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THE SARD PROBLEM IN STEP 2 AND IN FILIFORM CARNOT

GROUPS�,��
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Abstract. We study the Sard problem for the endpoint map in some well-known classes of Carnot
groups. Our first main result deals with step 2 Carnot groups, where we provide lower bounds (depend-
ing only on the algebra of the group) on the codimension of the abnormal set; it turns out that our bound
is always at least 3, which improves the result proved in Le Donne et al. [Ann. Inst. H. Poincaré Anal.
Non Linéaire 33 (2016) 1639–1666] and settles a question emerged in Ottazzi and Vittone [ESAIM:
COCV 25 (2019) 18]. In our second main result we characterize the abnormal set in filiform groups
and show that it is either a horizontal line, or a 3-dimensional algebraic variety.
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1. Introduction

One of the main open questions in sub-Riemannian geometry is arguably the Sard problem for the endpoint
map, cf. [2] or Section 10.2 of [14]: in fact, the problem is ubiquitous in sub-Riemannian geometry, as it has
implications on the regularity of geodesics, the regularity of the distance and of its spheres, the heat diffusion,
the analytic-hypoellipticity of sub-Laplacians, etc. The Sard problem asks whether the abnormal set, i.e. the
set of critical values of the endpoint map, is negligible or not; we refer to Section 2 for precise definitions.
Despite such a simple formulation, only very partial results are known [1, 5, 6, 16, 18] even in settings with a
rich structure such as Carnot groups [3, 7, 9–12, 15]. The goal of this note is to provide a contribution in two
meaningful classes of Carnot groups: those with nilpotency step 2, and filiform ones.

The Sard problem in step 2 Carnot groups has already been answered affirmatively in [12]; however, the
question of getting finer estimates on the size of the abnormal set was left open. In fact, in [15] it was conjectured
that the abnormal set AbnG in a Carnot group G of step 2 has codimension at least 3. The conjecture is true
in free Carnot groups of step 2, as proved in [12], and in some classes of step 2 Carnot groups [15] including all
groups of topological dimension up to 7. Our first main result, Theorem 1.1 below, is a full, positive answer to
this question: we prove in fact that AbnG has codimension at least 3 in every step 2 Carnot group G. Actually,
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our proof also provides, for the codimension of AbnG, a lower bound that is purely algebraic, depending only
on the algebraic structure of G, and which could possibly be greater than 3.

Recall that the stratified Lie algebra g � g1 ` g2 of G can always be seen as the quotient of a free stratified
Lie algebra fr of step 2 and rank r :� dim g1. In turn, fr can be identified with V `

�2
V , where the vector

space V is V :� g1 and
�2

V is the rpr� 1q{2-dimensional space of 2-vectors on V . The second layer g2 can be

identified with the quotient
�2

V {W by a vector subspace W of
�2

V ; eventually, we identify G and g by the
exponential map. With this notation we can state our first main result.

Theorem 1.1. Let G be a Carnot group of step 2 given by

G � V `

�2
V

W

for some W ¤
�2

V . Let WK2 be the orthogonal to W in
�2

V with respect to an adequate scalar product and
let k̃ :� min t rankpωq | ω PWK2z t 0 u u. Then AbnG is contained in an algebraic variety of codimension 2k̃� 1.
In particular, the abnormal set AbnG has codimension at least 3.

We refer to Proposition 3.1 for the definition of adequate scalar product. The bound 2k̃�1 on the codimension
of AbnG is not always optimal, see Examples 3.6 and 3.7; however, in some cases it provides the exact estimate,
as for instance in the well-known case of Heisenberg groups (see Ex. 3.5) where the abnormal set is the singleton
t0u and the optimal bound is indeed greater than 3.

The idea behind the proof of Theorem 1.1 can be described as follows. There is a natural projection map
π : Fr Ñ G from the free Carnot group Fr associated with fr onto G. Each horizontal curve from the identity in
G can be uniquely lifted to a horizontal curve from the identity in Fr. Abnormal curves in G are projections of
abnormal curves in Fr, but the converse is not always true: in step 2 Carnot groups one is able to characterize
those abnormal curves in Fr that project to abnormal curves in G and this leads to the precise description of
AbnG contained in formula (3.3) (see also [15], Prop. 2.5). In Proposition 3.4 we use this description to study
AbnG and eventually prove Theorem 1.1.

Our second main result settles the Sard problem in another well-studied class of Carnot groups, the one of
filiform groups, where the question was left open. Filiform groups are Carnot groups whose stratified Lie algebra
g � g1 ` � � � ` gs satisfies

dim g1 � 2, dim g2 � � � � � dim gs � 1.

In particular, dimG � s � 1. As proved in [17], filiform groups fall into two subclasses: type I filiform groups
and type II filiform groups. While type I filiform groups can be of any step s ¥ 2, type II ones always have
an odd nilpotency step; since type I and type II filiform groups are isomorphic when s � 3 (both coinciding
with the well-known Engel groups), we adopt the convention that s ¥ 5 for type II filiform groups. We refer to
Section 4.1 for precise definitions and we now pass to the statement of our second main result.

Theorem 1.2. Let G be a filiform group of step s ¥ 3.

(i) If G is a type I filiform group, then AbnG is a horizontal line.
(ii) If G is a type II filiform group, then AbnG is an algebraic variety of dimension 3.

Theorem 1.2 follows from Propositions 4.2 and 4.4 together with Remark 4.5; in these results the singular
controls and the associated abnormal curves are also characterized. The statement of Theorem 1.2 does not
include the non-interesting cases s � 1, when G � R2 and AbnG � H, and s � 2, when G is the first Heisenberg
group.

Theorems 1.1 and 1.2 show that the codimension of the abnormal set is at least 3 both in step 2 and in
filiform Carnot groups; actually, to our best knowledge there is currently no example of a Carnot group (nor
of an equiregular sub-Riemannian manifold) where the abnormal set has codimension less than 3. This might
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lead to formulate the following “strong” Sard conjecture: is it true that, in Carnot groups and/or in equiregular
manifolds, the codimension of the abnormal set is at least 3? Observe that there are counterexamples when the
equiregularity assumption is not in force, the most noticeable being the Martinet structure in R3 [13], where the
abnormal set is contained in a plane and has therefore codimension 1. At any rate, the answer to this question
seems for the moment out of reach.

