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Thallium uptake and risk in vegetables grown in pyrite past-mining 
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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Tl, Ba, As and Pb contamination was 
unveiled in courtyard soil from a pyrite 
past-mining area. 

• Hyper-accumulation of Tl (up to 17.1 
mg kg− 1) was evident in Tuscany kale 
leaves. 

• Tl in kale leaves displayed conspicu-
ously high intake risk while red chicory 
was safe. 

• Compost possessed better remediation 
ability compared with mineral fertilizer 
(NPK). 

• Agricultural practice using compost 
suggested its possibility for Tl remedia-
tion in agro-system.  
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A B S T R A C T   

Thallium (Tl) is a highly toxic trace metal that can cause severe pollution and damage to the ecological system. In 
this study, a field trial was conducted in a Tl-rich pyrite-barite past-mining area to unveil the fate of Tl in 
agricultural practice. Tuscany kale and red chicory cultivated in soil impacted by the dismissed mine of Valdi-
castello Carducci (Northern Tuscany, Italy) displayed significantly different uptake behaviors of Tl. Hyper- 
accumulation of Tl was observed in kale leaves and its content reached up to 17.1 mg kg− 1 whereas only 
<0.70 mg kg− 1 of Tl was found in leaves of red chicory. Due to the regionally polymetallic pollution, Tuscany 
kale grown in this area possessed a great Tl intake risk for the residents. As for the fertilization treatment, Tl in 
Tuscany kale leaves fertilized with mineral fertilizer (NPK) and compost were 21.4 and 12.8 mg kg− 1. The results 
suggested a potential remediation ability of compost in diminishing Tl in the vegetable leaves and thus may 
reduce its risk in the soil-crop system. Since Tl poisoning emergency may occur in agricultural fields near past- 
mining zones, it is critical to establish possible remediation measures to ensure food safety surrounding former 
mining areas likewise.  
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1. Introduction 

Persistent attentions have been received from the environmental 
pollution caused by toxic elements (Antoniadis et al., 2019; Beiyuan 
et al., 2023; Wang et al., 2023; Yin et al., 2019; Zeng et al., 2022; Zhou 
et al., 2020). Thallium is naturally present in soil at concentrations 
below the safety concentration threshold of 1 mg kg− 1 set for arable soils 
of countries with advanced legislation on environmental protection. 
Enrichment of Tl in soil can be due to natural phenomena such as vol-
canic emissions or anthropogenic associated coal combustion and 
sulphide-involving mining/smelting activities (Liu et al., 2023; She 
et al., 2022; Wei et al., 2020a; Yin et al., 2021). Uncontrolled emissions 
from anthropogenic sources cause regional pollution and long distance 
diffusion induce significant thallium exposure to plants, animals and 
humans (Ouyang et al., 2023; Vaněk et al., 2012; Wang et al., 2021). 
Accumulation of Tl in soil over the safe concentration limits has been 
reported from several areas polluted by mining activities in various 
countries such as Poland, Spain, Greece, Italy, the United States, China 
and India, due to past and current emissions associated to natural 
sources and anthropogenic activities (e.g. Biagioni et al., 2013; Kar-
bowska, 2016; Perotti et al., 2017; Zhou et al., 2020; Ghezzi et al., 2021; 
Wei et al., 2021). In polluted areas where soils are used for crop pro-
duction, Tl poses significant risks to human health due to the well 
documented uptake by plant roots and storage in plant edible parts, 
which represent the entry pathway of Tl into the food chain (Zhang 
et al., 2023). In dismissed mining areas, Tl concentration in soil is 
receiving increasing public and governmental concerns as it acts as 
neurotoxin, and prolonged human exposure cause gastroenteritis and 
even death (Queirolo et al., 2009; Xiao et al., 2012). 

