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Abstract 

The overarching aim of this thesis was to explore cognitive control, a multifaceted construct. As outlined 

in the introduction (Chapter 1), this pursuit was not devoid of challenges, given the inherent complexity of 

cognitive control. Our research was guided by the Dual Mechanisms of Control (DMC) model, which 

highlights qualitative differences in control mechanisms rather than treating control as a single entity. 

Within this framework, we explored proactive and reactive control, for which evidence is still controversial 

about both their separability and signatures. To achieve this aim, we first laid the foundation of our work, 

emphasizing the importance of methodological (and statistical) rigor to effectively investigate cognitive 

control using the influential and widely used Stroop task. This not only marked the inception and 

fundamental tool for pursuing our goal but also emerged as a key aspect of the entire thesis, potentially 

extending its contribution beyond its main aim.  

We indeed started our research journey by performing a methodological review focused on the 

measurement validity of the Stroop effects, providing researchers using this conflict task with clear 

methodological criteria (Chapter 2). This served us to design spatial Stroop tasks satisfying the criteria for 

yielding valid measures of Stroop performance, which were tested and validated in a behavioral study using 

multilevel modeling to obtain more precise and reliable Stroop measures (Chapter 3). 

These methodological and statistical novelties, in turn, formed the foundation for our exploration of 

proactive and reactive control using a multimethod approach, combining behavioral and 

electrophysiological (EEG) investigations and then trying to bridge behavioral and EEG evidence. 

We thus proposed a novel approach to manipulate the proxies of proactive and reactive control (LWPC 

and ISPC) simultaneously and at the trial level. The results of a two-experiment behavioral study suggested 

that our approach was indeed effective to explore more directly the DMC assumptions, overcoming 

limitations of previous approaches (Chapter 4).  

We then turned to the EEG evidence for proactive and reactive control, using multiple complementary 

analytical approaches to scrutinize them from various angles, yielding a richer perspective on their neural 

dynamics. Using both univariate and multivariate analyses, we could indeed gain insights into both control 

processes and representations, respectively. Moreover, within each analytical approach we employed more 

than one analysis. As such, on the univariate side, we explored not only the temporal (ERP) but also the 

spectral (ERSP) aspects of control processes, enriching the understanding of how control processes are 

implemented (Chapter 5). On the multivariate side, our bidirectional exploration using both 

representational similarity analysis and ridge regression offered insights into how control-related 
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representations are encoded and whether their content can be decoded, respectively, shedding initial light 

on the informational patterns on which cognitive control relies (Chapter 6). 

Finally, we concluded this thesis by returning to its origin, with two pre-registered behavioral 

experiments aimed to decompose the Stroop effect into its fundamental components (Chapter 7), which 

are only the first step of the next stage of our research journey. 

The present thesis thus contributed to shedding further light on the existence of multiple control 

mechanisms, providing evidence for behavioral and EEG differences between proactive and (two forms of) 

reactive control. Nonetheless, the discussion of our findings (Chapter 8) unmistakably confirms the 

intricacies inherent in cognitive control, unveiling unresolved issues that warrant future studies and 

opening the door to numerous exciting avenues for further exploration. 
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Abstract in italiano 

L'obiettivo principale di questa tesi era esplorare il controllo cognitivo, un tratto distintivo della 

cognizione umana. Come descritto nell'introduzione (Capitolo 1), questa ricerca non è stata priva di sfide, 

data l'intrinseca complessità di questo costrutto. La nostra investigazione è stata guidata dal modello del 

Meccanismo Duale di Controllo (DMC), che evidenzia le differenze qualitative nei meccanismi di controllo 

anziché trattare il controllo come un'entità unica. All'interno di questo quadro teorico, abbiamo esplorato il 

controllo proattivo e reattivo, poiché le evidenze sulla loro separabilità e le loro caratteristiche distintive 

rimangono ancora controverse. Per raggiungere il nostro obiettivo, abbiamo dapprima gettato le basi del 

nostro lavoro, sottolineando l'importanza del rigore metodologico (e statistico) per investigare 

efficacemente il controllo cognitivo usando il noto e ampiamente utilizzato compito di Stroop. Questo non 

solo ha segnato il punto di partenza e lo strumento fondamentale per i nostri scopi, ma è emerso come un 

aspetto chiave dell'intera tesi, potenzialmente estendendo il suo contributo oltre il suo obiettivo principale. 

Abbiamo infatti iniziato il nostro percorso di ricerca eseguendo una revisione metodologica incentrata 

sulla validità di misurazione degli effetti Stroop, fornendo ai ricercatori che utilizzano questo compito di 

conflitto chiari criteri metodologici (Capitolo 2). Questo ci ha permesso di progettare compiti di Stroop 

spaziale che soddisfacevano i criteri per ottenere misure di prestazione valide, i quali sono poi stati testati e 

validati in uno studio comportamentale utilizzando tecniche di multilevel modeling per ottenere misure più 

precise e affidabili degli effetti Stroop (Capitolo 3). 

Queste innovazioni metodologiche e statistiche hanno costituito la base per la nostra esplorazione del 

controllo proattivo e reattivo attraverso un approccio multimetodo, combinando studi comportamentali ed 

elettrofisiologici (EEG) e cercando poi di collegare le evidenze fornite da questi. Abbiamo quindi proposto un 

nuovo approccio per manipolare simultaneamente e a livello di trial le misure proxy del controllo proattivo 

e reattivo (LWPC e ISPC). I risultati di uno studio comportamentale multi-esperimento hanno suggerito che il 

nostro approccio era efficace per esplorare in modo più diretto le assunzioni del DMC, superando le 

limitazioni degli approcci precedenti (Capitolo 4). 

Successivamente, ci siamo concentrati sulle evidenze EEG per il controllo proattivo e reattivo, utilizzando 

molteplici approcci analitici complementari per esaminarli da varie prospettive, ottenendo così una visuale 

più ricca sulla loro dinamica neurale. Utilizzando sia analisi univariate che multivariate, abbiamo potuto 

ottenere insight sia sui processi cognitivi, sia sulle rappresentazioni neurali di controllo, rispettivamente. 

Inoltre, all'interno di ciascun approccio analitico abbiamo utilizzato più di un tipo di analisi. Quindi, sul lato 

univariato, abbiamo esplorato non solo gli aspetti temporali (ERP) ma anche quelli spettrali (ERSP) dei 

processi di controllo, arricchendo la comprensione di come questi sono implementati (Capitolo 5). Sul lato 
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multivariato, la nostra esplorazione bidirezionale utilizzando sia la Representational Similarity Analysis che 

la regressione ridge ha offerto insight su come le rappresentazioni legate al controllo sono codificate nel 

cervello e se il loro contenuto può essere decodificato, iniziando così a chiarire i modelli informativi su cui si 

basa il controllo cognitivo (Capitolo 6). 

Infine, abbiamo concluso questa tesi tornando alle sue origini, con due esperimenti comportamentali 

pre-registrati mirati a decomporre l'effetto Stroop nelle sue componenti fondamentali (Capitolo 7), che 

rappresentano solo il primo passo della prossima fase del nostro percorso di ricerca.  

La presente tesi ha contribuito a gettare ulteriore luce sull'esistenza di molteplici meccanismi di 

controllo, fornendo evidenze per le differenze comportamentali ed EEG tra il controllo proattivo e (due 

forme di) controllo reattivo. Tuttavia, la discussione dei nostri risultati (Capitolo 8) conferma 

inequivocabilmente l’intrinseca complessità del controllo cognitivo, svelando questioni irrisolte che 

richiedono ulteriori approfondimenti e aprendo la porta a numerose affascinanti strade per ulteriori 

esplorazioni. 
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CHAPTER 1 

General Introduction: 

Project Rationale and Overview  

1.1. Object of study of the current project 

Cognitive control, a defining hallmark of human cognition, stands as a foundational element of adaptive 

and goal-directed behavior that allows us to flexibly pursue specific goals (Chiew & Braver, 2017; Cohen, 

2017). This multifaceted construct encompasses a family of cognitive processes required to flexibly regulate, 

coordinate, and sequence our thoughts and actions in tandem with contextual demands and internal goals 

(Braver, 2012; Chiew & Braver, 2017). It becomes fundamental when automatic responses are not 

appropriate and thus give way to more flexible and complex behaviors driven by internal states and 

intentions (Miller & Cohen, 2001).  

To comprehend the significance of cognitive control in daily life, envision a scenario, illustrated in Figure 

1.1: you are behind the wheel, approaching a fork in the road. Your destination is Rome, and the road sign 

indicating Rome is positioned above the right-hand lane. Instinctively, you begin steering towards the right, 

driven by your automatic response to the visual cue. However, your attention is soon drawn to the arrow on 

the sign, which contradicts your automatic tendency by pointing towards the left. In this instant, you find 

yourself trying to resolve the interference generated by these conflicting pieces of information. Should you 

successfully navigate past this cognitive challenge and avoid taking the incorrect route, it serves as evidence 

of your brain's effective execution of cognitive control. 

 

Figure 1.1.  
Example of a real-life situation requiring cognitive control. 

In everyday life, we continuously face similar kinds of interference, as we are constantly surrounded by 

an abundance of sensory stimuli and potential actions from which we have to select only the ones pertinent 

https://www.zotero.org/google-docs/?UaMXHR
https://www.zotero.org/google-docs/?UaMXHR
https://www.zotero.org/google-docs/?aQchkP
https://www.zotero.org/google-docs/?prxLbQ
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to our objective in that particular moment (Gratton et al., 2018; Jiang et al., 2014; Nee et al., 2007). This is 

where cognitive control comes into play, and particularly its central component of interference resolution, 

enabling the selection of weaker but task-relevant information amidst more habitual but task-irrelevant 

competing information (Miller & Cohen, 2001; Nee et al., 2007; Tafuro et al., 2019).  

At its core, cognitive control orchestrates the maintenance and updating of current goal representations 

to bias cognitive processes towards goal-relevant stimuli, processes, and actions while adapting to the 

changes of objectives and context (Botvinick et al., 2001; Chiew & Braver, 2017; Cohen, 2017; Diamond, 

2013; Miller & Cohen, 2001). Indeed, as cognitive control molds behavior toward specific aims, a symphony 

of internal representations, containing multiple information, like the goals and the stimulus/response 

features, comes into play to influence individuals’ perceptual, motor, and cognitive processes. Therefore, for 

successfully executing demanding tasks, cognitive control relies on such internal representations, which are 

encoded at the neural level (Cellier et al., 2022; D’Esposito, 2007; Kriegeskorte & Diedrichsen, 2019; 

Schumacher & Hazeltine, 2016). Given their pivotal role, representations form the bedrock upon which 

cognitive control theories are built. As such, as we will discuss profusely later, exploring such 

representations is necessary for bridging the cognitive and the neural domains to comprehensively 

understand cognitive control dynamics at the neural level (Freund et al., 2021; Kriegeskorte & Diedrichsen, 

2019).   

The ensuing chapters of this thesis undertake a comprehensive exploration of cognitive control, first 

delving into its behavioral signatures and then turning to its neural dynamics. This will be accomplished by 

adopting a specific theoretical framework, namely the dual-mechanism of control model (DMC; Braver, 

2012; Braver et al., 2007). The field of cognitive control theories exhibits considerable heterogeneity, and 

this diversity leads to the interpretation of both behavioral signatures and the functional meanings of neural 

signatures of cognitive control strongly depending on the adopted framework. Hence, our selection of the 

theoretical framework, which was fundamental to ensure consistency throughout this work, was based on 

its capacity to be as comprehensive as possible and to facilitate the explanation of the phenomena 

commonly observed within the realm of experimental paradigms investigating cognitive control. Hence, we 

chose not to adopt the conflict monitoring model (Botvinick et al., 2001), the most influential network in 

cognitive control research; Indeed, despite its widespread recognition, it essentially conceptualizes 

cognitive control as a reactive adjustment enacted subsequent to conflict detection. In contrast to this 

account, the DMC, apart from being an equally influential model, holds the advantage of elucidating the 

intrinsic variability of cognitive control, regarding it as a core component rather than as an impediment to 

the understanding of its functioning. To capture such variability, the DMC accounts for the diverse temporal 

dynamics of cognitive control, that is, not only for reactive adjustments but also for proactive control 

implementations. The DMC indeed posits the existence of two qualitatively distinct cognitive control 

https://www.zotero.org/google-docs/?EaIF8M
https://www.zotero.org/google-docs/?0twGQX
https://www.zotero.org/google-docs/?LPnbD4
https://www.zotero.org/google-docs/?LPnbD4
https://www.zotero.org/google-docs/?XxzLwN
https://www.zotero.org/google-docs/?XxzLwN
https://www.zotero.org/google-docs/?CHiAb3
https://www.zotero.org/google-docs/?CHiAb3
https://www.zotero.org/google-docs/?Z7HBrG
https://www.zotero.org/google-docs/?Z7HBrG
https://www.zotero.org/google-docs/?vxXkC1
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modes: proactive control and reactive control. The former mode actively maintains task goals to bias 

cognitive processes in a goal-driven manner. By acting as a preparatory mechanism engaged in a sustained 

fashion even before encountering cognitively demanding events, it anticipates and reduces interference 

thanks to top-down attentional biases that favor the processing of the task-relevant information. In its most 

common definition, reactive control is instead mobilized transiently and on-demand, after detecting 

conflict, to resolve interference through a “late correction” mechanism relying on the bottom-up 

reactivation of task goals (see Figure 1.2). The DMC also implies (at least implicitly) a trade-off between 

proactive and reactive control modes, with the latter that is more essential when the former is not active 

(e.g., Braver et al., 2009, 2021; De Pisapia & Braver, 2006) but, to the best of our knowledge, clear evidence 

for this trade-off is still lacking.  

 

Figure 1.2.  
Temporal dynamics of the involvement of proactive and reactive control modes in an exemplar task 
according to the DMC. The figure shows two trials of a hypothetical simple conflict task. The relative level of 
proactive engagement is reflected by the saturation of the lilac, while the reactive control, in fuchsia, does 
not show saturation nuances as it is postulated to be an all-or-none mechanism.  

The DMC thus extends the single mechanism proposed by the conflict monitoring model and, assuming 

that cognitive control is characterized by two mechanisms, it more effectively maximizes information 

processing efficiency across a broad spectrum of scenarios (Braver, 2012). Moreover, by enabling the 

explanation of distinct time scales for control effects, it offers richer insights into two types of cognitive 

control adjustments that are frequently found in the context of cognitive control experimental tasks, namely 

conflict adaptation (CA) and proportion congruency (PC) effects. They reflect a short-term and reactive, and 

a long-term and proactive form of control regulation, respectively. In order to comprehend these two 

effects, it is essential to preface that tasks tapping cognitive control often manipulate the congruency 

between two features of the same stimulus, obtaining congruent stimuli when such features match, and 

incongruent stimuli when they do not. This congruency manipulation can then engender the conflict 

https://www.zotero.org/google-docs/?ofc5GG
https://www.zotero.org/google-docs/?XI433o
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adaptation effect, which is a diminished congruency effect in the current trial when following an 

incongruent trial, as opposed to a congruent one (Gratton et al., 1992), and/or the PC effect, which reflects 

fluctuations in the size of the congruency effect based on the varying likelihood of congruent trials within a 

given task block (Logan & Zbrodoff, 1979). Empirical evidence supports the DMC by emphasizing the 

necessity for multiple control mechanisms to comprehensively account for these two effects and their 

differences in terms of time scales (Torres-Quesada et al., 2013). 

In addition to serving as a clear and efficient framework, the DMC offers an additional practical 

advantage as it inspired a large body of work that has employed specific manipulations to differentiate 

between the proactive and reactive control modes. These manipulations primarily focus on the variation of 

the PC at the list-wide (LWPC) and/or the item-specific (ISPC) levels, which will be expounded upon in 

subsequent sections. In brief, they embody the operationalization of the proactive and reactive control 

mechanisms, respectively, and are widely acknowledged within the literature (e.g., Bugg, 2012; Bugg & 

Crump, 2012). 

With these foundations laid, the aim of the present project is to explore the DMC in a comprehensive 

manner, first investigating whether proactive and reactive control are characterized by specific signatures at 

the behavioral level and then focusing on their brain correlates by exploring them using an 

electroencephalographic multimethod approach, as we will explain in detail later. The rationale behind the 

necessity of inspecting both the behavioral and neural correlates of proactive and reactive control is that 

the available evidence in favor of the DMC, both in terms of behavioral manifestations and neural 

underpinnings, is not so strong and compelling, thus calling for further research efforts. As such, the still 

unanswered questions that will be mainly addressed in the present work will be: i) whether proactive and 

reactive control are separable mechanisms; ii) whether these two modes imply specific neural correlates, 

defining them in relation to both cognitive processes and representations.  

In the following sections, how this aim is pursued will be clarified, elaborating on the rationale behind 

each step of the project. Hence, this introductory chapter will provide a general overview of the 

fundamental aspects of the project, deferring to the specific chapters that contain more elaborate 

theoretical discussions and the methodological details of each study. 

1.2. How to study cognitive control: The Stroop task 

To study cognitive control in the laboratory setting, interference tasks are commonly employed as they 

directly assess the resolution of interference arising by simultaneously presenting a weaker, task-relevant 

feature and a stronger yet task-irrelevant feature (Bugg & Crump, 2012; Gratton et al., 2018; Jiang et al., 

2014). Among these, one of the most influential and widely employed is the Stroop task (Stroop, 1935). Its 

https://www.zotero.org/google-docs/?k8CfBx
https://www.zotero.org/google-docs/?01QmRz
https://www.zotero.org/google-docs/?mZ4dDv
https://www.zotero.org/google-docs/?0idDEb
https://www.zotero.org/google-docs/?0idDEb
https://www.zotero.org/google-docs/?3l0dxw
https://www.zotero.org/google-docs/?3l0dxw
https://www.zotero.org/google-docs/?11Om0x
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original version is known as the color-word Stroop task and implies presenting words denoting a color 

printed in either the same or a different ink color and instructing participants to name the ink color of the 

word regardless of its meaning. The congruency between the ink color in which the word is displayed and 

the meaning of the same word is manipulated so to obtain congruent trials, in which the ink color and the 

meaning of the word match (e.g., GREEN displayed in green ink), and incongruent trials, in which the two 

features do not match (e.g., GREEN displayed in yellow ink). The typical behavioral measure is the so-called 

Stroop effect (SE), usually computed as the difference in the response time (RT) between incongruent and 

congruent trials (formally, SE = RTIncongruent - RTCongruent), and characterized by a performance decline in 

incongruent as compared to congruent trials because interference must be resolved (MacLeod, 1991; 

Stroop, 1935) (see Figure 1.3).  

 

Figure 1.3. 
Example of Incongruent and Congruent trials in the color-word Stroop task. The difference in performance 
(e.g., RT in the example) between them is the Stroop effect (SE). 

Our selection of the Stroop task as the experimental paradigm is based on its long-standing history of 

nearly a century in assessing interference resolution. As such, this task, besides yielding an universal effect 

(Parsons, 2020), boasts an extensive body of literature, rendering it well-established for our purpose. 

Furthermore, the Stroop task accommodates the implementation of the previously alluded to PC 

manipulations, which satisfy our aim of exploring proactive and reactive control modes (but see the 

subsequent section for an elaborate discussion). 

Despite these well-established advantages, prior to designing our Stroop paradigm, we had to decide 

which version to utilize because, since the original Stroop color-word task by the eponymous J. R. Stroop 

(1935), numerous variants of it have been devised. The fundamental prerequisite we considered in selecting 

our paradigm was the measurement validity of the yielded Stroop effect, that is, the extent to which such 

measure actually represents the variable it intends to measure, namely the Stroop performance decline due 

to interference (Flake & Fried, 2020). Indeed, although measurement validity should always be ensured as it 

https://www.zotero.org/google-docs/?3sGdor
https://www.zotero.org/google-docs/?3sGdor
https://www.zotero.org/google-docs/?CP4LFl
https://www.zotero.org/google-docs/?IcrlU3
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is the foundational prerequisite for any type of validity, including the validity of the statistical conclusions 

derived from experimental measurements, it is frequently overlooked (Flake & Fried, 2020).  

Given the considerable heterogeneity of Stroop tasks in the literature and the absence of studies 

specifically ascertaining the validity of the measures obtained with each variant, we embarked on a 

methodological review of the literature. In this review, we initially outlined clear guidelines on how to 

design Stroop tasks ensuring measurement validity and subsequently examined whether original Stroop 

tasks and their main variants in the literature adhered to these criteria. The methodological criteria we 

employed to assess measurement validity relied on two seminal works that underscored the composite 

nature of the Stroop effect, that is, Parris and colleagues’ work (2022), proposing that the Stroop effect 

emerges at distinct loci—stimulus, response, and task, where the first two entail both interference and 

facilitation and the latter involves only interference—, and Kornblum’s (1992) work, showing that stimulus-

stimulus and stimulus-response overlaps should be present to ensure the stimulus and response effects, 

respectively. As these constituent elements are originally inherent in the original Stroop task, they must be 

encompassed in any Stroop task (including variants), as it is the only means to ensure accurate comparisons 

of the evidence produced by individual studies. We then asserted whether the Stroop tasks in the literature 

fulfill such criteria, reaching the conclusion that the majority of Stroop task variants do not (but some color-

word Stroop tasks were also not methodologically appropriate), as they did not comprehensively produce 

all the three required loci-related effects.  

However, our methodological review was not solely intended to critically evaluate the existing literature. 

