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To perform landslide susceptibility prediction (LSP), it is important to select appropriate mapping unit
and landslide-related conditioning factors. The efficient and automatic multi-scale segmentation (MSS)
method proposed by the authors promotes the application of slope units. However, LSP modeling based
on these slope units has not been performed. Moreover, the heterogeneity of conditioning factors in
slope units is neglected, leading to incomplete input variables of LSP modeling. In this study, the slope
units extracted by the MSS method are used to construct LSP modeling, and the heterogeneity of con-
ditioning factors is represented by the internal variations of conditioning factors within slope unit using
the descriptive statistics features of mean, standard deviation and range. Thus, slope units-based ma-
chine learning models considering internal variations of conditioning factors (variant slope-machine
learning) are proposed. The Chongyi County is selected as the case study and is divided into 53,055
slope units. Fifteen original slope unit-based conditioning factors are expanded to 38 slope unit-based
conditioning factors through considering their internal variations. Random forest (RF) and multi-layer
perceptron (MLP) machine learning models are used to construct variant Slope-RF and Slope-MLP
models. Meanwhile, the Slope-RF and Slope-MLP models without considering the internal variations
of conditioning factors, and conventional grid units-based machine learning (Grid-RF and MLP) models
are built for comparisons through the LSP performance assessments. Results show that the variant Slope-
machine learning models have higher LSP performances than Slope-machine learning models; LSP re-
sults of variant Slope-machine learning models have stronger directivity and practical application than
Grid-machine learning models. It is concluded that slope units extracted by MSS method can be
appropriate for LSP modeling, and the heterogeneity of conditioning factors within slope units can more
comprehensively reflect the relationships between conditioning factors and landslides. The research
results have important reference significance for land use and landslide prevention.
� 2022 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Landslides are awidespread geological disaster globally, causing
thousands of deaths and billions of property loss (Hungr et al.,
2013; Chen et al., 2022; Zhang et al., 2022a, b, c). It is necessary
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to predict the spatial distribution of potential landslides, which
plays an important role in the policy of land use, physical and
ecological environment protection. However, how to accurately
predict the potential locations of future potential landslides re-
mains a great challenge (Alcántara-Ayala et al., 2017). The landslide
susceptibility prediction (LSP) can effectively resolve this issue
based on the recorded landslide inventory and related conditioning
factors (Reichenbach et al., 2018).

LSP modeling is generally constructed on the basis of the char-
acteristics of recorded landslides and landslide-related
on using slope unit-based machine learning models considering the
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conditioning factors (Chen et al., 2015; Huang et al., 2017). Then, the
landslide susceptibility indices (LSIs) or mappings (LSMs) are ob-
tained through: collecting base maps of recorded landslides and
geo-environmental factors; extracting appropriate mapping unit;
obtaining landslide-related conditioning factors; constructing LSP
models; calculating LSIs and producing LSMs (Guzzetti et al., 2005;
Samia et al., 2018). Among these processes, it is revealed that the
selections of mapping unit, conditioning factors and LSP models
have significant effects on the LSP results (Ba et al., 2018;
Reichenbach et al., 2018; Tang et al., 2020). In the past 20 years,
most researchers have mainly concentrated on the comparison of
LSP results from the perspective of LSP models and their perfor-
mance assessment (Park et al., 2018; Sur et al., 2020). However, the
effects of different mapping units and conditioning factors on LSP
modeling have not been explored in depth, leading to some biases
between LSMs and spatial distribution of field actual landslides.

The issue of appropriate mapping unit selection is an important
pre-requisite to obtain more accurate and reasonable LSP results
(Guzzetti et al., 1999). Literature review shows that the grid unit
and the slope unit are two commonly used mapping units, while
the unique condition unit and small watershed unit are rarely used
(Huang et al., 2020; Jacobs et al., 2020). The grid unit is the most
common mapping unit due to the simple mathematical modeling
and computation of LSP in different geographical regions
(Reichenbach et al., 2018). However, there is no direct physical
relation between grid units and the geomorphological information
connected to landslides. Moreover, the LSP results based on the grid
units may generate some weaknesses in practical application
because the potential landslide boundary is difficult to accurately
determine. In contrast, slope units can perfectly overcome those
drawbacks existing in the grid units, resulting in more attempts for
LSP modeling using slope units in recent researches (Domènech
et al., 2019; Tsai et al., 2019). Nevertheless, the main obstacle to
limit the application of slope units is the difficulty of automatic and
efficient extraction for reasonable slope units using the conven-
tional geographic information system (GIS)-based hydrological
analysis method (Xie et al., 2004; Ba et al., 2018). Hence, improving
the automation and efficiency of slope unit extraction at a large
scale is still a challenging task. Fortunately, an image segmentation
method, i.e. multi-scale segmentation (MSS), has achieved the
automatic extraction of slope units, as recently introduced by
Huang et al. (2021). Although this method has beenwidely used for
landslide detection, classification and other image analysis, the
slope units extracted by this method have not been attempted for
LSP, and it is needed to fill this gap (Hölbling et al., 2012; Moosavi
et al., 2014).

Additionally, another issue relating to the heterogeneity of slope
unit-based conditioning factors needs to be successfully resolved in
the LSP modeling. Literature suggests that the main slope unit-
based conditioning factors include topography, geography, hydro-
logical and land cover factors, which are widely applied for LSP
modeling (Reichenbach et al., 2018; Saha et al., 2021). In the past
LSP researches using slope units, it can be found that the infor-
mation of conditioning factors within the slope units are repre-
sented and descripted by averaging values. This may cause some
errors and oversimplifications in the used multivariate models,
because the heterogeneity of conditioning factors within slope
units cannot be fully considered (Sun et al., 2019; Tsai et al., 2019).
Focusing on this drawback, according to the research results of
Catani et al. (2013), the internal variations of conditioning factors
can be characterized by resorting to the descriptive statistics vari-
ables of mean, range and standard deviation (STD) values of each
Please cite this article as: Chang Z et al., Landslide susceptibility predicti
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conditioning factor to obtain more reasonable and abundant slope
unit-based conditioning factors.

After that, the slope unit-based conditioning factors combining
with the recorded landslides data can be imported into specific
machine learning models to construct landslide susceptibility
models for LSP. In recent years, the machine learning models have
been widely used for LSP and have been proven to have higher
prediction accuracy than conventional heuristic models and
mathematical statistical models (Reichenbach et al., 2018; Achour
and Pourghasemi, 2020). In addition, the machine learning
models have a strong nonlinear fitting ability, high tolerance to
various types of conditioning factors, certain tolerance to condi-
tioning factor errors and a few parameter settings (Merghadi et al.,
2020; Zhang and Phoon, 2022; Zhang et al., 2022a, b, c; Zhu et al.,
2022). Among the machine learning models, the multi-layer per-
ceptron (MLP) neural networks can improve the prediction per-
formance due to the strong model flexibility and nonlinear fitting
ability, as well as the capability of optimization under complex
multi-typological input data (Shirzadi et al., 2017). On the other
hand, some literature shows that the random forest (RF) model has
higher LSP accuracy, because the RF model has fast training speed
to large-scale datasets and can avoid over-fitting by controlling the
number of trees (Catani et al., 2013; Youssef et al., 2016; Zhang
et al., 2022a, b, c).

