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ABSTRACT

Recent advancements inminiaturized fluorescencemicroscopy havemade it possible to
investigate neuronal responses to external stimuli in awake behaving animals through
the analysis of intra-cellular calcium signals. An ongoing challenge is deconvolving the
noisy calcium signals to extract the spike trains, and understanding how this activity
is affected by external stimuli and conditions. In this thesis, we aim to provide novel
approaches to tackle various aspects of the analysis of calcium imaging data within a
Bayesian framework.

Following the standard methodology to the analysis of calcium imaging data based
on a two-stage approach, we investigate efficient computational methods to link the out-
put of the deconvolved fluorescence traces with the experimental conditions. In partic-
ular, we focus on the use of Poisson regression models to relate the number of detected
spikes with several covariates. Motivated by this framework, but with a general impact
in terms of application to other fields, we develop an efficient Metropolis-Hastings
and importance sampling algorithm to simulate from the posterior distribution of
the parameters of Poisson log-linear models under conditional Gaussian priors, with
superior performance with respect to the state-of-the-art alternatives.

Motivated by the lack of clear uncertainty quantification resulting from the use of
a two-stage approach, and the impossibility to borrow information between the two
stages, we focus on the analysis of individual neurons, and develop a coherent mixture
model that allows for estimation of spiking activity and, simultaneously, reconstructing
the distributions of the calcium transient spikes’ amplitudes under different experi-
mental conditions. More specifically, our modeling framework leverages two nested
layers of random discrete mixture priors to borrow information between experiments
and discover similarities in the distributional patterns of the neuronal response to
different stimuli.

Finally, we move to the multivariate analysis of populations of neurons. Here the
interest is not only to detect and analyze the spiking activity but also to investigate the
existence of groups of co-activating neurons. Estimation of such groups is a challenging
problem due to the need to deconvolve the calcium traces and then cluster the resulting
latent binary time series of activity. We describe a nonparametric mixture model that
allows for simultaneous deconvolution and clustering of time series based on common
patterns of activity. The model makes use of a latent continuous process for the spike
probabilities to identify groups of co-activating cells. Neurons’ dependence is taken
into account by informing the mixture weights with their spatial location, following the
common neuroscience assumption that neighboring neurons often activate together.
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SOMMARIO

Grazie alle recenti innovazioni tecnologiche nel campo della microscopia miniaturiz-
zata e, in particolare, allo sviluppo di una speciale tecnica che permette di misurare
otticamente il livello intra-cellulare di ioni di calcio, si è resa possibile l’analisi dell’attiv-
ità neuronale in risposta alla stimolazione esterna in animali svegli e liberi di muoversi.
Tuttavia, l’analisi del livello di fluorescenza osservato presenta diverse complessità.
Una prima difficoltà deriva dalla necessità di estrarre le serie del segnale (i cosiddetti
spike train), ovvero le serie di attività neuronale. Dopodiché, il segnale estratto deve
essere messo in relazione con con le condizioni sperimentali che l’hanno generato.
Con questa tesi si vogliono introdurre degli approcci innovativi per l’analisi di dati di
imaging del calcio, nell’ambito di un’analisi statistica bayesiana.

L’approccio classico all’analisi di dati di imaging del calcio si basa su una procedura
in due passi: in una prima fase vengono estratti gli spike train; successivamente, queste
serie vengono messe in relazione alle condizioni esterne. Muovendoci all’interno di
questo contesto, ma con validità più generale in termini di ambiti di applicazione,
si introducono dei nuovi metodi computazionali per stimare in modo efficiente la
relazione tra il segnale osservato e le condizioni sperimentali. In particolare, si pone
l’interesse su modelli di regressione di Poisson, comunemente usati per studiare la
dipendenza del numero di attivazioni da un insieme di fattori esterni. Si sviluppano un
algoritmoMetropolis-Hastings e un importance sampler per simulare dalla distribuzione
a posteriori dei coefficienti di tali modelli, sotto l’assunzione di distribuzioni a priori
Gaussiane (o condizionatamente Gaussiane) sui parametri di regressione.

Un’analisi in due passi comporta alcuni svantaggi: per esempio, l’impossibilità di
ottenere una chiara valutazione dell’incertezza complessiva, oltre all’impossibilità di
condividere informazione tra le due fasi. Per questo motivo, ci focalizziamo sull’analisi
di singoli neuroni e introduciamo un modello mistura che permette di stimare l’attività
neuronale e, allo stesso tempo, di analizzare la distribuzione delle attivazioni in risposta
a diverse condizioni sperimentali. In particolare, il modello proposto sfrutta una
distribuzione a priori basata su due livelli annidati di misture finite, che permette
di condividere l’informazione tra condizioni sperimentali, e indagare similitudini e
differenze nella risposta ai diversi stimoli.

Infine, si introduce un’analisi multivariata di popolazioni di neuroni. In questo
contesto l’interesse non è volto solo ad analizzare le singole serie di attività, ma anche
ad indagare l’esistenza di gruppi di neuroni con modelli di attivazioni simili. In questa
tesi si introduce un modello mistura nonparametrico che permette di estrarre le serie
delle attivazioni e, allo stesso tempo, di raggruppare i neuroni con un modello di
attivazioni simile. Il modello si basa sull’introduzione di un processo latente continuo
che descrive, per ogni istante temporale, la probabilità di osservare un’attivazione.
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Inoltre, per includere la dipendenza spaziale tra neuroni, i pesi della mistura sono
funzione della distanza tra le cellule, come suggerito da diversi studi di neuroscienze.



“Confusion in her eyes that says it all
She’s lost control”
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INTRODUCTION

Overview

A fundamental but unsolved problem in neuroscience is understanding the functioning
of neurons and neuronal networks in processing sensory information, generating
locomotion, and mediating learning and memory. The investigation of the structure
and function of the nervous system can be dated back to the nineteenth century
with the invention of the technique of silver impregnation by Camillo Golgi in 1873,
which allowed the visualization of individual neurons (Drouin et al., 2015). The
technique initiated the study of the microscopic anatomy of the nervous system, and
the investigation of how neurons organize to form the brain. Ever since there has
been a significant research effort both to discover the cellular properties of the nervous
system, and to characterize behaviors and correlate them with activity imaged in
different regions of the brain. However, many scientists recognize that despite the
innovative techniques developed to observe and analyze neurons, we are still facing
an “explanatory gap” between the understanding of elemental components and the
outputs that they produce (Parker, 2006; Parker, 2010; Dudai, 2004). That is, we know
a lot about the components of the nervous system, but still we have little insight into
how these components work together to enable us to think, remember, or behave.
One of the reasons of this gap is the availability of a huge quantity of data, but a
lack of tools to integrate these data in order to obtain a coherent picture of the brain
functioning (Parker, 2010).

The technological developments of the last few decades have opened fundamentally
new opportunities to investigate the nervous system. Large neuronal networks can
now be visualized using in vivo high-resolution imaging techniques, which permit to
record the neuronal activity in freely moving animals over long periods of time. In
this thesis, we focus on data resulting from the application of the two-photon calcium
imaging technique. Calcium ions generate intracellular signals that determine a large
variety of functions in all neurons: when a neuron fires, calcium floods the cell and
produces a transient spike in its concentration (Grienberger and Konnerth, 2012). By
using genetically encoded calcium indicators, which are fluorescent molecules that
react when binding to the calcium ions, it is possible to optically measure the level
of calcium by analyzing the observed fluorescence trace. However, extracting these
fluorescent calcium traces is just the first step towards the understanding of brain
circuits: how to relate the observed pattern of neuronal activity to the external stimuli
that triggered it remains an open problem of research.

The first step for analyzing fluorescent calcium traces is to deconvolve them to extract
the spike trains, which are the series of recorded firing times and spikes’ amplitudes.
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2 introduction

From these series it is possible to derive many useful quantities which are commonly
used to interpret the neuron’s activity: for example, one can compute the number of
recorded firing events, neuron-specific or stimulus-specific distributions of the spikes’
amplitudes, and other proxies of the intensity of the neuronal response. The set of
tools that explicitly try to relate external stimuli with some summary of activity are
usually referred to as “encoding models”. In this context the stimuli are considered as
features, and they are used to predict patterns of neuronal activity. These models allow
to investigate how experimental conditions and specific stimulation trigger the neurons’
activity, and hence how external information is encoded by individual neurons and
neuronal networks.

Main contributions of the thesis

The availability of large quantities of data from calcium imaging studies, and the relative
scarcity of tools to analyze them motivated the investigation of new methodologies.
In this thesis, we aim to contribute to the development of novel statistical tools to
gain new insights into the analysis of calcium imaging data. Herein, we adopted
a Bayesian approach: there are several reasons that led to this choice. As it will
become clearer from the details of the specific applications, a Bayesian approach had
proved necessary in order to deal with models that comprise complex dependence
structures, heterogeneous data, and, possibly, the availability of past information from
previous studies. Moreover, using a Bayesian approach, it is straightforward to induce
some regularization on the model parameters, a feature that is often fundamental in
multivariate studies.

Novel posterior sampling scheme for Poisson encoding models

Linear models and generalized linear models are among the most natural classes of
encoding models (Paninski et al., 2007). They allow to link the observed output of an
experiment with a number of features and experimental conditions in a flexible and
interpretable way. In particular, if the variable of interest is the number of spikes, which
is a proxy of the intensity of the neuronal response, Poisson regression represents a
straightforward choice. However, the dimensionality of the considered data poses
a computational challenge and leads to the need for efficient algorithms to obtain a
sample from the posterior distribution of parameters. Motivated by the lack of specific
and efficient algorithms to sample from the posterior distribution of the parameters of
Bayesian log-linear models, in Chapter 2 we develop a novel sampling strategy which
exhibits superior performance with respect to the state-of-the-art alternatives.

In particular, we develop an efficient Metropolis-Hastings algorithm and impor-
tance sampler to simulate from the posterior distribution of the regression parameters.
The key for both algorithms is the introduction of a proposal density based on an
approximation of the posterior distribution of parameters under conditional Gaussian
priors. With conditional Gaussian prior, we refer to a possibly hierarchical prior with
conditional distribution β ∼ N(b,B), with b and/or B random. Examples include
straightforward Gaussian prior distributions with informative (b,B) fixed using prior
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information, and scale mixtures of Gaussian where b is set to zero and the variance has
a suitable hierarchical representation, such as the Bayesian lasso prior or the horseshoe
prior, among others. Our result leverages the negative binomial convergence to the
Poisson likelihood (Casella and Berger, 2002): thanks to this result, we are able to
exploit the Pólya-gamma data augmentation of Polson et al. (2013) to derive an efficient
sampling scheme.

The performances of the proposed solutions, in terms of mixing and computation
time, are comparable or superior to those of the efficient Stan implementation of
the Hamiltonian Monte Carlo algorithm in all scenarios considered in an extensive
simulation study, and particularly when a hierarchical prior is assumed. The ease of
application of the proposed algorithms is further enhanced by their availability via the
R package bpr (D’Angelo, 2021). Clearly, the impact is broader than the motivating
application to calcium imaging data, as Poisson regression is commonly used in several
other fields.

Modeling single-neuron activations via nonparametric mixtures

Routine methods to analyze calcium imaging data are based on a two-stage approach:
in a first phase, the raw fluorescent trace is deconvolved to extract the spike train, then,
in a second phase, some summary statistics is derived and linked to the experimental
conditions that generated it. This approach, adopted in the previous contribution, is
simple to implement and can be applied in a broad range of applications, however, it
has some drawbacks: for example, the impossibility to borrow information between
the two stages, and an unclear quantification of the uncertainty propagating from one
stage to the next. Only performing the two tasks simultaneously allows to coherently
quantify the uncertainty of the results, whereas, in a two-step approach, it is not
straightforward to evaluate the overall uncertainty, as it is the result of the contribution
of each step.

In Chapter 3, we introduce a nested Bayesian finite mixture model that allows for
estimating the spiking activity and, simultaneously, reconstructing the distributions
of the calcium transient spikes’ amplitudes under different experimental conditions,
for example, in response to different types of stimuli. More specifically, our modeling
framework estimates and clusters the distributions of the calcium transient spikes’
amplitudes via a nested formulation of the generalized mixtures of finite mixtures
prior recently proposed by Frühwirth-Schnatter et al. (2021). The proposed model
further adopts the use of a common atom specification as in Denti et al. (2021) for
estimating the distribution of the spikes’ amplitudes under each experimental condi-
tion. These two nested layers of random discrete mixture priors allow the model to
borrow information between experiments and discover similarities in the distributional
patterns of neuronal responses to different stimuli. Furthermore, the spikes’ intensity
values are also clustered within and between experimental conditions to determine
the existence of common (recurring) response amplitudes.
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Clustering activation patterns of spatially-referenced neurons

When analyzing populations of neurons, often the interest is in identifying groups
of neurons with a highly correlated pattern of activity. For many areas of the brain,
there is a general agreement on the organization of these networks of neurons and
their behavior. However, the functional and anatomical organization of hippocampal
neurons is still an open research problem.

In Chapter 4, we formulate a nonparametricmixturemodel that allows for deconvolu-
tion of several calcium traces and, simultaneously, detection of groups of co-activating
neurons. Specifically, our model clusters the latent binary time series of activity based
on similarities of the spiking activity over seconds-long periods of time. The model
makes use of a latent continuous process for the spike probabilities to identify groups
of co-activating cells. Neurons’ dependence is taken into account by informing the
mixture weights with their spatial location through the use of a probit stick breaking
process (Rodríguez and Dunson, 2011), following the common neuroscience assump-
tion that neighboring neurons often activate together.



1 BACKGROUND: STAT IST ICAL MODEL ING
OF CALCIUM IMAGING DATA

1.1. Overview of calcium imaging data

Calcium ions generate intracellular signals that control key functions in all types of
neurons. At rest, most neurons have an intracellular calcium concentration of about
100 nm; however, during electrical activity, the concentration can rise transiently up
to levels around 1000 nm (Berridge et al., 2000). The development of techniques
that enable the visualization and quantitative estimation of the intracellular calcium
signals have thus greatly enhanced the investigation of neuronal functioning. The
development of calcium imaging techniques involved two parallel processes: the
development of calcium indicators, which are fluorescent molecules that react when
binding to the calcium ions, and the implementation of the appropriate imaging
instrumentation, in particular, the introduction of two-photon microscopy (Denk et al.,
1990). In recent years, the innovation achieved in these two fields has allowed for
real-time observation of biological processes at the single-cell level simultaneously for
large groups of neurons (Grienberger and Konnerth, 2012).

The output of two-photon calcium imaging is a movie of time-varying fluorescence
intensities, and a first complex pre-processing phase deals with the identification of
the spatial location of each neuron in the optical field and source extraction (Mukamel
et al., 2009; Dombeck et al., 2010). The resulting processed data consist of a fluorescent
calcium trace for each observable neuron in the targeted area which, however, is only a
proxy of the underlying neuronal activity. Hence further analyses are needed to decon-
volve the fluorescence trace to extract the spike train (i.e. the series of recorded firing
times), and to try to explain how these firing events are linked with the experiment
that generated that particular pattern of activity.

1.1.1. Deconvolution methods

There is currently a rich literature of methods addressing the issue of deconvolving
the raw fluorescent trace to extract the spike train. A successful approach is to assume
a biophysical model to relate the spiking activity to the calcium dynamics, and to
the observed fluorescence. Vogelstein et al. (2010) proposed a simple but effective
model that has later been adopted by several authors (Pnevmatikakis et al., 2016;
Friedrich and Paninski, 2016; Friedrich et al., 2017; Jewell and Witten, 2018; Jewell et al.,
2019). The model considers the observed fluorescence as a linear (and noisy) function
of the intracellular calcium concentration; the calcium dynamics is then modeled
using an autoregressive process with jumps in correspondence of the neuron’s firing
events. Denoting with yt the observed fluorescence trace of a neuron and with Cat the

5



6 background

underlying calcium concentration, for time t = 1, . . . , T , the model can be written as

yt = b+Cat + εt, εt ∼ N(0, σ2),

Cat = γ Cat−1 +At + wt, wt ∼ N(0, τ2),
(1.1)

where b models the baseline level of the observed trace and εt is a Gaussian measure-
ment error. In the absence of neuronal activity, the true calcium concentration Cat
is considered to be centered around zero. The parameter At captures the neuronal
activity: in the absence of a spike (At = 0), the calcium level follows a AR(1) process
controlled by the parameter γ; when a spike occurs, the concentration increases instan-
taneously of a value At > 0. A challenge remains estimating the neuronal activity At

in a precise and computationally efficient way.
Vogelstein et al. (2010) assumed that all spikes have a fixed amplitude, and inter-

preted the parameter At as the number of spikes at time t. Following this definition,
they placed a Poisson prior distribution on At; however, the maximum a posteriori
estimation of the spike train using a Poisson distribution is computationally intractable.
Hence they searched an approximate solution by replacing the Poisson distribution
with an exponential distribution of the same mean. This leads to some loss of inter-
pretation of the parameters At, as now they are no longer integer values but rather
non-negative real numbers, but turns the problem into a convex optimization, which
can be solved efficiently. Adopting this approach leads to solving a non-negative lasso
problem for estimating the calcium concentration, where the L1 penalty enforces spar-
sity of the neural activity. Efficient algorithms to obtain a solution of this problem have
also been proposed by Pnevmatikakis et al. (2016), Friedrich and Paninski (2016), and
Friedrich et al. (2017).