Indeed, with a constructive approach, we also suggested that an alternative version of the Stroop task 

already employed in the literature, namely the spatial Stroop task, has the potential to generate complete 

and methodologically valid Stroop effects. Moreover, we highlighted that, besides being methodologically 

similar, the spatial Stroop version offers some advantages over the classical color-word Stroop task. Such 

advantages, which stem from the inherent complexity and susceptibility to confounding effects typically 

associated with the classical Stroop paradigm, largely due to its linguistic nature, make the spatial Stroop 

paradigm more suitable for implementation in both online studies and neuroimaging research. This, in 

addition to ensuring methodological validity, significantly influenced our decision to adopt the spatial 

Stroop paradigm for the current project as our objective encompassed online behavioral studies as well as 

subsequent EEG studies. In the second part of the review, we thus overviewed the main spatial Stroop tasks 

used in the literature, showing that they did not always ensure a complete Stroop effect, highlighting that 

only purely spatial tasks were ideal spatial Stroop paradigms.  

Overall, this methodological review, presented in its entirety in Chapter 2, constituted a fundamental 

starting point for the current project. It not only enabled us to identify the most suitable experimental 

paradigm for our objectives, but also allowed us to clarify the methodological principles that will recurrently 

https://www.zotero.org/google-docs/?bD5ofK
https://www.zotero.org/google-docs/?AkNFcI
https://www.zotero.org/google-docs/?8bUVKQ
https://www.zotero.org/google-docs/?v81OVO
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emerge throughout the entire project. In the final part of the review, we proposed six practical examples of 

spatial Stroop tasks to show that purely spatial Stroop variants can be created while still adhering to the 

proposed methodological criteria.  

These six versions are the subject of a behavioral study, reported in Chapter 3, in which we first 

elaborated on the rationale used to create them and then examined which of the proposed spatial Stroop 

task variants yielded the most robust and reliable Stroop effect, with the ultimate aim of selecting the 

paradigm to use in our subsequent studies. In this study, we started from our Peripheral spatial Stroop 

version (Puccioni & Vallesi, 2012a, 2012b, 2012c), in which participants have to indicate the direction of an 

arrow, while disregarding the peripheral location in which it appears (the four corners of the screen). This 

version elicits a multiple-loci effect at the task, stimulus and response levels, while mitigating confounds 

inherent to the traditional color-word Stroop paradigm. However, its potential methodological limitations 

related to the peripheral presentation of the stimuli (such as large visuospatial attention shifts and a high 

amount of oculomotor artifacts) prompted us to propose five alternative versions. These tasks, while 

adhering to the required methodological criteria, could overcome such limitations by presenting the 

experimental stimuli at the center of the screen. Among these versions, there was the Perifoveal task, which 

is similar to the Peripheral version but with the arrow location manipulated inside the fixation stimulus in 

order for the stimulus to appear in perifoveal locations. To achieve this, we employed a partial outline of a 

square around the fixation cross, thus creating the impression of four small squares, presenting the arrows 

within one of the four apparent squares. The other four alternative versions were instead inspired by other 

interference paradigms (see Chapter 3 for a detailed description). In a within-subjects online study, the six 

spatial Stroop versions were evaluated based on three criteria: i) the magnitude of the effect, assessing 

which one showed the largest Stroop effect; ii) the robustness of the effect to analytical flexibility, assessing 

which one yielded the most stable Stroop effect across different analytical approaches; iii) the internal 

reliability of the effect, assessing which one produced the most reliable Stroop effect. While the latter 

aspect is often neglected, it holds paramount importance in correlational research, especially in light of the 

recently proposed reliability paradox, which posits that large effects, such as the Stroop, often exhibit low 

reliability (Hedge et al., 2018). Our evaluation was undertaken through an innovative approach, which not 

only employed the conventional general linear model, but also two multilevel modeling statistical 

techniques, which were crucial for providing a more precise estimation of the Stroop effect by explaining 

intra-subject, trial-by-trial variability. This comprehensive approach enabled us to assess the robustness of 

our results to analytic flexibility, thereby ensuring that the selection of the experimental paradigm was 

substantiated by robust and converging evidence. 

Overall, our results indicated that the Peripheral and the Perifoveal spatial Stroop tasks produced the 

largest and more robust Stroop effects, with the highest and most robust internal reliability. These findings 

https://www.zotero.org/google-docs/?6OOS7J
https://www.zotero.org/google-docs/?7DcYLO
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thus point to the Perifoveal spatial Stroop task as the best one, as it not only has good statistical properties, 

but also offers methodological advantages over the Peripheral one, which will be crucial especially when 

the task will be used along with EEG, as it mitigates possible biases due to eye movements and (re)orienting 

of visuospatial attention. However, since in that study we manipulated only congruency and not the PC, in 

the subsequent behavioral study, where we explored proactive and reactive control (Chapter 4), we decided 

to employ both paradigms in order to examine whether the Perifoveal task maintains its advantages over 

the Peripheral task even with various PC manipulations. Additionally, adopting a multi-task approach 

enabled us to investigate proactive and reactive control behavioral signatures in a broader and less 

paradigm-specific manner.  

Before moving on to the next section, where we will introduce the rationale behind the PC 

manipulations to measure proactive and reactive control, as well as the innovative approach we employed 

to do so, we need to make a specific clarification. In this section, we emphasized the importance of 

measurement validity, which in the case of the Stroop effect translates to the need for designing tasks that 

produce a Stroop effect encompassing task, stimulus, and response effects. By doing so, the resulting Stroop 

effect is composite, implying that in incongruent trials cognitive control is engaged to overcome 

interference not only at the task level, but also at the stimulus and response levels (Gonthier et al., 2016). 

Consequently, however, it is not possible to distinguish the weight of the three loci-specific components of 

the Stroop effect. This matter will be tackled in the final study included in the present thesis (Chapter 7) and 

introduced below. 

1.3. How to tap proactive and reactive control with the Stroop task: 

PC manipulations 

As anticipated in the preceding section, the Stroop task provides a means to distinctively engage 

proactive and reactive control by manipulating the PC (Bugg, 2017; Bugg & Crump, 2012), which is defined 

as the frequency, or likelihood, of congruent trials within the task (Gonthier et al., 2016; Logan & Zbrodoff, 

1979). This manipulation is grounded on the assumption that the information regarding the likelihood of 

congruent trials is employed to adjust the level of cognitive control. When a higher degree of cognitive 

control is engaged, the magnitude of the Stroop effect is reduced, as it inversely reflects the efficacy of 

interference resolution. As such, when the PC is higher, being the frequency of incongruent trials relatively 

lower, it implies that cognitive control is less stringent and a large Stroop effect is observed mainly due to 

the poor performance in incongruent trials. When instead the PC is low, the higher probability of 

encountering incongruent trials and experiencing interference increases the cognitive control level, 

consequently improving performance especially in incongruent trials, yielding a smaller Stroop effect 

(Lindsay & Jacoby, 1994) (see Figure 1.4).  

https://www.zotero.org/google-docs/?Vsj8by
https://www.zotero.org/google-docs/?E5t1ci
https://www.zotero.org/google-docs/?XNZbEA
https://www.zotero.org/google-docs/?XNZbEA
https://www.zotero.org/google-docs/?JLI2zO
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Figure 1.4.  
The figure illustrates the PC-dependent modulation of cognitive control that, in turn, modulates the Stroop 
effect (SE). Of note, as assumed also in the text, PC should affect more Incongruent than Congruent trials, as 
reflected in the steeper slope for the Incongruent trials.  

The differentiation between proactive and reactive control modes can be achieved by varying the PC at 

two distinct levels, referred to as list-wide (LWPC) and item-specific (ISPC), respectively (Bugg, 2012; Bugg & 

Crump, 2012) (see Figure 1.5). Despite yielding a comparable overarching pattern, each PC manipulation 

favors the adoption of one cognitive control mode over the other due to their distinct characteristics (Bugg, 

2017). LWPC is postulated to emphasize the engagement of proactive control because, by varying the PC 

across blocks, individuals can gauge the overall likelihood of encountering congruent trials and then adjust 

their control level, implementing early preparatory strategies when this is instrumental to optimize 

performance (e.g., Braver et al., 2007; Bugg, 2017; Lindsay & Jacoby, 1994; Logan & Zbrodoff, 1979). 

Specifically, in blocks with low LWPC, proactive control is typically maximally engaged (Gonthier et al., 

2016). In contrast, ISPC induces a reactive control modulation by varying the PC across a specific feature of 

the items (usually the task-irrelevant feature) within the same block. This enables individuals to learn the 

conflict likelihood associated with each item and adapt their control level on an item-by-item basis, but only 

after seeing the stimulus (Bugg et al., 2011; Bugg & Hutchison, 2013; Jacoby et al., 2003). Therefore, low-

ISPC items trigger “stimulus-attention associations” rapidly after stimulus onset (Tafuro et al., 2020), 

typically engaging the highest degree of reactive control (e.g., Bugg, 2012, 2017; Bugg & Hutchison, 2013).  

While LWPC and ISPC manipulations have been extensively employed in the literature, they are not 

exempt from limitations and criticism. Among the notable examples of criticism, the contingency hypothesis 

stands out (Schmidt, 2019; Schmidt et al., 2007; Schmidt & Besner, 2008), which posits that the PC effects 

can be more plausibly explained by contingency learning. This viewpoint proposes that responses can be 

modulated through implicit learning of contingencies (i.e., the tendency of specific stimuli to co-occur with 

specific responses), which are subsequently employed to predict and facilitate high-contingency responses. 

The contingency hypothesis strongly challenges the rationale underlying PC manipulations, as it posits that 

https://www.zotero.org/google-docs/?fLLSQS
https://www.zotero.org/google-docs/?fLLSQS
https://www.zotero.org/google-docs/?jg4ISx
https://www.zotero.org/google-docs/?jg4ISx
https://www.zotero.org/google-docs/?XITCuH
https://www.zotero.org/google-docs/?0pijMc
https://www.zotero.org/google-docs/?0pijMc
https://www.zotero.org/google-docs/?2BD7gk
https://www.zotero.org/google-docs/?HGDdto
https://www.zotero.org/google-docs/?mpWJA7
https://www.zotero.org/google-docs/?Ulp1QI
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performance modulation is primarily driven by simple stimulus-response associative learning processes. 

This implication suggests that what is elicited by LWPC and ISPC might not truly reflect the cognitive control 

modulations that we aim to explore. Indeed, the improvement in performance observed in low-PC 

incongruent trials compared to high-PC ones is explained by the contingency hypothesis without relying on 

cognitive control mechanisms: the incongruent responses are more frequent in low-PC vs. high-PC 

blocks/items (see Figure 1.5), so their facilitation can simply reflect stimulus-response association learning. 

 

Figure 1.5.  
The figure shows on the left an example of a block of trials of a color-word Stroop task involving three 
irrelevant stimulus features (Items or stimuli, S; here the words BLUE, RED, and GREEN) and three relevant 
stimulus features (corresponding to the responses, R; here the colors blue, red, and green). The trial 
occurrences are shown for both congruent (in lilac) and incongruent (in fuchsia) trials. The item-specific 
total occurrences are shown in gray, while the total number of trials is shown in black. Based on these trial 
occurrences at the block level, the figure shows how to compute the list-wide PC (LWPC), the item-specific 
PC (ISPC), and the contingency (or conditional probability of a response given a stimulus, P(R|S) or PRS) for 
all S-R combinations (the orange saturation level of the cells reflects the magnitude of LWPC, ISPC, and PRS 
values). 

The effects of contingency learning are more likely to be confounded with those of ISPC, thus 

highlighting the necessity for methodologically sound designs that control for or reduce biases related to 

contingency. Some solutions have been proposed to address this issue, such as the use of “inducer” items 

where ISPC is manipulated, but its effect is then tested on a distinct set of items with balanced ISPC (called 

“diagnostic” items). For a comprehensive review on how to design cognitive control tasks while avoiding 

confounds, including those regarding LWPC, we refer to Braem and colleagues’s work (2019) (summarized in 

the introduction of Chapter 4). However, the approaches recommended by this consensus paper have been 

rarely tested and, even more crucially, their implementation is generally inefficient. This inefficiency arises 

due to the impractical and time-consuming nature of these approaches, such as the need to create both 

https://www.zotero.org/google-docs/?KEfPvC
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inducer items (those triggering adaptive control, having extreme PC values) and diagnostic items (those 

measuring adaptive control effects without confounds) while analyzing only the diagnostic ones. 

Additionally, some of these approaches may not always be feasible, especially when a limited number of 

potential items is available, as in classical color-word Stroop tasks, and/or rely on assumptions (e.g., within-

category transfer) that might not always be assured. 

Due to these limitations, the majority of the proposed solutions, which share the fact that they address 

confounders at the level of the experimental design (thus referred to as design-level control approaches), 

are insufficient, particularly if utilized exclusively. The alternative approach that we propose, which involves 

controlling for confounding effects at the analysis level (thus referred to as analysis-level control), could 

instead be potentially more efficient and flexible. A more comprehensive discussion regarding the PC 

manipulations and their constraints can be found in the introduction of the behavioral study (Chapter 4). 

Here, albeit briefly, we still addressed these topics with the specific intent of elucidating the reasons that 

prompted us to adopt the novel approach that we employed, for the first time, in that behavioral study. 

Specifically, this study emerged from the need to address the limited evidence in the literature concerning 

the actual separability at the behavioral level of the two control mechanisms postulated by the DMC (which 

derives, at least in part, from the limits of the design-level control approach). Our alternative approach was 

thus devised to achieve this goal, and we leveraged the behavioral study to validate it. 

In brief, our novel approach implied manipulating simultaneously the proxy variables for proactive and 

reactive control (i.e., the LWPC and ISPC, respectively), but also those related to low-level confounders, 

including contingency. Moreover, all these variables were manipulated at the trial-level to obtain more fine-

grained estimates of their effects. Subsequently, we used multilevel modeling analytical techniques that not 

only ensured more accurate and reliable estimations of all the effects, but also allowed us to assess them at 

the same time, that is, to assess their specific weight while controlling for all the other (experimental and 

confounding) effects.  

The first important novelty of our approach thus lies in the simultaneous manipulation of both LWPC and 

ISPC, thereby affording the benefit of directly evaluating whether proactive and reactive control are indeed 

separable mechanisms as proposed by the DMC. This separability would gain support if we observe the 

effects of both modes, implying that each mode exists per se while also the other is engaged. The previous 

study by Gonthier and colleagues (2016) addressed the same question in a within-subject design but, as 

they implemented the LWPC and ISPC manipulations in two separate blocks, they provided only indirect 

evidence for such separability. Thanks to the use of a simultaneous manipulation, we could also test how 

the interaction between LWPC and ISPC affects Stroop effect resolution, which would offer additional 

support for their separability, as their interaction would only be possible if they are distinct mechanisms. 

Moreover, it is important here to note that the DMC assumes the interaction between the two modes of 

https://www.zotero.org/google-docs/?0G2oEq
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control (e.g., Braver et al., 2009; Braver et al; 2021), albeit this assumption has been rarely tested 

empirically in the methodologically appropriate way, that is, by manipulating both control modes 

simultaneously.  

A second difference from all previous studies is that we did not operationalize LWPC and ISPC using their 

block-level estimates, as they are instead more realistically estimated and updated trial-by-trial by the 

cognitive system of individuals. For example, the operationalization of the LWPC at the block level (i.e., 

considering all the trial occurrences of a given block) assumes that LWPC has the same value for all the trials 

within each block. However, since participants are typically not aware of the PC manipulations, it is much 

more realistic to assume that participants continuously update their PC estimations based on the history of 

previous trials. Therefore, to assess such dynamic modulations, we computed trial-by-trial estimates of 

LWPC and ISPC using an ideal Bayesian observer (Mathys et al., 2011). As such, our fine-grained 

manipulations allowed us to more accurately account for the dynamic modulations of cognitive control, by 

taking into account the actual recent history of trial congruency that participants experienced.  

The third significant innovation pertains to our utilization of multilevel modeling techniques, a statistical 

methodology that enabled us to manage variables that were beyond our control at the methodological 

level. Specifically, in our experimental design we tried to orthogonalized contingency as much as possible 

with respect to LWPC and ISPC and then, by including also contingency in our statistical model, we obtained 

the effects of LWPC and ISPC regardless of contingency. Moreover, the use of multilevel modeling 

techniques played a pivotal role in the simultaneous examination of the effects of proactive and reactive 

control.  

The same approach was adopted employing both the Peripheral and Perifoveal spatial Stroop tasks, in 

two separate experiments, as detailed in Chapter 4. This study offered compelling evidence for the presence 

of a LWPC-dependent proactive control mechanism, which modulated the Stroop effect regardless of either 

contingency or ISPC-dependent reactive control. Furthermore, although explicit evidence for the existence 

of an ISPC-dependent reactive control effect was not identified, ISPC interacted with LWPC in modulating 

the Stroop effect, providing evidence for the interplay between proactive and reactive control modes.  

In essence, this behavioral study not only provided valuable insights into the distinctive behavioral 

signatures of proactive and reactive control, but also established the groundwork for the subsequent EEG 

study. Indeed, we successfully validated the effectiveness of our novel approach which, with a few 

adjustments (such as employing shorter blocks to enhance PC variability), was then employed in the EEG 

study. Furthermore, our findings confirmed the methodological advantages of the Perifoveal task over the 

Peripheral one, enabling us to discontinue the latter in favor of the former. 
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1.4. Proactive and reactive control processes and representations: 

how to explore them and their relationship 

Over the past decades, extensive research has been dedicated to exploring how cognitive control 

functions in our brain; nevertheless, numerous inquiries persist regarding the underlying neural 

mechanisms, and this holds even truer for the neural mechanisms of proactive and reactive control. 

Regarding the evidence derived from EEG studies, our understanding of cognitive control neural 

correlates primarily revolves around event-related potentials (ERPs). Specifically, the N2, N450 and LP ERP 

components have been commonly reported (Heidlmayr et al., 2020; Larson et al., 2014). However, while 

ERP components exhibit a certain degree of consistency across studies, the interpretation of their functional 

significance strongly depends on the adopted theoretical framework, and this has been done mainly within 

the context of the conflict monitoring model (Botvinick et al., 2001). As a result, conclusive evidence 

concerning the specific ERP components linked to proactive and reactive control remains lacking. Of note, 

this is not solely due to the limited number of studies on this matter (for a brief overview of existing studies, 

see Chapter 5), but also to the highly heterogeneous paradigms and manipulations employed in these few 

studies, which have rarely systematically integrated the PC manipulations outlined above. 

More recently, the spectral information of EEG has also become a subject of interest, leading to 

investigations of process-dependent changes in spectral power across distinct frequency bands using event-

related spectral perturbations (ERSPs). Just as with ERPs, although certain ERSP correlates of cognitive 

control have been consistently reported (e.g., Cavanagh & Frank, 2014; Engel & Fries, 2010; Gutteling et al., 

2022), specific studies investigating cognitive control ERSPs from the DMC perspective are extremely scarce, 

and even nonexistent when it comes to the utilization of the Stroop task (see Chapter 5 for more details). 

Therefore, while fMRI studies have presented evidence for anatomical and functional dissociation 

between proactive and reactive control (for an overview see Braver, 2012; see also Braver et al., 2021), 

there is currently not equally compelling evidence for the distinction of these two mechanisms at the 

electrophysiological level. However, the utilization of EEG holds promise in providing valuable insights, given 

its potential to offer the required finer temporal resolution to test the predictions of the DMC. 

Based on these considerations, the necessity of delving into the EEG correlates of proactive and reactive 

control becomes evident. Additionally, it is clear that, in EEG studies, there is a requirement for a more 

systematic use of PC manipulations. This is precisely what we delve into in Chapter 5 and Chapter 6 of this 

thesis. Specifically, we conducted an EEG study to specifically explore the electrophysiological correlates of 

proactive and reactive control, assessing whether they are distinguishable at the neural level, and we did 

this by employing the same novel approach that had been validated in the preceding behavioral study 

https://www.zotero.org/google-docs/?WhfLIo
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(Chapter 4). Hence, we leveraged the advantages of our approach to respond to the same research inquiries 

addressed before, specifically, whether proactive and reactive control mechanisms co-exist and 

simultaneously influence the Stroop performance, as well as their interplay at the neural level. We 

introduced only minor modifications to our experimental approach, maximizing the variation of both LWPC 

and ISPC in order to more effectively explore the corresponding dynamic changes in neural activity. These 

modifications and the experimental design in general, were planned in advance to ensure that the study 

would be suitable for both traditional univariate analyses (Chapter 5) and more innovative multivariate 

analyses (Chapter 6). Indeed, the potential of multivariate approaches is maximized by increasing the 

variability of the manipulated variables, as we will discuss later on. Lastly, as previously mentioned, we 

employed the perifoveal spatial Stroop task which, aside from its good statistical attributes, also ensures 

minimal artifacts during EEG recording. 

In Chapter 5, we examined the univariate EEG correlates of proactive and reactive control. Specifically, 

along with presenting a brief overview of the existing literature and its aforementioned gaps, we utilized 

two classical univariate analysis approaches: event-related potentials (ERPs) and event-related spectral 

perturbations (ERSPs). These analyses showed the specific ER(S)P correlates of proactive control, revealing 

how LWPC manipulation modulated EEG Stroop effects. Furthermore, they contributed to shedding initial 

light on the modulations of reactive control, revealing that the effect of reactive control induced by ISPC 

was not so strong and independent, consistent with our behavioral findings. It appeared instead that an 

alternative form of reactive control was likely engaged when the other control mechanisms failed. In 

summary, the results presented in Chapter 5 had the merit of demonstrating that proactive control relies on 

distinct neural mechanisms as compared to (some form of) reactive control, but further investigation was 

needed to better understand the ISPC-induced reactive control neural mechanism.  

