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1 Abstract 

 

1.1 English Abstract 
	

Sepsis is a major concern in neonatology. Neonatal sepsis is an infection-induced, systemic 

inflammatory response syndrome common in premature and term neonates. It is one of the 

leading causes of neonatal death and morbidity and is believed to have a key role in most 

inflammatory disorders that cause or enhance the main morbidities affecting the preterm 

(bronchopulmonary dysplasia, white matter injury, necrotizing enterocolitis, and 

retinopathy of prematurity). Sepsis in the newborn is typically classified as either early-

onset sepsis (EOS), when the infection occurs within three days after birth, or late-onset 

sepsis (LOS) if it develops afterward. Early detection of neonatal sepsis and prompt 

administration of broad-spectrum antibiotic therapy can prevent its clinical course towards 

septic shock and death, but it is not easy to diagnose neonatal sepsis early on. Blood culture 

is still considered the gold standard, even though it takes time to obtain the results, and 

false-negative findings are not uncommon because neonatal bacteremia is often 

intermittent, and intrapartum antibiotic treatment may limit the culture’s diagnostic value. 

Neonatal sepsis is therefore mainly suspected on the grounds of non-specific clinical signs 

and symptoms; moreover, none of the most widely used biomarkers are entirely reliable 

indicators of sepsis in newborns. Hence, identifying new biomarkers for EOS is of crucial 

importance.  

Furthermore, while supportive therapies promote the survival of septic neonates, there are 

no mechanistic therapies to alter the underlying pathophysiology, and this is partly due to 

partial knowledge of the complex biological pathways underlying the pathophysiology of 

sepsis. 

The aim of the study was to compare the metabolic profiles of plasma and urine samples 

collected at birth from preterm neonates with and without early-onset sepsis (EOS) to 

identify metabolic perturbations that might orient the search for new early biomarkers.  

All preterm newborns admitted to the neonatal intensive care unit were eligible for this 

proof-of-concept, prospective case-control study. Infants were enrolled as “cases” if they 
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developed EOS, and as “controls” if they did not. Plasma samples collected at birth and 

urine samples collected within 24 h of birth underwent untargeted and targeted 

metabolomic analysis using mass spectrometry coupled with ultra-performance liquid 

chromatography. Univariate and multivariate statistical analyses were applied. Of 123 

eligible newborns, 15 developed EOS. These 15 newborns matched controls for gestational 

age and weight.  

UPLC–MS analysis of urine samples revealed a clustering of cases of EOS compared with 

healthy neonates. Furthermore, a metabolic signature exists to distinguish neonates that 

develop sepsis and healthy subjects and putative markers discriminating between EOS 

cases and controls were discovered. Pathway analysis showed metabolic derangements 

most involved in EOS. The most significant metabolic pathways were investigated using a 

targeted analysis on plasma samples collected from the same neonates, confirming the 

marked disruption of the tryptophan and glutathione metabolic pathways in the neonates 

with EOS.  

In conclusion, neonates with EOS had a metabolic profile at birth that clearly distinguished 

them from those without sepsis, and metabolites of glutathione and tryptophan pathways 

are promising as new biomarkers of neonatal sepsis. 
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1.2 Italian Abstract 

 
La sepsi è una delle principali problematiche in ambito neonatologico. La sepsi neonatale 

è una sindrome da risposta infiammatoria sistemica indotta da infezione comune nei neonati 

prematuri e a termine. È una delle principali cause di morte e morbilità neonatale e si ritiene 

che abbia un ruolo chiave nella maggior parte dei disturbi infiammatori che causano o 

contribuiscono allo sviluppo delle principali morbilità che colpiscono il prematuro 

(displasia broncopolmonare, danno della sostanza bianca cerebrale, enterocolite 

necrotizzante e retinopatia del prematuro). La sepsi nel neonato è solitamente classificata 

come sepsi ad esordio precoce (EOS), quando l'infezione si manifesta entro tre giorni dalla 

nascita, o sepsi ad esordio tardivo (LOS) se si sviluppa in seguito. La diagnosi precoce 

della sepsi neonatale e la pronta somministrazione di una terapia antibiotica ad ampio 

spettro possono prevenirne il decorso clinico verso lo shock settico e la morte, ma non è 

facile diagnosticare precocemente la sepsi neonatale. L'emocoltura è ancora considerata il 

gold standard, anche se ci vuole tempo per ottenere i risultati e i falsi negativi non sono rari 

perché la batteriemia neonatale è spesso intermittente e il trattamento antibiotico 

intrapartum può limitare il valore diagnostico della coltura. La sepsi neonatale viene quindi 

ipotizzata principalmente sulla base di segni e sintomi clinici non specifici; per di più, 

nessuno dei biomarcatori più utilizzati è un indicatore del tutto affidabile di sepsi nei 

neonati. Pertanto, l'identificazione di nuovi biomarcatori per EOS è di cruciale importanza. 

Inoltre, mentre le terapie di supporto promuovono la sopravvivenza dei neonati settici, non 

esistono terapie per alterare la fisiopatologia sottostante, e ciò è in parte dovuto alla parziale 

conoscenza delle complesse vie biologiche alla base della fisiopatologia della sepsi. 

Lo scopo dello studio era confrontare i profili metabolici di campioni di plasma e urina 

raccolti alla nascita da neonati pretermine con e senza sepsi ad esordio precoce (EOS) per 

identificare le perturbazioni metaboliche che potrebbero orientare la ricerca di nuovi 

biomarcatori precoci. 

Tutti i neonati prematuri ammessi all'unità di terapia intensiva neonatale erano eleggibili 

per questo studio prospettico caso-controllo. I neonati sono stati arruolati come "casi" se 

hanno sviluppato EOS e come "controlli" in caso contrario. I campioni di plasma raccolti 

alla nascita e i campioni di urina raccolti entro 24 ore dalla nascita sono stati sottoposti ad 
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analisi metabolomica targeted e untargeted tramite spettrometria di massa accoppiata a 

cromatografia liquida UPLC. Sono state poi applicate analisi statistiche univariate e 

multivariate. Di 123 neonati idonei, 15 hanno sviluppato EOS. Questi 15 neonati 

corrispondevano ai controlli per età gestazionale e peso. 

L'analisi UPLC-MS dei campioni di urina ha rivelato un cluster di casi di EOS rispetto ai 

neonati sani. Inoltre, esiste una differenza metabolica per distinguere i neonati che 

sviluppano sepsi dai soggetti sani e sono stati scoperti marcatori putativi che discriminano 

tra casi di EOS e controlli. L'analisi dei pathways ha evidenziato gli squilibri metabolici 

maggiormente coinvolti in caso di EOS. Le vie metaboliche più significative sono state 

studiate utilizzando un'analisi targetd su campioni di plasma prelevati dagli stessi neonati, 

confermando l’evidente perturbazione delle vie metaboliche del triptofano e del glutatione 

nei neonati con EOS.  

In conclusione, i neonati con EOS presentavano un profilo metabolico alla nascita che li 

distingueva chiaramente da quelli senza sepsi, e i metaboliti delle vie del glutatione e del 

triptofano sono promettenti come nuovi biomarcatori della sepsi neonatale. 
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2 List of abbreviations  

 

Abbreviation Meaning 
 
1D NMR 1 dimensional proton nuclear magnetic resonance 
1H-NMR  Proton nuclear magnetic resonance 
2D NMR 2 dimensional proton nuclear magnetic resonance 
ANC Absolute neutrophil counts 
ANOVA Analysis of Variance 
APCI Atmospheric pressure chemical ionization 
APPI Atmospheric pressure photo-ionization 
AUC  Area under the curve 
BW  Birth weight  
CAP Community-acquired pneumonia 
CCS Collision cross section 
CE Capillary electrophoresis 
CI Confidence interval 
CONS  Coagulase-negative staphylococci 
CRP  C-reactive protein  
CSF Cerebrospinal fluid 
CTRL Control 
DI-MS Direct infusion-mass spectrometry 
DOSY Diffusion ordered spectroscopy 
DRMPs Death-related metabolic pathways 
EI-MS Electron impact ionization-mass spectrometry 
EOS Early-onset sepsis 
ESI Electrospray ionization  
GA Gestational age  
GBS Group B Streptococcus  
GC Gas chromatography 
GC-EI-MS 
 

Gas chromatography-electron impact ionization-mass 
spectrometry 

GC-MS Gas chromatography-mass spectrometry 
HILIC Hydrophilic Interaction Liquid Chromatography 
HMBC Heteronuclear multiple bond correlation 
HMDB Human Metabolome Database 
HPLC High performance liquid chromatography 
HR-MS-MS Tandem high resolution mass spectrometry 
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HRMSn Multistage high resolution mass spectrometry 
HSQC Heteronuclear single quantum coherence 
I/T Immature to total neutrophils ratio 
IAP Intrapartum antibiotic prophylaxis 
ICR Ion cyclotron resonance 
ICU  Intensive care unit  
Il-1 Interleukin-1 
Il-6 Interleukin-6 
Il-8 Interleukin-8 
IM Ion mobility 
KEGG Kyoto Encyclopedia of Genes and Genomes 
LC-ESI-MS 
 

Liquid chromatography-electrospray ionization-mass 
spectrometry 

LC-HRMS Liquid chromatography-high resolution mass 
spectrometry 

LC-IM-MS Liquid chromatography-ion mobility-mass spectrometry 
LC-MS Liquid chromatography-mass spectrometry 
LIT Linear quadrupole ion 
LLE Liquid phase extractions 
LOI Late onset infection  
LOQ  Limit of quantification 
LOS Late-onset sepsis 
m/z  Mass to charge ratio  
MCC Matthew correlation coefficient  
MCC5-fold 
 

Matthew correlation coefficient calculated by five-fold 
cross-validation 

MRM Multiple reaction monitoring 
MS Mass spectrometry 
MS-MS Tandem mass spectrometry 
MSn Multistage mass spectrometry 
MW Molecular weight 
NEC Necrotizing enterocolitis 
NEG Negative  
NICU Neonatal intensive care unit  
NMR Nuclear magnetic resonance 
nSOFA Neonatal sequential organ failure assessment 
OPLS-DA Orthogonalartial least squares discriminant analysis 
PC Principal component 
PCA Principal components analysis 
PCR Polymerase chain reaction 
PCT Procalcitonin  
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PICU  Pediatric intensive care unit  
PLS Partial least squares 
PLS-DA Partial least squares discriminant analysis 
POS Positive  
PTNB Preterm newborns  
QC Quality control 
qPCR Quantitative polymerase chain reaction 
QTOF Quadrupole time-of-flight 
RT  Retention time 
SAA Serum amyloid A 
SIRS Systemic inflammatory response syndrome 
SOFA  Sequential organ failure assessment 
SPE  Solid phase extractions 
SSN Septic shock non-survivor 
SSS Septic shock survivor 
TLC Thin layer chromatography 
TNFa Tumor necrosis factor-alpha 
TOCSY Total correlation spectroscopy 
TOF Time-of- flight 
UPLC Ultra performance liquid chromatography 
UPLC-MS Ultra performance liquid chromatography-mass 

spectrometry 
VIP Variable influence on projection 
VLBW Very low birth weight  
WBC White blood cell 
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3. Background 

 

3.1 Sepsis 

 
A first definition of sepsis, derived from a Greek term used by Hippocrates to describe 

natural decay of organic matter, was given in 1914 by Hugo Schottmüller who wrote that 

“sepsis is present if a focus has developed from which pathogenic bacteria, constantly or 

periodically, invade the blood stream in such a way that this causes subjective and objective 

symptoms” [1, 2]. Nowadays, sepsis is defined by Sepsis-3 conference as a “life-

threatening organ dysfunction caused by a deregulated host response to infection”, so 

consisting in a dysfunction affecting different organs caused by infectious microorganisms 

and induced by mediators of inflammation and dysregulated host response to infection, that 

cause alteration of the immune, inflammatory and coagulative equilibrium and its more 

severe forms, such as septic shock, may lead to organ dysfunction, organ failure, and death 

[3, 4, 5, 6].  

Sepsis is a main cause of mortality and morbidity in newborns, with an estimated global 

incidence of 3 million cases in neonates, and it can be classified as early onset sepsis (EOS), 

which takes place in the first 72 hours and late onset sepsis (LOS), which begins after 72 

hours and is usually caused by nosocomial pathogens [4, 7, 8].  

Early onset sepsis is a major cause of mortality and morbidity in neonates, particularly 

preterm newborns and those with a very low birth weight (VLBW) and, although its 

incidence is lower than in the past, EOS is still a problem [9, 10]. It is acquired in utero 

through intraamniotic infection, rupture of membranes, or during passage through the 

vagina, with Escherichia coli, Streptococcus agalactiae and Group B Streptococcus (GBS) 

in general as major responsible pathogens [9, 11, 12]. In a study, Weston et al. reported that 

the most commonly pathogens were GBS (37.8%), E. coli (24.2%), viridans Streptococci 

(17.9%), Stapylococcus aureus (4.0%), and Haemophilus influenzae (4.0%) [13]. 

Similarly, Stoll and colleagues outpointed GBS (43%) as the most frequent early onset 

pathogens, followed by E. coli (29%), but infection with S. aureus was infrequent, and that 

rates of E. coli infection were higher than rates of GBS among very low birth weight infants 
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(5.09 vs 2.08 per 1000 LBs) and infants with a BW of 1501 to 2500 g (0.54 vs 0.38 per 

1000 LBs) while, in infants with a BW of >︎2500 g, GBS rates were higher than E. coli rates 

(0.35 vs 0.07 per 1000 LBs) [14]. 

Nowadays, the incidence of EOS in infants born at term is of approximately 0.5/1000 up 

to 0.8/1000 live births, but this number doubles in late preterm newborns (PTNB), and even 

more significant in PTNB<34 weeks and NB with VLBW registering values of 15 to 19 

per 1000 live births; however, the incidence of EOS varies by country and also between 

different regions [15, 16, 17]. 

GBS intrapartum prophylaxis and implementation of universal GBS screening in 2012 has 

resulted in a notable reduction in the invasive EOS burden and identify interventions to 

specifically prevent early onset E. coli infections is a promising way to reduce EOS burden; 

furthermore, identification and implementation of strategies to prevent preterm birth, such 

as prenatal care and risk directed interventions, would offer further hope for substantial 

reductions in EOS [11, 12, 13, 15]. 

Apart from maternal GBS colonization, demographic factors, preterm birth, rupture of 

membrane for more than 18 hours and maternal signs of intraamniotic infection are all risk 

factors for EOS [18]. 

From 2017 to 2019, the American College of Obstetricians and Gynecologists and the 

American Academy of Pediatrics updated guidance for intrapartum antibiotic use in women 

with concern for evolving intraamniotic infection, for antenatal screening and intrapartum 

antibiotic prophylaxis (IAP) to prevent GBS infection and for administration of empirical 

antibiotic therapy to newborns at risk for EOS. However, innovative clinical and public 

health approaches to prevent EOS are urgently needed, including efforts to prevent 

maternal intraamniotic infection [19]. 

LOS onset is most frequently defined at 72 h after birth, a time that allows to differentiate 

LOS from EOS in terms of the spectrum of causative pathogens. LOS is more common 

among the most premature infants, and it’s associated with the postnatal nosocomial or 

community environment; in fact, incidence of LOS has increased in parallel with the 

improved survival of premature infants, especially in VLBW ones, indicating the role of 

hospitalization and life sustaining medical devices in the pathogenesis [20, 21, 22, 23, 24]. 

Incidence of LOS in the neonatal intensive care unit (NICU) varies according to birth 

weight (BW) and gestational age (GA) and ranged from 25–30% in very low birth weight 
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(VLBW: ≤1500 g) infants1,3 to 6.2–10% in late-preterm (GA: 34–37 weeks) infants [25]. 

Apart from immaturity, other risk factors for LOS include patent ductus arteriosus, 

necrotizing enterocolitis (NEC), the long-term use of invasive interventions, such as 

mechanical ventilation and intravascular catheterization, the failure of early enteral feeding 

with breast milk, a prolonged duration of parenteral nutrition, hospitalization, surgery and 

underlying respiratory and cardiovascular diseases, but also delivery outside the health 

facility [20, 25, 26, 27].  

Gram-positive organisms are the most common pathogens causes of LOS, where 

coagulase-negative staphylococci (CONS) have emerged as the predominant pathogens of 

LOS, accounting for 53.2%–77.9% of LOS in industrialized countries and 35.5%–47.4% 

in some developing regions; however, CONS are not as virulent as Gram-negative bacteria 

and possibly fungi. Other Gram-positive organisms responsible of LOS are Enterococcus 

spp., Group B Streptococcus, Streptococcus pneumoniae and Viridans Streptococcus [20, 

25, 28, 29]. Gram-negative organisms, including Klebsiella pneumoniae, Escherichia coli, 

Enterobacter aerogenes and Pseudomonas aeruginosa, are usually the second cause of 

LOS, followed by fungus (Candida albicans, Candida parapsilosis) and polymicrobial 

microorganisms [20, 25, 30, 31]. 

Given the morbidity and mortality associated with LOS, several strategies have been 

implemented in NICUs worldwide to decrease the incidence of infection, such as maternal 

chemoprophylaxis for prevention of early-onset group B streptococcal infection, rigorous 

hand hygiene procedures, improved central line care with central line bundles, antifungal 

prophylaxis, and careful attention to NICU design and staffing [29]. However, application 

of broad-spectrum antibiotics in the past decades has contributed to an increasing incidence 

of multidrug-resistant Gram-negative bacilli [20] and bacteria in general. 

Rapid identification of newborns with infection is a daily challenge for pediatricians 

worldwide. Symptoms of EOS such as respiratory distress, hypo- or hyperthermia or 

feeding intolerance are non-specific as these symptoms are also often observed in neonates 

without infection. Unnecessary treatment and hospitalization is undesirable because of the 

risk of promoting multidrug resistant bacteria. Furthermore, antibiotic treatment early in 

life disturbs the microbial flora colonizing the neonate and is associated with important 

health problems such as eczema, allergies, and inflammatory bowel diseases in later life. 

