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Abstract

Inquisitive first-order logic, InqBQ, is a conservative extension of classical
first-order logic with questions. Formulas of InqBQ are interpreted with
respect to information states—essentially, sets of relational structures over
a common domain. It is unknown whether entailment in InqBQ is com-
pact, and whether validities are recursively enumerable.

In this paper, we study the semantic property of finite coherence: a
formula of InqBQ is finitely coherent if in order to determine whether it
is satisfied by a state, it suffices to check substates of a fixed finite size.

We show that finite coherence has interesting implications. Most strik-
ingly, entailment towards finitely coherent conclusions is compact.

We identify a broad syntactic fragment of the language, the rex frag-
ment, where all formulas are finitely coherent. We give a natural deduc-
tion system which is complete for InqBQ entailments with rex conclusions,
showing in particular that rex validities are recursively enumerable.

On the way to this result, we study approximations of InqBQ obtained
by restricting to information states of a fixed cardinality. We axiomatize
the finite approximations and show that, in contrast to the situation in
the propositional setting, InqBQ does not coincide with the limit of its
finite approximations, settling a question posed by Sano (2011).
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1 Introduction
Inquisitive logic is a research program which aims to extend the scope of logic
to questions. In recent years, this extension has been pursued for the language
of propositional, first-order, and modal logic, both in the classical and in the
non-classical setting.

The standard system of inquisitive first-order logic, InqBQ, can be seen as a
conservative extension of classical first-order logic with two new operators that
allow us to form questions: inquisitive disjunction, denoted ⩾ , and the inquis-
itive existential quantifier, denoted ∃∃ (see Ciardelli, 2009, 2016b; Roelofsen,
2013; Ciardelli et al., 2018; Grilletti, 2020). A defined operator ‘?’ is introduced
by letting ?φ := φ

⩾ ¬φ. In the language of InqBQ, we have not only standard
formulas such as ∀xPx, which formalize statements like “every object is P”,
but also inquisitive formulas such as, for instance, ?∀xPx, which formalizes the
question “whether every object is P”, ∀x?Px, which formalizes the question
“which objects are P”, and ∃∃xPx, which formalizes “what is an instance of P”.

Technically, formulas of InqBQ are interpreted not, as usual, in terms of
truth relative to a relational structure, but rather in terms of support relative
to an information state—roughly, a set of relational structures sharing the same
domain of quantification.1 Standard formulas of predicate logic, such as ∀xPx,
are supported relative to an information state s if they are satisfied point-wise by
each structure in s. Inquisitive formulas, by contrast, express global properties
of information states. Thus, e.g., the formula ?∀xPx expresses the fact that
the truth value of ∀xPx is the same in each structure in s; the formula ∀x?Px
expresses the fact that the extension of P is the same at each structure in s;
and the formula ∃∃xPx expresses the fact that there is an object d which lies
in the extension of P in every structure in s. In InqBQ, it is possible to define
a generalized notion of entailment, where formulas standing for questions can
occur as premises or conclusions. For example, the valid entailment ∀x(Px ↔
¬Qx),∀x?Px |= ∀x?Qx captures the fact that, given that the extension of P
is the complement of the extension of Q, the extension of P determines the
extension of Q.

While connectives and quantifiers of InqBQ are well-behaved, satisfying fa-
miliar principles, many important problems about the meta-theoretic properties
of InqBQ remain open (in spite of much recent work; see Grilletti, 2019, 2020,
2021; Grilletti and Ciardelli, 2021). Most importantly, it is currently unknown
if entailment in InqBQ is compact, i.e., if any conclusion that follows from a set
of premises also follows from a finite subset of these premises. It is also unknown
whether the set of InqBQ-validities is recursively enumerable and, thus, whether

1The move taken in inquisitive semantics from single structures to sets of structures is
analogous to the move taken in the framework of team semantics from single assignments
to sets of assignments. Team semantics was first proposed by Hodges (1997a,b), and has
been investigated extensively in recent years in connection with several logics of dependence
and independence (see, among many others, Väänänen, 2007; Kontinen and Väänänen, 2009;
Abramsky and Väänänen, 2009; Galliani, 2012; Grädel and Väänänen, 2013; Yang, 2014, 2019;
Yang and Väänänen, 2016). For discussion of the connections between inquisitive and team
semantics, see Ciardelli (2016a,b).
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a recursive axiomatization exists.
In this paper, we make progress on these key questions by focusing on an

important semantic property of formulas: finite coherence. For a cardinal κ,
we say that a formula φ is κ-coherent if φ is supported by an information state
whenever it is supported by all substates of size up to κ. A formula is finitely
coherent if it is n-coherent for some natural number n. In the team semantics
setting, this notion of coherence has been studied by Kontinen (2013), who used
it to study the computational complexity of the model checking problem.

Not all formulas of InqBQ are finitely coherent: for instance, ∃∃xPx is not.
On the other hand, many formulas are, and this has a number of important con-
sequences. First, it entails a version of the finite model property: if a finitely
coherent formula does not follow from a set of premises, then there is a finite
information state that acts as a countermodel (we also show in the paper that
this is not the case for arbitrary formulas). Second, finite coherence entails a
property known as normality in the inquisitive logic literature: if φ is finitely
coherent, any information state supporting φ is included in a maximal support-
ing state. Third, entailment towards finitely coherent conclusions is compact:
if a finitely coherent formula follows logically from a set of premises, then it
follows from a finite subset of these premises.

We also show that it is possible to identify a syntactic fragment of InqBQ
such that all formulas in the fragment are finitely coherent. Since this fragment
is obtained by restricting the environments in which the inquisitive existential
quantifier ∃∃ is allowed to occur, we will refer to it as the restricted existential
fragment, or the rex fragment for short. The rex fragment is rather broad: it
contains all classical formulas, as well as polar questions like ?∀xPx (which ask
about the truth value of a statement) and mention-all questions like ∀x?Px
(which ask about the extension of a predicate), but not mention-some questions
such as ∃∃xPx (which ask for a witness of a predicate). An interesting question
that we will leave open is whether the rex fragment is expressively complete
for finitely coherent propositions, i.e., whether any finitely coherent formula in
InqBQ is equivalent to one in the fragment.

As we will show, the set of rex validities of InqBQ is recursively enumerable.
In fact, we will describe a natural deduction system for InqBQ and show that it
is complete with respect to rex conclusions: if a rex formula follows from a set
of assumptions, this can be proved in the system. This completeness result is
somewhat surprising: all previous known completeness results for InqBQ concern
sub-fragments of the classical antecedent fragment—the fragment obtained by
restricting the antecedents of implications to formulas of standard first-order
logic. The most general completeness result known so far, due to Grilletti (2021),
covers the entire classical antecedent fragment. The rex fragment is not included
in the classical antecedent fragment, since it is closed under taking arbitrary
implications and thus contains formulas involving inquisitive antecedents, such
as ∀x?Px → ∀x?Qx. Thus, our result also shows that allowing questions to
freely embed in implications is not by itself an obstacle to completeness, even
in the presence of quantification.

Our natural deduction system extends the system for InqBQ described in
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Ciardelli (2016b) with a new inference rule, called the coherence rule. Essen-
tially, the coherence rule says that in deriving a (verifiably) n-coherent formula,
one can freely appeal to the assumption that the relevant state contains at most
n possible worlds. This, of course, raises the question of whether the original
proof system, without the coherence rule, is itself complete for rex-conclusions.
Based on considerations that we will explain in the conclusion, we conjecture
that this is not the case, and thus, a fortiori, that the system proposed in Cia-
rdelli (2016b) is not complete as a system for InqBQ. However, we leave this as
an open question.

In order to reach this result, we make a detour through a question that has
independent interest. We consider versions of InqBQ obtained by restricting the
class of admissible models by placing a bound on the number of worlds. In this
way, we obtain a sequence of logics InqBQκ, for κ a cardinal, which we show
to converge to our target logic InqBQ. We settle a question posed already by
Sano (2011), showing that InqBQ does not coincide with the limit of its finite
approximations InqBQn for n ∈ N. We then proceed to give an axiomatization
of each finite approximation InqBQn and to prove completeness by a canonical
model construction involving some novel technical ideas. Completeness for the
rex fragment is obtained easily from these results for finite approximations.

The paper is structured as follows. In §2 we cover the relevant preliminaries
on InqBQ. In §3 we introduce the notion of coherence that is the focus of the
paper and prove some simple results about it. In §4 we define finitary trans-
lations from InqBQ to classical two-sorted first-order logic and we use them to
show that entailment towards finitely coherent conclusions is compact. In §5 we
introduce the rex fragment, show that all formulas in this fragment are finitely
coherent, and prove that the set of rex-validities is recursively enumerable. In
§6 we show how to write formulas that say that the state of evaluation contains
at most n distinct worlds. In §7 we study bounded inquisitive logics InqBQκ,
obtained by fixing a bound κ to the size of the universe and show that InqBQ is
not the limit of the finite-bound logics InqBQn for n ∈ N. In §8 we give complete
axiomatizations of the finite-bound inquisitive logic InqBQn, and in §9 we use
this result to establish a completeness result for the rex fragment of InqBQ. We
conclude in §10 by discussing open problems and directions for further work.

2 Preliminaries: inquisitive first-order logic
In this section we introduce the system InqBQ of inquisitive first-order logic
and the key facts about it that play a role in the paper. For a more thorough
introduction, the reader is referred to Ciardelli (2016b) and Grilletti (2020).

Syntax. As customary, a signature Σ is a set of predicate symbols and function
symbols, where each σ ∈ Σ is associated with an arity ar(σ) ≥ 0. We treat
identity as a particular binary predicate symbol, denoted =, which may or
may not belong to Σ. Function symbols of arity 0 are called constant symbols.
A subset of function symbols are designated as being rigid. As a notational
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convention, we denote rigid function symbols using sans-serif font (e.g., f) and
non-rigid function symbols with the default math font (e.g., f). If all function
symbols in Σ are rigid, we say that Σ is a function-rigid signature.

Terms of the signature Σ are defined from function symbols and a countably
infinite set of variables Var = {x0, x1, . . . } in the usual way. A term is said to be
rigid if it contains only variables and rigid function symbols. We denote rigid
terms using sans-serif font (e.g., t) and arbitrary terms with the default math
font (e.g., t).

The set LInqBQ(Σ) is given by the following BNF definition, where P is an
n-ary predicate symbol from Σ, t1, . . . , tn are terms of Σ, and x is a variable.

φ ::= P (t1, . . . , tn) | ⊥ | φ ∧ φ | φ→ φ | φ ⩾
φ | ∀xφ | ∃∃xφ

Free and bound occurrences of variables are defined in the usual way. A sentence
is a formula without free variables. As usual, a biconditional operator can be
defined by letting φ↔ ψ := (φ→ ψ) ∧ (ψ → φ).

Formulas that do not contain ⩾ or ∃∃ are called classical formulas, and the
set of such formulas is denoted Lc(Σ). If α, β are classical formulas, we define
¬α := α → ⊥, α ∨ β := ¬(¬α ∧ ¬β), and ∃xα := ¬∀x¬α. In this way, the set
of classical formulas can be identified with the standard language of first-order
predicate logic in the signature Σ.

The operators ⩾ and ∃∃ are called inquisitive disjunction and inquisitive
existential respectively and are regarded as question-forming operators. We have
an additional defined inquisitive operator ?, obtained by letting ?φ := φ

⩾ ¬φ.
We allow ourselves to drop reference to Σ whenever this is unproblematic,

writing for instance LInqBQ and Lc for the set of all formulas and classical for-
mulas.

Models. A relational information model is a structure M = ⟨W,D, I⟩ where
W is a set (the universe of M , whose elements are called possible worlds), D is
a non-empty set (the domain of M , whose elements are called individuals), and
I is a function that associates to each world w a map Iw that assigns to each
element of the signature a suitable extension—that is, Iw assigns to each n-ary
predicate symbol an n-ary relation over D, and to each n-ary function symbol
an n-ary function on D. If P ∈ Σ is a predicate symbol, we write Pw instead
of Iw(P ) for the extension of P at w, and similarly if f is a function symbol we
write fw for Iw(f). The interpretation map I is subject to two constraints:

1. If f is a function symbol designated as rigid, the interpretation of f is
required to be rigid in the sense that for all w,w′ ∈W , fw = fw′ .

2. If Σ contains the identity predicate =, then at each world Iw(=) ⊆ D×D
is required to be a congruence, i.e., an equivalence relation =w such that,
if d = ⟨d1, . . . , dn⟩ and d′ = ⟨d′1, . . . , d′n⟩ are any tuples of objects in D such
that di =w d′i for i ≤ n, we have:

• for every n-ary predicate P ∈ Σ, d ∈ Pw ⇐⇒ d′ ∈ Pw;
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• for every n-ary function symbol f ∈ Σ, fw(d) =w fw(d′).2

Intuitively, each world w ∈ W represents a possible state of affairs. Formally,
w is associated with a standard relational structure Mw for Σ. If Σ does not
contain the identity predicate =, we can simply define Mw as the structure
⟨D, Iw⟩. If Σ does contain the identity predicate, we define Mw to be the quo-
tient of ⟨D, Iw⟩ modulo =w. Note that since =w is a congruence, this quotient
is well-defined. If two worlds w,w′ ∈W are associated with the same first-order
structure, i.e., Mw = Mw′ , then w and w′ represent the same state of affairs.
In this case, we say that w and w′ are duplicates and we write w ≈ w′.3

A set s ⊆ W of possible worlds is referred to as an information state in M .
Intuitively, s models the information that the actual state of affairs corresponds
to one of the worlds w ∈ s. A substate t ⊆ s thus represents a body of infor-
mation that encodes all the information available in s and possibly more. The
empty state represents the inconsistent body of information.

Semantics. Let M = ⟨W,D, I⟩ be a relational information model. The se-
mantics of InqBQ is given by a relation of support between information states
s ⊆W and formulas. As usual, this definition is relativized to an assignment g,
which is a map from variables to individuals. Given a term t, the extension of
t at world w ∈W under g is the individual [t]Mw,g (or simply [t]gw if the model is
clear from the context) defined inductively in the obvious way. Then we have
the following support definition.
Definition 2.1 (Support for InqBQ).
Let M = ⟨W,D, I⟩ be a relational information model, s ⊆W , and g : Var → D.

• M, s |=g P (t1, . . . , tn) ⇐⇒ ⟨[t1]gw, . . . , [tn]gw⟩ ∈ Pw for all w ∈ s

• M, s |=g ⊥ ⇐⇒ s = ∅
• M, s |=g φ ∧ ψ ⇐⇒ M, s |=g φ and M, s |=g ψ
• M, s |=g φ→ ψ ⇐⇒ ∀t ⊆ s :M, t |=g φ implies M, t |=g ψ
• M, s |=g φ

⩾

ψ ⇐⇒ M, s |=g φ or M, s |=g ψ
• M, s |=g ∀xφ ⇐⇒ M, s |=g[x7→d] φ for all d ∈ D

• M, s |=g ∃∃xφ ⇐⇒ M, s |=g[x7→d] φ for some d ∈ D

As usual, the modified assignment g[x 7→ d] is the assignment that maps x to d
and coincides with g on all other variables.

Some more notational conventions: we write M |=g φ instead of M,W |=g
φ; if Φ ⊆ LInqBQ(Σ) is a set of formulas, we write M, s |=g Φ to mean that
M, s |=g φ for all φ ∈ Φ; as usual, for sentences the assignment g is irrelevant
and reference to it can be dropped; finally, we allow ourselves to leave the model
M implicit when this is harmless, and thus write s |=g φ instead of M, s |=g φ.

2Note that Iw(=) is not required to be the identity relation. This is because the logic aims
to model also situations of uncertainty about whether certain objects are in fact the same.
Nevertheless, models where Iw(w) is the identity relation at each world are of course allowed
as a special case. For a discussion of the treatment of identity in InqBQ, see Ciardelli (2016b).

3Note that in order for w and w′ to count as duplicates, the associated structures Mw and
Mw′ should be identical, and not merely isomorphic.
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The following are three important basic properties of the semantics: the first
says that all formulas supported at an information state s remain supported at
a stronger information state t ⊆ s; the second says that the empty state, which
models the state of inconsistent information, supports any formula; the third
says that the interpretation of a formula at an information state depends only
on the worlds in the state, and not on the rest of the model.

• Persistency: if M, s |=g φ and t ⊆ s, then M, t |=g φ;
• Empty state property: M, ∅ |=g φ for all formulas φ;
• Locality: M, s |=g φ ⇐⇒ M|s, s |=g φ

where M|s = ⟨s,D, I|s⟩ is the natural restriction of M to the worlds in s.

