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a b s t r a c t 

Background and objective: Continuous glucose monitoring (CGM) sensors measure interstitial glucose con- 

centration every 1-5 min for days or weeks. New CGM-based diabetes therapies are often tested in in 

silico clinical trials (ISCTs) using diabetes simulators. Accurate models of CGM sensor inaccuracies and 

failures could help improve the realism of ISCTs. However, the modeling of CGM failures has not yet been 

fully addressed in the literature. This work aims to develop a mathematical model of CGM gaps, i.e., oc- 

casional portions of missing data generated by temporary sensor errors (e.g., excessive noise or artifacts). 

Methods: Two datasets containing CGM traces collected in 167 adults and 205 children, respectively, 

using the Dexcom G6 sensor (Dexcom Inc., San Diego, CA) were used. Four Markov models, of increasing 

complexity, were designed to describe three main characteristics: number of gaps for each sensor, gap 

distribution in the monitoring days, and gap duration. Each model was identified on a portion of each 

dataset (training set). The remaining portion of each dataset (real test set) was used to evaluate model 

performance through a Monte Carlo simulation approach. Each model was used to generate 100 simulated 

test sets with the same size as the real test set. The distributions of gap characteristics on the simulated 

test sets were compared with those observed on the real test set, using the two-sample Kolmogorov- 

Smirnov test and the Jensen-Shannon divergence. 

Results: A six-state Markov model, having two states to describe normal sensor operation and four states 

to describe gap occurrence, achieved the best results. For this model, the Kolmogorov-Smirnov test found 

no significant differences between the distribution of simulated and real gap characteristics. Moreover, 

this model obtained significantly lower Jensen-Shannon divergence values than the other models. 

Conclusions: A Markov model describing CGM gaps was developed and validated on two real datasets. 

The model describes well the number of gaps for each sensor, the gap distribution over monitoring days, 

and the gap durations. Such a model can be integrated into existing diabetes simulators to realistically 

simulate CGM gaps in ISCTs and thus enable the development of more effective and robust diabetes 

management strategies. 

© 2023 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

In recent decades, the therapy of type 1 diabetes (T1D) has 

een revolutionized by the spread of many new technologies 

1] , [2] , such as insulin pumps [3] , [4] , continuous glucose moni-

oring sensors [5] , [6] , artificial pancreas systems [7–9] , and deci- 
Abbreviations: T1D, type 1 diabetes; ISCT, in silico clinical trial; CGM, continuous 

lucose monitoring; SD, standard deviation. 
∗ Corresponding author: Address: via G. Gradenigo 6/B, Padova, 35131, Italy, Tele- 
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ion support systems [10–11] . The use of such new technologies 

n diabetes therapy has been massively tested using in silico clin- 

cal trials (ISCTs) [12–16] . An ISCT can be defined as “the use of 

ndividualised computer simulation in the development or regula- 

ory evaluation of a medicinal product, medical device, or medical 

ntervention” [13] . The reason why ISCTs are so attractive is that 

SCTs can be conducted at very low cost, on large populations of 

irtual subjects, in a short time frame and without any risk to real 

atients. Moreover ISCTs allow to conduct tests on a variety of set- 

ings, which often cannot be evaluated in real clinical trials, either 

ecause of limited availability of resources or because the factors 

o be tested are difficult to measure on real patients (e.g., carbo- 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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ydrate counting error [17] ). For these reasons, ISCTs are often the 

rst testbed for new diabetes management strategies. 

Performing reliable ISCTs requires the availability of a reliable 

imulation model. In particular, a simulation model for testing 

echnology-based diabetes management strategies in ISCTs should 

nclude mathematical models of the patient’s physiology, the tech- 

ology used and the diabetes management strategy. One of the key 

echnologies used in T1D therapy is glucose sensors; indeed, T1D 

atients need to monitor their glucose concentration frequently in 

rder to precisely adjust insulin therapy and avoid dangerous hy- 

erglycemic or hypoglycemic events. In addition to traditional fin- 

erprick glucometers [18] , minimally-invasive continuous glucose 

onitoring (CGM) sensors have been increasingly adopted in T1D 

herapy in recent years [19–21] . CGM sensors are wearable sen- 

ors that measure glucose concentration in the interstitial fluid of 

ubcutaneous tissue almost continuously (sampling period of 1-5 

inutes) and for several consecutive days or weeks [22] . The most 

opular CGM sensing technique is based on an amperometric elec- 

rochemical sensor placed in the subcutaneous tissue of the ab- 

omen or arm [23] . 

Like any measurement system, CGM sensors are affected by 

easurement error, which can be evaluated by comparing CGM 

eadings with glycemic references measured with high accuracy 

nd precision laboratory instruments [24–26] . Several phenom- 

na contribute to CGM sensor error, e.g., distortion introduced by 

lood-interstitium kinetics, imperfect sensor calibration, random 

easurement noise, and interfering substances [27–29] . Moreover, 

GM time series can be affected by occasional transient faults [30] , 

uch as data gaps, which are portions of missing samples. Data 

aps are often due to a temporary sensor error: if the sensor pro- 

essing algorithm detects excessive noise or anomalies (e.g., spikes) 

n the signal, the corrupted part of the signal is suppressed, thus 

enerating a gap. 

Fig. 1 shows an example of a gap due to a temporary sensor 

rror that lasts for 45 minutes, from 10:35 to 11:20. 

