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ABSTRACT

Background and objective: Continuous glucose monitoring (CGM) sensors measure interstitial glucose con-
centration every 1-5 min for days or weeks. New CGM-based diabetes therapies are often tested in in
silico clinical trials (ISCTs) using diabetes simulators. Accurate models of CGM sensor inaccuracies and
failures could help improve the realism of ISCTs. However, the modeling of CGM failures has not yet been
fully addressed in the literature. This work aims to develop a mathematical model of CGM gaps, i.e., oc-
casional portions of missing data generated by temporary sensor errors (e.g., excessive noise or artifacts).
Methods: Two datasets containing CGM traces collected in 167 adults and 205 children, respectively,
using the Dexcom G6 sensor (Dexcom Inc., San Diego, CA) were used. Four Markov models, of increasing
complexity, were designed to describe three main characteristics: number of gaps for each sensor, gap
distribution in the monitoring days, and gap duration. Each model was identified on a portion of each
dataset (training set). The remaining portion of each dataset (real test set) was used to evaluate model
performance through a Monte Carlo simulation approach. Each model was used to generate 100 simulated
test sets with the same size as the real test set. The distributions of gap characteristics on the simulated
test sets were compared with those observed on the real test set, using the two-sample Kolmogorov-
Smirnov test and the Jensen-Shannon divergence.
Results: A six-state Markov model, having two states to describe normal sensor operation and four states
to describe gap occurrence, achieved the best results. For this model, the Kolmogorov-Smirnov test found
no significant differences between the distribution of simulated and real gap characteristics. Moreover,
this model obtained significantly lower Jensen-Shannon divergence values than the other models.
Conclusions: A Markov model describing CGM gaps was developed and validated on two real datasets.
The model describes well the number of gaps for each sensor, the gap distribution over monitoring days,
and the gap durations. Such a model can be integrated into existing diabetes simulators to realistically
simulate CGM gaps in ISCTs and thus enable the development of more effective and robust diabetes
management strategies.
© 2023 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

sion support systems [10-11]. The use of such new technologies
in diabetes therapy has been massively tested using in silico clin-

In recent decades, the therapy of type 1 diabetes (T1D) has
been revolutionized by the spread of many new technologies
[1],[2], such as insulin pumps [3],[4], continuous glucose moni-
toring sensors [5],[6], artificial pancreas systems [7-9], and deci-

Abbreviations: T1D, type 1 diabetes; ISCT, in silico clinical trial; CGM, continuous
glucose monitoring; SD, standard deviation.
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ical trials (ISCTs) [12-16]. An ISCT can be defined as “the use of
individualised computer simulation in the development or regula-
tory evaluation of a medicinal product, medical device, or medical
intervention” [13]. The reason why ISCTs are so attractive is that
ISCTs can be conducted at very low cost, on large populations of
virtual subjects, in a short time frame and without any risk to real
patients. Moreover ISCTs allow to conduct tests on a variety of set-
tings, which often cannot be evaluated in real clinical trials, either
because of limited availability of resources or because the factors
to be tested are difficult to measure on real patients (e.g., carbo-
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hydrate counting error [17]). For these reasons, ISCTs are often the
first testbed for new diabetes management strategies.

Performing reliable ISCTs requires the availability of a reliable
simulation model. In particular, a simulation model for testing
technology-based diabetes management strategies in ISCTs should
include mathematical models of the patient’s physiology, the tech-
nology used and the diabetes management strategy. One of the key
technologies used in T1D therapy is glucose sensors; indeed, T1D
patients need to monitor their glucose concentration frequently in
order to precisely adjust insulin therapy and avoid dangerous hy-
perglycemic or hypoglycemic events. In addition to traditional fin-
gerprick glucometers [18], minimally-invasive continuous glucose
monitoring (CGM) sensors have been increasingly adopted in T1D
therapy in recent years [19-21]. CGM sensors are wearable sen-
sors that measure glucose concentration in the interstitial fluid of
subcutaneous tissue almost continuously (sampling period of 1-5
minutes) and for several consecutive days or weeks [22]. The most
popular CGM sensing technique is based on an amperometric elec-
trochemical sensor placed in the subcutaneous tissue of the ab-
domen or arm [23].

Like any measurement system, CGM sensors are affected by
measurement error, which can be evaluated by comparing CGM
readings with glycemic references measured with high accuracy
and precision laboratory instruments [24-26]. Several phenom-
ena contribute to CGM sensor error, e.g., distortion introduced by
blood-interstitium kinetics, imperfect sensor calibration, random
measurement noise, and interfering substances [27-29]. Moreover,
CGM time series can be affected by occasional transient faults [30],
such as data gaps, which are portions of missing samples. Data
gaps are often due to a temporary sensor error: if the sensor pro-
cessing algorithm detects excessive noise or anomalies (e.g., spikes)
in the signal, the corrupted part of the signal is suppressed, thus
generating a gap.

Fig. 1 shows an example of a gap due to a temporary sensor
error that lasts for 45 minutes, from 10:35 to 11:20.