Overall, the findings of this study gave rise to the following consideration. It is possible that by using 

classical univariate approaches, we might be missing something that, although more evident in the case of 

ISPC-induced reactive control, holds true for cognitive control in general: investigating cognitive control 

processes alone might not be sufficient, and it is essential to explore the underlying neural representations 

for proactive and reactive control as well. 

As previously mentioned, representations constitute the central aspect of cognitive control, as they play 

a fundamental role in encoding the diverse information necessary for goal-directed behavior (Cellier et al., 

2022; D’Esposito, 2007; Kriegeskorte & Diedrichsen, 2019; Schumacher & Hazeltine, 2016). Consequently, 

cognitive control theories frequently delineate cognitive control in terms of representations, directly 

describing the information encoded by the activity of neural units (e.g., Badre et al., 2021; Braver, 2012; 

Cohen et al., 1990; Freund et al., 2021; Kriegeskorte & Diedrichsen, 2019). Representations, to be effectively 

employed, are encoded at the neural level and, in turn, are assumed to be utilized by downstream cognitive 

https://www.zotero.org/google-docs/?4oQeoG
https://www.zotero.org/google-docs/?4oQeoG
https://www.zotero.org/google-docs/?H4CNNo
https://www.zotero.org/google-docs/?H4CNNo
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processes to successfully guide behavior. As such, the representational perspective has the potential of 

directly linking cognition and brain activity, providing valuable insights into cognitive control dynamics 

(Diedrichsen & Kriegeskorte, 2017; Kriegeskorte & Diedrichsen, 2019; Kriegeskorte & Kievit, 2013; see also 

Chapter 6 for a more detailed discussion).  

Understanding cognitive control hinges on representations, but they have been largely overlooked and 

the predictions of cognitive control theories have rarely been tested directly. This gap likely prevents a 

comprehensive grasp of cognitive control mechanisms (Freund et al., 2021). The analytical methods used in 

neuroimaging studies, mainly mass-univariate approaches aimed to reveal correlates of cognitive processes, 

have described brain activity based on few abstract conditions, neglecting the richness of neural signals and 

providing only process-level measures that are indirect proxies of control representations. This univariate 

analytical approach allows only assessing the overall level of activation and changes in activity elicited by 

experimental manipulations, for example by revealing which condition elicits a higher control demand, and 

this is taken as the hallmark of the underlying process (Cheng et al., 2021). This limits their ability to identify 

representational content because, by revealing overall activation levels, they lack insight into how 

information is represented (Freund et al., 2021; Gluth et al., 2012; Kriegeskorte & Diedrichsen, 2019; Popal 

et al., 2019). Therefore, while such studies offer some empirical contribution, they leave gaps in fully 

understanding the phenomena under study. Given cognitive control reliance on representations, and given 

that representations are encoded as distributed patterns of activity in the brain (e.g., Etzel et al., 2020), 

there is a need for methods sensitive to such complex encoding (Badre et al., 2021). Multivariate 

approaches, like multivariate pattern analysis (MVPA), are thus crucial to measuring distributed patterns of 

information, revealing the representational content (Davis et al., 2014; Popal et al., 2019). As a result, 

researchers are increasingly turning to MVPA to overcome these limitations and have confirmed its 

advantages in cognitive control studies (see Chapter 6 for a brief overview). However, although previous 

functional studies have used MVPA to study the neural underpinnings of cognitive control with the Stroop 

task (Freund et al., 2021), to the best of our knowledge, no existing work has specifically explored proactive 

and reactive control using the LWPC and ISPC manipulations. Therefore, given their potential, we 

incorporated multivariate analytical methods to enhance our grasp of proactive and reactive control, while 

using the experimental approach explained above. 

This topic will be extensively addressed in Chapter 6. Briefly, we adopted a multimethod approach, 

employing two common multivariate techniques, namely Representational Similarity Analysis (RSA) and 

ridge regression decoding (see Chapter 6 for an extensive description of such techniques and the rationale 

behind using them). This allowed us to first explore the encoding of proactive and reactive control 

representations by using RSA to directly test the DMC predictions and finely characterize proactive and 

reactive control representational geometry. We could then test the decoding of such representations by 

https://www.zotero.org/google-docs/?YYy8qC
https://www.zotero.org/google-docs/?YYy8qC
https://www.zotero.org/google-docs/?4MuKZn
https://www.zotero.org/google-docs/?vaaE31
https://www.zotero.org/google-docs/?vaaE31
https://www.zotero.org/google-docs/?dxs0VM
https://www.zotero.org/google-docs/?HwtWe2
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using ridge regression to determine whether the previously identified information patterns could be 

decoded, which would mean that they were truly available to be used by downstream neurons.  

Thus, by using also MVPA, we could attain a more holistic perspective beyond the process-level insights 

obtained from the ER(S)P analyses, uncovering the underlying representational content encoded within 

these processes. By using both univariate and multivariate approaches, we could also glean valuable 

insights into the interaction between cognitive processes and their associated representations, as these 

aspects are inherently interconnected (Cheng, 2021). Moreover, by using MVPA along with EEG, the 

inherent dynamic nature of representations was more effectively captured, thanks to the high temporal 

resolution of EEG (Badre et al., 2021; Cellier et al., 2022).  

Our findings confirmed the hypothesized benefits of employing MVPA techniques. They indeed revealed 

clear encoding patterns for both proactive and reactive control modes, demonstrating their discernibility at 

the neural level, and offering a detailed characterization of their respective encoding patterns. Therefore, 

the findings presented in Chapter 6 extend the current body of knowledge regarding proactive control by 

providing evidence of the representations that underlie its previously identified processes. However, the 

implications are even more profound for reactive control, as our findings showed preliminary yet substantial 

evidence for the existence of ISPC-induced reactive control representations at the neural level, affirming its 

intricate multivariate nature that can solely be unveiled through multivariate approaches. 

1.5. Going beyond the composite Stroop effect: the weight of the loci 

The multivariate analyses presented in Chapter 6 constitute the logical conclusion of this thesis work, 

achieving the overarching goal of comprehensively exploring the neural correlates of both proactive and 

reactive control. However, despite the evidence reported here, the landscape of proactive and reactive 

control neural correlates remains complex, clearly indicating the need for future studies. Furthermore, in 

addressing this research question, we encountered, and started to address, various methodological issues. 

The emphasis we placed on these methodological aspects was not merely an end in itself; it proved to be 

both the starting point and the necessary means to achieve our aim. 

Hence, each step of this thesis, as in any scientific journey, has given rise to additional open questions 

that potentially provide fertile ground for years of further investigation, not only regarding proactive and 

reactive control but also concerning more basilar methodological issues. These open questions will be 

discussed in the concluding remarks, outlining future directions in greater detail. Nevertheless, one of these 

open questions emerged early on, and our curiosity to gain a better understanding has driven us to embark 

on an additional study to begin addressing it. This study, outlined in Chapter 7, simultaneously serves as 

https://www.zotero.org/google-docs/?wmhAG1
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both the natural continuation and development of the present project, starting from the findings of the 

previous studies, and the initial step for all future studies that will stem from it.  

Indeed, since the outset of this project, we have emphasized the composite nature of the Stroop effect, 

highlighting that it is imperative to employ adequate experimental tasks to ensure its measurement validity. 

Consequently, in this project, we have been attentive to ensure that our experimental paradigm generated a 

Stroop effect encompassing at the same time task, stimulus, and response effects, in alignment with the 

multiple-loci account (see Chapter 2 and 3, and Parris et al., 2022). While this approach has allowed us to 

obtain a valid measurement of the Stroop effect, it has also resulted in the impossibility to indicate the 

individual weight or role of each locus-specific component effect in driving the overall Stroop performance. 

Thus, this could be considered a limitation of our studies, as assessing a measure of complex and composite 

nature only grants us insights into the overall picture, leaving us unaware of the specific contributions of the 

underlying components.  

Understanding the distinct contributions of the specific loci is particularly important to gain deeper 

insights into the neural functioning of proactive and reactive control, as they might operate differently at 

various levels. For instance, the LWPC-induced proactive control should exert a greater influence on the task 

and/or stimulus levels, due to its tonic and anticipatory nature, while the ISPC-induced reactive control 

should exert a more pronounced impact on the stimulus level, even before the detection of a conflict, and, 

perhaps, on the response one. The investigation of the locus-dependent specific effects of cognitive control 

processes could also facilitate a more precise exploration of the distinction between the ISPC-induced form 

of reactive control (which we defined as a “stimulus-attention” association, see Section 1.3) and a later form 

of reactive control (which is more compatible with the one postulated by the DMC, see Section 1.1 and 

Figure 1.2), a distinction that we are only introducing here but has consistently surfaced in this study (see 

Figure 1.6), as the later and more purely reactive form of control is triggered by conflict detection and is 

expected to primarily affect the response level. Furthermore, this could aid in interpreting the neural 

mechanisms of proactive and reactive control through the lens of the influential and neuroimaging-based 

Cascade of Control Model proposed by Banich (2009). This model posits three sequential steps in 

interference resolution: initially biasing the task-relevant perceptual processes, followed by the relevant 

representations, and ultimately the relevant response. 

https://www.zotero.org/google-docs/?89Smq3
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Figure 1.6.  
Temporal dynamics of the involvement of proactive and reactive control modes in an exemplar task 
according to the terminology used in this project. The figure shows two trials of a hypothetical simple 
conflict task. The relative level of control engagement is reflected by the saturation of the lilac (proactive, 
intended as operating in anticipation of the conflict; note that ISPC-induced reactive control actually 
operates proactively in a sense) and fuchsia (reactive, as per the DMC, intended as operating in response to 
the conflict) colors. 

Hence, the potential valuable insights that could arise from knowing the specific weight of the Stroop 

loci are immeasurable. With this objective in mind, we preregistered and conducted two successive 

behavioral studies in which we directly decomposed the Stroop effect by separately measuring each 

component. This decomposition was carried out as systematically as possible in order to overcome the 

limitations of the rare attempts that have been made previously (e.g., Augustinova et al., 2018), putting 

forward a number of very specific a-priori hypotheses (and outlining in detail how to test them). The second 

study represents a development of the first one because, by building upon it, we were able to assess in a 

fine-grained, parametric way not only the various components (i.e., task, stimulus, and response), thus 

improving their measurement, but also the additional aspects that could influence interference resolution, 

such as task asymmetry and the automaticity of the irrelevant task. Furthermore, based on the results of 

the first study, we refined our hypotheses. 

As hypothesized, these studies not only demonstrated a strong consistency with the a priori hypotheses 

but also yielded highly interesting results, offering valuable insights and laying the foundational step for 

subsequent investigations.  

In this introductory chapter, we have presented a comprehensive overview of the entire thesis project, 

with the primary aim of elucidating the logical framework that interconnects the various studies and 

delineating the respective research inquiries that each of them seeks to address. Starting from the next 

chapter, we will delve into the heart of each study, addressing in greater detail the topics that have been 

briefly outlined here. This exploration will start with the methodological review of the Stroop task.  

https://www.zotero.org/google-docs/?8NOOcy
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CHAPTER 2 

The Stroop legacy: 

A Cautionary Tale on Methodological Issues 

2.1. Introduction  

One of the most influential and widely used experimental paradigms in cognitive psychology is the 

Stroop task (Stroop, 1935). In its most common version, known as the color-word Stroop task, participants 

are presented with words that denote a color printed in either the same or a different ink color and are 

required to identify the ink color of the presented word regardless of its meaning. Crucially, the ink color in 

which the word is displayed and the meaning of the same word can either match (congruent trials, e.g., 

GREEN displayed in green ink: GREENgreen) or not (incongruent trials, e.g., GREEN displayed in blue ink: 

GREENblue). The critical measure is the so-called Stroop effect (SE), which refers to the robust performance 

decline in incongruent as compared to congruent trials, which is commonly attributed to the interference 

between reading and color naming (e.g., MacLeod, 1991; Stroop, 1935). Despite being the most classic 

Stroop task account, this explanation is incomplete and insufficient, as will be discussed profusely 

throughout this work. Indeed, the need to conduct this review arises precisely from the widespread belief 

that, in order to obtain a Stroop effect, the only basic requirement is to administer a task with congruent 

and incongruent stimuli, which is however incorrect or, at least, not sufficient.  

Before delving into theoretical and methodological issues, we first provide the reader with definitions of 

some basic concepts, starting with the Stroop effect, which is commonly computed as the difference in the 

response time (RT) between incongruent (I) and congruent (C) trials (formally, SE = RTIncongruent – RTCongruent). 

When congruent trials are used as the baseline condition against which to compare RT on incongruent 

trials, the SE has also been referred to as the Stroop congruency effect (e.g., Egner et al., 2010), Stroop 

interference effect (e.g., Leung et al., 2000), or total Strop effect (e.g., Brown et al., 1998). Alternatively, 

neutral trials (e.g., a color-neutral word or a non-word letter string displayed in green ink: CATgreen or XXXgreen 

respectively), can be used as the baseline condition, allowing one to partition the SE into Stroop 

interference (SI) and facilitation (SF) effects  (but see, e.g., Di Russo & Bianco, 2023, for different 

nomenclatures). The former, calculated as the difference in RT between incongruent and neutral trials (N) 

(formally, SI = RTIncongruent – RTNeutral), refers to a worse performance for incongruent (I) than neutral words 

(N); the latter, computed as the difference in RT between neutral and congruent trials (formally, SF = RTNeutral 
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– RTCongruent), refers to a better performance for congruent than neutral words. The algebraic sum of SI and 

SF corresponds to the full SE (formally, SE = SI + SF). 

To successfully complete the Stroop task, thus some form of cognitive control, namely the ability to 

regulate thoughts and actions in accordance with internally maintained behavioral goals (Braver, 2012), 

needs to be activated (Cohen et al., 1990). Indeed, the Stroop task, quoting Stroop in his original article 

(1935), is a measure of “interference of color stimuli upon reading words'' [p. 647] and is thus widely used 

to investigate both interference resolution (e.g., Nee et al., 2007) and selective attention for which it is 

considered the “gold standard” (MacLeod, 1992). The ability tapped by the Stroop task allows us to 

selectively attend to specific properties in our environment based on our goals, while reducing the impact 

of potentially interfering information.  

For several decades now, the Stroop task has been serving as a main tool for assessing executive 

attention disorders and impairments related to the frontal lobe, like anxiety, schizophrenia, dementia, and 

attention deficit hyperactivity disorder (e.g., Barkley, 1997; Henik & Salo, 2004; Spieler et al., 1996), for 

neuropsychological practice (e.g., Strauss et al., 2007), and in basic and applied research (e.g., MacLeod, 

1992). For all that, many reviews have been conducted in several research fields (e.g., neuropsychology, 

Scarpina & Tagini, 2017; Periáñez et al., 2021; psychiatry, e.g., Peckham et al., 2010; Joyal et al., 2019; 

cognitive psychology, e.g., Algom & Chajut, 2019; Parris et al., 2022; Schmidt, 2019). Given this vast amount 

of studies on the Stroop, including several important reviews, our intention of conducting a further review 

might not appear so straightforward. For this reason, in the next paragraph, we outline the goal of the 

present work to elucidate the contribution that we believe this review could give to the Stroop literature. 

2.1.1. Goal of the present review 

Despite the plethora of studies and reviews on the Stroop task, consensus on many theoretical and 

methodological aspects is still far from being reached. For example, despite the Stroop effect often being 

regarded as a proxy for the activation of cognitive control mechanisms, some recent works questioned the 

validity of control-related and conflict adaptation explanations of it (see Algom & Chajut, 2019; Schmidt, 

2019's reviews as examples of two of the most influential ones). In addition to this example, a great variety 

of theoretical accounts have been put forward to explain the Stroop effect, some of which are in contrast to 

each other. This notwithstanding, it must be said that discussing such theoretical issues is not the aim of the 

present review, and we will present only the theoretical accounts useful for our purposes without going into 

much detail.  

Here we instead focus on the validity of the measures obtained with the Stroop task (Flake & Fried, 2020), 

that is, the extent to which the measures or results obtained using a research task or method actually 
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represent the intended variable. Measurement validity indeed represents the fundamental requirement for 

any other form of validity, including the validity of the conclusions drawn from the experimental measures 

(Flake & Fried, 2020). However, since there are enormous methodological differences among studies 

employing the Stroop task and its adaptations, the validity of their Stroop measures is challenging to assess. In 

fact, these differences hinder direct comparisons between studies and, consequently, impede the possibility of 

drawing firm conclusions, potentially leading to inconsistencies at a theoretical level. For instance, it is 

emblematic that the Stroop task, along with other well-known experimental paradigms, exhibits the so-called 

reliability paradox, according to which the Stroop effect, despite being large, lacks reliability (Hedge et al., 

2018; see also Viviani et al., 2023, for a more detailed discussion).  

The methodological confusion arises from the fact that, since the first study by Stroop, a multitude of 

Stroop task variants have been devised, often without relying on common guidelines. This is problematic 

because, as we will discuss in detail later, subsequent studies have highlighted the complex nature of the 

Stroop effect, demonstrating, for example, that it comprises multiple components (Parris et al., 2022). 

Therefore, it is crucial that, when we refer to the "Stroop effect”, all these components are taken into 

account. Despite the existence of works (e.g., Kornblum, 1992 discussed in detail later) that have explicitly 

clarified the necessary characteristics for a task to be considered similar to the classical Stroop and thus be 

called Stroop, such guidelines are commonly overlooked. Therefore, the message we aim to convey through 

this review is that methodological consistency among studies is essential whenever the label "Stroop task" 

is used to ensure a common ground. By claiming this, we mean that since the Stroop task originally 

proposed by its namesake author ensures a genuine and comprehensive Stroop effect, it represents the 

model to follow. Therefore, every replication of this task, both in terms of color-word versions and 

alternative variants, should strive to be methodologically similar to it, as only by using this approach, an 

accurate comparison of the evidence produced by individual studies is ensured. 

The aim of the present work is to overview the tasks that have been denoted as Stroop tasks in the 

literature from a methodological point of view, to ascertain whether they can rightfully be called Stroop 

tasks, that is, if they are methodologically similar to the classical color-word version. However, by saying 

this, we absolutely do not mean that variations altering the classical version should be avoided altogether. 

On the contrary, if based on sound methodological assumptions, such variations can be useful, for instance, 

in gaining a better understanding of the nature of the Stroop effect or some of its underlying processes. 

Nonetheless, it is important that, when such variations do not adhere to the classical Stroop characteristics, 

they should not be labeled as Stroop tasks. Instead, it is preferable to use labels such as "Stroop-like" task to 

highlight this distinction and avoid the risk of misleading interpretations.  
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It should be noted that the methodological discussion in the present paper is not intended as a 

systematic review1 of the huge literature on the Stroop task and its alternative versions. Rather, the studies 

reviewed here must be considered just as examples of the main Stroop task versions serving our purposes 

of showing the methodological strengths and limitations of the general Stroop category they belong to. For 

this reason, our work is a narrative review that focuses on the specific methodological aspects we are 

interested in, to be informative and describe them, thus without specifically focusing on the selected 

exemplar studies (Uman, 2011). Therefore, we advise readers to consider this work from this perspective 

while ensuring that we have made every effort to avoid as much as possible any selection bias and to be as 

clear as possible. 

Throughout this work, we will endeavor to demonstrate the reasons for our skepticism regarding the 

tasks commonly used in the literature, presenting several examples that highlight how the majority of 

Stroop tasks lack fundamental methodological requirements to be considered as such in all respects. At the 

same time, our objective is to encourage future studies to pay more attention to methodological aspects 

and the validity of Stroop effect measures. Nonetheless, our message is not to remain solely attached to the 

classical version of this task, which may present certain issues, such as the requirement for verbal responses 

that may not always be feasible, especially in experimental and neuroimaging settings. With a proactive 

intention, we thus propose an alternative family of Stroop tasks, the spatial variant, to demonstrate an 

example of an alternative Stroop version that ensures both methodological adequacy and, sometimes, 

greater flexibility. However, we wish to emphasize that our alternative proposal is not the only possibility, 

but merely one among many potential methodologically sound versions. 

Given that we are not the first to propose a spatial version of the Stroop task and similar tasks have 

already been employed in the literature, a significant portion of this review will be dedicated to examining 

whether spatial Stroop tasks in the literature genuinely meet the criteria for being considered 

methodologically appropriate, that is, similar to the classical Stroop task. Nonetheless, before addressing 

the methodological requirements of the spatial Stroop task, we will provide an overview of the classical 

color-word Stroop task and its most popular variations. 

Therefore, from a practical standpoint, the review is organized into two main sections. The first section 

outlines the necessary characteristics for methodologically sound Stroop tasks, followed by an overview of 

its most popular variations, providing examples to support our skepticism. The second section will focus on 

                                                           

1 Our intention is not to conduct a systematic review of the literature; hence, we explicitly declare that we avoid 

doing a detailed and comprehensive search on the literature on the Stroop tasks, which is the requisite of any 
systematic review (e.g., Uman, 2011). With this, we mean that we do not follow the PRISMA statement (Page et al., 
2021), necessary for any systematic review. 
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the spatial Stroop tasks found in the literature, assessing them and explaining the reasons why we believe 

they may be a potentially preferable variant over many others.  