Truth and truth-conditionality. A formula of InqBQ is said to be true at
a possible world w of a model if it is supported by the corresponding singleton
state {w}:

M,w |=g φ
def⇐⇒ M, {w} |=g φ

It is straightforward to prove that for a classical formula α, the truth conditions
so defined coincide with the standard ones given by Tarskian semantics. More
precisely, if M = ⟨W,D, I⟩, we have M,w |=g α if and only if α is true classically
in the relational structure Mw associated to w.

For some formulas of InqBQ, support at an information state coincides with
truth at each world in the state. Such formulas are said to be truth-conditional.

Definition 2.2. A formula φ ∈ LInqBQ is truth-conditional if for every model
M , state s, and assignment g we have M, s |=g φ ⇐⇒ M,w |=g φ for all w ∈ s.

The following proposition says that the truth-conditional formulas of InqBQ are,
up to logical equivalence, all and only the classical formulas. Here, two formulas
φ,ψ are said to be logically equivalent, notation φ ≡ ψ, if they have exactly the
same semantics, i.e., if for every model M , state s, and assignment g we have
M, s |=g φ ⇐⇒ M, s |=g ψ.

Proposition 2.3. For all formulas φ ∈ LInqBQ, the following are equivalent:
• φ is truth-conditional;
• φ ≡ α for some classical formula α.

In particular, then, all classical formulas are truth-conditional. This guarantees
that for such formulas, the above support semantics is essentially equivalent to
the standard truth-conditional semantics.

On the other hand, formulas that stand for questions are generally not truth-
conditional. As an illustration, here are the support conditions for the three
questions used as examples in the introduction.

Example 2.4.
• s |= ∀x?Px ⇐⇒ ∀w,w′ ∈ s : Pw = Pw′
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• s |= ?∀xPx ⇐⇒ ∀w,w′ ∈ s : (Pw = D ⇐⇒ Pw′ = D)

• s |= ∃∃xPx ⇐⇒ ∃d ∈ D ∀w ∈ s : d ∈ Pw

In words, ∀x?Px is supported in a state s if all worlds in s agree on the extension
of P ; ?∀xPx is supported in s if all worlds in s agree on whether or not the
extension of P is the entire domain; and ∃∃xPx is supported in s if there is an
individual d such that all worlds in s agree that d is in the extension of P .

Alternatives and normality. An alternative for a formula φ in a model M ,
relative to an assignment g, is a maximal state supporting φ. The set of such
alternatives is denoted AltgM (φ):

AltgM (φ) = {s ⊆W | s |=g φ and there is no t ⊃ s such that t |=g φ}

We say that a formula φ is normal if a supporting state for φ can always be
extended to an alternative.

Definition 2.5 (Normality). A formula φ is normal if for all models M and
assignments g, if M, s |=g φ then s ⊆ a for some a ∈ AltgM (φ).

If a formula φ is normal, then its semantics in any model is fully captured by
its set of alternatives: indeed, persistence and normalities jointly imply that the
supporting states for φ are all and only the states included in some alternative.

In inquisitive propositional logic, all formulas are normal (see Ciardelli and
Roelofsen, 2011, Prop. 2.10). As noted in Ciardelli (2009), however, this is not
the case for InqBQ. The following proposition gives a counterexample.

Proposition 2.6. The formula ∃∃xPx is not normal.

Proof. Consider a model M whose domain is the set N of natural numbers and
whose universe is W = {wi | i ∈ N}. Suppose Pwi

= {n | n ≥ i}. It is easy to
check that for any state s ⊆W :

s |= ∃∃xPx ⇐⇒ s is finite

Since there is no maximal finite subset of W , there is no alternative for ∃∃xPx
in this model. This is a counterexample to normality, since ∃∃xPx is supported
by some states in M .

Entailment. Entailment in InqBQ is defined as preservation of support:

Φ |= ψ ⇐⇒ ∀M, s, g :M, s |=g Φ implies M, s |=g ψ

As usual, if Φ = {φ1, . . . , φn} is a finite set we write φ1, . . . , φn |= ψ instead
of {φ1, . . . , φn} |= ψ; in particular, we write |= ψ instead of ∅ |= ψ and, if this
holds, we say that ψ is valid. In restriction to classical formulas, entailment
boils down to entailment in classical logic. Thus, classical first-order logic can
be seen as a syntactic fragment of InqBQ.
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Proposition 2.7 (Conservativity over classical first-order logic).
If Γ ∪ {α} ⊆ Lc then Γ |= α ⇐⇒ Γ entails α in classical first-order logic.

On the other hand, there are many valid entailments which involve questions as
premises or conclusions. For instance, we have:

∀x(Px↔ ¬Qx),∀x?Px |= ∀x?Qx

The validity of this entailment captures the fact that, under the assumption
that the extension of P and the extension of Q are complements of each other,
then the extension of P logically determines the extension of Q.

As mentioned in the introduction, many fundamental problems about InqBQ
remain open. Most strikingly, it is not known whether InqBQ is entailment-
compact, that is, if whenever Φ |= ψ we also have Φ0 |= ψ for some finite subset
Φ0 ⊆ Φ. Neither is it known whether the set of InqBQ-validities is recursively
enumerable and, if so, what a complete axiomatization looks like.

Natural deduction system. A sound, but possibly incomplete, natural de-
duction system for InqBQ is described in Figure 1. This is an adaptation of
the natural deduction system given in Ciardelli (2016b), presented in sequent
format for convenience.4 The introduction and elimination rules for each opera-
tor are standard; the only subtlety concerns the fact that a universal quantifier
can in general only be eliminated towards a rigid term, and an inquisitive ex-
istential can only be introduced from such a term; a universal quantifier can
be eliminated towards a non-rigid term only provided the relevant formula is
classical. In addition, we have a number of extra principles. First, for classical
formulas we have a rule of reductio ad absurdum, which reflects the fact that
the classical fragment of the logic coincides with classical first-order logic.5 The
two split rules allow us to push a classical antecedent through an inquisitive
operator. As discussed in detail in Ciardelli (2016b), these principles capture
the fact that non-inquisitive formulas denote specific pieces of information. The
constant domains rule encodes the fact that all worlds in a model are assumed
to share a common domain of individuals. Finally, the rule KF is related to
the fact that negations in InqBQ are always equivalent to some classical for-
mula. For detailed discussion of these inference rules and for an illustration of
how they can be combined to give proofs of valid inquisitive entailments, see
Ciardelli (2016b).

Note that in restriction to classical formulas, our system includes a complete
proof system for classical first-order logic. By the conservativity of InqBQ over
classical first-order logic, the system is thus complete with respect to entailments
among classical formulas.

4Note that what we give is still a natural deduction calculus, and not a sequent calculus,
since we give introduction and elimination rules for the logical operators, rather than left and
right introduction rules (see §2.1.8 Troelstra and Schwichtenberg, 2000, for discussion).

5Equivalently, one could add a rule of double negation elimination for classical formulas,
which given Θ ⊢ ¬¬α allows us to infer Θ ⊢ α. This is the choice made in Ciardelli (2016b).
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Axiom

φ ⊢ φ

Weakening
Θ ⊢ φ

Θ,Θ′ ⊢ φ

Falsum
Θ ⊢ ⊥
Θ ⊢ φ

Conjunction
Θ ⊢ φ Θ ⊢ ψ

Θ ⊢ φ ∧ ψ
Θ ⊢ φ ∧ ψ
Θ ⊢ φ

Θ ⊢ φ ∧ ψ
Θ ⊢ ψ

Implication
Θ ⊢ φ→ ψ

Θ, φ ⊢ ψ
Θ ⊢ φ Θ ⊢ φ→ ψ

Θ ⊢ ψ

Universal quantifier
Θ ⊢ φ[y/x]

y /∈ FV(Θ)
Θ ⊢ ∀xφ

Θ ⊢ ∀xφ
Θ ⊢ φ[t/x]

Θ ⊢ ∀xα
Θ ⊢ α[t/x]

Inquisitive disjunction
Θ ⊢ φ

Θ ⊢ φ ⩾

ψ

Θ ⊢ ψ
Θ ⊢ φ ⩾

ψ

Θ ⊢ φ ⩾

ψ Θ, φ ⊢ χ Θ, ψ ⊢ χ
Θ ⊢ χ

Inquisitive existential
Θ ⊢ φ[t/x]
Θ ⊢ ∃∃xφ

Θ ⊢ ∃∃xφ Θ, φ[y/x] ⊢ ψ
y /∈ FV(Θ ∪ {ψ})

Θ ⊢ ψ

Identity

⊢ t = t

Θ ⊢ φ[t/x] Θ ⊢ t = t′

Θ ⊢ φ[t′/x]

Classical reductio ad absurdum
Θ,¬α ⊢ ⊥
Θ ⊢ α

⩾ -split
Θ ⊢ α→ φ

⩾

ψ

Θ ⊢ (α→ φ)

⩾

(α→ ψ)

∃∃-split
Θ ⊢ α→ ∃∃xφ

x /∈ FV(α)
Θ ⊢ ∃∃x(α→ φ)

Constant domains (CD)
Θ ⊢ ∀x(φ ⩾

ψ)
x /∈ FV(ψ)

Θ ⊢ (∀xφ) ⩾ ψ

Classicality of negations (KF)
Θ ⊢ ∀x¬¬φ
Θ ⊢ ¬¬∀xφ

Figure 1: A sound, but possibly incomplete, natural deduction system for InqBQ.
In these rules, the variable α ranges over classical formulas, while φ and ψ range
over arbitrary formulas and Θ,Θ′ over finite sets of arbitrary formulas; t denotes
a rigid term, while t, t′ denote arbitrary terms, which may but need not be rigid.
In all rules, terms substituted for x must be free for x in the relevant formula.
We regard the left-hand side of a sequent as a finite set of formulas rather than
a sequence; in this way, we do not need explicit structural rules of contraction
and exchange.
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3 Coherence
In this section we define the coherence properties that are the main focus of this
paper and show some consequences of these properties.

Definition 3.1 (κ-coherence). For κ a cardinal, we say that a formula φ ∈
LInqBQ is κ-coherent if for any model M , state s, and assignment g:

s |=g φ ⇐⇒ for all t ⊆ s with #t ≤ κ we have t |=g φ

where #t denotes the cardinality of t. We say that φ is coherent if it is κ-
coherent for some cardinal κ, and finitely coherent if it is n-coherent for some
natural number n. The set of formulas which are finitely coherent is denoted
Lfico(Σ), or simply Lfico when the signature is clear from the context.

Note that the left-to-right direction in the above definition always holds by
persistency, so κ-coherence amounts to the requirement that the converse holds
as well, i.e., that support at a state is implied by support at all subsets of size
at most κ.

Also, note that truth-conditionality is a special case of n-coherence for n = 1.
Furthermore, note that if φ is κ-coherent then it is also λ-coherent for all λ ≥ κ.
This justifies the following definition.

Definition 3.2 (Coherence degree). The coherence degree of a formula φ is
the least κ (if it exists) such that φ is κ-coherent. If φ is finitely coherent, the
coherence degree is a natural number, denoted dφ.

Some formulas of InqBQ are not κ-coherent for any cardinal κ (and, as a con-
sequence, have no coherence degree). For these formulas there is no a priori
bound on the cardinality of the substates we need to consider when checking
whether the formula is supported at a state. The simplest example of such a
formula is ∃∃xPx.

Proposition 3.3. The formula ∃∃xPx is not κ-coherent for any κ. That is, for
every cardinal κ, there exists a model M and a state s such that s ̸|= ∃∃xPx and
for all t ⊆ s with #t ≤ κ we have t |= ∃∃xPx.

Proof. Consider an arbitrary cardinal κ, and indicate with κ+ the cardinal suc-
cessor of κ. Consider the model M = ⟨W,D, I⟩ given by:

• W = {wi | i < κ+}.
• D = {dj | j < κ+}.
• dj ∈ Pwi

⇐⇒ i ̸= j.
We have M,W ̸|= ∃∃xPx: indeed, for every element dj ∈ D we have have
M,W ̸|= P (dj), since dj ̸∈ Pwj . However, given any proper subset t ⊂ W we
have M, t |= ∃∃xPx: to see this, let wj be a world such that wj ̸∈ t; then for any
wi ∈ t we have i ̸= j and so dj ∈ wi, which implies M, t |= P (dj).

Since the cardinality of W is κ+ > κ, any subset t ⊆ W with #t ≤ κ will
be a proper subset of W and thus will support ∃∃xPx. Thus, we have found
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a state where ∃∃xPx is not supported, while being supported at all subsets of
cardinality up to κ.

The previous result shows that there are formulas that do not have a coherence
degree. On the other hand, as we will see in Section 6, for every finite n ∈ N we
can produce a formula with coherence degree n. We conjecture that these are
the two only possible options for formulas in InqBQ.

Conjecture 3.4 (Dichotomy). The coherence degree of a formula φ is either
finite or undefined.

Let us now focus on finitely coherent formulas. An interesting feature of these
formulas is that they enjoy a finite model property with respect to the size of
the universe W .6

Proposition 3.5 (Finite model property for finitely coherent formulas).
Let n ∈ N. If Φ ̸|= ψ and ψ is n-coherent, the entailment can be falsified in a
model M based on a universe W containing at most n worlds.

Proof. Suppose Φ ̸|= ψ. Then there are M , s and g such that M, s |=g Φ but
M, s ̸|=g ψ. If ψ is n-coherent, there exists a state t ⊆ s of size at most n such
that M, t ̸|=g ψ. By persistency, M, t |=g Φ. Then M|t, the restriction of M
to t, is a model whose universe is t, and thus contains at most n worlds. By
locality we have M|t, t |=g Φ but M|t, t ̸|=g ψ.

Moreover, whereas formulas of InqBQ are not in general normal, as we saw,
finitely coherent formulas always are.

Proposition 3.6 (Finite coherence implies normality).
If φ is finitely coherent, then it is normal; that is, for every model M , state s
and assignment g, if M, s |=g φ then s ⊆ a for some alternative a ∈ AltgM (φ).

Proof. Take an arbitrary model M , information state s, and assignment g such
that M, s |=g φ. Consider the set S of states containing s and supporting φ:

S = {t ⊆W | s ⊆ t and M, t |=g φ}

We want to show that S contains a maximal element.
For this, we first claim that for every non-empty chain C ⊆ S we have∪
C ∈ S. Towards a contradiction, suppose this is not the case. Then we have

a non-empty chain C ⊆ S such that
∪
C ̸∈ S. Since

∪
C does include s, we

must have M,
∪
C ̸|=g φ. Since φ is finitely coherent, there must be a subset

t ⊆
∪
C of cardinality at most dφ such that M, t ̸|=g φ. Since t ⊆

∪
C, every

w ∈ t is included in some element of the chain, and since t is finite, there must be
an element s′ ∈ C of the chain such that t ⊆ s′. By persistency, since M, t ̸|=g φ
we also have M, s′ ̸|=g φ. But this contradicts the hypothesis that C ⊆ S.

6Obviously, without further assumptions on the signature we cannot hope for a finite model
property with respect to the domain D, since the set of 1-coherent formulas already includes
all formulas of first-order predicate logic, and we know that some of these formulas can only
be falsified over infinite domains D.
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We have thus shown that every non-empty chain from S has an upper bound
in S. By Zorn’s lemma, S contains a maximal element a. This means that a is a
maximal extension of s such that M,a |=g φ, i.e., s ⊆ a and a ∈ AltgM (φ).

4 Compactness via finitary translations to FOL
Our next task will be to show that InqBQ entailment towards finitely coherent
conclusions is compact. In order to achieve this, we develop a family of maps
from the language of InqBQ to the language of classical (two-sorted) first-order
logic over a modified signature. These maps allow us to emulate the semantics of
InqBQ within standard first-order logic, but only provided a finite upper bound
to the size of information states is fixed in advance. This becomes interesting in
combination with Proposition 3.5, which guarantees that given an entailment
with a finitely coherent conclusion, such a finite bound on the size of the states
can indeed be fixed without affecting the validity of the entailment.

Signatures. We associate to a signature Σ a corresponding signature Σ∗ over
two sorts, w for worlds and e for individuals. Σ∗ is given as follows:

• For every n-ary predicate symbol R ∈ Σ, Σ∗ contains a predicate symbol
R∗ of arity n + 1 where the first argument is of sort w and the remaining
arguments of sort e.