For above-mentioned facts and reasons it is listed as one of the 13 
priority potentially toxic elements (PTEs) by the U.S. Environmental 
Protection Agency (USEPA), European Commission (EC) and World 
Health Organization (WHO). Thallium in the environment assumes 
redox states of Tl(I) and Tl(III), and owing to its geochemical sulfophilic 
characteristics similar to other elements such as Hg, As, Cu, Pb and Zn, it 
is generally found in S-containing minerals such as lorandite (TlAsS), 
hutchinsonite (PbTlAs5S), crookesite ((Cu, Tl, Ag)2Se) and other sul-
phides (Kabata-Pendias and Pendias, 1999). Insoluble Tl-sulfides can be 
also present in galena (PbS), pyrite (FeS2), sphalerite (ZnS), stibnite 
(Sb2S3), chalcopyrite (CuFeS2), realgar (AsS) and orpiment (As2S3), or 
associated to clay minerals and Mn/Fe-oxides (Peter and Viraraghavan, 
2005; Xiao et al., 2012). Thallium release in the environment is mainly 
due to mining activities and ore processing (Karbowska et al., 2014), or 
uncontrolled smelting emissions (Liu et al., 2022), and its fate in the 
environment is mainly controlled by water, in which Tl(I) salts are 
readily dissolved, whereas insoluble Tl(III) species are partitioned into 
sediments (Gomez-Gonzalez et al., 2015). From these secondary sources, 
Tl can spread into the food chain accumulation into soil and use of 
polluted waters for irrigation followed by uptake and concentration in 
crop plants and animals (Wang et al., 2022). 

The southern sector of the Apuan Alps in North-West Italy is char-
acterized by the occurrence of a series of pyrite–barite–Fe oxide ore-
bodies, whose Tl-rich characteristic was only recently recognized. In 
particular, fine-grained pyrite is characterized by Tl concentrations up 
to 1100 mg kg− 1 coupled with high contents of several other PTEs 
(D’Orazio et al., 2017; Wang et al., 2023). Uncontrolled mining waste 
released from acid drainage of mining areas and from mine spoil heaps 
after decommissioning resulted in high environmental Tl pollution in 
aqueous bodies (Biagioni et al., 2013; Perotti et al., 2017), and in 
streambed sediments (Ghezzi et al., 2021). In the same area high levels 
of Tl were found in tap water (Campanella et al., 2016, 2019), and Tl 
contamination in upland rhizospheric soils of horticultural crops in the 
Baccatoio watershed was also reported by Campanella et al. (2019). 
However, toxic effects of Tl arisen by soil-crops system are still rarely 
studied. 

Production of high yields and high quality horticultural crops rely on 

tillage and fertilizing activities which can change the total concentration 
and potential phytoavailability of Tl and other PTEs by modifying the 
physical and chemical properties of the soil. In polluted areas, reworking 
of the soil surface prior to planting and organic fertilization can modify 
the Tl phytoavailability by modifying the Tl oxidation state due to the 
generation of acidic products of Tl-pyrite oxidation that control the Tl 
solubility and mobility, with Tl(I) being generally considered as less 
toxic than Tl(III), the first is more mobile in the aqueous phases than the 
most oxidated Tl, which forms stable covalent inorganic complexes or 
organic Tl compounds (Ralph and Twiss, 2002). The horticultural 
practice can also influence the uptake of Tl from horticultural plants. 
Also mineral fertilization with N, P and K may quench the uptake of Tl(I) 
by ionic competition with K+, soils fertilized with organic amendments 
may reduce the Tl uptake by the formation of stable Tl-organic com-
plexes, but to our knowledge information is still limited on Tl uptake by 
agrifood plants in arable soils. Such horticultural practices also influence 
the phytoavailability of other PTEs including such as As, Cd, Hg, Pb, Sb, 
and Zn, which are generally associated to Tl in mining tailing. However, 
dynamics of Tl and associated PTEs in relation to agricultural practices 
have been still poorly studied (Migaszewski and Gałuszka, 2021). 

The objectives of the present work were (i) to investigate uptake and 
accumulation of Tl, Ba, Pb, Cr, As, Cd, Mn, Ni, Sb and Zn in vegetables 
grown in an Tl-polluted area contaminated by decommissioned mine, 
(ii) to evaluate the effects of different mineral or organic fertilization on 
crop uptake of PTEs, and (iii) to assess the potential health risk posed by 
PTEs ingested by the consumption of vegetables grown on polluted soils, 
with particular reference to Tl. Comparison between mineral and 
organic fertilization can bring new knowledge on Tl impact because Tl in 
soil is present as monovalent hydrated cation (Tl+) which has a similar 
ionic radius to K+, and NPK fertilization may quench Tl uptake by plants 
(Vaněk et al., 2011). Moreover, our experimental setup mimicked cur-
rent smallholder horticultural own production in this polluted area, 
therefore the calculated health risks related to soil pollution and food 
intake can provide indications for more effective health protection 
measures in areas impacted by abandoned mines. 