A different perspective is instead proposed by Jewell and Witten (2018) and Jewell
et al. (2019): rather than interpreting At in model (1.1) as the number of spikes at the
t-th timestep, they interpreted its sign as an indicator for whether or not at least one
spike occurred, that is, At = 0 indicates no spikes at time t, and At > 0 indicates the
occurrence of at least one spike. Themodel so formulated includes an indicator variable,
which corresponds to using an L0 penalization and which makes the optimization
problem highly non-convex. In their work, Jewell and Witten (2018) and Jewell et al.
(2019) developed fast algorithms to compute the spike trains under these assumptions.
Jewell and Witten (2018) asserted that the solutions discussed by Vogelstein et al.
(2010), Friedrich and Paninski (2016), and Friedrich et al. (2017) can actually be seen
as convex relaxations of this optimization problem, to overcome the computational
intractability of the L0 penalization.

Finally, Pnevmatikakis et al. (2013) proposed a fully Bayesian approach. Although
less computationally efficient than optimization methods, it allows to obtain a posterior
distribution of all model parameters instead of just a point estimate, hence improv-
ing uncertainty quantification. Differently from previous models, they defined the
parameter At as the amplitude of a spike at time t, taking values in the non-negative
real numbers. They formulated the presence/absence of a spike and its amplitude by
using the product of a Bernoulli random variable (taking value 0 if there is no spike at
time t, and 1 otherwise) with a half-Gaussian random variable (modeling the positive
amplitudes). However, they did not explicitly assume sparsity of the spikes.
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1.1.2. Spike train data analysis

Standard methods to analyze calcium imaging data rely on a two-step approach: in a
first phase, somedeconvolutionmethod, such as those described in the previous section,
is applied to identify the spikes; then, a different method is used on the deconvolved
output to analyze it and, possibly, to relate it with some covariates. However, while
there is a rich literature on deconvolution methods, there is still little research on
methods that try to derive inferential results from their output.

The set of models that explicitly try to understand how the brain encodes external
variables and stimuli into spike train is usually referred to as “encoding models”.
Among them, Paninski et al. (2007) focused on the use of generalized linear models
(GLMs). GLMs allow spike trains to be regressed against a potentially large number of
covariates such as behavioral parameters, experimental conditions, and other relevant
factors. Moreover, regression models provide simple and interpretable results of
the effect of each covariate on the neuronal response. In particular, Paninski et al.
(2007) highlighted the importance of regularization methods and inclusion of prior
knowledge to improve estimation of the model parameters, as in many cases the
number of covariates is potentially very large, leading to noisy results and a loss in
interpretability.

A different approach has been proposed by Wei et al. (2019): instead of focusing
the relationship between the experimental conditions and some summary statistic of
the resulting spike train, they studied the distribution of the deconvolved output. In
particular, this allows to analyze quantities such as the spike probability and the spikes’
amplitudes. They proposed a mixture model, with a Dirac mass at zero, representing
the absence of neuronal response, and a translated Gamma distribution to model the
positive amplitudes.

1.2. Data sets

1.2.1. Allen Brain Observatory data

The Allen Brain Observatory (Allen Institute MindScope Program, 2016; de Vries
et al., 2020) is a large public data repository for investigating how sensory stimula-
tion is represented by neural activity in the mouse visual cortex in both single cells
and populations. The project aims to provide a standardized and systematic survey
to measure and analyze visual responses from neurons across cortical areas, using
genetically encoded fluorescent calcium indicators, measured by in vivo two-photon
calcium imaging.

The study is an extended survey of physiological activity in the mouse visual cortex
in response to a range of visual stimuli (Allen Brain Observatory, 2017). Each mouse
was placed in front of a screenwhere different types of visual stimuli were shown, while
the mouse’s neuronal activity was recorded. The stimuli vary from simple synthetic
images such as locally sparse noise or static gratings, to complex natural scenes and
movies. The goal of the study is to investigate how neurons at different depths and
in different areas of the visual cortex respond to stimuli of varying complexity, to
understand their functional properties. An important finding from mammalian is
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Figure 1.1: Allen Brain Observatory data: calcium traces (black line) of two neurons located
in the primary visual area during Session A (upper plot) and Session B (bottom plot) of the
experiment. The background colors denote the visual stimulus displayed at each time.

that higher visual areas tend to respond to more complex stimuli relative to lower
areas. These differences indicate that the different neurons and visual areas have
distinct functional properties. Hence, it is of critical interest to devise methods that
allow inferring how the neuronal response varies under the different types of visual
stimuli. As an example, Figure 1.1 shows the calcium traces of two neurons recorded
during two different experiment sessions from the Allen Brain Observatory study. Each
experiment comprises three types of visual stimuli, and has a duration of approximately
one hour. These plots highlight that the neuronal response is highly variable, both
across experimental conditions and between neurons.

The Allen Brain Observatory study comprises records of neuronal activity from over
60000 cells from six visual areas (VISp, VISl, VISal, VISrl, VISam, and VISpm) and
different imaging depths (ranging from 175 to 625 microns). The data were collected
analyzing the brain activity of several genetically engineered mice, using different
transgenic Cre lines. The neuronal response of each mouse was recorded during three
experimental sessions: specifically, each session was made up of different types of
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Figure 1.2: Hippocampal neurons data: denoised calcium traces (black lines) recorded in
the first 350 seconds of the experiment for 86 neurons. The colored rectangles highlight the
presence of co-activating neurons.

visual stimuli displayed sequentially. Session “A” comprises two natural movies and
a drifting gratings stimulus; session “B” comprises both natural movies and natural
scenes, and a static gratings stimulus; finally, session “C” again includes two natural
movies, and a locally sparse noise. Moreover, in all sessions a period of absence of
stimuli was used to evaluate the baseline response during spontaneous activity. A
detailed description of the visual stimuli can be found in a technical report (Allen
Brain Observatory, 2017).

1.2.2. Hippocampal neurons data

Neurons located in the hippocampus are the focus of many studies investigating the
neuronal circuits that underlie cognition, learning and memory. Specifically, experi-
ments involving freely movingmice within particular environments allow studying the
location-specific firing of hippocampal neurons during navigation. These particular
neurons, that activate when the animal enters a specific place in the environment (the
place field), are often called place cells. Place cells are thought, collectively, to act as
cognitive representations of a specific location in space (O’Keefe and Nadel, 1978).
However, the anatomical organization of these subpopulations of co-activating cells
is still under investigation: it is unclear whether hippocampal neurons with similar
place fields are spatially organized within the hippocampus (Dombeck et al., 2010).

The dataset we consider collects the activity of 325 neurons located in the hippocam-
pus of a mouse during navigation in a closed environment for about 12 minutes. The
calcium level is recorded with a frequency of 15 frames per second, resulting in 10870
calcium measurements over time for each series. Moreover, for each neuron, it is also
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available its location in the region of interest of the hippocampus.

1.3. A brief review of some Bayesian nonparametric models

In this section we review some statistical tools that will be employed in this thesis in
the analysis of calcium imaging data. The purpose of this section is not to provide a
comprehensive review, but rather to outline the theoretical framework we adopted
and fix some notation. The core topic will be the Bayesian methodology, with a focus
on Bayesian nonparametric models. Concise and exhaustive reviews of Bayesian
nonparametrics can be found in Canale et al. (2016), and in the books by Hjort et al.
(2010) and Ghosal and van der Vaart (2017).

1.3.1. Finite mixture models

We start our discussion by reviewing finite mixtures. Although they are not part of
the Bayesian nonparametric methodology, they provide the starting point for many
models that we will review in the following. The content of this brief overview on
finite mixtures is largely based on the dedicated chapter in Gelman et al. (2013).

Definition and hierarchical representations

Mixtures are a popular tool tomodel heterogeneous data, characterized by the presence
of subpopulations within the overall population. In many practical problems the data
are collected under different conditions – unfortunately, it is not always possible to
have information on the subpopulation to which each individual observation belongs.
Mixture models can be used in problems of this type, where the population consists of
a number of latent subpopulations, and where each subpopulation can be described
using a relatively simple model.

Denote the observed data as a vector of n units y = (y1, . . . , yn), where each yi ∈ Y
is a scalar observation and Y is a measurable space (extension to the multivariate case
is straightforward). Also, assume that the n observations are exchangeable, meaning
that the joint probability distribution p(y1, . . . , yn) is invariant to permutations of the
indices. In the framework of finite mixtures, we assume that the population is made
of K ≤ n subpopulations, with K known and fixed. We assume that within each
of these groups, the distribution of yi, i = 1, . . . , n, can be modeled as f(yi | θ∗k), for
k = 1, . . . ,K , with f a density on Y . In this way we assume that a common parametric
family is assumed for all these component distributions, which however depend on
specific parameter vectors θ∗k. The last missing piece to construct a mixture model
is the parameter describing the proportion of population from each component k:
we denote this parameter with πk, satisfying

∑K
k=1 πk = 1. Denoting the full vectors

of parameters as θ∗ = (θ∗1, . . . , θ
∗
K) and π = (π1, . . . , πK), the data distribution for

observation i can be formulated as

p(yi | θ∗,π) = π1 f(yi | θ∗1) + · · ·+ πK f(yi | θ∗K).

In mixture models it is convenient to think of the component indicators as missing
data, and to impute them to obtain a much simpler form of the data distribution.
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Hence we introduce the cluster indicator variables ci ∈ {1, . . . ,K}, with ci = k if yi
belongs to the k-th mixture component. Conditionally on the mixture proportions,
it holds Pr(ci = k | π) = πk, for k = 1, . . . ,K . Moreover, given these allocation
variables, the yi are assumed to be independent and their distribution factorizes as
p(yi | ci,θ∗) =

∏K
k=1 f(yi | θ∗k)I(ci=k), where I(A) is the indicator variable, taking value

1 if event A occurs and 0 otherwise. The joint density of the observed data and the
unobserved allocation variables, conditionally on the model parameters, can now be
written as

p(y, c | θ∗,π) = p(y | c,θ∗) p(c | π) =
n∏

i=1

K∏
k=1

{πkf(yi | θ∗k)}
I(ci=k) .

Having defined the data distribution, in a Bayesian framework we need to specify
adequate prior distributions on the model parameters π and θ∗. The prior G0 on
θ∗ is usually chosen depending on the specific application and on the basis of the
component distribution f . For the mixture proportions πk, the conjugate and most
natural prior distribution is the Dirichlet distribution, π ∼ DirichletK(α1, . . . , αK).

Thanks to the data augmentation based on the cluster allocation variables, the model
also admits a useful hierarchical representation: for i = 1, . . . , n

yi | ci, θ∗1, . . . , θ∗K ∼ f(yi | θ∗ci)
Pr(ci = k | π1, . . . , πK) = πk for k = 1, . . . ,K

θ∗1, . . . , θ
∗
K ∼ G0

π1, . . . , πK ∼ DirichletK(α1, . . . , αK).

(1.2)

It is possible to rewrite Equation (1.2) in a slightly different way by thinking that
each observation yi is associated with a parameter θi, where these parameters are
drawn from a discrete distribution G with support on the K locations {θ∗1, . . . , θ∗K}.
The model then becomes, for i = 1, . . . , n

yi | θi ∼ f(yi | θi)
θi | θ∗,π ∼ G

G =
K∑
k=1

πkδθ∗k

θ∗1, . . . , θ
∗
K ∼ G0

π1, . . . , πK ∼ DirichletK(α1, . . . , αK).

(1.3)

Posterior inference for finite mixture models

Posterior inference for mixture models is usually performed through Markov Chain
Monte Carlo (MCMC) methods and, in particular, the Gibbs sampler, as the full
conditional distributions after imputing the cluster indicators C = {c1, . . . , cn} are
greatly simplified. Moreover, for the distribution of the mixture weights it is possible
to exploit the conjugacy of the Dirichlet distribution with the multinomial model. A
Gibbs sampler then simply iterates these three steps:
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1. Update the cluster-specific parameters θ∗k, for k = 1, . . . ,K , from

p(θ∗k | C,y) ∝ G0(θ
∗
k)
∏

i:ci=k

f(yi | θ∗k).

2. Update the weights π1, . . . , πK by sampling from a Dirichlet distribution with
updated parameters

π1, . . . , πK | C ∼ DirichletK(α1 + n1, . . . , αK + nK)

where nk is the number of observations allocated to cluster k, for k = 1, . . . ,K .

3. Update the cluster indicators: for i = 1, . . . , n and k = 1, . . . ,K ,

Pr(ci = k | π,θ∗, yi) ∝ πkf(yi | θ∗k).

1.3.2. Dirichlet process mixture models

Nonparametric mixtures extend model (1.3) by placing a nonparametric prior on G.
The most common prior on random probability measures is the Dirichlet process (DP),
introduced by Ferguson (1973; 1974). Draws from a DP are discrete distributions with
probability one, hence they turned out useful as flexible mixing measures in discrete
mixtures.

The Dirichlet process

The Dirichlet process is a stochastic process whose realizations are probability distribu-
tions with probability one. Stochastic processes are distributions over function spaces,
with their realizations being random functions. In the case of the DP, it is a distribution
over the space of probability measures, which are real-valued functions with particular
properties, which can be interpreted as distributions over some probability space. In
this section we just briefly review some of the main properties of the DP, the reader
can refer to, e.g., Müller et al. (2015) and Hjort et al. (2010) for an exhaustive review
of the Dirichlet process prior and related models.

Formally, a random distributionG on some probability spaceΘ is said to follow a DP
prior with base measure G0 and concentration parameter α, denoted G ∼ DP(α,G0),
if for any partition {B1, . . . , BH} of Θ

(G(B1), . . . , G(BH)) ∼ DirichletH
(
αG0(B1), . . . , αG0(BH)

)
.

That is, the finite-dimensional marginal distributions of a DP are Dirichlet distributions.
The success of the DP mainly arises from two appealing characteristics: its large

support, with respect to the space of probability distributions, and tractability of the
posterior distribution. Closely related to this last aspect is the conjugacy property of
the DP: as the finite dimensional Dirichlet distribution is conjugate to the multinomial
likelihood, the DP is conjugate with respect to i.i.d. sampling, that is, with respect
to a completely unknown distribution from i.i.d. data. More precisely, if we take
{θ1, . . . , θn} a sequence of independent draws from G ∼ DP(α,G0), then the posterior
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distribution of G given these observed values is still a DP. Letting again {B1, . . . , BH}
be a finite measurable partition of Θ, and letting nh be the number of observed values
in Bh, for h = 1, . . . , H , the posterior distribution is given by

(G(B1), . . . , G(BH)) | θ1, . . . , θn ∼ DirichletH
(
αG0(B1) + n1, . . . , αG0(BH) + nH

)
.

In other terms, the posterior distribution is still DP with updated parameters:

G | θ1, . . . , θn ∼ DP

(
α+ n,

αG0 +
∑n

i=1 δθi
α+ n

)
where the posterior basemeasure is aweighted average between the prior basemeasure
G0 and the empirical distribution

∑n
i=1 δθi/n. The weight associated with the prior

base distribution is proportional to α, while the empirical distribution has weight
proportional to the number of observations.

Another useful result, which allows to get a better understanding of the effect
of using a DP as mixing measure, is the represented by Blackwell-MacQueen urn
scheme (Blackwell and MacQueen, 1973), which describes the predictive distribution
of draws from a DP. Consider again a sequence {θ1, . . . , θn} of independent draws
from G ∼ DP(α,G0). The predictive distribution of θn+1 conditioned on these values,
and with G marginalized out is given by

θn+1 | θ1, . . . , θn ∼ 1

α+ n

(
αG0 +

n∑
i=1

δθi

)
.

Therefore the posterior base measure given {θ1, . . . , θn} is also the predictive distri-
bution of θn+1. This distribution highlights the discreteness of draws from a DP, and
allows to investigate the clustering structure induced by the DP when is used as mixing
measure in mixture models. Since the distribution is discrete, it is possible that some of
the values {θ1, . . . , θn}will be repeated. In particular, the unique values of {θ1, . . . , θn}
induce a partition of the set {1, . . . , n} into clusters defined by observations with the
same value. Denoting with {θ∗1, . . . , θ∗K+

} the unique values among the θi, and letting
nk be the number of θi equal to θ∗k, for i = 1, . . . , n and k = 1, . . . ,K+, the predictive
distribution can be written as

θn+1 | θ1, . . . , θn ∼ 1

α+ n

αG0 +

K+∑
k=1

nkδθ∗k

 .

From this equation, it is possible to notice that θn+1 will take a value θ∗k with a proba-
bility proportional to nk, the number of times it has already been observed. Hence,
the larger nk is, the higher the probability that it will grow. This is a rich-gets-richer
phenomenon, where large clusters grow larger faster.

The DP admits several nice representations. An intuitive constructive definition
of a DP random probability measure is given by Sethuraman (1994) and is based on
the discrete nature of the process, which can be represented as a a weighted sum of
point masses. This definition states that if G ∼ DP(α,G0), then it can be expressed as
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follows:

vk ∼ Beta(1, α), θ∗k ∼ G0 for k ≥ 1

π1 = v1, πk = vk

k−1∏
h=1

(1− vh) for k ≥ 2 (1.4)

G =
∞∑
k=1

πkδθ∗k .

The construction of the weights {πk}∞k=1 by means of beta random variable is usually
called stick-breaking process, also denoted as π ∼ GEM(α) after the names of Griffiths,
Engen and McCloskey. The name arises from a metaphor for this construction, where
a unit stick is broken in infinitely many parts, and each piece is used to define a weight.
Because of its simplicity, this representation has motivated extensions of the process as
well as new algorithms for posterior inference.

Dirichlet process mixtures

Getting back to the framework of mixture models, from the last representation of the
DP it is clear that this process can be conveniently used as mixing measure in mixture
models. Following the structure of Equation (1.3) for finite mixtures, DP mixtures
(DPMs) can be written as

yi | θi ∼ f(yi | θi)
θi | G ∼ G

G ∼ DP(α,G0).

Alternatively, making use of the set of unique values {θ∗k}∞k=1 and of Sethuraman’s
representation, the model can be expressed as

p(yi | G) =

∞∑
k=1

πkf(yi | θ∗k) (1.5)

where the weights {πk}∞k=1 follow a stick-breaking construction and the {θ∗k}∞k=1 are
i.i.d. samples from the base measure G0.

Differently from finite mixtures, DPMs are infinite mixture models, as they assume
a countably infinite number of components. However, because the πk’s decrease
exponentially quickly, only a small number of components will be used to model the
data a priori: in the following, we will define clusters these non-empty components.
In general, in a sample of size n, the prior expected number of clusters E(K+) is
approximately equal to α log(1 + n/α). This means that while in finite mixture models
the number of clusters has to be fixed in advance, in DPMs the number of clusters is
determined by the data and can be inferred.

Posterior inference for DPMs

Applying MCMC techniques to DPMs directly is not feasible, as it would require
imputing the infinite-dimensional distribution G. Instead, successful algorithms to
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perform posterior inference on DP mixtures have been developed using the particular
representations that this process admits. It is common to divide these methods into
two classes depending on the strategy they adopt to deal with the infinite-dimensional
component of themodel: marginal algorithms are based onmodel representationswith
the DP is integrated out, while conditional algorithms explicitly represent the measure
generated by the process using its stick-breaking construction. Here we will focus
on conditional methods. Avoiding marginalization of the random measure allows to
perform inference on it directly, moreover, these methods are often computationally
more efficient than marginal ones; however, they require to devise good strategies to
deal with the infinite dimension of the process.

In the blocked Gibbs sampler of Ishwaran and James (2001) the infinite random
measure is truncated to an upper bound K for the number of components. The
motivation that justifies this approach is that the weights {πk}∞k=1 determined by the
stick-breaking construction are stochastically decreasing in k. By choosing a sufficiently
large value K one can assume that

∑∞
k=K+1 πk has a distribution concentrated near

zero. Adopting such truncation leads to a representation of the model as finite mixture,
so the sampler described in Section 1.3.1 can be applied with just few changes on
the weights distribution. In particular, the weights are now sampled from a stick-
breaking process with vk ∼ Beta(1 + nk, α+

∑K
h=k+1 nh) for k = 1, . . . ,K − 1. Finally,

letting vK = 1 ensures that the first K weights sum to one. Adopting this approach
leads to a straightforward MCMC algorithm for posterior inference, however, in some
applications K needs to be set to very large values in order to obtain an adequate
approximation.

The slice sampler (Walker, 2007; Kalli et al., 2011) has been adopted as an alternative
“dynamic” truncation method to automatically select the active components of the
mixture. The slice sampler relies on the introduction of latent uniform randomvariables
ui, i = 1, . . . , n, such that marginalizing the joint density of (yi, ui) still returns the
desired density in Eq. (1.5), and such that the conditional density of yi | ui only
involves a finite number of mixture components. Specifically, model (1.5) can be
obtained as marginal density with respect to ui of

p(yi, ui | G) =
∞∑
k=1

I(ui < πk)f(yi | θ∗k).

The key of introducing this variable is that, conditionally on ui, the density can be
written as

p(yi | ui, G) = N−1
u

∑
k∈Au

f(yi | θ∗k)

where Au is the set of indices of active components Au = {k : πk > u} and Nu =∑
k∈Au

πk. This model defines a finite mixture with equal weights N−1
u . Introducing

the cluster indicators C = {c1, . . . , cn} further simplifies the density, similarly to the
case of finitemixtures. Finally, Kalli et al. (2011) also introduce a non-stochastic positive
sequence {ξ1, ξ2, . . . } in order to improve mixing (we refer to the original paper for a
discussion on the choice of the sequence). With all these elements, the joint density of
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(y,u, C) conditioned on π and θ∗ becomes

p(y,u, C | π,θ∗) =

n∏
i=1

I(ui < ξci)
πci
ξci

f(yi | θ∗ci). (1.6)

The slice sampler algorithm iterates the following steps:

1. Update the cluster-specific parameters θ∗k, for k = 1, . . . ,K , where K is defined
as the maximum index h such that ξh > ui for all i = 1, . . . , n, from

p(θ∗ | C) ∝ G0(θ
∗
k)
∏

i:ci=k

f(yi | θ∗k).

2. Update the weights πk for k = 1, . . . ,K using the stick-breaking construction
(1.4) with beta random variables vk ∼ Beta(1 + nk, α+

∑K
h=k+1 nh).

3. Sample the latent variables ui from a uniform distribution ui | ci ∼ Unif(0, ξci)

4. Update the cluster allocations ci for i = 1, . . . , n from

Pr(ci = k | ui, yi, θ∗k) ∝ I(k : ξk > ui)
πk
ξk

f(yi | θ∗k).

1.3.3. Finite mixtures with an unknown number of components

To avoid fixing the number of clusters, a different approach toDPmixtures is to consider
finite mixtures with a prior on the number of components. Although this may seem as
the most natural way to infer the number of groups, application of finite mixtures with
an unknown number of components, recently often called mixtures of finite mixtures
(MFMs), has long been hindered by the difficulty of performing posterior inference.
Several inference methods have been proposed for this class of models (Richardson
and Green, 1997; Nobile, 2004; Nobile and Fearnside, 2007; McCullagh and Yang, 2008)
often exploiting the reversible jump Markov chain Monte Carlo techniques. However,
applying the reversible jump in new situations can be hard, as it requires designing
new reversible jump moves.

Because of these difficulties, researchers have also investigated alternative strategies:
for example, Stephens (2000) exploited birth-death processes to construct an ergodic
Markov chain with the appropriate stationary distribution. More recently, different
models have been proposed inspired by nonparametric mixtures (Miller and Harrison,
2018; Argiento andDe Iorio, 2019). Miller andHarrison (2018) explicitly derivedMFMs
counterparts for several properties exhibited by DPMs. However, their approach
is restricted to a fixed parameter α for the Dirichlet distribution, regardless of the
dimension K, and only relies on marginal methods for performing posterior inference.
Argiento andDe Iorio (2019) instead introduced a new class of randommeasures based
on the normalization of a point process, and used it as mixing measure in a MFMs.
Moreover, they outlined marginal and conditional methods for posterior inference
using this class of discrete random measures.

Another approach is discussed by Malsiner-Walli et al. (2016) and Frühwirth-
Schnatter and Malsiner-Walli (2019), based on the use of sparse mixtures. Similarly
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to DPMs, in this formulation they distinguish between the mixture components and
the clusters, which are defined as the components actually used by the data. In their
approach, the number of components K is fixed to a large and clearly overfitting value,
and a Dirichlet prior with small parameter on the mixture weights ensures that the
(random) number of clustersK+ will take values smaller thanK with high probability
a priori and also a posteriori.

Generalized mixtures of finite mixtures

A general formulation that includes several models described above as special cases
(finite mixtures with a fixed number of clusters, MFMs and overfitted mixtures) has
recently been described by Frühwirth-Schnatter et al. (2021): they call this specification
generalized mixture of finite mixtures (gMFM). Similarly to overfitted mixtures, a key
aspect of this approach is the distinction between the number of components K and
the number of clusters K+; however, here, the number of components is also random.
In the following we will review some aspects of these models that will be used later
in this thesis. The gMFM model can be defined in a hierarchical form analogous to
Equation (1.2) as

yi | K, ci = k, θ∗k ∼ f(yi | θ∗k)
Pr(ci = k | K,π1, . . . , πK) = πk for k = 1, . . . ,K

θ∗1, . . . , θ
∗
K ∼ G0

π1, . . . , πK | K,α ∼ DirichletK(α/K, . . . , α/K)

K ∼ p(K)

Including a prior on K also induces a prior on the number of clusters K+: here a
crucial role is played by the sequence of concentration parameters of the Dirichlet
distribution. Considering fixed parameters as in Miller and Harrison (2018), where
a DirichletK(1, . . . , 1) is used regardless of the value of K, leads to a prior expected
number of clusters E(K+) close to E(K) for many priors p(K). To achieve sufficient
flexibility, the parameters of the Dirichlet distribution should be assigned an adequate
prior distribution, in order to balance the effect of the varying dimension of the prior.
For example, having concentration parameters that decrease with increasingK induces
randomness in the prior distribution of K+ | K, allowing for a gap between K+ and
K. In the formulation proposed by Frühwirth-Schnatter et al. (2021), the parameters
decrease linearly with K, and a F prior distribution is used for the hyperparameter α.
The specification of a gMFM is completed with a suitable prior p(K) on the number of
components. In their work, Frühwirth-Schnatter et al. (2021) discuss different choices
and compare the resulting prior on the number of clusters. A desirable prior on K
should be weakly informative on the number of clusters, and should lead to a prior
on K+ which is concentrated on moderate number of clusters, with fat tails to ensure
that also a high number of clusters may be estimated. They suggest to use a translated
prior for K, where K − 1 follows a beta-negative-binomial distribution, which is a
hierarchical generalization of the Poisson, the geometric and the negative-binomial
distribution.
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Posterior inference for gMFMs

An important contribution of the work of Frühwirth-Schnatter et al. (2021) is the
introduction of a new inference algorithm “telescoping sampler” to obtain the posterior
distribution of all model parameters without resorting to reversible jump MCMC
techniques. Their algorithm is a trans-dimensional Gibbs sampler which at each
iteration alternates two key steps: first, it updates the partition of the observations
C = {c1, . . . , cn} conditionally on the number of components, then, it samples a new
value for K on the basis of this partition. Explicitly sampling the number of mixture
components greatly simplifies inference as, conditionally on K, the updates of the
partition and of the model parameters are brought back to standard steps. Hence the
crucial aspect is sampling from the full conditional of the number of components. This
is achieved by combining the conditional exchangeable partition probability function
p(C | n,K, α), derived in Section 2.2 of Frühwirth-Schnatter et al. (2021), with the prior
p(K). The algorithm performs the following steps:

1. Update the partition C:

(a) Sample ci, for i = 1, . . . , n from Pr(ci = k | π,θ∗, y) ∝ πkf(yi | θ∗k);

(b) Determine the number K+ of non-empty clusters and relabel the compo-
nents so that the first K+ clusters are non-empty.

2. Conditional on C, update the parameters of the non-empty components (and
eventual hyperparamters):

p(θ∗k | C,y) ∝ G0(θ
∗)
∏

i:ci=k

f(yi | θ∗k) for k = 1, . . . ,K.

3. Conditional on C, draw a new value for K from

p(K | C, α) ∝ p(C | n,K, α)p(K) = p(K)
K!αK+

(K −K+)!KK+

K+∏
k=1

Γ(nk + α/K)

Γ(1 + α/K)

for K = K+,K+ + 1, . . . ; where nk is the number of observations in cluster k.

4. Update α by performing a Metropolis-Hastings step to sample α from its full
conditional

p(α | C,K) ∝ p(α)
αK+Γ(α)

Γ(n+ α)

K+∏
k=1

Γ(nk + α/K)

Γ(1 + α/K)

5. Add K −K+ empty components,

(a) ifK > K+, sampleK−K+ new values θ∗k from the prior, k = K++1, . . . ,K ;

(b) update the weight vector as

π1, . . . , πK | K,α, C ∼ DirichletK(α/K + n1, . . . , α/K + nK).
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1.3.4. Bayesian nonparametric models for nested data

All models described so far assumed that the data were exchangeable, that is, they
arise from one unknown distribution. However, there is growing interest in modeling
scenarios where the data come from different but related groups, as for example
different populations or experiments. In these cases it is desirable to individually
model the distribution of each group, while also borrowing information between them.
When data are collected from individuals in multiple groups, the exchangeability
assumption is no longer valid: in these cases, observations are said to be partially
exchangeable, meaning that they are exchangeable within groups.

Suppose that in addition to each yi, i = 1, . . . , n, we also observe a categorical variable
gi with values in {1, . . . , J} indicating the population to which yi belongs, so that when
gi = j means that yi comes from the j-th group. In the Bayesian nonparametric
framework, several approaches have been proposed to deal with these nested data sets.

The hierarchical Dirichlet process (Teh et al., 2006) arises from the desire to flexi-
bly model the distributions of the observations of each group, while also performing
clustering to capture latent structures among all individuals. Each group-specific dis-
tribution is modeled with a mixture model which uses a random probability measure
Gj as mixing measure, where the Gj ’s are distributed according to a DP: this allows
to obtain a partition of individuals within each group. In order to borrow informa-
tion across groups, they propose a hierarchical formulation where one draw from a
Dirichlet process is used as the base measureG0 of the Dirichlet process generating the
individual Gj ’s. This construction implies that the distributions {G1, . . . , GJ} share
the same atoms (the atoms ofG0), thus the model yields a clustering of the individuals
also across groups. However, as these Gj ’s are independent draws, in general, they
will have different weights: as a result, there is no clustering of these group-specific
distributions. The hierarchical DP hence does not allow to investigate similarities
between the distributions, but only to cluster individuals.

To overcome this limitation, Rodríguez et al. (2008) introduced the nested Dirichlet
process, which allows to obtain a clustering both of the observations within each
group, and of the groups themselves. Consider again a collection of distributions
{G1, . . . , GJ} serving as group-specific mixing measures of a nonparametric mixture.
The nested DP assumes that Gj | Q ∼ Q for j = 1, . . . , J and Q ∼ DP (α,DP (β,G0)).
Using the stick-breaking representation of the DP, this model can be expressed as

G1, . . . , GJ | Q ∼ Q, Q =
∞∑
k=1

πkδG∗
k

(1.7)

G∗
k =

∞∑
l=1

ωl,kδθ∗l,k

where the sequences of weights {πk}∞k=1 and {ωl,k}∞l=1 for k ≥ 1 follow a stick breaking
construction, π ∼ GEM(α) and ωk ∼ GEM(β), and the parameters θ∗l,k are i.i.d.
samples from G0. A main difference from the hierarchical DP is that this formulation
allows to cluster the group-specific distributions: indeed, if two Gj ’s are assigned to
the sameG∗

k, then the observations in the two groups have exactly the same generating
distribution. When two groups share the same distribution, they are said to belong to
the same distributional cluster.
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In a recent paper by Camerlenghi et al. (2019), however, they noted a degeneracy
property that occurs in the nested DP in case of ties across samples at the observed or
latent level. In particular, if two distributions G1 and G2 share at least one atom, then
their posterior distribution degenerates on {G1 = G2}, forcing homogeneity across the
two samples. To overcome this drawback, they introduce a novel class of latent nested
processes. These processes are based on a mixture of two random distributions: an
idiosyncratic component and a shared component. The shared random distribution
explicitly accounts for the possibility of observing some common atoms, while the
idiosyncratic one allows some atoms to be distinct and specific to each subpopulation.
However, implementation of this model becomes challenging and computationally
burdensome when the number of groups increases.

The common atoms model

Another nested nonparametric prior, more suited to practical applications, is proposed
by Denti et al. (2021). They formulate a constrained modification of the nested DP
which, however, does not suffer from the degeneracy issue. Moreover, compared to the
models introduced by Camerlenghi et al. (2019), it is computationally more efficient
and allows to perform posterior inference in a quite straightforwardway evenwhen the
number of groups is moderate. The first level of their common atoms model (CAM) is
analogous to the nested DP (Eq. 1.7), however, the specification of the distributional
atoms G∗

k makes use of a common set of atoms for all k. Hence the distributions G∗
k

can be seen as realizations of a single-atom dependent DP,

G∗
k =

∞∑
l=1

ωl,kδθ∗l

where the sequences of weights {ωl,k}∞l=1 for k ≥ 1 again follow a stick breaking
construction, and the common atoms {θ∗l }∞l=1 are independent draws from a base
measure G0. Similarly to the nested DP, the first mixture level of the CAM allows
to perform a clustering of the group-specific distributions Gj ; however, as the set of
atoms defining theG∗

k is common across distributions, the CAM also allows to obtain a
clustering of individuals both within each group and across them, in a similar fashion
to the hierarchical DP.

Convoluting this nested prior with a kernel we obtain a nested infinite mixture
model: the density for observations yj = {yi : gi = j; i = 1, . . . , n} belonging to group
j can be written as

p(yj | θ∗,π,ω) =

∞∑
k=1

πk
∏

i:gi=j

∞∑
l=1

ωl,kf(yi | θ∗l ).

Introducing two sequences of latent cluster allocations CD = {cDgi} and C = {ci} for
i = 1, . . . , n, corresponding respectively to the distributional cluster allocation of the J
groups and to the observational cluster allocation of individuals, the model admits a
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hierarchical representation as

yi | ci,θ∗ ∼ f(yi | θ∗ci)

ci | cDgi = k,ωk ∼
∞∑
l=1

ωl,kδl ωk ∼ GEM(β) for k ≥ 1

cDgi | π ∼
∞∑
k=1

πkδk π ∼ GEM(α)

θ∗l ∼ G0 for l ≥ 1.

Posterior inference for the CAM

To infer on the posterior distribution of the CAM model, Denti et al. (2021) develop
a nested version of the slice sampler of Kalli et al. (2011) (described in the last part
of Section 1.3.2). This sampler relies on two sequences of latent uniform variables
uD = {ugi}Jgi=1 (on the distributional level) and uO = {uOi }ni=1 (on the observational
level) pointing to the active mixture components. Moreover, they also introduce two
deterministic sequences ξD = {ξk}∞k=1 and ξO = {ξOl,k}∞l=1 for k ≥ 1. Similarly to
Equation 1.6, the model can be written as

p(y,uD,uO, CD, C | θ∗,π,ω) =
J∏

j=1

I(uDj < ξD
cDj
)
πcDj
ξD
cDj

∏
i:gi=j

I(uOi < ξO
ci,cDj

)
ωci,cDj

ξO
ci,cDj

f(yi | θ∗ci).

Then, the algorithm iterates the following steps

1. Sample the latent uniform random variables

(a) At the distributional level, for j = 1, . . . , J , sample uDj ∼ Unif(0, ξD
cDj
)

(b) At the observational level, for i = 1, . . . , n, sample uOi ∼ Unif(0, ξO
ci,cDgi

)

2. Update the weight vectors π and ωk, for k ≥ 1

(a) At the distributional level, sample the distributional stick-breaking propor-
tions vk ∼ Beta(1+mk, α+

∑K∗

h=k+1mh), wheremk is the number of groups
in distributional cluster k.

(b) At the observational level, for each k = 1, . . . ,K∗, sample the stick-breaking
proportions ul,k ∼ Beta(1 + nk

l , β +
∑L∗

h=l+1 n
k
h), where nk

l is the number of
individuals assigned to observational cluster l and distributional cluster k.

3. Update the cluster indicators

(a) For the distributional clusters, sample the variables cDj from

Pr(cDj = k | uD,π,ωk, C) ∝ I(uDj < ξD
cDj
)
πcDj
ξD
cDj

∏
i:gi=j

ωci,k
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(b) For the observational clusters, sample the variables ci from

Pr(ci = l | yi, gi = j, cDj ,u
O, ωl,cDj

) ∝ I(uOi < ξO
l,cDj

)
ωl,cDj

ξO
l,cDj

f(yi | θ∗l ).

4. Conditional on the observational clusters, sample the cluster-specific parameters
θ∗l from

p(θ∗ | C) ∝ G0(θ
∗
l )
∏
i:ci=l

f(yi | θ∗l ).

We refer to the Supplementary Material of the original paper for details about the
specific sequences ξO and ξD and computation of the upper boundsK∗ andL∗ involved
at step 2.



2 NOVEL POSTER IOR SAMPL ING SCHEMES
FOR POISSON ENCODING MODELS

As we have seen in Section 1.1.2, encoding models are an important tool to study
how the deconvolved spike trains vary with the underlying experimental conditions.
To this end, GLMs provide a simple and flexible strategy to estimate the impact of
each covariate on the mean of the variable of interest. A relevant question that can
be addressed using GLMs is how the number of spikes detected during a specific
experiment is affected by the experimental conditions and the characteristics of the
neurons. A plausible assumption to model the spike counts per time bin is to use
a Poisson distribution (Paninski et al., 2007): in the context of GLMs, this setting
naturally leads to the use of Poisson regression models.

Poisson regression models are common in statistics and represent one of the most
popular choices to model how the distribution of count data varies with predictors.
A typical assumption is that, under an independent sample of counts, y1, . . . , yn, the
probability mass function of the generic yi conditionally on a p-dimensional vector of
covariates xi is

f(yi | λi) =
λyi
i

yi!
e−λi , log(λi) = xTi β, (2.1)

where β is a p-dimensional vector of unknown coefficients. Linking the linear predictor
xTi β and the parameter λi with the logarithm represents the most natural choice, as the
logarithm is the canonical link for the Poisson family (Nelder and Wedderburn, 1972).
Besides encoding models for spike train analyses, this model has broad application in
several fields, including medicine and epidemiology (Frome, 1983; Frome and Check-
oway, 1985; Hutchinson and Holtman, 2005), manufacturing process control (Lambert,
1992), analysis of accident rates (Joshua and Garber, 1990; Miaou, 1994), and crowd
counting (Chan and Vasconcelos, 2009), among others.

Adopting a Bayesian approach can be particularly convenient in the context of
calcium imaging studies. As pointed out by Paninski et al. (2007), often some regu-
larization technique is needed to obtain reliable estimates of the effects, as in some
experiments the large number of covariates leads to a sensible risk of overfitting. The
Bayesian paradigm offers a natural approach to regularized regression: there is a large
literature on prior inducing some kind of shrinkage or selection, as, for example, the
spike-and-slab prior (Mitchell and Beauchamp, 1988), the Bayesian lasso (Park and
Casella, 2008), the horseshoe prior and its extensions (Carvalho et al., 2010; Piironen
and Vehtari, 2017).

However, model (2.1) does not enjoy any conjugacy property and, thus, regard-
less of the prior used, the posterior distribution of β is not available in close form.
Consequently, inference is conducted using Markov Chain Monte Carlo (MCMC)
methods, which obtain a sample from the posterior distribution of the parameters.

23
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Several approaches have focused on how to easily obtain the posterior distribution of
the coefficients of Poisson models without requiring complex tuning strategies or long
computation times. In the context of count-valued time series, Frühwirth-Schnatter
and Wagner (2006) proposed a formulation of the model based on two levels of data
augmentation, to derive an efficient approximate Gibbs sampler. Frühwirth-Schnatter
et al. (2009) exploited a data augmentation strategy to simplify the computation of hi-
erarchical models for count and multinomial data. Data augmentation strategies have
also been employed in the case of models for multivariate dependent count data (Karlis
and Meligkotsidou, 2005; Bradley et al., 2018). However, the simplest Poisson regres-
sion in (2.1) still lacks a specific and efficient algorithm to sample from the posterior
distribution of the parameters β for any prior choice, making the Metropolis-Hastings
(Hastings, 1970) or Hamiltonian Monte Carlo (HMC) (Neal, 2011) algorithms the
only available options.

On the other hand, several efficient computational strategies for binary regression
models have been proposed in the literature. Using the probit link, Albert and Chib
(1993) proposed an efficient data augmentation based on a latent Gaussian variable,
while the more recent contribution by Polson et al. (2013) exploited the canonical logit
link, introducing an efficient Pólya-gamma data augmentation scheme. Leveraging Pol-
son et al. (2013) approach, we propose a novel approximation of the posterior distribu-
tion that can be exploited as proposal distribution of a Metropolis-Hastings algorithm
or as importance density of an importance sampling for Poisson log-linear models
with conditional Gaussian prior distributions on the regression parameters. With
conditional Gaussian prior, we refer to a possibly hierarchical prior with conditional
distribution β ∼ N(b,B), with b and/or B random. Examples include straightforward
Gaussian prior distributions with informative (b,B) fixed using prior information,
and scale mixtures of Gaussian where b is set to zero and the variance has a suitable
hierarchical representation, such as the Bayesian lasso prior or the horseshoe prior,
among others.

More specifically, we introduce an approximation of the posterior density that ex-
ploits the negative binomial convergence to the Poisson distribution. Thanks to this
result, we are able to leverage the Pólya-gamma data augmentation scheme of Polson
et al. (2013) to derive an efficient sampling scheme. In the next section, we introduce
and discuss the proposed algorithms, starting from the definition of an approximate
posterior distribution whose sampling can be performed straightforwardly. Sampling
from this approximate posterior is then used as proposal density for the Metropolis-
Hastings or importance sampler. The performance of the proposed algorithms in terms
of computational efficiency is compared with that of state-of-the-art methods in a sim-
ulation study. Finally, we employ the proposed method to estimate a deconvolution
model on spike train data from the Allen Brain Observatory.
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2.1. Efficient posterior sampling strategies

2.1.1. Approximate posterior distribution

Assume y1, . . . , yn is an independent sample of counts from model (2.1). We intro-
duce an approximation of the posterior density that exploits the negative binomial
convergence to the Poisson distribution, i.e., we approximate the i-th contribution to
the likelihood function f(yi | λi) with f̃ri(yi | λi) where

f̃ri(yi | λi) =

(
ri + yi − 1

ri − 1

)(
ri

ri + λi

)ri ( λi

ri + λi

)yi

, (2.2)

which corresponds to the probability mass function of a negative binomial random
variable with parameter ri, the number of failures until the experiment is stopped, and
success probability λi/(ri + λi). As ri approaches infinity, this quantity converges to a
Poisson likelihood.

Following Polson et al. (2013), we rewrite each i-th contribution to the approximate
likelihood (2.2) by introducing augmented Pólya-gamma random variables ωi ∼
PG(yi + ri, 0), i.e

f̃ri(yi | β) ∝ exp

{
(xT

i β − log ri)(yi − ri)

2

}
2−(yi+ri)×∫ +∞

0
exp

{
−ωi

(xT
i β − log ri)

2

2

}
fpg(ωi; yi + ri, 0) dωi,

where fpg(·; ξ, ζ) denotes the density of a Pólya-gamma with parameters (ξ, ζ).
In what follows, we assume that prior knowledge about the unknown β parameters

is represented by a conditionally Gaussian prior, i.e. β ∼ N(b,B), with a possible
hierarchical representation for the parameters b and B. Examples include default
informative Gaussian with fixed (b,B) or scale mixtures of Gaussian where b is set
to zero and the variance has a suitable hierarchical representation (Park and Casella,
2008; Carvalho et al., 2010; Piironen and Vehtari, 2017).

The approximate posterior based on the conditionally Gaussian prior β ∼ N(b,B) and
approximate likelihood

∏n
i=1 f̃ri(yi | β) is consistent with the successful Gibbs sampler

of Polson et al. (2013); i.e., sampling from the approximate posterior is equivalent to
sampling iteratively from the following full conditionals

ωi|β ∼ PG(yi + ri, x
T
i β − log ri), β|y, ω ∼ Np(mω, Vω), (2.3)

where Vω = (XTΩX + B−1) and mω = Vω(X
Tκ + B−1b), with Ω = diag{ω1, . . . , ωn}

and κ = (ω1 log r1 + (y1 − r1)/2, . . . , ωn log rn + (yn − rn)/2).
The adherence of this approximate posterior to the true posterior highly depends on

the values of ri, with larger values of ri resulting in better approximations. However,
when employing this result in posterior sampling, large values of ri imply longer
computation time due to the computational cost of sampling Pólya-gamma random
variables with large parameters. Although the specific choice of ri remains an open
point—discussed later in Section 2.1.4—in the context of MCMC sampling, we propose
to reduce the computational burden related to the sampling of n Pólya-gamma random
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variables marginalizing the Gaussian distribution in (2.3) with respect to the related
Pólya-gamma density conditioned on β(t−1), the last available β sampled. Since this
marginalization is not in a closed form we introduce a second level of approximation
of the true posterior. Specifically, we introduce q(β | β(t−1)) a density that depends
on β(t−1), defined as the first-order Taylor expansion of the marginalized Gaussian
distribution, i.e.

q(β | β(t−1)) = (2π)−p/2det(VE(ω))
−1/2 exp

{
−1

2
(β −mE(ω))

TV −1
E(ω)(β −mE(ω))

}
,

(2.4)
whereVE(ω) = (XTΩ̃X+B−1),mE(ω) = VE(ω)(X

Tκ̃+B−1b), Ω̃ = diag{E(ω1), . . . ,E(ωn)},
κ̃ = (E(ω1) log ri +(y1 − ri)/2, . . . ,E(ωn) log ri +(yn − ri)/2), and for each i = 1, . . . , n
the conditional expectation of each ωi is simply

E (ωi) =
ri + yi

2(xT
i β

(t−1) − log ri)

(
ex

T
i β

(t−1) − ri

ex
T
i β

(t−1)
+ ri

)
,

or equivalently
β | β(t−1) ∼ N(mE(ω), VE(ω)). (2.5)

The above construction is eventually used as the building block of efficient Metropolis-
Hastings and importance sampling algorithms, as described in the following sections.

2.1.2. Metropolis-Hastings sampler

We employ the above sampling mechanism as the proposal density in a Metropolis-
Hastings algorithm. Consistent with this, at each iteration of the MCMC sampler, an
additional step that accepts or rejects the proposed draw is introduced. Specifically,
we assume that conditionally on the current state of the chain β(t−1), a new value β∗ is
sampled from (2.5). Then, the acceptance probability

α(β∗, β(t−1)) = min

{
1,

π(β∗ | y)
π(β(t−1) | y)

q(β(t−1) | β∗)

q(β∗ | β(t))

}
, (2.6)

is evaluated to decide whether to accept or reject the proposed β∗, where π(β∗ | y) is
the exact posterior distribution.

To compute the acceptance probability in (2.6), the forward and backward transition
densities q(β∗ | β(t−1)) and q(β(t−1) | β∗) must be computed. Consistent with this,
approximation (2.4) is particularly useful: without it, it would be necessary to compute
the marginal density where the Pólya-gamma random variables are integrated out.
However, themarginalizationwith respect to the Pólya-gamma density does not lead to
a closed form expression; thus, the Metropolis-Hastings algorithm cannot be defined.

Clearly, for increasing ri the proposal density (2.5) is closer to the true full conditional
distribution; hence, the related acceptance rate will be higher, and the Metropolis-
Hastings algorithm will be similar to a Gibbs sampler. On the other hand, setting this
parameter to get a lower acceptance rate can result in smaller autocorrelation, and
hence a better mixing (Robert and Casella, 2010). We discuss an approach to choose ri
balancing these two extremes in Section 2.1.4.
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2.1.3. Adaptive importance sampler

The sampling mechanism (2.5) can also be exploited within the context of importance
sampling, where the posterior expectation of a function of the parameter β, E (h(β)) =∫
h(β)π(β | y)dβ is evaluated via Monte Carlo integration without direct sampling

from π(β | y). To this end, the general approach is to define an importance density q(β)
that is used to sample values β(1), . . . , β(T ), which are eventually averaged to obtain an
approximation of E (h(β)) through

Ê(h(β)) =
1

T

T∑
t=1

w̃(β(t))h(β(t)),

with weights

w̃(β(t)) =
π(β(t) | y)
q(β(t))

.

The efficiency of this algorithm is determined by the ability of the importance density
to sample values relevant to the target density. To improve this aspect, we modify the
original algorithm and, instead of using a fixed density q, at each iteration we consider
an adaptive proposal. Specifically, wemake use of (2.4) as proposal density, but, unlike
the Metropolis-Hastings algorithm, we update it only when the last sampled value
moves towards a region with a higher posterior probability. Denoting with βc the
conditioning value, at each iteration we sample a new value from q(β(t) | βc), and if
π(β(t) | y) > π(βc | y), we set βc = β(t). Thus, the importance density is adaptively
updated and the weights become

w̃(β(t)) =
π(β(t) | y)
q(β(t) | βc)

.

Algorithms which are continuously updated in order to maximize their performances
have often been studied. For example, in a different framework, and specifically in
the context of sequences of distributions, Del Moral et al. (2006) define a sequential
Monte Carlo scheme where the proposal distribution is always updated to exploit all
available information.

2.1.4. Tuning parameters ri

The values of the parameters ri, i = 1, . . . , n, have to be tuned to balance the trade-off
between acceptance rate and autocorrelation in theMetropolis-Hastings, and to control
the mixing of the weights in the importance sampler. However, tuning n parameters
is not practical, especially for moderate to large n. The first simple solution sets all
parameters equal to a single value r, however, in our experience, this resulted in a low
effective sample size for some of the sampled chains.

As an alternative strategy, we choose to tune instead the distance of the proposal
density from the target posterior. As the expression of the posterior distribution is
unknown, we control the distance between the Poisson and negative binomial likeli-
hood. Based on Teerapabolarn (2012), we consider the upper bound of the relative
error between the Poisson and negative binomial cumulative distribution functions.
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This result is particularly useful owing to its simplicity, which allows to analytically
derive adequate parameters to bound the error to a specific value. Specifically, if Y is a
Poisson random variable with mean λi and V is a negative binomial random variable
with parameters ri and pi, as defined in Section 2.1.1, we have the following result:

supyi≥0

∣∣∣∣Pr(Y ≤ yi)

Pr(V ≤ yi)
− 1

∣∣∣∣ = e−λip−ri
i − 1.

Hence, by setting an upper bound d for the distance between the Poisson and negative
binomial distribution, all the values of the parameters ri can be automatically derived
to obtain a proposal density whose distance from the target posterior is constant for
every yi, even for heterogeneous data. Under our notation pi = λi/(ri + λi), thus
d = e−λi(1 + ri/λi)

ri − 1, which is solved by

ri = −λ log c ·

{
log c+ λ ·W

(
−c−1/λ log c

λ

)}−1

, (2.7)

where c = eλ(d2 + 1) and W(·) is the Lambert-W function (Lambert, 1758), which
can be computed numerically using standard libraries. Hence, in the algorithm, at
the beginning of each iteration, the values r1, . . . , rn are computed according to (2.7)
conditionally on the current value of β.

2.2. Numerical illustrations

2.2.1. Synthetic data

We conducted a simulation study under various settings to compare the efficiency of
the proposedMetropolis-Hastings and importance sampler with that of state-of-the-art
methods. We focused on the Hamiltonian Monte Carlo approach—as implemented
in the Stan software (Stan Development Team, 2021)—as the successful Metropolis-
Hastings with standard random walk proposal would require, different from the
proposed approaches, the tuning of p parameters, which becomes cumbersome for
moderate to elevate p. The proposed methods are implemented via the R package
bpr, which is written in efficient C++ language exploiting the Rcpp package (Eddel-
buettel and Francois, 2011) and available from the Comprehensive R Archive Network
(D’Angelo, 2021) and at github.com/laura-dangelo/bpr.

Data were generated from a Poisson log-linear model with sample sizes n ∈ {25, 50,
100, 200} and number of covariates p ∈ {5, 10, 20}. Specifically, for each combination
of n and p, we considered 50 independent n dimensional vectors of counts where each
yi (i = 1 . . . , n) is sampled from a Poisson distribution with mean λi = ex

T
i β , with

common parameter β. The covariates were generated from continuous or discrete/cat-
egorical random variables under the constraints that the continuous variables have
mean zero and variance one and that 1 ≤ λi ≤ 200.

Two prior distributions for the coefficients β were assumed, namely a vanilla Gaus-
sian prior with independent components βj ∼ N(0, 2), j = 1, . . . , p, and the more
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complex horseshoe prior (Carvalho et al., 2010) which allows for the following condi-
tionally Gaussian representation

βj | η2j , τ2 ∼ N(0, η2τ2)

η ∼ C+(0, 1), τ ∼ C+(0, 1),

for j = 1, . . . , p, whereC+(0, 1) is the standard half-Cauchy distribution. To implement
the samplers under the horseshoe prior, we used the details of Makalic and Schmidt
(2016), and fixed the global shrinkage parameter τ to the “optimal value” τn(pn) =
(pn/n)

√
log(n/pn), where pn is the number of non-zero parameters (van der Pas et al.,

2017).
Eachmethod introduced in Section 2.1 was run for 10000 iterations with 5000 of them

discarded as burn-in. The convergence of each algorithm was assessed by graphical
inspection of the trace plots of the resulting chains. The convergence was satisfactory
for all simulations and comparable for all algorithms, as no systematic bias was found
in the posterior mean of the estimated parameters.

To assess the efficiency of the proposed methods, we used a proxy of the time per
independent sample, which is estimated as the total time (in seconds) necessary to
simulate the entire chain, over the effective sample size of the resulting chain. For the
proposed adaptive importance sampler, an estimate of the effective sample size was ob-
tained using the quantity

∑T
t=1w(β

(t))2/(
∑T

t=1w(β
(t)))2, which takes values between

1 and n (Robert and Casella, 2010). Notably, the burn-in samples were removed from
the chains before computing the effective sample size. Thus, the obtained times per
independent sample do not represent exactly the number of seconds necessary to gen-
erate one independent sample—they rather represent an overestimate. Nonetheless,
this approach provides a robust and fair comparison between the different competing
algorithms. The experiment has been run on a macOS machine with 32 GB DDR4
2400 MHz RAM, CPU Intel Core i7 4.2 GHz, running R 4.1.1. Figure 2.1 and 2.2 show,
for each combination of n and p, the distribution of the median time per independent
sample for the three algorithms computed on the 50 replications under a Gaussian
and horseshoe priors, respectively. The plots are presented in the logarithmic scale for
clarity.

For the Gaussian prior the performances of the proposed algorithms are better than
those obtained using the HMC implemented in Stan, for small values of the dimension
p. For p = 20, instead, the performances of the HMC are quite competitive with respect
to the proposed algorithms.

For the horseshoe prior, the proposedMetropolis-Hastings presents a stable superior
performance with respect to the HMC sampler implemented in Stan for each sample
size n ad number of covariates p. The performance of the importance sampler remains
competitive. As previously observed for the Gaussian prior, the differences are less
evident for increasing sample size.
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Figure 2.1: Time per independent sample (in logarithmic scale) for the three algorithms. For
each combination of n and p the boxplots represent the distribution of the (log) time (in
seconds) over the effective sample size using a Gaussian prior, over 50 replications.

2.2.2. Spike train data

Herein, we illustrate the proposed sampling method on data of brain activity in mice
in response to visual stimulation. The data set was generated using a small subset of
data from the Allen Brain Observatory (Allen Institute MindScope Program, 2016), de-
scribed in detail in Section 1.2.1. In the original data set, for each neuron the fluorescent
calcium traces are recorded, which is a proxy of the neuronal activity, under different
experimental conditions. From these traces, it is of interest to detect and analyze the
activations of neurons, which correspond to transient spikes of the intracellular calcium
level. We applied the method reported by Jewell et al. (2019) as described in de Vries
et al. (2020) to extract and count the activations of each neuron, to understand how
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Figure 2.2: Time per independent sample (in logarithmic scale) for the three algorithms. For
each combination of n and p the boxplots represent the distribution of the (log) time (in
seconds) over the effective sample size using the horseshoe prior, over 50 replications.

they are affected by the experimental conditions and the location of the neurons in the
brain.

The covariates that we considered are the depth of the neuron, the area of the visual
cortex where the neuron is located (factor with 6 levels), the cre transgenic mouse
line (factor with 13 levels), and the type of visual stimulation (factor with 4 levels).
The depth of the neurons is discretized to 22 levels, ranging from 175 to 625 microns,
thus, we could obtain a data set having a full factorial design with 5 replications for
each available covariate combination. Moreover, we included a quadratic term of the
depth to improve the fitting. The obtained data set is made of 920 observations on 23
variables.

We ran the proposed Metropolis-Hastings algorithm for 9000 iterations, discarding
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Figure 2.3: Estimated coefficients of the regression on the calcium imaging data set: posterior
density, with the posterior mean and 95% credible interval (colored dot and segment).

the first 5000 as burn-in. The computation timewas 98 seconds. The posterior estimates
of the coefficients of the dummies on three categorical variables are shown in Figure 2.3;
and for the numeric covariate depth, the posterior mean and 95% credible intervals
were equal to −2.72 × 10−3 (−2.90 × 10−3,−2.42 × 10−3) for the linear term, and
5.59× 10−6 (5.11× 10−6, 6.08× 10−6) for the quadratic term. Given these estimates of
the coefficients, the number of spikes increased with the largest depths. Moreover, as
shown in Figure 2.3, the response of neurons is heterogeneous across the cre-lines and,
coherent with the results of de Vries et al. (2020), we obtained that the mean response
is lower for the VISam, VISpm and VISrl areas.

2.3. ZIP regression

In this section, we outline how the proposed sampling strategies can be applied also
for extensions of the basic Poisson regression: specifically, we discuss the zero-inflated
Poisson (ZIP) model.

ZIP regression assumes that the distribution of the observed data can be expressed
as a mixture of a Dirac mass at 0 and a Poisson distribution, i.e.,

f(yi | β, πi) = πi · δ0(yi) + (1− πi) · e−ex
T
i β

ex
T
i β yi

1

yi!
.
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If πi and β are assumed independent a priori, and if β ∼ Np(b,B), then the proposed
algorithms could be appliedwithoutmuch additional effort. In particular, the proposed
sampling strategies would be straightforward to apply under a data augmentation
scheme in which latent allocation variables indicate whether the observation comes
from the spike in zero or from the Poisson component.

Considering the simplest settingwhere for all i = 1, . . . , n, πi = π and π ∼ Beta(α, γ),
we can introduce the variables vi ∈ {0, 1}, with vi = 1 indicating the assignment to the
degenerate component at zero. Then, conditionally on the observed value of yi, the
distribution of vi is Bernoulli with conditional probabilities

Pr(vi = 1 | yi = 0, π,β) =
π

π + (1− π) exp{−ex
T
i β}

,

Pr(vi = 1 | yi > 0, π,β) = 0

(2.8)

and, conditionally on this data augmentation variables,

f(yi | vi = 1) = δ0(yi),

f(yi | vi = 0,β) = exp{−ex
T
i β}exT

i β yi
1

yi!
.

Hence, conditionally on vi = 0, the setting is identical to that adopted throughout the
chapter. Consistently with this, a Gibbs sampler algorithm is easily defined as:

1. Sample π | v1, . . . , vn ∼ Beta(α+
∑n

i=1 vi, γ + n−
∑n

i=1 vi)

2. For i = 1, . . . , n, sample vi | π, yi,β, which is a Bernoulli with (conditional)
probability given in Equation (2.8).

3. For the subgroup of observations with vi = 0, sample the parameters β using
one of the algorithms outlined in Section 2.1.

Notice that the last step can be performed without additional complexity because the
update of β does not involve other variables (e.g. the Pólya-gamma data augmentation
variables, which are integrated out). Thus, even if the set of yi changes between
iterations of the Gibbs sampler, the sampling of the β is not affected.





3 MODELING S INGLE -NEURON
ACTIVAT IONS VIA NONPARAMETRIC
MIXTURES

As discussed in Section 1.1.2, routine methods to analyze calcium imaging data are
based on a two-step approach. However, it is expected the rate and the distribution
of spikes to be stimulus-dependent (Brenner et al., 2002), but none of the previously
described approaches allows taking into account explicitly the heterogeneity of spikes’
behaviors as a function of the stimulus. As Figure 1.1 clearly shows for the Allen Brain
Observatory data, the spikes’ intensities vary greatly according to the type of stimulus.

In this chapter, we introduce a coherent nested Bayesian finite mixture model that
allows for the estimation of the spiking activity of each neuron – which could be seen
as a first step for the analysis of larger brain activity combining multiple neurons in a
region. In addition, ourmodel simultaneously allows for reconstructing the distributions
of spikes under various experimental conditions; for example, in response to different
types of visual stimuli in the Allen Brain Observatory data set.

More specifically, our modeling framework estimates and clusters the distributions
of the calcium transient spikes’ amplitudes via a nested formulation of the generalized
mixture of finite mixtures (gMFM) prior recently proposed by Frühwirth-Schnatter et
al. (2021). The proposed model further adopts the use of a common atom specification
as in Denti et al. (2021) for estimating the distribution of the spikes’ amplitudes
under each experimental condition. The proposed common atom gMFM has several
advantages with respect to typical Bayesian nonparametric models for nested data.
With respect tomodels based on Dirichlet process priors, the gMFMprovides increased
flexibility to estimate partitions characterized either by many, well-balanced, clusters
or by a small set of large clusters. The common atom model allows us to obtain
nested inference on densities without incurring in the degeneracy issues pointed out
by Camerlenghi et al. (2019) for the widely used nested Dirichlet process of Rodríguez
et al. (2008). At the same time, the common atom formulation still leverages two nested
layers of random discrete mixture priors to borrow information between experiments
and to identify similarities in the distributional patterns of the neuronal responses
to different stimuli. In addition, differently than in the nested Dirichlet process, the
common atom model also allows clustering the inferred spikes’ intensity values both
within and between experimental conditions, so to infer common (recurring) response
amplitudes. Finally, we allow our model to enforce sparsity of neuron firing over time
by assuming a spike-and-slab prior specification on the marginal distribution of the
amplitudes.

35
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3.1. Model and prior specification

We consider the biophysical model for the calcium dynamics (1.1) introduced in
Section 1.1.1, and the interpretation of the At parameters as amplitude of a spike at time
t, taking value 0 if there is no spike and a positive value otherwise.

We are interested in characterizing the neuronal activity under different experimental
conditions. For each time point t = 1, . . . , T , let gt be a discrete categorical variable,
taking values in {1, . . . , J}, where J is the number of distinct experimental settings, so
that gt = j indicates that the neuronal activity at time t is observed under condition
j. The experimental conditions are often designed to capture variations in neuronal
activity with respect to a baseline process, which may represent a “typical” brain
process. For example, in the Allen Observatory data, the interest is to investigate
visually-evoked functional responses of neurons in themouse’s visual cortex. Therefore,
neurons associatedwith visual decoding should be expected to activate in all conditions.
It is then of interest to study not only if but also how the neurons differentially respond
to the presentation of a variety of visual stimuli.

In this chapter, we propose a hierarchical Bayesian approach to investigate similarities
and differences in the distribution of spikes over time and conditions. In order to
borrow information across different experimental conditions, one option is to fit a
parametric hierarchical random effect model, and obtain a post-MCMC clustering of
the estimated spikes At by grouping together those spikes with similar magnitudes.
This approach has several limitations: on the one hand, the distribution of the random
effects is constrained into a specific parametric form; on the other hand, the clustering
of, say, the posterior mean estimates of the parameters At’s does not allow the model
to fully describe stimulus-specific distributional differences and to take into account
the posterior uncertainty in the spikes.