• For every non-rigid n-ary function symbol f ∈ Σ, Σ∗ contains a function
symbol f∗ of arity n + 1 where the first argument is of sort w and the
remaining arguments as well as the output are of sort e.

• For every rigid n-ary function symbol f ∈ Σ, Σ∗ contains a function symbol
f∗ of arity n where the arguments and the output are of sort e.

We denote by LFOL
w,e (Σ∗) the language of two-sorted first-order predicate logic

over Σ∗. We use w, v for variables of type w in the latter language, and x, y
for variables of type e, which we assume to be the same as the variables of
LInqBQ(Σ).

Models. We associate to a relational information model M = ⟨W,D, I⟩ for
the signature Σ a two-sorted relational structure M∗ = ⟨W,D, I∗⟩ for Σ∗ where:

• For a predicate symbol R: I∗(R∗)(w, d1, . . . , dn) ⇐⇒ Iw(R)(d1, . . . , dn)

• For a non-rigid function symbol f : I∗(f∗)(w, d1, . . . , dn) = Iw(f)(d1, . . . , dn)

• For a rigid function symbol f: I∗(f∗)(d1, . . . , dn) = Iw(f)(d1, . . . , dn) for an
arbitrary w ∈W

It is easy to check that the map M 7→ M∗ is a bijection between relational
information models for Σ and two-sorted relational structures for Σ∗.
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Translating terms. Given a term t of LInqBQ(Σ) and a world variable w, we
define a corresponding term tw of type e of the language LInqBQ(Σ) inductively
as follows:

• if t is a variable x then tw = x

• if t = f(t1, . . . , tn) where f is non-rigid then tw = f∗(w, t1w, . . . , tnw)
• if t = f(t1, . . . , tn) where f is rigid then tw = f∗(t1w, . . . , tnw)

It is straightforward to check that for any relational information model M ,
assignment g, and term t of LInqBQ(Σ) we have

[t]Mw,g = [tw]
M∗

g[w 7→w]

where g[w 7→ w] is an arbitrary assignment that coincides with g on the variables
of type e and maps the variable w to w.

Translating formulas relative to finite states. Let s = {w1, . . . ,wn} be
a finite nonempty set of world variables. We define for each φ ∈ LInqBQ(Σ) a
formula trs(φ) ∈ LFOL

w,e (Σ) as follows:

trs(R(t1, . . . , tk)) = R∗(w1, t
1
w1
, . . . , tkw1

) ∧ · · · ∧R∗(wn, t1wn
, . . . , tkwn

)
trs(⊥) = ⊥
trs(φ ∧ ψ) = trs(φ) ∧ trs(ψ)
trs(φ

⩾

ψ) = trs(φ) ∨ trs(ψ)
trs(φ→ ψ) =

∧
{trs′(φ) → trs′(ψ) | ∅ ̸= s′ ⊆ s}

trs(∀xφ) = ∀x trs(φ)
trs(∃∃xφ) = ∃x trs(φ)

We spell out one example by way of illustration. We have

trs(∀x(Px

⩾

Qx))

= ∀x(trs(Px) ∨ trs(Qx))

= ∀x((P ∗(w1, x) ∧ · · · ∧ P ∗(wn, x)) ∨ (Q∗(w1, x) ∧ · · · ∧Q∗(wn, x)))

The key property of the map trs is given by the following proposition. The
proof is a matter of straightforward case-by-case verification, and is therefore
omitted.

Proposition 4.1. Let M be a relational information model, g an assignment,
and s = {w1, . . . , wn} a finite nonempty state. Let s = {w1, . . . ,wn} be a set of
n world variables and let g[s 7→ s] be any two-sorted assignment that coincides
with g on variables of type e and which maps the world variable wi to wi for
i = 1, . . . , n. For any formula φ ∈ LInqBQ(Σ) we have:

M, s |=g φ ⇐⇒ M∗ |=g[s7→s] trs(φ)
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Application to entailments with n-coherent conclusions. The following
proposition shows that, although the maps trs are not in general translations
from InqBQ to standard first-order logic, they preserve the validity of entail-
ments whose conclusion is n-coherent for n ≤ #s.
Proposition 4.2. Suppose Φ ⊆ LInqBQ(Σ) and ψ ∈ Lfico(Σ). Then we have:

Φ |=InqBQ ψ ⇐⇒ trs(Φ) |=FOL trs(ψ)

where |=FOL denotes entailment in first-order logic, s = {w1, . . . ,wn} is an arbi-
trary set of n world variables with n ≥ dψ and trs(Φ) = {trs(φ) | φ ∈ Φ}.
Proof. Suppose Φ ̸|=InqBQ ψ and take n ≥ dψ. By Proposition 3.5, we can
find a model M , an assignment g, and a state s of cardinality exactly n (if
needed, we may duplicate some worlds) such that M, s |=g Φ but M, s ̸|=g ψ.
By Proposition 4.1 we have M∗ |=g[s7→s] trs(Φ) but M∗ ̸|=g[s 7→s] trs(ψ), which
shows that trs(Φ) ̸|=FOL trs(ψ).

For the converse direction, suppose trs(Φ) ̸|=FOL trs(ψ). This means that
there is a two-sorted relational structure M ′ and an assignment g′ such that
M ′ |=g′ trs(Φ) but M ′ ̸|=g′ trs(ψ). Now let M be the relational information
model such that M∗ =M ′ (which exists since the map M 7→M∗ is a bijection
between relational information models for Σ and two-sorted structures for Σ∗).
Let g be the assignment defined by g(x) = g′(x) for every individual variable x,
and let s = {w1, . . . , wn} where wi = g′(wi). By the previous theorem, for any
χ ∈ LInqBQ(Σ) we have:

M, s |=g χ ⇐⇒ M∗ |=g[s7→s] trs(χ) ⇐⇒ M ′ |=g′ trs(χ)

where the last biconditional holds because g′ and g[s 7→ s] coincide on all
variables which occur free in trs(χ). This then implies that M, s |=g Φ but
M, s ̸|=g ψ, which shows that Φ ̸|=InqBQ ψ.

The existence of this limited translation to standard first-order logic implies
that InqBQ-entailment is compact whenever the conclusion if finitely coherent.
Theorem 4.3 (Entailment compactness for finitely coherent conclusions).
If Φ |=InqBQ ψ and ψ is finitely coherent, there exists a finite subset Φ0 ⊆ Φ such
that Φ0 |=InqBQ ψ.
Proof. Suppose Φ |=InqBQ ψ and ψ is finitely coherent. By Proposition 4.1,
for a suitable choice of the parameter s we have trs(Φ) |=FOL trs(ψ). By the
compactness of first-order logic, there is a finite subset Φ0 ⊆ Φ such that
trs(Φ0) |=FOL trs(ψ). Again by Proposition 4.1, it follows that Φ0 |=InqBQ ψ.

5 The rex fragment
The finitely coherent fragment of InqBQ, Lfico, is defined semantically. In this
section, we define a syntactic fragment included in Lfico. This fragment is charac-
terized by a restriction on the occurrences of the inquisitive existential quantifier
∃∃, which is allowed to appear only in the antecedent of an implication.
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Definition 5.1. The restricted existential fragment of InqBQ, or rex fragment
for short, is the set Lrex(Σ) (or simply Lrex) of formulas given by the following
BNF definition, where p ranges over atomic formulas and φ ranges over the full
language LInqBQ:

χ ::= p | ⊥ | χ ∧ χ | φ→ χ | χ ⩾

χ | ∀xχ

We refer to χ ∈ Lrex as a rex formula. The crucial property of the fragment is
that every rex formula is finitely coherent, and in fact nχ-coherent for some nχ
which is recursively computable from the syntax of χ. Let us make this precise.

Definition 5.2. To each formula χ ∈ Lrex we associate a natural number nχ
inductively as follows:

• np = 1 if p is an atomic formula or ⊥
• nχ∧ξ = max(nχ, nξ)

• nφ→χ = nχ

• nχ

⩾

ξ = nχ + nξ

• n∀xχ = nχ

Thus, for instance, the number associated to the mention-all question ∀x?Px is
n∀x?Px = n?Px = nPx

⩾
(Px→⊥) = nPx + nPx→⊥ = nPx + n⊥ = 1 + 1 = 2.

Proposition 5.3. Every rex formula χ is nχ-coherent.

Proof. Note that a formula χ is n-coherent if and only if it satisfies the following
condition for every model M , state s and assignment g:

M, s ̸|=g φ =⇒ ∃t ⊆ s [ #t ≤ n and M, t ̸|=g φ ] (∗)

We are going to show that, for every formula χ ∈ Lrex, the condition (∗) holds
for arbitrary M , s and g, and for n = nχ. The proof consists of an induction on
the structure of χ. The base cases and the case for conjunction are trivial and
left to the reader. We spell out the remaining three cases below, abbreviating
“inductive hypothesis” by IH.

If χ is of the form ξ

⩾

ζ, for M , s and g as above we have:

M, s ̸|=g ξ

⩾

ζ

=⇒ M, s ̸|=g ξ and M, s ̸|=g ζ

=⇒
{

∃t1 ⊆ s [ #t1 ≤ nξ and M, t1 ̸|=g ξ ]
∃t2 ⊆ s [ #t2 ≤ nζ and M, t2 ̸|=g ζ ]

(by IH)

If we now let t = t1 ∪ t2, this state witnesses the condition (∗) for n = nξ

⩾

ζ ,
since t ⊆ s, #t ≤ #t1+#t2 ≤ nξ+nζ = nξ

⩾

ζ , and by persistency M, t ̸|=g ξ

⩾

ζ.
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If χ is of the form ξ → ζ, for M , s and g as above we have:

M, s ̸|=g ξ → ζ

=⇒ ∃t ⊆ s

{
M, t |=g ξ
M, t ̸|=g ζ

=⇒ ∃t ⊆ s

{
M, t |=g ξ
∃u ⊆ t [ #u ≤ nζ and M,u ̸|=g ζ ]

(by IH)

=⇒ ∃u ⊆ s such that #u ≤ nζ and
{
M,u |=g ξ
M, u ̸|=g ζ

(by persistency)

=⇒ ∃u ⊆ s such that #u ≤ nξ→ζ and M,u ̸|=g ξ → ζ (as nξ→ζ = nζ)

Thus, the state u witnesses the condition (∗) for n = nξ→ζ .
If χ is of the form ∀xξ, for M , s and g as above we have:

M, s ̸|=g ∀xξ
=⇒ ∃a ∈ D such thatM, s ̸|=g[x7→a] ξ

=⇒ ∃a ∈ D such that ∃t ⊆ s
[
#t ≤ nξ andM, t ̸|=g[x 7→a] ξ

]
(by IH)

=⇒ ∃t ⊆ s
[
#t ≤ nξ and∃a ∈ D such thatM, t ̸|=g[x 7→a] ξ

]
=⇒ ∃t ⊆ s [#t ≤ n∀xξ andM, t ̸|=g ∀xξ ] (as n∀xξ = nξ)

Thus, the state t witnesses condition (∗) for n = n∀xξ.

Note that the number nχ is not necessarily equal to the coherence degree dχ
of the formula χ: for instance, we have nPx ⩾ Px = nPx + nPx = 2, but since
Px

⩾

Px ≡ Px we have dPx ⩾ Px = dPx = 1. However, since the coherence
degree dχ is defined as the least number n for which χ is n-coherent, the previous
proposition guarantees that nχ ≥ dχ.

According to this result, the (syntactically defined) rex fragment is included
in the (semantically defined) finitely coherent fragment, i.e., we have Lrex ⊆ Lfico.
An interesting question is whether the converse inclusion also holds, modulo
logical equivalence. In other words, is any finitely coherent formula equivalent
to one in the rex fragment? We leave this question open.
Open question. Is it true that every φ ∈ Lfico is equivalent to some ψ ∈ Lrex?
Since rex formulas are finitely coherent, it follows from Theorem 4.3 that en-
tailments with rex conclusions are compact. Moreover, using the results in the
previous section we can show that the set of rex validities is recursively enumer-
able.
Theorem 5.4 (Rex validities are recursively enumerable).
The set Valrex = {χ | χ ∈ Lrex and |=InqBQ χ} is recursively enumerable.
Proof. We need to show that there is a method to semi-decide whether a given
formula χ belongs to the set Valrex. This amounts to semi-deciding whether the
conjunction

χ ∈ Lrex and |=InqBQ χ
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holds. For this, we proceed as follows. First, we check whether χ is a rex
formula. This is a decidable matter: we just need to check if all occurrences of
an inquisitive existential quantifier are within the antecedent of a conditional.7
If χ is not a rex formula, we do not return any output. Otherwise, we need to
semi-decide whether χ is valid in InqBQ. For this, we first compute the number
nχ recursively. Then we compute the finitary first-order translation trs(χ) for s
a set of world variables of size nχ. Since nχ ≥ dχ, by Proposition 4.2 we have:

|=InqBQ χ ⇐⇒ |=FOL trs(χ)

Thus, our task reduces to semi-deciding whether trs(χ) is valid in classical first-
order logic. This is possible, since validity in first-order logic is semi-decidable.

Note that this theorem implies that the set of InqBQ-entailments with a finite
number of premises and a rex conclusion is also recursively enumerable. This is
because we have:

φ1, . . . , φn |=InqBQ χ ⇐⇒ |=InqBQ φ1 ∧ · · · ∧ φn → χ

Thus, semi-deciding whether φ1, . . . , φn |=InqBQ χ reduces to semi-deciding the
validity of the formula φ1 ∧ · · · ∧ φn → χ, which is a rex formula since χ is.

The fact that the set of entailments with rex conclusions is r.e. creates some
expectation that it is possible to provide a proof system for InqBQ which is com-
plete with respect to such entailments. As we will see in Section 9, such a proof
system can indeed by obtained by supplementing the natural deduction system
described in Section 2 with a new inference rule specific to rex conclusions.

6 Cardinality formulas
In this section we show that, for many signatures Σ, we can write for each n ∈ N
an InqBQ-formula CΣ

n which says that there are at most n worlds in the state,
up to duplicates. The formulas CΣ

n , which we call cardinality formulas for Σ,
will play a significant role in the axiomatization results of the next two sections.

Recall that two worlds w,w′ in a model M are said to be duplicates (w ≈ w′)
if they are associated with the same relational structure, Mw = Mw′ . The
essential cardinality of a state s, denoted #es, is the number of worlds in s, up
to equivalence modulo ≈:

#es = #(s/≈)

To better convey the idea behind the construction of the cardinality formulas,
we first show how to define them in the simple case of the signature Σ = {P (1)}
consisting of just one unary predicate symbol. Once the idea is clear we will
show how to extend it to other more general cases.

7Note that this step would not go through if we had replaced the condition χ ∈ Lrex with
the condition χ ∈ Lfico: it is not clear whether there is a method to decide, or even semi-decide,
whether a given formula χ is finitely coherent.
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Figure 2: A model M in the signature Σ = {P (1)} with four worlds and
without duplicates. Each row corresponds to an individual and each column to
a world. The square in the cell corresponding to individual d and world w is
black if d ∈ Pw, and white otherwise. To show that the formula C4 holds at
the model, we can follow the steps in the proof of Proposition 6.2: We can use
the element a to partition the worlds of the model, since in the worlds of s+
it satisfies predicate P and in the worlds of s− it does not satisfy P . Both s+

and s− contain two worlds, thus we have s+ |= C2 and s− |= C2. From this
it follows that M |=[x 7→a] (P (x) → C2) ∧ (¬P (x) → C2), which immediately
implies M |= C4.

Definition 6.1 (Cardinality formulas, case Σ = {P (1)}).
We define the cardinality formulas C{P}

n inductively as follows:

C
{P}
0 := ⊥

C
{P}
1 := ∀x?Px

C
{P}
n+1 := ∃∃x\\/n

i=1

[
(Px→ C

{P}
i ) ∧ (¬Px→ C

{P}
n+1−i)

]
Proposition 6.2. Let M be a model for the signature Σ = {P (1)}, s an infor-
mation state in M and n ∈ N. We have:

M, s |= C{P}
n ⇐⇒ #es ≤ n

Proof. We may assume without loss of generality that s does not contain du-
plicate worlds, so that the essential cardinality of s is just its cardinality,
#es = #s. If this is not the case, we can instead work with a substate s′ ⊆ s
obtained by choosing a single representative for each equivalence class modulo
≈ which is represented in s. Then s′ does not contain duplicate worlds, has the
same essential cardinality as s, and it is easy to see that s and s′ support the
same formulas. Thus, if the claim can be shown for s′, it applies to s as well.

