
1 INTRODUCTION 

In river bends, curvature-induced secondary currents are peculiar features of the flow field, 
with relevant consequences on a number of hydro- and morphodynamic processes (redistribution 
of momentum and shear stresses, bend scour, bar push and bank pull, mixing of suspended sedi-
ments and passive-tracers, etc.).  

Parametrizations of the curvature-induced secondary flow have long been introduced in depth-
averaged hydrodynamic models (either 1D or 2D). Under the hypothesis of mild-curvature bend, 
the magnitude of secondary flow is generally assumed to increase linearly with the streamline 
curvature, neglecting the mutual (non-linear) interaction among the primary and the secondary 
flow (Blanckaert & de Vriend, 2003; Yeh & Kennedy, 1993). However, experiments showed that, 
in the case of sharper bends, the growth of secondary flows beyond a certain point is hindered by 
a saturation mechanism (Blanckaert, 2009). Saturation emerges as a by-product of the momentum 
transfer promoted by the secondary flow itself: the helical flow induces a flattening on the vertical 
profile of longitudinal velocity, thus reducing the imbalance between centrifugal acceleration and 
hydrostatic pressure (i.e., the source of the secondary motion). The saturation of secondary current 
has been first assessed and modelled in an essentially 1D framework, which considers the mutual 
interaction among the longitudinal and the transversal components of velocity with reference to 
the channel axis (Blanckaert & de Vriend, 2010). In subsequent formulations, the saturation 
model has been extended to describe spanwise variations of the flow field using curvilinear, 
boundary-fitted computational grids, yet maintaining the centreline-based approach (Ottevanger, 
2013; Qin et al., 2019), which implies limiting the model applicability to idealized meandering 
rivers. 

Including effective parameterization of secondary currents in general-purpose 2D shallow wa-
ter models is not straightforward. In real rivers, the channel geometry can change in time passing 
from bankfull to flood discharge, as well as in case of anabranching or braided rivers due to mov-
able-bed dynamics, and the streamline curvature typically shows an unevenly spatial distribution. 
In such cases, the channel centreline, width, and the distance from bank, can change during a 
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single simulation, and are practically unknown from a pure 2D standpoint. The treatment of im-
pervious banks for 2D computation of secondary flows is still an open issue (Blanckaert, 2001, 
Song et al., 2012). 

In the present work, a pure 2D approach for secondary flows, which also accounts for non-
linear saturation in relatively sharp bends, is proposed and implemented in a Finite Element, un-
structured shallow water model based on a Cartesian (i.e., not curvilinear) reference frame. Dis-
persive terms in the depth-averaged Navier-Stokes equations account for the non-uniform vertical 
distribution of velocity, assuming a power-law and a linear vertical profile for longitudinal and 
transversal velocity, respectively. The intensity of secondary current is estimated by solving a 
transport equation to consider the helical flow inertia. A spatially-distributed dampening factor 
(expressed according to Blanckaert & de Vriend, 2003) reduces the vorticity production term 
when (and where) the secondary current is sufficiently developed, thus accounting for the non-
linear saturation effect. Additional stresses at impervious banks are accounted for using a wall 
function. The model is validated against experimental data, and the importance of including the 
non-linear saturation model is demonstrated by comparison with results provided by the linear 
version of the model. 

2 METHODS 

2.1 Model equations 

In a horizontal Cartesian frame with axes (x, y), the depth-averaged Navier-Stokes equations, 

also known as shallow water equations (SWEs), are (Defina, 2000): 
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where t is time, D/Dt is the material (Lagrangian) total derivative, (qx, qy) are the depth-integrated 

velocity components, Y is the equivalent water depth (i.e., water volume per unit area), Re are the 

Reynolds stresses, (τbx, τby) are the bed stress components, h is the water surface elevation over a 

datum, ρ is the water density, and g is gravity. The dispersive stresses, Dxx, Dxy and Dyy, included 

in the SWEs to model the effects of non-uniform vertical distribution of velocity, are defined as: 
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where z is the vertical direction, and the apostrophe denotes the difference between the actual and 
the depth-averaged velocity components. 

