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Dynamic changes in the active portion of stream networks
represent a phenomenon common to diverse climates and
geologic settings. However, mechanistically describing these
processes at the relevant spatiotemporal scales without
huge computational burdens remains challenging. Here, we
present a novel stochastic framework for the effective
simulation of channel network dynamics capitalizing on the
concept of ‘hierarchical structuring of temporary streams’—a
general principle to identify the activation/deactivation
order of network nodes. The framework allows the long-
term description of event-based changes of the river network
configuration starting from widely available climatic data
(mainly rainfall and evapotranspiration). Our results indicate
that climate strongly controls temporal variations of the
active length, influencing not only the preferential
configuration of the active channels but also the speed of
network retraction during drying. Moreover, we observed
that—while the statistics of wet length are mainly dictated by
the underlying climatic conditions—the spatial patterns of
active reaches and the size of the largest connected patch of
the network are strongly controlled by the spatial correlation
of local persistency. The proposed framework provides a
robust mathematical set-up for analysing the multi-faceted
ecological legacies of channel network dynamics, as
discussed in a companion paper.
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1. Introduction
The flowing portion of many river networks does vary in time, owing to seasonal and/or event-based
expansion–retraction cycles that mimic the unsteady nature of the underlying climatic forcing. Such
rivers, commonly referred to as temporary streams, are believed to represent more than half of the
global river network and are observed in most climatic regions worldwide [1–3]. The dynamic nature
of channel networks has important implications beyond catchment hydrology, which include nutrient
cycling, greenhouse gas emissions, stream metabolism, ecological dispersion and water management
[1,4–13]. Quantifying the impact of stream dynamics on ecological and biochemical processes,
however, requires a proper characterization of the expansion/retraction cycles experienced by stream
networks in response to the ever-changing hydrological conditions of the surrounding landscape [14].

The first hydrologic studies about temporary streams date back to half a century ago [15–23]. Those
pioneering works revealed the twofold challenge that underlies the study of temporary streams: while
collecting empirical data requires a significant experimental burden, extensive datasets are necessary
to disentangle the intertwined spatial and temporal dimensions of the problem, which complicate the
identification of the physical processes underpinning the activation/deactivation of different stream
portions. Even though field monitoring remains labour intensive, the last decade has seen a
significant increase in the number of available datasets. These datasets, however, seldom span more
than a few years and are mostly characterized by coarse (e.g. biweekly) temporal resolutions [3,24–33].

To explain the main drivers of network dynamics, [30,34] proposed a conceptual model that links the
surface flowat a point to the imbalance between the downvalley seepage rate and subsurface transmissivity.
However, the application of this conceptualmodel for the prediction or the simulation of the spatial patterns
of the flowing streams is problematic, as it would require the specification of spatial patterns of subsurface
transmissivity and valley cross-sectional area, which are very difficult to measure or predict.

In recent years, there have been fewpractical attempts to reproduce the full spatial and temporal dynamics
of the actively flowing channels within a river network: (i) [35] used a detailed, physically based, distributed
model that simulated surface water–groundwater interactions and active length variations along a 2.9 km
channel in the western Cascades, Oregon, USA; (ii) [36] created a logistic regression model that combined
catchment discharge measurements and spatial patterns of morphometric attributes, which can be
potentially used to simulate network dynamics; and (iii) [29,37] employed a statistical approach in which
the dynamics of the active length were linked to climatic attributes (antecedent rainfall,
evapotranspiration). Therein, the spatial patterns of channel activations were either specified based on
high-frequency observations or predicted based on geological and lithological properties. All these
modelling attempts were extremely valuable in clarifying the major climatic and geologic determinants of
stream network expansion/retraction. However, the aforementioned models can hardly be generalized and
used for predictive purposes outside the specific context in which they were conceived, in particular for
applications to study sites where empirical data on network dynamics are lacking. Moreover, the existing
literature lacks stochastic approaches that are capable of linking the spatial and temporal dynamics of the
active portion of the river network to the underlying rainfall and streamflow regimes. This emphasizes the
need for developing general but parsimonious models—potentially applicable even to ungauged
locations—for the synthetic generation of long-term scenarios representative of different hydroclimatic
regimes.

In the following, we first present a novel model for the stochastic simulation of the dynamics of the
flowing network (§§2.1 and 2.2). The proposed model, which relies on a small number of parameters and
requires a limited computational effort, allows the synthetic simulation of the spatiotemporal dynamics
of the active stream network under a broad range of hydroclimatic conditions (§2.3). The model is used to
explore spatiotemporal dynamics of the active network in streams subjected to contrasting flow regimes
and various spatial patterns of flow persistency (§3.1).