We prove the statement by induction on the number n. To lighten the
notation, throughout the proof we omit superscripts and just write Cn for C{P}

n .
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The case for n = 0 is trivial. For the case n = 1, consider the formula C1.
As we have seen in Example 2.4, we have

s |= C1 ⇐⇒ s |= ∀x?Px ⇐⇒ ∀w,w′ ∈ s : Pw = Pw′

Since we are assuming that Σ contains only the predicate P , the above condition
says that all worlds w,w′ ∈ s, w and w′ are duplicates of each other, i.e., that
the essential cardinality of s is at most 1.

For the inductive step, assume the property holds for the formulas Ck with
k < n and consider the formula Cn for n ≥ 2. In case s = ∅, it trivially supports
the formula Cn by the empty state property. And in case s contains exactly
one world, by inductive hypothesis s supports all formulas of the form Ck for
1 ≤ k < n, and it is easy to see that this implies that s supports Cn too.

Now suppose s contains at least two worlds and at most n. Let w0 and w1 be
two distinct worlds in s. Since these worlds are not duplicates and P is the only
symbol in the language, Pw0

̸= Pw1
, and so there is an element a such that either

a ∈ (Pw0
− Pw1

), or a ∈ (Pw1
− Pw0

). Without loss of generality, suppose the
former. Now define s+ = {w ∈ s | a ∈ Pw} and s− = {w ∈ s | a ̸∈ Pw}. Note
that s+ and s− are both non-empty (since they contain respectively the worlds
w0 and w1) and they form a partition of s. The idea is illustrated in Figure 2.
For k := #s+ we have 1 ≤ k ≤ n−1, and s+ |= Ck by inductive hypothesis. Now
take any t ⊆ s such that t |=[x7→a] P (x). By the semantics of atoms, this implies
t ⊆ s+ and so by persistency also t |= Ck. This shows that s |=[x 7→a] P (x) → Ck.
Moreover #s− = #s−#s+ ≤ n−k, and so by inductive hypothesis s− |= Cn−k.
Now take any t ⊆ s such that t |=[x 7→a] ¬P (x). By the semantics, t ⊆ s−, and
so by persistency t |= Cn−k. Thus, s |=[x 7→a] ¬P (x) → Cn−k. These two
conditions, together with the fact that 1 ≤ k ≤ n− 1, imply that s |= Cn.

Finally, in case s contains more than n worlds, pick an arbitrary element
a and define the sets s+, s− as above. These sets have empty intersection
and s = s+ ∪ s−, thus #s = #s+ + #s−. In particular, for every choice of
a value k ∈ {1, . . . , n − 1} we have either that #s+ > k or #s− > n − k.
By the induction hypothesis, this implies that s+ ̸|= Ck or s− ̸|= Cn−k. Since
s+ |=[x 7→a] P (x) and s− |=[x 7→a] ¬P (x), it follows that s ̸|=[x 7→a] P (x) → Ck or
s ̸|=[x 7→a] ¬P (x) → Cn−k. Since the choices of a and k ∈ {1, . . . , n − 1} were
arbitrary, this shows that s ̸|= Cn.

To summarize, we showed that s supports the formula Cn if and only if s
contains at most n worlds. This completes the inductive step.

Next, we show how the construction of the formulas CΣ
n can be generalized to

an arbitrary finite signature Σ which is function-rigid, i.e., such that all function
symbols in Σ are rigid (this includes in particular all relational signatures, i.e.,
signatures without function symbols).

Definition 6.3 (Cardinality formulas, Σ function-rigid).
Consider a finite function-rigid signature Σ. Let the predicate symbols in Σ be
R1, . . . , Rl. We define the cardinality formulas CΣ

n inductively as follows, where
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each xi is a tuple of variables of size the arity of Ri.

CΣ
0 := ⊥

CΣ
1 := ∀x1?R1(x1) ∧ . . . ∧ ∀xl?Rl(xl)

CΣ
n+1 := ∃∃x1\\/ni=1

[
(R1(x1) → CΣ

i ) ∧ (¬R1(x1) → CΣ
n+1−i)

] ⩾

. . .

· · · ⩾ ∃∃xl \\/ni=1

[
(Rl (xl) → CΣ

i ) ∧ (¬Rl (xl) → CΣ
n+1−i)

]
We can generalize this definition even further to allow for the possibility that Σ
contains non-rigid function symbols, but in this case we must require that the
identity predicate be available in Σ.

Definition 6.4 (Cardinality formulas, Σ including identity).
Let Σ be a finite signature containing the identity predicate. Let R1, . . . , Rl be
the predicate symbols in Σ, and let f1, . . . , fh be the non-rigid function symbols
in Σ. We define the cardinality formulas CΣ

n inductively as follows, where xj
and yj denote tuples of variables of size the arity of Rj and fj respectively.

CΣ
0 := ⊥

CΣ
1 :=

l∧
j=1

∀xj?Rj(xj) ∧
h∧
j=1

∀yj∃∃z(fj(yj) = z)

CΣ
n+1 := \\/l

j=1
∃∃xj\\/ni=1

[ (Rj(xj) → CΣ
i ) ∧ (¬Rj(xj) → CΣ

n+1−i) ]

⩾

⩾ \\/h
j=1

∃∃yjz \\/
n

i=1
[ (fj(yj) = z → CΣ

i ) ∧ (fj(yj) ̸= z → CΣ
n+1−i) ]

The general version of Proposition 6.2 now reads as follows.

Proposition 6.5. Let Σ be a finite signature which is function-rigid or contains
identity. Let M be a model for Σ, s a state in M and n ∈ N. We have:

M, s |= CΣ
n ⇐⇒ #es ≤ n

The proof is a tedious but rather straightforward extension of the one of Propo-
sition 6.2. We include it in Appendix A for the sake of completeness.

7 Bounded inquisitive logics
In this section, we consider a family of logics InqBQκ obtained by restricting
the class of admissible models to those containing at most κ worlds. As we will
see, studying the sequence of these logics allows us to draw some interesting
conclusions about InqBQ.

First, we define an entailment relation |=InqBQκ
as follows:

Φ |=InqBQκ
ψ ⇐⇒ for all models M = ⟨W,D, I⟩ with #W ≤ κ,

for all states s ⊆W and assignments g :

M, s |=g Φ implies M, s |=g ψ
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We write InqBQκ for the set of formulas φ such that |=InqBQκ
φ.

Note that if κ < λ then the entailment relation |=InqBQλ
includes |=InqBQκ

,
and thus also InqBQλ ⊆ InqBQκ. So what we have is a monotonically shrinking
sequence of logics, all of which include InqBQ and approximate the full logic
more and more closely. A simple cardinality argument shows that InqBQ must
coincide with one of these approximations.

Proposition 7.1. For every signature Σ, there is a cardinal κ such that |=InqBQκ

coincides with |=InqBQ.

Proof. We want to show that for some fixed cardinal κ, for every invalid entail-
ment Φ ̸|= ψ, there exists a model M whose universe has cardinality at most κ,
such that M |= Φ and M ̸|= ψ. This suffices to prove the result.

Let {⟨Φα, ψα⟩ | α < ρ} be an enumeration of the invalid entailments (i.e.,
Φα ̸|= ψα), where ρ is a suitably large cardinal. For every ⟨Φα, ψα⟩ we can find
an information model Mα such that Mα |= φ for every φ ∈ Φα and Mα ̸|= ψα.
Define λα = #WMα , the cardinality of the universe of Mα. Moreover, define
λ = sup({λα | α < ρ}). All the models Mα have cardinality at most λ, thus all
the invalid entailments of InqBQ are witnessed by some model of cardinality at
most λ, as desired.

Another thing that we can say about our sequence of logics is that for finite
cardinals, all inclusions are strict, i.e., we have

InqBQ0 ⊋ InqBQ1 ⊋ InqBQ2 ⊋ . . .

To see this, it suffices to note that for all n ∈ N we have

C{R}
n ∈ InqBQn − InqBQn+1

where R is an arbitrary predicate in Σ and C{R}
n the cardinality formula defined

in the previous section.
In the setting of propositional inquisitive logic, an analogous sequence of

approximations has been studied by Ciardelli (2009), who showed that propo-
sitional inquisitive logic InqB is the limit of its finitary approximations, in the
sense that InqB =

∩
n∈N InqBn. A natural question, already raised by Sano

(2011), is whether an analogous result holds in the first-order setting. The
following proposition answers this question in the negative.

Proposition 7.2. InqBQ ̸=
∩
n∈N InqBQn

In words, this proposition says that InqBQ does not have the finite model prop-
erty with respect to the universe: there exist sentences that are invalid, but
that necessarily require an infinite universe in order to be refuted.

To prove this result, it is useful to first introduce a technical notion.

Definition 7.3. Given a predicate symbol R ∈ Σ, an information state s is an
R-chain if for every pair of worlds w,w′ ∈ s we have Rw ⊆ Rw′ or Rw′ ⊆ Rw.
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w0 w1 w2 · · ·

a0

a1

a2

...
...

...
...

· · ·

Figure 3: An example of a P -chain, where we depict models using the same
conventions as in Figure 2. The universe is the set {wi | i ∈ N}, while the domain
is {ai | i ∈ N}. The extension of P is defined by the clause ai ∈ Pwj iff i ≤ j.
To see that the model is a P -chain, observe that Pwi ⊆ Pwj iff i ≤ j.

In words, a state s is an R-chain if the extensions {Rw | w ∈ s} are totally
ordered by inclusion. An example of P -chain for a unary P is shown in Figure 3.

An important feature of R-chains is that they are definable in InqBQ.

Lemma 7.4. M is an R-chain ⇐⇒ M |= χRchain, where

χRchain := ∀x∀y [ (Rx→ Ry)

⩾

(Ry → Rx) ]

Proof. First, suppose M ̸|= χRchain. Let a, b be tuples such that M ̸|=[x 7→a,y 7→b]

Rx → Ry and M ̸|=[x 7→a,y 7→b] Ry → Rx. Since both formulas are classical and
thus truth-conditional (Proposition 2.3), there exist two worlds w,w′ such that

M,w |=[x7→a] Rx M,w ̸|=[y 7→b] Ry M,w′ ̸|=[x7→a] Rx M,w′ |=[y 7→b] Ry

or equivalently

a ∈ Rw b /∈ Rw a /∈ Rw′ b ∈ Rw′ (1)

Thus, Rw ̸⊆ Rw′ and Rw′ ̸⊆ Rw, which shows that M is not an R-chain.
Conversely, suppose that M is not an R-chain. Then there exist two worlds

w,w′ such that Rw ̸⊆ Rw′ and Rw′ ̸⊆ Rw; this means there exist two tuples a, b
for which (1) holds. From this it easily follows that M ̸|= χRchain.

We now have all the tools needed to prove Proposition 7.2.

Proof of Proposition 7.2. Take an arbitrary R ∈ Σ. We are going to show that
the formula

ψR := χRchain → ∃∃x(Rx→ ∀y?Ry)

is not valid in InqBQ but is valid in InqBQn for each n. For simplicity we spell
out the proof for the case in which R is a unary predicate P , but the general
case is analogous.
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To see that ψP ̸∈ InqBQ, it suffices to verify that the model in Figure 3 is
a counterexample. It remains to be shown that ψP ∈ InqBQn for every n ∈ N,
that is, that ψP is valid on all models with finitely many worlds.

Consider any finite state t such that t |= χPchain. By Lemma 7.4 we have that
t is a P -chain, so the set {Pw | w ∈ t} is totally ordered by ⊆. Now there are
two cases. If the set is a singleton, that means that the extension of P is the
same at all worlds in t, so we have t |= ∀y?Py and also t |= ∃∃x(Px → ∀y?Py).
If the set {Pw | w ∈ t} is not a singleton, then since it is finite (as t is finite) it
must have a greatest element P 1 and a second greatest element P 2. Take any
a ∈ P 1 − P 2, which ensures that P 1 is the only element in the set {Pw | w ∈ t}
containing a. Take a substate t′ ⊆ t such that t′ |=[x 7→a] Px. This means that at
all w ∈ t′, the extension Pw contains a, and must thus coincide with P 1. Thus,
the extension of P is the same at all w ∈ t′, which ensures t′ |= ∀y?Py. Since t′
was an arbitrary subset of t, this shows that t |= ∃∃x(Px→ ∀y?Py).

We have thus shown that any finite state that supports the antecedent of
ψP also supports the consequent, and thus that ψP is valid in all models with
a finite universe.

The natural question to ask next is whether InqBQ coincides with its ℵ0-approximation,
obtained by restricting to models with countably many worlds. If so, this can
be seen as a kind of downward Löwenheim-Skolem theorem with respect to the
size fo the universe: every entailment which is invalid in InqBQ can be falsified
in a model based on a countable universe. This is an important question that
we will leave open here.

Open question. Does |=InqBQ coincide with |=InqBQℵ0
? If not, what is the least

cardinal κ such that |=InqBQ coincides with |=InqBQκ
?

Note that the answers to these questions could in principle depend on the sig-
nature Σ.

8 Axiomatizing finite-bound inquisitive logics
In this section we are going to show that, given a finite signature Σ which is
either function-rigid or contains identity, a strongly complete proof system for
the logic InqBQn is obtained by extending the proof system for InqBQ shown in
Figure 1 by means of the axiom CΣ

n . More precisely, consider the proof system
obtained by extending the system of Figure 1 with the following rule:

⊢ CΣ
n

We write Φ ⊢n ψ if for some finite subset Φ0 ⊆ Φ the sequent Φ0 ⊢ ψ is derivable
in this system. We write φ ⊣⊢n ψ if φ and ψ are inter-derivable in this system,
i.e., if φ ⊢n ψ and ψ ⊢n φ. We are going to prove the following theorem.

24



Theorem 8.1 (Soundness and completeness for finite-bound inquisitive logics).
Let Φ ∪ {ψ} ⊆ LInqBQ(Σ) where Σ is a finite signature that is function-rigid or
contains identity. Then:

Φ |=InqBQn
ψ ⇐⇒ Φ ⊢n ψ

Soundness follows from the fact that each rule in Figure 1 is sound with respect
to InqBQn, and CΣ

n is valid in InqBQn. The rest of this section is devoted to
showing completeness. We start from the simpler case in which Σ is a finite
function-rigid signature, i.e., the case in which all function symbols in the sig-
nature are rigid. At the end of the section we discuss how to extend this to
languages with non-rigid function symbols, in the presence of identity.

Before proceeding, we state two preliminary lemmas about derivability in
the system ⊢n. The straightforward proofs are left as exercises to the reader.
We only remark that the ⩾ -split rule is needed for the third item of Lemma 8.3.

Lemma 8.2. For any formulas φ,ψ, χ, (φ ↔ ψ) ⊢n (χ ↔ χ′), where χ′ is any
formula obtained from χ by replacing one or more occurrences of φ by ψ.

Lemma 8.3. For any formulas φ,ψ, χ and any classical formula α we have:
1. φ ∧ (ψ

⩾

χ) ⊣⊢n (φ ∧ ψ) ⩾ (φ ∧ χ)
2. (φ

⩾

ψ) → χ ⊣⊢n (φ→ χ) ∧ (ψ → χ)

3. α→ (φ

⩾

ψ) ⊣⊢n (α→ φ)

⩾

(α→ ψ)

4. ∃∃xφ→ ψ ⊣⊢n ∀x(φ→ ψ), provided x is not free in ψ

5. φ→ ∀xψ ⊣⊢n ∀x(φ→ ψ), provided x is not free in φ

8.1 Saturated n-theories
Let Σ be a finite function-rigid signature, which will remain fixed throughout
this section. To lighten the notation, we will write Cn for CΣ

n . Let Σ(A) be the
extension of Σ with a countably infinite set A of fresh rigid constant symbols.
We denote by Ter the set of rigid terms of the signature Σ(A), by LA the set of
sentences in LInqBQ(Σ(A)), by LAc the set of classical sentences in LA.

A crucial notion for our completeness proof is the notion of an n-saturated
theory. An n-saturated theory is a set of sentences that has the right features
to be the set of sentences supported by a non-empty information state of size
at most n, in a model where the terms in Ter name all the individuals in the
domain.