Therefore, two machine learning models of MLP and RF are
selected to perform LSP in this study. Those two models are com-
bined with slope units to construct Slope-RF and Slope-MLP
models, comparing to conventional grid units-based (Grid-RF and
Grid-MLP) models. Then the internal variations of conditioning
factors are further considered in the Slope unit-based machine
learning models to build variant Slope-RF and variant Slope-MLP
models. The Chongyi County in China is selected as the case
study. A total of fifteen slope unit-based conditioning factors are
extracted by averaging the grid unit-based conditioning factors
within each slope unit; and then are expanded to 38 slope unit-
based conditioning factors through considering the internal varia-
tions of conditioning factors. The prediction performances of the
above six types of LSP models are assessed through calculating the
area under the receiver operating features curve (AUC) and fre-
quency ratio (FR) accuracy. In addition, 19 new landslides (2009e
2019) are investigated in the field and recorded to validate the
applicability and accuracy of the LSMs once again.
2. Theories of variant slope-based machine learning models

2.1. LSP modeling procedures

The modeling procedures of variant Slope-based machine
learning models are shown in Fig. 1. At the first stage, the basic data
and landslide inventory are collected and prepared, such as the
geological data, Landsat-8 images, field survey data and 235 land-
slides data. The slope units are extracted using the MSS method,
and then the most important original conditioning factors are
selected and mapped based on these slope units. At the second
stage, two typical machine learning models (RF and MLP) are
combined with slope units to construct Slope-RF and Slope-MLP
models. Afterwards, the heterogeneity of conditioning factors has
been further considered in the Slope-based machine learning
models to build variant Slope-RF and variant Slope-MLP models. At
the final stage, LSIs are calculated and LSMs are produced using
those models. In addition, the AUC value, FR accuracy and new
on using slope unit-based machine learning models considering the
otechnical Engineering, https://doi.org/10.1016/j.jrmge.2022.07.009



Fig. 1. Flowchart for modeling procedures of variant Slope-based machine learning models.
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landslides are applied to assessing the prediction performances of
those LSP models.

2.2. Data sources acquisition using 3S technique

The recorded landslides information and landslide-related
conditioning factors need to be obtained as the basic data before
LSP. At present, the 3S technique including the global position
system, remote sensing and GIS has beenwidely used to obtain the
recorded landslides information and conditioning factors (Pradhan,
2010). Generally, remote sensing is mainly used to extract
landslide-related conditioning factors. For example, the terrain
factors may be extracted from digital elevation models, the land
cover factors can be extracted from high-resolution remote sensing
images or multi-spectral medium-resolution images. The recorded
landslide information about landslide position, areas and boundary
are measured through global position systems in field investigation
or by aerial and unmanned aerial vehicles photo-interpretation.
Afterwards, the landslide inventory is put into GIS software to
map landslide surface. A GIS is adopted as the basic platform to
capture, store, prepare, analyze and map the data of landslides and
conditioning factors for LSP (Zhang et al., 2016).

2.3. Multi-scale segmentation method (MSS)

The MSS method is a novel approach to achieve the automatic
and effective extraction of slope units proposed by Huang et al.
(2021). This method uses a bottom-up region merging segmenta-
tion algorithm to implement the minimum homogeneity between
the image objects and the maximum homogeneity within the im-
age objects. The basic principle of the MSS method is to combine
pixels with the same features (the shape, color, texture) into an
Please cite this article as: Chang Z et al., Landslide susceptibility predicti
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image object to realize the slope unit division. Using the MSS
method to extract slope units, selecting the appropriate input im-
ages and determining the reasonable segmentation parameter
combination play a significant role in the segmentation results. For
the former, the segmentation results depend on the input data
quality and characteristics such as spatial resolution, image quan-
tization and the scene characteristics (Hölbling et al., 2015). Ac-
cording to the definition of slope unit, the regional aspect and
shaded relief maps are selected as the input layers and then com-
bined into a multiband image. For the latter, the parameter com-
bination including scale, shape and compactness parameters can be
determined by the improved trial-and-error method, integrating
the conventional trial-and-error method with the morphological
and scale information of landslides. More details about the slope
unit extraction using MSS method are introduced in Huang et al.
(2021).
2.4. Heterogeneity of conditioning factors within slope units

The heterogeneity of conditioning factors within a slope unit
represents the variability and difference of conditioning factor in-
formation at the slope unit scale. In this study, it can be found that
some topographic and hydrological conditioning factors (such as
elevation, slope, profile curvature and others) show high variability
at different locations, while the conditioning factors such as li-
thology and aspect are usually with little variability in slope units.
For the grid unit-based conditioning factors, each grid unit has a
certain value for each conditioning factor, and there is some het-
erogeneity between the grid units at different locations. However,
for the slope unit-based conditioning factors, there may be hun-
dreds of grid units with different conditioning factor values within
on using slope unit-based machine learning models considering the
otechnical Engineering, https://doi.org/10.1016/j.jrmge.2022.07.009



Fig. 3. Flowchart of MLP model.
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each slope unit. As a result, a significant heterogeneity exists be-
tween those grid units within a certain slope unit.

At present, the values of slope unit-based conditioning factors
are generally assigned by the mean and/or majority values of all
grid unit values within each slope unit, through the zoning statis-
tical function in the ArcGIS 10.2 software. As a result, the hetero-
geneity of conditioning factors has not been fully accounted for,
resulting in the information loss of conditioning factors. Hence, to
enrich the local-scale information and fit the heterogeneity of slope
unit-based conditioning factors, the descriptive statistics variables
of range values and STD values of slope unit-based conditioning
factors are considered as input variables of LSP model. The range
variables, defined as the differences between the maximum and
minimumvalues of each grid unit-based conditioning factor within
each slope unit, can reflect the variation of the conditioning factor
in each slope unit. Meanwhile, the STD variables can reflect the
dispersion degree of grid unit-based conditioning factor values in
each slope unit. The processes to obtain the range and STD variables
are shown in Fig. 2. In this process, for the incomplete grid units in a
certain slope unit, if the slope unit contains the central point of
incomplete grid units, the conditioning factor data are considered
in this slope unit (green point in Fig. 2). Otherwise, it is not
considered (red point in Fig. 2).
2.5. Machine learning models

In this study, RF and MLP models are selected as the basic ma-
chine learning to construct the Slope- and variant Slope-machine
learning models for LSP.
2.5.1. RF
RF model is a powerful ensemble learning technique, which is

one of the most prevalent methods to address the problem of
classification and prediction by generatingmany classification trees
(Achour and Pourghasemi, 2020). In RF model, the diversities
among the decision trees can be well achieved by resampling the
data with replacement and randomly changing the predictive var-
iable sets over different tree induction processes (Tsangaratos et al.,
2017). In RF model, the Gini index is used to select the variable
features. Suppose to classify the samples toTclasses, the probability
that a sample is in class t is pt and the corresponding Gini index can
be calculated by following equation. The smaller the value of Gini
index, the less the uncertainty of data.
Fig. 2. The process to obtain internal va
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ptð1�ptÞ ¼ 1�
XT
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To construct the RF model, the conditioning factors of samples
are selected as the basic input variables to build the classification
tree, the RF model output can represent the probability to one of
the possible classes. The performance of RF is mainly determined
by two user-defined parameters: k andm. The parameter k canwell
reflect the information of each decision tree, and the parameterm is
used to reflect the total scale of RF. In addition, the generalization
error produced during RF model construction can be estimated by
out-of-bag (OOB) error, which means that approximately 66% (“in-
bag”) of the bootstrapped samples are used for the training of each
tree, and the remaining 33% (“OOB”) are used for evaluating the
accuracy of the final ensemble model. The more luxuriant each tree
is and the more independent the trees are, the higher the predic-
tion performance RF is. The main processes to construct RF model
include three steps: (1) specifying the value of m, which is used to
randomly generate m variables for the binary tree on the node
through the minimum principle of node impurity; (2) k sample sets
from the original data set are randomly extractedwith replacement
riation variables within slope units.

on using slope unit-based machine learning models considering the
otechnical Engineering, https://doi.org/10.1016/j.jrmge.2022.07.009



Fig. 4. Satellite image and landslide distribution of Chongyi County.
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to form k decision trees by utilizing Bootstrap self-help method,
while the no extracted samples are used for prediction of a single
decision tree; (3) The samples are classified by the principle of
votingmethod or predicted by the principle of simple average using
the RF model composed of k decision trees.
2.5.2. MLP model
MLP model is a popular neural network that is constructed by

three main compositions of input, hidden and output layers. The
MLP has a widespread application in the LSP researches in recent
years (Bui et al., 2016; Shirzadi et al., 2017). The flowchart of MLP
model is shown in Fig. 3. The input layers can be considered as the
conditioning factor induced landslides whereas the output layers
are viewed as the classified results (landslide and non-landslide).
The hidden layers are the classifying layers to transform inputs to
outputs, which can be used to copewith the nonlinear classification
problems through an activation function (a sigmoid function is
generally used) (Pham et al., 2017; Lawal and Kwon, 2021). The
input, hidden and output neurons are connected through weights,
which are first initialized and then updated using the back-
propagation algorithm until the difference between computed
and given output is sufficiently small.