A discussion of the relevance of our findings (§4) and a set of conclusions (§5) then close the paper.
The potential of the tool will be further demonstrated in a companion paper, where the proposed

hydrological model will be coupled to a dynamic version of a stochastic ecological model to explore the
effect of stream expansion and retraction on the survival probability of a representative aquatic animal species.
2. Methods
A dynamic stream network is here represented by a set of N nodes with arbitrary spatial coordinates and
a binary state. Each node (i) is representative of the hydrological conditions in a uniform stream reach of
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length Δli containing the node i. At any time, each node has a status Xi(t) that could be either 0 (dry) or 1
(active). Temporal changes in the spatial configuration of the active network are simulated by assigning
the status of each node in the network during a sequence of time steps. The time variability of the status
of each node can be summarized by its local persistency, Pi, which represents the marginal probability of
node i being active. The spatial correlation among the status of each node, inherent to real-world stream
network dynamics, is set using the persistency-driven hierarchical behaviour proposed by [14,38],
according to which the nodes are always activated from the most to the least persistent during
network expansion and deactivated in the reverse order during retraction (note that Pi may vary non-
monotonically in space, thereby generating disconnections along the active network). This corresponds
to a stochastic process in which nodes are ordered in a chain with decreasing local persistency and
pairwise links are set between consecutive nodes. The status of each node is then conceived as a
random variable conditionally dependent on the status of the previous node in the chain. The
(spatially variable) conditional probabilities of the states of the nodes are determined in line with
what is prescribed by the hierarchical behaviour itself: the model prescribes that node i can be active
only if all previous nodes in the chain (i.e. all the nodes with larger local persistency) are active too.
As a consequence, each possible network configuration corresponds to a sequence of K active nodes
(K∈ [1, N ]) followed by a sequence of N−K dry nodes, and a biunivocal relation between the active
length and its spatial configuration along the network is generated. This is tantamount to assuming
that at any time there exists a time-dependent persistency threshold P�(t) that separates dry nodes (the
nodes with persistency lower than P�(t)) from wet nodes (the ones with persistency higher than P�(t)).
The stochastic variability of P�(t) surrogates in a simplified manner the probabilistic nature of the
underlying hierarchical network. The hierarchical mechanism implies that nodes with the same
persistency display a synchronized behaviour even if they are not close-by in the physical space. It is
important to stress that this hierarchical approach can also reproduce disconnected networks: local
disconnections are in fact observed wherever a low-persistency node is embedded within a more
persistent reach, while disconnected wet segments are observed when nodes with a higher persistency
are hosted within more ephemeral reaches. The advantage offered by this approach is the
disentanglement of the temporal dimension of network dynamics, dictated by P�(t), from the spatial
pattern of the active nodes, which is prescribed by the arrangement of the local persistency along
the network.

Operationally, the generation of the synthetic stream dynamics requires two main steps: the potential
network is first defined via a set of nodes with prescribed local persistency; then, a time-variable
persistency threshold P�(t) is used to discern dry nodes from wet nodes at each time step of the simulation.
2.1. Simulating spatial patterns of local persistency
In our framework, the spatial patterns of network dynamics are governed by the spatial distribution of
local persistency along the network. These data can be directly estimated from field surveys, as detailed
in [38]. However, if empirical data about stream persistency is lacking, as a first-order approximation, the
spatial pattern of Pi can be defined exploiting climatic and morphological data. This procedure is divided
into three consecutive steps: (i) estimation of the mean network persistency (i.e. the average persistency
among all nodes of the network), (ii) definition of the statistical distribution of local persistency, starting
from the mean network persistency, and (iii) generation of N local persistency values from their statistical
distribution and allocation of the resulting Pi values (i∈ (1, N )) to all the network nodes.

The first step consists in defining the average persistency along the network, �P (i.e. the mean network
persistency). Previous analyses carried out on a global database encompassing 19 catchments in Europe
and the USA have indicated that �P is mainly controlled by the underlying climatic conditions, with drier
sites that are systematically characterized by lower persistencies [14]. Here, to circumvent the need for
specifying this key network property through additional independent parameters, we rely on the
observed empirical correlation between �P and the catchment-scale excess precipitation emerging from
the observational data of [14], which is summarized by the following empirical equation:

�P ¼ 0:0527þ 0:1951ðPt � EpÞ, ð2:1Þ
where Pt and Ep are, respectively, total precipitation and potential evapotranspiration in mm d−1.
Equation (2.1) provides a good approximation of the observed values of �P across several catchments
belonging to diverse climatic regions of the world. Due to its inherent empirical nature, however,
equation (2.1) might not be applicable to catchments with peculiar geological features—especially if
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they are located in the most arid or humid regions of the globe. Nonetheless, equation (2.1) allows a
useful first-order assessment of the average network persistency of temporary rivers, particularly
when empirical data about wet stream dynamics are not available.

The second step defines the cumulative density function of local persistency, CDFP , which
summarizes the spatial variability of local persistency along the ephemeral portion of the river
network. Experimental data gathered in a set of catchments located in different geomorphoclimatic
regions suggested that the statistical distribution of the local persistency along the river network
follows a one-parameter beta probability density function [14]. The corresponding cumulative density
function of Pi can be written as follows:

CDFPðPiÞ ¼ 1� ð1� PiÞb, ð2:2Þ
where b ¼ 1=�P� 1 is inversely related to the average network persistency. Thus, once the mean
persistency of a given network is known, or it has been estimated via equation (2.1), the parameter β
in equation (2.2) can be determined and CDFP is known. It should be noted that the two empirical
relations expressed by equations (2.1) and (2.2) only apply to the temporary portion of the network
(i.e. nodes with Pi < 1). Instead, perennial stream portions which never dry out (if any) should be
explicitly accounted for by including an atom of probability in Pi = 1 in the CDF of the local persistency.