Definition 8.4 (Saturated n-theories). A set of sentences ∆ ⊆ LA is called a
saturated n-theory over A if it has the following properties:

• Consistency: ⊥ ̸∈ ∆

• Deductive closure: for all φ ∈ LA, if ∆ ⊢n φ then φ ∈ ∆

• Inquisitive disjunction property: if φ ⩾

ψ ∈ ∆ then φ ∈ ∆ or ψ ∈ ∆
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• Inquisitive existence property: if ∃∃xφ ∈ ∆ then φ[t/x] ∈ ∆ for some
t ∈ Ter

• Normality: if ∀xφ ̸∈ ∆ then φ[t/x] ̸∈ ∆ for some t ∈ Ter
For convenience, we also introduce notions of derivability and equivalence rela-
tive to a saturated n-theory ∆, as follows:

• φ ⊢∆ ψ ⇐⇒ (φ→ ψ) ∈ ∆

• φ ⊣⊢∆ ψ ⇐⇒ (φ↔ ψ) ∈ ∆

The key property of saturated n-theories is given by the following lemma. The
lemma says that given a saturated n-theory ∆, we can find formulas α1, . . . αm
with m ≤ n which, from the perspective of ∆, are exhaustive and mutually
exclusive, and such that each αi completely describes a single possible world,
up to duplicates.

Lemma 8.5. If ∆ is a saturated n-theory then for some m ≤ n there exist
classical sentences α1, . . . , αm ∈ LAc such that:

1. α1 ∨ · · · ∨ αm ∈ ∆

2. ¬(αi ∧ αj) ∈ ∆ for i ̸= j

3. ¬αi ̸∈ ∆ for each i ≤ m

4. (αi → C1) ∈ ∆ for each i ≤ m.

Proof. For simplicity we give the proof for the case Σ = {P (1)}, but this extends
straightforwardly to any function-rigid signature.

For n = 1 the statement is trivially satisfied by choosing α1 = ⊤, so we
may assume that n > 1. Since ∆ is a saturated n-theory and ⊢n Cn, we have
Cn ∈ ∆, hence expanding the definition:

∃∃x\\/n−1
i=1 [(P (x) → Ci) ∧ (¬P (x) → Cn−i)] ∈ ∆w�(by existence property, for some t ∈ Ter)

\\/n−1
i=1 [(P (t) → Ci) ∧ (¬P (t) → Cn−i)] ∈ ∆w�(by disjunction property, for some k with 1 ≤ k < n)

(P (t) → Ck) ∧ (¬P (t) → Cn−k) ∈ ∆w�(by deductive closure)

P (t) → Ck ∈ ∆ and ¬P (t) → Cn−k ∈ ∆

We found that, for some t ∈ Ter and some k ∈ {1, . . . , n − 1} we have P (t) →
Ck ∈ ∆ and ¬P (t) → Cn−k ∈ ∆. Notice that the antecedents of the implications
satisfy Conditions 1 and 2 of the statement, since we have ⊢n P (t)∨¬P (t) and
⊢n ¬(P (t) ∧ ¬P (t)) (recall that our proof system includes a complete proof
system for classical first-order logic in restriction to classical formulas).

We can describe the situation in a more general way as follows: we have some
classical formulas {β1, . . . , βl} such that (a) ⊢n β1 ∨ · · · ∨ βl, (b) ⊢n ¬(βi ∧ βj)
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for i ̸= j and (c) there exist positive indices h1, . . . , hl such that
∑l
j=1 hj = n

and βj → Chj ∈ ∆ for every j ≤ l.
Assuming we are given such a set {β1, . . . , βl}, we are going to show how

to replace an arbitrary formula βj with associated index hj > 1 with two new
formulas β′

j and β′′
j such that the resulting set {β1, . . . , βj−1, β

′
j , β

′′
j , βj+1, . . . , βl}

still satisfies properties (a)-(c).
Recall that βj → Chj ∈ ∆ by property (c). By expanding the definition of

Chj in the expression we obtain:

βj → ∃∃x\\/hj−1
i=1 [(P (x) → Ci) ∧ (¬P (x) → Chj−i)] ∈ ∆w�(by ∃∃-split)

∃∃x
[
βj → \\/hj−1

i=1 [(P (x) → Ci) ∧ (¬P (x) → Chj−i)]
]
∈ ∆w�(by existence property, for some t′ ∈ Ter)

βj → \\/hj−1
i=1 [(P (t′) → Ci) ∧ (¬P (t′) → Chj−i)] ∈ ∆w�(by ⩾ -split)

\\/hj−1
i=1 [βj → (P (t′) → Ci) ∧ (¬P (t′) → Chj−i)] ∈ ∆w�(by disjunction property, for some k′ with 1 ≤ k′ < hj)

βj → (P (t′) → Ck′) ∧ (¬P (t′) → Chj−k′) ∈ ∆w�(by deductive closure)

(βj ∧ P (t′)) → Ck′ ∈ ∆ and (βj ∧ ¬P (t′)) → Chj−k′ ∈ ∆

Thus, if we let β′
j = (βj ∧ P (t′)) and β′′

j = (βj ∧ ¬P (t′)) we have that β′
j →

Ck′ ∈ ∆ and β′′
j → Chj−k′ ∈ ∆. Using this fact, it is easy to show that the

resulting set {β1, . . . , βj−1, β
′
j , β

′′
j , βj+1, . . . , βl} still satisfies properties (a)-(c).

We can then repeat this procedure until we end up with a set of n formulas
{α1, . . . , αn} such that (a) ⊢n α1 ∨ · · · ∨αn, (b) ⊢n ¬(αi ∧αj) for i ̸= j, and (c)
αi → C1 ∈ ∆ for 1 ≤ i ≤ n. Thus, the set of formulas {α1, . . . , αn} obtained
by this inductive procedure satisfies Conditions 1, 2 and 4 from the statement
of the lemma. However, this set does not necessarily satisfy Condition 3, since
we could have ¬αi ∈ ∆ for some αi in the set. To obtain the desired set, we
simply remove the relevant αi. Let us make this more precise.

Modulo reordering the formulas, we can assume that ¬α1, . . . ,¬αm /∈ ∆ and
that ¬αm+1, . . . ,¬αn ∈ ∆ for some m ≤ n. We can now show that the formulas
α1, . . . , αm satisfy all the required conditions:

1. For the first, condition, note that ∆ contains ¬αj for j > m as well as the
disjunction α1∨· · ·∨αn. From these formulas, the disjunction α1∨· · ·∨αm
is derivable. Since ∆ is closed under deduction, α1 ∨ · · · ∨ αm ∈ ∆.

2. We know that ⊢n ¬(αi∧αj) for i ̸= j, thus the second condition is satisfied.
3. The third condition is trivially satisfied, since the formulas α1, . . . , αm were

chosen such that ¬α1, . . . ,¬αm /∈ ∆.
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4. By construction, ∆ contains αi → C1 for every i ≤ n, thus also for i ≤ m.
This concludes our proof.

Given ∆, let us fix formulas α1, . . . , αm as in the previous lemma and call them
the world-sentences for ∆. We denote the set of these world-sentences by L∆

w .
The fact that, from the perspecive of ∆, each world-sentence αi completely

describes a single possible world is brought out by the following lemma.

Lemma 8.6. Let ∆ be a saturated n-theory and αi ∈ L∆
w . Then for any

sentence φ ∈ LA we have (αi → φ) ∈ ∆ or (αi → ¬φ) ∈ ∆.

Proof. The proof is by induction on φ. We only spell out the interesting cases,
and as usual, we omit the superscript Σ to ease notation.

First suppose φ is an atomic sentence. Then φ is of the form Rt, where t is a
sequence of rigid terms (this is because we are assuming for the moment that Σ,
and thus also Σ(A), is function-rigid). We know that ∆ contains αi → C1. The
sentence ∀x?Rx is a conjunct of C1, so by deductive closure (αi → ∀x?Rx) ∈ ∆.
Since αi is a sentence, (αi → ∀x?Rx) is provably equivalent to ∀x(αi → ?Rx),
from which we can infer αi → ?Rt since the terms in t are all rigid. From this,
since αi is classical, by ⩾ -split we can derive (αi → Rt) ⩾

(αi → ¬Rt). Thus,
this formula is in ∆. Since ∆ has the inquisitive disjunction property, it contains
either αi → Rt or αi → ¬Rt, as desired.

Suppose φ is an implication ψ → χ. By induction hypothesis, ∆ contains
either αi → ψ or αi → ¬ψ, and moreover, it contains either αi → χ or αi → ¬χ.
If ∆ contains either αi → ¬ψ or αi → χ, then it also contains αi → (ψ → χ)
and we are done. Otherwise, ∆ must contain both αi → ψ and αi → ¬χ, and
then it also contains αi → ¬(ψ → χ).

Next, suppose φ is a universal formula ∀xψ. By induction hypothesis, for
each t ∈ Ter, ∆ contains either αi → ψ[t/x], or else αi → ¬ψ[t/x]. Now there
are two cases: either ∆ contains αi → ψ[t/x] for all t ∈ Ter, or it contains
αi → ¬ψ[t/x] for some t ∈ Ter. In the former case, by normality ∆ contains
∀x(αi → ψ) and thus, by deductive closure, also αi → ∀xψ. In the latter case,
since for any t we have αi → ¬ψ[t/x] ⊢n αi → ¬∀xψ, it follows that ∆ contains
αi → ¬∀xψ.

The case for the inquisitive existential quantifier is analogous, using the
inquisitive existence property of ∆.

Next, we are going to show that from the perspective of a saturated n-theory ∆,
each formula is equivalent to an inquisitive disjunction of classical formulas—
more specifically, to an inquisitive disjunction of classical disjunctions of world-
sentences for ∆.

To make this precise, we first extend the set of world-sentences to a set of
state-sentences. These are sentences that, from the perspective of ∆, capture
the possible information states.
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Definition 8.7 (State sentences). If L∆
w = {α1, . . . , αm} is a set of world-

sentences for a saturated n-theory ∆, the corresponding set of state-sentences
is the set of classical disjunctions of world-sentences, with the addition of ⊥:8

L∆
s = {⊥} ∪ {αi1 ∨ · · · ∨ αik | 1 ≤ i1 < · · · < ik ≤ m}

Note that L∆
s is finite.

The set of state sentences is closed under conjunction and implication, up to
equivalence with respect to ∆. To illustrate the idea, suppose L∆

w = {α1, α2, α3}.
Since the αi are jointly exhaustive and mutually exclusive in ∆ we have:

(α1 ∨ α2) ∧ (α2 ∨ α3) ⊣⊢∆ α2 (α1 ∨ α2) → ⊥ ⊣⊢∆ α3

The following lemma states the general fact. Since the proof is simply an exercise
in classical logic, we leave it for Appendix B.

Lemma 8.8. For any two state sentences β, γ ∈ L∆
s there are state-sentences

(β⊓γ) and (β = γ) in L∆
s such that (β∧γ) ⊣⊢∆ (β⊓γ) and (β → γ) ⊣⊢∆ (β = γ).

We call β ⊓ γ the pseudo-conjunction of β and γ, and β = γ the pseudo-
implication of β and γ. If S = {β1, . . . , βk} is a non-empty set of state-sentences,
we also introduce the notation ⊔S for the state-sentence β1 ⊓ · · · ⊓ βk.9

Next, we associate every sentence φ ∈ LA with a finite set R∆(φ) ⊆ L∆
s

of state-sentences for ∆, which we call the ∆-resolutions of φ. The definition
is largely parallel to the definition of resolutions for inquisitive propositional
logic (see, e.g., Definition 2.4.1 in Ciardelli, 2016b), but it exploits the set of
state-sentences for ∆ in a crucial way.

Definition 8.9 (∆-resolutions). Let ∆ be a saturated n-theory and L∆
w a set of

world-sentences for ∆. We define for each φ ∈ LA a finite set R∆(φ) ⊆ L∆
s as

follows, where ⊓ and = are the operations on state formulas given by Lemma 8.8:
• R∆(p) =

{ ∨
{αi ∈ L∆

w | αi ⊢∆ p}
}

, if p is an atomic sentence
• R∆(⊥) =

{
⊥

}
• R∆(φ ∧ ψ) =

{
β ⊓ γ

∣∣ β ∈ R∆(φ), γ ∈ R∆(ψ)
}

• R∆(φ

⩾

ψ) = R∆(φ) ∪R∆(ψ)

• R∆(φ→ ψ) =
{ ⊔β∈R∆(φ)(β = f(β))

∣∣ f : R∆(φ) → R∆(ψ)
}

• R∆(∀xφ) =
{ ⊔{f(t) | t ∈ Ter}

∣∣ f ∈ Πt∈TerR∆(φ[t/x])
}10

• R∆(∃∃xφ) =
∪

t∈Ter R∆(φ[t/x])
8Note that, if we stipulate that

∨
∅ = ⊥, can write L∆

s = {
∨

S | S ⊆ L∆
w}.

9It can be checked based on the proof in the appendix that ⊓ is associative and commuta-
tive, i.e., we have (β ⊓ γ) ⊓ δ = β ⊓ (γ ⊓ δ) and β ⊓ γ = γ ⊓ β. Thus, the choice of bracketing
in the definition of ⊔S and the order of the pseudo-conjuncts is not essential.

10Here, Πt∈TerAR∆(φ[t/x]) denotes the Cartesian product of the sets R∆(φ[t/x]) for t ∈ Ter,
that is, the set of functions f which associate to each t ∈ Ter an element f(t) ∈ R∆(φ[t/x]).
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It is immediate to check inductively that for each φ ∈ LA, R∆(φ) is a subset
of L∆

s , which is a finite set. Likewise, also the set {f(t) | t ∈ Ter} is a subset
of L∆

s , and thus finite. This guarantees that the pseudo-conjunctions defined
in the clause for implication and the universal quantifier are finitary and well-
defined. With slight abuse of notation, we will also write the finite conjunction⊔{f(t) | t ∈ Ter} more compactly as ⊔t∈Ter f(t), and we will similarly under-
stand indexed conjunctions and disjunction as conjunctions and disjunctions of
the corresponding (finite) set.

Next, we show that from the perspective of ∆, each formula is equivalent to
the inquisitive disjunction of its ∆-resolutions. This is a version relativized to
∆ of the normal form for inquisitive propositional logic (see Proposition 2.4.4
in Ciardelli, 2016b).

Lemma 8.10. For every φ ∈ LA, φ ⊣⊢∆ \\/R∆(φ).

Proof. By induction on φ. We only give the most interesting inductive cases.
Suppose φ is an atom p. Then R∆(p) is a singleton, and we need to show

that p ⊣⊢∆ αi1 ∨ · · ·∨αik where αi1 . . . αik are all the world-sentences such that
αi ⊢∆ p. In one direction, since each disjunct in αi1 ∨ · · · ∨ αik proves p on the
basis of ∆, by classical reasoning we have αi1 ∨ · · · ∨ αik ⊢∆ p (note that all
formulas involved are classical and recall that for classical formulas, our system
includes a complete system for classical first-order logic). For the converse, take
any αj different from αi1 , . . . , αik . By Lemma 8.6 we have αj ⊢∆ ¬p and so by
classical reasoning p ⊢∆ ¬αj . Recalling that (α1 ∨ · · · ∨αn) ∈ ∆, it follows that
p ⊢∆ αi1 ∨ · · · ∨ αin .

Suppose φ is of the form ψ → χ. By inductive hypothesis ψ ⊣⊢∆ \\/R∆(ψ)
and χ ⊣⊢∆ \\/R∆(χ). Thus by Lemma 8.2 we have:

ψ → χ ⊣⊢∆ \\/R∆(ψ) → \\/R∆(χ)

By Lemmas 8.2 and 8.3 we have:

\\/R∆(ψ) → \\/R∆(χ) ⊣⊢∆

∧
β∈R∆(ψ)(β → \\/R∆(χ))

⊣⊢∆

∧
β∈R∆(ψ) \\/γ∈R∆(χ)β → γ

⊣⊢∆ \\/f :R∆(ψ)→R∆(χ)

∧
β∈R∆(ψ) β → f(β)

For each β ∈ R∆(ψ) and each function f : R∆(ψ) → R∆(χ), the formulas β
and f(β) are in L∆

s ; thus, by Lemmas 8.8 and 8.2 we have∧
β∈R∆(ψ)

β → f(β) ⊣⊢∆ ⊔

β∈R∆(ψ)

β = f(β)

Putting together the previous equivalences, and using again Lemma 8.2, we have

ψ → χ ⊣⊢∆ \\/R∆(ψ → χ)

Next, suppose φ is of the form ∀xψ. We first show that ∀xψ ⊢∆ \\/R∆(∀xψ).
By inductive hypothesis we have ψ[t/x] ⊢∆ \\/R∆(ψ[t/x]) for every t ∈ Ter, and
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thus also ∀xψ ⊢∆ \\/R∆(ψ[t/x]). Since this holds for every t ∈ Ter, we also have
∀xψ ⊢∆

∧
t∈Ter \\/R∆(ψ[t/x]). Note that the conjunction here is finite: since

each R∆(ψ[t/x]) is a set of state-sentences, and the state-sentences are finitely
many, there are only finitely many such sets.