2.1.2. Object of our methodological inspection 

The object of our methodological inspection is the Stroop effect as a whole. In the introduction, we 

outlined two different approaches for calculating the Stroop effect, one contrasting incongruent and 

congruent trials, which allows obtaining only a global Stroop effect, and the other using also neutral trials, 

which allows portioning the Stroop effect into its facilitation and interference components. So far, it is not 

clear in the literature which of these two procedures is better to use. Indeed, the relative weights of 

interference and facilitation effects in composing the Stroop effect are currently unknown (MacLeod, 1991; 

MacLeod & MacDonald, 2000). In addition, whether interference and facilitation arise from a common 

mechanism (e.g., the congruency relationship between ink color and color name) or not is a further subject 

of controversy (e.g., Brown, 2011; Di Russo & Bianco, 2023). Given these unresolved controversies, it seems 

more cautious to us not to distinguish between the two subcomponents. A further reason specifically 

regards the facilitation effect, whose reliability and stability have been called into question by findings 

showing that it is considerably smaller than the interference one, as shown by MacLeod & MacDonald's 

(2000) study, wherein facilitation effects were one fifth the size of interference effects (for further evidence, 

see Augustinova et al., 2019; Lindsay & Jacoby, 1994). Additionally, Stroop facilitation measures have been 

shown to be affected by the baseline (i.e., the type of neutral trials) chosen to compute the contrast with 

congruent trials. Indeed, although colored non-words (e.g., XXXgreen) and color-neutral words (e.g., 

CHAIRgreen) are usually used interchangeably, converging evidence suggests that facilitation effects are 

underestimated when using colored non-words instead of color-neutral words (Augustinova et al., 2019; 

Brown, 2011).  Of note, although it was not tested, the issue of baseline selection may also affect the 

comparison with incongruent stimuli and thus the calculation of Stroop interference, further supporting our 

choice not to distinguish between the two subcomponents of the Stroop effect. Finally, the facilitation 

effect still includes an interference component because a form of conflict occurs even on congruent trials. 

According to this view, since reading is assumed to be a more dominant and automatic process than 

identifying the ink color, even congruent trials are affected by a form of conflict, namely task conflict, and 

thus they cannot be considered as a pure measure of facilitation (Goldfarb & Henik, 2007; MacLeod & 

MacDonald, 2000; Parris et al., 2022). Indeed, task conflict in congruent trials is particularly evident in some 

cases (i.e., as a result of specific manipulations), as a phenomenon known as negative facilitation, 

characterized by longer RTs on congruent trials as compared to neutral ones, due to task conflict in the 

former but not in the latter (Parris et al., 2023).  
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Discussing the validity and the best methodological choices for measuring Stroop facilitation and Stroop 

interference separately goes beyond the scope of the present review, but we highlighted these issues to 

justify our choice to consider the Stroop effect as a whole, and not portioning it into these components. 

Moreover, the main reason for this decision is that our aim is to provide a methodological overview of the 

Stroop task that is as inclusive as possible; therefore, since most of the studies in the literature that used 

the Stroop task measured the Stroop effect and not its subcomponents, we decided to do the same. It is 

important to note, however, that most studies use the Stroop task to investigate processes similar to 

interference resolution, for which we are aware that the Stroop interference effect would be a much better 

and purer measure.    

That being said, to avoid confusion, we will consistently use the generic term "Stroop effect" in the text, 

even when it would be more accurate to refer specifically to its interference component. We are aware that 

this may be a limitation, but we believe that it is the only way to ensure the generalization of what we 

discuss in this review. On the other hand, we believe that a methodical clarification regarding the 

facilitation-interference relationship would be necessary in the future to bring clarity to the matter. 

2.2. The color-word Stroop task: methodological considerations  

This section is dedicated to some methodological considerations that we will consider as benchmarks 

throughout the entire review and, to justify their importance, we will draw on some theoretical accounts, 

which are required to understand the nature of the Stroop effect.  

2.2.1. Stroop effect asymmetry 

The basis of the Stroop effect has been classically attributed to the so-called Stroop asymmetry, that is, 

the fact that task-irrelevant words slow color naming, while task-irrelevant colors interfere with word 

reading to a lesser extent (e.g., MacLeod, 1991; Melara & Algom, 2003). The prevalent explanation for this 

asymmetry is the automaticity account, according to which this occurs because the two dimensions imply 

different amounts of processing effort: naming ink colors requires more attentional resources than reading 

words, which is automatic and obligatory due to our extensive experience in reading and its consequent 

storage in procedural memory. Therefore, the more automatized process interferes with the less automatic 

one, but not vice versa (MacLeod, 1991). Based on these assumptions, the parallel distributed processing 

account of the Stroop effect (Cohen et al., 1990) is dominant in the literature and postulates that the Stroop 

asymmetry derives from the unintentional activation of the reading pathway, which is stronger than the 

weaker color naming one. Automaticity is thus considered on a continuum, relying on the strength of 

processing which, in turn, depends on the relative strength of the competing processes and can derive from 

several mechanisms (e.g., the effect of practice).  
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Alternatively, the commonly observed Stroop asymmetry has been explained by the dimensional 

discriminability account (Melara & Mounts, 1993), which posits that the relative speed of discrimination 

between the two dimensions, rather than the strength of processing, underlies such an effect because there 

is a mismatch in discriminability or salience between colors and words. Dimensional discriminability refers 

to the perceptual properties of the dimensions and, based on Melara & Algom's (2003) account, words are 

more discriminable than colors in most of the Stroop studies, explaining why they are processed faster and 

interfere more. Therefore, by matching the dimensional discriminability (e.g., by reducing the physical size 

of the words, making the colors more salient than the words, etc.) to render the dimensions equally 

discriminable, the Stroop effect can be deliberately reduced, eliminated, or even reversed (Algom & Chajut, 

2019).  

The dimensional discriminability account offers a reasonable explanation for the reverse Stroop effect 

which, as the name suggests, is produced when the typical Stroop asymmetry is reversed. This effect was 

first reported by Stroop (1935), who showed that after extensive practice in color naming, reading color 

words was impaired on incongruent trials. More recent evidence of color interfering with task-relevant 

word meaning was offered by Blais & Besner's (2007) study, in line with the dimensional discriminability 

account. In that study, when participants were required to identify a centrally presented colored word by 

pointing to the response word displayed in one of the four corners of the screen, the response latencies 

were longer when the target word appeared in an incongruent ink. The automaticity account provides a 

similar explanation for the reversed direction of interference, that is, it postulates that, if a normally more 

automatic process associated with one stimulus dimension is altered through radical experimental 

manipulations, such as those in the dimensional discriminability account, the normally less automatic 

process can become relatively more automatic, producing interference in the reverse direction (MacLeod, 

1991b). In other words, also according to the automaticity account, by changing the difficulty of processing, 

the interference can affect the process that should be stronger.  

Evidence indeed exists in the literature supporting both accounts but, for the purposes of our review, 

they will not be considered as mutually exclusive. As such, we can speculate that the Stroop effect might be 

yielded both by differences in automaticity between the two dimensions and by differences in the 

discriminability of the two dimensions. When the discriminability of the two dimensions is the same, 

automaticity would be predominant, whereas when their processing automaticity is the same, 

discriminability would be predominant. With this in mind, researchers using the Stroop task should balance 

and control for both of them. For example, if automaticity is manipulated expecting that one dimension is 

more automatic relative to the other, the discriminability of the two dimensions needs to be controlled for. 

On the other hand, when discriminability is manipulated rendering one dimension more (e.g., perceptually) 

salient than the other, care must be taken to use equally strong processes. To deliberately avoid favoring 
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one account over the other, throughout this work, when we need to indicate that one dimension is 

prevailing over the other, we will use neither the term “more automatic” nor “more salient”, but we will 

neutrally refer to that dimension as stronger than the other.  

2.2.2. Stroop effect characteristics 

The complex nature of the Stroop effect is not limited to the coexistence of interference and facilitation 

effects, but also extends to its composite nature. As such, in this section we provide a brief overview of the 

Stroop effect characteristics, with the aim of highlighting its fundamental requirements. 

Over the years, a wealth of different single-stage theoretical accounts has been proposed to explain the 

nature of the Stroop effect; they can be divided into two general categories. The so-called late-selection 

accounts have been predominant in the Stroop literature and attribute the Stroop effect to response 

conflict, or interference2,  in the response selection phase: in incongruent trials, the irrelevant word 

meaning elicits a (wrong) response that interferes with the selection of the correct response (Cohen et al., 

1990; Posner & Snyder, 1975). In contrast, early-selection accounts attribute the Stroop effect to stimulus 

conflict, suggesting that, in the stimulus-encoding stage, the irrelevant dimension of the incongruent 

stimulus interferes with the relevant one. According to some authors, stimulus conflict is perceptual in 

nature because it arises when colors are implicitly identified (e.g., Hock & Egeth, 1970), whereas others 

posit its conceptual and/or semantic nature and put forward that interference occurs because the meanings 

of both the word and color dimensions correspond to colors (e.g., Seymour, 1977). Within this early account 

framework, it has also been suggested that interference occurs at the task set level due to the conflict 

between the irrelevant but highly automatized task, that is, word reading, and the relevant task, that is, 

color naming (e.g., Augustinova et al., 2018; Goldfarb & Henik, 2006, 2007; Parris, 2014).   

This distinction notwithstanding, it has been argued that the Stroop effect is better explained in terms of 

multiple-stage accounts, suggesting that processes at both the stimulus and response levels contribute to it. 

Stimulus- and response-based processes are not mutually exclusive but simply focus on different aspects of 

the Stroop task. Accordingly, Zhang and Kornblum (1998a) examined stimulus-stimulus (e.g., between two 

incongruent stimulus dimensions) and stimulus-response (e.g., between two competing responses) effects 

both in isolation and in the Stroop task, showing that they interact in contributing to the Stroop effect. Their 

results suggest that the Stroop effect is due to the combination of stimulus-stimulus and stimulus-response 

compatibility (De Houwer, 2003; Zhang & Kornblum, 1998).  

More recent studies further investigated the specific contribution of different types of conflict in the 

Stroop task, strengthening the evidence for an even more complex multiple-stage account. Augustinova and 

                                                           

2 We will use the terms conflict and interference as synonyms for the sake of simplicity.  
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colleagues (2018) specifically tested the integrative assumption that the overall Stroop interference is 

composed of task, semantic, and response conflicts. To this aim, they compared response latencies to 

different stimuli, that is, standard color-incongruent words (e.g., BLUEgreen), associated color-incongruent 

words  (e.g., SKYgreen), color-neutral words  (e.g., DOGgreen), and color-neutral letter strings  (e.g., XXXXgreen), 

and they then calculated the specific contribution of task (DOGgreen -  XXXXgreen ), semantic (SKYgreen -  

DOGgreen), and response (BLUEgreen -  SKYgreen) conflicts. When vocal responses were used, they clearly 

identified the behavioral signatures of each of these conflict types. Moreover, in a subsequent study, 

Augustinova and colleagues (2019)  replicated these results and drew special attention to the effect of 

response modality, showing that the three conflict types contribute to Stroop interference only when vocal 

responses are used while, when manual ones are used, no task conflict is generated (see Section 1.3.3 for a 

more detailed discussion on this point).  

In a similar vein, Parris and coworkers (2022) conducted a review to specifically investigate the 

processing levels that contribute to the Stroop effect3. They examined the evidence produced by studies in 

the literature to verify if it is consistent with the hypothesis that the Stroop effect is composed of multiple 

loci, which can be distinguished into informational and task loci. The former includes stimulus- and 

response-related conflicts/facilitations corresponding to previous single-stage models (e.g., De Houwer, 

2003; Zhang & Kornblum, 1998), whereas the latter coincides with the above-described conflict between 

task sets. Their conclusions argue in favor of the multiple-stage account, suggesting that the Stroop effect 

arises at different loci. However, only two independent loci of attentional selection in the Stroop task were 

clearly differentiated; indeed, while there is evidence that task conflict is distinct from informational 

conflict, to date, measures distinguishing between stimulus and response conflicts/facilitations are still 

ambiguous. This notwithstanding, the authors left open the possibility of two distinct loci within the 

broader informational one, but claimed the importance of developing more adequate models accounting 

for the multiplicity of Stroop loci. Additionally, neuroimaging evidence seems to point towards the same 

direction, as shown, for example, by the cascade of control model (Banich, 2009; 2019), which is an 

influential functional model accounting for Stroop performance in a multiple-stage manner. 

Overall, although available findings are somewhat conflicting, evidence that the color-word Stroop effect 

occurs at different loci is convincing. As such, we can safely claim that, when designing a Stroop task, taking 

                                                           

3 To note that, as compared to previous works, in Parris et al. (2022), the possible contribution of multiple 

processing loci has been investigated considering separately Stoop interference and Stroop facilitation. In brief, both 
imply interference at the task locus, whereas SI also relies on interference at the stimulus and response loci and SF 
also relies on facilitation at the stimulus and response loci. Therefore, we could say that both SI and SF imply the same 
processing loci, but with an opposite direction at the stimulus and response loci. Based on that, given our intention to 
focus on the overall Stroop effect, in the present work, when possible, we will avoid referring to interference and 
facilitation at these loci. We will instead use more caution, referring in a general manner to the processing loci of the 
Stroop, except for task conflict which can be safely used.  
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into account all these possible types (or loci) of the Stroop effect is of considerable importance. Therefore, 

to yield a Stroop effect involving all the three loci (which, for the sake of simplicity, we will call a complete 

Stroop effect), color-word Stroop tasks should entail: 1) interference at the task selection level due to 

conflict between two competing processing streams, naming and reading, with the former being less strong 

than the latter, 2) interference (and facilitation) at the stimulus processing level due to perceptual and/or 

semantic overlap between relevant and irrelevant stimulus representations, and 3) interference (and 

facilitation) at the response selection level due to the overlap between the two vocal responses activated by 

the ink color and the color name features (De Houwer, 2003; Funes et al., 2010).  

As such, in the present review, the presence of three distinct loci will be evaluated in the overviewed 

studies. It is noteworthy that, while the presence of task conflict depends on the use of two distinct tasks 

activating competing task sets, the effects at the stimulus and response loci strongly rely on the 

characteristics of the Stroop stimuli and responses, which, therefore, should be designed carefully. In the 

next section, we focus on this latter point, discussing a relatively old account that, nonetheless, offers clear 

guidelines for designing Stroop tasks entailing both stimulus and response conflicts/facilitations. 

2.2.3. Stroop stimuli and responses 

Both stimulus and response loci are incorporated in the dimensional overlap model put forward by 

Kornblum (1992) (see also Kornblum et al., 1990, 1999), which outlines the requirements that need to be 

satisfied to define a task as a Stroop task. This model is based on the concept of dimensional overlap, 

referred to as the degree of similarity, or correspondence, between two sets of items. Dimensional overlap 

can also be defined as the extent to which two sets of items have attributes or properties in common. It 

does not necessarily concern physical similarity, because it is a property of the representation of the sets 

and not necessarily a physical feature of them. Therefore, dimensional overlap can be perceptual and/or 

conceptual and can be observed in the stimulus and response sets, in two stimulus sets, or in both. The 

overlap can be measured on a continuous scale with different levels of similarity, going from totally 

dissimilar to totally similar. When two sets have dimensional overlap, taking one element from each set, 

they are either compatible if they match or incompatible if they do not match and interference is produced. 

Commonly, in the context of the Stroop task, to refer to the same concept, the term congruency, instead of 

compatibility, is used. Another key concept is the dimensional relevance, which concerns the degree to 

which the features of the stimulus are informative about the required response, which are defined as 

irrelevant when they are uninformative. Thus, relevant stimuli to which a participant is instructed to 

respond are distinguished from irrelevant ones, which should not be attended to but are usually difficult to 

ignore.  



 

33 

Combining dimensional overlap and dimensional relevance, Kornblum (1992) constructed a taxonomy to 

classify ensembles (i.e., the types of task) that produce compatibility effects, made of eight types of tasks 

characterized by increasing levels of dimensional overlap. At the first level, in the type-one ensemble, there 

is no dimensional overlap. At the opposite extreme, in the type-eight ensemble, there is dimensional 

overlap between all three task dimensions, namely, the relevant and irrelevant stimuli and the response 

dimensions. The color-word Stroop task is a typical example of this ensemble type, as there is dimensional 

overlap between i) the irrelevant stimulus and response dimensions, ii) the relevant stimulus and response 

dimensions, and iii) the relevant and irrelevant stimulus dimensions.  

According to this model, the response modality plays a key role in producing the Stroop effect, since the 

dimensional overlap between the stimulus and the response depends on this factor. Indeed, to produce 

interference/facilitation between stimulus and response, the type of response needs to overlap with the 

stimulus attributes. This implies that, in the color-word Stroop, naming (vocal) responses are needed to 

elicit interference/facilitation at the response level. Consistent with this, it has been shown that the color-

word Stroop effect is considerably reduced with manual as opposed to vocal response modality, confirming 

the influence of the stimulus-response overlap (e.g., Augustinova et al., 2019; MacLeod, 1991). 

Nevertheless, the role of response modality remains a frequently ignored methodological issue and, in the 

literature, color-word Stroop tasks requiring manual (keypress) responses are commonly used (e.g., 

Ambrosini et al., 2019; Kinoshita et al., 2017; Szűcs & Soltész, 2010; Toth et al., 2019; Vallesi et al., 2017). 

However, according to Kornblum’s taxonomy (Kornblum, 1992), they cannot be considered as type-eight 

ensembles, or Stroop tasks, due to the lack of dimensional overlap between stimulus and response. Indeed, 

in Kornblum’s taxonomy, verbal Stroop tasks that require manual responses are classified as type-four 

ensemble and are referred to as Stroop-like tasks.  

In the present work, the dimensional overlap model will be used along with the multiple loci account as 

benchmarks for evaluating the Stroop task methodology. In our opinion, both are useful for our purposes. 

This is because, while Kornblum’s account does not explicitly consider task conflict (but nonetheless all 

Type-eight ensembles necessarily have task conflict), which is, however, mandatory to yield the Stroop 

effect, his taxonomy offers a clear framework for assessing in more detail the completeness of Stroop 

stimuli, especially for what concerns the suitability of the stimuli to produce the effect at the level of 

response. Indeed, the dimensional overlap model posits that two dimensional overlaps are required to 

produce a complete effect at the response locus.  

2.2.4. Confounding factors 

In the previous section, we highlighted the methodological requirements for yielding a complete Stroop 

effect according to the multiple loci and dimensional overlap accounts, but they are not sufficient to ensure 
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a methodologically sound Stroop task. Indeed, even when they are all satisfied, other factors might 

negatively affect the methodological quality of a task and the validity of the obtained measures, that is, 

confounders not related to the Stroop effect might bias its estimation, and thus they need to be controlled 

to ensure its validity. Therefore, in a methodological scrutiny, care must be taken to verify whether the task 

design allows excluding such confounding factors.  

Among many possible confounders, one frequently encountered issue in the Stroop task literature 

regards the so-called priming or sequential effects, which refer to the fact that performance at the current 

trial (trial n) is influenced by the (partial or total) repetition of the characteristics of the preceding trial (trial 

n-1). Priming effects are also related to a conflict adaptation phenomenon, also known as the Gratton effect 

or the congruency sequence effect, which is commonly observed during the execution of the Stroop task. 

The Gratton effect refers to the fact that the congruency of the preceding trials influences the performance 

in the current one, with a Stroop effect that is smaller after incongruent trials and larger after congruent 

ones (Gratton et al., 1992; Kerns et al., 2004). Although it is generally recognized that conflict monitoring 

processes, mediated by a neural system including the anterior cingulate cortex and the lateral prefrontal 

cortex, are responsible for this phenomenon (e.g., Botvinick et al., 2001), some theories have provided 

alternative explanations for it. A detailed discussion of this effect is outside the scope of the present work, 

so the reader is referred to eminent works on this topic (e.g., Algom & Chajut, 2019; Algom et al., 2022; 

Schmidt, 2023). However, two main non-strategic explanations have been put forward to account for 

sequential effects, which both suggest that differences in RT between trial n-1 and trial n are not the result 

of cognitive control strategies, but exclusively an artifact of repetitions/alternations of either features or 

responses (Puccioni & Vallesi, 2012a, 2012b, 2012c). The former, known as the priming account, posits that 

the repetition of one or both stimulus features leads to facilitation effects, whereas the change of both 

features causes longer RTs (Mayr et al., 2003; Nieuwenhuis et al., 2006). The other explanation relies on the 

Theory of Event coding, which accounts for binding-type effects in object perception and action planning 

and proposes the existence of the so-called event files that temporally associate perceptual and action 

codes. During each Stroop trial, the stimulus and response features are linked in such event files. This gives 

rise to processing costs if in the next trial only some but not all features of such integrated codes are 

repeated, due to the need of file updating. Therefore, this theory predicts that performance is hampered if 

the feature match is only partial, a phenomenon known as the partial-repetition cost (Hommel, 2004; 

Hommel et al., 2004).  

Although these two accounts predict different effects on performance, they both agree on the fact that 

the number of shared features between two subsequent trials can influence the Stroop and congruency 

sequence effects, which would thus be biased or confounded by such repetitions. Therefore, to have 

unbiased estimates of  Stroop (and congruency sequence) effects, it is clearly necessary to design priming-
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free paradigms with a complete alternation in (at least) first-order trial sequences, that is, in the trial n both 

the relevant and irrelevant stimulus dimensions should be different as compared to the ones of trial n-14. 

However, this cannot be achieved by using fewer than four possible irrelevant stimulus features and 

responses (i.e., the relevant stimulus features). For example, in a classical Stroop task, at least four color 

words in (the same) four ink colors should be used. Specifically, with three possible stimuli/responses, a 

repetition of either feature must inevitably occur in first-order trial sequence of two incongruent trials in a 

row (because each incongruent trial requires using two different features). Even worse, when using only 

two possible features/responses, only congruent-congruent sequences can be repetition-free, whereas this 

is unfeasible for any first-order trial sequence including an incongruent trial. 

2.2.5. Methodological standards 

Throughout the entire work, thus, the tasks used in the studies we reviewed will be evaluated according 

to whether they are really suitable for measuring the Stroop effect as a whole (complete Stroop effect), as 

in the classical color-word Stroop task.  