The main processes to construct MLP mainly include two steps:
(1) the input variables are propagated forward through the hidden
layers to produce the output values, and then the differences be-
tween output values and pre-values are estimated; and (2) the
connectionweights are updated through an iterative process based
Please cite this article as: Chang Z et al., Landslide susceptibility predicti
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on the back propagation algorithm to optimize the best results with
the least difference (Tien Bui et al., 2015). In addition, some ad-
vantages exist in the MLP model, for example, the distribution of
training dataset is not dependent on pre-assumptions and the most
input measurements are selected based on the adjustment of the
weight during training process.
2.6. Accuracy assessment of LSP models

It is necessary to verify the prediction performance and to
compare the performance of different LSP models (Reichenbach
et al., 2018). The receiver operating features curve and FR accu-
racy validation method are the most common methods to realize
these purposes. The receiver operating features curve can be
plotted that the horizontal axis is set as 1-specificity and the ver-
tical axis is set as sensitivity (Vakhshoori and Zare, 2018; Darabi
et al., 2021). Furthermore, the AUC is generally applied to assess-
ing the prediction performance of LSP models. The larger the AUC
value is, the higher the prediction performance is (Cantarino et al.,
2018). On the other hand, the FR accuracy is another effective
method to evaluate the LSP performance. To calculate the FR ac-
curacy, the LSIs are divided into very low, low, moderate, high and
very high landslide susceptibility classes; and then the FR value of
each class is calculated. Lastly, the FR accuracy can be calculated by
dividing the sum of FR values of high and very high classes by the
sum of FR value of very low, low, moderate, high and very high
classes (Chang et al., 2020).
on using slope unit-based machine learning models considering the
otechnical Engineering, https://doi.org/10.1016/j.jrmge.2022.07.009
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3. Study area and landslide inventory

3.1. Study area

The Chongyi County in the southwest part of Jiangxi Province in
China is between longitudes of 113�550e114�380E and latitudes of
25�240e25�550N (Fig. 4). The area covers about 2206.27 km2, with
the length of about 73 km from east to west as well as the width of
about 59 km from north to south. The terrain is high in the
southeast and low in the northeast. According to the elevation
distribution features, the landforms of this study area mainly
include valley terrace (�200 m), hill (200e500 m) and middle-low
mountains (�500m), respectively accounting for 7.27%, 45.06% and
47.67% of the total area. The elevation ranges from 142m to 1998m.
The geological units in this region include carbonate rock (lime-
stone), metamorphic rocks (metamorphic fine sandstone and
slate), igneous rock (granite) and clasolite rock from Cambrian
period to Devonian period. The climatic condition of Chongyi
County belongs to sub-tropical monsoon climate with abundant
rainfall and humid air. The annual average rainfall in this region is
up to 1615.2 mm.

3.2. Landslide inventory information

Based on the results of field investigation and landslide in-
ventory, there are a total of 235 landslides from 1970 to 2003 in the
study area (Fig. 4). These landslides can be regarded as shallow
landslides with the characteristics of middle and/or small scales
and group occurrence. The landslide masses are mainly composed
of Quaternary alluvium, and the failure mode is mainly trans-
lational and rotational sliding (Hungr et al., 2013). The area of
landslidesmainly varies between 4.2�103m2 and 3.2�104m2 and
the average area is about 7.6� 103 m2. The thicknesses of landslides
vary between 2.8 m and 8 m. The Hengshui Town and Jieba Town
located in the northern region have the largest number of land-
slides, while Longgou Town located in the eastern region has the
lowest number of landslides. Furthermore, the shallow landslides
are mainly triggered by heavy rainfall.

4. Extraction of slope units and conditioning factors

4.1. Extraction of slope units

In this study, the regional aspect and shaded relief maps (Fig. 5)
are extracted from digital elevation model with 8.9 m grid resolu-
tion and then taken as the input data in the MSS method. The most
appropriate segmentation result is obtained when the scale, shape
Fig. 5. Shaded relief (a) and aspect (b) (Case 1: hilly zone;
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and compactness parameters are set to 20, 0.8 and 0.8, respectively
using the improved trial-and-error method. More details about the
determination of those appropriate parameters can be found in
Huang et al. (2021). There are 53,055 slope units in Chongyi County.
Furthermore, to assess the extraction performance of the MSS
method, three cases, i.e. Case 1, Case 2 and Case 3, representing the
hill, transition zone and high mountain, respectively, are taken as
the study cases (Fig. 5). It can be seen from Fig. 6 that the MSS
method has a great extraction performance whatever at high
mountain area or hilly area, which can accurately identify the dif-
ferences between hills to achieve perfectly the extraction of slope
units.

4.2. Selection of slope unit-based conditioning factors

The conditioning factors, which can reflect the natural envi-
ronmental conditions of slopes and affect the slope stability, can be
classified into topographic, geological, hydrological, land cover and
human activity factors (Reichenbach et al., 2018). There are a total
of 15 slope unit-based conditioning factors, including elevation,
slope, aspect, plan curvature, profile curvature, relief amplitude,
slope unit morphology, lithology, soil thickness, terrain wetness
index, distance to river, drainage density, normalized difference
vegetation index (NDVI), normalized difference built-up index
(NDBI) and road density (Catani et al., 2013; Sur et al., 2020; Tang
et al., 2020). These conditioning factors are used to conduct LSP
using the Slope-RF and Slope-MLPmodels. For purpose of assigning
values to each slope-based conditioning factor, each grid unit-
based conditioning factor map with the resolution of 8.9 m is sta-
tistically analyzed using the zonal statistical function tool in the
ArcGIS 10.2 software.

In general, the slope unit-based conditioning factors are divided
into continuous and discrete categories. For continuous slope unit-
based conditioning factors, the mean, range and STD values of each
slope unit are calculated using the grid unit-based conditioning
factors values within slope units when the internal variations of
slope unit-based conditioning factors are considered (Fig. 2). As a
result, there are three variables that can be used for LSP for each
continuous slope unit-based conditioning factor. The mean value of
the grid units in each slope unit is calculated as the conventional
slope-based conditioning factors, while the range and STD values of
the grid units in each slope unit are calculated as the variant slope
unit-based conditioning factors. All those variant slope unit-based
conditioning factors are used as the input variables of variant
Slope-based RF/MLP models.

It needs to be emphasized that the morphology of slope unit is
determined by the geometrical shape of slope unit. As a result, the
Case 2: transition zone; Case 3: high mountain zone).

on using slope unit-based machine learning models considering the
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Fig. 6. Slope units of three cases extracted by MSS method.