To better simulate CGM measurements, T1D simulators, such as
the University of Virginia/Padova T1D simulator and its extensions
[31-33], can incorporate a mathematical model of CGM sensor
error. In fact, CGM sensor error could influence the effectiveness
of CGM-based diabetes management strategies. Testing CGM-based
diabetes management strategies on error-free scenarios can be
useful but it will likely provide optimistic results compared to
more realistic simulation scenarios in which CGM sensor error
is simulated [34]. In addition to simulating the inaccuracy of
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Fig. 1. A data gap in a representative real CGM sensor trace measured by the Dex-
com G6 sensor in an adult subject.
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CGM readings, the simulation of transient CGM faults, such as data
gaps, is important to allow in silico assessment of the robustness of
CGM-based diabetes management strategies against sensor faults
that commonly occur in real life. For example, a recent study sug-
gested that data gaps can significantly affect the accuracy of glu-
cose metrics calculated from CGM data [35], and, consequently, the
performance of diabetes-management strategies relying on them.

While the modelling of some error components, such as the
distortion introduced by blood-interstitium kinetics, calibration
error and random noise, has been investigated by many literature
studies [27,28,36-39], the modelling of occasional transient faults,
such as data gaps, has been less investigated. A simple model to
describe the occurrence of data gaps in CGM traces was proposed
by Facchinetti et al. [30]; the occurrence of missing samples was
modelled using a two-state Markov model, in which one state
represents the status in which the sensor is functioning normally,
while a second state represents the status in which the sensor
shows no measurements, i.e., there is a data gap. In the same
work, a second Markov model was proposed, with an additional
state to allow the description of long gaps. This second model was
shown to describe well the distribution of data gap durations ob-
served in a dataset of 108 CGM traces collected by the Dexcom G4
Platinum (Dexcom, Inc., San Diego, CA) sensor on adults with T1D.
However, the ability of the model to represent other important
characteristics of the gaps well, for example, the frequency and
timing of their occurrence, was not analyzed. In a recent study,
Drecogna et al. [40] tested the model of Facchinetti et al. [30] on a
dataset collected on an adult population by a new-generation CGM
sensor (Dexcom G6). The study showed that the simple model of
Facchinetti et al. [30] fails to describe well the characteristics of
data gaps occurring in new-generation CGM sensors. Another open
issue is that the model of Facchinetti et al. [30] was never tested
on the pediatric population, whose different types of activities
may influence the occurrence of data gaps.

The aim of the present paper is to further develop the mod-
elling approach of Facchinetti et al. [30] to build a data gap model
capable of generating gaps with the same characteristics, not only
in terms of duration, but also in terms of frequency and time of
occurrence, as those present in real datasets. The new model will
be built on two datasets collected using a new-generation factory-
calibrated CGM sensor, i.e., the Dexcom G6 sensor, on an adult
population and a pediatric population, respectively.

2. Materials and methods
2.1. Datasets

The data used for this study, courtesy of Dexcom Inc. (San
Diego, CA), were collected as part of a single-arm interventional
clinical trial to test the effectiveness and safety of the Dexcom G6
CGM sensor. The study started on May 2016 and ended on Septem-
ber 2017. The inclusion criteria included: age >2 years, diagnosis
of T1D or T2D on intensive insulin therapy, and willing to par-
ticipate in a clinic session involving venous sampling for evalu-
ation of study end point. The exclusion criteria included: use of
acetaminophen, known allergy to medical-grade adhesives, preg-
nancy, and hematocrit outside the normal range. Participants were
enrolled at 11 sites and located throughout the U.S.. More infor-
mation on the data collection process and detailed demographic
characteristics of the enrolled patients are available in the original
study publications [41,42].

From data collected in the study, two datasets were extracted.
The first dataset includes 203 CGM traces collected on 167 adults
(18-59 years old) with T1D or T2D (36 subjects wore two sen-
sors). The second dataset includes 285 CGM traces collected on
212 children and adolescents (6-17 years old) with T1D or T2D
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(73 children/adolescents wore two sensors). In the following of
this publication, the two datasets will be called “the adult dataset”
and “the pediatric dataset”, respectively. In both datasets, CGM
traces were collected with the Dexcom G6 sensor, which has a 10-
day lifetime. In total, 133 sensors have stopped working before 10
days were elapsed since sensor insertion. Premature interruption
of sensor operation is probably due to irreversible damage of the
sensor from which it is not possible to recover, unlike data gaps
which are generated by temporary sensor errors, after which the
sensor resumes normal operation. Since modeling the premature
interruption of sensor operation is out of the scope of this work,
for our analysis, we selected only the traces with a minimum
duration of 9 days from sensor insertion, so that we could observe
the gap distribution over the entire life of the sensor. This results
in two final datasets: the adult dataset, which includes 172 CGM
traces, and the pediatric dataset, which includes 205 CGM traces.
The two datasets were analyzed separately.

2.2. Exploratory analysis of data gaps

CGM data gaps are portions of missing data in CGM time se-
ries. In our datasets, we identified 229 and 484 data gaps in the
adult and the pediatric datasets, respectively. The distribution of
three main gap characteristics was analyzed: the number of gaps
for each sensor, the CGM monitoring day on which the gap oc-
curs, and the gap duration. The relative frequencies of these char-
acteristics are shown in Fig. 2 for the adult dataset (panels (a)-
(c)) and the pediatric dataset (panels (d)-(f)). It should be noted

Number of gaps per sensor

Relative day when a data gap occured
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that the number of gaps per sensor was not normalized by CGM
trace duration because, after excluding traces with duration of less
than 9 days, the CGM traces retained in the analysis had similar
duration.