By the first item of Lemma 8.3 we have that∧
t∈Ter

\\/R∆(ψ[t/x]) ⊣⊢∆ \\/{ ∧
t∈Ter

f(t) | f ∈ Πt∈TerR∆(ψ[t/x])
}

For any function f and any t ∈ Ter, the formula f(t) is a state-formula. Thus,
by Lemma 8.8 we have

∧
t∈Ter f(t) ⊣⊢∆ ⊔t∈Ter f(t). Using Lemma 8.2, the

right-hand side of the equation above is provably equivalent in ∆ to

\\/{ ⊔

t∈Ter
f(t) | f ∈ Πt∈TerR∆(ψ[t/x])

}
which is nothing but \\/R∆(∀xψ). This shows that ∀xψ ⊢∆ \\/R∆(∀xψ).

We now prove the converse direction, \\/R∆(∀xψ) ⊢∆ ∀xψ. Firstly no-
tice that for every t ∈ Ter and function f ∈ Πt′∈TerR∆(ψ[t′/x]) we have⊔t′∈Ter f(t′) ⊢∆ f(t). Since f(t) is an element of R∆(ψ[t/x]), we have ⊔t′∈Ter f(t′) ⊢∆

\\/R∆(ψ[t/x]). Since ⊔t′∈Ter f(t′) is an arbitrary element of R∆(∀xψ), we have

\\/R∆(∀xψ) ⊢∆ \\/R∆(ψ[t/x])

By inductive hypothesis \\/R∆(ψ[t/x]) ⊢∆ ψ[t/x], which combined with our
previous conclusion leads us to \\/R∆(∀xψ) ⊢∆ ψ[t/x] for every t ∈ Ter. This
means that for every t ∈ Ter, ∆ contains the formula \\/R∆(∀xψ) → ψ[t/x].
By the normality condition, ∆ must also contain ∀x(\\/R∆(∀xψ) → ψ), which
by item 5 of Lemma 8.3 is provably equivalent to \\/R∆(∀xψ) → ∀xψ. This
means that \\/R∆(∀xψ) ⊢∆ ∀xψ, concluding the inductive step for φ = ∀xψ.

Finally, let φ be of the form ∃∃xψ. We first prove that ∃∃xψ ⊢∆ \\/R∆(∃∃xψ).
By inductive hypothesis we have that ψ[t/x] ⊢∆ \\/R∆(ψ[t/x]) for every t ∈ Ter.
Since R∆(ψ[t/x]) ⊆ R∆(∃∃xψ), we have ψ[t/x] ⊢∆ \\/R∆(∃∃xψ). This means
that ∆ contains the formula ψ[t/x] → \\/R∆(∃∃xψ) for every t ∈ Ter, and so by
normality it must also contain ∀x(ψ → \\/R∆(∃∃xψ)). By item 4 of Lemma 8.3,
this is provably equivalent to ∃∃xψ → \\/R∆(∃∃xψ), which must then be in ∆.
This means that ∃∃xψ ⊢∆ \\/R∆(∃∃xψ).

We now prove that \\/R∆(∃∃xψ) ⊢∆ ∃∃xψ. By inductive hypothesis we have
that for every t ∈ Ter, \\/R∆(ψ[t/x]) ⊢∆ ψ[t/x], and so also \\/R∆(ψ[t/x]) ⊢∆

∃∃xψ (note that ψ[t/x] ⊢n ∃∃xψ since t is rigid). Since this is the case for each
t ∈ Ter we also have \\/t∈Ter\\/R∆(ψ[t/x]) ⊢∆ ∃∃xψ. Finally, since R∆(∃∃xψ) =∪

t∈Ter R∆(ψ[t/x]), the left-hand side coincides with \\/R∆(∃∃xψ). This con-
cludes the inductive step for φ = ∃∃xψ.

This shows that within the context of a saturated n-theory ∆, every sentence is
provably equivalent to one of a finite set of sentences which have a special form:
they are inquisitive disjunctions of classical disjunctions of world-sentences.
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8.2 Canonical model
Building on the results in the previous section, we will now show that for any
saturated n-theory ∆ there is a canonical model M c

∆, based on a universe of at
most n worlds, that supports all and only the sentences in ∆. We can define
the canonical model for ∆ on the basis of the world-sentences for ∆, as follows.

Definition 8.11 (Canonical model).
Let ∆ be a saturated n-theory and L∆

w = {α1, . . . , αm} a set of world-sentences
for ∆. The canonical model for ∆ is M c

∆ = ⟨W c, Dc, Ic⟩ where:
• W c = {w1, . . . , wm} is an arbitrary set of m worlds (where m ≤ n is the

number of world-sentences for ∆);
• Dc is Ter, the set of closed rigid terms in the signature Σ(A);11

• Ic is defined as follows:
– if f is a rigid function symbol, Ic(f)(t1, . . . , tl) is the term f(t1, . . . , tl);

in particular, if c is a rigid constant then Ic(c) = c;12

– if R is a predicate symbol and wi ∈W c,

⟨t1, . . . , tl⟩ ∈ Icwi
(R) ⇐⇒ αi ⊢∆ R(t1, . . . , tl)

A straightforward induction shows that in this model, every rigid closed term
t ∈ Ter is interpreted rigidly as itself.

Lemma 8.12. For each t ∈ Ter, world wi ∈W c and assignment g, [t]gwi
= t.

Using this fact, it is routine to show that quantification can be handled by
substitution, in the following sense.

Lemma 8.13. Let s be any state of M c
∆ and let φ be a formula where at most

x occurs free. We have:
M c

∆, s |= ∀xφ ⇐⇒ M c
∆, s |= φ[t/x] for all t ∈ Dc

M c
∆, s |= ∃∃xφ ⇐⇒ M c

∆, s |= φ[t/x] for some t ∈ Dc

Next we show a truth lemma restricted to classical sentences.

Lemma 8.14 (Truth lemma for classical sentences).
For every classical sentence γ ∈ LAc and every world wi ∈W c we have:

M c
∆, wi |= γ ⇐⇒ αi ⊢∆ γ

Proof. The proof is by induction on γ. The atomic case is immediate by Lemma
8.12 and the interpretation of predicate symbols. The case for ⊥ follows since
world-sentences are chosen such that ¬αi ̸∈ ∆, i.e., such that αi ̸⊢∆ ⊥. The
inductive step for conjunction is immediate. We spell out the remaining two
cases, for → and ∀.

11Here, this coincides with the set of all closed terms, since for now our signature is assumed
to be function-rigid, and thus all terms are rigid. However, the definition is formulated with
an eye to the extension to non-rigid function symbols, discussed in Subsection 8.4.

12This is the only case that we need to consider for now, since we are assuming that all
function symbols in our signature are rigid. We will relax this assumption in Subsection 8.4.
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• Suppose γ = δ → η. We have:

M c
∆, wi |= δ → η ⇐⇒ M c

∆, wi ̸|= δ or M c
∆, wi |= η

⇐⇒ αi ̸⊢∆ δ or αi ⊢∆ η

⇐⇒ αi ⊢∆ ¬δ or αi ⊢∆ η

⇐⇒ αi ⊢∆ (δ → η)

Here, the second equivalence is the induction hypothesis. The third equiv-
alence is given by Lemma 8.6. As for the last equivalence, the left-to-right
direction is clear. For the converse, suppose αi ⊢∆ δ → η and suppose
towards a contradiction that αi ̸⊢∆ ¬δ and αi ̸⊢∆ η. Then by Lemma 8.6
we have αi ⊢∆ δ and αi ⊢∆ ¬η. Now from αi ⊢∆ δ → η and αi ⊢∆ δ
we have αi ⊢∆ η, which together with αi ⊢∆ ¬η implies αi ⊢∆ ⊥, i.e.,
¬αi ∈ ∆. This is a contradiction since the world-formulas are chosen in
such a way that ¬αi ̸∈ ∆.

• Suppose γ = ∀xδ. We have:

M c
∆, wi |= ∀xδ ⇐⇒ M c

∆, wi |= δ[t/x] for all t ∈ Dc

⇐⇒ αi ⊢∆ δ[t/x] for all t ∈ Dc

⇐⇒ αi ⊢∆ ∀xδ

Here, the first equivalence is given by Lemma 8.13. The second equivalence
is the induction hypothesis. The right-to-left direction of the last equiva-
lence is given by the fact the terms t ∈ Dc are rigid, and so ∀xδ ⊢∆ δ[t/x].
For the converse, recall that αi ⊢∆ δ[t/x] means that (αi → δ[t/x]) ∈ ∆.
By the normality condition, if this is the case for all closed terms then also
∀x(αi → δ) ∈ ∆. Since αi is a sentence, by Lemma 8.3 this is interderiv-
able with αi → ∀xδ, and so the latter formula is in ∆, which means that
αi ⊢∆ ∀xδ.

The next step on the way to our conclusion is to prove that the normal form
given by Lemma 8.10 is semantically sound in the canonical model. We start
with the following lemma.

Lemma 8.15. Consider two state-sentences β, γ ∈ L∆
s and the operators ⊓,=

introduced in Lemma 8.8. We have that M c
∆ |= (β ∧ γ) ↔ (β ⊓ γ) and M c

∆ |=
(β → γ) ↔ (β = γ).

Proof. We show that M c
∆ |= (β ∧ γ) ↔ (β ⊓ γ) (the proof of the second claim is

analogous). The formula (β∧γ) ↔ (β⊓γ) is classical and thus truth-conditional,
so it suffices to show that M c

∆, wi |= (β ∧γ) ↔ (β ⊓γ) for every world wi ∈W c.
By Lemma 8.14 this is equivalent to showing that αi ⊢∆ (β ∧ γ) ↔ (β ⊓ γ) for
every world-sentence αi. The last statement follows immediately from Lemma
8.8.

We are now ready to show soundness of the normal form.
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Lemma 8.16. For every φ ∈ LA and any state s of the canonical model M c
∆

we have M c
∆, s |= φ ⇐⇒ M c

∆, s |= \\/R∆(φ).

Proof. By induction on φ. We only give the most interesting inductive cases,
namely, the ones for atoms, implication, and the quantifiers. Throughout the
proof we indicate with IH the inductive hypothesis and drop reference to M c

∆.
• φ is an atomic sentence p. In this case R∆(p) contains only one element,
p′ :=

∨
{αi ∈ L∆

w | αi ⊢∆ p} and \\/R∆(p) = p′. By Lemma 8.10 we have
p ⊣⊢∆ p′. Thus, for any world-sentence αi we have αi ⊢∆ p ⇐⇒ αi ⊢∆ p′.
Since p and p′ are classical, the truth-lemma implies that p and p′ are true
at the same worlds in M c

∆, and thus supported at the same states.
• φ = (ψ → χ). For the left-to-right direction, take any state s in M c

∆ and
suppose s |= ψ → χ. Take an arbitrary α ∈ R∆(ψ) and let tα := {w ∈ s |
w |= α}. Since α is classical and thus truth-conditional, we have tα |= α.
By IH, this implies that tα |= ψ. Since s |= ψ → χ, it follows that tα |= χ.
Again by IH, we get tα |= β for some resolution β ∈ R∆(χ). Since α is
truth-conditional, any t ⊆ s that supports α is included in tα, and thus by
persistency supports β. This ensures that s |= α→ β. By Lemma 8.15, it
follows that s |= α = β. We have thus shown that for every α ∈ R∆(ψ)
there is a β ∈ R∆(χ) such that s |= α = β. Hence, there is a function
f : R∆(ψ) → R∆(χ) such that s |=

∧
α∈R∆(ψ)(α → f(α)). By Lemma

8.15, this is equivalent to s |= ⊔α∈R∆(ψ)(α → f(α)). By definition, this
pseudo-conjunction is an element of R∆(ψ → χ), so s |= \\/R∆(ψ → χ).
For the converse, suppose that s |= \\/R∆(ψ → χ). Then there is some
f : R∆(ψ) → R∆(χ) such that s |= ⊔α∈R∆(ψ)(α = f(α)), which by
Lemma 8.15 is equivalent to s |=

∧
α∈R∆(ψ)(α → f(α)). We want to show

that s |= ψ → χ. So, take any t ⊆ s and suppose t |= ψ. By IH, t |= α
for some α ∈ R∆(ψ). Since s |= α → f(α) and t ⊆ s we have t |= f(α).
Since f(α) ∈ R∆(χ), by IH we have t |= χ. This shows that s |= ψ → χ,
as desired.

• φ = ∀xψ. We have:

M c
∆, s |= ∀xψ

⇐⇒ for all t ∈ Ter, M c
∆, s |= ψ[t/x] (by normality)

⇐⇒ for all t ∈ Ter, M c
∆, s |= \\/R∆(ψ[t/x]) (by IH)

⇐⇒ s |=
∧
{ \\/R∆(ψ[t/x]) | t ∈ Ter }

⇐⇒ s |= \\/{
∧
f(t) | f ∈ Πt∈TerR∆(ψ[t/x]) }

⇐⇒ s |= \\/{ ⊔f(t) | f ∈ Πt∈TerR∆(ψ[t/x]) } (by Lemma 8.15)
⇐⇒ s |= \\/R∆(∀xψ) (by def. of R∆(∀xψ))

• φ = ∃∃xψ. We have:

M c
∆, s |= ∃∃xψ

⇐⇒ for some t ∈ Ter, M c
∆, s |= ψ[t/x]

⇐⇒ for some t ∈ Ter, M c
∆, s |= \\/R∆(ψ[t/x]) (by IH)

⇐⇒ s |= \\/R∆(∃∃xψ) (by def. of R∆(∃∃xψ))

34



It will also be handy to have remarked the following fact explicitly.

Lemma 8.17. For all β ∈ LAc , β ∈ ∆ ⇐⇒ (αi ⊢∆ β for each i = 1, . . . ,m).

Proof. Recall from Lemma 8.5 that (α1 ∨ · · · ∨ αm) ∈ ∆, and so using classical
reasoning we have:

β ∈ ∆ ⇐⇒ α1 ∨ · · · ∨ αm → β ∈ ∆

⇐⇒ (α1 → β) ∧ · · · ∧ (αn → β) ∈ ∆

⇐⇒ (α1 → β) ∈ ∆ and . . . and (αn → β) ∈ ∆

Finally, with these results at hand, we are ready to show that the set of sentences
supported by the canonical model M c

∆ coincides precisely with ∆.

Lemma 8.18 (Support lemma).
For every sentence φ ∈ LA we have M c

∆ |= φ ⇐⇒ φ ∈ ∆.

Proof. By using the results collected in the current section, we obtain:

M c
∆ |= φ ⇐⇒ M c

∆ |= \\/R∆(φ) (by Lemma 8.16)
⇐⇒ ∃β ∈ R∆(φ) :M

c
∆ |= β

⇐⇒ ∃β ∈ R∆(φ) ∀wi ∈W c :M c
∆, wi |= β

⇐⇒ ∃β ∈ R∆(φ) ∀i ≤ m : αi ⊢∆ β (by Lemma 8.14)
⇐⇒ ∃β ∈ R∆(φ) : β ∈ ∆ (by Lemma 8.17)
⇐⇒ \\/R∆(φ) ∈ ∆ (by inq. disj. prop.)
⇐⇒ φ ∈ ∆ (by Lemma 8.10)

This shows that every saturated n-theory coincides with the set of sentences
which are supported by a model with at most n worlds.

8.3 Completeness
Let us now see how our canonical model construction can be used to establish
the completeness of our system ⊢n. First, we need a saturation lemma. Since
the proof of this result uses a standard saturation argument (cf. Gabbay, 1981),
we leave the details for a technical appendix (see Appendix C).

Lemma 8.19 (Saturation lemma).
Suppose Φ ∪ {ψ} is a set of sentences in the signature Σ with Φ ̸⊢n ψ. Then
there is a saturated n-theory ∆ in the language LA such that Φ ⊆ ∆ and ψ ̸∈ ∆.

With this saturation lemma in place, we are now ready to prove completeness.
We first do so for the case of sentences.
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Theorem 8.20. Suppose Φ ∪ {ψ} be a set of sentences in the function-rigid
signature Σ. If Φ |=InqBQn

ψ, then Φ ⊢n ψ.