To obtain a close form of Eqs. (3), we consider a local (s, n) frame, with s and n denoting the 
streamwise and spanwise directions, respectively. The vertical profile of velocity is assumed 
power-law in the longitudinal direction, and linear with zero-mean in the transversal direction, as 
shown in Figure 1a (Begnudelli et al., 2010; Odgaard, 1986). Integration of Eqs. (3) leads to: 
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where w is the module of the depth-averaged velocity, m a friction parameter, vns the transversal 
velocity component at the free surface, and R the local radius of curvature of velocity streamlines 
(R is positive for clockwise bends in the flow direction, and negative vice-versa). The Dxx, Dxy, 
and Dyy terms are then obtained by rotation from the local (s, n) to the model (x, y) frame. 



Dispersive stresses depend on the intensity of secondary flow, i.e. the streamwise vorticity 
component, which is here expressed in terms of transversal velocity component at the free-sur-
face, vns. To account for the secondary flow inertia, a vorticity-transport approach is used, ac-
counting for generation, transport, and dissipation of the streamwise component of vorticity, rep-
resenting the helical flow intensity (Johannesson & Parker, 1989). Thus, vns is estimated by 
solving a depth-averaged vorticity equation in the form: 
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with the production, kP, and dissipation, kD, coefficients defined according to the conservation 
principle used to estimate the magnitude of the helical flow (e.g., angular or spanwise linear mo-
mentum), and fD [0,1] the dampening factor which accounts for the non-linear saturation effect 
by reducing the production term. When fD = 1, the mutual influence between the main and the 
secondary flow is neglected, thus obtaining a linear model (Camporeale et al., 2007; Song et al., 
2012). According to Blanckaert & de Vriend (2003), fD is a function of the bend parameter β as: 
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being α the normalized transversal gradient of the depth averaged (longitudinal) velocity w. 
As shown in Figure 1b, fD decreases for larger values of Y/R since non-linear effects are ampli-

fied in sharper bends. fD also depends on the velocity transversal gradient, α. Approaching a bend, 
the highest velocity thread locates at the inner side, i.e., α < 0 and the helical flow production is 
the highest. As secondary currents develop along the bend, cross-stream momentum transfer shifts 
the high velocity thread to the outer side (thus increasing α) and flattens the vertical profile of the 
longitudinal velocity component, thus limiting the further increase of the helical flow intensity. 
Indeed, for increasing α, fD decreases and limits the helical flow production term. In other words, 
α marks the transition from a potential (α = -1) to a forced-vortex (α = 1) flow pattern (Blanckaert 
& de Vriend, 2003), and changes the model behaviour from linear to non-linear accordingly. 

In the model, α, β, and fD vary in (x, y) and are computed on the based of the local flow features. 
 

 
Figure 1. a) schematics of main and secondary flow in a channel bend, with notation; b) dampening factor, 
fD, for m = 7 and for different value of the normalized transversal gradient of velocity, α. 

2.2 2D hydrodynamic model 

The previous equations were implemented in a 2D, depth-averaged, Finite Element model 
called “2DEF” (Defina, 2000, 2003; Viero et al. 2013; Mel et al., 2020a,b). It uses an unstructured, 
staggered, triangular mesh defined on a horizontal (x, y) Cartesian frame. The Manning-Strickler 
equation is used to model bed friction terms, which are treated semi-implicitly. The Reynolds 
stresses are modelled with the Boussinesq approximations, and the depth averaged formulation 
of Stansby (2003) is used for the eddy viscosity (Viero, 2019). The no-slip condition is prescribed 
at the side-walls using a wall function to estimate the lateral shear stress, which is added to the 
momentum balance of the boundary cells. 



3 RESULTS AND DISCUSSION 

The experiments of Blanckaert & de Vriend (2003) and Rozovskii (1957) are used to test the 
model effectiveness in reproducing the secondary flow in relatively sharp bends. The channels 
used for the experiments are schematically shown in Figure 2. 