In order to allow flexible modeling of distributions and to describe the heterogeneity
of distributional features, we assume a nested Bayesian finite mixture specification.
More specifically, we rewrite (1.1) as

yt | b, γ,Cat−1, At, σ
2, τ2 ∼ N(b+ γ Cat−1 +At, σ

2 + τ2)

and we assume that the spikes At are from stimulus-specific distributions, i.e. (At |
gt = j, Gj) ∼ Gj , j = 1, . . . , J , to account for the observed variety of neuronal activity
under different experiment settings. We further allow for clustering the distributions
across conditions, in order to capture similar patterns of neuronal activity. Indeed,
one may typically expect K < J distributional clusters. For example, a neuron may
respond to general visual stimulation and not specifically to the type of stimulus
considered. More specifically, we assume the following generalized mixture of finite
mixtures structure:

G1, . . . , GJ | Q ∼ Q, Q =

K∑
k=1

πkδG∗
k

(3.1)

where π1, . . . , πK | K ∼ DirichletK (α/K, . . . α/K), α > 0, and G∗
1, . . . , G

∗
K are a set

of cluster-defining distributions, obtained as realizations of an underlying random
probability measure, specified further below. Equation (3.1) implies that the Gj ’s,
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j = 1, . . . , J have a positive probability of clustering together, thereby giving rise to
distributional clusters. In practice, the number of mixture components, K, is typically
larger than the number of clusters, K+, and some of the atoms G∗

k are not assigned to
any of the Gj ’s (empty components). The prior on the number of mixture components
K is a translated beta-negative-binomial distribution as in Frühwirth-Schnatter et al.
(2021). Including a prior p(K) leads to both K+ and K being random a priori. Finally,
the distributional atoms G∗

k, k = 1, . . . ,K are also obtained as a realization from an
underlying generalized mixture of finite mixtures,

G∗
k =

L∑
l=1

ωl,kδA∗
l

(3.2)

with ω1,k, . . . , ωL,k | L ∼ DirichletL (β/L), for some positive real number β > 0. The
set of atomsA∗

l is common across all distributionsG∗
1, . . . , G

∗
K and they are obtained as

i.i.d. draws from a centering measure, A∗
l ∼ G0(A

∗
l ). Therefore, equation (3.2) defines

a clustering of the inferred spike intensities both within a given condition (i.e. for
fixed G∗

k) and across conditions (i.e. across the G∗
k’s; hence, across the Gj ’s). In the

following, we adopt common terminology in the literature on nested Bayesian non-
parametric priors and indicate the clustering induced on the At through the proposed
two-layers prior as observational clustering. The nested gMFM formulation requires
the specification of a prior on the number of components that specify the lower-level
distributional atomsG∗

k, L ∼ p(L). Once again, some of the components may be empty.
We enforce sparsity in the detection of the spikes by modeling the base measure G0

for the parameters A∗
l with a spike-and-slab specification (Mitchell and Beauchamp,

1988), which is a convex mixture between a Dirac mass at zero – representing the
absence of neuronal response – and a diffuse density on the positive real numbers –
representing the intensity of the neuronal response. More specifically, we assume

G0 = (1− p) δ0 + pGamma (hA1, hA2), (3.3)

where the slab is a gamma distribution,Gamma(a, b)with mean a/b and variance a/b2.
The choice of a gamma distribution in (3.3) is particularly relevant for sparsity-inducing
purposes, as the gamma density belongs to the set of moment non-local prior densities,
as defined by Johnson and Rossell (2010). Therefore, a negligible probability density is
assigned to values in a neighborhood of zero, thus inducing a clear separation between
the baseline neuronal activity and the neuronal responses. In particular, the higher the
shape parameter hA1, the larger is the separation. We assume a Beta(h1p, h2p) prior
for the proportion of spikes p with h1p much smaller than h2p in order to favor sparsity
of detections.

The proposed formulation can be seen as a special case of inner spike-and-slab
nonparametric priors, following a terminology introduced by Canale et al. (2017) and
Canale et al. (2022). In the following, we will refer to the proposed specification as a
finite common atom model (fCAM).

The Bayesian model elicitation is completed by assuming conjugate priors for the
underlying calcium level concentration parameters, i.e. the baseline calcium level b,
and the variances σ2 and τ2. Specifically, the following conjugate prior distributions
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are assumed:

Ca0 ∼ N(0, C0), b ∼ N(b0, B0)

1/σ2 ∼ Gamma(h1σ, h2σ), 1/τ2 ∼ Gamma(h1τ , h2τ ),
(3.4)

Finally, under the assumption that the process is stationary with positive correlation
between the calcium level at consecutive times, we constrain γ ∈ (0, 1) and let γ ∼
Beta(h1γ , h2γ), a priori.

3.2. Posterior inference

For computational purposes, it is convenient to rewrite the likelihood for an observation
yt under condition gt = j by introducing two latent cluster allocation variables, cDj = cDgt
and ct, indicating the distributional cluster for the group j and the observational cluster
for yt, respectively.

Given K and {πk}Kk=1, the distributional allocation variable cDj ∈ {1, . . . ,K}, with
Pr(cDj = k) = πk. Similarly, conditionally on cDgt = k, and given L and {ωl,k}Ll=1, the
observational allocation variable ct ∈ {1, . . . , L}, with Pr(ct = l) = ωl,k. Therefore,
conditionally on the other model parameters, the joint distribution of the observed
data and the latent cluster allocations can be written as

f(y, c, cD | π,ω,A∗) =

J∏
j=1

πcDj

∏
t:gt=j

ωct,cDj
p(yt | A∗

ct),

which facilitates posterior inference.
More specifically, posterior inference for the proposed fCAM can be carried out

quite straightforwardly by means of Markov chain Monte Carlo (MCMC) techniques.
The sampling of the latent calcium level Cat uses an iterative approach based on the
Kalman filter and on a forward filtering backward sampling algorithm (Prado and
West, 2010). Full conditional posteriors for b, p, σ2 and τ2 are available in closed
form thus leading to straightforward Gibbs sampling steps. For the autoregressive
parameter γ, we use a Metropolis-Hastings within the Gibbs step. The sampling of
At exploits a combination of the nested slice sampler of Denti et al. (2021) and of the
telescoping sampler of Frühwirth-Schnatter et al. (2021). A detailed description of
the latter step is reported in Algorithm 1 below. Here, we just present a schematic
description of the MCMC steps:

1) Sample the calcium levelCat, for t = 0, . . . , T , using a forward filtering backward
sampling:
a) Run Kalman filter: set a0 = m0 = 0, R0 = C0 = var(Ca0). For t = 1, . . . , T

let
at = γ mt−1 +At

Rt = γ2Ct−1 + τ2.

Compute the filtering distribution’s parameters, mt and Ct, for t = 1, . . . , T ,
where

mt = at +Rt (Rt + σ2)−1 (yt − b− at)
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Ct = Rt −R2
t (Rt + σ2)−1.

b) Draw CaT ∼ N(mT , CT );
c) For t = T − 1, . . . , 0, draw Cat ∼ N(ht,Ht), with

ht = mt + γ CtR
−1
t+1(Cat+1 − at+1)

Ht = Ct − γ2C2
t R

−1
t+1.

2) Sample a new value for the baseline level b:

b ∼ N

(
b0
B0

+
1

σ2

T∑
t=1

(yt − Cat),

√
1

B0
+

T

σ2

)
.

3) Sample the variance on the output equation σ2 and the variance on the state
equation τ2:

1/σ2 ∼ Gamma

(
h1σ +

T

2
, h2σ +

1

2

T∑
t=1

(yt − Cat − b)2

)

1/τ2 ∼ Gamma

(
h1τ +

T

2
, h2τ +

1

2

T∑
t=1

(Cat − γ Cat−1 −At)
2

)
.

4) Update the autoregressive parameter γ using a Metropolis-Hastings step.

5) Update the parameter p of the spike-and-slab base measure from

p ∼ Beta(h1p + T − n0, h2p + n0),

where n0 is the number of yt assigned to the the spike component.

6) Update the cluster allocations variables cD and c, the number of mixture com-
ponents K and L, and the cluster parameters A∗ using the nested telescoping
sampling for the finite common atom model reported in Algorithm 1.

3.3. Simulation study

The performances of the proposed method are assessed through a simulation study.
The purpose of this section is twofold, namely to assess both the ability to correctly
identify the spike times, and the accuracy of the inferred clustering structure.

We simulated synthetic data exhibiting a baseline level and a number of spikes
representing the effect of the response of a neuron to a stimulus, thus mimicking the
characteristics of real series of calcium imaging following the structure of model (1.1).
Specifically, we first divided the time frame into J hypothetical experimental conditions
of equal length, with J varying in the different scenarios described below. Consistent
with our motivating assumption that the neuronal response depends on the type of
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Algorithm 1 Nested telescoping sampling
Denote with CD the current partition on the distributions and with CO the partition on
the observations.
1: Sample the weights on the distributions:

(π1, . . . , πK) | K,α, CD ∼ Dirichlet(e1, . . . , eK);

where ek = α/K + Jk, and Jk is the number of groups assigned to distribution k.
2: Sample the weights on the observations: for all k ∈ {1, . . . ,K} sample a vector ωk

from
(ω1,k, . . . , ωL,k) | L, β, CO, CD ∼ Dirichlet(f1,k, . . . , fL,k);

where fl,k = β/L+Nl,k, andNl,k is the number of observations in the observational
cluster l and distributional cluster k.

3: Update the partition on the distributions CD by sampling from the posterior distri-
bution of the latent cluster allocation variables cD. For j = 1, . . . , J

Pr(cDj = k | π,K,A∗,y, g) ∝ πk
∏

t:gt=j

ωct,cDj
p(yt | A∗

ct),

with k ∈ {1, . . . ,K}. Determine Jk = #{j : cDj = k}, for k = 1 . . . ,K , and the num-
ber of non-empty components K+ =

∑K
k=1 I{Jk > 0}. Relabel the components so

that the first K+ are non-empty.
4: Update the partition on the observations CO by sampling from the posterior distri-

bution of the latent cluster allocation variables c. For t = 1, . . . , T

Pr(ct = l | cDgt = k, c,ω, L,K,A∗,y, g) ∝ ωl,k p(yt | A∗
ct),

with l ∈ {1, . . . , L}, k ∈ {1, . . . ,K}. Determine Nl = #{t : ct = l}, for l = 1 . . . , L,
and the number of non-empty components L+ =

∑L
l=1 I{Nl > 0}. Relabel the

components so that the first L+ are non-empty. Because all the mixtures share
the same atoms, the cluster parameters are sorted regardless of the distributional
cluster allocation.

5: Sample the cluster parameters for the non-empty components: p(A∗
l | −) ∝

p(A∗
l )
∏

t:ct=l p(yt | A∗
l ).

6: Conditional on CD, sample the number of components K of the mixture on distri-
butions.

7: Conditional on CO, sample the number of components L of the mixtures on obser-
vations. If L > L+, sample a new parameter A∗ for the empty components from
the prior distribution.

8: Update the hyperparameter α on the Dirichlet distribution on the mixture weights
on distributions.

9: Update the hyperparameter β on the Dirichlet distribution on the mixture weights
on observations.

The posterior distributions for steps 6-9 are given in Frühwirth-Schnatter et al. (2021).
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stimulus, each experimental condition is assumed to belong to one of the K distri-
butional clusters. Then, for each experimental condition, we generated the neuronal
activity: first, we generated the presence or absence of a neuron response uniformly
in time, where the spike probability can vary across groups. Then, conditionally on
the obtained activations, we generated some additional spikes in a short subsequent
interval, so that it is very likely to observe close or even successive spikes. In this way,
the data mimic a real calcium imaging time series. Moreover, we are able to conduct a
careful assessment of the ability of the model to distinguish the presence of a single
high spike versus the convolution of several spikes in consecutive times. Finally, the
values At, conditionally on their distributional cluster, are generated from one of the
finite sets of spike amplitudes described below.

We simulated 50 independent data sets for each of the three scenarios described
henceforth. In Scenario 1 we assumed J = 6 experimental conditions, generated from
K = 4 distributional clusters. The spike amplitudes in the distributional clusters are
(0.35, 0.89, 1.15, 1.80, 2.20), (0.65, 0.89, 1.40, 1.80), (0.35, 0.65, 1.15), and (0.35, 0.89,
1.60). Scenario 2 assumes J = 4 experimental conditions and K = 3 distributional
clusters with spike amplitudes equal to (0.3, 0.5, 0.7, 0.9, 1.1, 1.5), (0.3, 0.9, 1.5, 1.8),
and (0.5, 0.9, 1.5). Finally, Scenario 3 sets J = 5 and K = 3 with the spike amplitudes
in the distributional clusters being (0.3, 0.5, 0.7, 0.9, 1.1), (0.3, 0.9, 1.1, 1.3), and (0.7,
0.9, 1.3). While in Scenario 1 the amplitudes of the spikes are quite large, spaced apart,
and with the corresponding distributional clusters well distinct, in Scenario 3 the spike
amplitudes are more homogeneous and more clustered in time. Scenario 2 represents
an in-between situation. Hence, from the first to the last scenario, we are assuming an
increasing degree of complexity. The R script generating these synthetic datasets is
available at github.com/laura-dangelo/fCAM_calcium_imaging.

The results attained by the proposed fCAM are compared to those obtained ex-
ploiting the common atom model (CAM) of Denti et al. (2021) – which provides a
benchmark for the clustering of the spikes and the stimulus-specific distributions – and
to those obtained with the L0 penalization method of Jewell et al. (2019) and the L1

penalization method of Friedrich et al. (2017), which provide a benchmark for the task
of spikes’ detection. For the latter two methods we have assumed complete knowledge
of the autoregressive constant controlling the rate of the calcium decay, since we found
that the results were quite sensitive to this estimate. To assess the sensitivity of the
proposed fCAM to the prior specification, we repeated the numerical experiment for
different values of the hyperparameters hA1 and hA2 in (3.3). In particular, the shape
parameter hA1 was supposed to play a key role in the detection of spikes. Keeping
fixed the ratio hA1/hA2, the parameters were set equal to 3, 4, 6, and 8: a small value
implies, a priori, less separation between zero and the distribution of the positive spikes
while a large value corresponds to the opposite effect.

Focusing on the classification of each time point as a spike or not, Figure 3.1 summa-
rizes themisclassification rate for all competingmethods under the three scenarios. The
results of the 50 replications are summarized using boxplots. For our fCAM, we report
only the results obtained with hA1 = hA2 = 8 as those obtained for the other choices
are essentially equivalent. The rates are small in absolute value and broadly compara-
ble across the different methods, thus confirming that all the competing models are
effective in detecting the spikes.
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Figure 3.1: Distribution of the misclassification error rate in the simulation study for the four
considered methods: CAM, fCAM, and the methods of Jewell et al. (2019) “L0” and Friedrich
et al. (2017) “L1”.
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Figure 3.2: Misclassification error rate of the fCAMobtained for different values of the threshold
κ ∈ [0.5, 0.95] over the 50 replications (black lines) of the simulation study. The colored lines
represent the median error rate.

Here and henceforth, we identified the presence of a spike if the posterior probability
of a spike at time t, say PPSt, estimated by the proportion of non-zero At’s over all
MCMC iterations, was greater than a threshold κ. This threshold allows us to control
the (estimated) Bayesian false discovery rate at the pre-set value 0.05, that is κ solves
the equation

FDR(κ) =

∑T
t=1 (1− PPSt) I(PPSt>κ)∑T

t=1 I(PPSt>κ)

= 0.05.

For more details, we refer to Newton et al. (2004) and Müller et al. (2007). See also
Sun et al. (2015) for a discussion with dependent hypotheses. Moreover, we assessed
the sensitivity of spike detection to different values of κ: Figure 3.2 shows the misclas-
sification error rate obtained by varying the threshold between 5% and 95% on the
three simulated scenarios. These plots highlight how spike detection for the fCAM
is quite robust: indeed, the error rate remains almost stable for several values of the
threshold κ.

However, the proposed fCAMnot only enables the detection of spikes but also allows
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us to conduct inference on the clustering structure. Therefore, we report on its ability
to identify the clustering structure. Figure 3.3 reports the adjusted Rand index (Rand,
1971; Hubert and Arabie, 1985) computed on both the observational and the distribu-
tional clusters for hA1 = hA2 = 8 (results for other settings are similar). Values of the
adjusted Rand index close to 1 denote that the identified structure resemble the true
clustering. While for the observational clusters the results are broadly comparable,
for the distributional clusters, the performance of the proposed fCAM is uniformly
superior. In addition, the variability of the results generally appears to be drastically
smaller for the fCAM, thus providing evidence of greater efficiency. This is consistent
to the results of Frühwirth-Schnatter et al. (2021) where the generalized mixtures of
finite mixtures is compared to a standard Dirichlet process mixture model.

From a computational point of view, the proposed algorithm is clearly more de-
manding than the optimization methods of Jewell et al. (2019) and Friedrich et al.
(2017). However, the computing time is comparable to the slice sampler adopted for
the CAM, and in general a full run requires just few minutes on a Linux machine with
an i7-7700HQ 3.8 GHz Intel processor, 8 GB RAM, running R 4.1.0. For example, for a
calcium trace of length 50,000, the computing time of the proposed method is around 2
minutes. Indeed, our experience suggests that the main factor affecting the computing
time is the length of the series. In general, in the analysis of spike activity, we expect
the number of clusters to be small and – in particular – much smaller than the number
of observations.

3.4. Allen Brain Observatory data analysis

We now revert to the analysis of the data from the Allen Brain Observatory (Allen
Institute MindScope Program, 2016). The data comprise the dF/F -transformed fluo-
rescence trace for a cell during session-B of the experiment (cell id 508596945). This
session comprises three types of visual stimuli (static gratings, natural scene and
natural movie) in addition to some period of spontaneous activity (absence of visual
stimuli). Since the data are recorded at a frequency of 30 Hz, the resulting series
consists of 113,865 time points for a total of 63.2 minutes. We focus the first analysis on
a neuron located in the primary visual area, at an imaging depth equal to 350 microns.
Additional analyses for other neurons are reported later in this section.

The observed fluorescence trace is shown with a continuous black line in Figure 3.4.
Different shaded backgrounds indicate the types of visual stimuli. Using the notation
introduced in the previous Sections, J = 4 with j = 1, 2, 3 corresponding to static
grating, natural scene, and natural movie, respectively and j = 4 indicating no stimulus
presence.

We ran the MCMC algorithm of Section 3.2 using the same prior specification of
Section 3.1 for 15,000 iterations discarding the first 7,000 iterations as burn-in and
keeping one iteration every four to improve mixing. Visual inspection of the traceplots
and Geweke diagnostics showed no issues with convergence. The superimposed light
line in Figure 3.4 represents the estimated neuronal activity in terms of the inferred
amplitudeAt, i.e. removing the measurement errors and the result of the accumulation
of calcium from the previous spikes. The presence of a spike was inferred using the
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Figure 3.3: Distribution of the adjusted Rand index on the distributional and observational
clusters of CAM and fCAM, computed on the 50 simulations for the three scenarios of the
simulated data.
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Figure 3.4: Observed fluorescence trace yt of a neuron from the Allen Brain Observatory data
(black line), and visual stimulus to which the mouse is exposed (shaded areas). The yellow
line represents the estimated neuronal activity.

procedure outlined in the previous section based on the estimated Bayesian false
discovery rate. Specifically, here the threshold was fixed to κ = 75.5% to control the
rate at the pre-set value 0.05.

As alreadymentioned in the Introduction, in calcium imaging it is of interest studying
the distribution of the spikes in response to each experimental stimulus, and identifying
similarities and differences in these distributions across stimuli.

We start by investigating the presence of similarities in the neuronal response to
different types of visual stimuli. This corresponds to analyzing the clustering of
the spike distributions induced by the proposed fCAM. The model clusters together
the groups corresponding to the natural scene and natural movie stimuli with high
posterior probability, while the static grating stimulus and the absence of stimuli are
assigned to two separate distributional clusters. In other terms, the neuron appears
to show similar neuronal responses in the natural scene and natural movie stimuli
whereas the responses appear distinctly different under the other two conditions.

To understand whether and how the neuronal response depends on the type of
stimulus, we estimated the spike amplitude distribution for each of the four types of
stimuli. Figure 3.5 shows the histograms of posterior means of the non-zero spike
amplitudes for the three types of stimuli. The distribution for the time interval between
1018-1319 sec in Figure 3.4 (absence of stimuli) is not presented because no activity
was detected. Despite the apparent similarities of the distributions in Figure 3.5, the
second cluster of spike amplitude distributions (natural scene and natural movie)
shows a heavier tail. Specifically, the highest observed cluster during the static grating
stimulus (top plot) is centered at 1.06, while for the other two stimuli we obtained
several higher values, with the largest cluster centered around 1.43.

A qualitative representation of how these spike clusters are distributed within the
three groups is given in Figure 3.6. The three plots show a short interval of the ob-
served calcium series, chosen in correspondence of one of the highest observed spikes.
Each plot also shows a series of colored vertical lines: the lines are placed at the es-
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timated spike times, and the colors correspond to the estimated spike amplitudes.
The represented partition is the posterior point estimate obtained by minimizing the
variation of information loss, as proposed in Wade and Ghahramani (n.d.). Condition-
ally on the obtained partition, for each cluster a representative value for the cluster
parameter is obtained as follows: first, for each MCMC iteration, the group-specific
average of At is computed keeping the partition fixed; then, these values are averaged
over all the MCMC iterations. We notice that for all experiments, high values of the
observed calcium level are often produced as the result of several consecutive spikes,
since, individually, the spikes are characterized by a relatively low amplitude, and the
observed calcium level is cumulated due to its autoregressive behavior. The autoregres-
sive parameter γ has a posterior mean equal to 0.493 with a 95% credible interval of
(0.481, 0.505). This result corresponds to the understanding that the observed calcium
response may be generated by high-frequency firing neurons: due to the low-sampling
rate, the non-linear calcium signal essentially captures a super-imposition of multiple
spikes (Hoang et al., 2020).

As a matter of fact, another useful quantity we can compute to compare the neuronal
activity between stimuli is the firing rate, which provides a measure of how often
the neuron has activated during a specific visual stimulus. The rate computes the
number of detected spikes per second, to take into account the different duration of the
experiments. For the static grating stimulus the posterior mean rate (and related 95%
credible interval) is 0.223 (0.216, 0.229), while for the natural scene and natural movie
stimuli they are 0.419 (0.410, 0.428) and 0.511 (0.495, 0.531), respectively. These results
highlight the role of spike-frequency adaptation, whereby some neurons show an
increased activity when exposed to more complex stimuli, thus exhibiting higher firing
rates and larger calcium concentration measurements (Peron and Gabbiani, 2009).

3.4.1. Analysis of additional neurons

We analyzed two additional neurons: the first was chosen from the same targeted
area and depth as the one presented above (primary visual area, 350 microns, cell
id 517398389); while the second neuron was chosen from the same area but at a
different depth, and, specifically, at a much shallower depth (175 microns, cell id
587435328). Although all neurons are located in the same area, we do not necessarily
expect similar results, as neurons do not show spatial dependence in some regions of
the brain (Rosenbaum et al., 2017). In the following paragraphs we present the same
type of analyses and plots reported in the main analysis.

Figure 3.7 shows the observed fluorescence trace of the second considered neuron
(#517398389), together with the estimated activity. Even if the trace appears to be
similar to the previously analyzed neuron, we obtained a different clustering of the
stimuli. Here the static grating and natural movie are pooled together with high
posterior probability, while the natural scene is assigned to a separate cluster. Similarly
to the previous analysis, no activity is detected during the absence of stimuli. The
firing rate has a posterior mean (and related 95% credible interval) equal to 0.488
(0.471, 0.506) for the static grating stimulus, to 1.192 (1.166, 1.220) for the natural scene,
and to 0.304 (0.286, 0.325) for the natural movie. Figure 3.8 shows the histograms of the
posterior means of the non-zero spike amplitudes for the three stimuli. Compared to
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the natural movie, for both the static grating and the natural scene we observe heavier
tails and the presence of clusters associated with larger parameters. Notice also that
the estimated spikes’ amplitudes are quite similar to the ones estimated in the previous
analysis. This behavior is consistent with what observe in Figure 3.9, which shows a
short interval of the observed calcium series, chosen in correspondence of one of the
highest observed spikes.

Moving to the analysis of the last neuron (#587435328), Figure 3.10 shows the
observed fluorescence trace, together with the estimated activity. It is evident that
this trace is very different from the previously considered ones, as it shows very little
activity during the static grating stimulus and especially during the natural movie
stimulus. This difference is reflected in the estimated distributional clusters, as now the
natural movie is even pooled together with the absence of stimuli with high posterior
probability; while the static grating and natural scene are assigned to two separate
clusters. The firing rate was estimated equal to 0.067 (0.062, 0.072) spikes per second
for the static grating stimulus, to 1.354 (1.326, 1.383) for the natural scene, and to
0.0063 (0.0033, 0.0066) for the natural movie. Figure 3.11 shows the histograms of the
distribution of the posterior means of the observational cluster parameters At. We also
report the histogram associated with the natural movie, as few spikes were detected
in correspondence of the end of the stimulus. It is evident how the natural scene is
associated with the most intense activity, while the static grating leads a lower, but
still present, activity. Finally Figure 3.12, similarly to the previous analyses, shows a
short interval of the observed calcium series, together with colored vertical lines at the
estimated spike times.

In line with the current literature, our approach is limited to the analysis of the
calcium responses observed from single neurons. Inferences from our work could
possibly be used to identify patterns across multiple neurons. For example, it is
reasonable to assume that neurons exhibiting similar activity patterns may be grouped
into homogeneous (spatial) clusters. Therefore, a second stage of the analysis may
explicitly cluster across neurons the inferred spikes and the posterior means of the
amplitudes within successive time-intervals of calcium traces. Alternatively, one could
apply the zero-inflated gamma model recently proposed by Wei et al. (2019) to study
the densities of the deconvolved activity estimates and similarly heuristically compare
such densities across neurons.
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Figure 3.5: Empirical distribution of the posterior means of the observational cluster parameters
At for the three experimental conditions of the Allen Brain Observatory data.
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Figure 3.6: Short interval of length 500 of the Allen Brain Observatory data in correspondence
of a spike, for the three stimuli. The vertical lines indicate the time of a spike and the colors
correspond to the observational cluster of its amplitude. The bottom panels show the estimated
posterior probability of spike presence, for each time point.
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Figure 3.7: Observed fluorescence trace for neuron #517398389 at depth 350 microns (black
line), and visual stimulus to which the mouse is exposed (shaded areas). The yellow line
represents the estimated neuronal activity.
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Figure 3.9: Short interval of length 500 in
correspondence of a spike for the three
stimuli, for neuron #517398389. The verti-
cal lines indicate the spikes’ times and the
colors correspond to the observational clus-
ter of their amplitudes. The bottom panels
show the estimated posterior probability
of spike presence, for each time point.
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Figure 3.10: Observed fluorescence trace for neuron neuron #587435328 at a depth 175 (black
line), and visual stimulus to which the mouse is exposed (shaded areas). The yellow line
represents the estimated neuronal activity.
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Figure 3.11: Empirical distribution of the
posterior means of the observational clus-
ter parameters At for the three experimen-
tal conditions, for neuron #587435328.
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Figure 3.12: Short interval of length 500
in correspondence of a spike for the three
stimuli, for neuron #587435328. The verti-
cal lines indicate the spikes’ times and the
colors correspond to the observational clus-
ter of their amplitudes. The bottom panels
show the estimated posterior probability
of spike presence, for each time point.



4 CLUSTER ING ACTIVAT ION PATTERNS OF
SPAT IALLY-REFERENCED NEURONS

The previous approach only accounted for the analysis of calcium traces of individual
neurons. The analysis of populations of neurons could only be performed as a second
phase by combining the results of multiple analyses. Although not ideal, this approach
is sometimes the only viable option due to the complexity and the large size of the data
as, for example, the length of the individual series in the Allen Brain Observatory data.

In this chapter we develop a model to analyze the activity of groups of neurons and
to cluster this activity on the basis of recurring patterns of activation. As motivating
application, we considered the hippocampal neurons data described in Section 1.2.2:
differently from the Allen Brain Observatory data, here the animal is not subjected
to different types of stimuli, and it is freely moving within an environment. This
type of experimental setting is often used to investigate hippocampal dynamics and
connectivity patterns, which consist of groups of co-activating neurons. Hippocampal
neurons underlying spatial navigation are thought to have a distributed organiza-
tion, not strictly connected to the anatomical structure; however, many studies have
shown that neurons with the same place field tuning often tend to neighbor one an-
other (Eichenbaum et al., 1989; Redish et al., 2001). Hence, when investigating clusters
of co-activating neurons, it can be relevant to take into account their spatial location
and, in particular, their proximity to each other. In particular, the interest is aimed to
identifying subpopulations of neurons which share a common spiking activity over
seconds-long periods of time (Bittner et al., 2017). In the case of the data that we
considered (recorded with a frequency of 15 frames per second), it means estimating
clusters of temporal activity patterns with a duration up to a few hundreds of time
points.

We develop a nonparametric mixture model that allows for simultaneous deconvo-
lution of calcium traces and identification of groups of neurons with a similar pattern
of activity during seconds-long periods. Moreover, the weights of the mixture prior
are informed using the spatial proximity between cells. In particular, to identify such
clusters, our modeling framework looks for similarities in the deconvolved binary time
series describing the active/resting state of the neurons at each time point. A possible
difficulty in clustering these time series arises from the presence of isolated or erratic
spikes, which make the observed series somehow different, even if the overall patterns
match. To overcome this drawback, we perform clustering at a latent level through a
process that describes, at each time point, the probability of observing a spike, hence
allowing for some degree of discrepancy across series in the same cluster.

53
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4.1. Model and prior specification

Once again, we employ the general model for the calcium dynamics introduced in
equation (1.1) of Chapter 1. However, differently from the previous chapter, here
we consider n neurons, so we also introduce the index i = 1, . . . , n corresponding to
each fluorescence trace. Moreover, we split the parameters At of equation (1.1) into
two separate components: si,t ∈ {0, 1} describing the presence/absence of a spike
(the signal), and ai,t ∈ R+ describing the spike amplitude when present. With these
modifications, the model can be written, for time t = 1, . . . , T , as

yi,t = bi +Cai,t + εi,t, εi,t ∼ N(0, σ2),

Cai,t = γ Cai,t−1 + si,t · ai,t + wi,t, wi,t ∼ N(0, τ2),
(4.1)

where the baseline parameters bi are now neuron-specific. Moreover, for each observa-
tion it is also provided information on the spatial location of the neuron in the region
of interest, li ∈ L ⊆ R2.

In this context, the interest is in clustering the n neurons according to their pattern
of activation, which is described by the binary series si = {si,1, . . . , si,T }. However, we
would like these clusters to comprise all neurons with a similar activation pattern, even
if the series differ for some occasional or isolated spikes. Instead of clustering directly
the binary time series, we assume that these series are functions of an underlying
continuous process that describes the spike probabilities, and we perform clustering at
this latent level.

Specifically, we assume that, for each t = 1, . . . , T , the latent signal si is the real-
ization of independent Bernoulli random variables whose probability depends on an
underlying mixture of Gaussian processes through a probit transformation. Denoting
with s̃i = {s̃i,1, . . . , s̃i,T } the realization of this underlying process, we write

si,t ∼ Bernoulli(Φ(s̃i,t)),

where Φ(·) is the cumulative distribution function of a standard Gaussian distribution.
Assuming a latent Gaussian process also allows us to easily describe the observed tem-
poral dependence among spikes through the covariance function. As already noticed
in the application to the Allen Brain Observatory data in the previous chapter, often
the observed longer duration of a transient is the result of the summation of multiple
spikes (Dombeck et al., 2010). Hence it is clear that the spikes are not uniformly
distributed in time, and that explicitly modeling this behavior might improve detection
and interpretation.

To obtain a clustering of neurons, we assume a mixture prior on the underlying
Gaussian process that controls the probability of observing a spike at each time point.
To include information on the spatial location of each neuron, wemake use of the probit
stick-breaking process (PSBP) of Rodríguez and Dunson (2011), where the weights
are informed using the proximity matrix between neurons Σ(l). This nonparametric
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prior on s̃i can be written as

s̃i | li ∼ Gli

Gli =
∑
k≥1

πk(li) · δs̃∗k

πk(li) = Φ
(
αk(li)

)∏
r<k

{
1− Φ

(
αr(li)

)} (4.2)

with 
αk(l1)
αk(l2)

...
αk(ln)

 ∼ Nn

0, Σ(l) =


1 k(l1, l2) . . . k(l1, ln)

k(l1, l2) 1 . . . k(l2, ln)
...

... . . . ...
k(l1, ln) k(l2, ln) . . . 1




where k(li, li′) is a covariance function. Finally, the atoms of the mixture are indepen-
dent draws from a Gaussian process (GP), i.e.,

s̃∗k ∼ GP(µ,Ω),

where the covariance function Ω(t, t′) describes the temporal dependence, that we
model using a squared exponential kernel.

Consistently with the approach described in the previous chapter, we model the
positive spike amplitudes using a Gamma prior, ai,t ∼ Gamma(h1a, h2a). Moreover,
for the remaining parameters, we adopt the same prior specification as in Eq. (3.4).

4.2. Posterior inference

Posterior inference for the proposed model can be carried out using MCMC methods,
and, in particular, the Gibbs sampler, as for most parameters the full conditional
distributions are available analytically. In line with the previous work, also here it is
convenient to introduce the latent cluster allocation variables ci ∈ {1, 2, . . . }, that, in this
context, identify the groups of neurons with a similar activation pattern. Conditionally
on πk(li), we have Pr(ci = k | li) = πk(li). Hence the distribution of the signal for
neuron i can be expressed, conditionally on the cluster allocation, as

p(si | ci = k, s̃∗k) =

T∏
t=1

Φ(s∗k,t)
si,t
(
1− Φ(s∗k,t)

)1−si,t . (4.3)

Notice that the cluster allocation only affects the latent process controlling the spike
probabilities, hence the ci’s are independent of the observed traces, given the series
of the estimated signal si. Moreover, as the temporal dependence between spikes is
expressed only at the latent level, the distribution of each observed series is simply

f(yi | bi,Cai, γ, si,ai, σ
2, τ2) =

T∏
t=1

φ(yi,t | bi + γ Cai,t−1 + si,t · ai,t; σ2 + τ2), (4.4)
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where φ(· | µ; ς2) is the density function of a normal random variable of mean µ and
variance ς2. Hence to obtain a sample from the posterior distribution of bi, γ, Cai, σ2

and τ2 we can adapt the MCMC steps described in Section 3.2 for the multivariate case
in a straightforward manner.

Combining the prior distribution of the signal in Eq. (4.3) with the likelihood (4.4),
the full conditional distribution of si is easily obtained as

Pr(sit = 1 | yit, ci = k, s̃k,t,−) =
1√

2π(σ2 + τ2)
e
− 1

2(σ2+τ2)
(yi,t−bi−γCai,t−1−ai,t)

2

Φ(s̃k,t)

Pr(sit = 0 | yit, ci = k, s̃k,t,−) =
1√

2π(σ2 + τ2)
e
− 1

2(σ2+τ2)
(yi,t−bi−γCai,t−1)

2

Φ(−s̃k,t).

Notice that the probability of observing a spike at time t also depends on the specific
amplitude ai,t. Hence at each iteration we need to sample a new value for all amplitude
parameters ai,t, even if a spike was not detected for that particular neuron and time.
Regarding the sampling of the amplitudes, assuming a Gamma prior does not lead to a
simple expression of the full conditional, hence we make use of a Metropolis-Hastings
step.

The update of the cluster allocation variables ci using the location-dependent PSBP
is performed using the data augmentation strategy outlined in Rodríguez and Dunson
(2011). For simplicity, we used a finite PSBP with a large number of components, as it
constitutes a fair approximation of the original process based on an infinite number of
components (Rodríguez and Dunson, 2011; Ishwaran and James, 2001).

Finally, slightly more demanding and computationally intensive, is the sampling of
the realizations of the latent Gaussian process. To this end, we exploit the exponentially
decreasing correlation between time points in our definition of Ω to approximate the
Gaussian process to a collection of conditionally independent multivariate random
variables. Specifically, since after a certain lag p the covariance Ω(t, t+ p) = Ω(t, t− p)
is virtually equal to zero, we set all the corresponding elements in the covariance matrix
exactly to zero. In this way, we obtain a T -variate Gaussian distribution with a band
covariance matrix. This device allows us to write the model in state-space form and
to estimate the latent process using the closed-form filter developed by Fasano et al.
(2021) for binary time series. In our specific case, the observed level is the set of binary
series of signal si for all neurons in the same activation cluster, and the state equation
can be expressed as depending on a p-variate Gaussian random vector.

4.3. Simulation study

The performances of the proposed model in detecting the spikes and clustering the ex-
tracted activation patterns are investigated through a simulation study. Unfortunately,
the high computational cost of the proposed algorithm constitutes an obstacle to run-
ning a full and thorough simulation study, hence here we only present a preliminary
analysis of the results. Additional work will be needed in order to devise computation-
ally efficient strategies to perform posterior inference. The computational bottleneck of
the current approach is the sampling of the latent realizations of the Gaussian process.
In particular, the approach of Fasano et al. (2021) is not completely suited for our
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n = 20 n = 30 n = 40
T = 100 T = 200 T = 100 T = 200 T = 100 T = 200

MLGP 0 5.25 ·10−3 0 1.00 ·10−3 0 7.50 ·10−4

L0 2.20 ·10−2 2.97 ·10−2 1.73 ·10−2 2.33 ·10−2 2.22 ·10−2 2.30 ·10−2

Table 4.1: Misclassification error rate on the simulated data for the proposed model (MLGP)
and the method of Jewell et al. (2019) (L0).

model: their approach is adequate for applications where the observed data are binary
time series, and hence it is sufficient to run the algorithm once. However, in our setting,
the binary time series are unobserved, and hence they can change over iterations of
the Gibbs sampler. Moreover, the realizations of the Gaussian process are atoms of
a mixture model, hence their posterior distribution depends on the current cluster
allocation. Because of these differences of our framework, we need to run a complete
particle filter at each iteration of the Gibbs sampler, thus leading to a dramatic growth
of the computational complexity. To alleviate this issue, we have developed a strategy
to reduce the computing time. We noticed that after few iterations the time points
identified as spikes remain overall stable, except for sporadic and isolated changes.
Moreover, also the cluster allocation does not change much once it has reached con-
vergence. Hence it is somehow unnecessary to sample the entire trajectory of the
latent process at every iteration: following these considerations, we have introduced a
sub-sampling procedure, where after a burn-in period, the realizations of the Gaussian
process are updated only at some randomly chosen intervals. However, further work
could lead to additional improvements of the sampling procedure; for example, by
combining this sub-sampling of time intervals with a conditional update driven by
changes of the cluster allocation.

We simulated data according to our model, and we considered a high signal-to-noise
ratio, in order to focusmore on the clustering performances, rather than the spike detec-
tion task. Specifically, the spike amplitudes were generated from a Gamma distribution
with mean and variance equal to 3 and 0.72, respectively; while the measurement error
variance was set to 0.32. Moreover, we set all baseline parameters bi to zero, and we
fixed the decay parameter γ = 0.5.

We considered scenarios with varying sample size (n = 20, 30, 40) and length of
the calcium traces (T = 100, 200). Here we only present one simulated scenario for
each setting to briefly describe the model’s behavior and assess its performance. To
compare the results of the proposed mixture of latent Gaussian processes (MLGP),
we also applied a standard two-stage approach. Specifically, we (1) first deconvolved
the simulated calcium traces using the approach introduced by Jewell et al. (2019),
then, (2) we clustered the extracted series of the signal using a hierarchical clustering
based on the Hamming distance. The penalization parameters in step (1) were selected
following the procedure illustrated in de Vries et al. (2020) to minimize the number
of estimated spikes smaller than 2 standard deviations of the trace. To assess the
influence of spike detection on the estimated clustering in the two-stage approach, we
also estimated a hierarchical clustering on the true signal.

We evaluated our model and step (1) of the two-stage approach by comparing the
misclassification error rate obtained in the simulated scenarios (Tab. 4.1). In general,



58 clustering activation patterns of spatially-referenced neurons

n = 20 n = 30 n = 40
T = 100 T = 200 T = 100 T = 200 T = 100 T = 200

MLGP 1 0.915 0.870 0.923 0.912 0.912
L0 + hierarchical 0.469 0.853 0.820 0.889 0.516 0.648

true + hierarchical 1 0.968 0.820 0.966 1 0.934

Table 4.2: Adjusted Rand index of the estimated clusters of activity on the simulated data for
the proposed model (MLGP), the two-stage approach (L0 + hierarchical) and a hierarchical
clustering on the true signal (true + hierarchical).

the performances of the proposed model are superior to those obtained using the L0

penalization approach. This is consistent with the findings of the previous chapter,
where we assessed that a simultaneous deconvolution and estimation of the spiking
activity can improve spike detection.

Estimation of the clustering structure was assessed using the adjusted Rand in-
dex (Rand, 1971; Hubert and Arabie, 1985). Table 4.2 compares the results of the
proposed model with those attained by the hierarchical clustering (2), both on the
estimated signal, after the deconvolution phase (1), and by applying step (2) directly
on the true signal, to exclude the impact of spike detection on cluster recognition. The
proposed model shows superior performance compared to the two-stage approach
in all simulated scenarios. The hierarchical clustering based on the true signal has
overall the best results, however, it is clearly not applicable in a real application, as it
assumes perfect identification of the spikes. Moreover, in hierarchical or centroid-based
clustering, one has to fix some parameters, whose choice is somehow arbitrary, and
that heavily affect the resulting partition (e.g. the number of clusters). Conversely,
model-based clustering is relatively free from tuning parameters and subjective choices,
leading to more stable and data-driven results.

4.4. Analysis of hippocampal neurons

Finally, wemove to the analysis of the hippocampal neurons data described in Sec. 1.2.2.
Also in this casewewill present only a preliminary analysis, as the computational issues
mentioned in the previous section are particularly relevant in this context, because of
the length of the series and the large number of neurons.

We considered the first 2000 time points of the experiment, and we selected a subset
of 30 neurons that, from a preliminary analysis, showed at least one spike in some
pre-specified intervals (to avoid the inclusion of neurons with no activations in the
considered timewindow). On the calcium traces thatwe considered, wefirst performed
a pre-processing phase by down-sampling the traces, keeping one observation every
10, hence leading to 200 time points for each series. This step was necessary to make
the data more conform to other fluorescent traces, as, for example, those from the Allen
Brain Observatory analyzed in the previous chapter, and for computational reasons.

Neuroscience research aims to identify groups of neurons with a pattern of activity
that coincides over seconds-long periods. In real experiments, the calcium traces are
recorded for very long periods of time, hence, the clustering of neurons can not be
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performed on the whole series. It is, indeed, unlikely that neurons exhibit a similar
activity for the entire duration of the experiment, being the dynamics that regulate
the neuronal activity very complex. This issue leads to the need to specify the length
of the intervals where we seek for clustering structures: neuroscience provides some
guidelines on this choice (Bittner et al., 2017), however, there are no clear indications
on the exact length of such time windows, as it may depend on the specific scope and
setting of the research. Here, we considered both 4 non-overlapping windows of 50
time points (75 seconds) each and 2 windows of 100 time points (150 seconds), to
assess influence of this choice on the resulting clustering. Figg. 4.4 and 4.5 compare
these two scenarios: the top panel of each figure shows the observed calcium traces,
and the colors correspond to the estimated cluster label, which can vary in each time
window. The bottom panels show the location of neurons in the hippocampus, and the
colors again show the evolution of the estimated clustering. In both scenarios, most
neurons are assigned to the same cluster, and this large group remains together for the
whole duration of the experiment. From a visual inspection, one would expect a larger
number of clusters, as many traces which are now grouped together appear to be quite
different. However, the model is able to detect some specific patterns of activity, which
are reasonably assigned to separate groups.

Both scenarios show that there is scope for improvement in the clustering procedure,
and there are a few directions which are worth investigation. An important factor that
affects the results is the process on the amplitudes. Figure 4.6 shows the distribution
of the estimated parameters ait: the spike amplitudes appear to be very heterogeneous
and with a large variance. Using a gamma distribution to model the positive spikes
could hence be too restrictive, and a more flexible prior could improve spike estimation
and, in turn, the clustering structure. For example, adopting a mixture prior, similarly
to the previous chapter, could be appropriate to address these issues. Another aspect
which can be investigated is the use of overlapping time-windows, which could lead
to a more progressive transition between partitions.
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Figure 4.1: Estimated clustering on the simulated data with sample size n = 20, and series
length T = 100 (top) and T = 200 (bottom). Each series is the simulated calcium trace;
the colors correspond to the estimated clusters, while the numbers on the left of each series
correspond to the true partition. The vertical segments correspond to the detected spikes.
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Figure 4.2: Estimated clustering on the simulated data with sample size n = 30, and series
length T = 100 (top) and T = 200 (bottom). Each series is the simulated calcium trace;
the colors correspond to the estimated clusters, while the numbers on the left of each series
correspond to the true partition. The vertical segments correspond to the detected spikes.
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Figure 4.3: Estimated clustering on the simulated data with sample size n = 40, and series
length T = 100 (top) and T = 200 (bottom). Each series is the simulated calcium trace;
the colors correspond to the estimated clusters, while the numbers on the left of each series
correspond to the true partition. The vertical segments correspond to the detected spikes.
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Figure 4.4: Hippocampal neurons data: observed calcium traces (top) and locations (bottom)
for the considered subset of neurons. The colors correspond to the estimated clustering in 4
non-overlapping time windows of length 50.
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Figure 4.5: Hippocampal neurons data: observed calcium traces (top) and locations (bottom)
for the considered subset of neurons. The colors correspond to the estimated clustering in 2
non-overlapping time windows of length 100.
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Figure 4.6: Distribution of the estimated spike amplitudes on the hippocampal neurons data.





CONCLUS IONS

Discussion

In recent years the technological advances have enabled the collection of increasingly
complex data. Calcium imaging data fit perfectly into this context: being high dimen-
sional, often collected in elaborate experimental settings, with spatial and temporal
dependence structures, and with a non-homogeneous response between neurons, they
present several modeling challenges. Analyzing these data hence fosters investigation
of new statistical and computational tools in many directions. In this thesis, we have
examined three different, although related, aspects of a Bayesian analysis of these data.

In the first chapter, we have considered a classical two-stage approach, based on a
first deconvolution phase and a successive statistical analysis of the output. Specifi-
cally, we have examined the use of Poisson regression models to relate the number
of detected spikes with several covariates describing the experimental conditions.
However, although we focused on this specific application, Poisson log-linear models
are routinely used in many contexts, making our work applicable also outside of the
scope of calcium imaging studies. We have developed two Markov chain Monte Carlo
algorithms to sample from the posterior distribution of the regression parameters
under the assumption of conditionally Gaussian prior distributions. The algorithms
exploit the introduction of an approximate posterior distribution, which is used as the
building block for a Metropolis-Hastings and importance sampling algorithms. The
proposed sampling strategies show good performances in terms of efficiency compared
to state-of-the-art methods.

In the second chapter, we have developed a nonparametric nested mixture model
that allows for simultaneous deconvolution and estimation of the spiking activity,
hence overcoming standard two-stage approaches. The model makes use of two nested
layers of random discrete mixture priors to borrow information between experiments
and discover similarities in the neuronal response to different types of stimuli. If, on
the one hand, the Bayesian approach is computationally less efficient than routinely
used methods, on the other hand, the possibility to define a flexible prior distribution
was key to including knowledge on the structure of the data, and hence to fully exploit
the available information. The results on simulated data show how simultaneous
deconvolution and estimation of the spike amplitudes leads to lower misclassification
error, thanks to the borrowing of information between the two phases. Application to
a real data set from the Allen Brain Observatory demonstrates the ability to capture
characteristic features of neuronal activity.

Finally, in the last chapter, we have moved to the multivariate analysis of populations
of neurons. In general, neurons do not exhibit a homogeneous response to stimulation,

67
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and a relevant research question in neuroscience is studying groups of co-activating
cells. This motivated the investigation of new clustering strategies to identify calcium
traces with a similar underlying pattern of activity over seconds-long periods of time.
We have formulated a nonparametric mixture model that deconvolves the fluorescence
traces and clusters the latent binary series of activity. The latter task is achieved
through the introduction of a latent continuous process that explicitly characterizes
the spike probabilities and models their temporal dependence. Moreover, spatial
dependence is also taken into account by using location-dependent mixture weights.
Similarly to Chapter 3, also here adopting a Bayesian approach led to a substantial
improvement in the characterization the structure of the data. Standard methods to
perform clustering of neurons, based on summary statistics of the data, necessarily
involve loss of information, which can instead be exploited in the analysis thanks to
the construction of adequate prior distributions.

Future directions of research

The work described in Chapter 4 presents some aspects that are prone to possible
extensions and improvements, some of which have already been described in the dedi-
cated sections. A first issue, already raised in Sec. 4.3, is related to the computational
cost of the algorithm used to perform posterior inference. To estimate the realizations
of the latent mixture of Gaussian process, we applied the particle filtering algorithm
proposed by Fasano et al. (2021). Although the algorithm is a very good strategy to
perform inference on binary state space models, it is not the most appropriate method
in our context, as it must be run at every iteration of the Gibbs sampler. Hence, it would
be useful to devise computationally more efficient ways to sample the realizations of
the latent mixture of Gaussian processes.

The process on the amplitudes is very simple and somehow restrictive: as already dis-
cussed, it would be useful to replace the gamma prior with a more flexible distribution
such as, for example, a mixture prior, similarly to Chapter 3.

Another possible improvement is relative to the time window used in the application
to the hippocampal neurons data. As already pointed out, the choice of the time
window can heavily affect the resulting clustering and hence the implications of the
findings. Moreover, one could choose between segmenting the series or opting for
a sliding window approach. All these issues are worth additional research, and, in
particular, it would be useful to develop some methods to evaluate the sensitivity of
the clustering to the different alternatives, and, possibly, to provide a way to evaluate
what choice led to the “best” results.

In the hippocampal neurons data set it is also available an additional covariate that
at each time records the spatial coordinates of the mouse into the environment. It
would be interesting to conduct further research to extend the model of Chapter 4
to include this information. To model dependence of the spiking activity from this
covariate, one possibility could be to divide the environment into quadrants, and
adopt the nested mixture of Chapter 3 by considering each quadrant as a different
experimental condition. Another possibility could be to represent the movements of
the mouse using a network structure. A regression model could then be defined to
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relate the neurons’ activity at each time point with the mouse’s location by using a
prior distribution on graphs (Cai et al., 2019).
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