Focusing on the number of gaps per sensor (Fig. 2 (a),(d)), it
can be observed that about 65% of adult traces and 45% of pedi-
atric traces have no gaps. It is also possible to observe that in the
adult population most of traces with gaps have only one occur-
rence, whereas in the pediatric population CGM traces with two
or more gaps are more common. Therefore, the incidence of data
gaps is higher in the pediatric population than in the adult popu-
lation.

Panels (b) and (e) in Fig. 2 show that the occurrence of data
gaps varies with the time from sensor insertion and, in particular,
more gaps occur at the end of sensor life in both populations. A
higher frequency of data gaps is also observed for the day of sensor
insertion, where sensor performance is less stable.

In panels (c) and (f) of Fig. 2, the distributions of data gap du-
rations are shown in logarithmic scale to facilitate visualization of
the histogram tails. The peak of the distributions is at 25 minutes
in the adult population and at 30 minutes in the pediatric one. Af-
ter the peak, the frequency of gaps decreases as the gap duration
increases, with a maximum duration observed around 95 minutes,
in the adult population, and 120 minutes in the pediatric popula-
tion. Quite different trends are present for gap durations shorter
than the peak duration: in adults, the distribution before the peak
is fairly uniform, while in children the relative frequency of gaps is
increasing for durations between 10 and 30 minutes.
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Fig. 2. Data gap characteristics: number of gaps for each sensor (left), gap distribution over monitoring days (middle), data gap duration (right). The upper panels (a), (b),
and (c) refer to the adult population, while the lower panels (d), (e), and (f) refer to the pediatric population.
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Fig. 3. Two-state Markov model: in state C the sensor is working regularly, in state
D the sensor measurement is missing due to a data gap.

2.3. Design of four candidate data gap models and estimation of
their parameters

Four Markov models were designed to describe the occurrence
and the duration of data gaps observed on the available datasets,
as shown in Fig. 2. The candidate models include the model previ-
ously proposed by Facchinetti et al. [30] (Model 1). In the following
subsections, we present each candidate model and the estimators
of its parameters.

2.3.1. Model 1: Two-state Markov model

The first model is a two-state Markov model (Fig. 3), first pro-
posed by Facchinetti et al. [30].

This simple model has two states: in state C ("connected”)
glycemic measurements are collected regularly by the sensor, while
in state D ("disconnected”) the data are missing, i.e., a gap occurs.
Transitions between states are governed by four probability values.
If the sensor is functioning normally (state C), « is the probability
that the next sample will be missed (transition from C to D), while
(1 — «) is the probability that the sensor will continue to function
regularly (transition from C to C). If the current sample is missing
(state D), B is the probability that the next sample is also missing,
whereas the probability that the system will resume normal oper-
ation is (1 — B). Calling d the duration of a gap, the probability
that a gap lasts for k samples, according to this model, is:

Pld=k]=p"-(1-5) (1)
that corresponds to k—1 consecutive D-D transitions followed by a
sensor reconnection (transition from D to C). The transition proba-
bilities @ and B can be estimated as:
# of data gaps

Y= ¥ of regular samples

(2)

B =

where the regular samples are those that are not missing.

This first model is very simple; it is based on the hypothesis
that both o and B are constant over time: this means that in this
case the probability of having a gap and the probability of their
duration do not change over time. Since these assumptions do not
reflect the actual trend of observed gaps on real data (Fig. 2), in
the models proposed below we will abandon them, for example

# of missing samples preceded by a missing sample
# of missing samples

(3)

1-at)

1-Bn
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by making « time-dependent (Model 2) or by adding other states
and parameters to the model (Model 3, Model 4).

2.3.2. Model 2: Two-state Markov model with time-dependent
probability of gap

Model 2 has the same structure as the first one (Fig. 3) with the
only difference being that in Model 2 « is made time-dependent to
better describe the distribution of the gaps across the monitoring
days.

In particular, assuming that the probability of having a gap may
vary for each monitoring day, « is defined as a staircase function
of time from sensor insertion, t, in which each step has a one-
day duration. The values of « for each day of CGM monitoring can
then be estimated as in Eq. (4), whereas the estimation of the 8
probability remains the same as in Model 1:

&(t) = ayinday k from sensor insertion
& — #of datagapsinday k (4)
k= #of regular samplesinday k
B _ # of missing samples preceded by a missed sample (5)

# of missing samples

It should be noted that, with the definition provided in Eq. (4),
& (t) is defined by 10 different parameters &, k=1, ..., 10. Alterna-
tively, to minimize the number of parameters to be estimated, we
can group days with similar gap probabilities together and then es-
timate a different o value for each group of days with similar gap
probability. Of course, this is an operator-dependent decision that
can be modified according to preference and need. More details on
the reduction of the «/(t) parameters for the two populations con-
sidered in this paper can be found in the Supplementary Material
(section S1).

2.3.3. Model 3: (n+1)-state Markov model with time-dependent
probability of gap

Model 3 aims to improve the description of the gap duration
by adding new states. The resulting model, shown in Fig. 4, is sim-
ilar to the second model proposed by Facchinetti et al. [30], except
that in this case the parameter « is time-dependent. Model 3 in-
cludes a state C to describe the normal operation of the sensor and
n states Dy, Dy, .., Dy to describe sensor gaps that last for 1, 2, ...,
n samples.