In the third step, each node of the network is assigned a local persistency Pi extracted from the
distribution CDFP, given by equation (2.2). Observed spatial correlations of local persistency in
dynamical river networks are typically quite variable across different study sites. While spatial
patterns of Pi were found to be positively correlated with some relevant geomorphic properties such
as the contributing area [36], in some cases, local heterogeneity in geological features dominates,
enhancing the heterogeneity of Pi (e.g. [3,29]). To cope with this issue, here, we identify three different
statistically meaningful scenarios. In the first scenario, the local persistency of each node is assigned in
a completely random manner, resulting in non-correlated values of Pi along the network. This
scenario represents an ideal end-member set-up where the spatial correlation of the nodes’ persistency
takes the lowest possible value—probably representative of catchments where the internal
heterogeneity of morphometric and geological properties dominates. In the second scenario, instead,
Pi is deterministically linked to the topographic wetness index (TWI). The TWI was originally
proposed to be a good measure of the likelihood of surface flow in systems with humid climates [39],
but it was recently found to be significantly correlated with the observed persistency of the nodes
under a variety of climatic settings [29,36,40]. Specifically, quantile transformation (as defined in [41])
is used to estimate the persistency of each node from the corresponding value of TWI. This is done by
calculating the empirical CDF of TWI along the network, CDFTWI, and then selecting the persistency
of each node, Pi, such that the equation CDFTWI(TWIi) =CDFP(Pi) is fulfilled 8 i (with CDFP as given
by equation (2.2)). As a result, for any pair of nodes i and j, if TWIj < TWIi, then Pj < Pi. The TWI
combines the upstream accumulated area, which monotonically increases downstream, with the local
slope. Consequently, while this scenario is characterized by a higher spatial correlation than that
observed in the random scenario, we expect Pi to be somewhat heterogeneous, owing to variations of
the local slope along the network. Analogously, quantile transformation is used in the third scenario
to deterministically link Pi to the upslope accumulated area. The latter is usually proportional to the
amount of water supplied from upstream areas and hence is considered a major driver of surface flow
occurrence in river networks [30]. In this case, Pi is expected to systematically increase in the
downstream direction, thereby guaranteeing the maximization of the spatial correlation of the status
of the nodes in the network, for the given CDFP. Consequently, this scenario represents a second end-
member set-up, representative of catchments where geomorphic and hydrologic features are spatially
uniform. While we recognize the limitations of the statistical approach adopted here, that does not
allow the actual prediction of the observed patterns of Pi based on physical attributes of the
catchment, we propose that the use of these scenarios represent a parsimonious but reliable strategy
to describe the spatial gradients of local persistency in the study sites where such data are unavailable.
2.2. Stochastic generation of spatiotemporal dynamics of the active channel network
In this hierarchical framework, the temporal dynamics of expansion and contraction of temporary
streams are uniquely determined by the temporal variability of a persistency threshold separating wet
from dry nodes, P�(t). In the model, the temporal variations of the persistency threshold are driven by
the changes in the corresponding streamflow at the outlet, Q(t). When Q increases, P� decreases and
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the network expands, as more nodes get activated because their local persistency exceeds P�. Conversely,
when Q decreases, P� increases and the network contracts as more and more nodes get deactivated.
When available, time series of observed or modelled Q(t) can be directly employed for reconstructing
the past dynamics of the active network. Alternatively, the physically based stochastic model
presented later in this article can be employed to generate synthetic time series of Q(t) that mirror the
natural intermittency of precipitation. The main advantage of the stochastic model used hereafter is
that it only requires three parameters with clear physical meaning (namely, effective rainfall frequency,
mean daily rainfall depth and recession coefficient), thus enabling a parsimonious generation of
long-term scenarios in which the stochastic nature of rainfall is explicitly accounted for.

This model, first introduced by [42,43], has been used several times in literature owing to its
robustness and flexibility. The model showed a good capacity of accurately describing flow regimes
over a wide array of settings, also in the absence of discharge observations [44]. Rainfall is modelled
as a marked Poisson process of mean rate λP and exponentially distributed depths with average α.
Precipitation events infiltrate in the root zone, where they replenish the moisture deficit created by
evapotranspiration in between rain events. The drainage towards the stream is assumed to take place
only when soil moisture, in response to some rain events, exceeds a given wetness threshold. These
fill-and-spill dynamics create a second stochastic process corresponding to the sequence of effective
rainfall pulses, resulting from the filtering operated by soil moisture dynamics on the total
precipitation. The effective precipitation is modelled as a new Poisson process with mean depth equal
to α and a frequency λ, which is smaller than the precipitation frequency λP. Effective rainfall is
released towards the stream following a linear storage–discharge relation. This results in a sequence of
stochastic streamflow increments and exponential recessions at the outlet, and the corresponding
dynamics of the catchment-scale discharge Q are described by the following equation:

dQ
dt

¼ �kQþ jðtÞ, ð2:3Þ

where k is the recession rate and ξ(t) represents the sequence of streamflow increments induced by effective
rainfall events. As we shall see later on, the link between Q and the corresponding P� crucially determines
the portions of the network that are active for any given value of streamflow at the outlet. The cumulative
density function of the streamflows resulting from the process described by equation (2.3) can be written
as follows:

CDFQðQÞ ¼ gðl=k, Q=akÞ
Gðl=kÞ , ð2:4Þ

where Gð�Þ and γ( · , · ) are, respectively, the complete gamma function and the lower incomplete gamma
function. The function CDFQ can be interpreted in terms of the flow duration curve (FDC), which links
each streamflow value Q to the corresponding relative duration D, i.e. the fraction of time for which that
specific Q is equalled or exceeded. Accordingly, the flow duration curve can be written as follows:

DðQÞ ¼ FDCðQÞ ¼ 1� CDFQðQÞ: ð2:5Þ

The dynamics of the active network mimic the sequence of streamflow pulses and recessions
observed at the catchment outlet. Owing to the hierarchical structuring of temporary streams, a finite
set of network configurations is observed during network expansion, in which less and less persistent
nodes progressively activate. In particular, when the network expands, some nodes which were
previously dry activate, while all the nodes that were already active remain wet. The same sequence
of network configurations is then observed with a reverse order during network contractions. The
synchronicity between increases (decreases) of Q and network expansion (contraction) implies
the existence of a bijective correspondence between Q at the outlet and the spatial configuration of the
active nodes in the network. This complies with the one-to-one relation between Q and active length
L frequently observed in the literature [19,30,34,40,45,46]. Under the aforementioned assumptions,
whenever a streamflow Q with duration D is observed at the outlet, the corresponding active network
configuration is made by nodes that are active for a fraction of time which is at least equal to D,
because they are active also in all the more expanded configurations observed during higher flow
levels. To state it differently, whenever a given network configuration is observed, the corresponding
active nodes have a local persistency Pi, which is at least equal to the duration D of the corresponding
length and catchment discharge observed at that time [47],

P�ðtÞ ¼ DðQðtÞÞ ¼ 1� CDFQðQðtÞÞ, ð2:6Þ
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where P�(t) represents the instantaneous value of persistency threshold that separates active and dry
nodes. P�(t) can thus be derived based on Q(t) as simulated via equation (2.3). For each time step, the
status of each node of the network is assigned as follows:

XiðtÞ ¼ 1 if Pi � P�ðtÞ
0 otherwise

�
: (2:7)

The length of the active network, L(t), can then be calculated as the sum of the lengths Δli associated
to each active node [38],

LðtÞ ¼
XN
i¼0

Dli � XiðtÞ: ð2:8Þ

It is worth noting that, based on the aforementioned definition, L comprises all the active portions of the
network, regardless of their degree of connectivity to the outlet (or lack thereof). Moreover, while the
scheme originates a one-to-one relationship between the total active length, L, and the catchment
discharge, Q (in line with the existing literature), the shape of this L(Q) relation is not specified a priori
but emerges from the model parameters. The maximum length of the stream network is achieved when
all the nodes in the network are simultaneously active and is represented by the geomorphic length Lg.
An effective way to summarize the dynamics of L(t) is provided by the stream length duration curve
(SLDC), which relates each possible active length of the network (L) with the corresponding duration D.
Once L(t) is known, the SLDC can be easily obtained with the Weibull plotting position method.
However, as established by [38], the SLDC can also be directly achieved from the spatial distribution of
the local persistency. In particular, 1−CDFP(P�) can be interpreted as the fraction of nodes with local
persistency greater than P�, which also corresponds to the fraction of length (L/Lg) that is flowing when
only all the nodes with Pi≥ P� are active. Given that P� represents the duration for which said nodes are
active, the corresponding lengthmust have a durationD = P�. Therefore, the SLDCcan bewritten as follows:

L
Lg

¼ 1� CDFPðDÞ: ð2:9Þ

This set-up allowed us to generate a stochastic time series of streamflow following equation (2.3), which
was transformed into a time series of persistency thresholds with equation (2.6). Finally, starting from the
potential network generated in 2.1, equation (2.7) allowed the estimation of the active nodes at each time
step. The full spatial and temporal dynamics of a dynamic channel network were thus obtained.

2.3. Numerical set-up
Without the loss of generality, the stochastic model presented in this article was applied to a
representative stream network derived from a mesoscale catchment in the Italian subalpine region. In
particular, a coherent stream map and a digital terrain model publicly available in the Veneto Region
Geoportal [48] were used to define the reference geometry of the geomorphic network via 1215 nodes
and calculate the associated topographic features (e.g. slope, contributing area). However, all the
relevant spatial quantities were made dimensionless in §3 owing to the fractal nature of river
networks [49], which makes the spatial scale of the catchment irrelevant for the hydrological analyses
performed in this article whenever the precipitation input can be assumed to be spatially uniform.