2. Materials and methods 

2.1. Study area, cultivation trail and sampling 

A small-scale cultivation trial was established in a Tl-contaminated 
area located in Valdicastello Carducci Village (Pietrasanta Municipal-
ity, Northern Tuscany, Italy), an area impacted by mining activities 
ceased in the 1990s. The cultivation trial was established in a private 
orchard of 6 m × 5 m area on July 2021, with Lacinato kale (Brassica 
oleracea L. Viridis Group ‘Laciniato’) and red chicory (Cichorium intybus 
L. var. foliosum Hegi) as leafy horticultural species typically grown in the 
area. Crops were fertilized either with compost or NPK mineral fertilizer, 
with two blocks for each species treated with the same fertilization type 
(Fig. 1). All fertilization methods were managed so as to provide the 
macronutrient requirement to the vegetable during the growing cycle. 
Specifically, reference was made to the following nutritional needs: 150 
kg/ha of nitrogen (N), 100 kg/ha of phosphorus (P) and 200 kg/ha of 
potassium (K), respectively. Chemical characteristics of the compost 
used are reported in Table 1. All plots were irrigated using unpolluted 
water from the town water supply network. 

2.2. Elemental analysis of soils and plants 

Soil samples, taken before crop plantation, were dried in an oven at 
65o C to constant weight, ground and sieved (2 mm mesh). For elemental 
concentration analysis in plants, seedlings, intermediate leaves of two- 
month-old plants and leaves of plants at full maturity (six months 
after planting) were collected. Detailed information for sampling and 
plant growth capacity analysis are reported in Table S1. All vegetable 
samples were cleaned and dried in an oven at 65 ◦C to constant weight, 
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ground (Retsch, GM 200), sieved (2 mm mesh) and stored prior to 
analysis. Quantification of elements was conducted by microwave- 
assisted mineralization using Suprapur® quality reagents (Merck, Ger-
many). A quantity of 0.35 g of soil or leaves sample was transferred into 
a TFM closed vessel for the microwave digestion process (Ethos 1600 
Milestone S.r.l. Sorisole, Bergamo, Italy). The microwave digestion was 
conducted by adding 6 mL of concentrated hydrochloric acid (30 %) and 
3 mL of concentrated nitric acid (65 %), both of Suprapur® quality 
(Merck Chemicals GmbH, Darmstadt, Germany). Elemental concentra-
tions were then quantified by Inductively Coupled Plasma Optical 
Emission Spectrometry (ICP-OES, Ametek, Germany). The percentage of 
recovery for the analyzed elements was 95.25 %. For soil bulk concen-
trations were reported on a dry weight (dw) basis, whereas for plant 
tissues elemental concentrations were converted to fresh weight (fw) 
concentrations using the moisture contents of kale and red chicory to 
calculate their intake risk. 

2.3. Risk assessment of PTEs in soil and vegetable based on geochemical 
and health risk indices 

The geochemical enrichment factor (EF) was calculated according to 
Eq. (1) (Chester and Stoner, 1973), the geoaccumulation index (Igeo) 
according to Eq. (2) (Loska et al., 2003) and risk index (RI) according to 
Eq. (3) (Håkanson, 1980). Details of contamination levels for these three 
factors were reported in Table S2. 

EF =
(Ci/CAl)sample

(Bi/BAl)background
(1)  

Igeo = log2(Ci/1.5×Bi) (2)  

RIi = Tri ×Ci
/

Bi (3) 

The EF value was calculated by normalizing element/Al ratios in 
sample to the background value. In this study, Al is considered as the 
reference element, and Ci and Bi refer to the element content (mg kg− 1) 
in soil sample and background. CAl and BAl are Al contents (mg kg− 1) in 
sample and background. The RI value of target element was calculated 

Fig. 1. Schematic display of the study area and cultivation trail.  

Table 1 
Chemical profile of the compost used in the test.  

Chemical compound Value Unit measure 

N  1.65 % dw 
P  0.53 
K  1.98 
Ca  79.9 g/kg dw 
Fe  8.74 
Mg  13.2 
Na  10.1 
S  18.7 
Al  7797 mg kg− 1 dw 
As  3.59 
B  42.7 
Ba  132 
Be  0.15 
Cd  0.62 
Co  3.34 
Cr tot  27.1 
Cu  94.4 
Li  10.9 
Mn  309 
Mo  2.19 
Ni  13.2 
Pb  31.4 
Si  601 
Sr  293 
Ti  208 
Zn  179 
Hg  <0.10  
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by multiplying element toxicity coefficient by its sample/background 
content ratio. The toxicity coefficient (Tri) for Tl, As, Pb, Zn, Cd, Cr, Sb, 
Mn and Ni were 40, 10, 5, 1, 30, 2, 7, 1 and 5 (Håkanson, 1980; Ren 
et al., 2022). 