To better simulate CGM measurements, T1D simulators, such as 

he University of Virginia/Padova T1D simulator and its extensions 

31–33] , can incorporate a mathematical model of CGM sensor 

rror. In fact, CGM sensor error could influence the effectiveness 

f CGM-based diabetes management strategies. Testing CGM-based 

iabetes management strategies on error-free scenarios can be 

seful but it will likely provide optimistic results compared to 

ore realistic simulation scenarios in which CGM sensor error 

s simulated [34] . In addition to simulating the inaccuracy of 
ig. 1. A data gap in a representative real CGM sensor trace measured by the Dex- 

om G6 sensor in an adult subject. 
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2 
GM readings, the simulation of transient CGM faults, such as data 

aps, is important to allow in silico assessment of the robustness of 

GM-based diabetes management strategies against sensor faults 

hat commonly occur in real life. For example, a recent study sug- 

ested that data gaps can significantly affect the accuracy of glu- 

ose metrics calculated from CGM data [35] , and, consequently, the 

erformance of diabetes-management strategies relying on them. 

While the modelling of some error components, such as the 

istortion introduced by blood-interstitium kinetics, calibration 

rror and random noise, has been investigated by many literature 

tudies [27,28,36–39] , the modelling of occasional transient faults, 

uch as data gaps, has been less investigated. A simple model to 

escribe the occurrence of data gaps in CGM traces was proposed 

y Facchinetti et al. [30] ; the occurrence of missing samples was 

odelled using a two-state Markov model, in which one state 

epresents the status in which the sensor is functioning normally, 

hile a second state represents the status in which the sensor 

hows no measurements, i.e., there is a data gap. In the same 

ork, a second Markov model was proposed, with an additional 

tate to allow the description of long gaps. This second model was 

hown to describe well the distribution of data gap durations ob- 

erved in a dataset of 108 CGM traces collected by the Dexcom G4 

latinum (Dexcom, Inc., San Diego, CA) sensor on adults with T1D. 

owever, the ability of the model to represent other important 

haracteristics of the gaps well, for example, the frequency and 

iming of their occurrence, was not analyzed. In a recent study, 

recogna et al. [40] tested the model of Facchinetti et al. [30] on a

ataset collected on an adult population by a new-generation CGM 

ensor (Dexcom G6). The study showed that the simple model of 

acchinetti et al. [30] fails to describe well the characteristics of 

ata gaps occurring in new-generation CGM sensors. Another open 

ssue is that the model of Facchinetti et al. [30] was never tested 

n the pediatric population, whose different types of activities 

ay influence the occurrence of data gaps. 

The aim of the present paper is to further develop the mod- 

lling approach of Facchinetti et al. [30] to build a data gap model 

apable of generating gaps with the same characteristics, not only 

n terms of duration, but also in terms of frequency and time of 

ccurrence, as those present in real datasets. The new model will 

e built on two datasets collected using a new-generation factory- 

alibrated CGM sensor, i.e., the Dexcom G6 sensor, on an adult 

opulation and a pediatric population, respectively. 

. Materials and methods 

.1. Datasets 

The data used for this study, courtesy of Dexcom Inc. (San 

iego, CA), were collected as part of a single-arm interventional 

linical trial to test the effectiveness and safety of the Dexcom G6 

GM sensor. The study started on May 2016 and ended on Septem- 

er 2017. The inclusion criteria included: age ≥2 years, diagnosis 

f T1D or T2D on intensive insulin therapy, and willing to par- 

icipate in a clinic session involving venous sampling for evalu- 

tion of study end point. The exclusion criteria included: use of 

cetaminophen, known allergy to medical-grade adhesives, preg- 

ancy, and hematocrit outside the normal range. Participants were 

nrolled at 11 sites and located throughout the U.S.. More infor- 

ation on the data collection process and detailed demographic 

haracteristics of the enrolled patients are available in the original 

tudy publications [41,42] . 

From data collected in the study, two datasets were extracted. 

he first dataset includes 203 CGM traces collected on 167 adults 

18-59 years old) with T1D or T2D (36 subjects wore two sen- 

ors). The second dataset includes 285 CGM traces collected on 

12 children and adolescents (6-17 years old) with T1D or T2D 
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73 children/adolescents wore two sensors). In the following of 

his publication, the two datasets will be called “the adult dataset”

nd “the pediatric dataset”, respectively. In both datasets, CGM 

races were collected with the Dexcom G6 sensor, which has a 10- 

ay lifetime. In total, 133 sensors have stopped working before 10 

ays were elapsed since sensor insertion. Premature interruption 

f sensor operation is probably due to irreversible damage of the 

ensor from which it is not possible to recover, unlike data gaps 

hich are generated by temporary sensor errors, after which the 

ensor resumes normal operation. Since modeling the premature 

nterruption of sensor operation is out of the scope of this work, 

or our analysis, we selected only the traces with a minimum 

uration of 9 days from sensor insertion, so that we could observe 

he gap distribution over the entire life of the sensor. This results 

n two final datasets: the adult dataset, which includes 172 CGM 

races, and the pediatric dataset, which includes 205 CGM traces. 

he two datasets were analyzed separately. 

.2. Exploratory analysis of data gaps 

CGM data gaps are portions of missing data in CGM time se- 

ies. In our datasets, we identified 229 and 484 data gaps in the 

dult and the pediatric datasets, respectively. The distribution of 

hree main gap characteristics was analyzed: the number of gaps 

or each sensor, the CGM monitoring day on which the gap oc- 

urs, and the gap duration. The relative frequencies of these char- 

cteristics are shown in Fig. 2 for the adult dataset (panels (a)- 

c)) and the pediatric dataset (panels (d)-(f)). It should be noted 
ig. 2. Data gap characteristics: number of gaps for each sensor (left), gap distribution o

nd (c) refer to the adult population, while the lower panels (d), (e), and (f) refer to the p

3 
hat the number of gaps per sensor was not normalized by CGM 

race duration because, after excluding traces with duration of less 

han 9 days, the CGM traces retained in the analysis had similar 

uration. 