Twodifferent sets of basic hydroclimatic parameters (α, λP andEp) were used to simulate two contrasting
climatic scenarios, namely, Dry (D) andWet (W ), as shown in table 1.While these scenarioswere selected to
explore the system’s behaviour under a gradient of climatic conditions, the ‘Dry’ and ‘Wet’ terms are not
directly related to any standard climatic classification, the only real meaning being that the ‘Wet’
scenario is wetter than the ‘Dry’. Nonetheless, the ‘Dry’ scenario can be thought of as representative of
the rainy season in a hot Mediterranean climate with high ET and sparse but intense rain inputs, while
the ‘Wet’ scenario can be seen as representative of the summer season of humid Alpine areas with
frequent rainfall events and moderate ET. These scenarios were characterized by different values of the
parameters α and λ of the streamflow model, while the recession rate k was assumed to be constant and
equal to 0.35 d−1 [43]. The value of λ associated with each scenario was calculated based on the
corresponding λp and Ep, as detailed later in this article. First, the actual evapotranspiration Ea was
calculated with the Budyko curve [50,51] as follows:

Ea

Pt
¼ Ep

Pt
tanh

Pt

Ep

� �
1� exp �Ep

Pt

� �� �� �1=2
, ð2:10Þ



Table 1. Summary of the parameters used for the simulation of network dynamics in the different climatic scenarios. The
recession rate k is constant across all scenarios and equal to 0.35 d−1. Only α, λP, Ep and k are independent parameters.

climatic scenario dry (D) wet (W )

mean daily rainfall depth α 15.0 10.0 mm d−1

mean rainfall frequency λP 0.25 0.55 d−1

potential evapotranspiration Ep 3.0 2.0 mm d−1

mean total precipitation Pt 3.75 5.50 mm d−1

actual evapotranspiration Ea 2.29 1.82 mm d−1

effective rainfall frequency λ 0.10 0.37 d−1

rain freq. to recession rate ratio λ/k 0.65 2.45 d−1

mean network persistency �P 0.20 0.74 —
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where Pt = αλP is the mean total precipitation. Subsequently, the mean effective rainfall frequency λ was
estimated based on the catchment water balance equation proposed by [52],

l ¼ lP � Ea

a
, ð2:11Þ

which expresses the fact that the sequence of effective precipitation pulses is composed of the subset of
rainfall events bringing enough water to fill the soil water deficit created by evapotranspiration.
Therefore, the mean effective precipitation (αλ) can be calculated by subtracting Ea from the mean total
precipitation, Pt.

The mean network persistency was then estimated by means of equation (2.1). Local persistency
values for each node of the network were randomly extracted from the probability density function
shown in equation (2.2). In particular, three different criteria for assigning local persistencies were
compared: (1) completely random, resulting in non-correlated persistency along the network, (2) by
TWI (i.e. nodes with higher TWI are given higher persistency by means of quantile transformation),
and (3) by contributing area. Overall, six scenarios were explored in this article, as determined by the
combination of three persistency spatial patterns (1–3) and two different climates (D or W ). These six
scenarios are identified by unique two-digit labels indicating the underlying set-up (e.g. the scenario
with wet climate and local persistencies defined based on the contributing area was labelled as W3).

For each scenario, a 100-year daily time series of catchment streamflow Q(t) was stochastically
generated. The corresponding flow duration curve was then derived and used to generate the time
series of persistency threshold P�(t) as per §2.2. The status of each node was assigned for each time
step by means of equation (2.7), and the active length calculated with equation (2.8). Finally, a Weibull
plotting position method was used to construct the SLDC from L(t), to be compared with equation
(2.9). Furthermore, the length of the largest continuous portion (LCP) of the active network (i.e. the
sum of the length of the active segments that are connected to each other within the largest patch of
the network) was calculated for each possible network configuration. The resulting relation between
P� and LCP length was used to summarize the combined effect of the dynamics of active length and
the presence of disconnections as the network goes from completely dry (P� = 1) to fully expanded
(P� = 0). The LCP length versus P� curve can also be interpreted as a duration curve because P� can be
thought of as the duration of the corresponding network configuration.
3. Results
3.1. Space-time dynamics of the actively flowing stream network
For the sake of illustration, we first analyse in figure 1 the results pertaining to the W2 scenario. The time
series of rainfall (figure 1a) mirrored the high frequency of precipitation typical of wet scenarios (λ = 0.37
in this case) that guarantees a regular water supply to the catchment storage, often originating sequences
of consecutive wet days. The stochasticity of the effective rainfall was directly reflected into the time
series of streamflow Q(t), in which the positive increments in correspondence of the major
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precipitation events were followed by exponential recessions. The time series of persistency threshold
P�(t) showed an analogous, albeit reversed, behaviour. In particular, each rainfall event determined an
increase of Q(t), which was reflected into a reduction of P�(t) and led to the expansion of the active
network. As per equation (2.6), CDFQ modulated the transformation of Q(t) into P�(t) and introduced
a nonlinear relation between these two signals (see also figure 4c, in which the FDC also represents
equation (2.6) because the duration axis can be reinterpreted as P�(t)). In particular, for the W2
scenario, the variability of Q in the range of the highest flows (Q(t) > 7.5 mm d−1) corresponded to
weak variations of P�(t) (figure 1). Instead, streamflow variations in the range between 2.5 and
5 mm d−1 were amplified by P�(t), suggesting that the active network length may be most sensitive to
the underlying hydroclimatic variability for intermediate flow conditions (�Q ¼ 4mmd�1 for scenario
W2). Figure 1(d–g) shows a sequence of snapshots of the simulated active network, while the full
dynamics are provided as a video in the electronic supplementary material. The maximum extension
of the network (panel d ) was obtained at day 16 of the simulation, after a series of intense rain events
that resulted in a significant increase of catchment discharge. During periods with limited rainfall
inputs (e.g. from day 45 to 60), or in the absence of precipitation (e.g. in the period between day 111
and 123), streamflow markedly receded with a progressive contraction of the active network (as
shown in figure 1e,f ). The most contracted network configuration was reached after the longest dry
spell (figure 1g).