 

 
Figure 2. a) Laboratory flumes used by Blanckaert & de Vriend (2003) and b) by Rozovskii (1957). 

3.1 Blanckaert & de Vriend (2003) experiment 

Blanckaert & de Vriend (2003) performed experiments in the Ecole Polytechnique Fédérale 
Lausanne (EPFL), 19.7 m long and 1.3 m wide channel, with vertical sidewalls. The bottom is 
fixed and flat, and the Strickler coefficient is KS = 60 m1/3/s. The bend develops for 193° with a 
constant curvature (radius R = 1.7 m at the centreline). Three steady flow conditions were tested, 
with a discharge of 56, 89, and 104 l/s and a water depth of 10.9, 16.0, and 21.3 cm at the down-
stream section, respectively. 

 

 
Figure 3. Spatial distribution of the normalized transversal gradient of velocity, α, of the dampening factor, 
fD, and of the transversal velocity at the free surface, vns, for a) Q = 56 l/s, b) Q = 89 l/s, and c) Q = 104 l/s. 

 
Figure 3, for the three different flowrates, shows the modelled spatial distribution of the nor-

malized transversal gradient of velocity, α, of the dampening factor, fD, of the helical flow 



intensity in terms of transversal velocity at the free-surface, vns, and of the depth-averaged flow 
velocity, w. At the beginning of the bend, the high-velocity thread locates at the inner side (i.e., 
α <0) and there is no dampening of the vorticity production (fD ≈ 1). As the intensity of helical 
flow increases, momentum is redistributed by the secondary flow, the high-velocity thread is 
shifted towards the outer bank (α progressively reduces) and non-linear saturation effects starts 
hindering the growth of helical flow. At the downstream end of the bend, α ≈ 1, meaning that the 
secondary flow has moved the high-velocity close to the outer bank. By increasing the discharge 
and the water depth (hence the bend sharpness Y/R), vns increases faster, α reduces faster as well 
and, in turn, the non-linear saturation arises faster and stronger (fD reduces faster, and to values 
closer to zero, for increasing discharges). 

Figure 4 shows the secondary flow intensity at the channel centreline along the bend, expressed 
in terms of <fn

2>, defined as (Blanckaert & de Vriend, 2003): 
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where angle brackets denote depth-averaging. For the three available discharges, the measured 
data (dotted lines) are compared with the results from the linear model (i.e., with fD = 1, dashed 
lines) and the non-linear model (with fD spatially distributed as in Figure 3). While the linear 
model, which disregard the saturation effects, overestimates the secondary flow intensity signifi-
cantly, the non-linear model nicely matches the experimental data. 

 

 
Figure 4. Secondary current intensity in terms of <fn

2>; in symbols and dotted lines the experimental data 
(adapted from Blanckaert & de Vriend, 2003), in dashed lines the results of the linear model, in solid lines 
the results of the non-linear model (with fD). Black lines and cross symbols are used for Q = 56 l/s, green 
lines and circle symbols are used for Q = 89 l/s, red lines and square symbols are used for Q = 104 l/s. 

 
It is interesting to note that increasing the discharge and the water depth means increasing the 

bend sharpness (Y/R = 0.065, 0.095 and 0.125, respectively). The helical flow intensity increases 
accordingly (Figure 4), yet the depth-averaged flow fields show only minor changes (bottom row 
in Figure 3), as the outward momentum transfer, and the ensuing velocity redistribution, are coun-
teracted by the saturation mechanism. 

3.2 Rozovskii (1957) experiment 

The experiment of Rozovskii (1957) has been performed in a U-shaped channel 11.5 m long, 
80 cm wide and with vertical side walls. The bend develops for 180° with a constant curvature 
(radius R = 0.8 m at the centreline). The bottom is flat and fixed, with a Strickler coefficient 
KS = 70 m1/3/s. The inlet velocity is w = 0.26 m/s, and the water depth at the outlet is Y = 5.1 cm. 