Focusing on the number of gaps per sensor ( Fig. 2 (a),(d)), it 

an be observed that about 65% of adult traces and 45% of pedi- 

tric traces have no gaps. It is also possible to observe that in the 

dult population most of traces with gaps have only one occur- 

ence, whereas in the pediatric population CGM traces with two 

r more gaps are more common. Therefore, the incidence of data 

aps is higher in the pediatric population than in the adult popu- 

ation. 

Panels (b) and (e) in Fig. 2 show that the occurrence of data 

aps varies with the time from sensor insertion and, in particular, 

ore gaps occur at the end of sensor life in both populations. A 

igher frequency of data gaps is also observed for the day of sensor 

nsertion, where sensor performance is less stable. 

In panels (c) and (f) of Fig. 2 , the distributions of data gap du-

ations are shown in logarithmic scale to facilitate visualization of 

he histogram tails. The peak of the distributions is at 25 minutes 

n the adult population and at 30 minutes in the pediatric one. Af- 

er the peak, the frequency of gaps decreases as the gap duration 

ncreases, with a maximum duration observed around 95 minutes, 

n the adult population, and 120 minutes in the pediatric popula- 

ion. Quite different trends are present for gap durations shorter 

han the peak duration: in adults, the distribution before the peak 

s fairly uniform, while in children the relative frequency of gaps is 

ncreasing for durations between 10 and 30 minutes. 
ver monitoring days (middle), data gap duration (right). The upper panels (a), (b), 

ediatric population. 
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Fig. 3. Two-state Markov model: in state C the sensor is working regularly, in state 

D the sensor measurement is missing due to a data gap. 
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.3. Design of four candidate data gap models and estimation of 

heir parameters 

Four Markov models were designed to describe the occurrence 

nd the duration of data gaps observed on the available datasets, 

s shown in Fig. 2 . The candidate models include the model previ- 

usly proposed by Facchinetti et al. [30] (Model 1). In the following 

ubsections, we present each candidate model and the estimators 

f its parameters. 

.3.1. Model 1: Two-state Markov model 

The first model is a two-state Markov model ( Fig. 3 ), first pro-

osed by Facchinetti et al. [30] . 

This simple model has two states: in state C (”connected”) 

lycemic measurements are collected regularly by the sensor, while 

n state D (”disconnected”) the data are missing, i.e., a gap occurs. 

ransitions between states are governed by four probability values. 

f the sensor is functioning normally (state C), α is the probability 

hat the next sample will be missed (transition from C to D), while 

1 − α) is the probability that the sensor will continue to function 

egularly (transition from C to C). If the current sample is missing 

state D), β is the probability that the next sample is also missing, 

hereas the probability that the system will resume normal oper- 

tion is (1 − β). Calling d the duration of a gap, the probability 

hat a gap lasts for k samples, according to this model, is: 

 

[
d = k 

]
= βk −1 ·

(
1 − β

)
(1) 

hat corresponds to k −1 consecutive D-D transitions followed by a 

ensor reconnection (transition from D to C). The transition proba- 

ilities α and β can be estimated as: 

ˆ = 

# of data gaps 

# of regul ar sampl es 
(2) 

ˆ = 

# of missing samples preceded by a missing sample 

# of missing samples 
(3) 

here the regular samples are those that are not missing. 

This first model is very simple; it is based on the hypothesis 

hat both α and β are constant over time: this means that in this 

ase the probability of having a gap and the probability of their 

uration do not change over time. Since these assumptions do not 

eflect the actual trend of observed gaps on real data ( Fig. 2 ), in

he models proposed below we will abandon them, for example 
Fig. 4. The structure of Model 3: one state C describes the normal operation

4 
y making α time-dependent (Model 2) or by adding other states 

nd parameters to the model (Model 3, Model 4). 

.3.2. Model 2: Two-state Markov model with time-dependent 

robability of gap 

Model 2 has the same structure as the first one ( Fig. 3 ) with the

nly difference being that in Model 2 α is made time-dependent to 

etter describe the distribution of the gaps across the monitoring 

ays. 

In particular, assuming that the probability of having a gap may 

ary for each monitoring day, α is defined as a staircase function 

f time from sensor insertion, t, in which each step has a one- 

ay duration. The values of α for each day of CGM monitoring can 

hen be estimated as in Eq. (4) , whereas the estimation of the β
robability remains the same as in Model 1: 

ˆ ( t ) = αk in day k f rom sensor insertion 

ˆ αk = 

# of data gaps in day k 

# of regul ar sampl es in day k 

(4) 

ˆ = 

# of missing samples preceded by a missed sample 

# of missing samples 
(5) 

It should be noted that, with the definition provided in Eq. (4) , 

ˆ (t) is defined by 10 different parameters ˆ αk , k = 1, …, 10. Alterna- 

ively, to minimize the number of parameters to be estimated, we 

an group days with similar gap probabilities together and then es- 

imate a different α value for each group of days with similar gap 

robability. Of course, this is an operator-dependent decision that 

an be modified according to preference and need. More details on 

he reduction of the α(t) parameters for the two populations con- 

idered in this paper can be found in the Supplementary Material 

section S1). 

.3.3. Model 3: (n + 1)-state Markov model with time-dependent 

robability of gap 

Model 3 aims to improve the description of the gap duration 

y adding new states. The resulting model, shown in Fig. 4 , is sim-

lar to the second model proposed by Facchinetti et al. [30] , except 

hat in this case the parameter α is time-dependent. Model 3 in- 

ludes a state C to describe the normal operation of the sensor and 

 states D 1 , D 2 , ..., D n to describe sensor gaps that last for 1, 2, ...,

 samples. 