The different dynamics that the river network experienced under the scenarios analysed in the article
were explored by comparing the corresponding model outputs: (i) the maps of local persistency
(figure 2); (ii) the generated time series of Q and L (figures 3 and 4) and (iii) the different sequences
of possible configurations that each network experiences (figures 5–7). The generated maps of 423
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local persistency for the six scenarios corresponding to the wet and dry climates are reported in figure 2.
All the dry scenarios (D1, D2 and D3) shared the same mean persistency �P ¼ 0:20 and therefore the same
statistical distribution of Pi, with the only difference being the underlying spatial patterns. The same
applies to the three wet scenarios (W1, W2 and W3), which all shared a mean persistency �P of 0.74.
As expected, randomly assigning the local persistencies (D1 and W1) generated maps where adjacent
nodes might have very different values of Pi, whereas if persistencies were assigned based on the
underlying contributing area (D3 and W3), Pi monotonically increased downstream. When local
persistencies were assigned based on the TWI (D2, W2), instead, Pi generally increased in the
downstream direction, with a few notable exceptions.

An example time series of streamflows for the dry scenarios is depicted in figure 3a. Under the
aforementioned circumstances, the recession rate was higher than the mean frequency of flow-
producing rainfall events (λ/k = 0.65), resulting in an erratic streamflow regime where few significant
flow pulses were followed by prolonged recessions and low flows. This was reflected by a convex
FDC, owing to the high probability associated to very low flows (figure 3c). The FDC, being related to
CDFQ, determines how Q(t) modulates the expansion and contraction of the active network. The
convex shape of the FDC thus suggested that, under the dry scenarios, P�(t) was more sensitive to
low flows, for which the FDC was flatter. The corresponding active length time series, shown in
figure 3b, inherited some of the properties of Q(t), with a few key differences. The steeper recessions
exhibited by active length dynamics compared with the corresponding streamflows generated long
spells during which the stream network was almost completely dry. Nonetheless, a remarkable
fraction of the network was activated only in response to a few moderate-to-high discharge events.
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This produced a significant variability in the active length (CVL = 1.35). The SLDC (figure 3d ) displayed
similar characteristics to the FDC and approached the horizontal axis for a duration of about 0.65. Thus,
the network was almost completely dry during about one third of the simulation.

The simulated time series of streamflow and active length for the wet scenarios, as well as the
corresponding flow and SLDCs, are reported in figure 4. In this case, the mean interarrival between
effective rainfall events was smaller than the recession rate (λ/k = 2.45), leading to a persistent flow
regime with streamflows that were weakly variable around the mean. As a consequence, most of the
stream network was active for significant periods of time, with sensible reductions of L(t) only during
the longest recession periods. The active length time series showed how active length recessions were
concave shaped in this case, with the active length signal L(t) that remained quite constant for a few
days before starting the contraction stage. This tended to reduce active length variability (compared
with the streamflows), resulting in a much lower value of the coefficient of variation of the flowing
length, CVL (CVL = 0.28). The FDC was knee shaped, suggesting that streamflow fluctuated around its
average value, rather than increasing significantly only in response to the most intense rainfall events.
The SLDC, instead, was concave and much flatter than that observed under the dry scenario for
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almost all the durations, in line with the reduced variability of the active length observed in this case.
Furthermore, durations D = 1 corresponded to a relative length L/Lg of about 0.2, revealing that in this
case a significant portion of the network remained permanently active.