2. Preliminaries

A Carnot group G of rank r and step s is a connected, simply connected and nilpotent Lie group whose Lie
algebra g, here identified with the tangent at the group identity e, admits a stratification of the form:

g � g1 ` � � � ` gs,

with gi�1 � rg, gis for 1 ¤ i ¤ s � 1, rg, gss � t0u and dimpg1q � r. The exponential map exp : g Ñ G is a
diffeomorphism.

Denoting by Lg the left-translation on G by an element g P G, we consider the endpoint map

F : L1pr0, 1s, g1q Ñ G,
u ÞÑ γup1q,

where we denoted by γu : r0, 1s Ñ G the absolutely continuous curve issuing from e, whose derivative is given
by pdLγuptqqeuptq for a.e. t P r0, 1s. Any such curve γu is called horizontal.

The following Proposition 2.1 was proved in Proposition 11 of [7]. Let us state some notation. We fix a basis
X1, . . . , Xr of g1, so that we can identify g1 � Rr by Rr Q uÔ Xu P g1 where

Xu :� u1X1 � � � � � urXr.

As customary, for X,Y P g we write adXpY q :� rX,Y s, while for p P G we denote by Rp : GÑ G the associated
right-translation Rppqq � qp. Eventually, given t ¥ 0 and an integer j ¥ 1 we introduce the j-dimensional
simplex Σjptq of side t by

Σjptq :� tpτ1, . . . , τjq P Rj | 0 ¤ τj ¤ � � � ¤ τ1 ¤ tu

With this notation one has the following.

Proposition 2.1. Let u P L1pr0, 1s, g1q be a control; then

Im pduF q � deRγup1q

�
span

Y Pg1,tPr0,1s

#
Y �

s�1̧

j�1

»
Σjptq

�
adXupτjq � � � � � adXupτ1q

�
Y dτj . . . dτ1

+�
. (2.1)

In particular

deRγup1qpg1q � Im pduF q. (2.2)

Statement (2.2) follows from (2.1) by considering t � 0, see also equation (2.11) of [7]. Proposition 2.1 is
crucial for the study of abnormal curves, that we now introduce.

Definition 2.2. Let G be a Carnot group; we say that u P L1pr0, 1s, g1q is a singular control if the differential
duF of the endpoint map at u is not surjective. A horizontal curve γu from the identity e is called singular (or
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abnormal) curve if the associated control u is singular. The abnormal set AbnG � G is the set of critical values
of F , i.e.,

AbnG :� tγup1q | u P L
1pr0, 1s, g1q is a singular controlu.

In particular, a point g P G belongs to AbnG if and only if there exists an abnormal curve joining e and g.

In the setting of Carnot groups of step 2, Proposition 2.1 allows to characterize abnormal curves in a par-
ticularly simple way. Let G be a fixed Carnot group of step 2 with Lie algebra g � g1 ` g2 and denote by
π1 : g1 ` g2 Ñ g1 the canonical projection onto the first layer. Given an horizontal curve γ in G we define

Pγ � span t π1pγptqq | t P r0, 1s u � g1

Iγ � g1 ` rPγ , g1s .
(2.3)

Starting from Proposition 2.1 it is not difficult to realize that Im pduF q � deRγup1qpIγq; in particular,

γ abnormal ô Iγ � g ô rPγ , g1s � g2 . (2.4)

For more details see Section 2 of [15].
The characterization (2.4) of abnormal curves, in turn, allows to find an explicit, purely algebraic formula

(see (3.3) below) for the abnormal set AbnG: we however postpone its proof in order to fist settle some notation
and preliminary material about step 2 Carnot groups.

3. The Sard problem in step 2 Carnot groups

In this section we consider Carnot groups of step s � 2 and a fixed rank r ¥ 2. Recall that a Carnot group
is free if the only relations imposed on its Lie algebra are those generated by the skew-symmetry and Jacobi’s
identity. Let us denote by Fr the free Carnot group of step 2 and rank r and by V � pfrq1 the first layer of the

associated Lie algebra fr. Clearly, fr � V ` rV, V s can be identified with V `
�2

V .
The following proposition is standard and we omit its proof.

Proposition 3.1. Given a free Lie algebra fr � V `
�2

V and a scalar product on V , there is a unique way to
extend it to a scalar product on fr such that for every orthonormal basis t e1, . . . , er u of V , the basis

t e1, . . . , er u Y t ei ^ ej | i   j u

is orthonormal. We will refer to such a scalar product as an adequate scalar product on fr.

Let now G be a fixed Carnot group of step 2 and rank r; then its Lie algebra g � g1 ` g2 can be seen as the
quotient of fr through a linear subspace W ¤

�2
V , so that

g1 � V and g2 �

�2
V

W
. (3.1)

Identifying G and g through the exponential map, we have G � πpfrq where π is the quotient map.
The necessity of using the language of multi-vectors motivates the following subsection, where we fix some

terminology and state some preliminary facts. Most of them are well-known, see however Section I.1 of [8].
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3.1. Some tools from multi-linear algebra

Let V be a real vector space of dimension r. We will refer to

Grpk, V q � tW ¤ V | dimW � k u

as the rank k Grassmanian of V . It has a structure of real projective algebraic variety, with no singular points.
Let us consider the following open subset of V k:

Ik �
 
pv1, . . . , vkq P V

k
�� v1, . . . , vk are linearly independent

(
,

then Grpk, V q also has a structure of smooth manifold such that the map

span: Ik Ñ Grpk, V q pv1, . . . , vkq ÞÑ span t v1, . . . , vk u

is smooth. The topology of such manifold is equivalent to the topology of Grpk, V q as an algebraic variety (with
the topology given by the inclusion).

Given a basis e1, . . . , er of V , the second exterior power
�2

V of V is generated by t ei ^ ej | i   j u. The rank

of ω P
�2

V is the smallest integer k such that one can find v1, . . . , v2k for which ω � v1^ v2� � � �� v2k�1^ v2k;
in this case we write rankpωq � k and define the support (or span, see also [4], Sect. 5) of ω

sptpωq :� spantv1, . . . , v2ku.

As a matter of fact, sptpωq is the smallest subspace W ¤ V such that ω P
�2

W , hence it is independent of the
choice of v1, . . . , v2k.

Once a basis for V is fixed, the space
�2

V can be canonically identified with the space Skewpr,Rq of
skew-symmetric r � r matrices by

A Õ ωpAq �
¸
i j

Aijpei ^ ejq.