While the α(t) estimator is the same as in Model 2 ( Eq. (4) ),

is no longer constant for the entire duration of the gap, but it 

hanges for each additional missing sample. In particular, the pa- 

ameter β1 describes the probability that the sensor gap will last 

ore than one sample, given that a gap has just begun. The pa- 

ameter β2 represents the probability that the gap will last more 

han 2 samples, given that two samples are already missing. In 

eneral, the βn parameter describes the probability of having a gap 

f duration > n samples, given a sequence of n consecutive missing 

amples. The estimators for the β1 , β2 , …, βn parameters of Model 
 of the sensor, n states D 1 ,D 2 , ..., D n describe the occurrence of gaps. 
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 are the following: 

ˆ 
1 = 

# of data gap l asting at l east two sampl es 

# of data gap l asting at l east one sampl es 

ˆ 
2 = 

# of data gap l asting at l east three sampl es 

# of data gap l asting at l east two sampl es 
. . . 

ˆ 
n = 

# of data gap l asting at l east ( n + 1 ) sampl es 

# of data gap l asting at l east n sampl es 

(6) 

A key point in building the model concerns the choice of the 

umber of states and parameters used to describe the sensor gap; 

he objective is to achieve a good description of the data gap dura- 

ion distribution, while maintaining small the number of states and 

parameters. In Fig. 2 panels (c) and (f), it can be observed that 

he distribution of gap duration changes its trend around a dura- 

ion value of 25 minutes. In order to capture this trend change, 

nd considering the memoryless property of Markov models, four 

tates are needed to describe the occurrence of gaps, i.e., D 1 , D 2 ,

 3 , D 4 . Therefore, the final structure of Model 3 is the one of

ig. 4 with n = 4, with parameters α(t), β1 , β2 , β3 , β4 . 

Note that the four β parameters need not be different from 

ach other. To limit the model complexity, some β parameters can 

e fixed to the same values without relevantly deteriorating the 

odel goodness of fit. In this work, for the adult population only, 

e decided to reduce the β parameters from four to two probabil- 

ty values: β1,red which is the probability that a gap lasts 1,2, or 3 

amples and β4,red which is the probability of having a gap of 4 or 

ore samples. More details on parameter reduction can be found 

n the Supplementary Material (section S2). 

.3.4. Model 4: (n + 2)-state Markov model with time-dependent 

arameters 

Models 1-3 assume that the gaps are equally distributed among 

he sensors. However, as can be seen in the left panels of Fig. 2 ,

ost CGM traces contain no gaps, and some CGM traces contain 

ne or more gaps. To describe well the distribution of the number 

f gaps per sensor, Model 4 is proposed, the structure of which is 

hown in Fig. 5 . This model includes (n + 2) states, of which n are

sed to describe the gap occurrence, as in Model 3, and the other 

wo describe the normal operation of the sensor. In particular, C 1 

orresponds to the normal operation of the sensor that has never 

ad a gap up to that time; C 2 describes the normal functioning of 

 sensor that has already experienced at least one gap. The tran- 

ition from C 1 to D 1 is governed by α1 (t), which represents the 

robability of having a gap for a sensor that has never had a gap

efore. Instead, α (t) is the transition probability between state C 
2 2 

ig. 5. The structure of Model 4: two states C 1 and C 2 describe the normal opera- 

ion of the sensor, n states D 1 , D 2 , ..., D n describe the gap occurrence. 

t

l

e

a

m

t

p

5 
nd D 1 , which represents the chance that a sensor that has already 

ad a gap will have another gap. The estimation of the β parame- 

ers is the same as in Model 3 ( Eq. (6) ), while α1 (t) and α2 (t) are

oth defined as a staircase function of time from sensor insertion 

: 

ˆ 1 ( t ) = α1 k in day k f rom sensor insertion 

ˆ α1 k = 

# of f irst data gaps in day k 

# of regul ar sampl es until the f irst gap in day k 

(9) 

ˆ 2 ( t ) = α2 k in day k f rom sensor insertion 

ˆ α2 k = 

# of data gaps a f ter the f irst one in day k 

# of regul ar sampl es a f ter the f irst gap in day k 

(10) 

Since we decided to set n = 4 for our specific case study, the im-

lementation of Model 4 considered in this work has 6 states in to- 

al, namely C 1 , C 2 , D 1 , D 2 , D 3 , D 4 . As for the other models, one can

ecide to use different values of α1 and α2 for each day of moni- 

oring k (obtaining 10 + 10 different parameters), or one can group 

ays with similar gap probabilities, and then consider a different 

1 or α2 value for each group of days with similar gap probability. 

gain, this is an operator-dependent decision that can be modi- 

ed according to preferences and needs. In this work, we decided 

o group some of the days in order to limit the model parameters 

o be estimated. The details on the groupings adopted for the two 

opulations are given in the Supplementary Material (section S3). 

.4. Assessment of the four candidate models 

The evaluation of the four candidate models is based on the 

omparison of the characteristics of the gaps simulated by the 

odels with those of the gaps observed on the real datasets. In 

articular, we first identified the models on the entire datasets 

nd we assessed their goodness of fit on the same data using a 

onte Carlo simulation approach. Then, to evaluate the generaliza- 

ion ability of the models, we divided the data into a training set 

nd a test set, we identified the models on the training set and we 

ested them on the test set from both qualitative and quantitative 

erspectives. Details of the approaches used for model assessment 

re described in the following subsections. 

.4.1. Assessment of model goodness of fit on the entire population 

First, we assessed the model goodness of fit on the entire 

atasets, considering the adult and the pediatric population sep- 

rately. The four candidate models were identified using all avail- 

ble adult/pediatric data. Then, the performances of each model 

ere evaluated on the entire datasets using a Monte Carlo simula- 

ion approach, based on the following steps. 