Figure 5 shows two sets of network configurations associated with durations ranging from 0.05 to
0.95, for the scenarios W1 and D1 (wet and dry scenarios with random assignment of local
persistency). As D(L) can also be interpreted as the persistency threshold P�, the corresponding
expansion/contraction cycles of the active network consist of a continuous sequence of configurations
belonging to the set of active network maps reported in the figure. The random assignment of local
persistency along the network resulted in a patchy activation of network segments, generating a
multitude of disconnections that were gradually removed as the network approached its fully
expanded configuration. Furthermore, under the dry scenario (D1), owing to the erratic flow regime,
most parts of the network were activated only sporadically, and the active network associated with a
relative length of 50% had a duration D smaller than 0.2. The same network configuration, on the
contrary, had a duration D > 0.8 under the wet scenario (W1). In this case, 93% of the network was
active for at least 20% of the time. Nonetheless, multiple disconnections were observed throughout all
the possible network configurations (with the only exception of the fully expanded network). Such
disconnections were not observed in the D3 and W3 scenarios, instead, where Pi was proportional to
increasing contributing area (figure 7). In this case, the network expanded upstream during wetting,
thereby ensuring the full connectivity of its active portion. When the topographic wetness index was
used as a criterion for the assignment of Pi (scenarios D2 and W2 shown in figure 6), the spatial
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pattern of flowing network combined the characteristics described earlier for the two end-member
scenarios. In this case, in fact, network expansion was associated with both the activation of
disconnected reaches in the upper part and the removal of disconnections in the downstream portion
of the network. As a consequence, the active network was composed by a main part, comprising most
of the active length and usually connected to the outlet, plus a number of small disconnected reaches
in the uppermost branches of the geomorphic network.

The relation between P� and the length of the LCP of the active network for each of the six
hydroclimatic scenarios was also analysed to quantify the impact of stream contraction on the
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longitudinal connectivity of the network. When local persistencies were assigned according to
the contributing area, the networks were fully connected and the LCP curves resembled the
corresponding SLDCs, as shown in figures 4e and 3e for scenarios W3 and D3, respectively.
In scenarios W2 and D2, where local persistency was assigned by TWI, a number of disconnections
arose along the network, and there were several small active branches disconnected from the outlet,
thus generating slightly lower values of LCP length. In the case of scenarios W1 and D1, where the
local persistencies were spatially uncorrelated, significant sizes of the LCP occurred only for the
lowest values of P� even in the case of wet climatic conditions (figure 4e), suggesting that the active
network remains fragmented into a multitude of small portions (LCP normalized length , 0:1) even
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for quite expanded network configurations (L/Lg≈ 0.95). As climate varied from wet to dry, the curves
move to the left (figure 3d ), showing how continuous portions of active network with significant sizes
are less frequent in ephemeral streams of drier regions.
4. Discussion
The hierarchical approach of the proposed model allowed the separation of the temporal and spatial
components of network dynamics. The hierarchical structuring of river networks can be interpreted as
follows: the time-variable threshold P�(t) mimics a highly correlated hydrological signal that is
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propagated along the network as catchment wetness (and the corresponding streamflow at the outlet)
increases and the network expands, while the spatial patterns of local persistency are related to the
sensitivity of each part of the network to such hydrological signal. While the physical mechanisms
that shape the spatial patterns of local persistency are not explicitly included in the formulation, the
main advantage of the proposed model is that it only exploits above-the-ground physical quantities
(e.g. precipitation, streamflow) that are easier to measure compared with other relevant subsurface
characteristics (e.g. soil hydraulic transmissivity, geological features of the contributing catchments),
thereby facilitating the practical application to real-world catchments. However, for this reason, the
model may not be able to capture stream dynamics in the cases where the heterogeneity of subsurface
is the major driver of the streamflow persistency along the network. These cases would require the
development of ad hoc site-specific procedures for assigning the patterns of local persistency.

The approach proposed in this article is new and represents the first stochastic model for simulating the
event-based spatiotemporal dynamics of active streams. However, specific parts of the framework have
already been published, validated and applied individually. In particular, the framework combines the
stochastic model for streamflow generation first introduced by [52] with the hierarchical behaviour of
network dynamics established by [14,38]. The coupling is allowed by the one-to-one relation between
streamflow and active length, which was commonly observed in many practical settings (e.g.
[30,40,45,46]). One of the main advantages of the model is the explicit description of the link between
climate, discharge and stream network dynamics. This link unveils how the stochasticity of rainfall is
reflected into the expansion/contraction cycles of the active portion of a river network, providing a basis
for exploring the ecological implications of these dynamics, as discussed in a companion paper.

Another strength of the proposed framework for the simulation of river network dynamics is the
modularity of the approach, and the consequent flexibility in terms of data requirements: while the
minimum requirement consists of four basic hydroclimatic parameters (α, λP, Ep and k), these could be
easily replaced or integrated by other types of data and/or models. For example, the local persistencies
of the network nodes, which are here estimated via an empirical relationship that links the mean
network persistency to the underlying climate, could instead be directly derived from field observations.
Also, available streamflow datasets or different hydrological models for streamflow generation could be
employed, with different requirements in terms of parameters and calibration data. This represents a
sharp contrast with currently available spatially distributed models for the simulation of network
dynamics (e.g. [35]). Physically based formulations, in fact, have a rigid structure that usually requires a
lot of parameters and cannot be easily adapted to applications characterized by limited data availability.
As a consequence, we propose that this model could become a useful tool, either to construct long-term
stochastic scenarios (e.g. for the assessment of climate change effects on temporary streams) or for the
simulation of past network dynamics in selected case studies.