Proof. By contraposition, suppose Φ ̸⊢n ψ. By the saturation lemma we can find
a saturated n-theory ∆ in the extended language LA with Φ ⊆ ∆ and ψ ̸∈ ∆.
By Lemma 8.18 there is a model M based on a universe of at most n worlds
such that ∆ is exactly the set of sentences supported by M . In particular, M
supports all formulas in Φ but not ψ, which shows that Φ ̸|=InqBQn

ψ. 2

Finally, we can extend this result to open formulas, thus proving Theorem 8.1
for the case of a function-rigid signature.

Proof of Theorem 8.1, case for function-rigid signatures. Suppose Φ ∪ {ψ} is a
set of formulas in a finite function-rigid signature Σ such that Φ ̸⊢n ψ. Let Σ∗

be a larger signature obtained by adding a rigid constant cx for each variable x
occurring free in Φ ∪ {ψ}. Let Φ∗ ∪ {ψ∗} be the set of sentences obtained from
Φ ∪ {ψ} by replacing each free occurrence of x by cx. We have that Φ∗ ̸⊢n ψ∗

(if we had Φ∗ ⊢n ψ∗, by a simple substitution we could turn a proof of this
into a proof of Φ ⊢n ψ). Thus by the proof of the previous theorem, we have
a model M based on a universe of at most n worlds and on a domain of closed
terms including all constants cx such that M |= Φ∗ but M ̸|= ψ∗. Then defining
an assignment g such that g(x) = cx for all variables x we have M |=g Φ and
M ̸|=g ψ. Since M has at most n worlds, this shows that Φ ̸|=InqBQn

ψ.

8.4 Adding non-rigid function symbols
Throughout this section, we have so far assumed all function symbols to be
rigid. We now show how to deal with the slight complications that arise if the
signature Σ contains non-rigid function symbols, provided identity is available.

The key to the generalization lies in the following lemma, that says that a
saturated theory identifies each closed term with a rigid term.

Lemma 8.21. Let ∆ be a saturated n-theory and αi ∈ L∆
w a world-sentence

for ∆. Then for any closed term t in the signature Σ(A), we have αi ⊢∆ (t = t)
for some rigid term t ∈ Ter.

Proof. By induction over the structure of t. We only spell out the most inter-
esting case, namely, the inductive step for t of the form f(t1, . . . , tk) for some
non-rigid function symbol f .

By induction hypothesis, for each tj we have a corresponding rigid term tj
such that αi ⊢∆ (tj = tj). Since f is non-rigid, the formula ∀x∃∃y(f(x) = y)
is a conjunct of CΣ

1 . Since αi ⊢∆ CΣ
1 , by deductive closure of ∆ we have

also αi ⊢∆ ∀x∃∃y(f(x) = y). This means that ∆ contains the formula αi →
∀x∃∃y(f(x) = y), and since αi is a sentence, this is equivalent to ∀x(αi →
∃∃y(f(x) = y)). Instantiating the universal quantifier with t1, . . . , tk, which is
possible since these terms are rigid, we obtain (αi → ∃∃y(f(t1, . . . , tk) = y)) ∈ ∆.
By the ∃∃-split rule it follows that ∃∃y(αi → (f(t1, . . . , tk) = y)) ∈ ∆, and thus
by the inquisitive existence property that αi → (f(t1, . . . , tk) = t) ∈ ∆ for some
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t ∈ Ter. Finally by the rules for identity we obtain αi → (f(t1, . . . , tk) = t) ∈ ∆,
which means that αi ⊢∆ (f(t1, . . . , tk) = t) for some rigid t.

Notice that this result relies crucially on the presence of the identity predicate
in the signature. For this reason, in the presence of non-rigid symbols we require
identity to be available.

We now need to supplement some of the definitions and proofs presented in
this section. We start with the proof of Lemma 8.6.

Proof of Lemma 8.6, addendum. We now need to consider the case of atoms of
the form Rt for t a sequence of closed terms, which are possibly non-rigid. We
need to show that, for each world-sentence αi ∈ L∆

w we have (αi → Rt) ∈ ∆ or
(αi → ¬Rt) ∈ ∆.

Let t = ⟨t1, . . . , tl⟩. By Lemma 8.21, we have a sequence t = ⟨t1, . . . , tl⟩ of
rigid terms in Ter such that αi ⊢∆ tj = tj for each j ≤ l. By the rules for
identity we can infer that αi → (Rt ↔ Rt) ∈ ∆. Notice that t1, . . . , tl are
rigid terms in the signature Σ(A), so we already showed in the original proof of
Lemma 8.6 that we have (αi → Rt) ∈ ∆ or (αi → ¬Rt) ∈ ∆. Thus combining
these two facts we can conclude that (αi → Rt) ∈ ∆ or (αi → ¬Rt) ∈ ∆.

Next, we need to supplement the definition of the canonical model M c
∆ (Defini-

tion 8.11) with the interpretation of non-rigid function symbols. Whereas the
interpretation of a rigid function symbol is uniform throughout the model, the
interpretation of a non-rigid function symbol may vary from world to world.

Definition 8.22 (Addendum to Definition 8.11). In defining the canonical
model, we augment the definition of the interpretation Ic with the following
clause:

– if f is a non-rigid function symbol and wi ∈ W c, Icwi
(f)(t1, . . . , tl) = t for

some term t ∈ Ter such that αi ⊢∆ f(t1, . . . , tl) = t.

Notice that the existence of such a term t is guaranteed by Lemma 8.21. In case
several t ∈ Ter satisfy the property, we may choose arbitrarily among them.

A straightforward inductive proof now yields the following generalization of
Lemma 8.12.

Lemma 8.23. For each closed term t, world wi ∈W c and assignment g, [t]gwi
=

t for some t ∈ Ter such that αi ⊢∆ (t = t).

Finally, we need to augment the proof of the truth lemma to cover atomic
formulas involving non-rigid terms.

Proof of Lemma 8.14, addendum. We now need to consider atoms of the form
R(t1, . . . , tl) where t1, . . . , tl are arbitrary closed terms. Let tj = [tj ]wi

. By
Lemma 8.23 we know that αi ⊢∆ (tj = tj). By the interpretation of predicates
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in the canonical model and by the inference rules for identity we have

M c
∆, wi |= R(t1, . . . , tl) ⇐⇒ ⟨[t1]wi

, . . . , [tl]wi
⟩ ∈ Rwi

⇐⇒ ⟨t1, . . . , tl⟩ ∈ Rwi

⇐⇒ αi ⊢∆ R(t1, . . . , tl)
⇐⇒ αi ⊢∆ R(t1, . . . , tl)

as desired.

9 A complete proof system for entailments with
rex conclusions

The results in the previous section can be used to provide a proof system for
InqBQ which can be shown to be complete for entailments with a rex conclusion,
provided the signature Σ contains identity or is function-rigid (we do not, how-
ever, require Σ to be finite). Given such a signature Σ, we extend the natural
deduction system in Figure 1 with the following inference rule, which we will
refer to as the coherence rule:

Θ, CΣ′

n ⊢ χ
Θ ⊢ χ

where we require χ ∈ Lrex and where CΣ′

n is any cardinality formula obtained
for some number n ≥ nχ and some signature Σ′ ⊆ Σ (thus, Σ′ must be finite
and must be function-rigid or contain identity). In words, the rule allows us
to discharge a cardinality assumption of the form CΣ′

n provided the conclusion
is a rex formula χ whose associated index nχ is lower than n. Note that this
is a proper inference rule, in the sense that it is decidable whether the side
conditions for the application of the rule are met.

Let us denote derivability in the enriched proof system by ⊢coh. More pre-
cisely, we write Φ ⊢coh ψ if for some finite Φ0 ⊆ Φ, the sequent Φ0 ⊢ ψ is
derivable in this system. First, we show that this system is sound for InqBQ.

Proposition 9.1 (Soundness).
Let Σ be a (finite or infinite) signature which is function-rigid or contains iden-
tity. For all Φ ∪ {ψ} ⊆ LInqBQ(Σ), Φ ⊢coh ψ implies Φ |=InqBQ ψ

Proof. We focus on the soundness of the coherence rule (the remaining rules are
discussed in Ciardelli, 2016b). We need to show that if we have Θ, CΣ′

n |=InqBQ χ
for χ ∈ Lrex, n ≥ nχ, and Σ′ ⊆ Σ, then Θ |=InqBQ χ. Contrapositively, suppose
Θ ̸|=InqBQ χ. By Proposition 5.3, χ is nχ-coherent, and so by Proposition 3.5
there is a model M based on a universe W containing at most nχ worlds, and
an assignment g, such that M |=g Θ but M ̸|=g ψ. Since n ≥ nχ, W contains
at most n worlds, and so by Proposition 6.5 we have M |=g CΣ′

n . Thus, M is a
model that witnesses Θ, CΣ′

n ̸|=InqBQ χ.
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Next, we show that our extended proof system is also complete with respect to
entailments whose conclusion is a rex formula.

Theorem 9.2 (Completeness for rex conclusions).
Let Σ be a (finite or infinite) signature which is function-rigid or contains iden-
tity. For all Φ ⊆ LInqBQ(Σ) and all χ ∈ Lrex(Σ), Φ |=InqBQ χ implies Φ ⊢coh χ.

Proof. Suppose Φ |=InqBQ χ and χ is a rex formula. Since χ is finitely coherent,
Theorem 4.3 guarantees that Φ0 |=InqBQ χ for some finite Φ0 ⊆ Φ. Now the
set Φ0 ∪ {χ} is a finite set and will thus be included in the language LInqBQ(Σ

′)
for some finite Σ′ ⊆ Σ, which we may take to include identity if Σ does. Now
fix any n ≥ nχ. Since |=InqBQ is included in |=InqBQn

, we also have Φ0 |=InqBQn

χ. Applying the completeness result for finite-bound inquisitive logics over
the signature Σ′ (Theorem 8.1), it follows that Φ0 ⊢n χ, which implies that
Φ0, C

Σ′

n ⊢coh χ and thus also Φ, CΣ′

n ⊢coh χ. Since χ is a rex formula with
nχ ≤ n and Σ′ ⊆ Σ, the coherence rule can be applied to obtain a proof of
Φ ⊢coh χ.

10 Open problems
We conclude by reviewing a number of interesting questions that we have left
open, and by outlining some extensions of the present work.

Recall that the coherence degree of a formula is the least cardinal κ for which
the formula is κ-coherent. We have seen that for each natural number n, there
are formulas of InqBQ whose coherence degree is n (for instance, the cardinality
formulas C{R}

n for an arbitrary R ∈ Σ). There are also formulas like ∃∃xPx that
have no coherence degree, as they are not κ-coherent for any κ. One salient open
question here is whether there are any formulas of InqBQ of infinite coherence
degree—i.e., formulas that are κ-coherent for some infinite κ but not for any
finite κ. We conjectured in Section 3 that the answer is negative, i.e., that if a
formula of InqBQ is coherent at all, it is finitely coherent.

Another interesting question is whether the properties of coherence/finite
coherence/n-coherence for some fixed n are (partially) decidable: is there an
algorithm to (partially) decide, given a formula φ, whether it is coherent/finitely
coherent/n-coherent for some fixed n?

Another open problem concerns the relation between finite coherence and
the restricted existential fragment that we studied in the paper. Is the fragment
expressively complete for the finitely coherent properties expressible in InqBQ?
That is, is it the case that every finitely coherent formula of InqBQ is equivalent
to one where the inquisitive existential occurs only within the antecedent of
an implication? If not, is it possible to identify a larger syntactic fragment of
InqBQ which is expressively complete in this sense?

Other questions concern the sequence of approximations InqBQκ for κ a
cardinal. We have achieved a good understanding of the initial segment of this
sequence, axiomatizing all logics InqBQn and showing that their intersection is
strictly larger than InqBQ. On the other hand, we have said almost nothing
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about the transfinite part of the sequence: we know that for some κ, InqBQκ

coincides with InqBQ, but we don’t know what the least κ is for which this
obtains; in particular, whether this happens already for κ = ℵ0. A positive
answer would be a significant result, analogous to the downward Löwenheim-
Skolem theorem: it would mean that if an InqBQ-entailment is refutable at all,
it is refutable in a countable information state. A negative answer, on the other
hand, would mean that there are entailments that are invalid but can only be
refuted in uncountable information states.

Another open question concerns the completeness of the proof system for
InqBQ shown in Figure 1. We have shown that this system extended with the
coherence rule is complete for rex conclusions. We have not shown, however, that
the coherence rule is indispensable for this. This leads naturally to the following
question: is the system in Figure 1 already complete for rex conclusions? If the
answer is negative, this means a fortiori that this system is not complete for
InqBQ—something which is still not known at this stage.

We conjecture that the answer is indeed negative, based on the following
considerations. Consider the signature Σ = {P (1)} and take the formula

η := (C2 → C1) → C1

where we omit reference to Σ for simplicity. This formula is valid in InqBQ. To
see this, suppose an information state s does not support C1. Then there are
two worlds w0, w1 ∈ s which are not duplicates. Then the state {w0, w1} ⊆ s
supports C2 but not C1, which shows that s does not support C2 → C1. Also, η
is a rex formula, since the only occurrences of an inquisitive existential are within
C2, and thus within an antecedent. We can verify that η is indeed derivable
with the help of the coherence rule: we have C2, C2 → C1 ⊢coh C1, and since
nC1

= 2, the coherence rule allows us to discharge the assumption C2, yielding
C2 → C1 ⊢coh C1 and thus ⊢coh (C2 → C1) → C1. Is η also derivable without
the coherence rule? We strongly doubt that it is, but we do not have a proof.

Finally, it might be interesting to generalize our results by considering a
functional notion of coherence. Given a (class-sized) function f from cardinals to
cardinals, say that φ is f -coherent if for any model M = ⟨W,D, I⟩, the coherence
condition holds for states in M with n = f(#D). This is a generalization of
the notion of κ-coherence considered here, since the latter is retrieved as fκ-
coherence where fκ is the constant κ function. On the other hand, the notion is
more broadly applicable: for instance, while the formula ∃∃xPx is not κ-coherent
for any κ, it is not hard to see that it is id-coherent, where id is the identity
function: that is, relative to each model M , the coherence condition is satisfied
for n = #D. To what extent is this functional notion of coherence informative?
If we know that a formula is f -coherent for a given function f , does this allow us
to draw any interesting conclusions? We leave these questions for future work.
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A Cardinality formulas
In this appendix we give the details of the proof of Proposition 6.5, capturing
the key property of cardinality formulas in the general case. The proof follows
the same strategy as the one of Proposition 6.2, but the technical details are
slightly more involved.

Proof of Proposition 6.5. We may assume without loss of generality that s con-
tains no duplicates. We give the proof for the case in which Σ contains the
identity predicate; the proof for the case in which Σ is function-rigid is analo-
gous but simpler. To ease notation, we drop the superscript Σ.

The case n = 0 is obvious. For n = 1, we need to show that s |= C1 ⇐⇒
#s ≤ 1. The right-to-left direction amounts to checking that C1 is supported
at any singleton state, which is straightforward. For the left-to-right direction,
suppose s |= C1. We need to show that for any two worlds w,w′ ∈ s, the
relational structures Mw and Mw′ coincide, which means that w ≈ w′.

First, since ∀x∀y?(x = y) is a conjunct of C1, s supports this sentence. This
implies that the extensions =w and =w′ are the same, so the domains of the
structures Mw and Mw′ coincide (recall that these domains are the quotients
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of D relative to =w and =w′ , respectively). Moreover, for any other predicate
symbol R, s supports ∀x?R(x), which implies that Rw = Rw′ , and thus also
the interpretations of R in the two quotients coincide. If f is a rigid function
symbol, then its extension is the same at every world, so in particular fw = fw′ .
Finally, consider a non-rigid function symbol f . We need to show that the
interpretations of f in Mw and in Mw′ coincide. Call these interpretations
f≈w and f≈w′ . For definiteness, suppose f is unary (other cases are analogous).
Since the formula ∀y∃∃z(f(y) = z) is a conjunct of C1, this formula is supported
by s. This implies that for any a ∈ D there is a b ∈ D such that ∀u ∈ s we
have fu(a) =u b, and thus, in particular, fw(a) =w b and fw′(a) =w′ b. Now
take an arbitrary equivalence class [a] in the common domain of Mw and Mw′ .
By the previous condition, there is an element b ∈ D such that f≈w ([a]) = [b]
and f≈w′([a]) = [b], which implies f≈w ([a]) = f≈w′([a]). Since [a] was an arbitrary
element of the domain, we have f≈w = f≈w′ . This completes the proof of the fact
that for all w,w′ ∈ s, Mw = Mw′ , that is, w and w′ are duplicates. Since s
contains no duplicate worlds, #s ≤ 1.