• Step 1: Generation of N = 100 simulated datasets, of the same 

size of the real one, in which data gaps are simulated with the 

identified model. 
• Step 2: For each simulated dataset, computation of the relative 

frequencies of the three gap characteristics shown in Fig. 2 , i.e., 

the number of gaps per sensor, the CGM monitoring day on 

which the gap occurs, and the gap duration. 
• Step 3: Comparison of the mean ± standard deviation (SD) 

of the relative frequencies obtained for the N = 100 simulated 

datasets in the previous step and those obtained from the real 

dataset. 

Each simulated dataset consists of M sequences of the same 

ength as the M CGM traces of the real dataset. The samples of 

ach simulated sequence are equal either to “0”, which represents 

 regular CGM sample (i.e., no gap), or to “1”, which represents a 

issing CGM sample (i.e., a gap). Fig. 6 shows the procedure used 

o simulate the sequences of a simulated dataset by using the sim- 

lest data gap model, i.e., Model 1. For each simulated trace, we 
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Fig. 6. Schematic representation of gap simulation for a specific CGM trace using Model 1. 
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tart with a regular sample (state C) and then we simulate the 

tate of the next sample (C for regular samples or D for missing 

amples) considering that α is the probability that the next sample 

s missing. To do that, we draw a sample x from a uniform distri- 

ution between 0 and 1 and compare it with the probability α that 

 gap begins. If x is greater than α ( Fig. 6 (a)), the next sample is a

egular sample (C to C transition). Then, we pass to the simulation 

f the following sample, extract another x value and, again, com- 

are it with α. This mini-cycle continues until the condition x ≤
is satisfied ( Fig. 6 (b)): in this case, the next sample is missing

C to D transition) and so the gap begins. The status of the follow- 

ng sample is simulated considering that β is the probability that 

 missing sample is followed by another missing sample. Then, to 

imulate whether the gap will go on or not, we draw a sample 

1 from a uniform distribution between 0 and 1 and compare it 

ith the probability β that the gap continues: if the condition x1 

β is satisfied ( Fig. 6 (c)), the simulated gap continues (D to D 

ransition) and we move on to the simulation of following sam- 

le, for which we draw another x1 value and, again, we compare 

t with β . If the new x1 value is still ≤ β , the gap continues with

nother missing sample. The gap simulation advances until x1 be- 

omes greater than β ( Fig. 6 (d)): in this case, the gap stops (D to C

ransition) and with the next sample the entire cycle starts again. 

his cycle is applied for each simulated trace of each simulated 

ataset. 

In the previous paragraph, we presented the simulation ap- 

roach for the simplest two-state Markov model with constant 

arameters, but the simulation approach is the same for more 

omplex Markov models with time-dependent parameters: the 

ey is to adjust the α and β values according to the model. For 

xample, in Model 2 the α probability changes with the day since 

ensor insertion, so if we are simulating the k th day of monitoring, 

e will refer to the value αk . In Model 3 the probability β changes 

epending on the duration of the simulated gap: in this case, x1 

ill be compared with the β value specific for the current gap 

uration. 

.4.2. Validation of the models on the test set 

To avoid the risk of overfitting the data, we also performed 

odel validation on an independent test set not used for model 

arameter estimation. We randomly divided the data into a train- 

ng set, containing the 70% of the CGM traces, and a test set with

he other 30% of the traces. As we imposed that each subject can 
6

nly be part of one of the two groups at a time, subjects with two

ensors have both traces in one or the other data partition. The 

arameters of each of the proposed models were estimated us- 

ng the training set data. The identified models were then assessed 

n the test set, by the Monte Carlo simulation approach described 

arlier. Performance on the test set was evaluated both qualita- 

ively and quantitatively. The qualitative assessment consisted, as 

or the whole datasets, in comparing the mean ±SD of the relative 

requencies of data gap characteristics obtained for the simulated 

atasets with the relative frequencies of data gap characteristics 

f the test set. The quantitative assessment consisted of comparing 

he distribution of gap characteristics extracted from the simulated 

atasets vs. those extracted from the test set, using the two-sample 

olmogorov-Smirnov statistical test and the Jensen-Shannon diver- 

ence metric. 

The two-sample Kolmogorov-Smirnov test is a non-parametric 

oodness-of-fit test of whether two sets of data (samples) are 

rawn from the same probability density function [43] . The test is 

ased on the distance D between the empirical distribution func- 

ion of the two samples. For our purpose, we applied the test to 

ompare a data gap characteristic (e.g., the number of gaps per 

ensor) of a simulated dataset, with the same characteristic of the 

est set. The Kolmogorov-Smirnov test was applied for each of the 

00 simulated datasets, with a significance level of 0.05 corrected 

or multiple tests according to Bonferroni: therefore, we reject the 

ull hypothesis (“the two samples comes from the same distribu- 

ion”) if the p-value of each test is smaller than 0.05/m, where m 

s the number of considered datasets, i.e., 100, and we accept it 

f the p-value is greater than 0.05/m. For each gap characteristic, 

he p-value distribution was represented with a boxplot, and the 

umber of simulated datasets for which the null hypothesis was 

ccepted/rejected was counted. If a model describes the gap char- 

cteristic well, we expect that the Kolmogorov-Smirnov test will 

ot reject the null hypothesis, i.e., that the p-values are above the 

djusted significance threshold (0.0 0 05). 