Moreover, financial costs and use of resources due to unnecessary hospitalization are to be 
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considered [32, 33]. 

The challenge of fast diagnosis of sepsis is that this syndrome is based on highly complex 

pathophysiological pathways that may show varying clinical signs and symptoms, common 

to other clinical conditions [34, 35]. 

Due to the many non-specific signs of sepsis, laboratory tests are helpful to diagnose sepsis 

and distinguishing it from other conditions, by isolating causative agent from a normally 

sterile blood site (blood, urine, CSF) [6, 34, 36]. 

Blood culture is considered the definitive diagnostic tool for neonatal sepsis, with 

preferably a minimum of 0,5-1 mL of blood from two different venipunctures from two 

different sites, but it is time consuming requiring long time for the results and false positive 

results due to contaminations are possible. All blood cultures are incubated and monitored 

for 72 h in order to ascertain the condition of sepsis into the infants. Modified and advanced 

blood culture systems, like, BACTEC and BACT/ALERT are also available, which allows 

early and rapid screening of these blood cultures. Moreover, these cultures usually have 

low sensitivity towards identification of the neonatal sepsis, since small inoculation 

volumes in culture bottles, the use of intrapartum antibiotics and low degree of neonatal 

bacteraemia may cause the decreased sensitivity [20, 34, 37, 38]. 

Recently, molecular-based methods have emerged as promising diagnostic tools for 

neonatal sepsis. PCR, a technology based on the extraction of microbial DNA from blood 

samples and the subsequent sequencing or hybridization of species-specific gene regions, 

is widely investigated for the detection of micro-organisms. Furthermore, real-time PCR 

has been explored to monitor the microbial load and rapidly target specific micro-

organisms in clinical specimens. Compared with the conventional culture technology, PCR 

presents a higher sensitivity, needs smaller sample volume and less laboratory time and 

identifies almost twice the number of positive specimens compared with conventional 

blood culture [39]. Recently developed PCR-based diagnostic platforms are characterized 

by a low contamination rate, with DNA extraction, multiplex PCR and detection of PCR 

products performed in a closed system, helping to differentiate potential contamination 

from true positive cases, particularly for the detection of CONS [20, 34, 39]. The detection 

of microbial pathogens in blood or cerebrospinal fluid by molecular assays based on PCR 

seems a promising replacement for conventional culturing. Interestingly, in contrast with 

what reported before, a recent systematic review and meta-analysis showed that these 
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assays lack sufficient sensitivity to replace microbial cultures to diagnose EOS [32]. 

Because PCR is a highly sensitive and rapid technique, it is increasingly being applied to 

bodily fluids directly without the need to first culture causative agents. Quantitative real-

time amplification systems (qPCR) have a very high negative predictive value and results 

are usually available in a timely manner, but presents the inability to do susceptibility 

testing and a high sensitivity that does not differentiate between active infection and recent 

infections already resolved. The possibility of detecting contaminants is also high, and 

therefore clinical correlation with results is mandatory [34]. 

However, nowadays neonatal sepsis is mainly suspected based on clinical observation, 

evaluating several symptoms including fever, hypotension, metabolic acidosis, tachycardia 

or bradycardia, apnoea, respiratory distress, irritability, lethargy, feeding intolerance, 

abdominal distension and bleeding, that can be common also in neonates without infection 

and, furthermore, the disease may be present without the appearance of clinical symptoms 

[32, 34, 35, 38]. 

Sepsis-3 definitions replace cryteria for systemic inflammatory response syndrome (SIRS) 

in identifying patients with sepsis, but they are non-specific and not always present in 

patients with infection. Part of the new Sepsis-3 definitions is SOFA [Sequential (Sepsis-

Related) Organ Failure Assessment, or SOFA score] as a grading score for defining acute 

organ dysfunction, that allocates points according to pathological change in six different 

organ systems: an increase in the total SOFA score by at least two points indicates acute 

organ dysfunction, and the diagnosis of sepsis is met if an infection is identified in parallel 

[6, 35, 40]. In adults, SOFA operationalizes mortality risk with infection and defines sepsis, 

and similarly neonatal SOFA (nSOFA) has been developed to establish a definition of 

sepsis for newborns. Among preterm VLBW neonates confirmed with late onset infection 

LOI, the nSOFA showed generalizable utility as an operational definition of organ 

dysfunction associated with mortality risk and may provide the requisite foundation on 

which to build a consensus definition for sepsis in preterm neonates [41, 42]. 

Given the insensitivity of physical examination and culture, neonatal sepsis is usually 

diagnosed on a combination of clinical signs in association with laboratory markers that 

include blood counts and acute-phase reactants and major efforts have been made to find 

biomarkers that allow early diagnosis of this disease. [4, 6, 43]. 

C-reactive protein CRP is an acute-phase protein synthesized by hepatocytes when the body 
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is affected by microbial invasion or tissue damage and the most studied infection and 

inflammation marker. CRP concentration in healthy patients remains stable, indicating the 

absence of sepsis, but during infection by pathogens, its level increases within 6-10 h and 

peaks after 36-50 hours. The value of CRP for the diagnosis of sepsis patients is a moderate 

degree: in newborn infants of <28 days of age with suspected sepsis, CRP was 

independently predictive of a positive blood culture and in 176 newborns >1,500 g, CRP 

was calculated to have a negative predictive value of 99%.  [6, 38, 43, 44, 45]. Moreover, 

the CRP level within 48 h before treatment has been shown to potentially help in assessing 

the response of patients with sepsis to initiate antimicrobial therapy, and CRP level at 

admission could be used as a possible marker of early infection. During treatment, CRP 

levels begin to decline, and this might be as a result of the remission of inflammation and 

as well as response to antibiotic treatment, but continues to contribute to the prognosis and 

treatment progress monitoring in the case of sepsis, and elevated CRP levels might have a 

relation to the extent of the disease and the severity of the infection [44].  

Furthermore, several antenatal and perinatal variables like duration of active labor, prenatal 

steroids, time of ruptured membranes, and intrapartum antimicrobial prophylaxis had a 

significant effect on CRP [46]. CRP is quite unspecific and it does not differentiate sepsis 

from other diseases, but it is commonly used to screen for early onset neonatal sepsis 

because its sensitivity has been shown to be very high, resulting useful in decreased the 

duration of antibiotic therapy and hospital stay, and hence reduced healthcare costs [6, 47].  

Procalcitonin (PCT), a precursor of the hormone calcitonin secreted by C cells from the 

thyroid gland, is more specific than CRP for bacterial infections and rises more rapidly in 

response to infection than CRP [44, 48]. During sepsis, PCT expression increased 

significantly within 2 to 6 h and peaked at 6 to 24 h [44]. 

Also, PCT in cord blood had shown high likelihood ratio (5.72) and sufficient sensitivity 

(82-92%) and specificity (86-97%) to be considered a reliable rule-in and rule-out test. 

Thus, it has been shown the usefulness of procalcitonin-guided decision making, even 

superior to standard care, in reducing antibiotic therapy in neonates with suspected EOS 

[38, 43, 48, 49]. Thus, based on the comprehensive analysis of all biological markers of 

inflammatory response, PCT is considered to be the best choice among the 

recommendations of the guidelines and thus, PCT is used as one of the serum markers for 

the early diagnosis of sepsis or septic shock, and displays a higher sensitivity and specificity 



	
	

	 15	

than traditional serum markers [44]. 

PCT levels, however, can be elevated with non-infectious conditions such as respiratory 

distress syndrome, pneumothorax, intracranial hemorrhage, and hemodynamic instability, 

birth asphyxia and neonatal hypoxemia [38, 48]. Moreover, it seems that PCT rise in 

healthy preterm neonates happens earlier than in healthy term newborns and it also seems 

to be higher and longer too [46]. These aspects could weaken PCT specificity. 

CD64 (FcγR1) is a high affinity receptor that belongs to a family of immunoglobulins 

expressed mainly on macrophages and monocytes, and is also a key immunomodulator in 

innate and adaptive immune responses. In healthy volunteers, FcγR1/CD64 is expressed at 

extremely low levels on neutrophils, but is significantly elevated after inflammation or 

infection [44, 50]. FcγR1/CD64 expression on neutrophils is also reported to be associated 

with the severity of SIRS and sepsis, resulting was a useful biomarker for the early 

diagnosis of sepsis adult patients [44]. 

The role of CD64 in neonatal sepsis has been investigated in the past with promising results. 

Increased expression of CD64 can be detected within 1-6 hours of bacterial invasion, and 

the levels remain elevated for up to 24 hours and it has shown higher concentrations in 

septic newborns than healthy subjects with a high specificity to diagnose LOS in preterm 

newborns. Thus, CD64 has limitation as single marker, but it might be useful if used in 

combination with CRP, guiding the decision to continue antibiotic therapy after 36-48 

hours [50, 51, 52, 53]. 

Serum Amyloid A (SAA) is an Apolipoprotein, which is synthesized by liver and it is an 

acute phase reactant with a hepatic synthesis, regulated by proinflammatory cytokines, used 

as markers for acute and chronic inflammation. SAA levels are controlled by interleukin-

1, interleukin-6 and tumor necrosis factor-alpha TNFa [38, 50, 54]. SAA is secreted in 

response to injury or infection; in neonatal sepsis patients serum levels of SAA have 

registered a significantly increase compared to healthy patients, even 1000 times higher, 

and when compared to CRP, SAA levels rise more rapidly, peak on day 3 of sepsis, and 

return to baseline levels after four days. SAA exhibits specificity of 95% and sensitivity of 

82%, both higher than CRP. SAA levels is dependent on host nutritional status and hepatic 

function. SAA levels have higher accuracy in the early detection of neonatal infections and 

are inversely related to mortality in neonates [38, 50, 54, 55]. 

Therefore, SAA protein could help the clinicians to diagnose most cases of neonatal sepsis 
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and kinetically, it looks promising enough to be used as a solitary marker, but further 

studies need to be performed. Furthermore, gestational age and birth weight effects on SAA 

secretions in response to sepsis still need to be evaluated and optimal cut-off values as 

neonatal sepsis marker would need to be established [55, 56]. 

Presepsin is a soluble CD14 subtype that is released from the surface of immune cells due 

to stimulation by pathogens. Soluble CD14 is secreted by hepatocytes, suggesting it may 

be useful as an acute-phase reactant [50]. Among the new emerging biomarkers of sepsis, 

presepsin appears to be the most promising. Several studies have shown that presepsin 

plasma levels increase during bacterial sepsis and decline in response to appropriate 

therapy, with sensitivity and specificity values comparable, or even superior, to those of 

PCT and CRP with both high sensitivity of 91-94% and high specificity of 91-100%. 

Notably, this marker has been shown to be a reliable diagnostic and prognostic marker of 

adult sepsis. [50, 51, 57, 58]. In neonatal sepsis, presepsin compared to PCT has been 

shown to be more effective in diagnosing and guiding therapy. Since in sepsis its plasma 

levels increase before those of PCT and since the current methods available allow 

measurement of presepsin plasma levels within 17 min, it appears a sepsis biomarker 

particularly suited to the emergency department and critical care [50, 57]. 

However, presepsin measurement is not ubiquitously available as a routine laboratory test 

unlike other biomarkers of sepsis and it does not appear to be clearly superior to the 

biomarkers commonly used in the assessment of sepsis, but may be valuable when used in 

conjunction with other established tests to better identify patients at risk of clinical 

deterioration. In addition, identification of reliable cutoff levels and testing of its utility in 

clinical decision-making is required before use becomes more widespread. Further studies 

are indicated to establish whether it is useful for predicting the most severe complications 

of sepsis in the intensive care setting [51, 58]. 

Absolute neutrophil counts (ANC), white blood cell (WBC) counts and the ratio of 

immature to total neutrophils (I/T) in the blood are the other diagnostic non-specific tests 

for the identification and diagnosis of neonatal sepsis. WBC counts give a poor positive 

indicative value for sepsis, while neutrophil values depend upon the individual's age and 

neutropenia can serve as a sensitive measure but depends upon delivery method, gestational 

age and altitude [38]. WBC and ANC demonstrated to be most informative when low 

(WBC <5,000 and ANC <1,000 at ≥ 4 h had likelihood ratios of 81 and 115, respectively) 
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and no test was very sensitive. Anyway, neutrophil counts can also be affected by maternal 

(hypertension and fever), intrapartum (asphyxia, meconium aspiration syndrome, type of 

delivery), and perinatal (periventricular hemorrhage, reticulocytosis, hemolytic disease and 

pneumothorax) factors. Diagnostic accuracy of WBC indices improved with advancing 

postnatal age, and was most useful after 4 hours of life [43, 51]. Additionally, Platelet 

counts are also carried out as preliminary diagnostic testing for neonatal sepsis, but it’s not 

very specific towards neonatal sepsis [38].  

I/T ratio is a promising useful tool for early onset sepsis (EOS) with reasonable specificity 

but cannot be relied upon as sole indicator. Combination of normal immature to total 

neutrophil Ratio with negative CRP values in neonates with presumed sepsis demonstrated 

to be an indicator of non-infected neonate [59]. 

The combination of multiple biomarkers, such as the total number of neutrophils, immature 

to total neutrophil ratio and C-reactive protein (CRP) and clinical findings, holds promise 

to increase the sensitivity and to enable a fast and accurate diagnosis of neonatal sepsis [20, 

43, 51] and serial measurements of CRP combined with other acute phase reactants such 

as procalcitonin, IL-6, and IL-8 may improve its diagnostic accuracy [48]. 

However, there is a lack of highly sensitive and specific diagnostic tools: conventional 

laboratory parameters as C reactive protein (CRP), and white blood cell count (WBC) are 

non-specific, and not adequately sensitive [32]. 

So, early diagnosis of neonatal sepsis remains difficult and several studies have been 

conducted in order to identify a test satisfying criteria to make it the ideal marker for sepsis 

in neonates [4].  

Several other biomarkers (endocan, cytokines, chemokines, lipopolysaccharide binding 

protein, hepcidin, sTREM1...) have been recently studied for sepsis, but none of them is 

considered valid for the diagnosis. Thus, there is still no single biomarker identified for 

neonatal sepsis diagnosis, and consensus on an ideal biomarker will be vital to aid proper 

diagnosis and adequate treatment, which should reduce mortality levels associated with 

neonatal LOS [50, 51, 54].  

Furthermore, as previously discussed, there is still no currently available test that is able to 

perfectly diagnostic accuracy. However, combinations of biomarkers with diagnostic tests 

could enable to obtain an accurate diagnosis of neonatal sepsis. 
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3.2 Metabolomics 

 
In the last decades, the advances in Nuclear Magnetic Resonance (NMR), Mass 

Spectrometry (MS) and chromatographic instruments have contributed to the development 

of systems biology, that focuses on complex interactions within biological structures using 

a holistic perspective approach [60]. One of the principal scientific progresses in this field 

was the development of the so called “-omics” sciences. These are technologies that allow 

to characterize several classes of biological molecules, such as genes, proteins and 

metabolites, obtaining information about the functional activity of biochemical pathways, 

and of the structural genetic differences [61, 62]. The sequencing of DNA maps gave birth 

to genomics, the first of these “-omics” techniques, concerning the characterization of 

genetic material [63]. Transcriptomics is defined as the study of gene expression, 

describing the full set of mRNA present in a cell or tissue (transcriptome) and, at the same 

way, proteomics studies the protein translation, and the proteome is the complete set of 

proteins expressed in a cell or tissue at a time [64, 65].   

The term “metabolomics” was used for the first time in a scientific paper in 1998 by Steven 

Oliver [66], and it could easily be confused with “metabonomics”. Nicholson differentiates 

metabolomics as the quantitative analysis of all the metabolites of an organism or biological 

sample, while metabonomics as the quantitative measurements of the multiparametric 

metabolic response of a multicellular system to pathophysiological intervention or genetic 

modification [67]. Nowadays, however, both metabolomics and metabonomics are usually 

used interchangeably. 
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Metabolomics is a high-dimensional technology that studies the complete set of low 

molecular weight metabolites (<1500 Da) present at a certain time in a complex biological 

system, which constitute the metabolome, using body fluids such as urine, blood, or stool. 

Metabolites can be endogenous or exogenous, and being the downstream products of 

cellular function, represent a sensitive measure of the actions of upstream molecular species 

such as genes, transcripts, and enzymes, including the effects of disease, drugs, toxicity, 

and the environment so metabolomics is considered the “-omic” platform most closely 

related to host phenotype [64, 68, 69, 70]. Figure 2 shows the interaction of endogenous 

and exogenous substances in different metabolic pathways with possible overlaps. 

 

 

Figure 1. The Omics cascade (modified from Carraro et al., 2009) [64] 
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Due to the possibility to identify single or classes of metabolites, metabolomics is finding 

major application on several fields including medicine, pharmacology, toxicology, drug 

discovery and development, environmental and plant sciences [64, 72, 73].   

 

Two approaches are mainly applied in metabolomics: untargeted and targeted. 

Untargeted fingerprinting is the major technique for biomarker discovery and molecular 

mechanism investigation, aiming to measure all the metabolites, both known and unknown, 

in a sample, and thanks to identification of novel metabolites without any bias, it results 

ideal for hypothesis generating studies [3, 74, 75]. 

Untargeted approaches provide the most correct path to detect unexpected changes in 

metabolite concentrations. The goal is to maximize the number of metabolites detected and 

thus provide the opportunity to observe unexpected changes. However, a single analytical 

method cannot detect all metabolites in a biological system. It is therefore necessary to 

combine multiple analytical approaches [such as complementary chromatography methods 

on normal and reversed phase (C18 and HILIC)] to maximize the number of metabolites 

detected and improve metabolome coverage. Sample preparation in untargeted studies 

consists of extracting the metabolites from the biological sample in a suitable solvent for 

Figure 2. KEGG Metabolic pathways (modified from genome.jp) [71] 
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analytical analysis. The extracted sample is analyzed with an appropriate analytical method 

(for example, LC-MS). The results of the mass spectrometry analysis give a chromatogram 

with a peaks area of each metabolite that are used as a parameter in the statistical analysis 

to define the semi-concentration differences between the different biological samples 

measured. This is called relative quantification. The biological significance of each 

metabolite is determined during data analysis and metabolite identification, and biological 

interpretation is performed at the end of the experimental workflow [76]. 