The measured data (red squares in Figures 5 and 6) are compared with the results from the 
model run without considering the dispersive stresses, from the linear, and from the non-linear 
model (solid lines). Without considering the dispersive terms in SWEs equations (dotted lines), 
the model overpredicts the velocity peak at the inner part of the bend (sections 5, 7, 9, and 11 in 
Figure 5), and the transverse tilting of the water surface slope is not well captured (Figure 6). 



Including dispersive terms with a linear formulation (i.e., with fD = 1, dash-dotted lines in Fig-
ures 5 and 6), together with the no-slip condition at the walls, shifts the high-velocity thread to 
the outer side of the bend exaggeratedly. The large streamwise slope of the free-surface along the 
bend is the result of excessive head losses ascribed to a marked confinement of the high velocity 
core close to the outer sidewall. 

The non-linear model with the wall function for no-slip condition at the sidewalls (solid lines 
in Figures 5 and 6) well reproduces the measured data, in terms of both transversal distribution of 
streamwise velocity (Figure 5) and free-surface elevation along the inner and outer sidewalls 
(Figure 6). 

 

 
Figure 5. Transversal profiles of depth-averaged velocity for the Rozovskii (1957) experiment: measured 
data (red squares) are compared with the results of the model without dispersive terms (dotted lines), con-
sidering dispersive terms by means of a linear model (dash-dot lines) and of the non-linear model (dash-
dot lines) with the spatially-distributed dampening factor, fD. The relative transversal coordinate spans the 
channel width starting from the left bank. 

 
The comparison between the linear and the non-linear models confirms a well-known issue 

(Johannesson & Parker, 1989; Blanckaert, 2001): the use of linear models for the secondary flow 
along with the no-slip condition at sidewalls in relatively sharp bends (Y/R ≈ 0.07 in the Rozovskii 
experiment) leads to a marked overestimation of the helical flow intensity. The simplest choice 
commonly adopted to circumvent this problem is to relax the no-slip condition (Lien et al., 1999; 
Song et al., 2012). In this way, the shear stress actually acting at the sidewalls is disregarded, and 
an unphysical momentum flux is generated at the impervious banks that balances out the velocity 
redistribution. The present results suggest that accounting for non-linear saturation effect by 
means of a spatially distributed dampening factor overcomes this issue, limiting the excessive 
growth of the helical flow intensity in sharp bends and, at the same time, allowing the use of wall 
functions to account for sidewall shear stresses. 
 

 
Figure 6. Longitudinal profile of water surface elevation at the inner bend (green lines) and at the outer 
bend (black lines): the red squares are the measured data (Rozovskii, 1957), the dotted lines represent the 
result of the model without dispersive terms, the dash-dot lines represent the result of the model considering 
dispersive terms; the filled lines represent the result of the model considering dispersive terms and the 
dampening factor fD. 



4 CONCLUSIONS 

In this work, a model for secondary currents in curved channels is implemented in a general-
purpose 2D shallow water model based on a Cartesian frame. The non-linear saturation effect, 
which emerges as a by-product of substantial velocity redistribution ascribed to secondary flow 
and limits the growth of helical flow intensity in sharper bends, is included by means of a pure 
2D formulation. In the proposed model for secondary flow, there isn’t any reference to channel 
width and centreline, nor to the distance from banks. The helical flow intensity is estimated by 
solving a transport equation for streamwise vorticity component, so as to account for inertia and 
phase-lag that characterize the growth and decay of the spiral motion. Yet, source and sink terms 
are all computed starting from local variables (flow depth and velocity, radius of curvature, and 
a friction coefficient). 

Application to experimental case studies involving relatively sharp bends showed the effec-
tiveness of the model and suggested that the no-slip condition at impervious bank can be ac-
counted for without producing excessively strong secondary currents, as observed in previous 
applications of linear model for secondary currents. 

Future activities should be devoted to test the model in real rivers, typically characterized by 
irregular boundaries, uneven bathymetries, and by the possible presence of floodplains. 
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