Model performance was evaluated also using the Jensen- 

hannon divergence [44] , JSD ( P || Q ), that is a symmetrized and

moothed version of the Kullback–Leibler divergence, KLD ( P || Q ), 

hich measures how different a probability density function Q is 

rom a reference probability density function P. Specifically, the 

ensen-Shannon divergence between P and Q is defined as: 

SD (P || Q ) = 

1 

KLD (P || M) + 

1 

KLD (Q|| M) (13)
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here KLD (P || Q ) = 

∑ 

P (x ) log( P(x ) 
Q(x ) 

) and M = 

1 
2 ( P + Q ) . 

The Jensen–Shannon divergence is 0 if the two distributions are 

dentical, ln(2) if they are maximally different. For our purpose, we 

alculated the Jensen–Shannon divergence between the probability 

ensity function of gap characteristics estimated from the relative 

requencies of simulated datasets and the same estimate made on 

he test set data. The smaller the divergence measure turns out to 

e, the better the model is able to reproduce the gap characteris- 

ics observed on the test set data. 

. Results 

For sake of paper readability, in the following subsections we 

eport the results obtained on the adult population only. Those ob- 

ained for the pediatric population, which would lead to a qualita- 

ively similar discussion, are reported in the Supplementary Mate- 

ial (section S4). 

.1. Model fit on the entire population 

The values of the model parameters estimated on the entire 

dult population dataset are reported in Table 1 for the four candi- 

ate models. As explained in the Supplementary Material (section 

1), for Model 2 and 3 we estimated just 4 αk values, i.e., one for

ays 1,7,8, one for days 2-6 and two more for days 9 and 10. Sim-

larly, in Model 4, we estimated 3 α1k values (for days 1 and 10, 

-8, and 9, respectively) and 4 α2k values (for days 1-6, 7 and 8, 9,

nd 10, respectively). 

The results of the Monte Carlo simulation on the entire adult 

ataset are shown in Fig. 7 . In each panel, one can compare the

elative frequencies of a gap characteristic on the real dataset (blue 

istogram) with the mean ±SD values of the relative frequencies 

btained for the 100 simulated datasets (red line). 

Panels (a) (b) (c) in Fig. 7 show the results for Model 1. In

anel (a) we can compare the real vs. simulated relative frequen- 

ies for the number of gaps for each sensor; we can observe that 

he model’s description of the data is acceptable, but not optimal. 

ndeed, the model estimates that almost 30% of the traces have no 

aps, while in the real dataset about 65% of the traces contain no 

aps. Moreover, the number of traces with 1, 2, or 3 events is over-

stimated by the model. Panel (b) shows the distribution of gaps 

ver the monitoring days. While in the real dataset the probabil- 

ty of having a gap in the last days since the sensor insertion is 

igher than in the first days, the model simulates gaps uniformly 
able 1 

stimates of α and β parameters for the four candidate data gap models identified 

n the adult dataset. 

Models ˆ α ˆ β

Model 1 ˆ α = 4 . 65 · 10 −4 ˆ β = 0 . 7082 

Model 2 

ˆ α1 , 7 , 8 = 4 . 06 · 10 −4 

ˆ β = 0 . 7082 
ˆ α2 −6 = 7 . 67 · 10 −5 

ˆ α9 = 9 . 11 · 10 −4 

ˆ α10 = 2 . 20 · 10 −3 

Model 3 

ˆ α1 , 7 , 8 = 4 . 06 · 10 −4 

ˆ β1 ,red = 0 . 8550 
ˆ α2 −6 = 7 . 67 · 10 −5 

ˆ α9 = 9 . 11 · 10 −4 

ˆ β4 ,red = 0 . 7270 
ˆ α10 = 2 . 20 · 10 −3 

Model 4 

ˆ α1 1 , 10 
= 4 . 25 · 10 −4 

ˆ β1 ,red = 0 . 8550 
ˆ α1 2 −8 

= 6 . 11 · 10 −5 

ˆ α1 9 = 1 . 85 · 10 −4 

ˆ α2 1 −6 
= 2 . 95 · 10 −4 

ˆ β4 ,red = 0 . 7270 ˆ α2 7 , 8 = 1 . 80 · 10 −3 

ˆ α2 9 = 3 . 30 · 10 −3 

ˆ α2 10 
= 6 . 60 · 10 −3 
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7 
hroughout the CGM monitoring period. This is due to the fact that 

n Model 1 α is constant over time. Panel (c) shows the distribu- 

ion of gap duration using the log-scale in order to appreciate the 

odel performance even for low probability values, which corre- 

ponds to long gap durations. The model, being characterized by 

 single parameter β , fails to describe the peak of the distribution 

t 25 min, and simulates a decreasing linear trend. The panel also 

hows the curve obtained from the theoretical formula that calcu- 

ates the probability of having a gap that lasts for k samples using 

q. (1) : since this theoretical curve (green line) and the result of 

he simulation (red line) are superimposable, we can confirm that 

he simulation algorithm works correctly and that 100 repetitions 

n the Monte Carlo simulation are sufficient to obtain a good esti- 

ate of the theoretical results. 

The second model, Model 2, introduces a time-dependence for 

. As visible in Fig. 7 , the introduction of a temporal variability for 

improves the description of the distribution of gaps in the mon- 

toring days (panel (e)), whereas the description of the number of 

aps per sensor (panel (d)) and the data gap duration (panel (f)) 

re comparable between Model 1 and Model 2. 

The third model, Model 3, introduces a few more states to im- 

rove the description of the distribution of data gap durations 

hown in panel (i). We can observe that Model 3 describes well 

he observed relative frequencies of gap durations, even capturing 

he peak at 25 minutes. This model performs well overall, although 

he description of the number of gaps for each sensor (panel (g)) 

s still not satisfactory. 