On the other hand, a targeted analysis, focuses on the study of a specific subset of 

metabolites, usually fewer than 20-30, but studies analyzing more of 500 metabolites are 

always more common, and are able to cover most of the pathways known and usually 

involved in the same pathways or they have similar functions [3, 70, 74]. Targeted 

metabolomics is the measurement of defined groups of chemically characterized and 

biochemically annotated metabolites, so is a hypothesis driven approach, useful for the 

validation of an untargeted analysis verifying the previous generated hypothesis [3, 74, 77].  

 

 

 

 
Targeted methods have greater selectivity and sensitivity than untargeted methods. A 

targeted study can only be performed if a genuine chemical standard of the metabolite is 

available. The quantification of metabolites is performed using internal and chemical 

Figure 3. Number and quality of metabolites detected in targeted and untargeted MS 
metabolomics (modified from Gelman and Patti, 2016) [78] 
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standards to construct calibration curves for each of the metabolites under study and by 

adding internal standards during the sample preparation. Sample preparation in targeted 

studies applies methods that can be optimized to retain metabolites of interest and to 

remove other biological species and analytical artifacts that are not performed via 

downstream analysis. Therefore, data analysis strategies for untargeted studies require very 

extensive chromatogram processing. The data are produced by chemical-physical 

investigation techniques such as magnetic resonance spectroscopy, chromatography and 

mass spectrometry applied to biofluid samples or suitably selected solid tissues. These 

methodologies find today numerous possibilities of use in the field of medical sciences 

where there are numerous variables detectable on human and animal subjects that present 

a specific pathology. The use of metabolomic methods can help provide a holistic view of 

the problem, highlighting the relationships between variables and their relative importance, 

and can also highlight differences and similarities between samples. Considering individual 

biological processes as isolated processes expresses a reductionist view of vital functions, 

an abstraction that at times makes it possible to considerably simplify the problem under 

consideration but which inevitably leads to models of limited value [76, 77]. 

A third less used approach is the semi-targeted approach, an intermediate between 

untargeted and target where several metabolites, even hundreds, are identified and 

quantified using a single, or more, internal standard and ad hoc calibration curves for more 

than one analytes, providing an approximated concentration [79]. 

It is therefore clear that the study of metabolites can be performed with different methods: 

metabolite targeting is a direct approach to metabolite analysis, aiming to identify a specific 

metabolite, metabolite profiling identify and quantify sets of metabolites of specific 

metabolic pathways and metabolite fingerprinting tries to detect the metabolic 

characteristics that discriminate between groups of subjects, with no need to necessarily 

identifying every metabolite, thus being able to generate new pathophysiological 

hypotheses [64]. 

 
Metabolomics analysis are usually carried out on biological fluids such as blood, plasma, 

serum, urines and cerebrospinal, bronchoalveolar and amniotic fluid [3, 74, 80, 81, 82], 

whose composition could change due to the effect of environmental, pharmacological, 

pathological or dietary stimuli, for example, and these variations could lead to comprehend 
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the mechanism of action of a disease or drug therapy. Each type of sample present 

advantages and disadvantages, like an easily sampling and handling or pre-analytical 

preparation, and needs a suitable analytical technique.  

Various high-througput analytical tools, such as spectroscopic (NMR, MS, MS-MS) and 

chromatographic (HPLC, GC, GC-MS, LC-MS, and TLC) techniques, are widely 

employed in metabolomics, and each approach presents its own advantages and 

disadvantages [83, 84]. 

Metabolomics studies present several steps with possible issues that need to be addressed, 

from sample collection to data mining, so a well-defined workflow is essential to guarantee 

accurate and high quality data. 

 

 

3.2.1 Pre-analytical 
 
For metabolomics studies, sampling should be performed with extreme care, due to the risk 

to introduce pre-analytical BIAS in samples. Each kind of sample needs a suitable sampling 

method and all samples must be collected, stored and treated in the same manner [80], 

highlighting, thus, the need of protocols to standardize the procedures. 

Urine collection is scarcely invasive and relatively easy and it is possible to collect them in 

different and selected periods of time, based on the experiment designed. The urine samples 

collected are classified correctly, with the description of the collected time and day. This 

information is needed to study time-related trends in metabolites diurnal variation and to 

search biomarkers, and 24h samples, preferred to eliminate large variability in metabolite 

profiles obtained in shorter collection periods, when an overall status of the individual is 

the aim of the analysis [85].  

Generally, it is important to maintain the samples at low temperature, to prevent 

degradation and block enzymatic reactions that would modify the metabolome. 

Urine samples should be stored at -80 °C after harvesting, and cycles of sample freeze-

thaw should be avoided whenever possible and the bacteriostatic preservative sodium azide 

should also be added [86]. 

Blood collection is more invasive than collecting urine, and the metabolic profiles of blood 
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fractions provide a different, but complementary, metabolic information compared to the 

ones obtained with urine [87], and small amounts, few microliters, are needed.  

Blood is composed of plasma and a cell fraction and the second one should be separated 

by centrifugation, considering to possibly add an anticoagulant agent like heparin [88].  

Infact, blood consists of two main components: plasma, an extracellular fluid containing 

clotting factors, proteins, glucose and minerals, and cellular elements, which are made up 

of blood cells and platelets. Plasma is prepared by collecting the whole blood into 

anticoagulant-treated tubes followed by a centrifugation step to separate blood cells. Serum 

is the liquid fraction of whole blood, obtained by allowing the sample to clot naturally 

followed by a centrifugation step and the supernatant results in being serum without cells 

and clotting factors. Serum samples, unlike plasma samples, do not contain the protein 

fibrin which is responsible for the bloods capability to clot. However, both matrices are 

appropriate for blood metabolomics. The metabolomics analysis of serum is known to 

present a higher sensitivity of metabolites compared to plasma due to the lack of big 

particles, but plasma has a better reproducibility due to the absence of the blood-clotting 

step, and the absence of platelets and the lower protein content could be beneficial to small 

molecule analysis, because of a reduced competition [87, 88]. 

As for urine samples, blood or plasma samples can be stored at -80 °C, inhibiting enzymatic 

activity and preserving the metabolome [87]. 

 

 

3.2.2 Sample preparation 
 
Depending on the type of analysis, the samples will undergo different treatments. For 

example, it could be necessary to purify or dilute the samples in order to reduce the 

background noise, usually by dilution, solvent precipitation, solid phase or liquid phase 

extractions (SPE and LLE) are performed [89].  

Centrifugation or filtration is also a usual step in dealing with urine samples to remove 

materials in suspension (e.g., calculi, cellular components or proteins). various study 

designs still employ high-speed centrifugation. Recently, it was found that 0.20 μm 

filtration is superior to centrifugation or sodium azide addition in preventing bacterial 
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growth during storage [85].  

Direct injection or injection of dilute urine samples can be used for different purpose in 

metabolomics study. Injecting unmodified urines makes possible to analyze an 

unadulterated metabolome profiles. On the other hand, using direct injection, the sensitivity 

for analytes present in low concentration is hampered by the presence of co-eluting 

compounds and the consequent ion suppression. Also, the high salt content of urine 

encourages the formation of a range of adducts within the electrospray source [89, 90].  

Application of sample-dilution approach, also known as ‘‘dilute and shoot’’, is only 

feasible when the levels of targeted metabolites are relatively high and the matrix 

components do not co-elute or otherwise interfere with the ionization of the analytes, thus 

enabling significant improvements in analytical sensitivity for the coverage of the urinary 

metabolome [85, 89]. 

The use of HPLC/UPLC-MS on the other hand, guarantees greater sensitivity for analytes 

present in low concentration and may be helpful in preventing the ion suppression and ion 

adducts [68]. 

For GC-MS approach, the low volatility of several metabolites (amino acids, organic acids, 

fatty acids) makes necessary a derivatization step prior to analyses, usually performed by 

silylation or methylation. Using this method, functional groups containing active hydrogen 

atoms (OH, NH, COOH, SH) are trimethylsilylated by a silylation reagent like MSTFA or 

BSTFA, thus making them suitable for GC-MS analyses [90].  

NMR is a robust and reliable technique requiring minimal sample preparation, thus 

allowing relatively high-throughput analysis and is also non-destructive and thus preserves 

the biofluid and allows further analysis to be performed. The pH and the salts composition 

of samples, in particular of urine samples, has a significant influence on the chemical shifts 

in the 1H-NMR spectra. Adjustment of the pH is necessary, and it is often performed by 

addition of a phosphate buffer at pH 7.4.  When using plasma samples, it is important to 

consider if an anticoagulant has been added and, in case, what it is: EDTA is not suited to 

NMR analysis because it gives extra resonances, so the most commonly used method is to 

use lithium heparin tubes [91]. 
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3.2.3 Analytical platforms 
 

The analytical tools most used in metabolomics are liquid chromatography coupled with 

single-stage mass spectrometry (LC-MS) or tandem mass spectrometry (LC-MS-

MS), gas chromatography combined to mass spectrometry (GC-MS), high or ultrahigh 

performance liquid chromatography coupled to UV or fluorescent detection 

(HPLC/UPLC), capillary electrophoresis (CE), and nuclear magnetic resonance (NMR) 

[92, 93]. The choice of the analytical techniques depends of the aim of the study and the 

type of samples to analyze, and each one presents both strengths and                             

weaknesses [93]. 
1H-NMR spectroscopy enables the detection of proton-containing metabolites in a sample, 

different molecules producing different signals in the NMR spectrum13. NMR 

spectroscopy provides detailed information on molecular structure of compounds, known 

and unknown, both pure and in complex mixtures, especially, it is advantageous for 

compounds that are difficult to ionize in MS [64, 73]. It is a rapid analytical platform, 

characterized by high reproducibility, that requires only minimal sample handling and 

preparation and the NMR spectrum can generally be acquired in a few minutes.  

Furthermore, NMR spectroscopy is a nondestructive technique and, although it has less 

sensitivity than mass spectrometry (MS), it has the advantages of being relatively robust 

across many samples, in fact, no part of the sample becomes contaminated during the 

process.  [88, 91, 94, 95].  

A sample in a nuclear magnetic resonance (NMR) glass tube in a magnetic field is excited 

with a radio frequency pulse. Alternation between the lower and higher energy spin states 

of the electrons generates a resonance which is unique for every substance, depending on 

its chemical structure. The substance NMR response is registered, processed, and displayed 

as a peak across a spectrum. The area under the peak represents the relative concentration 

of that metabolite compared to a reference signal, thus allowing precise quantification [3]. 

Absolute quantification is thus simple, it only requires an internal standard [96].  

The other most used technique for metabolomics analysis is mass spectrometry MS that, 

as said, it is considered to have a higher sensitivity than 1H-NMR [96]. MS converts the 

analyte molecules to a charged (ionized) state, with subsequent analysis of ions and any 
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fragment ions generated during the ionization process, obtaining a spectrum in which 

metabolites are represented according to their masses to charge ratio (m/z) [64, 97].  

Electrospray ionization (ESI) is ensured by pumping the samples into a metallic capillary 

maintained at 3-5 kV and a stream of nitrogen nebulizes at the tip of the capillary and forms 

a homogeneous spray of charged droplets 

The capillary is usually orthogonal to, or off-axis from, the entrance to the mass 

spectrometer in order to minimize the noise from neutral droplets. The droplets are rapidly 

evaporated by the application of heat and dry nitrogen, and the residual electrical charge 

on the droplets is transferred to the analytes. The intact molecular ions are produced in the 

ionization chamber where the ion source is kept, and then they are transferred in the mass 

analyzer region via several ion optics (electromagnetic elements like skimmer, focusing 

lens, multipole, etc.), which are basically kept to focus the ion stream to maintain a stable 

trajectory of the ions. The mass analyzer sorts and separates the ions according to their 

mass to charge ratio (m/z value). The separated ions are then passed to the detector systems 

to measure their concentration, and the results are displayed on a chart called a mass 

spectrum (see Figure 4). Since the ions in the gas phase are very reactive and often short 

lived, their formation and manipulation should be conducted in high vacuum. For this 

reason, the ion optics, analyzer, and also the detectors are kept at very high vacuum 

(typically from 10−3 torr to 10−6 torr pressure). Generally, the ion source is kept at 

atmospheric pressure, and a continuous pressure gradient and voltage gradient are used 

from source to the detector to help pump out the ions from source to the detector through 

the analyzer [97, 98]. 
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Different ions sources (Electrospray Ionization Source ESI, Atmospheric Pressure 

Chemical Ionization Source APCI, Atmospheric pressure photo-ionization APPI) are 

available. ESI works well with moderately polar molecules, so it is well suited to analyze 

many metabolites and it is considered a “soft” ionization source, meaning that relatively 

little energy is imparted to the analyte, and hence little fragmentation occurs. On the other 

hand, APCI is useful for small molecules that are not well ionized by ESI [97].  

Two different ionization modes exist, positive (POS) and negative (NEG). Positive ion 

mode (ESI+) is generally preferred as more compounds are expected to ionize in this mode, 

but in negative mode the background noise is reduced. Some metabolites are detected only 

in negative mode, while others were observed only in positive ion mode, so use of both 

positive and negative ionization offers more comprehensive metabolome coverage [99, 

100]. 

 

 

Figure 4. Basic components of an ESI MS (from Banerjee et al., 2012) [98] 
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The mass analyzer is the heart of the mass spectrometer. As the choice of ion source is 

important, so it is the selection of the mass analyzer to use for analysis, that depends on the 

resolution, mass range, scan rate, and detection limit required for an application [98].  

The mass analyzer can be compared with the prism. The component wavelengths of a light 

are separated by a prism, and then they are detected by an optical receptor. Similarly, in the 

mass analyzer, the different types of ions (m/z) of an ion beam are separated, and then they 

are passed to the detector. Magnetic (B)/electric (E) sector mass analyzer, linear quadrupole 

ion trap (LIT), quadrupole analyzers, orbitrap, time-of- flight mass analyzer (TOF), ion 

cyclotron resonance mass analyzer (ICR) and Quadrupole time-of-flight (QTOF) are some 

examples [97, 98, 101]. 

The quadrupole analyzer consists of a set of four parallel metal rods (Figure 6). A 

combination of constant and varying (radio frequency) voltages allows the transmission of 

a narrow band of m/z values along the axis of the rods. By varying the voltages with time, 

it is possible to scan across a range of m/z values, resulting in a mass spectrum. They 

usually operate at unit mass resolution meaning that the mass accuracy is seldom better 

than 0.1 m/z. As an alternative to scanning, the quadrupoles can be set to monitor a specific 

m/z value, then set to monitor another m/z value, and so on [97]. A particularly useful mass 

Figure 5. Representation of an ESI-ion source (from Banerjee et al., 2012) [98] 
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spectrometer configuration is obtained by placing a collision cell between two quadrupole 

mass analyzers. This combination is called a triple quadrupole mass spectrometer and is an 

example of tandem MS (MS-MS) in which two or more stages of mass analysis are 

independently applied (Figure 6). The advantage of tandem MS is the greatly increased 

specificity of the analysis over single stage mass analysis. The first and third quadrupoles 

can also be simultaneously stepped to different m/z values, and panels of precursor/product 

ion pairs can be created to specifically detect a large number of targeted analytes. This 

process, called multiple reaction monitoring (MRM), is commonly used in LC-MS assays 

[97]. 

 
 

 

 
The linear time-of-flight (TOF) is the simplest mass analyzer, with a virtually unlimited 

mass range. The TOF reflectron, now widely used for ESI, combines time-of-flight 

technology with an electrostatic mirror; this offers higher resolution (typically above 5000) 

than a simple TOF instrument. It has gained wide use due to its fast scanning capabilities 

(milliseconds), good mass range (up to m/z~10000), and an accuracy in the order of 5 ppm. 

Quadrupole-TOF mass analyzers combine the stability of a quadrupole analyzer with the 

high efficiency, sensitivity, and accuracy of a time-of-flight reflectron mass analyzer and 

are typically coupled to electrospray ionization sources. The third quadrupole of a triple 

quadrupole MS can be replaced by a TOF analyzer to produce a hybrid quadrupole time-

of-flight (QTOF) mass spectrometer. The quadrupole can act as a simple quadrupole 

analyzer to scan across a specified m/z range. However, it can also be used to selectively 

isolate a precursor ion and direct that ion into the collision cell. The resultant fragment ions 

are then analyzed by the TOF reflectron mass analyzer. Quadrupole-TOF exploits the 

Figure 6. Representation of a triple quadrupole mass spectrometer (from Pitt, 2009) 
[97]. Q1 and Q3 act as mass filters and can be independently fixed, scanned or stepped. 
Q2 is a collision cell that contains a low pressure inert gas. 
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quadrupole’s ability to select a particular ion and the ability of TOF-MS to achieve 

simultaneous and accurate measurements of ions across the full mass range. Quadrupole-

TOF analyzers offer significantly higher sensitivity and accuracy than tandem quadrupole 

instruments when acquiring full-fragment mass spectra [97, 102, 103].  

Figure 7 shows a scheme of a HRMS Q-TOF (Synapt G2, Waters) equipped with a 

quadrupole and a time-of-flight analyzer. 

 

 

 

 
Samples can be directly injected in the instrument or, for a better compounds separation, it 

is possible to couple MS tools with chromatographic techniques such as gas 

chromatography GC, suitable for the analysis of volatile compounds, or liquid 

chromatography LC, useful for the study of a larger range of compounds [104].  

Direct infusion-mass spectrometry (DI-MS) is an analysis platform based on the direct 

injection or infusion of samples into MS, without compounds separation, resulting 

advantageous for high-throughput screening but, although DI-MS is easy to perform, since 

it lacks chromatographic or electrophoretic separation capabilities, ion suppression 

becomes the main obstacle and isomeric compounds cannot be separated [105]. 

Figure 7. Schematic representation of a mass spectrometer Q-TOF (Synapt G2, Waters) 
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Chromatographic separation, before entering the mass spectrometer, minimizes signal 

suppression allowing for greater sensitivity and it can aid metabolite identification 

providing a retention time RT [106]. Furthermore, it possible to optimize chromatographic 

conditions: for LC-MS it is possible to modify mobile phases (water, methanol, 

acetonitrile), pH and the alternative stationary phases of chromatographic columns (normal 

phase, reverse-phase C8, C18, HILIC), and also MS parameters, according to the 

chromatographic conditions to achieve higher sensitivity in MS detection, such as capillary 

temperature and voltage [107, 108]. 

In metabolomics field, electrospray ionization mass spectrometry coupled to liquid 

chromatography (LC-ESI-MS) has become the most used analytical platform, providing 

high sensitivity and resolution, thus enabling large scale coverage of the metabolome [102, 

103]. Chromatographic separation directly affects accuracy and effectiveness of the 

analysis, so it is necessary to use an appropriate column to achieve good separation, 

considering that column efficiency is determined by column length, inner diameter, mobile 

phase and linear velocity, and the retention time is determined by column inner diameter, 

film thickness and temperature [109].  

Selection of appropriate column also means choosing an appropriate stationary phase in 

order to provide an effective chromatographic separation. Column length is a parameter to 

take in consideration, in fact increasing column length provides a better separation, but it 

also causes unwanted increase in analysis time and cost, but increasing the speed of analysis 

could lead inaccurate results due to co-elution of analytes [109, 110]. 

The coupling of ion mobility (IM) separations with LC-MS based analyses represents an 

emerging technology (LC-IM-MS) for metabolomics research. IM resolves gas phase ions 

based on their size-to-charge ratio or gas phase packing efficiency, complementing polarity 

and mass separations. The addition of ion mobility separation offers increased peak 

capacity, the ability to decrease chromatography time without sacrificing resolution, and 

opportunities to separate co-eluting precursors. In addition to improved mass spectra 

quality and increased selectivity, IM measurements can be used to determine collision cross 

sections (CCS) for individual metabolites. Unlike RT measurements, which vary based on 

column chemistry, mobile phase, and elution gradient, CCS values are physical properties 

and not influenced by MS or LC settings where inter-laboratory precision is reported to be 

at least <5% for over a broad range of molecules assayed [111]. 
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GC-MS is the preferred technique for volatile metabolites analysis, which yields high 

sensitivity and resolution, prominent reproducibility, and highly repeatable fragmentation 

[105]. GC-MS is a much more highly reproducible technique than LC-MS, due to the 

electron ionization (EI) method usually employed in which gas-phase molecules interact 

with kinetically activated electrons at an accepted average standard energy of 70 eV [112]. 

The combination of gas chromatography with electron impact ionization MS (EI-MS) 

provides high-chromatographic metabolite resolution, analyte-specific detection, and 

quantification of metabolites, as well as the capability to identify unknowns [113]. 

Furthermore, problems with ion suppression of co-eluting compounds are almost absent in 

GC-EI-MS [114]. 

However, many metabolites contain polar functional groups and are thermally labile at the 

temperatures required for their separation or are not volatile at all. Therefore, derivatization 

prior to GC analysis is needed [114]. To increase the volatility and thermal stability of the 

analytes, various derivatizations, such as alkylation, acylation, and silylation, can be 

employed to “protect” functional groups. Among these derivatization methods, 

methoximation and trimethylsilylation are commonly used in large-scale metabolomics 

studies with GC-MS [105]. Examples of silylation reagents are MSTFA or BSTFA, 

previously cited [90]. 

Figure 8. Representation of a LC-MS system (from Roberts et al., 2012) [77] 
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3.2.4 Data pre-processing 
 
Raw data obtained from NMR and/or MS analysis must be treated to make them suitable 

for the next statistical analysis. Pre-processing involves various computational procedures 

where raw data from the instruments (GC/LC-MS, NMR spectra) are converted into a 

usable form, thus extracting all the relevant information like molecular features, for further 

analysis and biological interpretation [115, 116, 117, 118].  Data pre-processing for both 

NMR and MS includes similar procedures, such as baseline correction, peak alignment, 

normalization and scaling.   

Distortions in the baseline can affect both chemometric analysis and quantification of 

metabolites. In fact, signal intensities are calculated with reference to the baseline and 

inadequate baseline correction can spoil the data analysis. So, baseline correction is utilized 

to correct the distortion in the baseline caused by systematic artifacts and, after baseline 

correction, spectral regions not populated with by endogenous metabolites are often 

removed [115, 117, 118]. 

Due to the nature of biological samples and variation in experimental conditions (pH, 

temperature, concentration, instrumental factors), peak shifts, or misalignment between 

identical features from different spectra, are observed. Peak alignment aims to correct this 

shifts for reliable identification of metabolites [115, 119]. 

Furthermore, for NMR binning (or bucketing) is necessary in order to reduce the data 

dimensionality. In binning the spectra are divided into segments (so called bins or buckets) 

and the total area within each bin is calculated to represent the original spectrum, in other 

words, it replaces the data values within each bin by a representative value. Therefore, some 

minor peaks shifts can be removed by spectral binning, provided that shifts of a same peak 

are small enough to be included in the same interval [117, 118, 119]. 

Then, the data are normalized, where each spectrum is multiplied by a constant term, 

correcting variation between samples caused by experimental sources and dilution factor, 

while preserving relevant biological variation. The normalization process scales the data so 

that different samples in a study can be compared with each other [116, 119]. 

Scaling, in metabolomics data analysis, refers to the column operations that are performed 

on each feature (spectral intensity or metabolite concentration) across all samples in order 
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to make the features more comparable. Commonly used scaling methods are 

meancentering, autoscaling and Pareto scaling and the choice of scaling technique requires 

a careful consideration based on the nature of the data [115, 117, 118]. 

Meancentering adjusts for differences between high-concentrated and low-concentrated 

metabolites by converting all values to vary around zero instead of around mean of 

metabolite level. It is usually used in combination with other scaling methods [117]. 

Autoscaling is commonly applied and uses the standard deviation as the scaling factor, so 

all metabolites have a standard deviation of one and therefore the data is analyzed on the 

basis of correlations instead of covariances, as is the case with centering [120]. 

Pareto scaling, instead of the standard deviation, uses the square root of standard deviation 

as scaling factor. With this method, large fold changes are decreased more than small fold 

changes, thus the large fold changes are less dominant compared to clean data. 

Furthermore, the data does not become dimensionless as after autoscaling [117, 120]. 

Also for MS raw data, procedures of baseline correction, peak alignment, normalization 

and scaling are required to make them suitable for statistical analysis. These operations are 

the same previously described. Furthermore, MS metabolomics data, required also noise 

filtering, de-isotoping, peak detection and deconvolution. 

To discriminate low-intensity peaks from background noises and improve peak detection, 

some noise filtering methods have been developed. One is the median filtering, which 

removes noises by smoothing signal intensity over the course of multiple scans with a 

moving window of specified size, based on the fact that noises are uncorrelated from scan 

to scan while true signals are not. A second choice is matched filtration, which applies a 

filter whose coefficients are given by the second derivative of a Gaussian model peak. The 

adoption of such filtration can effectively reduce noise peaks whose widths are significantly 

less than the model peak shape [118, 121]. 

Since elements in nature are present in different isotopic forms, a de-isotoping step can be 

used to cluster the isotopic peaks corresponding to the same compounds together to 

simplify the data matrix by removing redundant information [115, 118]. 

Deconvolution extracts valuable signals and separates overlapping peaks of co-eluting 

components in order to improve peak quantification, but it can also introduce errors and 

extra variability to the process [118, 122]. 

There are several open access or commercial tools and websites available for data 
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preprocessing and analysis. 

In particular, for mass spectrometry metabolomics data, some examples of 

software/website are MarkerLynx, Progenesis, MetAlign, MeataboAnalyst, MS-Dial, 

MZmine and XCMS. These tools often involve peak alignment, peak extraction, 

metabolites identification, and metabolic pathway analysis by searching metabolomics 

databases (commonly used metabolomics databases include KEGG, HMDB, Metlin, and 

Massbank) [105, 121].  

 

 

3.2.5 Statistical analysis 
 
MS and NMR data, after preprocessing, undergo statistical analysis to extract information. 

When only one variable is analyzed at a time (in omics disciplines usually one out of a 

panel of many measured), a so-called univariate analysis is performed. Univariate methods 

include tests to compare different sets of samples such as t test or ANOVA. On the other 

hand, when two or more variables are measured the resulting data are multivariate data 

[123]. So, in target metabolomics, it is possible to analyze variables with univariate 

methods but in untargeted analysis, due to the greater number of variables, it is not a 

suitable method and multivariate analysis is preferred. 

Thus, most metabolomics experiments require advanced multivariate statistical methods 

that account for multiple experimental factors and can analyze datasets with more features 

than samples. These approaches can be unsupervised or supervised. The first is used to 

provide an overview of the study allowing the detection of trends, grouping, and possible 

outliers [64, 122, 124]. 

Principal components analysis (PCA) is an unsupervised method often used as a first 

approach to characterize the variation in metabolomics datasets, reduces the complexity of 

the data contained in the spectra and represent them by means of plots that the human eye 

can interpret. This approach helps to identify any intrinsic sample clustering, to see whether 

different groups of subjects (e.g., healthy vs ill) can be discriminated by their spectra 

characteristics. PCA converts the multidimensional data space into a low-dimensional 

model plane. This technique expresses most of the variance within a dataset using a smaller 
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number of factors, so called Principal Components (PCs). Each PC is a linear combination 

of the original variables whereby each successive PC explains the maximum amount of 

variance, which was not accounted for by the previous PCs. Each PC is orthogonal to the 

other PCs and therefore exhibits different information. The variation in spectral data is 

described by a few PCs, compared to the number of original variables. Conversion of the 

original dataset by PCA results in two matrices known as scores and loadings. In a scores 

plot, each point represents a single spectrum. It provides a summary of all spectra and 

shows how they are related to each other. Hence, the points that are close to each other 

have similar profiles, while objects that lie far away are characterized by different 

properties. The PC loadings describe the way in which the old variables are linearly 

combined to new variables (PCs) and indicate which variables have the greatest 

contribution in transforming to the new variables. In the loading plot the relation among 

measured variables is shown. The scores plot is mainly used to discover groups while the 

loadings plot is mainly used to find variables that are responsible for separating the groups. 

An important feature is that the directions in the score plot correspond to direction in the 

loading plot. Thus, any spectral clustering observed on the score plot is interpreted by 

examination of the loadings. [64, 117, 118, 124]. 

On the other hand, supervised techniques make use of a priori known structure. They use 

this knowledge to learn patterns and rules to predict new data supervised and to identify 

features of the data that distinguish experimental groups. The advantage of these methods 

is to provide information about those variables that indicate differences between two or 

more classes. Therefore, they are popular in metabolomics for biomarker discovery studies 

[117, 124]. 

Partial least squares (PLS) is a method of solving linear models and it is a latent variable 

approach. PLS can be used to expose relations between two matrices X and Y finding a 

best set of X variables that can explain most of the variation in Y. One popular method is 

called partial least squares discriminant analysis (PLS-DA). In PLS-DA, Y is a vector 

whose values represent class memberships. The recent modification of PLS-DA is 

orthogonal PLS-DA (OPLS- DA) in which the model is split into two parts: the systematic 

variations in X are split into two parts, one that is linearly related to response and one that 

is linearly uncorrelated to response (orthogonal). In that way only variation related to 

response are used to model it. In terms of prediction power OPLS-DA and PLS-DA are 
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comparable but, in terms of interpretability, the OPLS-DA has advantages over standard 

PLS-DA, since the irrelevant variation is filtered out. The scores plot shows the similarities 

and dissimilarities of the subjects, allowing to see that groups can be separated by the 

OPLS-DA model. The corresponding loadings plot can be obtained. Different from a PCA 

loadings plot, the metabolites identified are responsible for the classification [117, 118].  

Unlike the unsupervised methods, the supervised methods enable us to predict which group 

a new sample belongs to on the strength of its spectra characteristics [64]. 

 

 

3.2.6 Metabolites identification 
 
After the metabolite profiles are acquired at the highest possible resolution, with a high 

degree of separation of the chemical constituents of an extract, next crucial step is the 

structural identification of the single metabolites involved in the sample classification. 

Identifying biomarkers can involve many analytical physical and chemistry disciplines: MS 

and NMR have most often been used for this purpose. but no single technique fulfills all 

requirements for fully elucidating metabolite structure and multiple approaches need to be 

integrated. Due to its higher sensitivity, MS is primarily used for dereplication purposes. 

Fundamental support for molecular identification comes from various on-line databases. 

The most comprehensive available database of human metabolites is the Human 

Metabolome Database. Other important databases are KEGG, BioCyc, Reactome, and 

Metlin [64, 104]. 

It is also possible to identify the metabolites studying the collected spectra. 
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Because NMR chemical shifts are highly reproducible using a specific solvent or buffer 

conditions, comparison of the 1H-NMR chemical shifts with those reported in databases 

results in unambiguous identification. For dereplication purposes, 1D proton NMR (1H-

NMR) spectra are used to complement the MS data obtained by metabolite profiling; this 

approach is often sufficient for unambiguous identification. Such complementary data can 

be obtained using either on-line or at-line NMR. Because 1H-NMR spectroscopy detects 

any hydrogen-containing compound, this universal mode of detection has an advantage 

over other methods, which are usually limited to a specific range of compounds with 

particular physicochemical properties. Another advantage of NMR spectroscopy is its 

capacity to quantify mixtures in a non-destructive manner using adapted protocols [104]. 

Although 1 dimensional (1D) proton NMR spectroscopy combined with multivariate 

statistics is a high throughput and common approach in metabolomics studies, the problem 

with overlapping resonances hinders its ability to identify metabolites. 2D NMR 

spectroscopy offers a solution to this problem and can be used to detect and identify more 

metabolites than possible with the 1D approach. Different 2D NMR experiments are 

becoming more common in metabolomics studies with improvements in sensitivity, 

Figure 9. Workflow for metabolite identification using multidimensional MS 
(from Schrimpe-Rutledge et al., 2016) [111] 
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reducing the acquisition times of NMR spectra. Both homonuclear and heteronuclear 2D 

NMR experiments have been routinely used in metabolomics analysis for signal isolation 

and unambiguous assignment of metabolites such as heteronuclear single quantum 

coherence (HSQC), that correlates proton and carbon NMR resonances and has a high 

degree of resolution in the second (13C) dimension, and heteronuclear multiple bond 

correlation (HMBC) employed to take advantage of the spectral width of carbon for 

metabolite discrimination and identification, where an n-bond 1H-13C shift correlation 

spectrum (n > 1) can be used to determine possible ways in which to combine the different 

fragments. In addition, several proton 2D homonuclear correlation spectroscopy techniques 

have been used in NMR-based metabolomics analyses, including total correlation 

spectroscopy (TOCSY), correlation spectroscopy (COSY), diffusion ordered spectroscopy 

(DOSY) and 2D J-resolved NMR spectroscopy [94, 117, 125]. 

Although the NMR approaches are capable of identifying the majority of detectable 

metabolites in a given sample, they can fail in the discrimination of metabolites with very 

similar structures and chemical shifts [126]. 

The data obtained by LC-MS consist in peaks without any chemical identity. Therefore, 

following the selection of important, discriminant features, their interpretation in a 

biological context is limited only by the extent to which their precise chemical identity is 

known. A single metabolite can produce multiple features and its identification is not 

always straightforward because the feature is not always observed as a protonated or 

deprotonated ion, but rather as adducts or fragments. Initial examination of the metabolite 

chromatographic data is key to determining the true monoisotopic parent in a cluster of 

masses detected at the same retention time RT. The identification of metabolites is labour-

intensive, time-consuming and a major bottleneck in the interpretation of MS results. The 

gold standard for assignment of metabolites is to use internal isotope-labelled standards, or 

‘spiked-in’ nonlabelled authentic standards. However, for untargeted metabolic profiling, 

the comparison of each detected metabolite with the compound standard is not feasible 

because of the cost and commercial availability of standards. Currently, the best approach 

for metabolite annotations is to use the molecular feature information (m/z, retention time 

and MS-MS) to determine its chemical identity against a number of freely available online 

databases. The potential assignments returned from the database search of a mass are then 

carefully examined for molecular formula and structure match, as well as the biological 
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relevance of the molecule to the human metabolome. Nevertheless, many of the peaks 

cannot be assigned to a metabolite. They are labelled as ‘unknown’ and are not 

characterized further [116]. 

Due to its high sensitivity, MS detection is commonly used for metabolite profiling. In most 

LC-HRMS applications, the metabolites are ionised using ESI that, in comparison to EI 

which generates fragments, has the great advantage of producing mostly molecular ion 

species that appear in the form of single or multiple adducts, such as [M+H]+, [M+Na]+ 

and [M+H−H2O]+ in positive ion mode or [M-H]-, [M+HCO ]- and [M-H+CO ]- in negative 

ion mode. Furthermore, dimers, which complicate interpretation, may also be formed in the 

ion source. Therefore, prior to identification, the correct molecular weight MW should be 

defined through adduct recognition. However, definitive molecular formula determination 

remains a difficult task, even when mass accuracies <1 ppm are obtained, especially for 

compounds with a high MW (>500 Da). Feature annotation is performed by comparing an 

experimental mass measurement to a database of known metabolites within a mass 

tolerance window to generate potential candidates [104, 111]. 