Observe that the rank of A (as a matrix) is twice the rank of ωpAq (as a 2-vector). We define

�©2
V
	
k

:�
!
ω P

©2
V

��� rankpωq � k
)

�©2
V
	
¤k

:�
!
ω P

©2
V

��� rankpωq ¤ k
)

Ak :� tA P Skewpr,Rq | rankpAq � 2k u

A¤k :� tA P Skewpr,Rq | rankpAq ¤ 2k u

and we write down the following identifications:

�©2
V
	
k
Ô Ak

�©2
V
	
¤k
Ô A¤k . (3.2)

We observe that A¤k is an affine algebraic variety, as we impose every minor of order 2k � 1 to be zero, while
Ak is an affine semi-algebraic variety, as we impose every minor of order 2k � 1 to be zero and the sum of all
squared minors of order 2k to be positive, so that at least one is non-zero.

We will now prove that Ak, endowed with the topology induced by the inclusion in Skewpr,Rq, has a structure
of smooth manifold of dimension kp2r � 2k � 1q. We will also provide a useful system of local coordinates. The
identification Skewpr,Rq � Rrpr�1q{2 is understood.
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Lemma 3.2. Let ω � e1 ^ e2 � � � � � e2k�1 ^ e2k be a 2-vector of rank k; let t e1, . . . , e2k u be completed to a
basis t e1, . . . , er u of V and consider the associated identifications (3.2). Then there exists an open cone U � Ak

containing ω and rational functions

λt, a
s
t , b

s
t : U Ñ R, 1 ¤ t ¤ k , 2t� 1 ¤ s ¤ r

such that

ωpAq �
ķ

t�1

�
λtpAqe2t�1 �

ŗ

s�2t�1

ast pAqes

�
^

�
e2t �

ŗ

s�2t�1

bst pAqes

�
.

In particular, the function ρ :� pλt, a
s
t , b

s
t q1¤t¤k,2t�1¤s¤r : U Ñ Rkp2r�2k�1q is an homeomorphism into its

image and Ak has the structure of kp2r � 2k � 1q-dimensional smooth manifold.

Proof. Let Aω be the matrix associated to ω with respect to the basis t e1, . . . , er u. For A P Ak we consider the
map

ω0pAq �
¸
i j

Aijpei ^ ejq .

Let us consider U1 � tA P Ak, A12 � 0 u, it is an open cone and neighbourhood of ω, for A P U1 we can write

ωpAq �
¸
i j

Aijpei ^ ejq

�

�¸
i

Ai2ei

�
^

�
e2 �

¸
j¥3

A1j

A12
ej

�
�

¸
3¤i j

Aj2A1i �Ai2A1j

A12
pei ^ ejq �

¸
3¤i j

Aijpei ^ ejq

�

�¸
i

Ai2ei

�
^

�
e2 �

¸
j¥3

A1j

A12
ej

�
�

¸
3¤i j

�
Aij �

Aj2A1i �Ai2A1j

A12



pei ^ ejq .

We define the rational functions

λ1 :� A12, as1 :� As2, b
s
1 :�

A1s

A12
, for every s � 3, . . . , r

and let

ω1pAq :�
¸

3¤i j

�
Aij �

Aj2A1i �Ai2A1j

A12



pei ^ ejq.

We now notice that sptpω1pAqq � t e3, . . . , er u, moreover
°
iAi2ei and e2 �

°
j¥3

A1j

A12
ej are jointly linear inde-

pendent from t e3, . . . , en u: therefore, ω0pAq is the sum of ω1pAq and a simple (i.e., with rank 1) vector with
support in direct sum with sptpω1pAqq, and this implies that rankω1pAq � rankω0pAq � 1 � k � 1. We now
consider the open cone

U2 �

"
A P U1

���A34 �
A42A13 �A32A14

A12
� 0

*
,

which is also a neighbourhood of ω, and we recall that rational functions are closed under composition.
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Iterating this process k times, we obtain an open cone U :� Uk � Ak containing ω and rational functions

λt, a
s
t , b

s
t : U Ñ R, 1 ¤ t ¤ k , 2t� 1 ¤ s ¤ r

such that

ωpAq �
ķ

t�1

ωtpAq �
ķ

t�1

�
λtpAqe2t�1 �

ŗ

s�2t�1

ast pAqes

�
^

�
e2t �

ŗ

s�2t�1

bst pAqes

�
, A P U.

The vector function ρ :� pλt, a
s
t , b

s
t q1¤t¤k,2t�1¤s¤r is clearly smooth on U , since its components are rational

functions. The function η : Rkp2r�2k�1q Ñ Ak defined by

pλt, a
s
t , b

s
t q1¤t¤k,

2t�1¤s¤r

η
ÞÝÑ

ķ

t�1

�
λte2t�1 �

ŗ

s�2t�1

astes

	
^
�
e2t �

ŗ

s�2t�1

bstes

	
�

¸
i j

ηijpei ^ ejq

coincides with ρ�1 on ρpUq, and its coefficients ηij are evidently polynomial functions in pλt, a
s
t , b

s
t q. Thus ρ is

an homeomorphism onto its image and Ak is a topological manifold. Finally, transition maps are compositions
of rational function with a polynomial map, hence smooth. Therefore Ak is also a smooth manifold.

Remark 3.3. In the previous construction, λt and ast are homogeneous rational functions of degree one while
bst are homogeneous rational functions of degree zero.

3.2. Estimate of the abnormal set in Carnot groups of step 2

Hereafter we will always consider a free Lie algebra fr � V `
�2

V of step 2 and rank r ¥ 2 equipped with
an adequate scalar product, as in Proposition 3.1; the symbol K will indicate orthogonality with respect to such
scalar product. Recall that the Lie algebra g � g1 ` g2 of a Carnot group G of step 2 and rank r can always be
written as in (3.1) for some subspace W ¤

�2
V , that is fixed from now on. Let us introduce the notation: if

A ¤ V and B ¤
�2

V (so that A,B are subspaces of fr too), then

AK1 :� AK X V � V � g1

BK2 :� BK X
�2

V �
�2

V.