Model 4 introduces an additional state to improve the descrip- 

ion of the relative frequencies of the number of gaps per sensor 

panel (j)). This final model describes well, at least from a quali- 

ative point of view, all the analyzed gap characteristics, with the 

nly limitation that the number of traces with only one event is 

nderestimated (second bin of the histogram in panel (j)). 

.2. Validation of the models with training-test set split 

To assess the generalization ability of the models and to avoid 

ossible overfitting of the data, model parameters were identified 

n 70% of the total traces (121 adult traces); then, model perfor- 

ance was tested on the remaining 30% of traces (51 adult traces), 

sing the Kolmogorov-Smirnov test and the Jensen-Shannon diver- 

ence. 

For each gap characteristic, Fig. 8 shows the distributions of 

istances D (left panels) and p-values (right panels) calculated 

ith the Kolmogorov-Smirnov test for each of the 100 simulated 

atasets constructed with Monte Carlo simulation. The significance 

evel is set at 0.0 0 05, obtained by correcting the 0.05 significance 

evel for multiple tests m (in our case, m = 100). The performance 

f a model X are considered better than the one of model Y, if 

he distance D for model X is less than D for model Y. Moreover, 

 model that describes a data gap characteristic well should have 

 small number of simulated datasets for which the p-value is be- 

ow the significance level (dashed red line). The median values of D 

nd p-value, their 5 th -95 th percentile interval, and the percentage 

f p-values below the significance level are reported in Table 1 for 

ll models. 

Regarding the number of gaps for each sensor ( Fig. 8 , panel 

a)), the distance D is almost the same for the first three mod- 

ls, while it decreases with Model 4. The distribution of p-values 

 Fig. 8 , panel (b)) confirms the trend of the distances: while for 

he first three models almost all the p-values are below the signif- 

cance level, there is a substantial improvement for Model 4 with 

nly 12% of p-values leading to the rejection of the null hypothesis. 

his small percentage of p-values below the threshold is probably 

ue to the tendency of Model 4 to underestimate the number of 

races that contain only one gap. 
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Fig. 7. Monte Carlo simulation results for all models on the adult dataset. The blue histograms represent the relative frequencies of data gap characteristics distributions. 

The red curves represent the mean of the relative frequencies obtained from the simulated datasets with their ±SD interval. 
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Concerning the distribution of the gap in the monitoring days, 

n Fig. 8 , panels (c)(d), it can be seen that the performance im- 

roves starting from the second model, that is, from the inclu- 

ion of the time-dependence of the parameter α. From Table 2 , 

t can be seen that with the first model all p-values are below 

he significance level, while for Models 2, 3, and 4 all p-values are 
bove it. c

8 
Finally, regarding gap durations, we see from the distribution 

f distances D that there is an improvement in performance with 

odel 3 and Model 4. Regarding p-values, even for the first two 

odels most of the p-values are above the significance level; in 

act, even Model 1, the simplest one, provides a fairly satisfac- 

ory description of the distribution of gap durations, although this 

an be further improved with the addition of new states. This as- 
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Fig. 8. Distributions of D distances and p-values calculated for each gap characteristic for each of the 100 simulated datasets with the Kolmogorov-Smirnov test (adult 

population). 

p

m

l

t

d

t

v

i

1

b

s

4

C

ect is also confirmed by the p-values calculated for the last two 

odels, which have higher values further from the significance 

evel. 

The results obtained with the Kolmogorov-Smirnov statistical 

est are confirmed by the Jensen-Shannon divergence whose me- 

ian [5 th – 95 th percentiles] is reported in Table 3 . We can see 

hat for the number of gaps per sensor the model with lowest di- 

ergence values is Model 4; for the distribution of gap in the mon- 

toring days Model 2, 3 and 4 get equally better results than Model 
9 
, and for the distribution of the durations Model 3 and 4 get the 

est results. 

In conclusion, the only model that provides a satisfactory de- 

cription of all the three data gap characteristics is Model 4. 

. Discussion 

A model of CGM data gaps is needed to realistically simulate 

GM time series in ISCTs, thus allowing CGM-based diabetes man- 
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Table 2 

Distances D and p-values calculated with the Kolmogorov-Smirnov test for the adult population. 

D p-value Num. of p-values below 

significance level [%] Median [5 th -95 th 

percentile] 

Median [5 th -95 th 

percentile] 

Number of gaps per 

sensor 

Model 1 0.50 1.02e-11 100 

[0.42 0.59] [2.22e-16 1.99e-08] 

Model 2 0.50 1.02e-11 100 

[0.40 0.59] [2.10e-16 1.02e-07] 

Model 3 0.50 1.02e-11 99 

[0.40 0.59] [2.20e-16 8.60e-08] 

Model 4 0.21 0.019 12 

[0.11 0.32] [2.86e-05 0.4929] 

Relative day when 

data gap occurred 

Model 1 0.44 1.03e-14 100 

[0.37 0.53] [0 3.46e-09] 

Model 2 0.10 0.40 0 

[0.053 0.16] [0.022 0.96] 

Model 3 0.10 0.36 0 

[0.061 0.17] [0.016 0.92] 

Model 4 0.091 0.44 0 

[0.053 0.15] [0.038 0.96] 

Data gap duration Model 1 0.22 0.0014 42 

[0.11 0.30] [7.67e-07 0.29] 

Model 2 0.20 0.0025 35 

[0.12 0.28] [1.12e-05 0.19] 

Model 3 0.11 0.24 0 

[0.078 0.16] [0.034 0.70] 

Model 4 0.12 0.18 0 

[0.072 0.18] [0.0084 0.73] 

Table 3 

Jensen-Shannon divergence calculated for each gap characteristic in the adult pop- 

ulation. 