The main shortcoming of the presented model lies in the lumped approach used for generating the
temporal variability of streamflow and network extent, which empirically summarizes the effect of
spatially distributed hydrologic variables such as flow convergence and soil transmissivity. In fact, the
physical processes driving the spatial dynamics of the active network are probabilistically described
though the variability of the local persistency, which is not mechanistically linked to geomorphic and
landscape features. Nonetheless, this model’s characteristic determines very small computational
requirements (few seconds needed to simulate the full dynamics of Q(t), Xi(t) and L(t) during 1 year),
making it particularly suitable as a basis for integrated, multi-disciplinary modelling exercises, such as
the ecological application presented in the companion paper [53].

The model, as presented here, works under the assumption of statistical stationarity, which implies
that the average properties of climate does not change through time. Instead, many temporary
streams are characterized by seasonal patterns of flow and network dynamics (e.g. [29,54]).
Nevertheless, the proposed model could be easily adapted to cope with inter-seasonal variations of
mean rainfall and evapotranspiration by adopting different sets of seasonally variable model
parameters, as commonly done in stochastic rainfall-runoff models [55].

Our results show that climate jointly influences the temporal variations of streamflow and active
length: persistent flow regimes, characteristic of wet scenarios with frequent precipitation (λ/k > 1) and
sustain river networks with limited temporal variations. Therein, the active length variability is
damped compared with the underlying discharge fluctuations, which are in turn quite limited. In
these scenarios, the active network maintains an expanded configuration for a certain period of time
after each discharge event, before the contraction phase is observed. The relatively high precipitation
frequency might prevent network contractions for several days or weeks, thus creating a preferential
network configuration that corresponds to the fully expanded river network. On the contrary, erratic
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flow regimes typical of the driest climates result in generally dry networks that are subjected to flashy
activations and very quick contractions. Under the aforementioned circumstances, the pronounced
time-variability of the catchment discharge is further amplified by L. These synthetic results are
consistent with empirical observations [29,40,46] and suggest that climate may also have a direct
impact on the sensitivity of active length to changes in catchment wetness, as proposed by [14].

While climate influences the temporal variations of the active length, the spatial configurations of the
active network are chiefly driven by the spatial pattern of local persistency. The LCP length varies in time
as the network expands and retracts, similarly to the total active length. However, the presence of
disconnections along the network has a detrimental effect on the LCP length. When the local
persistency is characterized by a low spatial correlation, in particular, multiple disconnections are
generated and the LCP length remains quite low even in wet scenarios, where the active network is
generally well developed. As the LCP length is a proxy for the longitudinal connectivity of the
network, our results suggest that the spatial pattern of local persistency may strongly influence
the biogeochemical and ecological functioning of temporary streams (e.g. [56,57]). In spite of the
recognized importance of temporal changes of network connectivity within fluvial environments,
relatively few studies have explicitly addressed this issue in quantitative eco-hydrological studies (e.g.
[58,59]). Therefore, we propose that the stochastic framework described in this article may represent a
useful tool for investigating the impact of dynamic connectivity on key ecological processes along
river corridors, especially in the light of the limited computational efforts and the low data
requirement of the proposed method.
0944
5. Conclusion
In this article, we proposed a novel parsimonious model for the numerical simulation of the event-based
spatiotemporal dynamics experienced by the active portion of fluvial networks. The model integrates a
stochastic streamflow model with the concept of hierarchical structuring of temporary streams, which
defines the existence of a unique activation (and deactivation) order of different portions of a river
network. The main advantages of the proposed framework are related to the reduced number of
parameters, the flexibility in terms of data requirements and the limited computational effort. The
model enabled both the reconstruction of observed active network dynamics in specific case studies
and the simulation of synthetic long-term scenarios, making it quite versatile and suited to a broad
range of applications.

The proposed framework was applied to six scenarios characterized by different hydroclimatic
conditions, providing novel insight on how rainfall and evapotranspiration drives stream network
dynamics. Effective rainfall stochasticity was found to be directly reflected in the frequency and
duration of the expansion/contraction cycles experienced by the active network, on which the
dynamics of the flowing length of rivers depends. The underlying hydroclimatic regime also
influenced the speed of network retraction and the features of the preferential configuration of
the flowing stream network. Wetter climates were characterized by slower changes in the network
extent when the discharge recedes, thereby originating active river networks that are weakly
variable around the most expanded configuration. On the other hand, temporary streams belonging to
dry scenarios exhibited active length contractions that were faster than the corresponding flow
recessions, so the preferential configuration of the system was a short network in which only few
nodes were active.

The spatial pattern of local persistency determined the temporally variable longitudinal connectivity
along the active network. When the local persistency monotonically increased downstream, the resulting
network was always connected to the outlet. Configurations with a lower spatial correlation of local
persistency, instead, were characterized by multiple disconnections and a reduced longitudinal
connectivity, even when the network was relatively expanded and in wet scenarios.

The proposed stochastic framework represents a valuable tool for quantifying the impact of river
network dynamics on various in-stream biogeochemical and ecological processes across different
spatial and temporal scales, as demonstrated by a companion paper [53], where a dynamic patch
occupancy model is coupled to the network model presented here to analyse the impact of temporary
stream dynamics on aquatic species under different climatic settings.

Data accessibility. All the data and code presented in this paper are available from the Dryad Digital Repsoitory: https://
doi.org/10.5061/dryad.0zpc86709 [60].
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