While the «(t) estimator is the same as in Model 2 (Eq. (4)),
B is no longer constant for the entire duration of the gap, but it
changes for each additional missing sample. In particular, the pa-
rameter B, describes the probability that the sensor gap will last
more than one sample, given that a gap has just begun. The pa-
rameter 8, represents the probability that the gap will last more
than 2 samples, given that two samples are already missing. In
general, the 8, parameter describes the probability of having a gap
of duration >n samples, given a sequence of n consecutive missing
samples. The estimators for the 81, 85, ..., Bn parameters of Model

Bn

Fig. 4. The structure of Model 3: one state C describes the normal operation of the sensor, n states D;,D,, .., D, describe the occurrence of gaps.
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3 are the following:

5 # of data gap lasting at least two samples

P = # of data gap lasting at least one samples

5 # of data gap lasting at least three samples

ﬂz = (6)

# of data gap lasting at least two samples

5 # of data gap lasting at least (n+ 1) samples
= # of data gap lasting at least n samples

A key point in building the model concerns the choice of the
number of states and parameters used to describe the sensor gap;
the objective is to achieve a good description of the data gap dura-
tion distribution, while maintaining small the number of states and
B parameters. In Fig. 2 panels (c) and (f), it can be observed that
the distribution of gap duration changes its trend around a dura-
tion value of 25 minutes. In order to capture this trend change,
and considering the memoryless property of Markov models, four
states are needed to describe the occurrence of gaps, i.e., D1, Dy,
D3, D4. Therefore, the final structure of Model 3 is the one of
Fig. 4 with n=4, with parameters «(t), 81, B2, B3, Ba.

Note that the four S parameters need not be different from
each other. To limit the model complexity, some 8 parameters can
be fixed to the same values without relevantly deteriorating the
model goodness of fit. In this work, for the adult population only,
we decided to reduce the 8 parameters from four to two probabil-
ity values: B1q Which is the probability that a gap lasts 1,2, or 3
samples and B4 .4 Which is the probability of having a gap of 4 or
more samples. More details on parameter reduction can be found
in the Supplementary Material (section S2).

2.3.4. Model 4: (n+2)-state Markov model with time-dependent
parameters

Models 1-3 assume that the gaps are equally distributed among
the sensors. However, as can be seen in the left panels of Fig. 2,
most CGM traces contain no gaps, and some CGM traces contain
one or more gaps. To describe well the distribution of the number
of gaps per sensor, Model 4 is proposed, the structure of which is
shown in Fig. 5. This model includes (n+2) states, of which n are
used to describe the gap occurrence, as in Model 3, and the other
two describe the normal operation of the sensor. In particular, C;
corresponds to the normal operation of the sensor that has never
had a gap up to that time; C, describes the normal functioning of
a sensor that has already experienced at least one gap. The tran-
sition from C; to D; is governed by «(t), which represents the
probability of having a gap for a sensor that has never had a gap
before. Instead, a,(t) is the transition probability between state C,

1-ai(t)

C1

-

Fig. 5. The structure of Model 4: two states C; and C, describe the normal opera-
tion of the sensor, n states Dy, D5, .., D, describe the gap occurrence.
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and D1, which represents the chance that a sensor that has already
had a gap will have another gap. The estimation of the 8 parame-
ters is the same as in Model 3 (Eq. (6)), while oq(t) and a,(t) are
both defined as a staircase function of time from sensor insertion
t:

@1(t) = aq in day k from sensor insertion

N # of first data gaps in day k 9)

Y=g of regular samples until the first gap in day k
G, (t) = ayy in day k from sensor insertion
& # of data gaps after the first one in day k  (10)
2% =

# of regular samples after the first gap in day k

Since we decided to set n=4 for our specific case study, the im-
plementation of Model 4 considered in this work has 6 states in to-
tal, namely C;, C;, Dy, Dy, D3, D4. As for the other models, one can
decide to use different values of «; and o, for each day of moni-
toring k (obtaining 10410 different parameters), or one can group
days with similar gap probabilities, and then consider a different
o1 or o value for each group of days with similar gap probability.
Again, this is an operator-dependent decision that can be modi-
fied according to preferences and needs. In this work, we decided
to group some of the days in order to limit the model parameters
to be estimated. The details on the groupings adopted for the two
populations are given in the Supplementary Material (section S3).

2.4. Assessment of the four candidate models

The evaluation of the four candidate models is based on the
comparison of the characteristics of the gaps simulated by the
models with those of the gaps observed on the real datasets. In
particular, we first identified the models on the entire datasets
and we assessed their goodness of fit on the same data using a
Monte Carlo simulation approach. Then, to evaluate the generaliza-
tion ability of the models, we divided the data into a training set
and a test set, we identified the models on the training set and we
tested them on the test set from both qualitative and quantitative
perspectives. Details of the approaches used for model assessment
are described in the following subsections.

2.4.1. Assessment of model goodness of fit on the entire population

First, we assessed the model goodness of fit on the entire
datasets, considering the adult and the pediatric population sep-
arately. The four candidate models were identified using all avail-
able adult/pediatric data. Then, the performances of each model
were evaluated on the entire datasets using a Monte Carlo simula-
tion approach, based on the following steps.

o Step 1: Generation of N = 100 simulated datasets, of the same
size of the real one, in which data gaps are simulated with the
identified model.