Let us identify Fr � fr and G � g by the associated exponential maps and let π : Fr � fr Ñ g � G the
quotient map. Given a horizontal curve γ0 : r0, 1s Ñ G such that γ0p0q � 0, there exists a unique horizontal
curve γ : r0, 1s Ñ Fr such that γ0 � π �γ and γp0q � 0. The curves γ0 and γ are associated with the same control
uptq; recalling the notation in (2.3), one has π1pγ0q � π1pγq, thus Pγ0 � Pγ and Iγ0 � πpIγq. In particular, an
abnormal curve γ : r0, 1s Ñ Fr is the lift of an abnormal curve on G if and only if πpIγq � g, i.e., if and only if

Iγ �W � V `
�2

V , that in turn is equivalent to

IKγ XWK � t 0 u .

We can compute IKγ � pV ` rPγ , V sq
K
� rPγ , V s

K2 � rPK1
γ , PK1

γ s �
�2 �

PK1
γ

�
, where we used the fact that the

subspaces rPγ , V s and rPK1
γ , PK1

γ s are orthogonal and complementary in
�2

V . Since γ � Pγ ` rPγ , Pγs, we
deduce that

AbnG � π
�¤!

QK1 ` rQK1 , QK1s
��� Q ¤ V ,

�2
QXWK2 � t 0 u

)	
�

¤!
π
�
QK1 `

�2
QK1

	 ��� Q ¤ V ,
�2

QXWK2 � t 0 u
)
.

(3.3)
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This formula for AbnG is equivalent to Proposition 2.5 of [15]. If g P AbnG, then g P π
�
QK1 `

�2
QK1

	
for some

Q ¤ V such that
�2

QXWK2 � t 0 u, therefore there exists ω � ωpgq P
�2

QXWK2 � t 0 u. Thus sptpωq ¤ Q
and QK1 ¤ sptpωqK1 . We obtained that

AbnG �
¤!

π
�

sptpωqK1 `
�2

sptpωqK1

	 ��� ω PWK2z t 0 u
)

�
¤
k

¤!
π
�

sptpωqK1 `
�2

sptpωqK1

	 ��� ω PWK2z t 0 u , rankpωq � k
)
.

(3.4)

The following estimate is the most important result of the present section.

Proposition 3.4. The set

Ek,W :�
¤!

π
�

sptpωqK1 `
�2

sptpωqK1

	 ��� ω PWK2z t 0 u , rankpωq � k
)

is contained in an algebraic variety of codimension 2k � 1.

Proof. We define

Ak,W �
 
ω PWK2z t 0 u

�� rankpωq � k
(
,

Am
k,W �

!
ω PWK2z t 0 u

��� rankpωq � k, dim
�
W X

�2
sptpωqK1

	
� m

)
,

Bpωq � π
�

sptpωqK1 `
�2

sptpωqK1

	
,

Emk,W �
¤ 

Bpωq
�� ω P Am

k,W

(
.

We notice that Ak,W and Am
k,W are cones and semi-algebraic subvarieties of Ak. Moreover Bpλωq � Bpωq for

λ P Rz t 0 u and

dimBpωq � pr � 2kqpr � 2k � 1q

2
�m for ω P Am

k,W

that is constant over ω P Am
k,W . Therefore Emk,W is contained in an algebraic variety of dimension

pr � 2kqpr � 2k � 1q

2
�m�Rpm, k,W q � 1 (3.5)

where Rpm, k,W q is the smallest dimension of a smooth semi-algebraic variety containing Am
k,W . Indeed, let

ω0 P Am
k,W ; Am

k,W can locally be parametrized by Rpm, k,W q ¤ dimAm
k,W parameters around ω0. Let us consider

tBpωq | ω P Am
k,W u, that is a semi-algebraic variety (since it is image of a semi-algebraic variety through an alge-

braic map) whose dimension is not greater than dimAm
k,W �1 (since each non-empty fibre of tBpωq | ω P Am

k,W u
contains a one-dimensional set as Bpλωq � Bpωq). Finally we recall that the described local parametrization
of Am

k,W also provides an algebraic map Am
k,W Ñ V 2k that maps ω to a basis of sptpωq, thus we can locally

find a basis to Bpωq that depends algebraically on ω, using this basis we can parametrize Bpωq with dimBpωq
parameters. As a result, for every x P Emk,W there is a local algebraic submersion from a neighbourhood of

RRpm,k,W q to (possibly a superset of) a neighbourhood of x.
The final step of the proof is to estimate Rpm, k,W q: setting n :� dimW , we will prove that

Rpm, k,W q ¤ dimAk � pn�mq � kp2r � 2k � 1q � n�m,



THE SARD PROBLEM IN STEP 2 AND IN FILIFORM CARNOT GROUPS 9

where we used Lemma 3.2. Let ω0 P Am
k,W be fixed, then ω0 � e1^ e2�� � �� e2k�1^ e2k for linearly independent

vectors e1, . . . , e2k P V , non necessarily orthogonal. Let us consider an orthonormal basis t e2k�1, . . . , er u of
sptpω0q

K1 so that t e1, . . . , e2k, e2k�1, . . . , er u is a basis for V . Considering this basis, Lemma 3.2 provides the

local (around ω0) parametrization of Ak � p
�2

V qk (which is a superset of Am
k,W ) given by

ωpξ, a, bq � ω0 �
ķ

t�1

�
ξtpe2t�1 ^ e2t �

ŗ

s�2t�1

�
ast pe2t ^ esq � bst pe2t�1 ^ esq

	�
�

¸
t s

Qtspξ, a, bqpet ^ esq

where Qtspξ, a, bq are homogeneous polynomial of degree 2 in pξ, a, bq. In the previous parametrization we used
Lemma 3.2 making the useful substitution λi � 1 � ξi, so that ω0 � ωp0, 0, 0q. Let us now consider the basis
v1, . . . , vr of V defined by

vi P pspan t ej | j � i uq
K

xei, viy � 1 @ i � 1, . . . , r ,

so that

xvi, ejy � δij for every i, j � 1, . . . , r
vj � ej for every j � 2k � 1, . . . , r
span t v1, . . . , v2k u � span t e1, . . . , e2k u

Let θ1, . . . , θn be a set of generators for W such that

span t θn�m�1, . . . , θn u �W X
�2

sptpω0q
K1 �W X

�2
span t v2k�1, . . . , vr u . (3.6)

Let θhij be the coordinates of θh with respect to the basis t vi ^ vj | i   j u, i.e.,

θh �
¸
i j

θhijpvi ^ vjq, h � 1, . . . , n .

By (3.6)

θhij � 0 whenever n�m� 1 ¤ h ¤ n, i ¤ 2k and i   j. (3.7)

The orthogonality between ωpξ, a, bq and W can be expressed by the system

xωpξ, a, bq, θ1y � � � � � xωpξ, a, bq, θny � 0

which, due to

xvi ^ vj , eh ^ e`y � xvi, ehy xvj , e`y � xvi, e`y xvj , ehy

� δihδj` � δi`δjh

� δihδj` whenever i   j and h   `,

in local coordinates becomes$'''&
'''%
P1pξ, a, bq :�

°k
i�1

�
ξiθ

1
2i�1,2i �

°r
j�2i�1

�
ajiθ

1
2i,j � bjiθ

1
2i�1,j

��
�
°
i j Qijpξ, a, bqθ

1
i,j � 0

...

Pnpξ, a, bq :�
°k
i�1

�
ξiθ

n
2i�1,2i �

°r
j�2i�1

�
ajiθ

n
2i,j � bjiθ

n
2i�1,j

��
�
°
i j Qijpξ, a, bqθ

n
i,j � 0 .
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The latter system defines the algebraic variety Ak,W that contains Am
k,W . We can estimate the dimension of

Ak,W (and therefore the dimension of Am
k,W ) computing the rank of dP p0, 0, 0q were P is the polynomial function

P pξ, a, bq �

�
��
P1pξ, a, bq

...
Pnpξ, a, bq

�
� .

We observe that d
�°

i j Qijpξ, a, bqθ
h
i,j

	
p0, 0, 0q � 0 since Qij are homogeneous polynomial of degree 2 in ξ, a, b.

Now we finally compute

dP p0, 0, 0q �

�
���
θ1

1,2 � � � θ1
2k�1,2k

�
θ1

2i,j

�j�2i�1,...,r

i�1,...,k

�
θ1

2i�1,j

�j�2i�1,...,r

i�1,...,k
...

. . .
...

...
...

θn1,2 � � � θn2k�1,2k

�
θn2i,j

�j�2i�1,...,r

i�1,...,k

�
θn2i�1,j

�j�2i�1,...,r

i�1,...,k

�
��

�

�
���
�
θ1
ij

�
i¤2k,i j
...�

θnij
�
i¤2k,i j

�
��

so that by (3.7)

rankpdP p0, 0, 0qq � rank

�
���
�
θ1
ij

�
i¤2k,i j
...�

θnij
�
i¤2k,i j

�
��� rank

�
���

�
θ1
ij

�
i¤2k,i j
...�

θn�mij

�
i¤2k,i j

�
�� .

Moreover we know that

rank

�
���
�
θ1
ij

�
i j

...�
θnij

�
i j

�
��� n and rank

�
���
�
θn�m�1
ij

�
2k�1¤i j

...�
θnij

�
2k�1¤i j

�
��� m,

where we used the fact that t θ1, . . . , θn u is a basis for W and (3.6). Then

n � rank

�
�����������

�
θ1
ij

�
i¤2k,i j
...�

θn�mij

�
i¤2k,i j

�

0

�
θn�m�1
ij

�
2k�1¤i j

...�
θnij

�
2k�1¤i j

�
����������
,
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hence

n � rank

�
���

�
θ1
ij

�
i¤2k,i j
...�

θn�mij

�
i¤2k,i j

�
��� rank

�
���
�
θn�m�1
ij

�
2k�1¤i j

...�
θnij

�
2k�1¤i j

�
��

and

rank pdP p0, 0, 0qq � rank

�
���

�
θ1
ij

�
i¤2k,i j
...�

θn�mij

�
i¤2k,i j

�
��� n� rank

�
���
�
θn�m�1
ij

�
2k�1¤i j

...�
θnij

�
2k�1¤i j

�
��� n�m.

Thus we proved that at any point ω0 P Am
k,W , the algebraic variety Am

k,W is locally contained in a smooth
manifold of dimension

dimAk � pn�mq � kp2r � 2k � 1q � n�m.

Recalling (3.5), we can now estimate

dimEmk,W �
pr � 2kqpr � 2k � 1q

2
�m�Rpm, k,W q � 1

¤
pr � 2kqpr � 2k � 1q

2
�m� kp2r � 2k � 1q � n�m� 1

�
rpr � 1q

2
� kp2r � 1q � 2k2 � 2kr � 2k2 � k � 1� n

�
rpr � 1q

2
� n� p2k � 1q

� dimG� p2k � 1q .

Since Ek,W is a finite union of sets Emk,W , we can conclude that also Ek,W is contained in an algebraic variety
of codimension 2k � 1.

We can now prove one of our main results.

Proof of Theorem 1.1. Recalling (3.4), we have AbnG �
�
k Ek,W and, by Proposition 3.4, each Ek,W has codi-

mension at least 2k� 1 in G. The statement follows by noticing that k̃ � min t rankpωq | ω PWK2z t 0 u u is the
smallest k such that Ek,W is non-empty.

One may ask whether the estimate on the dimension of the abnormal set provided by Theorem 1.1 is optimal.
Heisenberg groups provide a family of Carnot groups where this estimate is optimal.

Example 3.5. The k-th Heisenberg group is the stratified group Hk whose Lie algebra stratification g � g1` g2

is given by

g1 � span tX1, . . . , Xk, Y1, . . . , Yk u , g2 � span t T u ,

and the only non-zero Lie brackets between generators are

rXi, Yis � T for i � 1, . . . , k .
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It can be easily checked that g2 �
�2

V {W for W :� spanpX1 ^ Y1 � � � � �Xk ^ Ykq
K2 , hence WK is a one

dimensional subspace spanned by a 2-vector of rank k. This implies that k̃ � k, and it is well known (see e.g. [15],
Ex. 2.4) that AbnHk � t0u has codimension 2k � 1.

On the other hand, this is not always the case. The estimate on dimEk,W we found in Proposition 3.4 may
be loose due to two possible issues:

� First issue: we may have sptpω1q � sptpω2q for two linearly independent 2-vectors ω1, ω2 P W
K2z t 0 u, as

in Example 3.6 below.
� Second issue: we computed the dimension of the algebraic variety defined by

P1pξ, a, bq � � � � � Pn�mpξ, a, bq � 0,

while the variety defined by

P1pξ, a, bq � � � � � Pnpξ, a, bq � 0

may have a lower dimension, despite not being a smooth manifold around ω0. Observe that this does not
constitute a problem when A0

k,W is non-empty, while it is the reason behind the following Example 3.7.

We now provide two examples of Carnot groups whose abnormal sets has even codimension: therefore, in
both cases the estimate provided by Theorem 1.1 is not optimal.

Example 3.6. Let G be the 6-dimensional Carnot group of step 2 whose stratified algebra g � g1 ` g2 is such
that

g1 � span tX1, X2, X3, X4 u , g2 � span tT1, T2 u

and the only non-vanishing commutation relations between the generators are given by

rX1, X2s � rX3, X4s � T1, rX1, X4s � rX2, X3s � T2.

We can see g as the quotient f4{W of the free algebra f4 � V `
�2

V (where V :� g1 ) by the subspace

W ¤
�2

V defined by

WK2 :� span tω1, ω2 u , where

ω1 :� X1 ^X2 �X3 ^X4 and ω2 :� X1 ^X4 �X2 ^X3.

The adequate scalar product on f4 we consider is the one such that X1, X2, X3, X4 is orthonormal. We claim
that WK2 does not contain simple 2-vectors. Indeed, the determinant of the skew-symmetric matrix Atω1�sω2

associated with the linear combination tω1 � sω2 is

detpAtω1�sω2q �

∣∣∣∣∣∣∣∣
0 t 0 s
�t 0 s 0
0 �s 0 t
�s 0 �t 0

∣∣∣∣∣∣∣∣ � pt2 � s2q2,

which is not null as long as t and s are not both zero. It follows that every non trivial linear combination ω of
ω1 and ω2 has rank 2 and, in particular, spt ω � V . Recalling (3.4)

AbnG �
¤!

π
�

sptpωqK1 `
�2

sptpωqK1

	 ��� ω PWK2z t 0 u , rankpωq � 2
)
� t 0 u ,
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hence AbnG � t0u has codimension 6.

In the previous example, the codimension is less than 5 (as estimated by Thm. 1.1) because of the first issue,
as ω1 and ω2 are two linearly independent 2-vectors in WK2 with the same support. In order to construct an
example where the codimension is 4, we will instead build on the second issue. Namely, we will provide an
example where A1,W � H, but A0

1,W � H, taking advantage of the geometry of simple 2-vectors.

Example 3.7. Let G be the 6-dimensional Carnot group of step 2 whose stratified algebra g � g1 ` g2 is such
that

g1 � span tX1, X2, X3, X4 u , g2 � span tT1, T2 u

and the only non-vanishing commutation relations between the generators are given by

rX1, X2s � T1, rX1, X4s � rX2, X3s � T2.

We can see g as the quotient f4{W of the free algebra f4 � V `
�2

V (where V :� g1 ) by the subspace

W ¤
�2

V defined by

WK2 :� span tω1, ω2 u , where

ω1 :� X1 ^X2 and ω2 :� X1 ^X4 �X2 ^X3.

The adequate scalar product on f4 we consider is the one such that X1, X2, X3, X4 is orthonormal. The
determinant of the skew-symmetric matrix Atω1�sω2

associated with the linear combination tω1 � sω2 is

detpAtω1�sω2q �

∣∣∣∣∣∣∣∣
0 t 0 s
�t 0 s 0
0 �s 0 0
�s 0 0 0

∣∣∣∣∣∣∣∣ � s4,

which is zero if and only if s � 0; in particular, a linear combination ω � tω1 � sω2 � tω1 ha rank 1 if and only
if it is a (non-zero) multiple of X1 ^X2. Recalling (3.4)

AbnG � π
�

sptpX1 ^X2q
K1 `

�2
sptpX1 ^X2q

K1

	
Y
¤!

π
�

sptpωqK1 `
�2

sptpωqK1

	 ��� ω PWK2z t 0 u , rankpωq � 2
)

� span tX3, X4 u ` t 0 u Y t 0 u ,

where we used the fact that
�2

span tX3, X4 u �W . Eventually, AbnG � span tX3, X4 u has codimension 4.

4. The Sard problem in filiform groups

4.1. Filiform groups

A filiform group is a Carnot group associated with a stratified Lie algebra g � g1 ` � � � ` gs such that

dim g1 � 2 and dim g2 � � � � � dim gs � 1.

We fix a basis X1, . . . , Xs�1 of g such that

g1 � spantX1, X2u and gj � spantXj�1u @ j � 2, . . . , s.
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There are two non-isomorphic classes of filiform groups only (see [17]), which we list according to their non-trivial
bracket relations:

� Type I filiform groups, where the only non-trivial relations are given by

X3 � rX1, X2s,

X4 � rX1, X3s � rX1, rX1, X2ss,

...

Xs�1 � rX1, Xss � rX1, r. . . , rX1looooooomooooooon
ps� 1q-times

, X2s . . . ss.

� Type II filiform groups, where s is odd and the only non-trivial relations are given by

X3 � rX1, X2s,

X4 � rX1, X3s � rX1, rX1, X2ss,

...

Xs � rX1, Xs�1s � rX1, r. . . , rX1looooooomooooooon
ps� 2q-times

, X2s . . . ss,

Xs�1 � p�1qirXi, Xs�2�is, for every i � 2, . . . , s.

Remark 4.1. We observe that the filiform groups of type I and II with nilpotency step s � 3 are isomorphic
(Engel group); we can therefore adopt the convention that the step of a type-II filiform is an odd integer s ¥ 5.

We will denote by X�
1 , . . . , X

�
s�1 the basis of g� dual to X1, . . . , Xr; accordingly, each λ P g� is written in

these coordinates as λ � λ1X
�
1 � � � � � λs�1X

�
s�1 for suitable λ1, . . . , λs�1.

4.2. Type I filiform groups

Let us characterize singular curves in type I filiform groups of step s ¥ 3. For the well-known case s � 2 (i.e.,
the first Heisenberg group) see Remark 4.3.

Proposition 4.2. Let G be a type I filiform group of step s ¥ 3 with generators X1, . . . , Xs�1, as in Section 4.1.
Then singular controls u P L1pr0, 1s, g1q are exactly those for which u1 � 0 a.e. on r0, 1s. In particular, abnormal
curves are the absolutely continuous curves contained in the line t ÞÑ expptX2q and AbnG � texpptX2q | t P Ru
has codimension s.

Proof. Let u P L1pr0, 1s, g1q be a singular control. Using (2.1) with Y � X2 and taking the bracket relations
into account, Proposition 2.1 implies that the subspace

span
tPr0,1s

$&
%X2 �

» t
0

u1pτ1qdτ1 X3 �

¼
0¤τ2¤τ1¤t

u1pτ2qu1pτ1qdτ2dτ1 X4

� � � � �

»
� � �

»
0¤τs�1¤���¤τ1¤t

u1pτs�1q . . . u1pτ1qdτs�1 . . . dτ1 Xs�1

,/.
/-

(4.1)
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is contained in pdeRγup1qq
�1pIm duF q. Since u is singular, there exists λ P g� such that λ � 0 and λ K

pdeRγup1qq
�1pIm duF q. By (2.2) we have

λ1 � λ2 � 0. (4.2)

Since λ is orthogonal to all the elements in (4.1) we deduce that for every t P r0, 1s

Aλ1 ptq :�λ3

» t
0

u1pτ1qdτ1 � λ4

¼
0¤τ2¤τ1¤t

u1pτ2qu1pτ1qdτ2dτ1

� � � � � λs�1

»
� � �

»
0¤τs�1¤���¤τ1¤t

u1pτs�1q . . . u1pτ1qdτs�1 . . . dτ1 � 0.

(4.3)

For i � 2, . . . , s� 1 we introduce Ai : r0, 1s Ñ R by

Aλi ptq :� λi�1 � λi�2

» t
0

u1pτiqdτi � � � � � λs�1

»
� � �

»
0¤τs�1¤���¤τi¤t

u1pτs�1q . . . u1pτiqdτs�1 . . . dτi,

Aλs ptq :� λs�1

so that for each i � 1, . . . , s� 1

d

dt
Aλi ptq � u1ptqA

λ
i�1ptq for a.e. t P r0, 1s. (4.4)

Assume that C0 :� tt P r0, 1s | u1ptq � 0u is such that L 1pC0q ¡ 0; then

C1 :� tt P C0 | t is a Lebesgue point of u1u

satisfies L 1pC1q ¡ 0. Observe that C1 does not contain any isolated point. Differentiating (4.3) and using (4.4)
we find u1ptqA

λ
2 ptq � 0 for a.e. t P r0, 1s, therefore

Aλ2 ptq � 0 for a.e. t P C1.

We claim that also

Aλ3 ptq � 0 for a.e. t P C1.

In fact, by (4.4) one has that at every differentiability point t P C1 of Aλ2

Aλ2 pt� hq � h � u1ptqA
λ
3 ptq � ophq � 0

for all h sufficiently small, implying that t� h R C1 for all sufficiently small values of h, i.e. that t is isolated in
C1. This would be a contradiction.

Inductively, suppose that we have proved that Aλi ptq is zero for a.e. t P C1 and let us then show that
Aλi�1ptq � 0 for a.e. t P C1. If, by contradiction, this were not true, then at differentiability points of Aλi we
would have

Aλi pt� hq � h � u1ptqA
λ
i�1ptq � ophq � 0
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Figure 1. Example of an abnormal curve in type II filiform groups.

for all h sufficiently small, implying that t� h R C1 for all such values of h, contradicting the fact that C1 does
not contain any isolated point.

We have thus proved the following: almost every t P C1 is a common zero for the functions A1, . . . , As. But
this readily implies that λs�1 � � � � � λ3 � 0, which is impossible since the covector λ has to be nonzero.

We conclude that a singular control u satisfies u1ptq � 0 a.e. on r0, 1s. Conversely, every control u such that
u1 � 0 is indeed singular: in fact, in this case Proposition 2.1 gives

Im pduF q � deRγup1qpg1 ` g2q

unless u2 � 0 on r0, 1s as well, in which case Im pduF q � deRγup1qpg1q. In both cases, we deduce that u is singular
because s ¥ 3, and this concludes the proof.

Remark 4.3. When s � 2 the filiform group G is the 3-dimensional Heisenberg group H1. In this setting one
can follow the previous proof to find that the only singular control is the null one. In particular, AbnH1 � teu.

4.3. Type II filiform groups

We now study singular curve in type II filiform groups; recall that the nilpotency step of such groups is an
odd integer not smaller than 5, see Remark 4.1.

Proposition 4.4. If G is a type II filiform group of step s ¥ 5, then u P L1pr0, 1s, g1q is a singular control if
and only if there exists a P R such that both the following statements

(i) either u1ptq � 0 or u2ptq � 0

(ii) if u1ptq � 0, then
³t
0
u2pτq dτ � a

hold for a.e. t P r0, 1s.

Before proving Proposition 4.4, let us discuss its implications about the geometry of abnormal curves in type
II filiform groups.

Remark 4.5. Let us briefly discuss the geometry of the abnormal curves associated with the singular controls
described in Proposition 4.4. Let u P L1pr0, 1s, g1q be a control as in Proposition 4.4 and let X : r0, 1s Ñ g1 be
a primitive of u. Condition (i) implies that X is a concatenation of segments parallel to the coordinate axis in
g1 � R2, while condition (ii) requires that the segments that are parallel to the first axis are all contained in
the line X2 � a. See Figure 1. The abnormal curve γu is uniquely determined by Xptq.

It is a standard task to deduce that

AbnG � texppaX2q exppbX1q exppcX2q | a, b, c P Ru
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and, in particular, AbnG is an algebraic variety of dimension 3. In particular, AbnG has codimension s� 2 ¥ 3.

We now prove Proposition 4.4.

Proof of Proposition 4.4. Step 1. Let u P L1pr0, 1s, g1q be a singular control. Using (2.1) with Y � X2 and taking
the bracket relations into account, Proposition 2.1 implies that the subspace

span
tPr0,1s

$&
%X2 �

» t
0

u1pτ1qdτ1 X3 �

¼
0¤τ2¤τ1¤t

u1pτ2qu1pτ1qdτ2dτ1 X4

� � � � �

»
� � �

»
0¤τs�1¤���¤τ1¤t

u2pτs�1qu1pτs�2q . . . u1pτ1qdτs�1 . . . dτ1 Xs�1

,/.
/-

(4.5)

is contained in pdeRγup1qq
�1pIm duF q. Since u is singular, there exists λ P g� such that λ � 0 and λ K

pdeRγup1qq
�1pIm duF q. By (2.2) we have

λ1 � λ2 � 0. (4.6)

Since λ is orthogonal to all the elements in (4.5) we deduce that for every t P r0, 1s

Aλ1 ptq
�

:�λ3

» t
0

u1pτ1qdτ1 � λ4

¼
0¤τ2¤τ1¤t

u1pτ2qu1pτ1qdτ2dτ1

� � � � � λs�1

»
� � �

»
0¤τs�1¤���¤τ1¤t

u2pτs�1qu1pτs�2q . . . u1pτ1qdτs�1 . . . dτ1 � 0.