To this aim, as necessary standards of methodologically adequate Stroop tasks, we will use: 

1) The multiple loci account for the Stroop effect to assess whether the obtained Stroop effect is 

comprehensive of the effects at the three processing loci detailed above; 

2) Kornblum’s model to better evaluate the stimulus- and response-related processing levels assumed 

by multiple loci accounts. Specifically, we assessed whether the stimuli and responses employed 

ensure both stimulus-stimulus and stimulus-response overlaps. 

Additionally, methodologically sound Stroop tasks should also employ experimental designs that allow 

controlling for confounding effects as much as possible (e.g., avoiding stimulus and response repetitions; 

see Section 2.4), to ensure measuring the Stroop effect with the necessary validity and reliability.  

The importance of setting shared methodological standards arises from the great heterogeneity in the 

Stroop task literature. Indeed, under this umbrella term, several methodologically different experimental 

paradigms are included. Therefore, this confusion does not allow correctly interpreting their results, which 

are often conflicting, probably also due to the fact that the tasks actually measure partially, or even totally, 

different effects. The goal of the present review is thus to encourage the use of rigorous methodological 

                                                           

4 It is here important to note that a complete alternation sequence at first-order trials (n-1) allows only to reduce 

binding and priming effects. Indeed, to completely exclude such effects, the repetition sequence of trials earlier than 
trial n-1 should be taken into account to completely exclude possible carryover effects.  
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criteria to design Stroop tasks, since starting from a common ground would allow having more adequate 

and valid Stroop effect measures. 

The great heterogeneity in the Stroop literature also presented us with the need to use a unique 

inclusion criterion when selecting the studies, that is, the fact that the authors of the reviewed studies 

defined the task they used as a Stroop task. This general criterion is fundamental for our purposes of 

showing that, although all the tasks in the included studies were called “Stroop task” by the authors, many 

of them did not yield a complete Stroop effect.  

2.3. Other Stroop tasks  

So far, we have been discussing some methodological aspects relevant to the Stroop task, specifically 

focusing on the color-word version. However, several alternative adaptations of the color-word Stroop task 

have been proposed. Thus, we will next present its most known and used variants, discussing them and 

specifically considering the implications ensuing the methodological aspects we reviewed above.  

2.3.1. The picture-word Stroop task 

The picture-word Stroop task, also known as picture-word interference task, is an alternative variant of 

the classical Stroop task. It typically consists of a word (distractor) printed inside a picture (target), which 

participants are asked to name (e.g., Arieh & Algom, 2002; Lupker, 1979; Rosinski et al., 1975)5. As such, 

conflict between task sets is usually present in this Stroop task category as in the classical Stroop task. 

Commonly, this Stroop variant is considered similar to the classical color-word Stroop task due to the 

presence of an asymmetry between words and pictures, that is, the interference is greater from word-to-

picture naming than from picture-to-word reading (MacLeod, 1991; Rosinski et al., 1975). However, 

whether the word-picture interference effect is analogous to the Stroop effect is still a debated issue, as 

some authors claimed that they are caused by the same mechanisms (e.g., van Maanen et al., 2009), while 

others argued for their difference, suggesting that the picture-word interference effect occurs only at the 

level of perceptual encoding (Dell’Acqua et al., 2007). It is probable that these controversial results are due 

to differences in task design, that is, some experimental manipulations make it conceptually similar to the 

classical Stroop task, whereas others generate other types of effects.  In what follows, we propose a 

distinction between the major experimental manipulations, proposing some specific labels which, in our 

                                                           

5 Other sub-variants of this task can also be used, such as those asking for categorization, that is, tasks requiring 

participants to identify the semantic category of the picture instead of naming it (e.g., Mayor et al., 1988). Picture-
word Stroop versions demanding for tasks other than naming are not discussed here because in our view they differ 
by nature from the classical Stroop tasks since they, for example, necessarily imply lower degrees of overlaps (e.g., 
considering the entire category and not a single item reduces the overlap between the relevant and irrelevant 
stimulus dimensions).  
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view, could help reduce such heterogeneity. We would like to remind the reader that our aim is not to delve 

into the extensive and intricate literature on the picture-word Stroop task. Rather, our objective is solely to 

select specific studies as examples of the main manipulation types to examine whether they ensure a 

complete Stroop effect according to the criteria discussed above. 

As outlined by Starreveld and La Heij (2017), semantic relevance, which is inversely related to the 

number of semantic categories from which the stimuli are selected, is important when comparing classical 

and picture-word Stroop tasks. Indeed, in the classical Stroop task, there is only one category, namely the 

color, whereas the number of semantic domains significantly varies across the existent picture-word 

interference experimental paradigms. This means that, when the picture-word Stroop task includes stimuli 

from the same semantic category, the produced effects can be equivalent or, at least, closer6 to the classical 

Stroop effect. Indeed, in this case, both congruent and incongruent conditions, analogous to the classical 

Stroop task, are possible: In congruent trials, the picture and the word refer to the same concept (e.g., the 

picture of a cat with the CAT word superimposed on it; see Figure 2.1A), whereas in incongruent trials, they 

belong to the same semantic category but refer to different concepts (e.g., the picture of a cat with the 

BIRD word superimposed on it, which refers to another exemplar of the same semantic category of animals; 

see Figure 2.1A), producing interference (e.g., Piai et al., 2013; van Maanen et al., 2009). As such, the 

picture-word Stroop effect, similar to the Stroop effect, can be calculated by comparing incongruent trials 

with congruent ones. For this reason, this version has been widely used in the literature investigating the 

Stroop effect. For example, Bugg and colleagues (2011) used a picture-word Stroop task in which words 

corresponding to one of four animal names were superimposed onto pictures of the same four possible 

referents. Thus, all stimuli belonged to the same semantic category (for a similar task, see also Gonthier et 

al., 2016). Moreover, usually in such picture-word Stroop tasks with a single semantic category, all task-

irrelevant stimuli are eligible responses in the experiment, which is typical in the classical Stroop tasks. 

Lastly, according to the dimensional overlap model, picture-word Stroop tasks with one semantic category 

are classifiable as type-eight ensembles, that is, a Stroop task. Indeed, they ensure not only both stimulus-

response overlaps, when using vocal responses, but also the stimulus-stimulus overlap because, although 

there are two spatially overlapped stimuli, they always have a non-negligible semantic relationship.   

For such a similarity, henceforth, we will specifically refer to this version of the task with the label 

picture-word Stroop task (see Figure 2.1A for an example), with the goal of distinguishing it from a 

conceptually different version, for which we will use the term picture-word interference task (Figure 2.1B). 

In the latter case, the task is the same, but the stimuli are taken from different semantic categories, and 

there are no congruent trials (i.e., trials in which the picture and the word both indicate the same concept), 

                                                           

6 In fact, it also depends on the size of the stimulus set, which is necessarily limited for the color-word Stroop task, 

whereas can be potentially unlimited for the picture-word Stroop task.  
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but only trials with different degrees of picture-word semantic similarity7. Therefore, in this case the 

picture-word interference effect reflects the slowing in picture naming latencies when the picture is 

displayed with a conceptually related (but different) word –for example, the picture of a cat with the BIRD 

word superimposed onto it (see Figure 2.1B)– relative to when the word is unrelated –for example, the 

picture of a table with the CAT word superimposed onto it (see Figure 2.1B) (e.g., van Maanen et al., 2009, 

Shao et al., 2015).  

The resulting picture-word interference effect was for long thought to originate during lexical access (the 

lexical selection by competition account, Roelofs, 1992; Vigliocco et al., 2004; see also the swinging lexical 

network account, Abdel Rahman and Melinger, 2009) or during other pre-response stages (i.e., perceptual 

encoding or activation of conceptual information, Dell’Acqua et al., 2007). So far the evidence is however 

scanty and contradictory (see Bürki et al., 2020 for a review). The underlying assumption is that when the 

task-irrelevant word is related to the target, its increased activation level yields competition for the lexical 

selection of the relevant picture, delaying its name retrieval during a naming task (e.g., Dell’Acqua et al., 

2007; Roelofs, 1992). However, according to an alternative view, the response exclusion account, the 

semantic interference effect arises during the response execution (Mahon et al., 2007) and, thus, after the 

lexical access. 

 Therefore, the picture-word interference task produces a semantic interference effect that does not 

correspond to the one yielded by the classical Stroop task, also due to its semantic nature. Indeed, the 

semantic effect reflects selective inhibition, which is recruited when several responses are highly 

coactivated as part of the same response set, but it does not necessarily depend on the presence of an 

overt distractor stimulus. Therefore, semantic interference could be more similar to a semantic blocking 

effect, since both reflect selective semantic inhibition, rather than an effect yielded by interference 

resolution from an irrelevant distractor, such as the Stroop effect (Shao et al., 2015).   

In addition to the difference in the underlying mechanism of the experimental effects we just discussed, 

two other main points have to be considered. First, in the picture-word interference task, the semantic 

relevance is lower compared to both the classical and the picture-word Stroop task because, to have 

unrelated trials, at least two semantic categories are typically used (e.g., objects and animals, as in Figure 

2.1B). Thus, this important component of the Stroop effect will be small or even absent if many stimuli 

taken from many different semantic categories are used (Starreveld & La Heij, 2017). The presence of 

                                                           

7 Nevertheless, in the literature, this distinction is not that clear. Indeed, some tasks can be placed in-between 

these two distinct forms. For example, Spinelli and colleagues (2019) used a paradigm that here we defined as picture-
word Stroop task but, like in picture-word interference tasks, they used more than one semantic category. Therefore, 
in congruent trials they had proper Stroop stimuli (the word and the picture both refer to the same concept), while in 
incongruent ones, in which the word was superimposed onto semantically unrelated pictures, the semantic relevance 
was necessarily lower.  
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several semantic categories also raises consequent issues related to the semantic gradient between the 

picture and the word, namely the semantic similarity between the picture and the word categories, which 

might be a confounding factor. 

 

Figure 2.1.  
A) Example of the picture-word Stroop stimuli. Participants respond to the picture while ignoring the 
superimposed word. In the congruent condition, both the task-relevant and task-irrelevant stimuli refer to 
“cat”), while in the incongruent conditions, the picture (task-relevant) refers to a different item compared to 
the word (task-irrelevant), but both belong to the same semantic category; B) Example of the picture-word 
interference stimuli. Participants name the picture, ignoring the superimposed word. In the unrelated 
condition, the task-relevant stimulus is not related to the task-irrelevant one, generating less interference, 
while in the related condition, the semantic relation between the picture (task-relevant) and the word (task-
irrelevant) produces interference.  

However, it is still controversial whether higher semantic similarity increases or decreases the 

experimental effect (Hutson & Damian, 2014), with some studies showing a greater effect for stimuli with 

greater semantic similarity (Vigliocco et al., 2004) and some others reporting the opposite pattern (Mahon 

et al., 2007). Therefore, it is not possible to choose semantic categories based on a reliable semantic 

gradient criterion to control for its confounding effect. A second fundamental difference is that the picture-

word interference task involves a lower degree of response-set membership, since usually not all irrelevant 

words are part of the response set (Starreveld & La Heij, 2017). These methodological differences 

notwithstanding, the picture-word interference task can be classified as a type-eight ensemble, since there 

are both the stimulus-response overlaps, if the responses are vocal, and the stimulus-stimulus overlap 

whose degree, however, depends on the degree of semantic relevance/similarity.  

Overall, if the aim is to investigate the Stroop effect, the picture-word Stroop task is preferable to the 

picture-word interference version, as the picture-word Stroop effect (congruent vs. incongruent) is a total 

Stroop effect as opposed to the picture-word interference effect (related vs. unrelated). However, although 
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this experimental paradigm has the advantage of allowing flexibility in the stimulus set selection and in the 

possible manipulations (e.g., MacLeod, 1991), there are some potential issues to consider, which depend 

specifically on its linguistic nature. In fact, these issues also regard the classical Stroop task but, since the 

picture-word Stroop task allows one to select a potentially infinite set of stimuli, the matter is even more 

relevant for it. First, the same issues described above for the picture-word interference task, related to the 

degree of semantic similarity between the picture and the word, still apply to the picture-word Stroop task. 

However, this aspect is usually not explicitly controlled for in existing studies. Moreover, even if the vast 

majority of picture-word Stroop studies have focused on words belonging to the same category and sharing 

semantic features, many types of semantic relations affect word processing (e.g., De Deyne et al., 2019; 

Montefinese & Vinson, 2015), but their impact on picture-word Stroop effects is far from clear. For example, 

the few picture-word interference studies that have manipulated thematically and associatively related 

words (i.e., linked by a common situation or thematic context, but belonging to different semantic 

categories; e.g., the words COW and PASTURE), found no effect or even a naming facilitation (Abdel Rahman 

& Melinger, 2007; Alario et al., 2000; Costa et al., 2005; de Zubicaray et al., 2013), in contrast to the 

semantic interference effect robustly observed for categorically related words (e.g., the words COW and 

RAT), in which semantic similarity is usually derived from a feature production task (McRae et al., 2005; 

Montefinese et al., 2013).  

Moreover, although semantic manipulations have the greatest influence on the Stroop effect, it can also 

be influenced by phonemic, graphemic, orthographic, and lexical factors. In fact, the orthographic and 

phonological aspects of the task-irrelevant stimuli and their relation with the task-relevant ones contribute 

to the Stroop effect (MacLeod, 1991). Therefore, if such linguistic components are not taken into account 

and balanced or controlled for when designing a picture-word Stroop task (which is a daunting task, due to 

the very complex interrelations between them), they might influence the magnitude of the Stroop effect. 

Moreover, the use of linguistic stimuli makes it very hard to adapt these tasks (and all the linguistic variants 

of the Stroop task) to different languages and, therefore, to generalize conclusions drawn from studies 

employing them. 

2.3.2. The numerical Stroop task  

In the numerical Stroop task (see Figure 2.2A), firstly ideated by Henik and Tzelgov (1982), participants 

are presented with two Arabic digits, both of which are characterized by two dimensions: a physical one, 

namely font size, and a semantic one, namely numerical magnitude. The typical finding is that participants 

respond faster to numerically larger numerals appearing in a larger font size and to numerically smaller 

numerals appearing in a smaller font size (congruent trials) as compared to smaller numerals printed in a 

larger font size and to larger numerals printed in a smaller font size (incongruent trials), a phenomenon 
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known as size congruity effect (SCE; Henik & Tzelgov, 1982). Findings regarding the asymmetry direction are 

mixed, as a congruency effect has been observed for both physical and numerical judgments. Indeed, it is 

commonly found that physical judgments are affected by task-irrelevant numerical distance, suggesting that 

numbers have a greater intrusive effect on size judgments than vice versa (Dadon & Henik, 2017). However, 

also numerical judgments have been shown to be influenced by task-irrelevant physical size (Borgmann et 

al., 2011). The fact that the SCE can be reversed has been accounted for in some works, which highlighted 

that the direction of the SCE asymmetry strongly relies on the discriminability of the dimensions and the 

number of employed values. Therefore, the greater intrusive strength of numbers would occur because 

commonly a higher amount of number values is presented (e.g., nine values: from 1 to 9), against few 

options of physical sizes (e.g., two: large vs. small). As mentioned earlier, since it is not our intention to 

delve into these controversies, we refer the reader to more specific works on this topic (e.g., see Algom et 

al., 1996; Pansky & Algom, 2002).  

Therefore, moving beyond the issue of the asymmetry of the effect and its direction, the numerical 

Stroop task generally entails conflict between two different tasks, namely physical and semantic judgments. 

What is less certain is whether the dimensional overlaps at the other processing loci, namely stimulus and 

response ones, are ensured by numerical Stroop paradigms. According to Kornblum’s model, this task 

enables a dimensional overlap between the relevant and irrelevant stimulus dimensions. However, the 

stimulus attributes are relative and not absolute values, as they depend on the comparison between two 

different digit stimuli. Moreover, the so-called symbolic distance effect implies that the judgment speed is 

influenced by the numerical difference between the two numbers, with faster responses to larger 

differences (e.g., Tzelgov et al., 1992).  

This potential reduction in stimulus-stimulus overlap is overcome by another Stroop adaptation that 

employs numbers as stimuli, the so-called counting Stroop task (Windes, 1968) (see Figure 2.2B). The 

counting Stroop task typically consists of presenting numerals (e.g., 1, 2, and 3) in groups of different 

quantities (e.g., one, two, or three numerals). Participants are required to name the quantity of the 

numerals, while ignoring their value. The counting Stroop effect arises because, in incongruent trials, where 

the numeral and quantity do not match (e.g., three 2s are presented, see Figure 2.2B), the response 

latencies are longer compared to congruent trials, where the numeral and quantity match (e.g., two 2s are 

presented, see Figure 2.2B). This alternative version ensures not only an asymmetry effect, as naming the 

quantities of numerals is generally slower than naming the numerals (at least when their perceptual 

saliency is similar), but also a stimulus-stimulus overlap that more closely resembles the classical Stroop 

task one.  

On the other hand, the presence of a stimulus-response overlap in both the numerical and the counting 

Stroop tasks deserves some specification. First, only the counting Stroop task is suitable for vocal responses. 
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When this response modality is used, despite the non-linguistic nature of the task, a stimulus-response 

overlap is ensured. Indeed, according to the Triple Code Model (TCM) of numerical cognition, numbers have 

three representational codes, namely Arabic, verbal, and analogical magnitude codes (Dehaene, 1992). 

Thus, in the counting Stroop task, the verbal code of the response overlaps with the codes of both stimulus 

attributes, namely, the relevant one referring to the magnitude code and the irrelevant one referring to the 

Arabic code.  

Alternatively, manual responses can be used in both tasks, that is, in the counting Stroop participants 

can be instructed to use the corresponding keypress responses (e.g., pressing the 1 vs. 2 vs. 3 keyboard 

buttons to the corresponding numerical quantity), whereas in the numerical Stroop they can provide 

lateralized manual responses (e.g., left vs. right button press to smaller vs. larger numerical magnitude). 

Apparently, according to Korblum’s view, no stimulus-response overlap can be achieved when using manual 

responses, as in the counting Stroop there is no relation between the keypress buttons and either the 

numeral or the quantity, and in the numerical Stroop neither the physical size nor the numerical magnitude 

ensure such a relation. Nevertheless, in both tasks, the response might overlap with the stimulus if the 

response is considered to be compatible with the mental representation of magnitudes and numbers, based 

on the literature pointing out an association between space and numbers. Specifically, according to the 

Spatial-Numerical Association of Response Codes (SNARC) effect put forward by Dehaene and colleagues 

(1993), numerals are encoded and converted into magnitude representations and such magnitude 

information is organized spatially, for example, as a mental number line, with smaller numbers on the left 

and larger numbers on the right (e.g., Montefinese & Semenza, 2018; Winter et al., 2015). Therefore, there 

would be a preferential stimulus-response association between smaller magnitudes and left-side responses 

and larger magnitudes and right-side responses (e.g., Dehaene et al., 1993). Therefore, if the response keys 

are spatially arranged consistently with the mental number line and/or lateralized to distinguish between 

smaller and larger magnitudes, the stimulus-response overlap would be warranted. However, such SNARC-

related overlap might be weaker than the classical Stroop overlap and not universal, since it may be 

affected by cultural factors (i.e., the direction of reading and writing; see Dehaene et al., 1993; Zebian, 

2005; also see Vallesi et al., 2014, for an analogue phenomenon in the spatio-temporal domain). It is also 

worth mentioning that a recent registered replication report (Colling et al., 2020) failed to replicate the 

attentional SNARC effect (Fischer et al., 2003), questioning the strong link between numbers and space. 

In general, numerical and counting Stroop tasks could be advantageous for studying cognitive control 

from a more ecological and flexible point of view (Dadon & Henik, 2017) and to reduce the influence of 

linguistic factors while still ensuring task conflict. However, they also present some drawbacks, especially 

the numerical Stroop task. In fact, the counting Stroop task is a type-eight ensemble regardless of the 

SNARC-related interpretation, whereas the numerical one strongly relies on the SNARC to be considered as 
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a Stroop task ensuring a stimulus-response overlap. Moreover, the experimental effects elicited by the 

numerical Stroop task might be affected by non-specific factors, such as the comparison time and the 

symbolic distance, making its measure less pure and threatening its measurement validity.  

 

Figure 2.2.  
A) Example of the numerical Stroop stimuli. Participants identify the numerically larger digit, while ignoring 
its physical size. In the congruent condition, the numerically larger digit is also physically bigger, whereas in 
the incongruent condition, the magnitude (task-relevant) is in contrast with the digit size (task-irrelevant);  
B) Example of the counting Stroop stimuli. Participants indicate how many digits are displayed, ignoring the 
digit value. In the congruent condition, the digit quantity and the digit value are the same, while in the 
incongruent condition, the digit quantity (task-relevant) differs from the digit value (task-irrelevant).   

In general, numerical and counting Stroop tasks could be advantageous for studying cognitive control 

from a more ecological and flexible point of view (Dadon & Henik, 2017) and to reduce the influence of 

linguistic factors while still ensuring task conflict. However, they also present some drawbacks, especially 

the numerical Stroop task. In fact, the counting Stroop task is a type-eight ensemble regardless of the 

SNARC-related interpretation, whereas the numerical one strongly relies on the SNARC to be considered as 

a Stroop task ensuring a stimulus-response overlap. Moreover, the experimental effects elicited by the 

numerical Stroop task might be affected by non-specific factors, such as the comparison time and the 

symbolic distance, making its measure less pure and threatening its measurement validity.  