The bioconcentration factor (BCF) was calculated by Eq. (4) to assess 
the correlation between element content in the soil and in the crop tissue 
(Samsøe-Petersen et al., 2002): 

BCFleaves =
Cleaves

Csoil
(4)  

where Cleaves and Csoil are the PTE contents in the leaves and soil, 
respectively. The hazard quotient (HQ) and chronic daily intake (CDI, 
mg/(kg/d)) values were calculated by Eq. (5) (Wang et al., 2005): 

HQ =
CDI
RfD

=
Ci × IR × ED × EF

BW × AT

/

RfD (5)  

where Ci (mg kg− 1), IR (kg/d), ED (a), EF (d/a), BW (kg) and AT (d) are: 
the PTE concentration converted into fresh weight in edible part 
(leaves), the daily ‘intake rate’ of kale and red chicory, the ‘exposure 
duration’, the ‘exposure frequency’, the consumer’s “body weight” and 
the “averaging exposure time”, respectively. The IRs for children, adults 
and seniors in Italy are 0.0163, 0.0431 and 0.0431 kg/d, respectively, 
according to the Italian dietary consumption (Leclercq et al., 2009). The 
ED and BW values for children, adults, and seniors are 6, 30 and 70 a, 
and 26, 70 and 70 kg. The oral reference doses (RfD, mg⋅(kg⋅d)− 1) in 
food are 0.00001 for Tl, 0.02 for Ba, 15.1 for As, 0.024 for Mn, 0.02 for 

Sb and 0.30 for Zn (US EPA (United States Environmental Protection 
Agency), 2008; SCHER, 2012; US EPA (United States Environmental 
Protection Agency), 2018). Risk levels of HQ were set into three levels: 
HQ < 1, low risk or no risk, HQ = 1.1–10, moderate risk, and HQ > 10, 
high risk. Calculation of HQ values for potential carcinogenic elements 
Pb, Cd and Cr is multiplying their CDI values by their corresponding 
slope factors (mg⋅(kg⋅d)− 1) were 0.0085 (Pb), 42.0 (Cr), and 6.1 (Cd) 
(US EPA (United States Environmental Protection Agency), 2018). The 
HQ indices for Pb, Cd and Cr within 1⋅10− 6–1⋅10− 4 represent low or no 
risk. 

3. Results and discussion 

3.1. Concentrations of Tl and other PTEs in soil and risk assessment 

Thallium concentration in soil was 6.5 mg kg− 1 (Table 2), higher 
than the soil threshold concentration value of 2 mg kg− 1 of the Italian 
Legislation (Presidente della Repubblica, 2006, 2010). D’Orazio et al. 
(2020) reported that Tl concentrations in soils of the area were in the 
range 25–184.6 mg kg− 1. Concerning the Tl background concentration, 
for our specific case study it is hard to refer to values of local non 
managed areas because the past and ongoing domestic horticultural 
practice has conditioned the concentrations of Tl in the topsoil, with 
non-quantifiable Tl translocation to plants and soil biota, nor of its 
movement down the soil profile. Compared to other Tl contaminated 
agricultural soils from mining area in southwest China (Xiao et al., 
2004a, 2004b) or forest soils from Olkusz district in southern Poland 

Table 2 
Contents of elements (mg kg− 1, dw) in soils, seedlings and leaves of kale and red chicory.   

Tl Ba Pb Cr As Cd Mn Ni Sb Zn 

Cultivated soil (n = 2) 6.72 ± 0.36 18,318 ±
335 

555 ±
4.00 

41.8 ±
0.65 

106 ±
9.28 

3.60 ±
0.02 

849 ±
9.55 

27.9 ±
1.45 

30.5 ±
7.40 

1115 ±
240 

Earth crusta 0.45 425 15.0 35.0 1.80 0.20 950 20.0 0.20 20.0 
Concentration limit in soil, 

Italyb 
2.00 / 100 150 20.0 2.00 / 120 10.0 120 

Seedling of kale (n = 1) <0.50 12.84 <0.50 0.44 <0.50 0.15 85.07 <0.30 <0.50 28.02 
Seedling of red chicory (n = 1) 0.59 19.23 <0.50 0.60 0.89 0.42 198.08 84.88 <0.50 65.81 
Maximum permissible limit in 

foodc 
0.50 200 0.30 0.50 0.20 0.20 500 1.00 1.00 20.0  

Element concentrations in leaves of 2 months (based on factors “treatment” and “species”) 
Treatment           

NPK (n = 8) 27.8 ± 10.5 701 ± 197 
a 

8.90 ±
3.03 

2.28 ±
0.83 

1.05 ±
0.33 

0.79 ±
0.16 

52.4 ±
4.97 

83.4 ±
21.2 

0.42 ±
0.21 

79.4 ±
12.6 

Compost (n = 8) 20.9 ± 8.33 402 ± 66.1 
b 

7.26 ±
1.91 

1.02 ±
0.17 

1.10 ±
0.37 

0.78 ±
0.12 

58.5 ±
6.86 

67.9 ±
8.99 

0.28 ±
0.19 

106 ± 15.1 

Species           
Kale (n = 8) 48.2 ± 4.62 

a 
394 ± 65.3 
b 

6.31 ±
2.07 

1.00 ±
0.18 

1.08 ±
0.34 

0.44 ±
0.04 b 

63.1 ±
5.40 

54.4 ±
12.1 

0.40 ±
0.20 

72.0 ±
14.5 b 

Red chicory (n = 8) 0.52 ± 0.17 
b 

709 ± 196 
a 

9.86 ±
2.80 

2.31 ±
0.82 

1.06 ±
0.36 

1.13 ±
0.08 a 

47.8 ±
5.35 

96.9 ±
16.4 

0.30 ±
0.19 

114 ± 10.3 
a 

Interaction * NS NS NS NS NS NS NS NS NS  

Element concentrations in leaves of 6 months (based on factors “treatment” and “species”) 
Treatment           

NPK (n = 20) 21.4 ± 3.85 
a 

195 ± 34.2 2.58 ±
0.43 

0.68 ±
0.10 

<0.70 0.24 ±
0.02 

33.6 ±
3.33 

0.62 ±
0.05 

<0.70 50.5 ±
3.68 

Compost (n = 20) 12.8 ± 1.65 
b 

206 ± 43.8 3.55 ±
1.20 

0.66 ±
0.09 

<0.70 0.21 ±
0.02 

37.7 ±
3.33 

0.65 ±
0.05 

<0.70 60.1 ±
3.39 

Species           
Kale (n = 20) 17.1 ± 1.43 

a 
292 ± 23.1 
a 

3.86 ±
0.45 

0.95 ±
0.05 a 

<0.70 0.15 ±
0.01 b 

47.7 ±
1.40 

0.66 ±
0.04 

<0.70 48.2 ±
2.06 b 

Red chicory (n = 20) <0.70 b 109 ± 22.7 
b 

1.50 ±
0.26 

0.40 ±
0.03 b 

<0.70 0.30 ±
0.02 a 

23.6 ±
1.05 

0.60 ±
0.03 

<0.70 62.3 ±
2.97 a 

Interaction * NS NS NS NS NS NS NS NS NS 

Note: *P < 0.05; NS no significance; / value not given. 
a Data taken from Hamilton (2000). 
b Maximum contents established for soils of public, residential and private areas by the Italian Ministry of Environment. 
c Value taken from Umweltqualität (1998), European Commission (EC, 2006) and FAO/WHO (2011). 
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(Vaněk et al., 2013), Tl concentration in the studied soil was lower and 
was similar to those reported for paddy soils (~3 mg kg− 1) from a pyrite 
mining area in China (Jiang et al., 2021), and for farmland soils (2.00 
mg kg− 1) from southern Italy (Duri et al., 2020). Among the other 
determined PTEs such as Pb, As, Cd, Sb, and Zn showed higher con-
centrations than the threshold limits of the Italian environmental 
legislation (Table 2). These results paralleled those by Resongles et al. 
(2014). Excessive Pb, As and Zn accumulation into edible parts of plants 
can impact human health by altering the functions of central nervous 
system, liver and kidneys (Kalia and Flora, 2005). Concentrations of Ba 
in the studied soil were also high (Table 2). Though the Italian envi-
ronmental legislation shares no threshold concentration limits for Ba, 
natural Ba concentrations in unpolluted soil range from 100 to 3000 mg 
kg− 1, with mean value of 425 mg kg− 1 in the Earth crust (Nogueira et al., 
2010). A Ba concentration limit for sludge used as amendment of agri-
cultural soils was set at 1300 mg kg− 1 (dw) by the Brazilian National 
Environment Council (CONAMA, 2006). These data confirm that in the 
studied soil the Ba concentration was unusually high, due to the pres-
ence of Barite in the released mine waste material. High Ba concentra-
tions in a paddy soil of a Ba mining area in South-West China, ranging 
from 518 to 65,760 mg kg− 1 was also reported (Lu et al., 2019). 
Excessive Ba concentrations in soil may cause high accumulation into 
edible plants and impact human health because Ba may interfere with 
the Ca metabolism and cause bone diseases (Standen and Stanfield, 
1978; Kravchenko et al., 2014). 

Values of EF and Igeo indices of PTEs Tl, Ba, As, Pb, Zn, Cd and Sb 
were over 20, indicating that they were of very high contamination in 
soil (Table S3). The RI value of single target elements showed significant 
values for Tl, As, Pb, Cd and Sb. These geochemical enrichment and risk 
indices confirmed potential high risk of PTEs in the studied soil because 
of their possible accumulation or hyper-accumulation in crops. 

3.2. Contents of Tl and other PTEs in vegetable leaves, and uptake 
mechanism 

Concentrations of Tl, Ba and the other measured PTEs in the original 
of kale and red chicory seedlings were acceptable for various food 
qualitative standards (Umweltqualität, 1998; EC, 2006; FAO/WHO, 
2011; Wei et al., 2020b) (Table 2). After 2 months of growth, kale leaf 
concentrations of Tl, Ba, Pb, As, Cr and Ni exceeded the safety threshold 
limits for kale, whereas red chicory leaves presented comparatively 
lower concentrations of these PTEs, Tl but Ba, Cd and Zn concentrations 
above the safety thresholds limits (Table 2). At the end of the growth 
cycle, Tl, Ba, Cr, Cd, Mn, Ni and Sb concentrations in leaves of red 
chicory were all below the safety thresholds, whereas kale leaves 
accumulated high concentrations of Tl and other PTEs (Table 2). 
Reduction of PTEs concentrations during plant growth was growth- 
related dilution (calculated by dividing decreased element concentra-
tion to the original element concentration) effect, which varied across 
the PTEs and plant species with the magnitude shown in Table S4. 
Though for kale leaves Tl concentration decreased from 48.2 mg kg− 1 of 
2 months leaves to 17.0 mg kg− 1 of 6 months leaves, its concentration at 
maturity harvest still exceeded the safety thresholds for foodstuff 
(Table S4). In addition, compared with Tl concentration in edible parts 
of vegetables such as chard (0.01 mg kg− 1), onion (0.18 mg kg− 1) and 
chili pepper (0.17 mg kg− 1) from the same mining area in Tuscany 
(D’Orazio et al., 2020). A similar growth-related dilution degree of PTEs 
for old leaves as compared to young leaves was reported for Arabidopsis 
halleri (Brassicaceae family) grown on a metal amended soil (Stolpe 
et al., 2017), and higher As concentrations in young than in old plant 
leaves was reported by Bondada et al. (2004). 

Plant elemental analysis confirmed the capability of Brassicaceae 
species to accumulate higher concentrations of various PTEs in the 
edible parts compared to Asteraceae family species (red chicory) or 
Solanaceae family species such as tomato, potato, eggplant and pepper 
(Liu et al., 2017; Liu et al., 2019a,b; Pearson and Ashmore, 2020; 

Bawwab et al., 2022). The Tl accumulation by kale at the end of its 
growth cycle was at a similar level reported by Liu et al. (2020) for 
oilseed rape grown in pyrite mining affected soils of southern China (Liu 
et al., 2020) or grown on Tl-contaminated soil near a cement plant in 
Leimen, Germany (Kurz et al., 1999). The Tl concentrations detected 
after 2 months of growth were similar to those of young leaves of green 
cabbage growing in Tl-As-Hg mining contaminated soils in southwest 
China (Jia et al., 2013). For plant leaves, the BCF value was >1 only for 
Tl in kale plants with values of 7.2 after 2 months and 2.5 at full 
maturity, indicating accumulative behavior towards Tl (Table S4). 
Previous studies on horticultural crops such as basil, mint, and straw-
berry grown on Tl polluted soils showed BCF (leaves) values as 0.40, 
<0.01 and 0.30, respectively (Ferronato et al., 2016). 