 Step 2: For each simulated dataset, computation of the relative
frequencies of the three gap characteristics shown in Fig. 2, i.e.,
the number of gaps per sensor, the CGM monitoring day on
which the gap occurs, and the gap duration.

o Step 3: Comparison of the mean + standard deviation (SD)
of the relative frequencies obtained for the N=100 simulated
datasets in the previous step and those obtained from the real
dataset.

Each simulated dataset consists of M sequences of the same
length as the M CGM traces of the real dataset. The samples of
each simulated sequence are equal either to “0”, which represents
a regular CGM sample (i.e., no gap), or to “1”, which represents a
missing CGM sample (i.e., a gap). Fig. 6 shows the procedure used
to simulate the sequences of a simulated dataset by using the sim-
plest data gap model, i.e., Model 1. For each simulated trace, we
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Fig. 6. Schematic representation of gap simulation for a specific CGM trace using Model 1.

start with a regular sample (state C) and then we simulate the
state of the next sample (C for regular samples or D for missing
samples) considering that « is the probability that the next sample
is missing. To do that, we draw a sample x from a uniform distri-
bution between 0 and 1 and compare it with the probability « that
a gap begins. If x is greater than « (Fig. 6 (a)), the next sample is a
regular sample (C to C transition). Then, we pass to the simulation
of the following sample, extract another x value and, again, com-
pare it with «. This mini-cycle continues until the condition x <
o is satisfied (Fig. 6 (b)): in this case, the next sample is missing
(C to D transition) and so the gap begins. The status of the follow-
ing sample is simulated considering that g is the probability that
a missing sample is followed by another missing sample. Then, to
simulate whether the gap will go on or not, we draw a sample
x1 from a uniform distribution between 0 and 1 and compare it
with the probability 8 that the gap continues: if the condition x1
< B is satisfied (Fig. 6 (c)), the simulated gap continues (D to D
transition) and we move on to the simulation of following sam-
ple, for which we draw another x1 value and, again, we compare
it with B. If the new x1 value is still < g, the gap continues with
another missing sample. The gap simulation advances until x1 be-
comes greater than S (Fig. 6 (d)): in this case, the gap stops (D to C
transition) and with the next sample the entire cycle starts again.
This cycle is applied for each simulated trace of each simulated
dataset.

In the previous paragraph, we presented the simulation ap-
proach for the simplest two-state Markov model with constant
parameters, but the simulation approach is the same for more
complex Markov models with time-dependent parameters: the
key is to adjust the o and B values according to the model. For
example, in Model 2 the o probability changes with the day since
sensor insertion, so if we are simulating the k™ day of monitoring,
we will refer to the value «y. In Model 3 the probability S changes
depending on the duration of the simulated gap: in this case, x1
will be compared with the S value specific for the current gap
duration.

2.4.2. Validation of the models on the test set

To avoid the risk of overfitting the data, we also performed
model validation on an independent test set not used for model
parameter estimation. We randomly divided the data into a train-
ing set, containing the 70% of the CGM traces, and a test set with
the other 30% of the traces. As we imposed that each subject can

only be part of one of the two groups at a time, subjects with two
sensors have both traces in one or the other data partition. The
parameters of each of the proposed models were estimated us-
ing the training set data. The identified models were then assessed
on the test set, by the Monte Carlo simulation approach described
earlier. Performance on the test set was evaluated both qualita-
tively and quantitatively. The qualitative assessment consisted, as
for the whole datasets, in comparing the mean4SD of the relative
frequencies of data gap characteristics obtained for the simulated
datasets with the relative frequencies of data gap characteristics
of the test set. The quantitative assessment consisted of comparing
the distribution of gap characteristics extracted from the simulated
datasets vs. those extracted from the test set, using the two-sample
Kolmogorov-Smirnov statistical test and the Jensen-Shannon diver-
gence metric.

The two-sample Kolmogorov-Smirnov test is a non-parametric
goodness-of-fit test of whether two sets of data (samples) are
drawn from the same probability density function [43]. The test is
based on the distance D between the empirical distribution func-
tion of the two samples. For our purpose, we applied the test to
compare a data gap characteristic (e.g., the number of gaps per
sensor) of a simulated dataset, with the same characteristic of the
test set. The Kolmogorov-Smirnov test was applied for each of the
100 simulated datasets, with a significance level of 0.05 corrected
for multiple tests according to Bonferroni: therefore, we reject the
null hypothesis (“the two samples comes from the same distribu-
tion”) if the p-value of each test is smaller than 0.05/m, where m
is the number of considered datasets, i.e., 100, and we accept it
if the p-value is greater than 0.05/m. For each gap characteristic,
the p-value distribution was represented with a boxplot, and the
number of simulated datasets for which the null hypothesis was
accepted/rejected was counted. If a model describes the gap char-
acteristic well, we expect that the Kolmogorov-Smirnov test will
not reject the null hypothesis, i.e., that the p-values are above the
adjusted significance threshold (0.0005).

Model performance was evaluated also using the Jensen-
Shannon divergence [44], JSD(P||Q), that is a symmetrized and
smoothed version of the Kullback-Leibler divergence, KLD(P||Q),
which measures how different a probability density function Q is
from a reference probability density function P. Specifically, the
Jensen-Shannon divergence between P and Q is defined as:

1 1

JSD(P||Q) = jKLD(P||M) + EKLD(Q||M) (13)
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where KLD(P||Q) = Y. P(X)log(5%) and M = 3(P+Q).

The Jensen-Shannon divergence is 0 if the two distributions are
identical, In(2) if they are maximally different. For our purpose, we
calculated the Jensen-Shannon divergence between the probability
density function of gap characteristics estimated from the relative
frequencies of simulated datasets and the same estimate made on
the test set data. The smaller the divergence measure turns out to
be, the better the model is able to reproduce the gap characteris-
tics observed on the test set data.

3. Results

For sake of paper readability, in the following subsections we
report the results obtained on the adult population only. Those ob-
tained for the pediatric population, which would lead to a qualita-
tively similar discussion, are reported in the Supplementary Mate-
rial (section S4).

3.1. Model fit on the entire population

The values of the model parameters estimated on the entire
adult population dataset are reported in Table 1 for the four candi-
date models. As explained in the Supplementary Material (section
S1), for Model 2 and 3 we estimated just 4 «y values, i.e., one for
days 1,7,8, one for days 2-6 and two more for days 9 and 10. Sim-
ilarly, in Model 4, we estimated 3 o values (for days 1 and 10,
2-8, and 9, respectively) and 4 o, values (for days 1-6, 7 and 8, 9,
and 10, respectively).

The results of the Monte Carlo simulation on the entire adult
dataset are shown in Fig. 7. In each panel, one can compare the
relative frequencies of a gap characteristic on the real dataset (blue
histogram) with the mean+SD values of the relative frequencies
obtained for the 100 simulated datasets (red line).

Panels (a) (b) (c) in Fig. 7 show the results for Model 1. In
panel (a) we can compare the real vs. simulated relative frequen-
cies for the number of gaps for each sensor; we can observe that
the model’s description of the data is acceptable, but not optimal.
Indeed, the model estimates that almost 30% of the traces have no
gaps, while in the real dataset about 65% of the traces contain no
gaps. Moreover, the number of traces with 1, 2, or 3 events is over-
estimated by the model. Panel (b) shows the distribution of gaps
over the monitoring days. While in the real dataset the probabil-
ity of having a gap in the last days since the sensor insertion is
higher than in the first days, the model simulates gaps uniformly

Table 1
Estimates of o and B parameters for the four candidate data gap models identified
on the adult dataset.

Models & ,3

Model 1 @ =4.65-107* B - 07082
@178 = 4.06- 1074
G, 6= 767 -107° .

Model 2 _

e Gg= 9.11-107* B =0.7082

Gy = 2.20-1073
@175 = 4.06-107* ~

Model 3 Gy 6= 7.67 -107° Bi.red = 0.8550
Gg= 9.11-107* R
07?0 = 220-1073 Birea = 0.7270
G1,, = 425-107*
&,,= 6.11-107° R
&:2 ~ 185.10° Bi.red = 0.8550

o= 1.

Model 4 G, , = 2.95.107 ,
0727‘3 = 1'80'1073 :84,red = 0.7270
Gy, = 330-1073
Gy, = 6.60-1073
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throughout the CGM monitoring period. This is due to the fact that
in Model 1 « is constant over time. Panel (c) shows the distribu-
tion of gap duration using the log-scale in order to appreciate the
model performance even for low probability values, which corre-
sponds to long gap durations. The model, being characterized by
a single parameter B, fails to describe the peak of the distribution
at 25 min, and simulates a decreasing linear trend. The panel also
shows the curve obtained from the theoretical formula that calcu-
lates the probability of having a gap that lasts for k samples using
Eq. (1): since this theoretical curve (green line) and the result of
the simulation (red line) are superimposable, we can confirm that
the simulation algorithm works correctly and that 100 repetitions
in the Monte Carlo simulation are sufficient to obtain a good esti-
mate of the theoretical results.

The second model, Model 2, introduces a time-dependence for
«. As visible in Fig. 7, the introduction of a temporal variability for
o improves the description of the distribution of gaps in the mon-
itoring days (panel (e)), whereas the description of the number of
gaps per sensor (panel (d)) and the data gap duration (panel (f))
are comparable between Model 1 and Model 2.

The third model, Model 3, introduces a few more states to im-
prove the description of the distribution of data gap durations
shown in panel (i). We can observe that Model 3 describes well
the observed relative frequencies of gap durations, even capturing
the peak at 25 minutes. This model performs well overall, although
the description of the number of gaps for each sensor (panel (g))
is still not satisfactory.

Model 4 introduces an additional state to improve the descrip-
tion of the relative frequencies of the number of gaps per sensor
(panel (j)). This final model describes well, at least from a quali-
tative point of view, all the analyzed gap characteristics, with the
only limitation that the number of traces with only one event is
underestimated (second bin of the histogram in panel (j)).

3.2. Validation of the models with training-test set split

To assess the generalization ability of the models and to avoid
possible overfitting of the data, model parameters were identified
on 70% of the total traces (121 adult traces); then, model perfor-
mance was tested on the remaining 30% of traces (51 adult traces),
using the Kolmogorov-Smirnov test and the Jensen-Shannon diver-
gence.

For each gap characteristic, Fig. 8 shows the distributions of
distances D (left panels) and p-values (right panels) calculated
with the Kolmogorov-Smirnov test for each of the 100 simulated
datasets constructed with Monte Carlo simulation. The significance
level is set at 0.0005, obtained by correcting the 0.05 significance
level for multiple tests m (in our case, m = 100). The performance
of a model X are considered better than the one of model Y, if
the distance D for model X is less than D for model Y. Moreover,
a model that describes a data gap characteristic well should have
a small number of simulated datasets for which the p-value is be-
low the significance level (dashed red line). The median values of D
and p-value, their 5h-95t percentile interval, and the percentage
of p-values below the significance level are reported in Table 1 for
all models.

Regarding the number of gaps for each sensor (Fig. 8, panel
(a)), the distance D is almost the same for the first three mod-
els, while it decreases with Model 4. The distribution of p-values
(Fig. 8, panel (b)) confirms the trend of the distances: while for
the first three models almost all the p-values are below the signif-
icance level, there is a substantial improvement for Model 4 with
only 12% of p-values leading to the rejection of the null hypothesis.
This small percentage of p-values below the threshold is probably
due to the tendency of Model 4 to underestimate the number of
traces that contain only one gap.
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Fig. 7. Monte Carlo simulation results for all models on the adult dataset. The blue histograms represent the relative frequencies of data gap characteristics distributions.
The red curves represent the mean of the relative frequencies obtained from the simulated datasets with their +SD interval.

Concerning the distribution of the gap in the monitoring days, Finally, regarding gap durations, we see from the distribution
in Fig. 8, panels (c)(d), it can be seen that the performance im- of distances D that there is an improvement in performance with
proves starting from the second model, that is, from the inclu- Model 3 and Model 4. Regarding p-values, even for the first two
sion of the time-dependence of the parameter «. From Table 2, models most of the p-values are above the significance level; in

it can be seen that with the first model all p-values are below fact, even Model 1, the simplest one, provides a fairly satisfac-
the significance level, while for Models 2, 3, and 4 all p-values are tory description of the distribution of gap durations, although this
above it. can be further improved with the addition of new states. This as-



M. Vettoretti, M. Drecogna, S. Del Favero et al.

Computer Methods and Programs in Biomedicine 240 (2023) 107700

Number of gaps per sensor

06- g
0.6
—— | |
—1 |
04- T 3 204~
[a] o 2
3 z |
T 0.2-
0.2-
00005 == == === —==& = — -
1 2 3 4 1 2 ; 4
Model Model
(@) Relative day when data gap occurred ®)
06 . 1.00-
0.75-
0.4
S
(8] ° E 0.50
o
0.2- b ; 0.25
0.0005= = = = = = = — ’————1————l——-
1 2 3 4 1 2 3 4
Model Model
() Data gap duration d
1.00- b
0.3 8
0.75-
. . |
no02 . % 050- : .
a2
0.25- 3 :
0.1- '
LI
00005 = e e = e o N
X 4 1 2 3 4
Model Model
(e) ®)

Fig. 8. Distributions of D distances and p-values calculated for each gap characteristic for each of the 100 simulated datasets with the Kolmogorov-Smirnov test (adult

population).

pect is also confirmed by the p-values calculated for the last two
models, which have higher values further from the significance
level.

The results obtained with the Kolmogorov-Smirnov statistical
test are confirmed by the Jensen-Shannon divergence whose me-
dian [5 - 95t percentiles] is reported in Table 3. We can see
that for the number of gaps per sensor the model with lowest di-
vergence values is Model 4; for the distribution of gap in the mon-
itoring days Model 2, 3 and 4 get equally better results than Model

1, and for the distribution of the durations Model 3 and 4 get the
best results.

In conclusion, the only model that provides a satisfactory de-
scription of all the three data gap characteristics is Model 4.

4. Discussion

A model of CGM data gaps is needed to realistically simulate
CGM time series in ISCTs, thus allowing CGM-based diabetes man-



M. Vettoretti, M. Drecogna, S. Del Favero et al.

Table 2
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Distances D and p-values calculated with the Kolmogorov-Smirnov test for the adult population.

D p-value Num. of p-values below
Median [5%-95t Median [5th-95th significance level [%]
percentile] percentile]
Number of gaps per Model 1 0.50 1.02e-11 100
sensor [0.42 0.59] [2.22e-16 1.99e-08]
Model 2 0.50 1.02e-11 100
[0.40 0.59] [2.10e-16 1.02e-07]
Model 3 0.50 1.02e-11 99
[0.40 0.59] [2.20e-16 8.60e-08]
Model 4 0.21 0.019 12
[0.11 0.32] [2.86e-05 0.4929]
Relative day when Model 1 0.44 1.03e-14 100
data gap occurred [0.37 0.53] [0 3.46e-09]
Model 2 0.10 0.40 0
[0.053 0.16] [0.022 0.96]
Model 3 0.10 0.36 0
[0.061 0.17] [0.016 0.92]
Model 4 0.091 0.44 0
[0.053 0.15] [0.038 0.96]
Data gap duration Model 1 0.22 0.0014 42
[0.11 0.30] [7.67e-07 0.29]
Model 2 0.20 0.0025 35
[0.12 0.28] [1.12e-05 0.19]
Model 3 0.11 0.24 0
[0.078 0.16] [0.034 0.70]
Model 4 0.12 0.18 0
[0.072 0.18] [0.0084 0.73]

Table 3
Jensen-Shannon divergence calculated for each gap characteristic in the adult pop-
ulation.

Jensen-Shannon divergence

Median [5%-95t™ percentile]

Number of gaps Relative day when data Data gap
per sensor gap occurred duration
Model 1 0.1714 0.2103 0.0843
[0.1195 [0.1638 0.2680] [0.0566
0.2353] 0.1211]
Model 2 0.1731 0.0423 0.0882
[0.1176 [0.0209 0.0760] [0.0545
0.2470] 0.1211]
Model 3 0.1641 0.0453 0.0654
[0.1189 [0.0286 0.0659] [0.0325
0.2222] 0.1043]
Model 4 0.1141 0.0486 0.0616
[0.0700 [0.0265 0.0742] [0.0368
0.1597] 0.0911]

agement strategies to be tested in more realistic simulation scenar-
ios. Previous efforts to model data gaps were limited to datasets
collected only in adults, using past-generation CGM sensors, which
required periodic in vivo calibrations and had limited accuracy. The
purpose of this work was to develop a data gap model that can de-
scribe well the main data gap characteristics for a recent factory-
calibrated CGM sensor, on both the adult and the pediatric popu-
lation.

Two datasets were used for this study, both collected by the
Dexcom G6 sensor: the first dataset includes 172 traces collected
in adults, the second 205 traces collected in pediatrics. The model
was developed by attempting to match the observed distribution
of three gap characteristics: the number of gaps per sensor, the
relative day when data gaps occurred, and the data gap duration.
In total four candidate Markov models, of increasing complexity,
were proposed. Each model was identified on a training set (70%
of the data) and then tested on a test set (30% of the data), using
the Kolmogorov-Smirnov test and the Jensen-Shannon divergence.

The best data gap model was found to be a six-state Markov
model (Model 4), in which two states describe, respectively, the

10

normal operation of a sensor that has never had a gap and the
normal operation of a sensor that has already had at least one
gap, and four states describe the occurrence of missing sam-
ples. The total number of model parameters is 9 for the adult
population and 11 for the pediatric population (in the adult
population, 2 parameters were removed with no performance
deterioration). This six-state Markov model presented satisfac-
tory performances in both populations for all three data gap
characteristics.

The current study presents some limitations. A first limitation
concerns the fact that the proposed models have been developed
considering only CGM traces with minimum duration of 9 days,
i.e., sensors with a normal lifetime of about 10 days. In fact, mod-
eling the premature stopping of sensor operation - a fault other
than data gaps, due to potentially irreversible damage of the sen-
sor — was outside the scope of this work. Therefore, the domain
of validity of the developed data gap models must be considered
limited to sensors with a lifetime of 9-10 days. Another limitation
of the present work is that the modeling of CGM data gaps is per-
formed independently of other characteristics of the CGM signal,
such as the glucose concentration level, the glucose rate-of-change,
other sensor error components (e.g., the distortion introduced by
plasma-interstitium kinetics, the calibration error and the random
noise), and other faults (e.g., compression artifacts and the prema-
ture stopping of sensor operation). Although in a preliminary anal-
ysis conducted on the adult dataset no significant correlation was
found between data gap characteristics and other CGM signal char-
acteristics (specifically, the glucose level at which data gaps begin,
and the parameters of the sensor error model by Vettoretti et al.
[27] - the results not shown for reasons of space), further analyses
are required to investigate whether other factors have a relevant
impact on the occurrence and the duration of gaps, and thus need
to be considered as additional variables within the data gap model
(e.g., using a different multivariable modeling approach). For ex-
ample, it would be interesting to investigate whether premature
stopping of sensor operation has an impact on the characteristics
of the gaps observed before the end of the sensor’s life, and possi-
bly to develop a new model that jointly describes these two types
of sensor faults.
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Despite these limitations, the proposed six-state Markov model
describes well the analyzed gap characteristics (the number of
gaps per sensor, the relative day when data gaps occurred, and the
data gap duration) in both the adult and the pediatric population.
Nevertheless, the model description of the gap number per sen-
sor could be further improved, trying to reduce the overestimation
in the description of the number of traces that contain a single
event. This could be addressed by future modeling studies. Other
interesting future developments of the Markov model presented in
this work could be the external validation of the model on other
datasets acquired by the Dexcom G6 sensor and its application on
datasets collected by other CGM sensors. Last but not least, the
model identified in this work can be integrated into diabetes sim-
ulators (e.g., the T1D patient decision simulator [33]) used to test
CGM-based therapies in realistic ISCTs.

5. Conclusions

In conclusion, in this paper we developed a new model of CGM
data gaps that describes well the number of gaps per sensor, the
monitoring days when gaps occur, and the gap durations, by ex-
ploiting two datasets collected by the Dexcom G6 sensor on an
adult and a pediatric population, respectively. The final model is
a six-state Markov model in which four states are used for de-
scribing gaps and the other two for describing the normal oper-
ation of the sensor. The model performance was evaluated on an
independent test set. The modelling methodology presented in this
paper can be extended to other CGM sensors, and also to time se-
ries collected with other types of sensors. This model is useful to
study the occurrence of gaps in CGM sensors, to compare them be-
tween different sensors [45], and to realistically simulate gaps on
virtual CGM traces generated by diabetes simulators. The ability to
realistically simulate gaps is critical to enable the simulation of re-
alistic CGM traces in ISCTs testing CGM-based diabetes therapies.
Finally, the model can be useful to test signal reconstruction algo-
rithms that aim to reconstruct the CGM signal suppressed during
gaps [46].
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