2.3.3. The emotional Stroop task 

The emotional Stroop task (McKenna, 1986; Williams et al., 1996) (see Figure 2.3) has been developed to 

examine attentional bias to emotional stimuli (Kappes & Bermeitinger, 2016). It requires participants to 

name the ink color of words, which can be either emotionally charged (e.g., the word DEATH), usually 

operationalized in terms of valence (i.e., the degree of pleasantness an individual feels toward a stimulus), 

or neutral (e.g., the word BOOK). In this task version, the interference effect is computed by subtracting the 
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RTs to identify the color of neutral words from those to name the color of emotional words, also referred to 

as the emotional Stroop effect (e.g., Cothran & Larsen, 2008; Larsen et al., 2006). The underlying 

assumption is that the emotional content of the word interferes with color naming, causing longer RTs in 

identifying the color of emotional words compared to neutral ones (Wentura et al., 2000). This is again 

based on the assumption that, when participants are presented with isolated words, they cannot ignore 

their semantic meaning because they automatically access it (Larsen et al., 2006). Therefore, like in the 

color-word Stroop task, in the emotional Stroop task there is a task conflict between the stronger word 

reading and the less strong color naming (Cothran et al., 2012).  

 

Figure 2.3.  
Example of the emotional Stroop stimuli: Participants are requested to name the ink color, while ignoring 
the word meaning. In the neutral condition, the word has a neutral meaning, while in the emotional 
condition, the word is emotionally charged but task-irrelevant.    

Still, the emotional Stroop task fundamentally differs from the classical Stroop task for several reasons. 

First, it lacks one of its fundamental properties, that is, the semantic relation between the relevant and 

irrelevant dimensions. More in detail, in the classic version of the Stroop task, the shared meaning of the 

compound stimuli allows manipulating the semantic congruency between such dimensions. In contrast, in 

the emotional Stroop task, there is no semantic or logical relationship between the relevant feature, namely 

the ink color, and the irrelevant feature, namely the emotional meaning of the word. This prevents 

generating congruent and incongruent trials and, consequently, the classical Stroop effect cannot be 

calculated (Algom et al., 2004; Cothran et al., 2012). The lack of semantic relationship between stimulus 

dimensions also entails no response-set membership because emotional words can never be part of the 

response set, thus no response conflict/facilitation can be produced.  

Another critical aspect of the emotional Stroop task is the absence of lexical equivalence among 

emotional and neutral words. This represents a crucial difference from the color-word Stroop task, in which 

each word is presented in both congruent and incongruent conditions, causing an important 

methodological drawback. As such, Larsen and coworkers (2006) pointed out that the emotional Stroop is a 

quasi-experimental paradigm, because it does not allow having proper control conditions, as emotional 

words necessarily differ from control neutral words. Related to this point, there is still another difference 

from the classical Stroop task. Indeed, while in the classical paradigm the experimental effect can be 
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calculated at the item level (i.e., for every color word), in the emotional version, it can be measured only at 

the list-wide level: the absence of congruent and incongruent conditions allows only to compare mean RTs 

in naming the color of the emotional vs. neutral word lists (Algom et al., 2004; Larsen et al., 2006). Thus, the 

slowing of responses to emotional stimuli does not reflect a Stroop-like effect, but it could simply reflect a 

generic slowing to emotional stimuli. Specifically, Algom and colleagues (2004) argued for an automatic 

vigilance account for such an effect, showing that longer RTs to threat-related stimuli are not specific to the 

emotional Stroop task requiring ink color naming, but can be observed also in other tasks such as lexical 

decision tasks, reading speed, and word naming.  

Finally, the emotional Stroop task does not allow controlling for possible confounding factors due to the 

linguistic nature of the stimuli. Indeed, what we highlighted regarding the potential role of confounding 

linguistic effects in the picture-word Stroop task also applies to the emotional Stroop task. Indeed, the 

emotional interference effect could also be affected by semantic, lexical, orthographic, or phonological 

factors, whose effect might be difficult to balance or control for. These aspects are more relevant for this 

task, compared to the color-word Stroop task, not only because it usually employs a much larger set of 

stimuli, but especially for the well-known differences that exist between emotional and neutral words, such 

as the fact that words with affective content generally are longer and have a smaller number of 

orthographic neighbors than the neutral ones (Larsen et al., 2006; see also Montefinese et al., 2013). 

Recently, in a multi-experiment study, Crossfield and Damian (2021) addressed this issue by matching 

neutral and emotionally-valenced words for a number of lexico-semantic variables in an emotional Stroop 

task. The authors observed that the participants’ performance was mostly affected by semantic variables 

such as the word semantic diversity (i.e., a computationally derived measure of semantic ambiguity based 

on the variability of the different contexts in which a given word is used; Hoffman et al., 2013) and 

concreteness (i.e., the extent to which a word is related to sensorial experience), but also the word arousal 

(i.e., the degree of excitement or activation an individual feels toward a given stimulus, varying from calm to 

exciting). These results contribute to the longstanding debate on whether valence or arousal alone can 

produce the emotional Stroop effect. Moreover, they suggest that the valence effect is not powerful enough 

to generate the emotional Stroop effect by itself once other confounding variables are taken into account. 

From Kornblum's model point of view, the lack of conceptual similarity between the relevant and 

irrelevant dimensions also implies the absence of a stimulus-stimulus overlap. Moreover, this task does not 

ensure any dimensional overlap between the irrelevant characteristic of the stimulus and the response, as 

neither vocal nor manual responses can overlap with the emotional meaning of the word. Therefore, the 

emotional Stroop is not even classifiable as a Stroop-like task.  

In addition to the classical emotional Stroop variation, face-word Stroop tasks have been used in the 

literature as alternative emotional adaptations. Specifically, participants are presented with emotional 
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words superimposed on faces whose emotional valence can be either congruent or incongruent with the 

word (e.g., the word HAPPY superimposed onto a face that expresses either happiness or sadness, 

respectively; Song et al., 2017). Since this experimental paradigm is an emotional form of the picture-word 

Stroop task, it suffers from the same issues as described above for that task, namely those related to lexical 

and semantic factors. Moreover, according to the dimensional overlap model, face-word Stroop tasks 

cannot be classified as type-eight ensembles because, although they ensure a stimulus-stimulus overlap, 

since the task-relevant and task-irrelevant stimuli have a relationship based on the presence vs. absence of 

emotion, they can never have a complete stimulus-response overlap, because there is no face-response 

overlap, regardless of the type of responses used, that is, not even when vocal responses are used 

(assuming that emotion recognition does not necessarily activate lexical processing).  

Overall, both versions of the emotional Stroop task are thus methodologically incomparable with the 

classical Stroop task. However, if the specific aim is to explore the effect of emotions on Stroop effect 

resolution, alternative emotional adaptations of the Stroop task may exist, such as the emotional priming 

Stroop task, in which an emotional vs. non-emotional prime stimulus is presented prior to a classical Stroop 

target stimulus. Recently, this experimental paradigm has allowed us to investigate how emotional 

processing affects conflict resolution, comparing neutral vs. sad face stimuli (see Visalli et al., 2022, for 

further details). This task represents a better alternative as compared to the other emotional Stroop tasks 

because, while the embedded Stroop task ensures all the required conflict types, including all the 

dimensional overlaps, it also allows exploring the influence of priming task-irrelevant emotional stimuli on 

the conflict/facilitation arising immediately after. The emotional priming Stroop task also overcomes 

another limitation of the emotional Stroop variants, namely lexical and semantic confounds, for example, by 

using faces or images as emotional priming stimuli, as in our recent study (Visalli et al., 2022). 

2.3.4. Other Stroop tasks: conclusions 

Taken together, it seems that the majority of the most known Stroop task variations present some 

theoretical and methodological issues, since they do not fulfill the criteria for yielding a Stroop effect 

comprehensive of the three required loci-related effects and/or are susceptible to potential confounding 

issues. Specifically, while it seems that the emotional Stroop and picture-word interference tasks tap on 

mechanisms that are different from the color-word Stroop task, this is not true for the other Stroop 

adaptations. In fact, the picture-word Stroop task entails both stimulus- and response-related 

interference/facilitation, as well as task interference, and has all the required overlaps, but the use of 

linguistic stimuli that are not only colors increases the possibility that confounding factors, such as the 

semantic gradient, influence the Stroop effect. This limitation can be overcome by the counting and 

numerical Stroop tasks, but their Stroop effect, in turn, might be affected by symbolic distance. Moreover, 
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these tasks, especially the numerical Stroop one, have a SNARC-related stimulus-response overlap. Hence, 

although these alternative versions have some advantages for specific research topics, using the label 

“Stroop task” for them is, in some cases, inappropriate from a methodological point of view, as the 

experimental effects they produce rely on totally or partially different mechanisms. Moreover, even those 

alternative versions that ensure a complete Stroop effect have some drawbacks that potentially affect it and 

are difficult to control.  

Since our aim is to highlight the importance of methodological rigor when designing Stroop tasks to 

ensure complete Stroop effects with the required measurement validity, the previously discussed 

alternative versions seem less adequate. For this reason, here we propose the spatial Stroop task as an 

alternative Stroop adaptation that potentially meets the required criteria and overcomes the drawbacks of 

the other versions. In the next section, we discuss this task in more detail, highlighting why it might be 

preferable compared to the other task versions reviewed above.   

2.3.5. The spatial Stroop task  

The spatial Stroop task explores the interference/facilitation produced by irrelevant spatial information. 

Typically, verbal or symbolic stimuli are used to combine a semantic attribute indicating a spatial location 

with an attribute designating a physical position. As in the classical version, the stimuli can be either 

congruent or incongruent, depending on whether the physical position corresponds or not with the 

semantic attribute, producing interference in the second case (see Lu & Proctor, 1995, for an overview). For 

example, when a location word (i.e., LEFT, the semantic attribute) is presented in an incongruent physical 

position (i.e., right), RTs are longer compared to congruent conditions (i.e., LEFT presented at the left 

location) (Pang et al., 2020). From this general definition, it can be noticed that the term spatial Stroop does 

not necessarily refer to a purely spatial version of the Stroop task, as sometimes verbal stimuli, despite 

referring to spatial attributes, are employed. However, purely spatial versions of this task can be designed, 

for example, by replacing location words with non-verbal semantic attributes, such as arrows. Later in this 

section we will provide some examples of pure spatial Stroop versions, and we will discuss why such pure 

variants are preferable.  

Before that, we will point out why, potentially, the spatial Stroop task can be considered as a 

methodologically valid alternative version of the Stroop task. To this end, we will use as an example a simple 

version of a purely spatial paradigm, wherein participants use right-left keypresses to respond to the 

direction of an arrow (i.e., right- vs. left-pointing) while ignoring the position on the screen where it appears 

(i.e., in the right or in the left side of the screen). The arrow direction is the relevant information, whereas 

its position is the irrelevant one. This task works exactly as the classical Stroop task, as it also entails an 

asymmetric relation between the stimulus dimensions (Lu & Proctor, 1995) and yields a conflict between 



48 

two competing task sets. Indeed, it is assumed that the position of a visual stimulus is processed more 

strongly than its other visual characteristics, such as the pointing direction of an arrow (Viviani et al., 2023). 

In addition to task conflict, this task entails both stimulus- and response-related conflicts/facilitations and, 

according to Kornblum’s dimensional overlap model, it can be classified as a type-eight ensemble. The three 

overlaps are indeed all present and, specifically, they can be observed between: (i) the relevant stimulus 

attribute (direction) and the irrelevant one (position), (ii) the relevant stimulus attribute and the response 

dimensions, and (iii) the irrelevant stimulus attribute and the response dimensions8. The presence of a 

dimensional overlap between the stimulus dimensions and the response, namely the last two criteria, is 

strictly related to the response modality, as discussed above. Indeed, to obtain stimulus-response 

compatibility, responses need to overlap with irrelevant and relevant stimulus attributes. In purely spatial 

Stroop versions, as in the case of our example, the spatial arrangement of the keypress responses overlaps 

with each stimulus dimension due to the spatial nature of both the relevant and irrelevant stimulus 

attributes. By contrast, had the task been designed with vocal responses, or even with non-overlapping 

manual responses, such overlap would not have been possible.  

Overall, the possibility of obtaining a complete Stroop effect with the spatial Stroop task suggests that it 

represents a valid adaptation of the classical paradigm. Besides being methodologically similar, the spatial 

Stroop version offers some advantages over the classical vocal Stroop task. The three main advantages are: 

(i) it does not rely on linguistic processing, as discussed above, (ii) the spatial nature of the stimuli might 

foster a more domain-general investigation of cognitive control, minimizing the confounding role of 

linguistic demands, and (iii) it requires manual responses, which are less prone to assessment errors and 

more suitable for neuroimaging and online studies than verbal responses (for a more detailed discussion, 

see Viviani et al., 2023).  

Taken together, these advantages are related to the fact that the classical Stroop is in general more 

complex and prone to confounding. Indeed, as discussed above, due to its linguistic nature, the produced 

interference/facilitation effects might be influenced not only by the semantic relationship between the 

relevant and irrelevant dimensions, but also by a number of other linguistic variables, which are related to 

each other in such a complex way that it is very hard to control for them appropriately. Moreover, as we 

have already mentioned, the use of linguistic materials makes it harder to adapt these variants to other 

                                                           

8 According to Kornblum’s taxonomy, for spatial Stroop tasks employing only spatial stimuli to obtain a type-eight 

ensemble, responses must be manual (to ensure the overlap between the irrelevant dimension and the response). 
Therefore, the spatial Stroop effect inevitably includes the Simon effect (representing a type-three ensemble, thus 
lower in the hierarchy of overlaps), but this does not mean that the Stroop effect is made less pure by the effect of 
lateralized responses. Rather, lateralized responses are fundamental to ensure the required stimulus-response 
overlaps and, when responses to spatial stimuli are made vocally, only type-four ensembles and Stroop-like tasks are 
obtained. It is also important to note that type-eight-ensemble spatial Stroop tasks also inevitably include the Flanker 
effect (representing a type-four ensemble), which derives from the required stimulus-stimulus overlap.  



 

49 

languages and limits the generalizability of the obtained results and conclusions. For these reasons, the 

spatial variant represents a valid alternative to bypass these potential drawbacks.  

However, it is worthwhile noting that these advantages hold specifically for purely spatial paradigms 

because they are the only adaptations in which a complete Stroop effect can be elicited. Indeed, in spatial 

Stroop paradigms comprising both verbal and spatial stimuli, the choice of response modality is more 

problematic, since there is evidence suggesting that keypress responses to word meaning are affected by 

irrelevant stimulus position, whereas the interference is much smaller in the opposite direction; moreover, 

vocal responses to location are influenced by irrelevant word meaning, but not vice versa (Lu & Proctor, 

1995). However, notwithstanding the correct response modality being employed, in the mixed versions, the 

dimensional overlap is necessarily limited to either relevant stimulus and response or irrelevant stimulus 

and response dimensions, whereas both these overlaps are not simultaneously achievable. Moreover, 

spatial paradigms with verbal stimuli do not allow a complete reduction of the involvement of linguistic 

processing, with the consequent limitations outlined above.  

In the next section, we shall present an overview of the spatial Stroop tasks that have been used in the 

literature. Of note, our work does not intend to be a systematic review of the literature on the spatial 

Stroop task, but has the explicit aim of focusing on the methodology of these paradigms. For this reason, we 

will not discuss the results of such studies in detail.  

2.4. The spatial Stroop task in the literature  

Our search for spatial Stroop studies showed that there is a great variety of task versions, as a plethora 

of stimulus types and manipulations have been used. Hence, to make our discussion more systematic, we 

will distinguish three categories among which, in our view, only the third one has the potential to yield a 

complete spatial Stroop effect: position-word, arrow-word, and arrow-position tasks.  

2.4.1. Position-word spatial Stroop tasks  

In position-word tasks, words designating spatial locations are displayed in congruent or incongruent 

positions on the screen (see Figure 2.4A). It is noteworthy that in the literature words and positions are 

usually both considered to be processed in an equally strong way (at least when their perceptual saliency is 

kept similar). Therefore, when using them together, an asymmetry effect seems less likely as, at least in 

principle, none of the two tasks appears obviously stronger than the other. The lack of such an asymmetry 

can be noticed in the studies we will discuss, as some require word reading, while others position naming. 

Of note, being typically equal the strength of these two tasks, the spatial Stroop effects might also be driven 

by the effect of discriminability (as discussed above and as predicted by Algom & Chajut, 2019). 
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Some of the first studies using the spatial Stroop belong to this category, such as the one conducted by 

White (1969), in which the words NORTH, SOUTH, EAST, and WEST could appear in one of these four 

positions, and participants had to vocally indicate the position of the word, while ignoring its meaning. 

Therefore, besides the stimulus-related effects due to the stimulus-stimulus overlap and the task-related 

conflict, this task has an irrelevant stimulus-response overlap but not a relevant stimulus-response overlap; 

thus, it still does not produce full response-related effects.  

In a more recent study, Luo and Proctor (2013) designed three spatial Stroop paradigms, all of which had 

in common that both relevant and irrelevant stimulus dimensions referred to “up” or “down” attributes, 

and participants were instructed to respond using bimanual right-left keypresses to ensure that responses 

were orthogonal to the relevant stimulus dimension. In Experiment 1, they presented the Chinese 

characters for UP and DOWN, appearing above or below on the screen. Participants were first asked to 

respond to the word and, in a second session, to respond to its location. Overall, regardless of their type, 

the stimuli did not overlap with the response, thus hindering any conflict/facilitation emergence at the level 

of response. However, both task conflict and stimulus-stimulus overlap were ensured. The other task 

variations used in that study (Luo & Proctor, 2013) will be discussed in the arrow-word spatial Stroop task 

section. 

In Hilbert and colleagues' study (2014), participants were presented with four squares in the upper, 

lower, right, or left portions of the screen. The German words for UP, DOWN, RIGHT, and LEFT appeared 

within one of these four squares and participants were instructed to respond to the square position 

independently of the word meaning. All participants performed both an analog version of the task, in which 

they responded verbally, and a digital version, wherein they used four spatially arranged keypresses as the 

four locations. Therefore, in the analog version, the relevant stimulus did not overlap with the response, 

whereas in the digital version, the irrelevant stimulus did not overlap with the response. Thus, in neither 

case, conflict/facilitation effects at the level of response locus could be ensured. Nevertheless, the resultant 

Stroop effect included conflict at the task level and stimulus-related interference/facilitation. 

Pickel and colleagues (2019) presented participants with the same four direction words (UP, DOWN, 

RIGHT, LEFT), but they could appear only in two possible locations, each obtained from a mix between two 

physical positions in space (upper right or lower left). Button presses were used for responses to word 

meaning, thus allowing an overlap only between the irrelevant stimulus and the response. Moreover, this 

paradigm had a lower degree of overlap between relevant and irrelevant stimulus dimensions, because 

there were four relevant stimuli but only two irrelevant dimensions, not ensuring full experimental effects 

at the stimulus level. Thus, in this study, the Stroop effect was driven mainly by the task conflict. 
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Figure 2.4.  
A) Example of the position-word spatial Stroop stimuli. Participants identify the physical position on the 
screen of a word designating a spatial location (i.e., LEFT word). In the congruent condition, the spatial 
location word is presented in the same physical position it denotes, whereas in the incongruent condition, 
the spatial location word (task-relevant) is in contrast with the physical position (task-irrelevant) where it 
appears. The task can also be reversed, that is, participants name the physical position of the word, ignoring 
its meaning. In this case, the task-relevant feature is the physical position, whereas the task-irrelevant 
feature is the spatial location designated by the word. B) Example of the arrow-word spatial Stroop stimuli. 
Participants name the direction of the arrow (i.e., left), ignoring the meaning of the spatial word printed 
inside. In the congruent condition, the arrow points toward the same spatial position designated by the 
word, whereas in the incongruent condition, the arrow direction (task-relevant) is in contrast with the 
spatial location denoted by the word. The task can also be reversed. C) Example of the arrow-position 
spatial Stroop stimuli. Participants identify the direction pointed by the arrow (i.e., left), ignoring the 
position where the arrow appears. In the congruent condition, the arrow points to the same direction as its 
physical position, whereas in the incongruent condition, the arrow direction (task-relevant) is in contrast 
with its physical position (task-irrelevant).  

One last example of this category is the study conducted by Schneider (2020), who designed two 

position-word spatial Stroop tasks. One required participants to respond to the words RIGHT and LEFT, 

appearing on the right or left of the fixation, while the other required participants to respond to the words 

UP and DOWN, positioned above or below the fixation. Notably, in both paradigms, responses were 

bimanual and were made by pressing spatially compatible keys, ensuring also an irrelevant stimulus-

response overlap. Thus, the effect of conflict/facilitation was produced at the stimulus locus but not 

completely at the response locus, missing the relevant stimulus-response overlap. Although task conflict 
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was also ensured, this paradigm did not produce a complete Stroop effect, besides not being priming-free 

as only two stimuli were employed (i.e., feature repetitions could not be avoided).  

2.4.2. Arrow-word spatial Stroop tasks  

Arrow-word tasks entail presenting words referring to directions, embedded in or flanked by arrows (see 

Figure 2.4B). Differently from position-word arrow Stroop tasks, an asymmetrical relation is possible, as 

word reading may be conceivably assumed to be stronger than direction identification. Despite that, in the 

following studies, word reading was not always a task-irrelevant process, and this could be interesting for 

further investigating the actual existence of such an asymmetry.  

One of the first examples is the study conducted by Shor (1970), in which the word names of directions 

(UP, DOWN, RIGHT, LEFT) were embedded in arrows pointing to these four directions. The task was first to 

name the arrow direction and then to read the words, guaranteeing in both cases a conflict between task 

sets. The asymmetry was confirmed, as the naming of arrow directions was slower than the reading of 

words. Furthermore, this task design ensured the experimental effects at the stimulus locus, thanks to the 

stimulus-stimulus overlap, but not at the response locus, as the stimulus-response overlap was not 

complete and depended on the task at hand (i.e., when the task was direction naming, there was an overlap 

between the irrelevant stimulus and the response, and when the task was word reading, there was an 

overlap between the relevant stimulus and the response).  