High Ba concentrations were observed in leaves of both kale (394) 
and red chicory (709) either after 2 months or at the end of the growth 
cycle. Typical Ba contents in foodstuff ranges from 2 to 13 mg kg− 1, with 
median values lower than 2.0 mg kg− 1 (Gormican, 1970; IRIS, 2006). 
Previous studies have shown that rice from Ba mining impacted areas of 
southern and southwest China ranged from 0.06–1.20 and 0.10–3.50 
mg kg− 1 (Ma et al., 2017; Lu et al., 2019), and that Ba concentration on 
maize grains grown in soils treated with sewage sludge were in the range 
of 0.06 to 1.05 mg kg− 1 (Nogueira et al., 2010). A Ba content of 200 mg 
kg− 1 in food is moderately toxic, whereas a concentration of 500 mg 
kg− 1 is considered toxic (Pais and Jones Jr, 2000). Meanwhile, Ba 
concentrations in the studied vegetable leaves were far below the in-
ternal toxicity threshold values established for trifoliated bush bean 
leaves (2000 mg kg− 1) according to Llugany et al. (2000). Unusually 
high Ba concentrations in the order of 45 mg kg− 1 were reported for 
leafy vegetables grown in urban environment (McBride et al., 2014) and 
in Brazilian nut, a known Ba hyper-accumulator concentrations in the 
range 3000–4000 mg kg− 1 have been reported (Beliles, 1979). In the 
present study, even if for Ba the growth-related dilution was relatively 
high (Table S4) for both red chicory and kale, the health risks arisen by 
final Ba concentrations in the edible parts were of concern. Similar re-
sults were reported various plants such as Jatropha curcas, Dodonea 
viscosa and Cassia auriculata growing in Barite rich soils from the Nellore 
mica belt, Andhra Pradesh, India (Nagaraju and Karimulla, 2002), and 
Ba concentrations up to 3550 mg kg− 1 were reported for shoots of 
Indigofera cordifolia grown on barite-rich mine dumps of the Vemula 
area, India (Raghu, 2001). 

As displayed in Fig. 2a, thallium concentrations in two months kale 
leaves showed significant negative correlation with As and Mn, while Ba 
showed significant positive correlation with Pb, Cd, Cr, and Ni (P <
0.01) (Fig. 2a). At full maturity no significant correlation between Tl and 
other PTEs was observed whereas Ba was positively and significantly 
correlated with Pb, Cr, and Ni (Fig. 2b). As for red chicory, in 2 months 
leaves no significant correlation was observed in Tl and other PTEs 
(Fig. 2c) whereas Ba was positively and significantly correlated with Pb, 
Cd, Cr and Ni, but only with Pb and Cr in leaves of plants at full maturity 
(Fig. 2d). Globally, the correlation analysis showed that kale and red 
chicory displayed similar PTEs uptake behaviors of elements, indicating 
that Tl may be adsorbed by these two crops via different pathways 
compared to other PTEs. In particular, the competitive accumulation 
trend observed between Tl and K in leaves confirmed a potential com-
mon uptake route of these two elements, e.g. using the K+-ATPase2 
system (Xiao et al., 2004a, 2004b). Differently, the other studied PTEs 
such as Ba, Pb, Cd, Cr and Ni showing positive correlations, could be 
accumulated and transferred to leaves through the same metabolic 
pathways (Fig. 2). 

3.3. Effects of different fertilization on Tl uptake in vegetables 

Plants fertilized with compost absorbed significantly less Ba after 2 
months and significantly less Tl at full maturity as compared to plants 
fertilized with NPK (Table 2). Thallium concentration in 2 months’ kale 
leaves fertilized with NPK and compost were 55.0 and 41.4 mg kg− 1, 
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respectively, whereas in red chicory leaves Tl concentrations were 0.71 
and 0.34 mg kg− 1 (Table 2, Fig. 3). These results indicate that the hy-
pothesis that NPK fertilization could quench Tl uptake by plants was not 
verified. However, 6 months kale fertilized with compost accumulated 
less Tl in leaves (12.8 mg kg− 1) as compared to that of NPK (21.4 mg 
kg− 1). Although this result is in line with previous studies which sug-
gested that compost can reduce plant uptake of PTEs in polluted soils 
(Vaněk et al., 2010; Luo et al., 2020) as PTEs can be bound to organic 
matter (OM) by complexation (Clemente and Bernal, 2006; Hu et al., 
2010; Gustafsson et al., 2014) reducing its bioavailability (Liu et al., 
2011), we ascribe these results to the lower plant vigor and growth in 
soils of NPK than compost plots (Fig. 4). This hypothesis is supported by 
the significant correlation between plant biomass production and PTEs 

uptake (Table S1). 

3.4. Risk assessment based on chronic intake 

Hazard quotients for adults, seniors and children calculated based on 
the chronic intake of PTEs from their concentrations in kale and red 
chicory leaves at full maturity (Figs. 5, 6; Tables S5–S7). The HQ values 
of As, Mn, Ni, Sb and Zn in kale and red chicory were <1, indicating no 
health risks posed by these PTEs for adults and seniors for both plant 
species (Fig. 5). The HQ values of Ba for children and adults were <1, 
while those in kale for seniors ranged from 0.18 to 2.27 (with average of 
0.94), therefore generally there is no risk (or slight risk) of Ba in vege-
tables grown in the studied area. Concerning the potential carcinogenic 

Fig. 2. Correlation between Tl and other PTEs in leaves: (a)/(b): 2/6 months kale; (c)/(d): 2/6 months red chicory (circle in red: positively correlated; circle in blue: 
negatively correlated). 
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HQ values of Pb and Cd were <10− 4 except for Cr, suggesting that Cr 
could pose carcinogenic risks to adults and seniors through consumption 
of both kale and red chicory (Fig. 5). According to the dietary estimated 
intake risk of trace elements in an Italian population, average HQ values 
for Tl was 0.744 (lower than 1) (Filippini et al., 2020). The HQ values in 
Tuscany kale leaves for Tl ranged from 16.0 to 110 for adults and 

37–259 for seniors, much higher than the threshold value of 10, indi-
cating high health risk for kale (Fig. 5). Considering other researches 
also focusing on health risk in environmental samples, Queirolo et al. 
(2009) found that HQ values for Tl in potatoes from mining areas were 
in the range of 75 to 138, for adults. The average HQ value of 9.65 for Tl 
in kale also indicated moderate risks for children (Fig. S1). Calculation 

Fig. 3. Concentration of Tl and other PTEs in 2 months leaves of kale and red chicory fertilized by NPK and compost.  

Fig. 4. Concentration of Tl and other PTEs in 6 months leaves of kale and red chicory fertilized by NPK and compost.  

X. Wei et al.                                                                                                                                                                                                                                     



Science of the Total Environment 908 (2024) 168002

8

Fig. 5. Hazard quotients of Tl and other PTEs in (a) Tuscany kale and (b) red chicory leaves for adults.  
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of HQ values for red chicory indicated no risks posed by Tl nor by other 
determined PTEs. 

Globally, risk assessment of vegetables grown on these studied soil 
showed possible high risk of Tl for the local residents by daily intake of 
Tuscany kale, higher for seniors than adults or children owing to their 
long-term consumption. These findings are in line with previous risk 
assessment studies of cultivation of agricultural plants on soils polluted 
by PTEs (Zukowska and Biziuk, 2008). 

4. Conclusion 

This study confirmed that improper waste management of thallif-
erous pyrite-barite mining can release Tl, Ba and other PTEs into 

regional soils. Investigation of courtyard soil from historical mining 
zone in Tuscany unveiled definite pollution of Tl and Ba. Although 
different vegetables at full maturity stage accumulate Tl, Ba and various 
PTEs at different concentrations, home cultivation and consumption of 
horticultural plants on soils polluted by Tl and various PTEs pose risks to 
health of residents due to high concentrations of PTEs in the edible parts. 
While for red chicory all PTEs concentrations were below the safety 
thresholds, Tuscany kale presented Tl concentrations above safety 
thresholds and imposed hazards due to hyper-accumulation of Tl and 
other PTEs. Mineral NPK fertilization was not effective in reducing Tl 
plant uptake, whereas soil amendment with compost significantly 
reduced Tl and Ba uptake by both red chicory and kale plants, which can 
be considered as a applicable Tl immobilization in mining affected agro- 

Fig. 6. Hazard quotients of Tl and other PTEs in (a) Tuscany kale and (b) red chicory leaves for seniors.  
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system. Crop safety within Tl-bearing minerals mining area should be 
concerned in order to avoid potential public poisoning incidents. The 
presented results indicated that residential soils polluted by PTEs should 
not be used for home horticulture, and remediation interventions in such 
areas should be valued. 
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Vaněk, A., Chrastný, V., Teper, L., Cabala, J., Penížek, V., Komárek, M., 2011. 
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