Fig. 7. Topographic conditioning factors: The mean, range and STD of (a, b, c) elevation, (d, e, f) slope, (g, h, i) profile curvature, and (j, k, l) plan curvature.
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Fig. 8. Conditioning factors of geology and slope unit morphology: (a) Shape index, (b) Compactness, (c) Lithology, and (d) Thickness of soil.
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internal variations of the slope morphology have not been
considered in this study. In addition, for some discrete slope unit-
based conditioning factors, such as lithology, aspect, distance to
road and distance to river, it is impossible to adopt range and STD
values of each slope unit-based conditioning factor. For example,
there may be several lithology types in a slope unit and the mean
value of lithology is not existent. Hence, the majority value of each
discrete conditioning factor is used as the value of corresponding
slope-based conditioning factor. From the above analysis, the
original 15 slope unit-based conditioning factors are expanded as a
total of 38 expanding slope unit-based conditioning factors for LSP
modeling.
4.3. Description of slope unit-based conditioning factors

In this study, the selected slope unit-based conditioning factors
of topographic, geological, hydrological, land cover and human
activity factors are described as follows.
4.3.1. Topographic factors
The topographic factors of elevation, slope, aspect, plan and

profile curvature, slope morphology and relief amplitude are the
most basic conditioning factors inducing landslides, which can be
extracted through topographic spatial analysis of digital elevation
model in the ArcGIS software (Chang et al., 2020; Sur et al., 2020). In
order to have a comprehensive and deep understanding about the
topographic factors inducing landslides, it is necessary to analyze
the variation of topographic factors within slope units. The range
and STD values of topographic factors (except aspect and slope
morphology) can be calculated, as shown in Fig. 7.
Please cite this article as: Chang Z et al., Landslide susceptibility predicti
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Themorphology of slope unit can be quantitatively described by
two indicators of shape index value and compactness parameter.
Shape index is defined as the ratio of circumference squared to the
area. The flatter or more stripe-shaped is, the greater of shape index
value is. A shape index value larger than 28 means that the length
to width ratio of slope unit is about 5:1. Fig. 8a shows that the shape
index ranges from 13.98 to 254.94. The compactness parameter is
defined as the ratio of the minimum enclosing rectangle area of a
slope unit to the number of pixels it contains. The larger the
compactness value is, the more irregular the slope unit is. Fig. 8b
shows that the compactness value varies from 1.08 to 2.2.
4.3.2. Geological factors
The lithology is an important conditioning factor for LSP as the

basic material of landslide evolution. The lithologymap is produced
from a geological map with a scale of 1:100,000. The lithology is
divided into eight classes: hard clumpy intrusion rock (Y2); lime-
stone and dolomite (T1); slate, metaclastics and phyllite (B1); schist
(B2); clumpy chorismite (B3); sandstone, glutenite and mudstone
(S2); coal sandstone, shale and mudstone (S4); and sandstone,
glutenite and shale (S5) (Fig. 8c). Among above lithology classes, S2
is most widely distributed in thewhole area (55.8%), followed by B1
(28.1%) and S4 (11.8%).

The soil thickness, defined as the depth from the surface to the
bedrock, is also a non-ignorable factor for LSP, because it de-
termines the slide surface, size and volume of shallow landslides in
Chongyi County (Kuriakose et al., 2009; Tufano et al., 2021). The
methods to map the soil thickness at the regional scale include
physically-based, empirical-statistical, interpolation and machine
learning methods (Kuriakose et al., 2009; Catani et al., 2013; Kim
and Ji, 2022). Among those methods, the interpolation method
on using slope unit-based machine learning models considering the
otechnical Engineering, https://doi.org/10.1016/j.jrmge.2022.07.009
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such as Kriging has beenwidely used in different landscapes for the
soil thickness estimation based on the sample point data. There-
fore, in this study, the Kriging interpolation method is selected to
estimate the soil thickness in the ArcGIS software. The soil thick-
nesses of 235 landslides have been investigated and recorded as the
sample data. Two hundred samples are used to estimate soil
thickness and 35 samples are used to validate the estimation per-
formance. Moreover, themean error and rootmean square error are
applied to evaluating the estimation performance and efficiency. As
a result, the soil thickness of this study area in the slope units
ranges from 2.84 m to 7.9 m (as shown in Fig. 8d).

4.3.3. Hydrological factors
It is known that the river streams have a negative influence on

slope stability by eroding and absorbing materials at the bottom of
slopes (Prashad Bhatt et al., 2013). In this study, the terrain wetness
index, drainage density and distance to river are selected as the
hydrological factors extracted through the hydrological analysis
method in ArcGIS software based on the digital elevation model
data. The terrain wetness index is used to reflect the important
effects of topography and soil moisture content on landslide
occurrence (Fig. 9a). Drainage density can show the balance char-
acteristics between climate, geomorphology and hydrology (Fig. 9b
and c). The spatial position relationships between landslides and
river streams can be well reflected by the distance to river.

4.3.4. Land cover and human activity factors
The NDVI and NDBI, extracted from Landsat TM 8 images, are

two typical conditioning factors that reflect land cover and human
activities (Fig. 9d). NDVI is an excellent indicator of local vegetation
growth and coverage, which is also related to the landslide occur-
rence because vegetation can reduce the influence of rainfall on
landslides through enhancing the shear strength of the slope soil.
At the same time, the NDBI can well reflect the distribution rate of
human construction land in the study area (Yang et al., 2019).

Landslides have frequently occurred with an increase of human
activities. The main reason is that a large number of roads have
been conducted in mountainous areas, and road excavation has
Fig. 9. Conditioning factors of hydrological, land cover and human activity: (a) Terrain wetne
Range of road density.
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changed the topographic environment and stress conditions of
slopes along the roads, leading to the decrease of slope stability
(Donnini et al., 2017). Hence, the road density has been selected to
analyze the impacts of road construction on landslides. The roads in
this region are extracted from Google Earth 7.1.8.3036 (32-bit) with
a scale of 1:25,000 in vector format. Fig. 9d and e shows that the
mean values of the road density vary from 0 to 6.90 km/km2 and
the range values of road density vary between 0 and 5.33 km/km2.
4.4. Effects of the slope unit-based conditioning factors on
landslides

The FR method has been widely used to explore the effects of
the conditioning factors on LSP (Lee and Pradhan, 2006). More
details of this can be found in Chang et al. (2020). In this study, the
slope unit-based conditioning factors are divided into eight classes
using the natural break point method (Huang et al., 2020) (the li-
thology is divided by strata configuration and the aspect is divided
into nine classes), and the results of FR method are presented in
Table 1. For example, the FR values are greater than 1 when the
mean, range and STD values of elevation in the slope units are 142e
421 m, 0e78 m and 0e12.27 m, respectively, suggesting that
landslides more probably occur in those conditions. About 79.2% of
the slope units with landslides are distributed in the lithology of S2,
S4 and S5 with the FR values greater than 1.

The correlations between 38 expanding slope unit-based con-
ditioning factors are analyzed to avoid the effect of multi-
collinearity among those variables. Literature shows that when the
absolute value of the correlation coefficient is less than 0.3, the two
variables are considered negligible (Mukaka, 2012). The correlation
analysis results in the SPSS 22 software show that there are a total
of 22 expanding slope unit-based conditioning factors having
negligible correlations (the absolute value of the correlation coef-
ficient is less than 0.3), including elevation (mean and range vari-
ables), slope (mean, range and STD variables), profile curvature
(mean variable), plan curvature (mean, range and STD variables),
terrain wetness index (mean variable), NDBI (mean variable), NDVI
(mean variable), road density (mean and range variables), drainage
ss index, (b) River density, (c) Range of river density, (d) NDVI, (e) Road density, and (f)

on using slope unit-based machine learning models considering the
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Table 1
FRs of slope unit-based conditioning factors.

Conditioning factor Resolution/scale Mean/Majority Range STD

Class Ratio of total region Ratio of landslide FR Class FR Class FR

Elevation (m) 8.9 m 142e311 0.175 0.422 2.409 0e31 1.229 0e7.08 1.147
311e421 0.216 0.233 1.078 31e55 1.168 7.08e12.27 1.282
421e536 0.191 0.153 0.797 55e78 1.001 12.27e17.47 0.955
536e669 0.145 0.094 0.646 78e100 0.969 17.47e22.66 0.992
669e823 0.109 0.058 0.527 100e124 0.716 22.66e27.85 0.933
823e996 0.089 0.032 0.36 124e151 0.845 27.85e33.05 0.639
996e1234 0.058 0.009 0.162 151e180 0.724 33.05e39.18 0.76
1234e1998 0.016 0 0 180e475 0.493 >39.18 0.735

Slope (�) 8.9 m 0e6.38 0.07 0.116 1.674 0e5.38 0.577 0e2.07 0.911
6.38e10.5 0.16 0.288 1.794 5.38e9.37 1.242 2.07e3.14 1.122
10.5e13.88 0.193 0.193 0.999 9.37e12.36 1.113 3.14e4.04 0.947
13.88e17.09 0.193 0.177 0.916 12.36e15.15 0.936 4.04e4.95 1.068
17.09e20.4 0.159 0.123 0.775 15.15e17.94 1.018 4.95e5.91 0.974
20.4e24.19 0.119 0.086 0.717 17.94e20.93 0.988 5.91e7.03 0.936
24.19e29.07 0.074 0.015 0.2 20.93e24.12 1.106 7.03e8.63 0.824
29.07e47.88 0.027 0.003 0.099 24.12e50.83 0.821 8.63e13.58 0.567

Profile curvature 8.9 m 0.01e3.37 0.048 0.062 1.27 0.55e10.2 0.925 0.07e2.4 1.15
3.37e5.07 0.144 0.201 1.395 10.2e16.55 1.295 2.40e3.96 1.478
5.07e6.41 0.186 0.224 1.201 16.55e21.37 1.491 3.96e5.04 1.223
6.41e7.72 0.195 0.225 1.154 21.37e25.69 1.058 5.04e6.06 1.131
7.72e9.19 0.175 0.141 0.804 25.69e30.01 0.887 6.06e7.15 1.035
9.19e11.06 0.137 0.104 0.763 30.01e34.58 1.059 7.15e8.31 0.839
11.06e13.85 0.084 0.036 0.432 34.58e39.66 0.853 8.31e9.71 0.8
13.85e27.31 0.031 0.008 0.257 39.66e65.31 0.782 9.71e19.9 0.466

Plan curvature 8.9 m 2.44e14.91 0.064 0.05 0.775 3.02e50.71 0.237 0.88e12.72 0.729
14.91e20.43 0.118 0.106 0.899 50.71e58.32 0.771 12.72e16.83 0.759
20.43e25.41 0.146 0.178 1.221 58.32e64.61 0.758 16.83e20.28 1.18
25.41e30.41 0.165 0.175 1.064 64.61e70.24 0.677 20.28e23.08 1.19
30.41e35.79 0.167 0.187 1.123 70.24e75.54 0.878 23.08e25.88 1.152
35.79e42.12 0.15 0.155 1.033 75.54e80.51 0.749 25.88e29.17 0.812
42.12e50.66 0.121 0.108 0.895 80.51e84.81 1.116 29.17e33.61 0.709
50.66e80.59 0.07 0.04 0.578 84.81e87.46 1.112 33.61e42.82 0.282

NDBI 1:25,000 0.1e0.28 0.073 0.015 0.203 0e0.13 0.208 0e0.03 0.218
0.28e0.35 0.172 0.071 0.413 0.13e0.21 0.387 0.03e0.05 0.377
0.35e0.4 0.203 0.124 0.614 0.21e0.28 0.595 0.05e0.06 0.643
0.4e0.46 0.202 0.181 0.894 0.28e0.36 1.079 0.06e0.08 1.22
0.46e0.52 0.178 0.254 1.429 0.36e0.45 1.783 0.08e0.11 1.653
0.52e0.61 0.102 0.201 1.975 0.45e0.55 2.411 0.11e0.13 2.385
0.61e0.75 0.049 0.112 2.306 0.55e0.66 2.974 0.13e0.16 2.432
0.75e1 0.022 0.041 1.875 0.66e0.93 2.955 0.16e0.34 2.601

NDVI 1:25,000 0.01e0.14 0.01 0.005 0.512 0e0.06 0.292 0e0.01 0.197
0.14e0.23 0.025 0.033 1.337 0.06e0.09 0.424 0.01e0.02 0.563
0.23e0.28 0.082 0.157 1.911 0.09e0.12 0.763 0.02e0.03 0.856
0.28e0.31 0.176 0.273 1.554 0.12e0.15 1.156 0.03e0.038 1.166
0.31e0.33 0.224 0.248 1.104 0.15e0.18 1.505 0.038e0.045 1.545
0.33e0.36 0.217 0.178 0.82 0.18e0.22 2.128 0.045e0.055 1.851
0.36e0.39 0.18 0.094 0.519 0.22e0.27 2.271 0.055e0.067 2.019
0.39e0.48 0.085 0.012 0.142 0.27e0.34 1.26 0.067e0.160 1.146

Relief amplitude (m) 8.9 m 1.21e31.21 0.053 0.089 1.676 0.84e23.52 1.194 0.19e5.4 1.147
31.21e51.22 0.149 0.307 2.07 23.52e34.86 1.117 5.4e8.38 1.106
51.22e67.47 0.195 0.214 1.101 34.86e46.21 0.961 8.38e11.11 0.914
67.47e83.72 0.203 0.172 0.845 46.21e57.55 0.88 11.11e14.34 0.889
83.72e99.97 0.162 0.115 0.712 57.55e70.78 0.942 14.34e17.82 1.032
99.97e119.9 0.125 0.074 0.589 70.7e84.9 1.097 17.82e21.79 1.158
119.9e142.4 0.07 0.026 0.368 84.9e101.9 1 21.79e26.51 0.854
142.4e320 0.043 0.003 0.060 101.9e241.8 0.338 26.51e63.51 0.338

River density (km/km2) 8.9 m 0e0.43 0.057 0.009 0.157 0e0.04 0.681 0e0.01 0.718
0.43e0.63 0.12 0.041 0.346 0.04e0.08 0.934 0.01e0.019 0.922
0.63e0.8 0.168 0.128 0.76 0.08e0.11 1.082 0.019e0.02 1.074
0.8e0.96 0.186 0.22 1.183 0.11e0.14 1.088 0.02e0.03 1.197
0.96e1.11 0.164 0.171 1.041 0.14e0.18 1.393 0.03e0.04 1.31
1.11e1.28 0.149 0.182 1.22 0.18e0.22 1.181 0.04e0.05 1.048
1.28e1.47 0.109 0.171 1.561 0.22e0.27 1.171 0.05e0.07 1.463
1.47e1.95 0.047 0.079 1.687 0.27e0.6 0.959 0.07e0.16 0.9

Road density (km/km2) 1:25,000 0e1.37 0.676 0.292 0.432 0e0.77 0.617 0.05e0.11 0.512
1.37e1.83 0.104 0.141 1.36 0.77e1.02 1.369 0.11e0.18 1.243
1.83e2.29 0.075 0.146 1.941 1.02e1.29 1.597 0.18e0.26 1.358
2.29e2.78 0.058 0.154 2.646 1.29e1.56 1.893 0.26e0.33 1.711
2.78e3.32 0.041 0.128 3.158 1.56e1.86 1.896 0.33e0.41 1.568
3.32e3.94 0.027 0.083 3.026 1.86e2.19 2.204 0.41e0.5 1.838
3.94e4.75 0.015 0.047 3.1 2.19e2.63 3.713 0.5e0.62 2.344
4.75e6.89 0.005 0.01 2.176 2.63e5.33 4.284 0.62e1.28 4.02

Terrain wetness index 8.9 m 3.21e4.8 0.127 0.043 0.336 0e4.2 0.36 0e0.76 0.463

Z. Chang et al. / Journal of Rock Mechanics and Geotechnical Engineering xxx (xxxx) xxx10

Please cite this article as: Chang Z et al., Landslide susceptibility prediction using slope unit-based machine learning models considering the
heterogeneity of conditioning factors, Journal of Rock Mechanics and Geotechnical Engineering, https://doi.org/10.1016/j.jrmge.2022.07.009



Table 1 (continued )

Conditioning factor Resolution/scale Mean/Majority Range STD

Class Ratio of total region Ratio of landslide FR Class FR Class FR

4.80e5.29 0.213 0.112 0.527 4.2e5.88 0.494 0.76e1.08 0.473
5.29e5.78 0.242 0.248 1.027 5.88e7.56 0.768 1.08e1.35 0.699
5.78e6.26 0.164 0.193 1.171 7.56e9.25 1.08 1.35e1.68 1.104
6.26e7 0.13 0.202 1.549 9.25e11.26 1.175 1.68e2.06 1.443
7e7.85 0.067 0.099 1.481 11.26e13.28 1.811 2.06e2.49 1.635
7.85e8.83 0.031 0.068 2.213 13.28e15.64 1.96 2.49e2.98 1.774
8.83e34.38 0.026 0.035 1.362 15.64e42.87 1.532 2.98e3.68 1.361

Soil thickness (m) 8.9 m 2.84e3.75 0.077 0.084 1.087 0e0.05 0.707 0e0.01 0.746
3.75e4.25 0.171 0.187 1.097 0.05e0.13 1.482 0.01e0.04 1.594
4.25e4.68 0.214 0.227 1.064 0.13e0.23 1.413 0.04e0.07 1.18
4.68e5.1 0.198 0.169 0.855 0.23e0.36 1.487 0.07e0.11 1.423
5.1e5.52 0.15 0.138 0.924 0.36e0.52 0.887 0.11e0.17 1.206
5.52e5.97 0.097 0.114 1.176 0.52e0.73 0.886 0.17e0.24 0.476
5.97e6.63 0.069 0.043 0.621 0.73e1.04 0.609 0.24e0.34 0.926
6.63e7.9 0.025 0.037 1.472 1.04e1.41 0 0.34e0.55 0

Distance to river (m) 8.9 m 100 0.054 0.076 1.411
200 0.243 0.434 1.786
300 0.147 0.209 1.421
400 0.139 0.115 0.827
500 0.119 0.075 0.628
600 0.094 0.046 0.484
700 0.041 0.013 0.326
>700 0.162 0.032 0.198

Aspect 8.9 m Plain 0.001 0 0
N 0.052 0.023 0.437
NE 0.154 0.139 0.906
E 0.159 0.183 1.155
SE 0.142 0.118 0.829
S 0.111 0.102 0.917
SW 0.119 0.155 1.301
W 0.125 0.146 1.171
NW 0.138 0.134 0.973

Lithology 1:100,000 B1 0.281 0.199 0.707
S2 0.558 0.637 1.142
S4 0.118 0.128 1.083
S5 0.021 0.027 1.274
T1 0.007 0.006 0.985
T2 0.002 0.001 0.607
Y2 0.003 0.001 0.493
Water 0.01 0 0

R value 13.98e17.76 0.07 0.067 0.953
17.76e20.59 0.249 0.295 1.182
20.59e23.43 0.286 0.309 1.079
23.43e26.26 0.178 0.151 0.85
26.26e30.04 0.116 0.114 0.981
30.04e34.76 0.056 0.037 0.666
34.76e40.43 0.025 0.018 0.726
40.43e46.1 0.019 0.009 0.475

Compactness 1.08e1.25 0.107 0.094 0.881
1.25e1.36 0.153 0.185 1.211
1.36e1.46 0.174 0.185 1.059
1.46e1.56 0.171 0.181 1.057
1.56e1.67 0.148 0.146 0.986
1.67e1.79 0.117 0.096 0.816
1.79e1.95 0.083 0.076 0.915
1.95e2.19 0.046 0.037 0.812
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density (mean and range variables), soil thickness (mean variable),
shape index (mean variable), compactness (mean variable), aspect,
lithology and distance to river. Hence, those 22 expanding slope
unit-based conditioning factors are used as input variables to
implement the LSP using variant Slope-RF and Slope-MLP models.

4.5. Preparation training and validation dataset

It is indispensable to prepare a dataset including conditioning
factors and labeled data for machine learning model construction.
Then this dataset is divided into training and testing datasets with a
certain ratio. The training dataset is generally applied to building
Please cite this article as: Chang Z et al., Landslide susceptibility predicti
heterogeneity of conditioning factors, Journal of Rock Mechanics and Ge
LSP models, and the testing dataset is used to validate the predic-
tion performance of LSPmodels (Merghadi et al., 2020). The labeled
data consists of landslide data with a labeled value of 1 and non-
landslide data with a labeled value of 0. In this study, there are a
total of 744 landslide slope units where landslides have occurred
that are labeled to 1, and a same number of non-landslide slope
units, which are randomly sampled from the landslide-free area,
are labeled to 0. Afterwards, the dataset including slope unit-based
conditioning factors and labeled data is randomly spilt into a
training dataset and a testing dataset with a ratio of 70%/30%. The
training dataset is used to construct the LSP models and the testing
dataset is used to verify the predictive accuracies of LSP models.
on using slope unit-based machine learning models considering the
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Fig. 10. LSMs of different RF and MLP models.
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4.6. Construction of LSP modeling

In the processes of LSP modeling, 15 slope unit-based condi-
tioning factors are selected as input variables to construct con-
ventional Slope-machine learning models, and 22 expanding slope
unit-based conditioning factors are used as input variables to
construct variant Slope-machine learningmodels. The FR values for
each conditioning factor of training samples (landslide and non-
landslide samples) are used as the basic input data to construct
RF and MLP models. As for RF models, the statistical package R
version 3.8 is applied for building of variant Slope-RF and Slope-RF
models. The number of trees in RF has been fixed to 500 after a
primary analysis, and the number of samples at each node has been
set as 3 to analyze the joint contribution of subsets of features and
to keep a fast convergence during iterations. As for MLP models
(variant Slope-MLP and Slope-MLP), three-layer models with one
input layer, one hidden layer and one output layer are also used for
Please cite this article as: Chang Z et al., Landslide susceptibility predicti
heterogeneity of conditioning factors, Journal of Rock Mechanics and Ge
LSP. The sigmoid function is selected as the activation function and
the back-propagation algorithm is used to train the MLP models.

5. Results

5.1. LSMs of the RF and MLP models

In this study, the LSMs of RF and MLP models are mapped, and
then the LSIs are divided into five classes using the natural break
point method in ArcGIS 10.2 software, which is a classified method
according to the numerical statistical distribution by maximizing
the difference between different classes (Merghadi et al., 2020;
Pham et al., 2019). The LSMs of the variant Slope-RF and Slope-MLP
models are shown in Fig.10a and b, respectively. It can be seen from
Fig. 10a that the very low, low, moderate, high and very high sus-
ceptibility classes cover 25.94%, 26.67%, 21.79%, 16.48% and 9.13% of
the variant Slope-RF model, respectively. Meanwhile, Fig. 10b
on using slope unit-based machine learning models considering the
otechnical Engineering, https://doi.org/10.1016/j.jrmge.2022.07.009



Table 2
FR among the landslide susceptibility classes for different LSP models.

LSP
model

Class Threshold
of each
class

Percentage of slope
unit/grid in domain

Percentage of
landslide slope
unit/grid

FR

Variant
Slope-
RF

Very high [0.69, 0.99] 0.091 0.793 8.692
High [0.52, 0.69) 0.165 0.111 0.674
Moderate [0.37, 0.52) 0.218 0.059 0.273
Low [0.23, 0.37) 0.267 0.028 0.107
Very low [0.02, 0.23) 0.259 0.008 0.03

Slope-RF Very high [0.73, 0.99] 0.096 0.714 7.407
High [0.54, 0.73) 0.176 0.175 0.994
Moderate [0.36, 0.54) 0.233 0.067 0.288
Low [0.19, 0.36) 0.268 0.033 0.125
Very low [0.01, 0.19) 0.226 0.011 0.047

Grid-RF Very high [0.69, 1] 0.091 0.854 9.696
High [0.49, 0.69) 0.141 0.091 0.646
Moderate [0.31, 0.49) 0.186 0.032 0.138
Low [0.15, 0.31) 0.243 0.015 0.037
Very low [0, 0.15) 0.338 0.007 0.006

Variant
Slope-
MLP

Very high [0.74, 0.96] 0.113 0.417 3.68
High [0.55, 0.74) 0.124 0.235 1.896
Moderate [0.36, 0.55) 0.158 0.168 1.065
Low [0.19, 0.36) 0.23 0.116 0.505
Very low [0.03, 0.19) 0.374 0.063 0.169

Slope-
MLP

Very high [0.68, 0.85] 0.133 0.439 3.3
High [0.53, 0.68) 0.139 0.222 1.604
Moderate [0.4, 0.53) 0.166 0.154 0.926
Low [0.28, 0.4) 0.257 0.141 0.548
Very low [0.13, 0.28) 0.306 0.044 0.145

Grid-
MLP

Very high [0.67, 0.92] 0.152 0.487 3.209
High [0.51, 0.67) 0.174 0.239 1.37
Moderate [0.35, 0.51) 0.174 0.143 0.821
Low [0.2, 0.35) 0.236 0.099 0.42
Very low [0.03, 0.2) 0.265 0.033 0.124
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shows that the very low, low, moderate, high and very high sus-
ceptibility classes cover 37.45%, 23.04%, 15.77%, 12.40% and 11.34%
of the variant Slope-MLP model, respectively. In addition, the LSMs
of the Slope-RF, Slope-MLP, Grid-RF and Grid-MLP models are
shown in Fig. 10cef, respectively. Furthermore, compared with the
LSMs of the Grid-RF and Grid-MLP models, it can be found that the
LSMs based on slope units have stronger practical application than
that based on grid units. For example, the location and scope where
landslide with very high susceptibility class is prone to occur by the
Slope-machine learning models can be accurately recognized and
easily found in practice. In addition, the error that caused by iso-
lated grid units with very high landslide susceptibility class in Grid-
machine learning models also can be avoided using the Slope-
machine learning models.

5.2. Validation of LSP

The AUC value of receiver operating feature curve and FR ac-
curacy validation method are introduced for evaluating the LSP
performance of LSP models.

5.2.1. The AUC value of receiver operating features curve
The receiver operating feature curves of the LSP models are

shown in Fig. 11. The AUC values of the variant Slope-RF, Slope-RF,
Grid-RF, variant Slope-MLP, Slope-MLP and Grid-MLP models are
0.875, 0.827, 0.896, 0.843, 0.805 and 0.826, respectively. It can be
concluded that the prediction performances of the variant Slope-RF
and variant Slope-MLPmodels are better than those of the Slope-RF
and Slope-MLP models. The Grid-RF model has a better prediction
performance than the Grid-MLP model. Meanwhile, it is revealed
that the RF models have better prediction performance than that of
the MLP models.

5.2.2. FR accuracy validation
In this study, the FR accuracies of the RF and MLP models are

shown in Table 2. The FR values in the MLP models decrease from
very high to very low susceptibility classes. However, the FR values
in the RF models exhibit the characteristic that the FR values of the
very high susceptibility class are significantly larger than that of
other four susceptibility classes. Furthermore, the FR accuracies of
the variant Slope-RF, Slope-RF, Grid-RF, variant Slope-MLP, Slope-
MLP and Grid-MLP are 0.958, 0.948, 0.974, 0.762, 0.751 and 0.77,
Fig. 11. The receiver operating feature curves an
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respectively. Therefore, it appears that the LSP accuracies of variant
Slope-machine learning models are better than that of Slope-
machine learning models, suggesting that the LSP predictions in
consideration of the internal variation of the conditioning factors
within slope units aremore in linewith the observations. It can also
be found that the LSP accuracy based on the slope unit is close to
that based on the grid unit. Furthermore, the comparisons also
show that the prediction performances of the RF models are su-
perior to those of MLP models according to the used criteria.
d AUC values of (a) RF and (b) MLP models.
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6. Discussion

6.1. Comparison of the LSP performance for the RF and MLP models

The validation results through the AUC values and FR accuracy
indicate that the RF models have a much better LSP performance
than the MLP models. This is attributed to the essential differences
of the classification algorithm between the RF andMLPmodels. The
RF algorithm is a supervised classification algorithm and is an
ensemble method using decision tree models that each tree fits a
data subset sampled independently using bootstrapping. There are
some advantages resulting in excellent performance in the field of
pattern recognition:

(1) It is simple and has high accuracy due to the ensemble
algorithm.

(2) Over-fitting can be avoided by building large forests, por-
traying observations with replacements (i.e. bootstrapped)
and splitting the nodes on the best split within a random
subset (Merghadi et al., 2020).

(3) RF can provide high accuracy rates with respect to the out-
liers of the predictors due to the use of random selection at
each split node depending on the two data objects of OOB
and proximities (Breiman, 2001).

(4) It has strong adaptability to datasets. For example, a dataset
with high dimensions can be processed without feature se-
lection, and both discrete and continuous data can be pro-
cessed without normalization.

(5) Some hyper-parameters, including the number of trees, the
maximum depth of the trees and the maximum number of
features considered at each split, can be tuned to implement
the best classification performance.
Please cite this article as: Chang Z et al., Landslide susceptibility predicti
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In theMLPmodels, the selection of the number of implicit nodes
and the determination of some parameters (stopping threshold,
learning rate and activation function) have become the main
problems that restrict the application of MLP models.

6.2. Frequency distribution of LSI values

The distribution features of the LSIs are analyzed and compared
to understand the LSP results more comprehensively. The LSI dis-
tributions of the variant Slope-RF, Slope-RF, variant Slope-MLP and
Slope-MLP models with their corresponding mean and STD values
are shown in Fig. 12. The mean values reflect the centralization
trend of the LSIs, and the STD values reflect the dispersion degree of
the LSIs. It can be seen from Fig. 12 that the distribution patterns of
the LSIs for Slope-based RF and MLP models conform to approxi-
mate logarithmic normal distributions (red line in Fig. 12). The LSIs
calculated by the RF andMLPmodels mainly belong to lowand very
low landslide susceptibility classes with a low degree of dispersion.
In addition, the mean and STD values suggest that the variant
Slope-RF and variant Slope-MLP models have better LSP perfor-
mance than the Slope-RF and Slope-MLP models. For example, in
the results of the RF models, the mean values of the variant slope-
RF model and Slope-RF model are close; however, the STD value of
the variant Slope-RF model is larger than that of the Slope-RF
model.

6.3. Validation analysis by new landslides

After obtaining the LSMs, it is necessary and indispensable to
verify the applicability and accuracy of the results in practice. In this
study, some new landslides have been recorded and used to verify
the prediction performance of variant Slope-RF, Slope-RF, variant
on using slope unit-based machine learning models considering the
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Slope-MLP and Slope-MLP models. First, 19 new landslides in the
period from 2009 to 2019 have been investigated in the field and
recorded in Table 3 and Fig. 10a. Then, the LSMs produced by
variant Slope-RF, Slope-RF, variant Slope-MLP and Slope-MLP
models are selected for comparison with those new landslides.
Furthermore, the serial number of slope units that generated new
landslides and the corresponding slope unit’s landslide suscepti-
bility class are recorded in Table 3.

It can be seen form Table 3 that among those slope units with
new landslides, the number of slope units with very high landslide
susceptibility class of variant Slope-RF, Slope-RF, variant Slope-MLP
and Slope-MLPmodels are 13, 5, 12 and 8, respectively. The number
of slope units with high landslide susceptibility class of variant
Slope-RF, Slope-RF, variant Slope-MLP and Slope-MLPmodels are 4,
10, 5 and 7, respectively. However, there are also two slope units
with moderate landslide susceptibility class whatever in variant
Slope-RF or variant Slope-MLP models, and four slope units with
moderate landslide susceptibility class whatever in Slope-RF or
Slope-MLP models. The proportion of new landslides with very
high and high landslide susceptibility levels to all new landslides is
defined as the predictive accuracy. Hence, the predictive accuracies
of variant Slope-RF, Slope-RF, variant Slope-MLP and Slope-MLP
models are 0.895, 0.798, 0.895 and 0.798, respectively. The results
indicate that more new landslides occurred in the slope units with
very high landslide susceptibility class in variant Slope-RF/MLP
models than that of Slope-RF/MLP models. Hence, it can be
concluded that the LSP results of the variant Slope-RF model have
higher applicability and accuracy, and can be used to support the
decision-making process for the landslide prevention and
mitigation.

6.4. Comparison of LSP results for variant slope, slope and grid-
machine learning models

The application of slope unit for LSP is restricted not only by the
difficulty of efficient slope unit extraction, but also by the lack of
deep understanding about the differences of the LSP results be-
tween slope units and grid units. In this study, it has been proved
that theMSSmethod can efficiently and automatically extract slope
units in a large scale with high accuracy, which can strongly pro-
mote the application of slope units in LSP. On the other hand, Fig. 11
Table 3
New landslides in the period of 2009e2019.

Landslide Serial number of slope unit Time of occurrence

Dapotou landslide 53054 2014/4/28
Dahedong landslide 6124 2013/5/16
Modaokeng landslide 16319 2013/8/26
Jinkeng landslide 1330 2015/11/17
Changlongkeng landslide 31079 2018/6/9
Hailuo landslide 12531 2016/6/18
Keshulin #1 landslide 35667 2014/8/11
Shishi landslide 36548 2014/7/14
Keshulin #2 landslide 35651 2019/7/25
Nanliu landslide 13534 2017/7/19
Baishikeng landslide 34379 2018/6/17
Shipotou landslide 37775 2019/5/21
Shuxia landslide 16637 2017/6/18
Shangbu landslide 15548 2016/8/27
Donglin landslide 29698 2019/5/21
Wanglingwan landslide 33003 2018/6/16
S230 K247 landslide 46800 2016/8/28
Zhangshuxia landslide 34024 2018/6/17
Luanshikeng landslide 43547 2018/6/16
Accuracy
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shows that the AUC value of Grid-RF model is slightly higher than
that of Slope-RF models, and the similar results also have been
revealed in Wang et al. (2017) and Tsai et al. (2019). This is because
that more labeled landslide samples are used to construct LSP
models when using the grid units than that using the slope units.
Moreover, the uncertainties of the non-landslide samples selection
and the different machine learning models may also have different
effects on the LSP results for Grid- and Slope-based models.
Comparing the LSP results of Grid- and Slope-based machine
learning models, it can be found that some areas with low and very
low susceptibility levels in Grid-based machine learning models
may have generally almost isolated grid units with very high and
high susceptibility levels; however, this phenomenon can be avoi-
ded in the Slope-based machine learning models. Hence, it is
incomplete and inconclusive to compare the LSP results only using
the AUC value.

Through the comprehensive comparison analysis of the LSP
results, it can be revealed that the slope unit is more suitable for the
mapping unit of LSP comparing to the grid unit. The main reason is
that the LSMs by Slope-machine learning models can be used to
accurately determine the definite location and boundary with very
high susceptibility class on a slope or basin scale, while the LSMs by
the Grid-machine learning models show the features of dispersion
and poor discrimination. Another reason is that the computational
burden of the Slope-machine learning models is reduced through
converting millions of grid units to tens of thousands of slope units
(Camilo et al., 2017). Furthermore, slope units can efficiently ex-
press the physical relationships between landslides and regional
morphological elements, and can guarantee the accurate expres-
sion of the information integrity of conditioning factors when
compared with grid units (Wang et al., 2005).

Additionally, the variant Slope-machine learning models have
more advantages for LSP comparing to the Slope-machine learning
models. In fact, a slope unit may contain dozens or hundreds of grid
units; as a result, it is biased and incomplete when using only the
mean value of each grid unit-based conditioning factor as the value
of the slope unit-based conditioning factor. Meanwhile, the het-
erogeneous features of the slope unit-based conditioning factor
cannot be comprehensively considered by the mean value of grid
units. Moreover, in the variant Slope-machine learning models, the
ranges and STD values can effectively reflect the heterogeneity of
LSP class

Variant Slope-RF Slope-RF Variant Slope-MLP Slope-MLP

Very high Very high Very high Very high
Very high Very high Very high Very high
Very high High Very high High
High Moderate High Moderate
Very high Very high Very high Very high
Moderate Moderate Moderate Moderate
Very high High High High
Very high High Very high High
High High Very high Very high
High High High High
Very high Very high Very high Very high
Very high High Very high High
Very high High Very high Very high
High Moderate High Moderate
Moderate Moderate Moderate Moderate
Very high High Very high High
Very high High High High
Very high Very high Very high Very high
Very high High Very high Very high
0.895 0.789 0.895 0.789
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each slope unit-based conditioning factor. In this case, more het-
erogeneous features of slope unit-based conditioning factors can be
characterized to obtain more realistic and accurate LSP results.

7. Concluding remarks

In this study, the slope units in Chongyi County of China are
extracted by the MSS method. Then the heterogeneity of the slope
unit-based conditioning factors is considered to construct variant
Slope-machine learning models. Fifteen grid unit-based and 22
slope unit-based conditioning factors are acquired to predict the
LSIs using RF (variant Slope-RF, Slope-RF and Grid-RF) and MLP
(variant Slope-MLP, Slope-MLP and Grid-MLP) models. The com-
parisons of AUC values and FR accuracy indicate that the LSP per-
formances of the variant Slope-RF/MLP models are better than
those of the Slope-RF/MLP models. Moreover, we demonstrate that
the slope units extracted by the MSS method are appropriate for
LSP modeling, and the heterogeneous features of slope unit-based
conditioning factors can be well represented by the range and
STD values of conditioning factors.

In conclusion, landslide information can be explored more
comprehensively by efficiently extracting slope units and consid-
ering the heterogeneity of conditioning factors within the slope
units. The LSP results based on the variant Slope-machine learning
models have stronger practical application than those of Grid-
machine learning models.
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