Luo and Proctor's (2013) study, which was already introduced in the position-word spatial Stroop task 

section, included two more experiments, wherein the same direction words (Chinese words for UP and 

DOWN) were either embedded in an up- or down-pointing arrow (Experiment 2) or flanked by an up- or 

down-pointing arrow (Experiment 3). Participants again underwent two sessions, responding to the 

direction word and then to the arrow direction. The major drawback of these two tasks was the same as the 

position-word one, that is, the total absence of response-related conflict/facilitation, as there was no 

stimulus-response overlap, due to the orthogonality of the right-left keypress responses.  

A very similar study was conducted by Pang and coworkers (2020). To investigate global precedence, 

they presented participants with Chinese characters (UP, DOWN) embedded in up- or down-pointing arrows 

and asked them to respond to the character meaning or to the arrow direction by means of right-left 

keypress responses. In a second experiment, they reversed the stimuli, embedding the arrows in the 

Chinese characters. Again, according to our view, the Stroop effect was not complete, as by lacking stimulus-

response overlap, it did not ensure producing experimental effects at the response locus. 
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2.4.3. Arrow-position spatial Stroop tasks  

In arrow-position tasks, participants are instructed to respond to the direction of an arrow regardless of 

its position on the screen (e.g., Pires et al., 2018; see Figure 2.4C). In this task, there is an asymmetry 

between position and direction, as the former task is stronger than the latter.  

This variant was used by Funes and coworkers (2007) in a paradigm combining a spatial Stroop task with 

spatial cueing. The spatial Stroop paradigm consisted of responding to the direction of right-/left-pointing 

arrows appearing either at the right or at the left of a fixation cross. Among the several experimental 

manipulations, of interest here is the one regarding response compatibility. More in detail, keypress 

responses were spatially compatible (e.g., left key for left direction) or incompatible, when the opposite 

response mapping was used. According to Kornblum’s model, only the former case ensures stimulus-

response overlap, since the spatial arrangement of the response keys was compatible with the arrow 

directions and, as a consequence, full response-related effects were generated. In contrast, when the 

response keys were incompatible, there was no overlap between stimulus and response and no effects at 

the response locus. In both cases, both task conflict and stimulus-related conflict/facilitation were 

guaranteed, but priming effects could not be ruled out.  

Luo and colleagues (2010) presented up-/down-pointing arrows positioned along the vertical axis and 

used bimanual right-left keys for responses. Although their aim was to have a pure measure of the Stroop 

effect, the response key spatial arrangement did not allow for a stimulus-response overlap, and 

consequently a complete Stroop effect, since it ensured only task conflict and stimulus-related 

conflict/facilitation.  

In Pires and colleagues' (2018) study, participants responded to right-left arrow directions, appearing in 

one of two lateral boxes (on the right or left of a central box). Responses were made using bimanual right-

left button presses. Therefore, according to our methodological criteria, this paradigm produced a Stroop 

effect comprehensive of all required loci: task conflict, stimulus-related effects due to stimulus-stimulus 

overlap, and response-related effects due to stimulus-response overlaps. However, the use of only two 

characteristics makes it vulnerable to priming effects.  

In a very recent study, Paap and colleagues (2020) used two versions of the spatial Stroop. The first 

version was a horizontal arrow Stroop task, with right and left arrows displayed on the right or left of the 

fixation, whereas the second one was a vertical arrow Stroop task, with up and down arrows presented 

either above or below the fixation. During both tasks, participants were instructed to respond to the 

direction of the arrow, using bimanual right-left keypress responses and ignoring position, generating task-

related conflict. As highlighted by the authors, the horizontal task ensured both stimulus-stimulus and 

stimulus-response overlaps, and thus all the three processing loci, while the vertical version generated an 
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overlap only at stimulus-stimulus level, but not at stimulus-response level, as the response keys were 

orthogonal to the direction of the arrows, impeding the effects to emerge at the response level.   

In the same study discussed previously (see position-word spatial Stroop task section), Schneider (2020) 

proposed two versions of an arrow-position spatial Stroop task, one with a horizontal alignment and 

another with a vertical alignment. In the former, participants were instructed to indicate the direction of 

right-/left-pointing arrows appearing either on the right or the left of the fixation, whereas in the latter they 

responded to the direction of up-/down-pointing arrows appearing either above or below the fixation. 

Bimanual responses were made using compatible keypresses, as they were located as a function of the 

stimulus spatial alignment, thus having the potential to produce in both tasks not only stimulus-stimulus 

overlap and stimulus-related effects, but also stimulus-response overlaps and complete response-related 

effects.  

Lastly, a very recent study by Spinelli and colleagues (2022) explored conflict adaptation using the color-

word task (Experiment 1) and the arrow-position Stroop task (Experiment 2). In the spatial Stroop task, 

participants responded to one of six possible arrow directions (north-east, east, south-east, south-west, 

west, north-west), which could appear in one of six circles spatially arranged in the same six locations. 

Responses were made using keypress buttons whose spatial arrangement was compatible with arrow 

directions and positions. Hence, this experimental paradigm ensured all the conflicts/facilitations assumed 

by multiple loci accounts, that is, task conflict, stimulus-related effects due to the stimulus-stimulus overlap, 

and complete response-related effects due to the stimulus-response overlaps, despite a complex 6x6 

stimulus-response mapping. 

2.4.4. Methodological considerations  

From this methodological review, the first aspect worthy of consideration is that spatial Stroop 

paradigms involving only effects at the task and stimulus levels, without the involvement of response locus 

due to totally or partially missing stimulus-response overlaps, seem quite common (see Figure 2.5). Indeed, 

several authors deliberately declared to use only stimulus-stimulus congruency to have more pure spatial 

Stroop effects, and explicitly distinguished it from stimulus-response congruency, regarded as a possible 

confound and/or as typical of just the Simon congruency effect (e.g., Funes et al., 2010; Luo et al., 2010, 

2013). However, as highlighted above, both stimulus-stimulus and stimulus-response overlaps are required 

to obtain a complete spatial Stroop effect. Designing tasks to measure the Stroop effects in a 

methodologically rigorous way is not an end in itself, but is of fundamental importance to measurement 

validity (and all the other forms of validity that depend on it) and, in turn, the improvement of Stroop 

measure validity is essential to enhance our theoretical knowledge about cognitive processes involved in 

the Stroop task. Indeed, the use of experimental paradigms that only tap on some mechanisms and ignore 



 

55 

others, such as those that measure only task-related and stimulus-related effects, is inconsistent with the 

goal of obtaining an accurate measure of the Stroop effect because they do not consider the response 

locus, which is instead involved in Stroop tasks. Of course, if the aim of the study is to explicitly focus on one 

of the underlying mechanisms, this is warranted, but this has to be clearly stated (and in this case the label 

Stroop-like task is preferable). Moreover, the use of heterogeneous tasks does not allow us to compare their 

results across studies, since, if these tasks are inherently different, they inevitably measure different 

phenomena. Thus, if the Stroop effect includes multiple loci, that is, it involves processing at the level of 

task, stimulus, and response loci, it is clear that one needs to design tasks encompassing all these loci to 

obtain a measure as complete as possible.  

Secondly, as we previously foreshadowed, position-word and arrow-word spatial Stroop tasks are not 

ideal versions of this paradigm. Besides not being pure spatial Stroop tasks, some of these mixed variants 

were not Stroop tasks due to the response modality employed. Since the presence of response effects 

depends on it, the response modality when the irrelevant stimulus was spatial should have been 

distinguished from when it was verbal. However, this was not the case, as the majority of studies entailed 

manual responses, regardless of these theoretical considerations. However, although this assumption was 

met, the simultaneous presence of a verbal and spatial stimulus would prevent a complete overlap between 

the stimulus and the response, as the response could overlap only with either the irrelevant or the relevant 

stimulus, but not with both at the same time, consequently hindering a full conflict at the level of response.  

Therefore, in our view, the spatial Stroop tasks that most adhere methodologically to a complete Stroop 

task definition are the purely spatial ones, such as the arrow-position tasks. Indeed, from a methodological 

point of view, they are preferable because they potentially guarantee the possibility to produce effects at all 

the three required loci, ensuring all Kornblum’s dimensional overlaps. However, this was not true for a 

minority of arrow-position tasks which, totally or partially, did not involve the response locus (e.g., Luo et 

al., 2010). Figure 2.5 summarizes our methodological considerations based on our criteria.  

In addition to these considerations, the present literature overview allowed us to notice a further 

methodological limitation concerning all of the three categories, which should be taken into account when 

designing a spatial Stroop task. This limitation, specifically, is that the majority of the studies used two-

alternative forced-choice tasks, that is, in most of them the relevant/irrelevant dimensions were right vs. 

left or up vs. down, but rarely more stimuli and responses were used in the same task. The oldest paradigms 

(Shor, 1970; White, 1969) and few more studies (e.g., Hilbert et al., 2014; Pickel et al., 2019) were 

exceptions. This is a kind of pitfall, as it poses limitations in the manipulation of the trial list sequence and 

does not allow controlling for the effect of (partial and total) feature repetition and consequent priming 

phenomena. Indeed, as outlined above, to provide unequivocal evidence of real congruency and sequential 

effects, priming-free paradigms with a complete alternation sequence are required at least in first-order 
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trials. However, as noted in Section 1.3.4, it is impossible to have complete repetition-free sequences by 

using fewer than four possible responses. Indeed, with three responses, if there are two incongruent trials 

in a row, one feature must inevitably be repeated in the second trial. The influence of repetition effects 

appears to be even stronger in the spatial Stroop paradigms we discussed previously, since most of them 

used two possible alternative responses, in which only congruent-congruent sequences can be repetition-

free. To solve this issue, Puccioni and Vallesi (2012a, 2012b, 2012c) designed a four-alternative forced 

choice spatial Stroop task, which has been shown to properly separate interference resolution from priming 

effects at least at first-order sequences (priming effects could in principle still be carried out in part from 

trials earlier than trial n-1).  

In the last section of this review, we show that it is possible to design a spatial Stroop task that 

overcomes the outlined methodological limitations, and provide some examples.  

 

Figure 2.5. 
Summary of the methodological criteria met by each spatial Stroop task, also including Kornblum’s overlap 
levels. rStim, task-relevant stimulus feature; iStim, task-irrelevant stimulus feature; Resp, response.    
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2.5. Examples of complete spatial Stroop tasks  

Puccioni and Vallesi (2012a) designed a spatial Stroop paradigm that satisfies the methodological 

requirements and overcomes the previously discussed limitations (see Figure 2.6). The task was an arrow-

position task consisting of an arrow pointing to four possible directions (upper right, upper left, lower right 

or lower left) that could appear in one of four positions on the screen (upper right, upper left, lower right or 

lower left). Participants were instructed to respond to the pointing direction of the arrow by pressing the 

corresponding key and ignoring the arrow position. Besides being purely spatial, this paradigm ensures a 

complete Stroop effect, as it encompasses all the required processing loci. Indeed, there is conflict between 

two different tasks, position and direction identification, with the former being stronger than the latter. 

Moreover, at the stimulus locus, there is a dimensional overlap between the relevant and irrelevant 

stimulus dimensions, since the arrows could appear in one of the four corners of the screen and point to 

one of the same four directions. Lastly, since the spatial arrangement of the response keys is compatible 

with the direction and position of the stimuli, the dimensional overlap between both stimulus dimensions 

and the response dimension was also ensured, implying that conflict/facilitation at the response level is 

complete. Furthermore, the presence of four arrows and four positions allows for a complete alternation of 

the stimulus feature across first order trial sequences, so that the direction and position of the stimuli in 

trial n always differ from the direction and position in trial n-1 (Puccioni & Vallesi, 2012b). Notably, in a 

previous study, we have found that its spatial Stroop effect has a good split-half reliability (0.767) (Capizzi et 

al., 2017) and that this task is suitable for being implemented with EEG (Ambrosini & Vallesi, 2017; Tafuro et 

al., 2019), also with mouse responses (Tafuro et al., 2020).  

Puccioni and Vallesi's (2012a) paradigm is well suited to variations; indeed, alternative versions of it can 

be designed that allow satisfying the methodological criteria that we consider fundamental to have a 

complete Stroop effect. This is what we did in our recent study (Viviani et al., 2023), in which five new 

alternative spatial Stroop versions were evaluated, considering both the size and internal reliability of their 

Stroop effects. Specifically, the study aimed at finding an alternative spatial Stroop variant that is more 

suitable for neuroimaging studies. Indeed, although Puccioni and Vallesi's (2012a) paradigm fulfills all the 

methodological requirements for yielding a complete spatial Stroop effect, its peripheral spatial 

arrangement might be problematic during neuroimaging and electrophysiological (e.g., EEG) recordings, as 

it induces visuospatial attention shifts and a large extent of ocular artifacts.  

A detailed description of the tasks is provided by Viviani et al. (2023), while in the present work we just 

want to highlight that methodologically complete spatial Stroop tasks are feasible. Indeed, all the new 

versions implied a three-level effect. First, all tasks were designed so that the processing of one dimension 

was stronger than the processing of the other to ensure a strong task conflict. Regarding this, we need to 

point out that processing asymmetry was obtained by leveraging the higher processing automaticity of one 
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dimension relative to the other and/or the higher discriminability/perceptual salience of one dimension as 

compared to the other (see below for further details). The other two processing loci were also guaranteed 

to be involved because of the presence of all necessary dimensional overlaps. More in detail, in each of the 

new versions, the task-relevant feature was the direction of a target arrow, pointing to the upper-left, 

upper-right, lower-right, or lower-left part of the screen, as in Puccioni and Vallesi (2012a), and participants 

had to indicate this feature using four keys that were spatially arranged to ensure the dimensional overlap 

between the stimulus and response dimensions.  

 

Figure 2.6.  
Example stimuli of the arrow-position spatial Stroop task designed by Puccioni and Vallesi (2012a). In the 
congruent condition (left), the arrow direction and position are both upper-left, while in the incongruent 
condition (right), the arrow direction is upper-right (task-relevant information), but appears in the upper-
left position (task-irrelevant).  

In the Perifoveal Stroop, the task-irrelevant information was the position generated by presenting the 

arrow in one of four small squares around the fixation cross. In the Navon Stroop version, task-relevant 

small arrows were spatially arranged to form a global arrow, whose direction was the task-irrelevant 

information, whereas in the Figure-Ground Stroop, the task-relevant small gray arrow was embedded in a 

large task-irrelevant black arrow. The Flanker Stroop9 consisted of a central arrow (task-relevant), flanked by 

eight arrows of the same size, which were task-irrelevant. Lastly, in the Saliency Stroop task, two empty 

triangles were added to an empty diagonal cross, the smaller indicated the task-relevant direction, whereas 

the bigger the task-irrelevant one. The reader is referred to Figure 2.7 for examples of congruent and 

incongruent trials in each of the described tasks.  

                                                           

9 It might be argued that the Flanker Stroop cannot be considered a Stroop adaptation, since the task-relevant 

stimulus is not spatially overlapped with the task-irrelevant ones. However, although there is evidence that 
interference is reduced when task-relevant and task-irrelevant features are spatially separated (Lamers & Roelofs, 
2007), our Flanker Stroop task can still be considered a Stroop task. Indeed, according to Kornblum’s taxonomy, the 
overlap is not necessarily perceptual, but it can be conceptual as well. Therefore, as long as the task-relevant and task-
irrelevant stimuli can be perceived as an ensemble (as in our case, in which they are minimally distant and perceivable 
in perifoveal vision), the conceptual overlap is guaranteed. As such our Flanker Stroop is a type-eight ensemble thanks 
to the presence of task conflict (generated between the processing of the numerous flanking stimuli and the 
processing of a single feature, see also Viviani et al., 2023), stimulus conflict (due to stimulus-stimulus overlap) and 
response conflict (due to stimulus-response overlap generated by the compatible spatial arrangement of response 
keys). Of note, we named it Flanker Stroop based on the presence of flanking task-irrelevant stimuli, but we highlight 
its fundamental difference from classic Flanker tasks (which are type-four ensembles), that is those formally known as 
Eriksen Flanker tasks (Eriksen & Eriksen, 1974).  
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Figure 2.7.  
Example of the spatial versions of Stroop tasks proposed by Viviani et al. (2023). In congruent trials, the 
arrow direction and its position (in the Perifoveal) and the task-relevant arrow direction and the task-
irrelevant arrow direction (in the other tasks) are both upper-left, while in incongruent trials, the arrow 
direction (task-relevant) is upper-left but the arrow position/direction (task-irrelevant) is upper-right.  

Therefore, there was always an overlap (perceptual or conceptual) between the relevant and irrelevant 

stimulus dimensions which, in the case of the Perifoveal Stroop, was between the arrow direction and its 

position whereas, in the remaining task versions, it was between the task-relevant arrow direction and the 

task-irrelevant arrow direction. Moreover, in all these variants, the stimulus attributes, both the relevant 

and irrelevant ones, overlapped with the response as the response keys were selected in order to be 

spatially compatible with the four directions and also with the positions in the case of the Perifoveal task. Of 

note, the Peripheral and the Perifoveal Stroop are arrow-position spatial Stroop tasks, whereas the other 

experimental paradigms do not belong to this category, and they could be better referred to as arrow-arrow 

spatial Stroop tasks, as the irrelevant dimension is the direction of the task-irrelevant arrow.  It might be 

argued that in these four versions there are not two conflicting task sets, because both task-relevant and 

task-irrelevant dimensions imply arrow direction processing. However, task conflict is still present, with the 

only difference that, as claimed above, it was generated not only by leveraging processing automaticity but 

also by enhancing the perceptual discriminability of the task-irrelevant dimension as compared to the task-

relevant one. Hence, in the arrow-arrow variants, two competing task-sets were still necessarily activated 

by the conceptually or perceptually different characteristics of the two dimensions. For example, in the 

Navon Stroop, task-related conflict relies on a mix of conceptual and perceptual characteristics, as there is a 

stronger but task-irrelevant processing stream elaborating the global arrow direction which competes with 

the less strong but task-relevant processing of local arrow directions. Hence, global vs. local processing is a 

perceptual characteristic which, however, has also conceptual implications. In contrast, in the Saliency 

Stroop task, task conflict is driven solely, as the name suggests, by different degrees of saliency between the 

task-relevant (less salient) and task-irrelevant (more salient) dimensions. This difference notwithstanding 
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(see Viviani et al., 2023, for a more detailed discussion), the Peripheral and all the novel versions are pure 

spatial Stroop variants including all the conflict levels. 

Lastly, the new versions also satisfied the second methodological point, as they all entailed four relevant 

and four irrelevant stimulus dimensions, allowing to completely alternate the first-order trial sequences, 

thus reducing low-level binding and priming effects10.  

2.6. Summary and Conclusion 

This study emerged from the need to emphasize the importance of measurement validity in assessing 

the Stroop effect. While the validity of measurements is undeniably crucial in psychology, it is consistently 

threatened in the context of the Stroop task literature, mainly due to significant methodological differences 

across studies. This, in turn, has led to theoretical controversies. The methodological variability comes from 

the existence of an incredible number of Stroop task variants, often created without adhering to shared 

guidelines. Therefore, the aim of the present work was to highlight the importance of using rigorous 

methodological criteria to design Stroop tasks that measure the Stroop effect in a comprehensive and valid 

way.  

In this review, we started with an overview of the classical Stroop effect, highlighting its complex nature, 

and presenting evidence that demonstrates that it is composed of effects arising at multiple processing 

levels or loci. Therefore, throughout this work, we stressed that designs generating conflict at the task locus 

and interference/facilitation at the stimulus and response loci are fundamental to provide complete 

measures of the Stroop effect, that is, measures that consider such an effect as a whole. We aIso showed 

that, in order to meet these requirements to be satisfied, a Stroop task should adhere to the specific 

characteristics elegantly summarized in Kornblum’s works which, although rarely used, provide highly useful 

practical guidelines in the design of Stroop tasks. Furthermore, we highlighted the role of possible 

                                                           

10 Four stimulus-response mappings are sufficient to reduce first-order trial repetitions, as outlined above, but it 

does not have to be intended as the only possible alternative. Indeed, to minimize repetition effects, one needs at 
least four stimuli and responses, but this represents only a lower bound, since more than four options could also be 
employed. Indeed, specifically considering the spatial Stroop task, the maximum possible number of stimulus-
response overlaps coincides with the maximum number of possible effectors (e.g., the fingers). For example, using 
more than four stimulus-response mappings could be preferable for controlling for those repetition carryover effects 
that can be potentially present even if first-order trials are repetition-free. Indeed, as outlined above, to totally control 
for repetition effects, one should also avoid repetition in the trials earlier than trial n-1, and to do so, the number of 
stimulus-response mappings has to be increased (of course at the prize of increasing Stimulus-Response mapping 
complexity). Overall, priming-free Stroop tasks are desirable, at least at first-order trial level, and this can be achieved 
by using at least four options, while using more than four mappings is a researcher’s choice and depends on the 
experimental question, on the need of controlling for longer carryover effects, and on the feasibility of using complex 
Stimulus-Response mappings in different experimental contexts (including the type of research participants, e.g., 
healthy younger adults, neurological patients, older adults, etc.). 
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confounding factors, such as repetition effects, which should be controlled for (e.g., by using priming-free 

designs).  