Jensen-Shannon divergence 

Median [5 th -95 th percentile] 

Number of gaps 

per sensor 

Relative day when data 

gap occurred 

Data gap 

duration 

Model 1 0.1714 0.2103 0.0843 

[0.1195 

0.2353] 

[0.1638 0.2680] [0.0566 

0.1211] 

Model 2 0.1731 0.0423 0.0882 

[0.1176 

0.2470] 

[0.0209 0.0760] [0.0545 

0.1211] 

Model 3 0.1641 0.0453 0.0654 

[0.1189 

0.2222] 

[0.0286 0.0659] [0.0325 

0.1043] 

Model 4 0.1141 0.0486 0.0616 

[0.0700 

0.1597] 

[0.0265 0.0742] [0.0368 

0.0911] 
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of sensor faults. 
gement strategies to be tested in more realistic simulation scenar- 

os. Previous effort s to model data gaps were limited to datasets 

ollected only in adults, using past-generation CGM sensors, which 

equired periodic in vivo calibrations and had limited accuracy. The 

urpose of this work was to develop a data gap model that can de- 

cribe well the main data gap characteristics for a recent factory- 

alibrated CGM sensor, on both the adult and the pediatric popu- 

ation. 

Two datasets were used for this study, both collected by the 

excom G6 sensor: the first dataset includes 172 traces collected 

n adults, the second 205 traces collected in pediatrics. The model 

as developed by attempting to match the observed distribution 

f three gap characteristics: the number of gaps per sensor, the 

elative day when data gaps occurred, and the data gap duration. 

n total four candidate Markov models, of increasing complexity, 

ere proposed. Each model was identified on a training set (70% 

f the data) and then tested on a test set (30% of the data), using

he Kolmogorov-Smirnov test and the Jensen-Shannon divergence. 

The best data gap model was found to be a six-state Markov 

odel (Model 4), in which two states describe, respectively, the 
10 
ormal operation of a sensor that has never had a gap and the 

ormal operation of a sensor that has already had at least one 

ap, and four states describe the occurrence of missing sam- 

les. The total number of model parameters is 9 for the adult 

opulation and 11 for the pediatric population (in the adult 

opulation, 2 parameters were removed with no performance 

eterioration). This six-state Markov model presented satisfac- 

ory performances in both populations for all three data gap 

haracteristics. 

The current study presents some limitations. A first limitation 

oncerns the fact that the proposed models have been developed 

onsidering only CGM traces with minimum duration of 9 days, 

.e., sensors with a normal lifetime of about 10 days. In fact, mod- 

ling the premature stopping of sensor operation – a fault other 

han data gaps, due to potentially irreversible damage of the sen- 

or – was outside the scope of this work. Therefore, the domain 

f validity of the developed data gap models must be considered 

imited to sensors with a lifetime of 9-10 days. Another limitation 

f the present work is that the modeling of CGM data gaps is per- 

ormed independently of other characteristics of the CGM signal, 

uch as the glucose concentration level, the glucose rate-of-change, 

ther sensor error components (e.g., the distortion introduced by 

lasma-interstitium kinetics, the calibration error and the random 

oise), and other faults (e.g., compression artifacts and the prema- 

ure stopping of sensor operation). Although in a preliminary anal- 

sis conducted on the adult dataset no significant correlation was 

ound between data gap characteristics and other CGM signal char- 

cteristics (specifically, the glucose level at which data gaps begin, 

nd the parameters of the sensor error model by Vettoretti et al. 

27] – the results not shown for reasons of space), further analyses 

re required to investigate whether other factors have a relevant 

mpact on the occurrence and the duration of gaps, and thus need 

o be considered as additional variables within the data gap model 

e.g., using a different multivariable modeling approach). For ex- 

mple, it would be interesting to investigate whether premature 

topping of sensor operation has an impact on the characteristics 

f the gaps observed before the end of the sensor’s life, and possi- 

ly to develop a new model that jointly describes these two types 
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[  
Despite these limitations, the proposed six-state Markov model 

escribes well the analyzed gap characteristics (the number of 

aps per sensor, the relative day when data gaps occurred, and the 

ata gap duration) in both the adult and the pediatric population. 

evertheless, the model description of the gap number per sen- 

or could be further improved, trying to reduce the overestimation 

n the description of the number of traces that contain a single 

vent. This could be addressed by future modeling studies. Other 

nteresting future developments of the Markov model presented in 

his work could be the external validation of the model on other 

atasets acquired by the Dexcom G6 sensor and its application on 

atasets collected by other CGM sensors. Last but not least, the 

odel identified in this work can be integrated into diabetes sim- 

lators (e.g., the T1D patient decision simulator [33] ) used to test 

GM-based therapies in realistic ISCTs. 

. Conclusions 

In conclusion, in this paper we developed a new model of CGM 

ata gaps that describes well the number of gaps per sensor, the 

onitoring days when gaps occur, and the gap durations, by ex- 

loiting two datasets collected by the Dexcom G6 sensor on an 

dult and a pediatric population, respectively. The final model is 

 six-state Markov model in which four states are used for de- 

cribing gaps and the other two for describing the normal oper- 

tion of the sensor. The model performance was evaluated on an 

ndependent test set. The modelling methodology presented in this 

aper can be extended to other CGM sensors, and also to time se- 

ies collected with other types of sensors. This model is useful to 

tudy the occurrence of gaps in CGM sensors, to compare them be- 

ween different sensors [45] , and to realistically simulate gaps on 

irtual CGM traces generated by diabetes simulators. The ability to 

ealistically simulate gaps is critical to enable the simulation of re- 

listic CGM traces in ISCTs testing CGM-based diabetes therapies. 

inally, the model can be useful to test signal reconstruction algo- 

ithms that aim to reconstruct the CGM signal suppressed during 

aps [46] . 
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