For the inductive step, assume the property holds for the formulas Ck with
k < n and consider the formula Cn for n > 2. In case s = ∅ or s contains
exactly one world, we reason as in the proof of Proposition 6.2. So suppose that
s contains at least two worlds and at most n. Let w0 and w1 be two distinct
worlds in s. Since we are assuming that s contains no duplicates, Mw0

and
Mw1

are distinct models. This might be the case for two distinct reasons: (i)
the extensions of a relation Rw0

and Rw1
are distinct (thus the structures Mw0

and Mw1
have different domains in case R is the identity, or the extensions of R

in the two structures are different) or (ii) the extensions of all predicate symbols
coincide in the two worlds, but the quotients f≈w0

and f≈w1
of the interpretations

a non-rigid function symbol are different.
• If case (i) applies, since Rw0

̸= Rw1
we can find a tuple of elements a such

that a ∈ (Rw0
− Rw1

) or a ∈ (Rw1
− Rw0

). Without loss of generality,
suppose the former and define s+R = {w ∈ s | a ∈ Rw} and s−R = {w ∈ s |
a ̸∈ Rw}. Note that s+R and s−R are both non-empty and form a partition of
s. By the same reasoning as in the proof of Proposition 6.2, for k := #s+R
we have that s |=[x 7→a] R(x) → Ck and s |=[x 7→a] ¬R(x) → Cn−k. This
implies that s |= ∃∃x\\/ni=1[(R(x) → Ck) ∧ (¬R(x) → Cn−k)], and thus
s |= Cn.

• If case (ii) applies, we have f≈w0
̸= f≈w1

. For definiteness, suppose f is unary
(the general case is analogous). We can then find an element a such that
f≈w0

([a]) ̸= f≈w1
([a]). Since we are assuming that the extension of identity

is the same in w0 and w1 it follows that fw0
(a) ̸=w1

fw1
(a). Thus, for

b := fw0
(a) we have that fw0

(a) =w0
b and fw1

(a) ̸=w1
b. Now we can

define the sets s+f = {w ∈ s | fw(a) =w b} and s−f = {w ∈ s | fw(a) ̸=w b}.
As in the previous case, s+f and s−f are non-empty and for k = #s+f we
have s |=[y 7→a,z 7→b] (f(y) = z → Ck) ∧ (f(y) ̸= z → Cn−k), which implies
s |= Cn.

So in both cases we have that s |= Cn, showing that the property holds under
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the assumption that s has at most n worlds.
Finally, suppose that s has more than n distinct worlds. Consider an ar-

bitrary predicate symbol R and an arbitrary tuple of elements a of size the
arity of R, define the sets s+R and s−R as above. These sets have empty in-
tersection and s = s+R ∪ s−R, thus #s = #s+R + #s−R. In particular, for ev-
ery choice of a value k ∈ {1, . . . , n − 1} we have either that #s+R > k or
#s−R > n − k. By the induction hypothesis, this implies that s+R ̸|= Ck or
s−R ̸|= Cn−k. Finally since s+R |=[x 7→a] R(x) and s−R |=[x 7→a] ¬R(x), it follows
that s ̸|=[x 7→a] (R(x) → Ck) ∧ (¬R(x) → Cn−k). Since a and k were arbitrary,
this entails that

s ̸|= ∃∃x\\/n−1

i=1 [(R(x) → Ci) ∧ (¬R(x) → Cn−i)]

Consider now an arbitrary non-rigid function symbol f , an arbitrary tuple of
elements a of size the arity of f and an arbitrary element b. Define the sets
s+f := {w ∈ s | fw(a) =w b} and s−f := {w ∈ s | fw(a) ̸=w b}. Once again, these
sets have empty intersection and s = s+f ∪ s−f , thus reasoning in the same way
as above we can conclude that

s ̸|= ∃∃yz\\/n−1

i=1
[(f(y) = z → Ci) ∧ (f(y) ̸= z → Cn−i)]

We have thus shown that s cannot support any disjunct of the formula Cn,
which allows us to conclude s ̸|= Cn as desired.

B Operations on state formulas
In this appendix we show explicitly that the set of state-sentences for a saturated
n-theory ∆ is closed under conjunction and implication, up to equivalence in ∆.
Since all the formulas involved here are classical, this is essentially an exercise
in classical logic about the properties of disjunctions of sentences which, relative
to a background theory, are jointly exhaustive and mutually exclusive. Nothing
properly inquisitive plays a role here.

Proof of Lemma 8.8. First consider the case of conjunction. If β or γ is ⊥ then
β∧γ ⊣⊢∆ ⊥ and ⊥ ∈ L∆

s . Otherwise, β = αi1 ∨· · ·∨αik and γ = αj1 ∨· · ·∨αjh .
By distributivity of ∧ over ∨ for classical formulas, which is provable in our
system, we have

(β ∧ γ) ⊣⊢∆

∨
l≤k,g≤h

(αil ∧ αjg )

Now consider a disjunct αil∧αjg . If αil is distinct from αjg then ¬(αil∧αjg ) ∈ ∆,
and so (αil ∧αjg ) ⊣⊢∆ ⊥, which ensures that the disjunct can be removed from
the disjunction while preserving equivalence in ∆. If αil is identical to αjg
then (αil ∧ αjg ) ⊣⊢∆ αil , and so the disjunct can be replaced by αil in the
disjunction preserving equivalence in ∆. Let β ⊓ γ be the formula obtained
by removing or replacing each disjunct in this way (in case all the disjuncts
end up being removed, we let β ⊓ γ be ⊥). This formula is either ⊥ or a
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disjunction of world-sentences αi, and so it is in L∆
s . Moreover, we have shown

that (β ∧ γ) ⊣⊢∆ (β ⊓ γ).
Consider now the case of implication. If β is ⊥, then β → γ ⊣⊢∆ ⊤,

and ⊤ ⊣⊢∆

∨m
i=1 αi ∈ L∆

s by the properties of world-sentences. If γ is ⊥,
then β → γ ⊣⊢∆ ⊥ and ⊥ ∈ L∆

s . So we can assume that both β and γ are
disjunctions of world-sentences.

Consider first the case that both β and γ consist of a single disjunct, that
is, β = αi and γ = αj . We start by noticing that ¬αi ⊣⊢∆

∨
i′ ̸=i αi′ . Indeed,

since the relevant formulas are classical and our system includes a complete proof
system for classical first-order logic, and using the properties of world-sentences,
we have:

¬αi →
∨
i′ ̸=i

αi′ ⊣⊢∆ ¬¬αi ∨
∨
i′ ̸=i

αi′ ⊣⊢∆

m∨
i=1

αi′ ∈ ∆

∨
i′ ̸=i

αi′ → ¬αi ⊣⊢∆

∧
i′ ̸=i

(αi′ → ¬αi) ⊣⊢∆

∧
i′ ̸=i

¬(αi′ ∧ αi) ∈ ∆

Given this we have that:

β → γ = αi → αj
⊣⊢∆ ¬αi ∨ αj
⊣⊢∆

(∨
i′≠i αi′

)
∨ αj

⊣⊢∆

{ ∨m
i′=1 αi′ if i = j∨
i′ ̸=i αi′ if i ̸= j

So, whether or not i = j, the formula αi → αj is provably equivalent to a
formula in L∆

s . So for world formulas αi, αj we defined the formula αi = αj .
As for the general case, assume that β = αi1∨· · ·∨αik and γ = αj1∨· · ·∨αjh .

In this case we have that:

β → γ = (αi1 ∨ · · · ∨ αik) → (αj1 ∨ · · · ∨ αjh)
⊣⊢∆

∨h
j′=1

∧k
i′=1

(
αii′ → αjj′

)
⊣⊢∆

∨h
j′=1

∧k
i′=1

(
αii′ = αjj′

)
⊣⊢∆

∨h
j′=1 ⊔ki′=1

(
αii′ = αjj′

)
where the formulas αii′ = αjj′ are the one previously defined. Note that the
last formula is a classical disjunction of formulas in L∆

s , and thus is provably
equivalent to a single formula in L∆

s . This concludes the proof.

C Saturation lemma
In this appendix we provide a proof of Lemma 8.19. This proof is an adapta-
tion of the proof provided in Gabbay (1981, Section 3.3, Theorem 2) for the
intuitionistic first-order theories with constant domains. To shorten the proofs
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and lighten the notation, we will omit passages regarding basic properties of
the operators (e.g., associativity and commutativity of ⩾ ). Moreover, since the
index n does not play an essential role in the proof, to lighten the notation we
use the symbol ⊢ in place of ⊢n. Finally, for the rest of the section we adopt
the following notation: given Π and Ξ two sets of formulas, we indicate with
Π ⊢n Ξ that there exists ξ1, . . . , ξk ∈ Ξ such that Π ⊢n ξ1

⩾ · · · ⩾ ξk.
Before we tackle the main proof, we need the following technical result.

Lemma C.1. Consider a set of sentences Φ ∪ Ψ ∪ {χ} ⊆ LA. If Φ, χ ⊢ Ψ and
Φ ⊢ Ψ, χ then Φ ⊢ Ψ.

Proof. By hypothesis, for some ψj , ψ′
j′ ∈ Ψ, we have Φ, χ ⊢ ψ1

⩾ · · · ⩾ ψk and
Φ ⊢ ψ′

1

⩾ · · · ⩾ ψ′
k′

⩾

χ. Defining ψ := ψ1

⩾ · · · ⩾ ψk and ψ′ := ψ′
1

⩾ · · · ⩾ ψ′
k′ , we

can abbreviate the previous expressions as Φ, χ ⊢ ψ and Φ ⊢ ψ′ ⩾ χ respectively.
Combining these facts we get

Φ ⊢ ψ′ ⩾ χ

ψ′ ⊢ ψ′

Φ, ψ′ ⊢ ψ′

Φ, ψ′ ⊢ ψ ⩾

ψ′
Φ, χ ⊢ ψ

Φ, χ ⊢ ψ ⩾

ψ′

Φ ⊢ ψ ⩾

ψ′

And since ψ ⩾

ψ′ = ψ1
⩾ · · · ⩾ ψk

⩾

ψ′
1

⩾ · · · ⩾ ψ′
k′ is a disjunction of formulas

in Ψ, we obtain Φ ⊢ Ψ.

We are now ready to prove Lemma 8.19.

Proof of Lemma 8.19. Our aim is to find a n-saturated theory ∆ in the language
LA such that Φ ⊆ ∆ and ψ /∈ ∆. Fix an enumeration B1, B2, . . . of the sentences
of LA.13 We define inductively a chain of pairs of theories ⟨∆i,Θi⟩ indexed by
i ∈ N such that:

1. ∆i ̸⊢ Θi.
2. For every index i, ∆i ⊆ ∆i+1 and Θi ⊆ Θi+1.
3. Bi ∈ ∆i+1 ∪Θi+1.

The plan is to take ∆ :=
∪
i∈N ∆i. During the construction we will impose some

additional conditions to ensure ∆ to be a n-saturated theory.
We start the construction by letting ⟨∆0,Θ0⟩ := ⟨Φ, {ψ}⟩. Conditions 2 and

3 are trivially satisfied. By assumption Φ ̸⊢ ψ, and so Condition 1 is satisfied.
Suppose we already defined ⟨∆m,Θm⟩ with the properties above. By Lemma

C.1, we cannot have both that ∆m ⊢ Θm, Bm and that ∆m, Bm ⊢ Θm. So we
continue the proof by considering two possible (non mutually exclusive) cases:
if ∆m ̸⊢ Θm, Bm and if ∆m, Bm ̸⊢ Θm.

1. Case ∆m ̸⊢ Θm, Bm. We distinguish two sub-cases, depending on whether
Bm is of the form ∀xφ or not.

13Notice that this can be done without the use of the Axiom of Choice since we are consid-
ering a countable signature Σ and a countable set of parameters A.
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(a) Case Bm = ∀xφ. Consider a fresh parameter a ∈ A (that is, an
element not appearing in ∆m ∪Θm ∪ {Bm}) and define ∆m+1 := ∆m

and Θm+1 := ∆m ∪ {Bm, φ[a/x]}.
Conditions 2 and 3 are respected. We want to show that also condition
1 holds, i.e., ∆m+1 ̸⊢ Θm+1. Towards a contradiction assume this is
not the case, that is, for some θ1, . . . , θk ∈ Θm and defining θ :=
θ1

⩾ · · · ⩾ θm we have ∆m ⊢ θ ⩾ ∀xφ ⩾

φ[a/x]. From this it follows:

∆m ⊢ θ ⩾ ∀xφ ⩾

φ[a/x]
∆m ⊢ ∀x(θ ⩾ ∀xφ ⩾

φ)

∆m ⊢ θ ⩾ ∀xφ

So in particular ∆m ⊢ Θm, Bm, which is a contradiction. We have
thus obtained ∆m+1 ̸⊢ Θm+1, which is exactly condition 1.

(b) Case Bm ̸= ∀xφ. In this case we simply define ∆m+1 := ∆m and
Θm+1 := Θm ∪ {Bm}. Conditions 1-3 follow by construction.

2. Case ∆m, Bm ̸⊢ Θm. Once again, we distinguish two sub-cases, this time
depending on whether Bm is of the form ∃∃xφ or not.
(a) Case Bm = ∃∃xφ. Consider a fresh parameter a ∈ A and define

∆m+1 := ∆m ∪ {Bm, φ[a/x]} and Θm+1 := Θm.
Clearly conditions 2 and 3 are respected. We want to show that also
condition 1 holds, i.e., ∆m+1 ̸⊢ Θm+1. Towards a contradiction assume
this is not the case, that is, for some θ1, . . . , θk ∈ Θm and defining
θ := θ1

⩾ · · · ⩾ θk we have ∆m,∃∃xφ, φ[a/x] ⊢ θ. From this it follows:

∆m,∃∃xφ, φ[a/x] ⊢ θ
∃∃xφ ⊢ ∃∃xφ

∆m,∃∃xφ ⊢ ∃∃xφ
∆m,∃∃xφ ⊢ θ

So in particular ∆m, Bm ⊢ Θm, which is a contradiction. So by con-
tradiction we have ∆m+1 ̸⊢ Θm+1, which is exactly condition 1.

(b) Case Bm ̸= ∃∃xφ. Define ∆m+1 := ∆m ∪ {Bm} and Θm+1 := Θm.
Conditions 1-3 follow by construction.

Now let ∆ :=
∪
i∈N ∆i and Θ :=

∪
i∈N Θi. Note that ∆ ̸⊢ Θ, for otherwise there

would be a finite m such that ∆m ⊢ Θm. We will show that ∆ is an n-saturated
theory with Φ ⊆ ∆ and ψ /∈ ∆.

First note that Φ = ∆0 ⊆ ∆. Since ψ ∈ Θ by construction and ∆ ̸⊢ Θ, it
follows that ψ /∈ ∆. What is left to show is that ∆ is n-saturated.

By condition 3, every sentence of LA is an element of ∆∪Θ. This, together
with ∆ ̸⊢ Θ and Θ ̸= ∅, ensures that ∆ is deductively closed and ⊥ /∈ ∆.

For the disjunction property, suppose ∆ ⊢ φ ⩾

ψ. By contradiction, assume
φ,ψ /∈ ∆, which in turn implies φ,ψ ∈ Θ. In particular we would have ∆ ⊢ Θ,
which is a contradiction; thus at least one among φ and ψ has to be in ∆. As
φ,ψ were arbitrary formulas, the Disjunction property holds.

For the existence property, suppose ∃∃xφ ∈ ∆. Suppose Bm = ∃∃xφ. We
have Bm ∈ ∆m+1 ∪Θm+1 by condition 3. But if Bm ∈ Θm+1 were the case, we
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would have ∆ ⊢ Θm+1 and consequently ∆ ⊢ Θ, which is a contradiction. So
it follows that Bm ∈ ∆m+1. In particular, following the inductive construction
presented above (case 2a), we have that ∆m+1 := ∆m ∪ {Bm, φ[a/x]} for some
a ∈ A. And so we have φ[a/x] ∈ ∆m+1 ⊆ ∆. Since ∃∃xφ is an arbitrary
existential sentence, ∆ has the existence property.

The normality condition follows from considerations analogous to the ones
in the previous paragraph.
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