After discussing the most popular alternative versions of the Stroop task, we concluded that most of 

them did not entail the possibility to yield complete Stroop effects. As a result, they cannot be defined as 

Stroop tasks, as they differ from the classical color-word Stroop task. Indeed, we believe that to ensure 

validity, each replication of this task should aim to maintain methodological consistency with the classical 

Stroop task. Only this ensures that meaningful comparisons can be made between evidence produced by 

different studies. 

However, while emphasizing the importance of methodological aspects and the validity of Stroop effect 

measures in future studies, we did not intend to imply that only classical Stroop tasks should be employed. 

Instead, we proposed an alternative category of Stroop tasks, namely the spatial variant, as an example of 

an alternative Stroop version that maintains methodological adequacy, while also offering increased 

flexibility in specific cases. We thus provided a methodological review of the spatial Stroop tasks in the 

literature to verify whether they satisfy such criteria. However, we also found that the majority of the 

spatial Stroop paradigms implemented in the literature lacked response-related effects and, thus, did not 

ensure a complete Stroop effect.  

First, the label spatial Stroop was also referred to non-purely spatial tasks. This is an issue since including 

verbal stimuli does not allow either to fully leverage the advantages related to the use of exclusively spatial 

stimuli or to have the required dimensional overlaps to produce response-related effects. Therefore, we 

suggested that only arrow-position tasks were ideal spatial Stroop paradigms, in the sense that they allowed 

one to totally exclude linguistic processing. A second fundamental problem was that even among the arrow-

position spatial Stroop tasks in the literature, some of them did not ensure a complete spatial Stroop effect, 

mainly due to the absence of stimulus-response overlaps. Thus, the majority of the discussed paradigms 

were not classifiable as complete Stroop tasks but fitted better the more cautious definition of Stroop-like 

paradigms (Kornblum, 1992). A third issue was more general and concerned all the Stroop tasks, that is, the 

need of using at least four stimulus dimensions in order to control for first-order low-level binding and 

priming effects.  

On the basis of these methodological considerations, we provided some examples of spatial Stroop 

tasks, which allow one to yield complete spatial Stroop effects and to exclude the influence of trial 

sequence confounding effects. Nevertheless, this work wants to stress that these paradigms are not the 

only possible spatial Stroop variations and that, by satisfying the above methodological considerations, 

several different variations can be conceived and designed. For this reason, our categorization of spatial 

Stroop tasks is not exhaustive, and arrow-position tasks are not the only purely spatial Stroop paradigms. 
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For example, we showed that other pure variants can be created, such as some of those presented in 

Viviani and colleagues’ work (2023), which were not arrow-position tasks, but still satisfied the main 

methodological criteria and yielded large and reliable Stroop effects. Our results indicate that, when using 

tasks that are methodologically comparable to the classical Stroop task, not only the measure validity but 

also its reliability was ensured, showing that the Stroop effect can be large and reliable at the same time, in 

contrast with the issue posed by the reliability paradox.  

Overall, although the current literature on spatial Stroop tasks has some methodological limitations, the 

spatial Stroop represents a valid and promising alternative to the color-word Stroop task and to its several 

variations. However, careful attention must also be paid when designing spatial Stroop experimental 

paradigms to satisfy the methodological criteria whose importance was stressed in the present work. In 

summary, spatial Stroop tasks should (i) be purely spatial and avoid verbal stimuli, (ii) ensure conflict at the 

level of task, as well as conflict/facilitation at the stimulus and response loci, and (iii) control for repetition 

effects, at least at first-order trial level, thus using four (or more) stimuli and responses. 

However, we want to emphasize that, in proposing the spatial Stroop task as a valid Stroop task variant, 

we do not intend to imply that it is the only potentially valid alternative. While this review has specifically 

focused on spatial Stroop due to its ability to exclude certain potentially confounding factors (e.g., the use 

of linguistic stimuli) and its reliance on universally recognized automatic tasks (e.g., identifying position), 

other variants may also meet the required methodological criteria. Furthermore, by providing examples of 

spatial Stroop tasks, our intention was to demonstrate the underlying rationale in a practical manner, with 

the aim of encouraging other scholars to do the same, while also using different Stroop paradigms. 

To conclude, fulfilling these methodological criteria is important because they represent the only means 

to obtain truly comparable measures of the Stroop effect. As a consequence, if more rigorous task designs 

are employed, there will be more room for enhancement in the understanding of processes tapped by the 

Stroop task. Indeed, starting from the same design criteria would ensure that the Stroop effect measures of 

different studies actually reflect the same phenomenon, and not only a part of it (e.g., the effects at 

stimulus level), and not confounded by priming effects due to (partial and total) feature repetitions. The 

take-home message of the present work is in line with other recent works (e.g., Augustinova et al., 2019; 

Parris et al., 2022), that have highlighted that the nature of the Stroop effect is much more complex than 

previously expected. Therefore, since there is evidence that the Stroop effect occurs at multiple loci, there is 

a clear need of designing experimental paradigms capturing all the different types of underlying processes 

and not just a part of them. To attain a more thorough and comprehensive comprehension of the 

extensively studied Stroop effect, it is imperative to implement more rigorous methodological practices 

within the (spatial) Stroop literature. Enhancing measurement validity stands as the sole pathway to achieve 

this goal.  
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CHAPTER 3 

Many Stroops: 

The Quest to Improve Stroop Effect Estimates and Reliability. 

3.1. Introduction 

The Stroop task (Stroop, 1935) is one of the most seminal behavioral paradigms in experimental 

psychology. It is commonly used to investigate cognitive control (i.e., the ability to regulate thoughts and 

actions according to behavioral goals; Braver, 2012) and, specifically, interference resolution (Nee et al., 

2007). In the original and most widely used version of this task, referred to as the color-word Stroop task, 

participants are asked to name the ink color of words denoting color names. This task allows researchers to 

explore the resolution of interference produced on incongruent trials (e.g., MacLeod, 1991; Stroop, 1935): it 

takes longer (and attracts more errors) to name the ink color of a word that denotes a different color name 

(incongruent trials) as compared to when the ink color and the word meaning match (congruent trials), the 

so-called Stroop effect. According to multiple-stage (e.g., De Houwer, 2003; Zhang & Kornblum, 1998) and 

multiple loci (e.g., Augustinova et al., 2019; Parris et al., 2022) accounts of Stroop interference, the Stroop 

effect is produced because in incongruent trials participants are required to overcome the interference or 

conflict at the task, stimulus and response levels. There is indeed an interference between two competing 

processing streams, reading and color naming, with the former more prevailing than the latter, between 

relevant and irrelevant stimulus dimensions, and also between the different vocal responses activated by 

the ink color and the color name (De Houwer, 2003; Freund et al., 2021; Funes et al., 2010).  

Despite its widespread and long-standing use, an overlooked and debated methodological aspect of the 

verbal Stroop task is that it requires vocal responses to fully exert its interference at both the stimulus and 

the response level (see e.g., MacLeod, 1991). Indeed, the Stroop task is strongly dependent on response 

modality, as delineated by the dimensional overlap model put forward by Kornblum (1992), which outlines 

the requirements that need to be satisfied to consider a task as a Stroop task. Indeed, while color-word 

Stroop tasks requiring vocal responses are categorized as a “type-eight ensemble” (i.e., a Stroop task 

according to Kornblum’s classification), ensuring dimensional overlap not only between relevant and 

irrelevant  stimulus dimensions but also between them and the response, those requiring manual responses 

are categorized as a “type-four ensemble” (i.e., a Stroop-like task according to Kornblum’s classification) 

because they lack the overlap between stimulus and response dimensions. Accordingly, the color-word 
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Stroop task has been shown to produce larger Stroop effects with vocal as compared to manual responses 

(e.g., Augustinova et al., 2019). 

Several adaptations of the original color-word Stroop task have been proposed in the literature, 

including spatial versions investigating the interference between relevant and irrelevant spatial information. 

Among these, we recently designed a spatial Stroop task in which participants are asked to attend to and 

indicate the direction of an arrow (i.e., the task-relevant feature) while ignoring the location in which it 

appears (i.e., the task-irrelevant feature) (Puccioni & Vallesi, 2012a, 2012b). Our spatial version of the 

Stroop task works exactly as the verbal Stroop task and can be considered as one of its purely spatial 

variants (for a more detailed discussion, see Viviani et al., 2022). Indeed, it ensures a multiple-loci 

interference at the task, stimulus and response levels. First, it entails an asymmetric relation between the 

stimulus dimensions because the position of a visual stimulus can be assumed to be processed in a 

preponderant way as compared to other visual characteristics, such as the pointing direction in the case of 

an arrow (Lu & Proctor, 1995), thus engendering conflict between two competing tasks.  Moreover, it yields 

conflict both at the stimulus and response levels as it is a “type-eight ensemble” (Kornblum, 1992) because 

the arrows appear in one of the four corners of the screen and point in one of the same four directions (i.e., 

upper-left, upper-right, lower-right, and lower-left), thus ensuring the dimensional overlap between the 

relevant and irrelevant characteristics of the stimulus, and participants provide their responses by using 

four keys that are spatially arranged to ensure the dimensional overlap between the stimulus and response 

dimensions. Therefore, our spatial Stroop task assesses the same central interference resolution processes 

as verbal Stroop tasks. Furthermore, mouse responses can also be employed, thus allowing researchers to 

investigate the temporal dynamics of the interference resolution processes (Tafuro et al., 2020). 

Our spatial Stroop task also presents several methodological advantages over the original, verbal Stroop 

task. First, it allows to exclude linguistic processing, which might be beneficial, for example, when examining 

cognitive control in populations with language or reading disorders, as the performance would not be 

negatively affected by the impaired linguistic abilities. Second, the use of spatial stimuli to investigate 

cognitive control might promote a more domain-general understanding of cognitive control mechanisms, 

overcoming the prevalence of linguistic-based accounts and allowing to better investigate hemispheric 

lateralization by minimizing a potential confound represented by task verbal demands (Ambrosini & Vallesi, 

2017; Tafuro et al., 2019). Third, as discussed above, the verbal Stroop task requires vocal responses to fully 

exert its interference, but they present some methodological issues. Indeed, the current gold standard to 

assess verbal response times (RTs) is still to mostly rely on human coding, which is extremely tedious, time-

consuming, and prone to errors, biases, and other sources of measurement error. Moreover, it is currently 

not very feasible to reliably record vocal responses in online studies. Finally, vocal responses are 

problematic for neuroimaging studies, as they introduce movement artifacts related to overt speech that 
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can contaminate the cognitive control-related signals of interest, also considering that they are temporally 

non-random, but covary with signal of interest because they are somewhat time-locked to the task timing. 

By contrast, the spatial Stroop task allows using manual responses, which are easier to record with minimal 

motion artifacts and low measurement error even in online studies.  

Moreover, our spatial Stroop task allows overcoming some methodological issues that are present in 

most of the spatial versions of the Stroop tasks used in the literature, as we recently discussed in detail 

(Viviani et al., 2022). Indeed, position-word tasks (with location words displayed in congruent or 

incongruent positions; e.g., White, 1969) and arrow-word tasks (with location words embedded or flanked 

by congruent or incongruent arrows; e.g., Shor, 1970) had often been employed, but both do not ensure a 

complete spatial Stroop effect due to the lack of a full dimensional overlap between stimulus and response 

dimensions and still rely on verbal processing. Moreover, most studies (including those employing purely 

spatial Stroop tasks, e.g., Funes et al., 2007; Pires et al., 2018) used two-alternative forced-choice tasks, but 

this prevents having complete repetition-free trial sequences (for which at least four options are needed), 

thus making it hard to distinguish conflict resolution/adaptation effects from low-level binding, positive and 

negative priming effects (for a detailed discussion, see Viviani et al., 2022 and Puccioni & Vallesi, 2012b). 

Notwithstanding its advantages, our spatial Stroop task also presents some methodological limitations. 

Indeed, the arrows appear in peripheral locations on the screen, therefore requiring the deployment of 

large visuospatial attention shifts and eye movements. This can affect the behavioral measures of the 

interference resolution processes of interest, especially for extreme visual eccentricities and when mouse 

movements are required. Moreover, this can also introduce oculomotor artifacts that, albeit not being as 

problematic as the overt speech and motor artifacts produced by vocal responses, can still contaminate the 

cognitive control-related signals of interest in neuroimaging studies.  

Our aim is to propose novel spatial Stroop tasks that allow overcoming these issues of our original spatial 

Stroop task, which we will call “Peripheral” due to its spatial arrangement with high stimulus eccentricity. To 

this aim, we designed five alternative versions allowing for presentation of the experimental stimuli at the 

center of the screen, while maintaining all the required methodological criteria to yield a complete spatial 

Stroop interference effect and a complete alternation of the trial sequences. One of these versions, the 

“Perifoveal” one is a direct adaptation of the Peripheral version in which the arrows appear in perifoveal 

locations. The other four alternative versions were inspired by the other experimental paradigms generating 

interference (e.g., the Flanker task) that allowed preserving both the fundamental characteristics of a 

spatial Stroop task and its methodological advantages over the original verbal Stroop task, as described 

above. It is noteworthy that these four alternative versions differed from the Peripheral and Perifoveal ones 

in the manipulation used to engender conflict at the task level. Indeed, to generate asymmetry between the 

two dimensions, we leveraged not only the higher processing automaticity of one dimension as compared 
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to the other, but also the higher discriminability/perceptual salience of one dimension relatively to the 

other, and these two manipulation types were present in different amounts in the newly created tasks. A 

detailed description of them will be provided in the Method section.  

These alternative versions were evaluated in terms of two important features. The first one is their 

ability to show a large Stroop effect for manual RTs, in line with the dominance assumption (Rouder & Haaf, 

2018, 2019): all individuals truly respond slower in incongruent than congruent trials (or, in other words, 

nobody should show a non-positive Stroop effect). The second one is the internal reliability of their Stroop 

effects. Indeed, as pointed out by Hedge and coworkers (2018), the reliability of an experimental effect 

represents a frequently overlooked statistical issue that, if not taken into account properly, might jeopardize 

the effectiveness of correlational research in cognitive neuroscience and psychology (e.g., Dang et al., 2020; 

Elliott et al., 2020; Rouder et al., 2019; Wennerhold & Friese, 2020). 

Finally, population-level effects and internal reliability were evaluated under different analytical 

frameworks. The reason is that both cross-subject and cross-trial variability influence estimates of 

population-level effects and their reliability (Chen et al., 2021). However, the classical test theory analytical 

approach requires computing participants-by-task scores by averaging participants’ performance across 

trials. This discards any cross-trial variability that may contaminate participants-by-task scores, potentially 

decreasing not only their accuracy and generalizability, but also their reliability (see also Rouder & Haaf, 

2019). Therefore, we used not only a classical analytical approach, but also a multilevel modeling approach 

that allows assessing the experimental effects of interest while removing intra-subject, trial-by-trial noise 

and effects of lower-level confounding factors. 

3.2. Methods 

We report how we determined our sample size, all data exclusions, all inclusion/exclusion criteria, all 

manipulations, and all measures in the study. All inclusion/exclusion criteria were established prior to data 

analysis. All data and materials, as well as the code used to run the experimental tasks and generate and 

analyze the data of the current study, are available from our project repository on the Open Science 

Framework (OSF) platform at osf.io/5sm9j. No part of the study, including the analyses, was pre-registered. 

3.2.1. Procedure and materials 

Participants were administered with six versions of a 4-choice spatial Stroop task, all requiring keypress 

responses to indicate the direction of a target arrow. The experiment was programmed using Psytoolkit 

(Stoet, 2010, 2017) and administered online (the code and stimuli are available on OSF: osf.io/9hsnw). All 

the participants were recruited by the experimenters and given a link to perform the task online.  

https://osf.io/5sm9j
https://osf.io/9hsnw
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The stimuli were presented in full-screen mode, with a resolution of 800 x 600 pixels, on a gray 

background (RGB: 128, 128, 128). Each trial started with a fixation stimulus presented at the center of the 

screen for 500 ms, which participants were instructed to fixate. For all but the Saliency Stroop task, the 

fixation stimulus consisted in a vertically oriented thin black cross (30 x 30 pixels) enclosed in the partial 

outline of a black square (94 x 94 pixels), which was then replaced by the experimental stimulus (see Figure 

3.1). Moreover, in the Peripheral Stroop task, four white squares (73 x 73 pixels) were also presented during 

the fixation screen at the four corners of an imaginary square of 600 x 600 pixels centered on the screen. In 

the Saliency Stroop task, the fixation stimulus consisted in the black outline of a thick diagonal cross (60 x 

60 pixels, see Figure 3.1). Then, the experimental stimulus was presented, which was different for each 

experimental task (see below). The stimulus remained on screen until participant’s response or up to a 

response time-out of 2000 ms. Afterwards, a blank screen constituting the inter-trial interval was presented 

for 500 ms.  

 

Figure 3.1.  
Experimental stimuli for the six spatial Stroop tasks. For each version, an example of incongruent and 
congruent trials is depicted. The first row shows the fixation stimuli. Note that the stimuli are not to scale 
for illustrative purposes (see Procedure and Materials for details). 

Each of the six spatial Stroop tasks followed the same procedure outlined above but involved different 

experimental stimuli, as detailed below. However, in all the tasks, participants had to pay attention to a 

target arrow to indicate its direction, which was thus the task-relevant information, corresponding to the 

response. The possible directions of the target arrows were always upper-left, upper-right, lower-right, and 

lower-left and participants were required to provide their responses by using four keys on a computer 

keyboard, which were spatially arranged to ensure the dimensional overlap between the characteristics of 

the stimulus and the response. Indeed, the keys E, O, K, and D were associated, in a spatially compatible 
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fashion, with the upper-left, upper-right, lower-right, and lower-left direction, respectively, and had to be 

pressed using the left middle, right middle, right index, and left index fingers, respectively. The experimental 

stimuli also included a task-irrelevant feature that could either match or not with the task-relevant feature, 

respectively, in congruent and incongruent trials, thus interfering with the participants’ decision in 

incongruent trials (see Figure 3.1):  

1) in the Peripheral Stroop, the experimental stimulus consisted in an arrow that appeared inside one of 

those four squares, pointing to one of the same four directions (upper-left, upper-right, lower-right, and 

lower-left). Participants were instructed to respond to the arrow direction, regardless of the position 

where it appeared. Trials could thus be either congruent or incongruent, depending on whether the 

arrow direction (i.e., the task-relevant information) matched or not its position (i.e., the task-irrelevant 

information);  

2) The Perifoveal Stroop version was akin to the Peripheral one with the difference that the arrow position 

was manipulated inside the fixation stimulus. Indeed, the partial outline of the square around the 

fixation cross created the impression of four small squares. Therefore, the arrow was displayed within 

one of these apparent small squares and, like in the Peripheral Stroop task, its pointing direction (i.e., 

the task-relevant information) could be either congruent or incongruent with its position (i.e., the task-

irrelevant information). 

3) In the Navon Stroop version, the experimental stimulus consisted of 28 small arrows (local level), 

spatially arranged to form a large arrow (global level). Participants were asked to indicate the direction 

of the small arrows (i.e., the task-relevant information), regardless of the direction of the large arrow 

(i.e., the task-irrelevant information). All the small arrows pointed to the same direction which, to 

manipulate congruency, either matched or not the direction of the large arrow. This task represents a 

modification of the original Navon task (Navon, 1977) assessing letter identification, whose typical effect 

relies on the so-called global precedence. In a similar vein, our spatial version using arrows also 

entailed  task-related interference between the more salient and also conceptually stronger processing 

of the global arrow as compared to the local arrows. Moreover, stimulus conflict was guaranteed by the 

dimensional overlap between the task-relevant and task-irrelevant arrows, while response conflict was 

produced by the two dimensional overlaps between response and stimulus information. 

4) In the Figure-Ground Stroop version, the experimental stimulus consisted of a small grey arrow 

completely embedded in a large black arrow. The task-relevant information was the direction of the 

smaller arrow, and the task-irrelevant information was the direction of the outer arrow, and the two 

arrows again could either match or not. Like the Navon Stroop versions, also this task leverages global 

precedence, with easier processing of the large arrow compared to the small one, with a consequent 

global-to-local conflict engendering task-related interference. Moreover, interference was produced at 
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the stimulus level thanks to the dimensional overlap between the two arrows and at the response level 

due to the stimulus-response dimensional overlaps.  

5) In the Flanker Stroop, the experimental stimulus consisted of a black arrow presented in the center of 

the screen (target), flanked by 8 same-sized black arrows on a 3-by-3 square grid. The task-relevant 

information was the direction of the central arrow, which could be congruent or not with the flanking 

arrows. This task represents a modification of the original Flanker task (Eriksen & Eriksen, 1974) 

assessing letter identification, whose typical interference effect is driven by the higher perceptual 

numerosity of flanking stimuli as compared to the centrally-presented target. Similarly, our spatial 

version with arrows leveraged the higher perceptual saliency due to numerosity of the surrounding task-

irrelevant arrows as compared to the central task-relevant arrow, producing task conflict. Moreover, 

interference at the stimulus level was caused by conceptual overlap between the flanking distractors and 

the central arrow, while interference at the response level was generated by the two dimensional 

overlaps between the response and the stimulus information. 

6) The Saliency Stroop version slightly differed from the others, starting with a different fixation cross, 

which appeared as a thick, empty diagonal cross, which was not replaced by the experimental stimulus. 

Indeed, the experimental stimulus consisted in two empty triangles, a smaller and thinner one and a 

larger and thicker one, which appeared at the extremity of one of the four cross arms. In incongruent 

trials, the two triangles appeared at different extremities, forming an arrow with a large head and one 

with a small head (target arrow) pointing to different directions; in congruent trials, the two triangles 

appeared at the same extremity, creating a single arrow with overlapping heads. