th+1 for every n > 0. It follows that T(ϕ, x) = Th+1 is
finitely generated, impossible.

The following two lemmas are crucial to get the next Proposition 4.4.

Lemma 3.2. Let G be a torsion R-module, ϕ ∈ EndR(G), y ∈ G. If y = λ
∑︀m

i=1 aiϕ
iy, for some m > 0, ai ∈ R

and λ ∈ P, then y = 0.

Proof. We assume, for a contradiction, that y ≠ 0, hence 0 = ̸ Ann y = ̸ R. Since R is archimedean, there exists
r ∉ Ann y such that λry = 0. Then we get

0 = ̸ ry = λr
n∑︁
i=1

aiϕiy =
n∑︁
i=1

aiϕi(λry) = 0.

We reached a contradiction.

Lemma 3.3. Let G be a torsion R-module, ϕ ∈ EndR(G), y ∈ G. If ϕky =
∑︀

0≤i<k aiϕ
iy+ λ

∑︀
j>k bjϕ

jy, for some
ai , bj ∈ R (almost all zero) and λ ∈ P, then ϕky =

∑︀
0≤i<k ciϕ

iy, for suitable ci ∈ R.

Proof. Firstly we prove that, for every n ≥ k, we can write a relation

ϕny =
∑︁
0≤i<k

aniϕiy + λ
∑︁
j>k

bnjϕjy,

for suitable ani , bnj ∈ R, almost all zero. We make induction on n. The hypothesis yields the case n = k.
Assume that the above relation is valid. Then we get

ϕn+1y = ϕ(
∑︁

0≤i<k−1
aniϕiy) + ankϕky + ϕ(λ

∑︁
j>k

bnjϕjy)

=
∑︁

0≤i<k−1
aniϕi+1y + ank(

∑︁
0≤i<k

aiϕiy + λ
∑︁
j>k

bjϕjy) + λ
∑︁
j>k

bnjϕj+1y

=
∑︁
0≤i<k

an+1,iϕiy + λ
∑︁
j>k

bn+1,jϕjy,

for suitable an+1,i , bn+1,j ∈ R, almost all zero.
Now we prove that, for every m > 0, we can write a relation

ϕky =
∑︁
0≤i<k

cmiϕiy + λm
∑︁
n>k

dmnϕny,
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for suitable cmi , dmn ∈ R, almost all zero. We make induction on m. The case m = 1 is covered by the
hypothesis. Assume that the above relation is valid. Since ϕny =

∑︀
0≤i<k aniϕ

iy + λ
∑︀

j>k bnjϕ
jy for every

n > k, we readily see that
ϕky =

∑︁
0≤i<k

cm+1,iϕiy + λm+1
∑︁
n>k

dm+1,nϕny,

for suitable cm+1,i , dm+1,n ∈ R, almost all zero.
Since R is archimedean, there exists t > 0 such that λty = 0. Under this circumstance, we get

λt
∑︀

n>k dtnϕ
ny =

∑︀
n>k dtnϕ

n(λty) = 0, whence ϕky =
∑︀

0≤i<k ct,iϕ
iy, as required.

Proposition 3.4. Let G be a torsion R-module, ϕ ∈ EndR(G), x ∈ G, and assume that T(ϕ, x) is not finitely
generated. Then Tk is a pure submodule of Tn, for any 0 ≤ k < n. In particular,

T0 = 0 < T1 < · · · < Tn−1 < Tn

is a pure-composition series of Tn, with increasing annihilator sequence.

Proof. Wemake induction on k. Let us prove that T1 = Rx is pure in Tn = ⟨x, ϕx, . . . , ϕn−1x⟩. We assume, for
a contradiction, that Rx is not pure in Tn. Then there exists a relation 0 ≠ ax = r

∑︀
j≥1 ajϕ

jx (a, ai , r ∈ R),
where ax ∈ ̸ rRx, i.e., r = aλ for some λ ∈ P. We set y = ax. Then we get y = λ

∑︀
j>1 aiϕ

jy, so y = 0 by Lemma
4.2, a contradiction.

Let the statement be true for k − 1, and assume, for a contradiction, that Tk is not pure in Tn. Then there
exists a relation

0 = ̸
k∑︁
i=0

biϕix = r
∑︁
j>k

ajϕjx

where
∑︀k

i=0 biϕ
ix ∈ ̸ rTk. Note also that

∑︀k
i=0 biϕ

ix ∉ Tk−1 (equivalently bkϕkx ∉ Tk−1), since Tk−1 is pure in
Tn, by induction. There exists a suitable i ≤ k such that v(r) > v(bi). Let us observe that v(bk) < v(r), otherwise
bkϕkx ∈ rTk, hence

∑︀
i<k biϕ

ix ∈ rTn ∩ Tk−1 = rTk−1, and so
∑︀k

i=0 biϕ
ix ∈ rTk, impossible. It follows that∑︀

i<k biϕ
ix ∈ bkTn ∩ Tk−1 = bkTk−1. In conclusion, we may assume that ci = bi/bk ∈ R for every i < k, and

raj/bk = λdj, where dj ∈ R and λ ∈ P, for every j > k.
Let us set y = bkx. The above discussion shows that

ϕky = −
∑︁
0≤i<k

ciϕiy + λ
∑︁
j>k

djϕjy,

hence ϕky ∈ ⟨y, ϕy, . . . , ϕk−1y⟩ ≤ Tk−1, in view of Lemma 4.3. But ϕky = bkϕkx ∈ ̸ Tk−1, a contradiction. We
conclude that Tk is necessarily pure in Tn.

In particular, it follows that
T0 = 0 < T1 < · · · < Tn−1 < Tn

is a pure-composition series of Tn. It remains to show that this pure-composition series has increasing annihi-
lator sequence. For 0 < k ≤ n, let Ak = Ann(Tk/Tk−1). Pick r ∈ Ak; then, from rϕk+1x = ϕ(rϕkx) ∈ ϕTk−1 ≤ Tk,
we get r ∈ Ak+1. We conclude that Ak ⊆ Ak+1 and therefore A1 = Ann(x) ⊆ A2 ⊆ · · · ⊆ An.

We are in the position to compute the v-entropy of ϕ restricted to the cyclic ϕ-trajectory generated by x ∈ G.
Naturally, we consider only the non-trivial case where T(ϕ, x) is not finitely generated.

Theorem 3.5. Let G be a torsion R-module, ϕ ∈ EndR(G), x ∈ G. For every j > 0, let Aj = Ann(Tj/Tj−1). If
T = T(ϕ, x) is not finitely generated, then entv(ϕ|T) = v(A), where A =

⋃︀
j>0 Aj.

Proof. To simplify the symbols, in theproofwewill denoteϕ|T byϕ. Since everyfinitely generated submodule
of T is contained in some Tj, we have

entv(ϕ) = supj{H(ϕ, Tj)}
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Note that Tn(ϕ, Tj) = Tn+j−1, and recall that v(A1) ≥ v(A2) ≥ . . . and v(A) = infkv(Ak).
Now take any integer k > 0. If n + j − 1 > k, by Proposition 4.4 and (2), we get

Lv(Tn+j−1) =
n+j−1∑︁
i=1

v(Ai) =
k−1∑︁
i=1

v(Ai) +
n+j−1∑︁
i=k

v(Ai) ≤
k−1∑︁
i=1

v(Ai) + (n + j − 1 − k)v(Ak),

hence
H(ϕ, Tj) = limn→∞

Lv(Tn+j−1)
n ≤ v(Ak).

Since j and k were arbitrary, we get

supj{H(ϕ, Tj)} = entv(ϕ) ≤ infkv(Ak) = v(A).

Let us verify the reverse inequality entv(ϕ) ≥ v(A). In fact, Lv(Tn+j−1) ≥ (n + j − 1)v(A), whence

limn→∞
Lv(Tn+j−1)

n ≥ limn→∞
(n + j − 1)v(A)

n = v(A).

A result less precise but more general than Theorem 4.5 has some interest.

Proposition 3.6. Let ϕ be an endomorphism of the torsion R-module G such that G = T(ϕ, F) for a suitable
F ∈ F(G). Then ent(ϕ) ≤ Lv(F). In particular, ent(ϕ) < ∞.

Proof. SinceG = T(ϕ, F), every finitely generated submodule ofG is contained in some Tj = Tj(ϕ, F). Observe
that Tn(ϕ, Tj) = Tn+j−1. Recall that Lv(A+B) ≤ Lv(A)+Lv(B) for all R-modules A, B, by the additivity property
(1). It follows that Lv(Tn+j−1) ≤ (n + j − 1)Lv(F), since Lv(ϕkF) ≤ Lv(F) for k ≥ 0. Then

H(ϕ, Tj) = limn→∞
Lv(Tn+j−1)

n ≤ limn→∞
(n + j − 1)Lv(F)

n = Lv(F).

The desired conclusion follows, since j > 0 was arbitrary.

In our final result we get a special case of the Addition Theorem, namely, when the R-module G coincides
with the cyclic trajectory T(ϕ, x), for some ϕ ∈ EndR(G), x ∈ G, and the ϕ-invariant submodule coincides
with aG, a ∈ P. We use a direct argument, based on Theorem 4.5, that is much simpler and shorter than the
discussion leading to the proof of the general result in [8].

Proposition 3.7. Let G be a torsion R-module, not finitely generated, such that G = T(ϕ, x) for suitable ϕ ∈
EndR(G) and x ∈ G. Take any a ∈ P, and consider the fully invariant submodule aG = T(ϕ, ax) and the induced
map ϕ̄ : G/aG → G/aG. Then we have

entv(ϕ) = entv(ϕ|aG) + entv(ϕ̄) (†)

Proof. For n > 0, let Tn = ⟨x, ϕx, . . . , ϕn−1x⟩ and An = Ann(Tn/Tn−1). We have seen in Theorem 4.5 that
entv(ϕ) = v(A), where A =

⋃︀
j>0 Aj. We firstly assume that aG is finitely generated. Then entv(ϕ|aG) = 0

and there exists k > 0 such that Tk ≥ aG. Consider the partial ϕ̄-trajectory Xn = Tn(ϕ̄, Tk/aG) ≤ G/aG. Since
Tk ≥ aG, it follows that Tj/Tk ∼= (Tj/aG)/(Tk/aG) for every j > k, and therefore the last terms of the increasing
annihilator sequence of Xn are Ak+1 ⊆ Ak+2 ⊆ · · · ⊆ Ak+n. Under the present circumstances, an argument
similar to the proof of Theorem 4.5 shows that entv(ϕ̄) = v(A), hence (†) holds in this case.

Now we assume that aG = T(ϕ, ax) is not finitely generated; equivalently, gen(aTj) = j for every j > 0.
Note that aG not finitely generated implies that a ∈ ̸ Aj, i.e., aR ⊃ Aj, for every j > 0. Since Tn is pure in Tn+1, a
simple computation shows that aTj has annihilator sequence a−1A1 ⊆ a−1A2 ⊆ · · · ⊆ a−1Aj. Then Theorem
4.5, applied to y = ax yields entv(ϕ|aG) = v(a−1A) = v(A)− v(a). Thus, in order to verify (†), it remains to show
that entv(ϕ̄) = v(a). Let us verify that

G/aG = T(ϕ̄, x + aG) =
⨁︁
n≥0

⟨ϕnx + aG⟩ ∼=
⨁︁

R/aR.
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Assume, for a contradiction, that the sum is not direct. Then there exists k > 0 such that

bkϕkx −
k−1∑︁
i=0

biϕix = a
m∑︁
i=0

ciϕix ∈ aG,

where bk ∉ aR. If m > k, we get acm ∈ Am, hence acmϕmx = acm
∑︀m−1

i=0 diϕix, since Tm−1 is pure in Tm.
Thus we get a shorter relation

(bk − acmdk)ϕkx −
k−1∑︁
i=0

biϕix = a
m−1∑︁
i=0

(ci + cmdi)ϕix ∈ aG,

where bk −acmdk ∈ ̸ aR. Repeating the procedure, after a finite number of steps we get an equality of the form

ekϕkx −
k−1∑︁
i=0

eiϕix = 0,

where ek ∉ aR. But thismeans that ek ∈ Ak ⊂ aR, impossible.We reached a contradiction; then, necessarily,
the sum is direct.

The desired conclusion follows, applying Theorem 4.5 to G/aG and ϕ̄.

4 Computation of v-entropies.
The aim of this section is to get a good description of the cyclic ϕ-trajectories contained in the torsion R-
module G, where ϕ ∈ EndR(G).

To simplify the notation, in what follows, for assigned ϕ ∈ EndR(G) and x ∈ G, we will denote by Tn the
n-partial trajectory Tn(ϕ, x).

Proposition 4.1. Let G be a torsion R-module, ϕ ∈ EndR(G), x ∈ G. If the ϕ-trajectory T(ϕ, x) is not finitely
generated, then gen Tn = gen⟨x, ϕx, . . . , ϕn−1x⟩ = n for every n > 0.

Proof. Let us assume, for a contradiction, that gen Tm < m for somem > 0. Then
∑︀m−1

i=0 aiϕix = 0, for suitable
ai ∈ R not all in P. From this relation it follows that there exist polynomials p0, p1, with p0 monic, such that
p0(ϕ)x = λp1(ϕ)x, where λ ∈ P. Now take k > 0 large enough such that λkx = 0. This is possible, since R is
archimedean. Then we get pk0(ϕ)x = pk1(ϕ)(λkx) = 0. We conclude that x is annihilated by pk0(ϕ), where pk0
is a monic polynomial, of degree h, say, and so Tn ⊆ Th+1 for every n > 0. It follows that T(ϕ, x) = Th+1 is
finitely generated, impossible.

The following two lemmas are crucial to get the next Proposition 4.4.

Lemma 4.2. Let G be a torsion R-module, ϕ ∈ EndR(G), y ∈ G. If y = λ
∑︀m

i=1 aiϕ
iy, for some m > 0, ai ∈ R

and λ ∈ P, then y = 0.

Proof. We assume, for a contradiction, that y ≠ 0, hence 0 = ̸ Ann y ≠ R. Since R is archimedean, there exists
r ∉ Ann y such that λry = 0. Then we get

0 = ̸ ry = λr
n∑︁
i=1

aiϕiy =
n∑︁
i=1

aiϕi(λry) = 0.

We reached a contradiction.

Lemma 4.3. Let G be a torsion R-module, ϕ ∈ EndR(G), y ∈ G. If ϕky =
∑︀

0≤i<k aiϕ
iy+ λ

∑︀
j>k bjϕ

jy, for some
ai , bj ∈ R (almost all zero) and λ ∈ P, then ϕky =

∑︀
0≤i<k ciϕ

iy, for suitable ci ∈ R.
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Proof. Firstly we prove that, for every n ≥ k, we can write a relation

ϕny =
∑︁
0≤i<k

aniϕiy + λ
∑︁
j>k

bnjϕjy,

for suitable ani , bnj ∈ R, almost all zero. We make induction on n. The hypothesis yields the case n = k.
Assume that the above relation is valid. Then we get

ϕn+1y = ϕ(
∑︁

0≤i<k−1
aniϕiy) + ankϕky + ϕ(λ

∑︁
j>k

bnjϕjy)

=
∑︁

0≤i<k−1
aniϕi+1y + ank(

∑︁
0≤i<k

aiϕiy + λ
∑︁
j>k

bjϕjy) + λ
∑︁
j>k

bnjϕj+1y

=
∑︁
0≤i<k

an+1,iϕiy + λ
∑︁
j>k

bn+1,jϕjy,

for suitable an+1,i , bn+1,j ∈ R, almost all zero.
Now we prove that, for every m > 0, we can write a relation

ϕky =
∑︁
0≤i<k

cmiϕiy + λm
∑︁
n>k

dmnϕny,

for suitable cmi , dmn ∈ R, almost all zero. We make induction on m. The case m = 1 is covered by the
hypothesis. Assume that the above relation is valid. Since ϕny =

∑︀
0≤i<k aniϕ

iy + λ
∑︀

j>k bnjϕ
jy for every

n > k, we readily see that
ϕky =

∑︁
0≤i<k

cm+1,iϕiy + λm+1
∑︁
n>k

dm+1,nϕny,

for suitable cm+1,i , dm+1,n ∈ R, almost all zero.
SinceR is archimedean, there exists t > 0 such that λty = 0. Under this circumstance,weget λt

∑︀
n>k dtnϕ

ny =∑︀
n>k dtnϕ

n(λty) = 0, whence ϕky =
∑︀

0≤i<k ct,iϕ
iy, as required.

Proposition 4.4. Let G be a torsion R-module, ϕ ∈ EndR(G), x ∈ G, and assume that T(ϕ, x) is not finitely
generated. Then Tk is a pure submodule of Tn, for any 0 ≤ k < n. In particular,

T0 = 0 < T1 < · · · < Tn−1 < Tn

is a pure-composition series of Tn, with increasing annihilator sequence.

Proof. Wemake induction on k. Let us prove that T1 = Rx is pure in Tn = ⟨x, ϕx, . . . , ϕn−1x⟩. We assume, for
a contradiction, that Rx is not pure in Tn. Then there exists a relation 0 ≠ ax = r

∑︀
j≥1 ajϕ

jx (a, ai , r ∈ R),
where ax ∉ rRx, i.e., r = aλ for some λ ∈ P. We set y = ax. Then we get y = λ

∑︀
j>1 aiϕ

jy, so y = 0 by Lemma
4.2, a contradiction.

Let the statement be true for k − 1, and assume, for a contradiction, that Tk is not pure in Tn. Then there
exists a relation

0 = ̸
k∑︁
i=0

biϕix = r
∑︁
j>k

ajϕjx

where
∑︀k

i=0 biϕ
ix ∉ rTk. Note also that

∑︀k
i=0 biϕ

ix ∉ Tk−1 (equivalently bkϕkx ∈ ̸ Tk−1), since Tk−1 is pure in
Tn, by induction. There exists a suitable i ≤ k such that v(r) > v(bi). Let us observe that v(bk) < v(r), otherwise
bkϕkx ∈ rTk, hence

∑︀
i<k biϕ

ix ∈ rTn ∩ Tk−1 = rTk−1, and so
∑︀k

i=0 biϕ
ix ∈ rTk, impossible. It follows that∑︀

i<k biϕ
ix ∈ bkTn ∩ Tk−1 = bkTk−1. In conclusion, we may assume that ci = bi/bk ∈ R for every i < k, and

raj/bk = λdj, where dj ∈ R and λ ∈ P, for every j > k.
Let us set y = bkx. The above discussion shows that

ϕky = −
∑︁
0≤i<k

ciϕiy + λ
∑︁
j>k

djϕjy,
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hence ϕky ∈ ⟨y, ϕy, . . . , ϕk−1y⟩ ≤ Tk−1, in view of Lemma 4.3. But ϕky = bkϕkx ∉ Tk−1, a contradiction. We
conclude that Tk is necessarily pure in Tn.

In particular, it follows that
T0 = 0 < T1 < · · · < Tn−1 < Tn

is a pure-composition series of Tn. It remains to show that this pure-composition series has increasing annihi-
lator sequence. For 0 < k ≤ n, let Ak = Ann(Tk/Tk−1). Pick r ∈ Ak; then, from rϕk+1x = ϕ(rϕkx) ∈ ϕTk−1 ≤ Tk,
we get r ∈ Ak+1. We conclude that Ak ⊆ Ak+1 and therefore A1 = Ann(x) ⊆ A2 ⊆ · · · ⊆ An.

We are in the position to compute the v-entropy of ϕ restricted to the cyclic ϕ-trajectory generated by x ∈ G.
Naturally, we consider only the non-trivial case where T(ϕ, x) is not finitely generated.

Theorem 4.5. Let G be a torsion R-module, ϕ ∈ EndR(G), x ∈ G. For every j > 0, let Aj = Ann(Tj/Tj−1). If
T = T(ϕ, x) is not finitely generated, then entv(ϕ|T) = v(A), where A =

⋃︀
j>0 Aj.

Proof. To simplify the symbols, in theproofwewill denoteϕ|T byϕ. Since everyfinitely generated submodule
of T is contained in some Tj, we have

entv(ϕ) = supj{H(ϕ, Tj)}

Note that Tn(ϕ, Tj) = Tn+j−1, and recall that v(A1) ≥ v(A2) ≥ . . . and v(A) = infkv(Ak).
Now take any integer k > 0. If n + j − 1 > k, by Proposition 4.4 and (2), we get

Lv(Tn+j−1) =
n+j−1∑︁
i=1

v(Ai) =
k−1∑︁
i=1

v(Ai) +
n+j−1∑︁
i=k

v(Ai)

≤
k−1∑︁
i=1

v(Ai) + (n + j − 1 − k)v(Ak),

hence
H(ϕ, Tj) = limn→∞

Lv(Tn+j−1)
n ≤ v(Ak).

Since j and k were arbitrary, we get

supj{H(ϕ, Tj)} = entv(ϕ) ≤ infkv(Ak) = v(A).

Let us verify the reverse inequality entv(ϕ) ≥ v(A). In fact, Lv(Tn+j−1) ≥ (n + j − 1)v(A), whence

limn→∞
Lv(Tn+j−1)

n ≥ limn→∞
(n + j − 1)v(A)

n = v(A).

A result less precise but more general than Theorem 4.5 has some interest.

Proposition 4.6. Let ϕ be an endomorphism of the torsion R-module G such that G = T(ϕ, F) for a suitable
F ∈ F(G). Then ent(ϕ) ≤ Lv(F). In particular, ent(ϕ) < ∞.