Retention time RT is useful to identify a compound, metabolite annotation can be supported 

by RT predictions based upon modelling and on “projections” to similar LC methods. The 

major challenge regarding the use of RT for untargeted metabolomics annotation is the high 

number of closely eluting compounds. Furthermore, sometimes it is not stable enough to 

provide sufficient resolution for closely eluting compounds and even minor differences in 

chromatographic conditions can result in RT shifts and affect compound elution order. 

Consequently, using MW and RT alone for compound annotation does not always 

unequivocally identify a single candidate [127]. 

To improve annotation, additional information is required, including that provided by HR 

tandem MS (HR-MS-MS) and multistage MS (HRMSn) spectra. The fragmentation pattern 

obtained by HRMS has important advantages over nominal mass measurements and 

fragment information generated by MS-MS or MSn can be simply interpreted from the 

acquired spectra. In fact, MS-MS fragments originating from the same molecule can be 

used to elucidate the chemical formula and structure and therefore contribute to the 

discrimination of closely eluting compounds.   

However, MS-MS data alone is often insufficient to differentiate structural and stereo-

isomers and putative identifications require matching an experimental MS-MS spectrum 
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with a reference fragmentation spectrum [104, 111, 127]. 

LC and ion mobility can be used to generate RT and CCS information, respectively. Both 

of these separation methods are capable of resolving some isomeric/isobaric species [111]. 

So, a well-defined workflow is essential to guarantee accurate and high quality data.  

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3 Clinical applications of metabolomics 
 
Metabolomics, being able to detect the whole set of molecules of low molecular weight 

and identify metabolic patterns in cells, tissues, organs, and biological fluids, can provide 

a detailed phenotypic portray, representing a metabolic “snapshot”, becoming an important 

tool in human health, allowing the exact evaluation of individual metabolic responses to 

pathophysiological stimuli including drugs, environmental changes, lifestyle, a great 

number of diseases and other epigenetics factors but also to investigate the etiology and 

progression of a pathological status or to formulate new hypotheses in this regard [128, 

129, 130, 131].  

Currently there are few clinical applications of metabolomics, but it could become a usual 

instrument in clinic. In particular, it could support clinical investigation of metabolic 

differences caused by diseases, leading to the discovery of biomarkers and biological 

Figure 10. Metabolomics workflow 
	



	
	

	 43	

targets for therapeutic treatments [132].  

Metabolomics resulted a highly promising tool in the early diagnosis of several fetal, 

perinatal, pediatric and adulthood conditions, through the detection of specific and sensible 

biomarkers. Moreover, metabolomics could help in monitoring the disease progression, in 

optimizing therapy and in the evaluation of related side effects, in the perspective of a 

tailored management. Innovative, interesting and promising fields of metabolomics 

applications are the investigation of physiological status and the diagnosis of a disease, the 

identification of perturbed pathways due to disease or treatment, the discovery of new and 

specific biomarkers, the classification of different phenotypes and functional genomics, the 

characterization of natural or artificial products’ composition, in toxicology, 

pharmacology, drug development, nutrition and forensic sciences. Metabolomics also 

allows the study of disease phenotypes, molecular pathophysiology and cellular 

metabolism through metabolic profiling. Big data, provided by ‘omics’ tools, analyzed 

through the technology of machine intelligence, have also been named the black box of 

medicine, providing the so called “artificial intuition” [62, 128, 129, 131, 133].  

 

3.3.1 Sepsis and metabolomics 

 
Since sepsis is the result of pathogen’s effects on the organism, metabolome alterations 

make metabolomics a valuable instrument in the diagnosis of sepsis, highlighting pathways 

changes and trying to understand the pathological mechanism [3]. In recent studies, the 

promising role of metabolomics in this field is reported.  

GC-MS analysis of plasma samples from adult patients with sepsis versus healthy subjects 

detected 124 metabolites that differentiate with statistical significance between sepsis 

patients and control group. It was shown that the sepsis samples exhibited extensive 

changes in amino acids, fatty acids, and tricarboxylic acid (TCA)-cycle products, pointing 

out that 3 metabolic pathways (energy metabolism, amino acid metabolism, and lipid 

metabolism) were downregulated in sepsis patients and this may elucidate the link between 

organ dysfunction and host response in sepsis [134].  

A meta-analysis of death-related pathways, and the following prospective validation, for 

the prediction of sepsis mortality using blood biomarkers differentiated metabolic profiles 



	
	

	44	

between sepsis survivors and non survivors, selecting seven metabolites from the identified 

death-related metabolic pathways (DRMPs) including amino acids (isoleucine, alanine), 

lactic acid and pyruvic acid (mitochondrial metabolism), eicosanoids, and 

lysophospholipids, as potential biomarker for sepsis prediction [135].  

Metabolomics approach is also used to predict the severity and mortality of septic shock 

patients.  

Ferrario et al. used targeted mass spectrometry-based quantitative metabolomics approach 

on several series of metabolites, such as glycerophospholipids, aminoacids, biogenic 

amines and acylcarnitines. They suggest that alteration in kynurenine and lipid species 

might represent a risk factor for severe septic shock patients and a possible 

pathophysiological mechanism deserving further investigations [136].   

A study of Liu group collected serum samples of subject at ICU admission (H0) and after 

24 hours (H24). NMR analysis confirmed a previously findings of the team in investigating 

metabolic differences between septic shock survivors and non-survivors at H0, defining 

citrulline carnitine 2:0, valine, leucine, isoleucine and betanine as discriminators. 

Furthermore, the results showed different metabolic evolution 24h after ICU admission 

between septic shock survivor (SSS) and non-survivor (SSN), involving several 

metabolites like pyruvate, citrate, lactate, alanine and tyrosine. The time trend change in 

24h show good prediction of sepsis mortality [137, 138].  

In order to identify markers that distinguish between systemic inflammatory response 

syndrome and sepsis, Neugebauer and colleagues analyzed 406 patients determining 186 

metabolites using LC-MS-MS. They find out that, in sepsis patients, serum concentration 

of acylcarnitines and several lipids were altered compared to systemic inflammatory 

response syndrome, suggesting that metabolites might be useful for differentiation and 

prognosis according to the type of underlying infection [139]. To identify metabolic 

biomarkers that could differentiate sepsis from SIRS, serum samples collected from 

patients with sepsis, SIRS and healthy ones have been analyzed by LC-MS-MS. The 

metabolic profiles of the different groups of samples was markedly different, presenting a 

decreased level of lactitol dehydrate and S-phenyl-D-cysteine and an increase in the levels 

of S-(3-methylbutanoyl)-dihydrolipoamide-E and N-nonanoyl glycine in patients with 

sepsis when confronted to patients with SIRS. Moreover, the profiles of patients with sepsis 

48 h before death illustrated a state of metabolic disorder, with S-(3-methylbutanoyl)- 
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dihydrolipoamide-E, phosphatidylglycerol (22:2 (13Z, 16Z)/0:0), glycerophosphocholine 

and S-succinyl glutathione significantly decreased [140]. 

Seymour et al. determined the global metabolomic profile in plasma collected from 

surviving and non-surviving patients with community-acquired pneumonia (CAP) and 

sepsis, identifying 423 metabolites that differentiates the two groups. They demonstrated 

that the global metabolomic profile is different in subjects hospitalized with pneumonia 

and sepsis who died at 90 days compared to survivors, revealing physiologically relevant 

metabolites consistent with known complex processes in early sepsis, such as bile acid 

metabolism, protein catabolism, inflammation and oxidative stress, that were different in 

survivors and non-survivors, highlighting the potential for metabolomic signatures to 

uncover novel markers in sepsis, including putative damage-associated molecular patterns 

DAMPs [141]. 

Other metabolic differences between sepsis patients that would have survived and ones that 

would have not were evidenced by Langley et al. The different profiles of proteins and 

metabolites clustered into fatty acid transport and β-oxidation, gluconeogenesis and the 

citric acid cycle, and diverged more as death approached. In contrast, the metabolomes and 

proteomes of surviving patients with mild sepsis did not differ from survivors with severe 

sepsis or septic shock [142]. 

In prediction of bacteremic sepsis, a 6-metabolite predictive logistic model proved 

promising. In particular, elevated levels of myristic acid were associated with subsequent 

positive blood culture, demonstrating myristic acid as the most predictive metabolite in the 

study, and performed better than combinations of laboratory and clinical parameters. The 

results are encouraging because they suggest that a metabolomic approach for evaluation 

of patients suspected with infection can provide new diagnostic tools [143]. 

Recently, Elmassry et al. aimed to identify, in mice, new biomarkers after sepsis caused by 

Pseudomonas aeruginosa infection of burns. They identified, through GC-MS serum 

analysis, 26 metabolites that were shown to have high predictive power for P. aeruginosa 

sepsis following thermal injury, especially a combination of five metabolites (trans-4-

hydroxypro- line, 5-oxoproline, glycerol-3-galactoside, indole-3-acetate, and indole-3-

propionate) that could serve as a set of biomarkers for early diagnosis of sepsis caused by 

P. aeruginosa in burn patients [144].  

In last decade, metabolomics has begun to be also applied in pediatric sepsis, appearing to 
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be promising [4]. 

Mickiewics et al., through NMR, analyzed serum samples of septic pediatric patients, 

observing that septic shock leads to significant disruption in biochemical homeostasis that 

strongly contributes to changes in body metabolites, allowing to distinguish between 

children with septic shock, those with non-infectious systemic inflammatory response 

syndrome and healthy children. It resulted that septic ones presented increased levels of 

creatinine, lactate, glucose, 2-hydroxysovalerate, 2-hydroxybutyrate and 2-oxoisocaproate 

and a decrease of threonine, acetate, adipate, and 2-aminobutyrate, indicating that NMR 

metabolite profiling might serve as a promising approach for the diagnosis and prediction 

of mortality in septic shock in a pediatric population [145]. 

Similarly, Fanos and colleagues, performed GC-MS and 1H-NMR analysis on urine sample 

collected from LOS and EOS septic neonates, showing a compensatory reaction to a reduce 

level of ATP, such as an increase in glucose, ketone bodies, acetone and lactate. These 

biomarkers may be considered as early and reliable predictors of neonatal sepsis, 

suggesting that in the near future metabolomics will make possible to identify an early 

metabolic profile of sepsis and thus begin earlier, more targeted and effective treatments 

[4]. Both studies conducted by Fanos and Mickiewics groups found an increment in 

concentration of lactate and glucose, thus possibly suggesting a role of these metabolites in 

the diagnosis of sepsis. Furthermore, Mickiewics reported that combining metabolomic and 

inflammatory protein mediator profiling, early after symptoms presentation, may 

differentiate children with sepsis requiring care in a PICU from children with or without 

sepsis safely cared for outside a PICU, possibly aiding in making triage decisions [146]. 

GC-MS analysis on urine sample of a preterm neonate with sepsis fungal infection, 

evidenced a different metabolic profile when compared to controls, with an increase of 

several amino acid, like N-glycine, D-serine and L-threonine, and a decrease of 

hexadecanoic acid, octadecanoic acid and citric acid, suggesting an increase of the 

hypermetabolic state [147].  

Sarafidis et al. demonstrated, through 1H-NMR and LC-MS analysis of urine samples, that 

neonates with confirmed and suspected LOS, at the beginning of clinical manifestations, 

presented a different metabolic profile compared to healthy ones, thus allowing to 

discriminate between the two groups. Furthermore, neonates with confirmed or possible 

LOS exhibited comparable metabolic profiles, indicating similar metabolic alternations 
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upon the onset of clinical manifestations [148]. 

Differences in the metabolic profiles between septic shock patients with and without co-

morbid conditions and healthy controls were pointed out by Pandey group, and univariate 

and multivariate statistical analyses were performed to identify the potential molecular 

biomarkers. Noted dysregulations in amino acids, carbohydrates, and lipid metabolism 

were observed in septic shock patients [149]. 

Zhang and colleagues aimed to find neonatal sepsis with meningoencephalitis-related 

markers using unbiased metabolomics technology and artificial intelligence analysis based 

on machine learning methods. The analysis of the serum and cerebrospinal fluid 

metabolomes combined with machine learning identified metabolite markers related to 

neonatal sepsis with meningoencephalitis, with changes in arginine metabolism and related 

changes in creatinine metabolism [150]. 

These results show promise in the use of metabolomics as a diagnostic tool in the diagnosis 

of sepsis.  
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4. Aim  

 
The ultimate goal of our research program is the discovery of early biomarkers of neonatal 

sepsis, and in the present prospective case-control study, a two-step metabolomic approach 

based on mass spectrometry was applied to neonates affected by EOS in an effort to 

investigate the perturbations at the metabolome level that might lead to the discovery of 

novel early biomarkers of this condition. Firstly, an untargeted metabolomic approach was 

used to compare the metabolic profiles of urine samples collected within 24 h of birth from 

preterm neonates with and without EOS. Then, the results of this untargeted metabolomic 

analysis were used to guide a targeted metabolomic examination of plasma samples 

collected at birth from the same neonates to investigate and validate the metabolic 

derangements induced by sepsis further. 
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5. Materials and methods 

 
5.1 Study population 

 
This prospective, case-control study was conducted at a single, tertiary-level neonatal 

intensive care unit (NICU) on participants recruited from December 2015 to November 

2017. Preterm neonates (<37 weeks of gestation) admitted to the NICU at the Women’s 

and Children’s Health Department of Padua Hospital (Italy) were eligible for the study. 

The EOS group included any neonates classified as septic infants on the basis of clinical 

signs (cardiovascular or respiratory instability, neurologic signs) and laboratory findings 

obtained within 72 h from birth (leukopenia, leukocytosis, increased C-reactive protein, 

increased serum lactate), in accordance with the criteria established in 2010 at an expert 

meeting of the European Medicines Agency on neonatal and pediatric sepsis [151]. 

Specifically, the criterion was the presence of at least two clinical symptoms and at least 

two laboratory signs of infection. These cases of the EOS group were compared with 

neonates who did not manifest any infection within seven days of birth, as defined by the 

presence of clinical and laboratory signs, in accordance with the definition of neonatal 

sepsis of the expert meeting of the European Medicines Agency on neonatal and pediatric 

sepsis [151] (controls). To avoid any influence of gestational age and weight, each neonate 

diagnosed with EOS was matched with the next eligible newborn of similar gestational age 

and weight. Infants with major congenital or chromosomal abnormalities, or with known 

or suspected congenital metabolic disease, asphyxiated newborns, and those given 

transfusions (erythrocytes, plasma, or platelets) before any collection of samples were 

excluded from the study. No treatment was administered before plasma sampling. At the 

time of urine sampling, the same pharmacological treatment, including antibiotic therapy, 

and the same nutrition (both parenteral and enteral) were being administered to all neonates 

enrolled in the study. 
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5.2 Samples collection 

 
Plasma sampling: a total of 1 mL of blood collected at birth when blood tests were run on 

admission to the NICU (before any therapy, intravenous infusion, or milk were 

administered). Blood was centrifuged and the resulting plasma samples were stored at           

-80◦C until analysis. Urine sampling: at least 2 mL of urine was collected noninvasively 

within 24 h of birth, by placing a cotton ball inside the newborn’s nappy and checking for 

the presence of urine every 30 min. The cotton ball was changed if the neonate did not 

urinate within 3 h of its placement or if it was contaminated with fecal material. After the 

neonate urinated, the cotton ball was placed in the barrel of a syringe and squeezed with 

the plunger to collect the absorbed urine in a container prewashed with MeOH, for 

metabolomic analysis. The same brands of nappies and cotton balls were used throughout 

the study. Samples were stored at -80◦C until analysis. 

 

 

5.3 Metabolomic analysis 

 

5.3.1 Metabolomic untargeted analysis 

 
The analysis was performed at the Mass Spectrometry and Metabolomics Laboratory of the 

University of Padua’s Women’s and Children’s Health Department. Urine samples were 

slowly thawed to ambient temperature. Each sample was stirred and centrifuged at 3600 g, 

then 50 μL of the supernatant from each sample were pipetted in a total recovery glass vial, 

adding 100 μL of 0.1% formic acid solution (dilution 1:3). Untargeted metabolic profiling 

was performed in positive and negative ionization mode on an Acquity Ultra Performance 

Liquid Chromatography (UPLC) system (Waters, U.K.) coupled to a Quadrupole Time-of- 

Flight (QTOF) Synapt G2 HDMS mass spectrometer (Waters MS Technologies, Ltd., 

Manchester, U.K.). For LC-MS analysis a Waters Acquity UPLC HSS T3 column 2.1 mm 

wide and 100 mm long packed with 1.8 μm beads was used and its temperature was kept 

at 50°C. The mobile phase flow rate was set at 0.5 ml/min. The gradient mobile phase 

consisted of water with 0.1% FA (A) and methanol with acetonitrile in a 90:10 ratio with 
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0.1% FA (B). Each sample run lasted 12 min and consisted of an isocratic phase of 5% B 

for 1 min, a linear increase to 30% B in 2.5 min, a linear increase to 95% B in 3 min, an 

isocratic phase of 95% B for 1.5 min, a washout phase of 5% B for 3 min. For each run, 5 

μl of sample were injected. Mass acquisition was performed with the Quadrupole-Time-

of-Flight (Q-TOF) Mass Spectrometer (Synapt G2, Waters Co.) operating at both positive-

ion (ESI+) and negative-ion (ESI-) electro-spray ionization mode. The mass range scan 

was of 20 to 1200 amu, both in MS scan mode and in MSe mode to obtain the fragmentation 

spectrum of the variables that fall within the parameters set in the scan method in MS^E. The 

capillary voltage was set at 3.5 KV in positive mode and 2.8 KV in negative mode; the 

sampling cone voltage was set at 30 V in both modes. The desolvation gas flow was set at 

600 L/h with temperature kept at 350 °C. The cone gas flow was set at 20 L/h with 

temperature kept at 110 °C. To correct for changes in environmental or experimental 

condition over the course of the analysis, Leucine-Enkephalin ([M+H]+ = 556,2771 m/z and 

[M-H]- = 554,2615 m/z), at a concentration of 2 μg/ml in a solution of acetonitrile and water 

with 0.1% FA in a 50:50 ratio, was injected periodically (every 10 s) as internal reference 

(i.e. lock mass). Quality control (QC) samples and standard solution samples (Mix) were 

used to assess reproducibility and accuracy during the analysis, and examine the metabolite 

content of the samples and were injected at regular intervals throughout the sequence, 

together with blank samples. To further reduce analytical variability, in accordance with an 

in-house protocol, samples distribution in the plate and the sequence of sample injection in 

the UPLC-MS were randomized, and 5/6 of the fluid resulting from the addition of eluents 

to the sample was excluded from the ionization process (splitting). Splitting samples 

prevent the risk of smudge the internal surfaces of the spectrometer itself, thus reducing its 

sensitivity. The QCs were prepared from an aliquot of each sample, diluted with 0.1% 

formic acid solution with three different dilution factors (1:3, 1:5, and 1:7). The mix 

consisted of nine compounds of known exact mass and retention time. The QCs and mixes 

were injected at regular intervals during the sequence, together with blank samples to 

identify specific ions from the mobile phase, and any contaminants. Samples were injected 

randomly to prevent any spurious classification deriving from the position of the sample in 

the sequence.  
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UPLC-MS data were processed by the Progenesis QI software (Waters Corporation, 

Milford, U.S.A.) and two data sets were generated, one for the positive-ionization mode 

(POS data set) and the other for the negative-ionization mode (NEG data set). The 

parameters used for data extraction were optimized through the preliminary analysis 

processing of the QC samples. We used a filter strength of 0.25 for import raw data and a 

QC in the middle of the sequence as a reference for the automatic alignment of all runs in 

the sequence. For the peak picking the sensitivity of the automatic algorithm was set at 3, 

where retention time limits were between 0.4 and 8 min. The so-called RT_mass variables 

(where RT is the retention time and mass is the mass to charge ratio m/z of the chemical 

compound) were generated. Variables with more than 20% of missing data were eliminated 

to avoid spurious statistical models generated by unrealistic combinations of the measured 

Figure 11. Q-TOF mass spectrometer Synapt G2 (Waters) and UPLC instrumentation 
(Waters) 
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variables. For each variable passing such a filter, missing data were imputed with a random 

number between zero and the minimum value measured for the variable. Variables with a 

coefficient of variation greater than 20% for QC samples have been excluded. Variables 

detected in the blank samples have been subtracted to the samples. The ion intensities for 

each peak detected were normalized, based on the calibration models obtained for the QCs 

with different dilution factors (1:3, 1:5, 1:7) [152]. Then, probabilistic quotient 

normalization was used to remove the effects of dilution on the samples’ concentrations. 

The data tables thus generated underwent data analysis. 

 

 

5.3.2 Metabolomic targeted analysis 

 
The analysis was performed at the Mass Spectrometry and Metabolomics Laboratory of the 

University of Padua’s Women’s and Children’s Health Department. 

The targeted methods were developed for the metabolites revealed by metabolic profiling 

and implemented using UPLC coupled to a triple-quadrupole mass spectrometer.  

Samples have been prepared for the analysis of amino acids, polyamines and metabolites 

of the kynurenine pathway.  

10 μL of plasma were mixed with 10 μL polyamine internal standard (IS), 10 μL 

kynurenine internal standard, and 100 μL amino acids internal standard mix in methanol 

0.1% v/v formic acid. The sample+IS mixtures were deproteinized and vortexed, then 

stored at -20 °C for 20 min and centrifuged at 13000 g for 7 min. For the analysis of the 

metabolites of the kynurenine pathway, 50μL of supernatant were transferred to a vial and 

injected to LC-MS. For amino acid and polyamine analysis, 10 μL of the supernatant were 

mixed in a well plate with 70 μL of borate buffer and 20 μL of AccQ-Tag reagent (AccQ-

Tag Ultra Derivatization Kit, Waters Corporation), then heated for 10 min at 55°C for 

derivatization. The plate was placed under a stream of N2 for 10 min to evaporate the 

acetonitrile of the reagent, then 20 μL of buffer or H2O were added. 10 μL of the samples 

were diluted with 190 μL H2O in another plate for high-concentration amino acid 

quantification. 

For the analysis of neurotransmitters associated with tyrosine and tryptophan metabolism 
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10 μL of plasma were mixed with 5 μL of IS and 100 μL of cold acetonitrile. The sample+IS 

mixtures were vortexed and stored at -20 °C for 20 min, then centrifuged at 13000 g for 7 

min. 10 μL of the supernatant were mixed in a well plate with 70 μL of borate buffer and 

20 μL of AccQ-Tag reagent, and heated for 10 min at 55 °C for derivatization. The plate 

was then placed under a stream of N2 for 10 min to evaporate the acetonitrile of the reagent, 

then 20 μL of buffer or H2O were added. 

Individual stock solutions in water or methanol with different percentage of formic acid 

depending on the different solubility of the compounds were used. A series of solution 

mixtures of desired concentrations were prepared by suitable dilutions of the stock 

solutions in 0.1% formic acid in water. All the stocks were stored at -20 °C. Stock solutions 

of labeled metabolites were prepared as the unlabeled and diluted as required, with water 

0.1% FA, to obtain a concentration of 0.05-0.1 μM for neurotransmitters, and polyamine, 

and 1-10 μM for amino acids and kynurenine metabolites, and used as internal standard 

(IS). Calibration curves of the analytes were prepared by spiking pooled plasma, obtained 

from volunteers, with the diluted mixed standard solutions and IS, to the concentration 

ranging from 0.3 to 100 nmol/L for neurotransmitters, from 30 to 3000 nmol/L for 

polyamines, and from 0.05 to 250 μmol/L for amino acids and kynurenine metabolites. 

Two different concentrations of QC’s plasma were used for precision and accuracy. Where 

available we used QC from chemical companies, with 2 different level concentration 

(Amino Acid Quality Control set, low and TM High, Kairos Waters Corporation, Milford, 

MS, USA), otherwise we prepared QC by spiking pooled plasma with 2 different 

concentration of the analytes. The QC’s plasma was extracted 2 times and analyzed 5 times 

within the same chromatographic run (n=10, intraday repeatability) and for 3 distinct days 

(n=30, between days reproducibility) to precision and reproducibility of the analytical 

method, expressed as coefficient of variation (CV%). Difference between measured and 

expected values of QC’s plasma samples (Bias%) was used to estimate the accuracy of the 

analysis. The analytes with CV% and Bias% ≤ 20% were considered for targeted analysis. 

Plasma calibrations curve at 5 concentrations were built for assessing linearity, expressed 

as R. Sensitivity, expressed as limit of quantification (LOQ, S/N≥10), was extrapolated by 

lowest point of calibration solution. The R2 and LOQ for each compound were reported in 

Table 3. 

The chemical standards and labeled standards were purchased from: Sigma-Aldrich 
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Corporation (Milan, Italy); Fluka (Milan, Italy); CDN Isotopes (Pointe-Claire, Quebec, 

Canada).; Chromsystems Instruments &Chemicals (Gräfelfing, Germany), Toronto 

Research Chemicals (Toronto, Ontario, Canada); Santa Cruz Biotechnology, Inc. (Dallas, 

Texas, USA); Coompo Research Chemicals (Wuhan, Hubei, PRC). The commercial names 

and the specific chemical company for each analyte were indicated in Table 3 and Table 4. 

The purity of all analytes and labeled internal standards was ≥98%. Water was purified 

with a Milli-Q Elix purification system (Millipore, Bedford, MA, USA). High-purity MS-

grade solvents (formic acid, methanol, and acetonitrile) were obtained from Fluka (Milan, 

Italy) and used without further purification. 

The analysis was conducted using a Xevo TQ-S triple-quadrupole mass spectrometer 

coupled to an Acquity UPLC (Waters Milford, MA, USA), interfaced with a source of 

Electrospray Ionization (ESI). The ESI was operated in the positive ion mode with multiple 

reaction monitoring (MRM). Chromatographic separation was done on a Waters Acquity 

UPLC HSS T3 2.1 x 100 mm 1.8 μm column (Waters Milford, MA, USA).  
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Specific mobile phases and injection volumes were used for the different classes of 

metabolites as summarized below: 

 

• Amino acids  

Mobile phases consisted of waters 0.1% formic acid for phase A and acetonitrile 0.1% 

formic acid for phase B. Injection volume 2 μL. 

Time(min) 

Flow 

Rate %A %B 

0 0.6 96 4 

0.5 0.6 96 4 

Figure 12. Xevo TQ-S triple-quadrupole mass spectrometer (Waters) and UPLC 
instrumentation (Waters) 
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• Polyamines 

Mobile phases consisted of waters 0.1% formic acid for phase A and acetonitrile:methanol 

90:10 0.1% formic acid for phase B. Injection volume 20 μL. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.5 0.6 90 10 

5 0.6 72 28 

6 0.6 5 95 

7 0.6 5 95 

7.1 0.6 96 4 

Time(min) 
Flow 

Rate 
%A %B 

0 0.6 96 4 

1 0.6 96 4 

2.5 0.6 90 10 

5 0.6 85 15 

5.5 0.6 78 22 

6 0.6 5 95 

7 0.6 5 95 

7.5 0.6 3 97 

7.6 0.6 96 4 

8.5 0.6 96 4 
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• Metabolites of the kynurenine pathway 

Mobile phases consisted of waters 0.1% formic acid for phase A and acetonitrile:methanol 

90:10 0.1% formic acid for phase B. Injection volume 5 μL. 

 

 
 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

• Neurotransmitters associated to tyrosine and tryptophan metabolism 

Mobile phases consisted of waters 0.1% formic acid for phase A and acetonitrile:methanol 

90:10 0.1% formic acid for phase B. Injection volume 20 µL. 

Time(min) Flow Rate %A %B 

0 0.3 98 2 

2.6 0.3 65 35 

3.5 0.3 40 60 

4 0.3 10 90 

4.5 0.6 10 90 

4.51 0.6 10 90 

5.5 0.6 10 90 

6 0.6 98 2 

6.9 0.6 98 2 

7 0.3 98 2 

Time(min) Flow Rate %A %B 

0 0.6 99 1 

0.5 0.6 99 1 
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Instrument control, data acquisition and analysis were managed with MassLynx software 

(version 4.1, Waters). Quantification was done using the TargetLynx function of the same 

software. 

 

 

5.4 Statistical data analysis 

 
The recruited neonates’ demographic and perinatal data and laboratory findings were 

investigated applying t-test for normally distributed data, Mann-Whitney test for non-

normally distributed data, and Fisher’s exact test for categorical data considering 

statistically significant tests with p-values less than 0.05. Normality was assessed using the 

Shapiro-Wilk test assuming normally distributed data for p-value > 0.10. Numerical data 

normally distributed have been reported as mean (standard deviation), numerical data non-

normally distributed as median [interquartile range], and categorical data as the number of 

cases (percentage) with respect to the reference group. Data emerging from untargeted and 

targeted metabolomics were investigated by both univariate and multivariate data analysis 

techniques. Untargeted data were mean-centered, whereas targeted data were auto-scaled 

prior to performing data analysis. Univariate data analysis was based on the t-test in the 

1 0.6 96 4 

3 0.6 90 10 

5.5 0.6 72 28 

6.5 0.6 5 95 

7.5 0.6 5 95 

8.01 0.6 99 1 

8.5 0.6 99 1 
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case of normally distributed data (p-value > 0.10 for the Shapiro-Wilk test) or the Mann-

Whitney test in the presence of not normally distributed data (p-value < 0.10 for the 

Shapiro-Wilk test), controlling the false discovery rate at the level by the Benjamini-

Hochberg procedure. Multivariate data analysis was performed using projection methods. 

Specifically, Principal component analysis (PCA) was applied for outlier detection, while 

differences in the metabolic profiles of urine or plasma samples were investigated using 

projection to latent structures discriminant analysis (PLS-DA) with stability selection [83, 

153]. Class membership was assessed by applying linear discriminant analysis to the scores 

of the PLS-DA model built autoscaling the dummy variables specifying the class of the 

sample. Because structured noise was not detected in the models, variable influence on 

projection score (VIP) was used for ranking the predictors within the stability selection 

procedure. Overall, 500 subsets were extracted by bootstrap and relevant features were 

identified assuming a significance level equal to 0.05. Five-fold cross-validation was 

applied in model optimization. Matthew correlation coefficient in calculation (MCC) and 

MCC calculated by five-fold cross-validation (MCC5-fold) were used to measure the 

goodness-of-fit and to estimate the power in the prediction of the models. Moreover, a 

permutation test on the class response (1000 random permutations) was performed to 

highlight over-fitting and to estimate the p-values of MCC and MCC5-fold. The relevant 

variables selected by multivariate data analysis were merged with those obtained from 

univariate data analysis and were annotated by searching our in-house database, the Human 

Metabolome Database, and the Metlin metabolite database.  

Annotation for each putative marker was assigned with a different level of confidence 

[154], based on accurate mass, retention time, and the fragmentation patterns, where 

available. To improve confidence in the compound annotation, for the compounds not 

present in our database, theoretical fragmentation of the candidate list of compounds was 

performed in Progenesis, and the resulting in silico fragmentation matched against the 

observed  fragments  for  a compound. Level 1 was assigned for the compounds with a 

difference ≤10 ppm for m/z, 0.2 min for RT, and, where available, with collision cross-

section ≤2%, with respect to the standards of our in-house database, that were performed 

under identical analytical conditions of the current analysis. Instead, level 2 and 3 was for 

metabolites with m/z ≤10ppm respect to the online databases, and the fragmentation score 

≥ 30 or < 30, respectively. Over-representation pathway analysis was performed 
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considering 80 pathways for Homo sapiens.  

 

 

5.5 Ethical approval 

 
The study was approved by the Ethics Committee of Padua Hospital (protocol 

3636/AO/15), and written informed consent was obtained from all parents/guardians before 

enrolling their child. 
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6. Results 

 

Among 123 eligible neonates, 15 met the criteria for early-onset sepsis (EOS group), and 

15 without sepsis matched for gestational age, gender and weight were enrolled as controls. 

The EOS group had a gestational age of 207 (±17) days, and a birth weight of 1269 (±358) 

g, while the control group had a gestational age of 213 (±16) days, and a birth weight of 

1300 (±354) g. The two groups did not show significant differences in gestational age (p-

value = 0.34) and weight (p-value = 0.82) on the basis of the t-test. Moreover, none of the 

infants died, and they were all discharged home. In the EOS group, one blood culture tested 

positive (Streptococcus agalactiae); the other neonates were classified as septic infants on 

the basis of clinical signs (cardiovascular or respiratory instability, neurologic signs) and 

laboratory findings obtained within 72 h from birth (leukopenia, leukocytosis, increased C-

reactive protein, increased serum lactate), in accordance with the criteria established in 

2010 at an expert meeting of the European Medicines Agency on neonatal and pediatric 

sepsis [151]. The average time point for sepsis diagnosis was 25 h of life. Urine samples 

were collected within 24 h after birth for 9 cases and 10 controls. Table 1 shows the 

recruited neonates’ demographic and perinatal characteristics, and laboratory findings at 

birth (no significant differences emerged between the EOS and control groups). 
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Descriptive variable 
EOS group 
(n=15) 

Controls 
 (n=15) 

p 

Gestational age [days] 207 (17) 213 (16) 0.34 

Birth weight [g] 1269 (358) 1300 (354) 0.82 

Male sex (%) 7 (47) 5 (33) 0.71 

Apgar score 1 [min] 7.0 [1.5] 7 [1] 0.32 

Apgar score 5 [min] 8.0 [1.5] 8 [1] 0.11 

Cesarean section 14 (93) 15 (100) >0.99 

Prenatal steroids 13 (87) 13 (87) >0.99 

Small for gestational age 2 (13) 6 (40) 0.21 

Positive maternal vaginal swab 3 (20) 0 (0) 0.22 

Premature rupture of membranes >18 h  4 (27) 2 (13) 0.65 

Inotropes 0 (0) 1 (7) >0.99 

C-reactive protein <2.9 mg/L–at birth 12 (80) 15 (100) 0.22 

White blood count-day 0 [K/µL] 4.9 [2.8] 8.2 [6.2] 0.07 

Platelet count-day 0 [K/µL] 200 [83] 245 [70] 0.43 

 

 
While laboratory findings at birth showed no differences between the two groups, C-

reactive protein value at 24–72h from birth was significantly higher in the EOS group (CRP 

26 [16] mg/L) than in the control group (CRP 2.3 [1.6] mg/L) on the basis of the Mann–

Whitney test (p-value < 0.001). All neonates recruited as controls did not manifest any 

infection within seven days of birth. In a first step, untargeted metabolic profiling of urine 

samples was applied to discover which are metabolic pathways perturbed by sepsis. These 

pathways were then analyzed more in depth in a second step using targeted methods on 

plasma. Two data sets were obtained in the untargeted metabolic step. Specifically, a data 

set including 2394 RT_mass variables was generated by the negative ionization mode 

(indicated as NEG data set in the following), and a data set with 3224 RT_mass variables 

Table 1. The recruited neonates’ demographic and perinatal characteristics, and laboratory 
findings at birth; numerical data normally distributed are reported as mean (standard 
deviation), whereas non-normally distributed data as median [interquartile range], and 
categorical data as the number of cases (percentage) with respect to the reference group. 
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was obtained using the positive ionization mode (POS data set). No outliers were detected 

by principal component analysis (PCA) on the basis of the T2 and Q tests. 

PCA has been applied to detect the presence of outliers in the untargeted metabolomic data 

obtained from urine samples. Specifically, T2 test and Q test have been applied with a 

significance level α=0.05. Data have been mean-centered and 2 principal components have 

been considered. In Figure 13 and Figure 14 show the score scatter plots and the T2/Q plots 

obtained respectively for the NEG and the POS data sets for the controls and the group of 

neonates developing sepsis. Red lines indicate the threshold used for outlier detection. 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

 

Figure 13. NEG data set: score scatter plot (panel A) and T2/Q plot (panel B) 
obtained for the controls and score scatter plot (panel C) and T2/Q plot (panel D) 
obtained for the group of neonates developing sepsis; red dashed lines indicate the 
threshold at the significance level α=0.05 used for outlier detection. 
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Univariate data analysis based on t-test or Mann-Whitney test with false discovery rate 

highlighted 44 variables in the NEG data set, and 332 in the POS data set as relevant (δ = 

0.10), for a total of 376 relevant features. For the NEG data set, projection to latent 

structures discriminant analysis (PLS-DA) generated a model with two latent variables, a 

Matthew correlation coefficient in calculation (MCC) of 0.90 (p = 0.038), and an MCC 

calculated by five-fold cross-validation (MCC5-fold) of 0.49 (p = 0.023). For the POS data 

set, a model with two latent variables, MCC = 0.90 (p-value = 0.042) and MCC5-fold = 

0.37 (p-value = 0.034), were obtained. Figure 15 shows the score scatter plots obtained 

Figure 14. POS data set: score scatter plot (panel A) and T2/Q plot (panel B) obtained 
for the controls and score scatter plot (panel C) and T2/Q plot (panel D) obtained for 
the group of neonates developing sepsis; red dashed lines indicate the threshold at the 
significance level α=0.05 used for outlier detection. 
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with the models. It is worth noting that samples from the same group clustered in the same 

region of the plot, according to the high values of MCC. Stability selection has been 

implemented to highlight the relevant features from a multivariate point of view. All the 

210 features discovered as relevant in multivariate data analysis resulted to belong to the 

set of 376 relevant features discovered by univariate data analysis. Thus, the relevant 

variables were submitted to the annotation process. Overall, 60 variables were annotated 

[154]: 14 at level 1 (“identified metabolites”); 44 at level 2 ("putatively annotated 

compounds"); and 2 at level 3 ("putatively characterized compound classes"). The 

annotated variables are reported in Table 2. 

 

 

 

 

 

 

 

 

 

Figure 15. Untargeted metabolic profiling: score plotter plots obtained with projection 
to latent structures discriminant analysis (PLS-DA) modeling for urines samples. 
Samples from cases of sepsis are indicated with black circles, those from controls with 
light grey circles; panel (A) NEG data set; panel (B) POS data set. The PLS-DA 
models have been post-transformed to obtain the predictive latent variable tp and the 
non-predictive latent variable to [83]. 
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 Table 2. Annotated variables. Type: CTRL>SEPSIS indicates that the mean was higher in 
the control group than in the early onset sepsis (EOS) group; SEPSIS>CTRL indicates that 
the mean was higher in the EOS group than in the control group. HMDB ID: identifier used 
in the Human Metabolome Database. Level: annotation level according to reference 154. 
AUC (CI 95%): confidence interval at the level of 95% of the area under the receiver 
operating characteristic (ROC) curve. 

m/z type HMDB ID level annotation AUC (CI 95%) 

1.750.244 CTRL > SEPSIS HMDB00044 2 Ascorbic acid 0.66 - 1.00 

3.280.445 CTRL > SEPSIS HMDB00058 2 Cyclic AMP 0.53 - 1.00 

1.320.772 CTRL > SEPSIS HMDB00064 2 Creatine 0.62 - 1.00 

1.300.868 CTRL > SEPSIS HMDB00070 2 Pipecolic acid 0.58 - 1.00 

1.520.575 CTRL > SEPSIS HMDB00132 1 Guanine 0.72 - 1.00 

4.643.013 CTRL > SEPSIS HMDB00138 1 Glycocholic acid 0.66 - 1.00 

1.370.464 CTRL > SEPSIS HMDB00157 2 Hypoxanthine 0.75 - 1.00 

1.800.655 CTRL > SEPSIS HMDB00158 1 L-Tyrosine 0.60 - 1.00 

1.640.708 CTRL > SEPSIS HMDB00159 1 L-Phenylalanine 0.76 - 1.00 

900.555 CTRL > SEPSIS HMDB00161 2 L-Alanine 0.64 - 1.00 

1.160.711 CTRL > SEPSIS HMDB00162 2 L-Proline 0.65 - 1.00 

1.540.618 CTRL > SEPSIS HMDB00177 1 L-Histidine 0.60 - 1.00 

1.471.132 CTRL > SEPSIS HMDB00182 1 L-Lysine 0.54 - 1.00 

239.016 CTRL > SEPSIS HMDB00192 1 L-Cystine 0.58 - 1.00 

1.650.552 CTRL > SEPSIS HMDB00205 2 Phenylpyruvic acid 0.56 - 1.00 

1.871.084 CTRL > SEPSIS HMDB00206 1 N6-Acetyl-L-lysine 0.75 - 1.00 

335.068 CTRL > SEPSIS HMDB00229 2 Nicotinamide ribotide 0.76 - 1.00 

1.260.224 CTRL > SEPSIS HMDB00251 1 Taurine 0.70 - 1.00 

2.830.677 CTRL > SEPSIS HMDB00299 2 Xanthosine 0.70 - 1.00 

1.600.607 CTRL > SEPSIS HMDB00510 2 Aminoadipic acid 0.57 - 1.00 

2.901.607 CTRL > SEPSIS HMDB00552 2 3-Methylglutarylcarnitine 0.38 - 0.95 

1.200.123 CTRL > SEPSIS HMDB00574 1 L-Cysteine 0.61 - 1.00 

1.350.309 CTRL > SEPSIS HMDB00613 2 Erythronic acid 0.80 - 1.00 

2.690.601 CTRL > SEPSIS HMDB00676 2 L-Homocystine 0.35 - 0.94 

2.090.928 CTRL > SEPSIS HMDB00684 1 L-Kynurenine 0.61 - 1.00 

1.300.867 CTRL > SEPSIS HMDB00687 1 L-Leucine 0.65 - 1.00 

1.300.506 CTRL > SEPSIS HMDB00725 1 Hydroxyproline 0.65 - 1.00 

1.880.712 CTRL > SEPSIS HMDB00734 2 Indoleacrylic acid 0.64 - 1.00 

1.920.662 CTRL > SEPSIS HMDB00763 2 5-Hydroxyindoleacetic acid 0.59 - 1.00 

1.530.413 CTRL > SEPSIS HMDB00786 2 Oxypurinol 0.83 - 1.00 
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3.820.995 CTRL > SEPSIS HMDB00912 2 Succinyladenosine 0.61 - 1.00 

1.580.815 CTRL > SEPSIS HMDB00927 2 Valerylglycine 0.66 - 1.00 

2.030.818 CTRL > SEPSIS HMDB00929 1 L-Tryptophan 0.70 - 1.00 

3.851.296 CTRL > SEPSIS HMDB00939 2 S-Adenosylhomocysteine 0.45 - 0.95 

1.530.415 CTRL > SEPSIS HMDB01182 2 6,8-Dihydroxypurine 0.85 - 1.00 

136.076 CTRL > SEPSIS HMDB01250 2 N-Acetylarylamine 0.62 - 1.00 

1.500.556 CTRL > SEPSIS HMDB01859 2 Acetaminophen 0.70 - 1.00 

1.230.446 CTRL > SEPSIS HMDB01870 2 Benzoic acid 0.60 - 1.00 

860.605 CTRL > SEPSIS HMDB02039 2 2-Pyrrolidinone 0.65 - 1.00 

329.175 CTRL > SEPSIS HMDB02121 2 Carnosol 0.65 - 1.00 

1.470.444 CTRL > SEPSIS HMDB02359 2 Phenylpropiolic acid 0.50 - 1.00 

3.011.803 CTRL > SEPSIS HMDB03955 2 19-Hydroxyandrost-4-ene-
3,17-dione 0.65 - 1.00 

232.028 CTRL > SEPSIS HMDB04148 2 Dopamine 4-sulfate 0.63 - 1.00 

2.570.772 CTRL > SEPSIS HMDB04813 2 3-Methyluridine 0.52 - 1.00 

6.715.588 CTRL > SEPSIS HMDB05233 2 DG(20:1(11Z)/20:4(5Z,8Z,11Z,
14Z)/0:0)[iso2] 0.60 - 1.00 

2.901.356 CTRL > SEPSIS HMDB05765 2 Ophthalmic acid 0.41 - 0.96 

2.960.998 CTRL > SEPSIS HMDB05862 2 2-Methylguanosine 0.53 - 1.00 

730.301 CTRL > SEPSIS HMDB06112 2 Malondialdehyde 0.59 - 1.00 

6.092.639 SEPSIS > CTRL HMDB00683 2 Harderoporphyrin 0.62 - 1.00 

2.461.706 SEPSIS > CTRL HMDB00688 2 Isovalerylcarnitine 0.62 - 1.00 

3.050.977 SEPSIS > CTRL HMDB01067 2 N-Acetylaspartylglutamic acid 0.50 - 0.97 

2.191.111 SEPSIS > CTRL HMDB01238 2 N-Acetylserotonin 0.58 - 1.00 

2.981.126 SEPSIS > CTRL HMDB01563 2 1-Methylguanosine 0.67 - 1.00 

3.461.228 SEPSIS > CTRL HMDB01913 2 Omeprazole 0.47 - 0.98 

1.750.606 SEPSIS > CTRL HMDB03070 2 Shikimic acid 0.67 - 1.00 

3.371.276 SEPSIS > CTRL HMDB03409 2 Berberine 0.54 - 1.00 

1.790.559 SEPSIS > CTRL HMDB03466 2 L-Gulonolactone 0.49 - 1.00 

2.961.395 SEPSIS > CTRL HMDB05037 2 Sumatriptan 0.50 - 0.99 

2.751.128 SEPSIS > CTRL Unknown  3 Unknown  0.80 - 1.00 

8.192.381 SEPSIS > CTRL Unknown  3 Unknown  0.52 - 1.00 
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Over-representation pathway analysis conducted on the annotated variables revealed six 

perturbed pathways (δ=0.15) related to: aminoacyl-tRNA biosynthesis; phenylalanine, 

tyrosine and tryptophan biosynthesis; nitrogen metabolism; cysteine and methionine 

metabolism; taurine and hypotaurine metabolism; and phenylalanine metabolism. Figure 

16 summarizes the results of the over-representation pathway analysis. 

 

 

 

 
 

Figure 16. Untargeted metabolic profiling: over-representation pathway analysis. The 
impact of each perturbed pathway is shown against its negative log p-value (-log(p)). 
The names of the pathways with q-value less than 0.15 are shown in the figure. 
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In the second step of our metabolic investigation, 64 metabolites closely related to the 

perturbed pathways were quantified in the blood samples using targeted metabolomics to 

confirm the findings of the previous untargeted step.  Table 3 and Table 4 report the 

identified and quantified metabolites by targeted methods and the labelled standards used 

for calibration curves. 

 

 

 
Table 3. The name of the 64 metabolites quantified by targeted methods, their chemical 
group, the LOQ concentration, the value of R2 for calibration curves, and the commercial 
name and the companies where we purchased the standards are reported. 
Metabolite HMDB_ID Commercial name Company group/pathway LOQ R2 

2-aminobutyric acid HMDB0000452 L-a-Amino-n-butyric Acid Sigma-Aldrich aminoacids 3.08 µmol/L 0.9841 
3-aminobutyric acid HMDB0031654 3-aminobutyric acid Sigma-Aldrich aminoacids 2.46 µmol/L 0.9819 
3-aminoisobutyric acid HMDB0003911 D,L-ß-Aminoisobutyric Acid Sigma-Aldrich aminoacids 3.08 µmol/L 1 
3-methylhistidine HMDB0000479 3-Methyl-L-histidine Sigma-Aldrich aminoacids 3.08 µmol/L 0.9999 

 
ADMA 

 
HMDB0001539 dimethylarginine- 

dihydrochloride 
 
Sigma-Aldrich 

 
aminoacids 

 
0.04 µmol/L 

 
0.9985 

alanine HMDB0000161 L-Alanine Sigma-Aldrich aminoacids 3.08 µmol/L 0.9708 
aminoadipic acid HMDB0000510 L-a-Aminoadipic Acid Sigma-Aldrich aminoacids 3.08 µmol/L 0.9909 

3-aminopropanoic 
acid 

 ß-Alanine Sigma-Aldrich aminoacids 3.08 µmol/L 0.9903 
arginine HMDB0000517 L-Arginine Sigma-Aldrich aminoacids 3.08 µmol/L 0.9952 
asparagine HMDB0000168 L-Asparagine Sigma-Aldrich aminoacids 3.08 µmol/L 0.9924 
Aspartic HMDB0000191 L-Aspartic Acid Sigma-Aldrich aminoacids 3.08 µmol/L 0.9993 
carnosine HMDB0000033 L-Carnosine Sigma-Aldrich aminoacids 3.08 µmol/L 0.9958 
citrulline HMDB0000904 L-Citrulline Sigma-Aldrich aminoacids 3.08 µmol/L 0.9996 

cystathionine HMDB0000099 Cystathionine* Sigma-Aldrich aminoacids 3.08 µmol/L 0.9987 
Cystine HMDB0000192 L-Cystine Sigma-Aldrich aminoacids 1.54 µmol/L 0.9976 

 
dl-kinurenine 

 
HMDB0000684 

 
L-Kynurenine 

 
Sigma-Aldrich aminoacids/kynu renine pathways 

 
0.12 µmol/L 

 
0.9873 

Ethanolamine HMDB0000149 Ethanolamine Sigma-Aldrich aminoacids 3.08 µmol/L 0.9958 
GABA HMDB0000112 g-Amino-n-butyric Acid Sigma-Aldrich aminoacids 3.08 µmol/L 0.9875 

glutamic acid HMDB0000148 L-Glutamic Acid Sigma-Aldrich aminoacids 3.08 µmol/L 0.9974 
glycine HMDB0000123 Glycine Sigma-Aldrich aminoacids 3.08 µmol/L 0.9918 
HArg HMDB0000670 L-homoarginine hydrochloride Fluka aminoacids 0.04 µmol/L 0.9985 
histidine HMDB0000177 L-Histidine Sigma-Aldrich aminoacids 3.08 µmol/L 0.9981 
homoserine HMDB0000719 L-homoserine Fluka aminoacids 2.46 µmol/L 0.9922 
isoleucine HMDB0000172 L-Isoleucine Sigma-Aldrich aminoacids 3.08 µmol/L 0.997 
leucine HMDB0000687 L-Leucine Sigma-Aldrich aminoacids 3.08 µmol/L 0.9995 
lysine HMDB0000182 L-Lysine Sigma-Aldrich aminoacids 3.08 µmol/L 0.9869 

methionine HMDB0000696 L-Methionine Sigma-Aldrich aminoacids 3.08 µmol/L 0.9988 
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NMMA  N-monomethyl-L-arginine Sigma-Aldrich aminoacids 0.04 µmol/L 0.9998 
OH-lysine/allo-OH- 

lysine 
 
HMDB0000450 

 
d-DL-Hydroxylysine 

 
Sigma-Aldrich 

 
aminoacids 

 
3.08 µmol/L 

 
0.991 

ornithine HMDB0000214 L-Ornithine Sigma-Aldrich aminoacids 3.08 µmol/L 0.9821 
phenylalanine HMDB0000159 L-Phenylalanine Sigma-Aldrich aminoacids 3.08 µmol/L 0.998 
proline HMDB0000162 L-Proline Sigma-Aldrich aminoacids 3.08 µmol/L 0.9926 
sarcosine HMDB0000271 L-Sarcosine Sigma-Aldrich aminoacids 3.08 µmol/L 0.9987 

 
SDMA 

 
HMDB0003334 dimethyl-L-arginine-di(p- 

hydroxyazobenzene-p-
sulfonate) 

 
Sigma-Aldrich 

 
aminoacids 

 
0.04 µmol/L 

 
0.9976 

serine HMDB0000187 L-Serine Sigma-Aldrich aminoacids 3.08 µmol/L 0.9906 
taurine HMDB0000251 Taurine Sigma-Aldrich aminoacids 3.08 µmol/L 0.9963 
threonine HMDB0000167 L-Threonine Sigma-Aldrich aminoacids 3.08 µmol/L 0.9988 

 
tryptophane 

 
HMDB0000929 

 
L-Tryptophan 

 
Sigma-Aldrich aminoacids/kynu renine pathways 

 
3.08 µmol/L 

 
0.9943 

tyrosine HMDB0000158 L-Tyrosine Sigma-Aldrich aminoacids 3.08 µmol/L 0.9994 
valine HMDB0000883 L-Valine Sigma-Aldrich aminoacids 3.08 µmol/L 0.9955 

 
3-HAA  

HMDB0001476  3-Hydroxyanthranilic acid  Sigma-Aldrich kynurenine 
pathways 

 
0.01 µmol/L  0.995  

3OH-KYN  
HMDB0011631  3-Hydroxy-DL-kynurenine  Sigma-Aldrich kynurenine 

pathways 
 
0.01 µmol/L  0.9974  

5-HIAA  
HMDB0000763  5-Hydroxyindole-3-acetic acid  Sigma-Aldrich kynurenine 

pathways 
 
0.01 µmol/L  0.9888  

5-OH-ind 
 
HMDB0001855 

 
5-Hydroxyindole 

 
Sigma-Aldrich kynurenine 

pathways 
 
0.05 µmol/L 

 
0.9997  

IAA 
 
HMDB0000197 

 
3-Indoleacetic acid 

 
Sigma-Aldrich kynurenine 

pathways 
 
0.05 µmol/L 

 
0.9899  

IPA 
 
HMDB0002302 

 
Indole-3-propionic acid 

 
Sigma-Aldrich kynurenine 

pathways 
 
0.05 µmol/L 

 
0.9918  

KYNA 
 
HMDB0000715 

 
kynurenic acid 

 
Sigma-Aldrich kynurenine 

pathways 
 
0.02 µmol/L 

 
0.9706  

XA  
HMDB0000881  xanthurenic acid  

Sigma-Aldrich kynurenine 
pathways 

0.004 
µmol/L 

 
0.9719 

agmatine HMDB0001432 Agmatine sulfate salt Sigma-Aldrich polyamine 0.12 µmol/L 0.9931 
cadaverine HMDB0002322 Cadaverine dihydrochloride Sigma-Aldrich polyamine 0.09 µmol/L 0.9986 

 
N1-AcetylSPD 

 
HMDB0001276 N1-acetylspermidine 

(hydrochloride) 
Cayman 
Chemicals 

 
polyamine 

 
0.03 µmol/L 

 
0.9958 

putrescine HMDB0001414 Putrescine dihydrochloride Sigma-Aldrich polyamine 0.03 µmol/L 0.9922 
spermidine HMDB0001257 Spermidine trihydrocholride Sigma-Aldrich polyamine 0.03 µmol/L 0.9948 
Spermine HMDB0001256 Spermine tetrehydrocholride Sigma-Aldrich polyamine 0.06 µmol/L 0.9993 
Dopamine HMDB0000073 3-Hydroxy-Tyramine HCL Sigma-Aldrich neurotrasmitters 1.56 nmol/L 0.9701 
epinephrine HMDB0000068 (-) Epinephrine Sigma-Aldrich neurotrasmitters 1.56 nmol/L 0.9879 

 
Metanephrine  

HMDB0004063 D,L-Metanephrine 
Hydrochloride 

 
Sigma-Aldrich  neurotrasmitters  1.56 nmol/L  0.9982 

norepinephrine HMDB0000216 DL-Noroadrenaline Fluka neurotrasmitters 2.5 nmol/L 0.9976 
Octopamine HMDB0004825 (±)-Octopamine hydrochloride Sigma-Aldrich neurotrasmitters 1.25 nmol/L 0.9963 

 
Serotonin 

 
HMDB0000259 5-Hydroxytyramine 

hydrochloride 
 
Sigma-Aldrich 

 
neurotrasmitters 

 
0.62 µmol/L 

 
0.9963 

Synephrine HMDB0004826 (±)-Synephrine Sigma-Aldrich neurotrasmitters 0.31 nmol/L 0.9918 
Tryptamine HMDB0000303 Tryptamine Sigma-Aldrich neurotrasmitters 3.12 nmol/L 0.9984 
Tyramine HMDB0000306 4-Hydroxyphenethylamine Sigma-Aldrich neurotrasmitters 3.12 nmol/L 0.9807 
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Table 4. The labeled standards used for calibration curves and the name of the chemical 
companies where we purchased the internal standards are reported. 

Labeled standards Company 
Histidine D3 Sigma-Aldrich 

Glycine 13C215N Chromsystem 
Arginine D7 Chromsystem 
Glutamine D5 Sigma-Aldrich 
Serine D3 CDN isotope 

Aspartic Acid D3 Chromsystem 
Citrulline D2 Chromsystem 

Glutamic acid D5 Chromsystem 
Alanine D4 Chromsystem 
GABA D6 CDN isotope 
Ornithine d6 Chromsystem 
Proline D7 Sigma-Aldrich 
Lysine D4 Sigma-Aldrich 
Tyrosine D4 Chromsystem 
Methionine D3 Chromsystem 
Valine D8 Chromsystem 
Leucine D3 Chromsystem 

Phenylalanine D5 Chromsystem 
Tryptophane D5 Sigma-Aldrich 
Creatinine D3 CDN isotopes 
Creatine-D3 CDN isotopes 
Taurine D4 Sigma-Aldrich 
5HIAA-D5 Sigma-Aldrich 
L-Dopa-D3 CDN isotope 
Agmatine D8 Coompo 
Putrescine D4 CDN isotopes 
Cadaverine D4 CDN isotopes 
Spermidine 13C4 Sigma-Aldrich 
Spermine D8 Sigma-Aldrich 
Kynurenine-D4 Toronto Chemicals 
Histamine D4 CDN isotopes 

2-phenyl-d5-ethylamine (β-PEA-
D5) 

CDN isotopes 
Octopamine D4 CDN isotopes 
Dopamine D4 CDN isotopes 

Synephrine 13C215N Santa Cruz 
Biotech Norepinephrine D6 CDN isotopes 

Serotonin D4 CDN isotopes 
Epinephrine D6 CDN isotopes 
Metanephrine D3 Sigma-Aldrich 
Tryptamine D4 CDN isotopes 
Serotonin D4 CDN isotopes 

 

 
Specifically, 40 metabolites belonging to the families of amino acids, 9 neurotransmitters 

associated with tyrosine and tryptophan metabolism, 7 polyamines and 10 metabolites 

associated with the kynurenine pathway were quantified. Univariate data analysis identified 
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26 metabolites as relevant (δ=0.10).  

PLS-DA generated a model with 2 latent variables, MCC=0.69 (p-value=0.08), and MCC5-

fold=0.62 (p-value=0.009). Figure 17 shows the score scatter plot obtained with the model. 

 

 

 

 
Stability selection led to 4 metabolites (sarcosine, ornithine, serine and cysteine) being 

selected as relevant for the purposes of discriminating between the groups of cases and 

controls. These 4 metabolites were highlighted also by univariate data analysis. Table 5 

reports the relevant metabolites arising from the targeted investigation.  

 

Figure 17. Targeted metabolomic investigation: score scatter plot of the PLS-DA 
model built using the blood samples. Samples from cases of sepsis are indicated with 
black circles, those from controls with light grey circles. The PLS-DA model has been 
post-transformed to obtain the predictive latent variable tp and the non-predictive 
latent variable to [83]. 
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Table 5. Relevant metabolites for blood samples. SEPSIS>CTRL indicates that the mean 
in the EOS group is higher than in the control group. HMDB ID: identifier used in the 
Human Metabolome Database. AUC (CI 95%): confidence interval at the of 95% level of 
the area under the receiver operating characteristic (ROC) curve. 

name  HMDB ID type AUC (CI 95%) 
glycine HMDB0000123 SEPSIS>CONTROL 0.59-0.96 

tyrosine HMDB0000158 SEPSIS>CONTROL 0.48-0.89 

phenylalanine HMDB0000159 SEPSIS>CONTROL 0.56-1.00 

alanine HMDB0000161 SEPSIS>CONTROL 0.50-0.92 

proline HMDB0000162 SEPSIS>CONTROL 0.52-0.95 
asparagine HMDB0000168 SEPSIS>CONTROL 0.49-0.88 

lysine HMDB0000182 SEPSIS>CONTROL 0.48-0.89 

serine HMDB0000187 SEPSIS>CONTROL 0.59-0.99 

cystine HMDB0000192 SEPSIS>CONTROL 0.52-0.92 

ornithine HMDB0000214 SEPSIS>CONTROL 0.59-0.97 
serotonin HMDB0000259 SEPSIS>CONTROL 0.49-0.88 

sarcosine HMDB0000271 SEPSIS>CONTROL 0.66-1.00 

tryptamine HMDB0000303 SEPSIS>CONTROL 0.51-0.91 

tyramine HMDB0000306 SEPSIS>CONTROL 0.51-0.91 

aminoadipic acid HMDB0000510 SEPSIS>CONTROL 0.52-0.93 
kynurenine HMDB0000684 SEPSIS>CONTROL 0.49-0.88 

methionine HMDB0000696 SEPSIS>CONTROL 0.49-0.922 

kynurenic acid HMDB0000715 SEPSIS>CONTROL 0.51-0.92 

5-HIAA HMDB0000763 SEPSIS>CONTROL 0.48-0.90 

xanthurenic acid HMDB0000881 SEPSIS>CONTROL 0.49-0.88 
valine HMDB0000883 SEPSIS>CONTROL 0.49-0.92 

citrulline HMDB0000904 SEPSIS>CONTROL 0.52-0.92 

spermidine HMDB0001257 SEPSIS>CONTROL 0.48-0.89 

N1-AcetylSPD HMDB0001276 SEPSIS>CONTROL 0.49-0.89 
ADMA HMDB0001539 SEPSIS>CONTROL 0.49-0.92 

cadaverine HMDB0002322 SEPSIS>CONTROL 0.64-0.98 
 

 
Figure 18 shows the results of over-representation pathway analysis. The dysregulated 

pathways (δ=0.10) were associated with aminoacyl-tRNA biosynthesis, glutathione 

metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, and tryptophan 

metabolism. 
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Figure 18. Targeted metabolomic investigation of the blood samples: over-
representation pathway analysis. The impact of each perturbed pathway is shown 
against its negative log p-value (-log(p)). The names of the pathways with q-value of 
less than 0.10 are shown in the figure. 
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7. Discussion 

 

In this study, the urine and plasma metabolome of neonates with and without EOS were 

examined to seek perturbations that might help identify novel early biomarkers of EOS. 

UPLC-MS analysis of urine samples collected within 24 h after birth revealed a clear 

clustering of cases of EOS compared with healthy neonates. Then, a metabolic signature 

exists to distinguish neonates that develop sepsis and healthy subjects. Annotating the 

variables derived from this untargeted analysis, putative markers discriminating between 

the two groups (EOS cases versus controls) were discovered (Table 2). Pathway analysis 

shed light on the metabolic derangements most involved in EOS (Figure 16). The metabolic 

pathways emerging as most significant were then further investigated using a targeted 

analysis on plasma samples collected at birth from the same neonates, confirming the 

marked disruption of the tryptophan and glutathione metabolic pathways in the neonates 

with EOS. Many tryptophan catabolites were enhanced in the septic neonates, and the 

kynurenine pathway of tryptophan metabolism was particularly stimulated. Kynurenine 

catabolites have both pro- and anti-oxidative properties, and they are involved in regulating 

glutamatergic neurotransmission and energy substrate synthesis, so tryptophan catabolism 

via the kynurenine pathway may have a key role in neonatal response to sepsis-induced 

stress [155]. Intriguingly, gut flora metabolism of tryptophan seems to be involved in 

metabolic anomalies induced by sepsis as well. Our results suggest that tryptophan is 

preferably catabolized by the gut flora of infected neonates through indole acetic acid rather 

than indole acrylic acid. Because the latter seems to promote the barrier function of the 

intestinal epithelium and mitigates inflammatory response [156, 157], a decrease in this 

acid could exacerbate the excessive systemic inflammatory response syndrome induced by 

sepsis. It has been well documented that the newborns’ gut microbiome and metabolome 

are involved in predisposing them to sepsis and facilitating its evolution, and it can be 

presumed that tryptophan metabolism may be a crucial aspect of this phenomenon [158, 

159, 160]. This is speculation and will be investigated in detail in future studies because 

the analysis of gut flora metabolism is beyond the aim of this study. 

Glutathione metabolism also emerged as severely altered in neonates with EOS, in both 
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untargeted and targeted analyses. This is an expected finding because glutathione is a 

powerful antioxidant with a key role in preventing and combating reactive oxygen species 

[161], which are strongly generated in septic states, and the induction of its metabolism 

may presumably be the result of a septic process. 

Interestingly, some metabolites (e.g., tyrosine, phenylalanine, kynurenine) are differently 

dysregulated in urine and plasma, indicating specific changes associated with the different 

biofluid samples. This could be due the different collection times between plasma and urine 

samples and also as a function of the effect of the administrated drugs present in the latter. 

Metabolomics has been used widely as a diagnostic and prognostic tool for sepsis in adults. 

Studies on the role of metabolomics in the diagnostic work-up of pediatric and neonatal 

sepsis are limited, however. As explained by Mickiewics et al., we can distinguish between 

children with septic shock, those with non-infectious systemic inflammatory response 

syndrome, and healthy children from differences in their serum metabolic profiles. In 

addition to its diagnostic applications, the metabolomic approach has proved very accurate 

in establishing the prognosis for septic children [145, 146]. In a case report with two control 

groups, Ambroggio et al. found higher urine concentrations of metabolites previously 

associated with sepsis in a patient with fatal methicillin-resistant Staphylococcus aureus 

pneumonia than in patients with influenza pneumonia or healthy controls. These changes 

in urinary metabolism preceded the clinical phenotype of severe sepsis, suggesting that 

establishing the extent of metabolic disruption can facilitate the early identification of a 

sepsis phenotype ahead of its clinical diagnosis [162]. 

To date, only two studies have analyzed metabolic perturbations in neonatal sepsis. In the 

study by Fanos et al., a combined approach based on nuclear magnetic resonance and gas-

chromatography/mass-spectrometry revealed a specific urinary metabolic profile in nine 

neonates with sepsis (both EOS and LOS) compared with 16 healthy newborns. Despite 

the difference in gestational age between the groups (29.1 weeks for the cases, 34.6 weeks 

for the controls), this was the first study to find different metabolic profiles in neonates 

with and without sepsis [4]. Sarafidis et al. reported that the metabolic profiles of neonates 

with proven or likely LOS differed considerably from those of their healthy peers. Overall, 

neonates with confirmed or possible LOS exhibited comparable metabolic profiles, 

indicating similar metabolic alternations upon the onset of clinical manifestations [148]. 

As far as we know, this is the first metabolomic study in which the results of untargeted 
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analyses on urine samples were validated using a targeted approach on plasma samples 

from the same neonates, which reinforces our findings. We initially analyzed urine samples 

because untargeted analysis requires a moderately large volume of biological fluid, and 

sufficient urine samples can be easily collected from preterm infants, unlike blood samples. 

We then confirmed the results of the first investigation by targeted analysis, which requires 

only a few microliters of fluid, on plasma samples collected at birth. Applying 

metabolomics to seeking new early biomarkers of sepsis in both urine and plasma samples 

offers another advantage in noninvasive urine sampling that would be particularly 

appropriate for neonates with only maternal risk factors or mild non-specific clinical signs 

of infection, who would not normally undergo blood testing. On the other hand, plasma 

sampling is much quicker, making it particularly useful in the sickest or most premature 

neonates, who would benefit most from a prompt and dependable diagnosis. 

The present report also describes the first metabolomic study to focus exclusively on 

neonates with EOS, a condition that is a major concern for neonates born at term or preterm. 

Symptoms of EOS are frequently severe and take a fulminant course unless broad-spectrum 

antibiotic therapy is started promptly, but accurate and early biomarkers of EOS are still 

lacking. By revealing a clear clustering of the metabolomes of neonates with versus without 

EOS, our findings highlight the potential of metabolomics for discovering new early 

biomarkers of disease. Because the metabolism of tryptophan and glutathione was found 

severely disrupted in septic neonates, a few metabolites of these pathways could probably 

be used as biomarkers of neonatal sepsis (a hypothesis that will be investigated in future 

studies). Our targeted analysis revealed metabolic derangements in plasma samples 

obtained at birth, meaning that they occur very early on in a state of sepsis. The biomarkers 

emerging from this approach would therefore be very useful for the early diagnosis of EOS, 

which is crucial in clinical practice. 

A further strength of our study lies in the low gestational age of the infants considered, 

which is significantly lower than in the study by Sarafidis et al. [148]. Clinical presentation 

is a key factor in the diagnosis of sepsis in the newborn, but the signs and symptoms are 

non-specific. This is particularly worrying in the case of those born very preterm, whose 

comorbidities may mimic sepsis. It is therefore primarily for the most premature neonates 

that new biochemical markers need to be discovered to help in the diagnosis of sepsis. 

Tools for the early diagnosis of sepsis are also much needed for preterm neonates without 
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any infections, who might be exposed to a greater risk of complications related to premature 

birth (e.g., LOS, necrotizing enterocolitis, reduced food tolerance) if given unnecessary 

antibiotic treatment.  

A limitation of this study concerns the small number of infants recruited, but it reflects the 

relatively low incidence of EOS. The number of infants involved in the present study is 

comparable with those of previously published research using a metabolomic approach to 

the investigation of neonatal sepsis [4, 148]. 

A second potential weakness of this report is that only one newborn in the EOS group had 

a positive blood culture. Although blood culture is still considered the gold standard for 

neonatal sepsis diagnosis, the limits of this diagnostic tool are well described, especially 

for the diagnosis of EOS: false-negative findings are not uncommon because neonatal 

bacteremia is often intermittent, and intrapartum antibiotic treatment may limit the culture’s 

diagnostic value [163, 164, 165]. To properly allocate the culture-negative neonates in the 

EOS group, we used the clinical and laboratory criteria identified by an expert meeting of 

the European Medicines Agency on neonatal and pediatric sepsis. 

Finally, our results need to be confirmed, and a validation population is currently being 

recruited for this purpose. 

Future researches will investigate, after validation of these preliminary results, the potential 

role of some metabolites of the tryptophan and glutathione pathways as early biomarkers 

of neonatal sepsis. In addition to its diagnostic accuracy in discriminating septic infants, in 

fact, an ideal biomarker should have many other characteristics: it should be from readily 

available sources, it should not be affected by comorbid conditions, and biomarker levels 

should vary rapidly in response to treatment, aiding in risk stratification and evaluation of 

prognosis. Moreover, it should be easily and rapidly measured and its analysis should not 

be too much expensive. If an ideal biomarker will emerge from these future researches, 

cost-effective methods for its measurement will be probably elaborated to fill this 

diagnostic gap.   
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8. Conclusions 

 

In conclusion, urine and plasma samples obtained from neonates with EOS at birth showed 

a distinctive metabolic profile that enabled them to be clearly distinguished from those 

without sepsis using UPLC-MS-based analysis. The tryptophan and glutathione metabolic 

pathways were severely disrupted in the septic neonates. The results of this proof-of-

concept study support the potential of metabolomics for elucidating the biological 

pathways and pathophysiological mechanisms of sepsis. Upon validation, these findings 

could lay the foundations for the discovery of new early biomarkers and therapeutic targets 

of neonatal sepsis. 

Furthermore, this information could result helpful in possibly correlating the metabolic 

profiles with the causes of sepsis. 

In future, potential metabolites of tryptophan and glutathione pathways will be tested as 

biomarkers of neonatal sepsis and, if one or more ideal candidates will be discovered, it 

will result in a greater help in the diagnosis of newborns affected by sepsis. 
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