(4.7)

For i � 2, . . . , s� 2 we introduce Aλi : r0, 1s Ñ R by

Aλi ptq :� λi�1 � λi�2

» t
0

u1pτiqdτi � � � � � λs�1

»
� � �

»
0¤τs�1¤���¤τi¤t

u2pτs�1q . . . u1pτiqdτs�1 . . . dτi,

Aλs�1ptq :� λs � λs�1

» t
0

u2pτqdτ

Aλs ptq :� λs�1,

(4.8)

so that for each i � 1, . . . , s� 1

d

dt
Aλi ptq �

#
u1ptqA

λ
i�1ptq, i � 1, . . . , s� 2,

u2ptqA
λ
s ptq � u2ptqλs�1, i � s� 1

for a.e. t P r0, 1s. (4.9)

We first prove statement (i), i.e., that u1u2 � 0 a.e. on r0, 1s. Assume by contradiction that C0 :�
tt P r0, 1s | u1ptqu2ptq � 0u is such that L 1pC0q ¡ 0; then also

C1 :� tt P C0 | t is a Lebesgue point of uu
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satisfies L 1pC1q ¡ 0. Again, C1 does not contain any isolated point and, arguing as in the proof of
Proposition 4.2, we deduce that Aλ1 ptq � � � � � Aλs ptq � 0 for almost every t P C1. This gives

λs�1 � λs � � � � � λ3 � 0,

contradicting the fact that λ is non-zero.
Next, we prove that, if λs�1 � 0, then necessarily u1 � 0 a.e. on r0, 1s, so that also statement (ii) holds.

Assume on the contrary that the set D0 :� tt P r0, 1s | u1ptq � 0u has positive measure; then also the set
D1 � D0 of Lebesgue points of u has positive measure and (using in a crucial way the assumption λs�1 � 0)
one can reason as before to deduce that λ � 0, contradiction.

Eventually, we consider the case λs�1 � 0; we can also assume that the sets D0 and D1 introduced in the
previous paragraph have positive measure, otherwise we have again u1 � 0 a.e. on r0, 1s. Differentiating (4.7)
and using (4.9) we deduce that there exists D2 � D1 such that L 1pD1zD2q � L 1pD0zD2q � 0 and

Aλ1 ptq � Aλ2 ptq � � � � � Aλs�1ptq � 0 @ t P D2. (4.10)

Therefore

0 � Aλs�1ptq � λs � λs�1

» t
0

u2pτqdτ @ t P D2,

and we get that necessarily

» t
0

u2pτqdτ � �
λs
λs�1

�: a P R @ t P D2.

Since L 1pD0zD2q � 0, statement (ii) is proved for a.e. t.
Step 2. Conversely, let a P R and a control u P L1pr0, 1s, g1q be fixed so that statements (i) and (ii) hold for

a.e. t P r0, 1s. Let λ P g� be defined by

λ1 � � � � � λs�1 � 0, λs � �a, λs�1 � 1; (4.11)

we consider the functions Aλ1 , . . . , A
λ
s : r0, 1s Ñ R defined by � in (4.7) and by (4.8), and we introduce Bλ1 :

r0, 1s Ñ R defined by

Bλ1 ptq :�λs

»
� � �

»
0¤τs�2¤���¤τ1¤t

u1pτs�2q . . . u1pτ2qu2pτ1qdτs�2 . . . dτ1

� λs�1

»
� � �

»
0¤τs�1¤���¤τ1¤t

u1pτs�1q . . . u1pτ2qu2pτ1qdτs�1 . . . dτ1.

Let Y � x1X1 � x2X2 P g1 and t P r0, 1s be fixed. Taking also (4.11) into account, we see that that pairing of
λ with the vector

Y �
s�1̧

j�1

»
Σjptq

�
adXupτjq � � � � � adXupτ1q

�
Y dτj . . . dτ1
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is equal to x1A
λ
1 ptq � x2B

λ
1 ptq. We claim that

Aλ1 � Bλ1 � 0 on r0, 1s; (4.12)

thanks to Proposition 2.1, this implies that λ is orthogonal to pdeRγup1qq
�1pIm duF q, which is therefore a proper

subspace of g ensuring that u is a singular control.
Let us prove (4.12). We observe that (4.9) still hold, while (4.11) together with statement (ii) implies that

for a.e. t P r0, 1s

either u1ptq � 0 or Aλs�1ptq � �a�

» t
0

u2pτqdτ � 0.

By (4.9) this gives d
dtA

λ
s�2 � 0, hence Aλs�2 is constant and Aλs�2 � Aλs�2p0q � λs�1 � 0. This argument can

be repeated to prove that Aλs�3, . . . , A
λ
1 are constant, and actually identically zero due to (4.11). Eventually,

we observe that Bλ1 p0q � 0 and d
dtB

λ
1 � u2A

λ
2 � 0 a.e. on r0, 1s, so also Bλ1 is identically zero in r0, 1s. Our

claim (4.12) is proved and the proof is concluded.

Remark 4.6. It is worth noticing that, as soon as the singular control u is not such that u1 � 0 a.e. on r0, 1s,
then the covector λ associated with u (as in Step 1 of the proof of Prop. 4.4) satisfies

λ1 � λ2 � � � � � λs�1 � 0.

Indeed the set D2 introduced in the proof of Proposition 4.4 has positive measure and (4.10) holds; we can
fix a sequence of points ptkqkPN � D2 converging to t0 :� inf D2. Since the functions Aλi are continuous, the
equalities (4.10) hold for t � t0 as well and, using the fact that u1 � 0 a.e. in r0, t0q we obtain

0 � Aλs�2pt0q � λs�1.

Inductively, this argument can be used to show that

λs�1 � � � � � λ3 � 0,

which is enough to conclude thanks to (4.6).

Acknowledgements. We are grateful to E. Le Donne for suggesting us to study the Sard problem in filiform groups as
well as for several interesting discussions.
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