Proof. SinceG = T(ϕ, F), every finitely generated submodule ofG is contained in some Tj = Tj(ϕ, F). Observe
that Tn(ϕ, Tj) = Tn+j−1. Recall that Lv(A+B) ≤ Lv(A)+Lv(B) for all R-modules A, B, by the additivity property
(1). It follows that Lv(Tn+j−1) ≤ (n + j − 1)Lv(F), since Lv(ϕkF) ≤ Lv(F) for k ≥ 0. Then

H(ϕ, Tj) = limn→∞
Lv(Tn+j−1)

n ≤ limn→∞
(n + j − 1)Lv(F)

n = Lv(F).

The desired conclusion follows, since j > 0 was arbitrary.
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In our final result we get a special case of the Addition Theorem, namely, when the R-module G coincides
with the cyclic trajectory T(ϕ, x), for some ϕ ∈ EndR(G), x ∈ G, and the ϕ-invariant submodule coincides
with aG, a ∈ P. We use a direct argument, based on Theorem 4.5, that is much simpler and shorter than the
discussion leading to the proof of the general result in [8].

Proposition 4.7. Let G be a torsion R-module, not finitely generated, such that G = T(ϕ, x) for suitable ϕ ∈
EndR(G) and x ∈ G. Take any a ∈ P, and consider the fully invariant submodule aG = T(ϕ, ax) and the induced
map ϕ̄ : G/aG → G/aG. Then we have

entv(ϕ) = entv(ϕ|aG) + entv(ϕ̄) (†)

Proof. For n > 0, let Tn = ⟨x, ϕx, . . . , ϕn−1x⟩ and An = Ann(Tn/Tn−1). We have seen in Theorem 4.5 that
entv(ϕ) = v(A), where A =

⋃︀
j>0 Aj. We firstly assume that aG is finitely generated. Then entv(ϕ|aG) = 0

and there exists k > 0 such that Tk ≥ aG. Consider the partial ϕ̄-trajectory Xn = Tn(ϕ̄, Tk/aG) ≤ G/aG. Since
Tk ≥ aG, it follows that Tj/Tk ∼= (Tj/aG)/(Tk/aG) for every j > k, and therefore the last terms of the increasing
annihilator sequence of Xn are Ak+1 ⊆ Ak+2 ⊆ · · · ⊆ Ak+n. Under the present circumstances, an argument
similar to the proof of Theorem 4.5 shows that entv(ϕ̄) = v(A), hence (†) holds in this case.

Now we assume that aG = T(ϕ, ax) is not finitely generated; equivalently, gen(aTj) = j for every j > 0.
Note that aG not finitely generated implies that a ∈ ̸ Aj, i.e., aR ⊃ Aj, for every j > 0. Since Tn is pure in Tn+1, a
simple computation shows that aTj has annihilator sequence a−1A1 ⊆ a−1A2 ⊆ · · · ⊆ a−1Aj. Then Theorem
4.5, applied to y = ax yields entv(ϕ|aG) = v(a−1A) = v(A)− v(a). Thus, in order to verify (†), it remains to show
that entv(ϕ̄) = v(a). Let us verify that

G/aG = T(ϕ̄, x + aG) =
⨁︁
n≥0

⟨ϕnx + aG⟩ ∼=
⨁︁

R/aR.

Assume, for a contradiction, that the sum is not direct. Then there exists k > 0 such that

bkϕkx −
k−1∑︁
i=0

biϕix = a
m∑︁
i=0

ciϕix ∈ aG,

where bk ∈ ̸ aR. If m > k, we get acm ∈ Am, hence acmϕmx = acm
∑︀m−1

i=0 diϕix, since Tm−1 is pure in Tm.
Thus we get a shorter relation

(bk − acmdk)ϕkx −
k−1∑︁
i=0

biϕix = a
m−1∑︁
i=0

(ci + cmdi)ϕix ∈ aG,

where bk −acmdk ∉ aR. Repeating the procedure, after a finite number of steps we get an equality of the form

ekϕkx −
k−1∑︁
i=0

eiϕix = 0,

where ek ∈ ̸ aR. But thismeans that ek ∈ Ak ⊂ aR, impossible.We reached a contradiction; then, necessarily,
the sum is direct.

The desired conclusion follows, applying Theorem 4.5 to G/aG and ϕ̄.
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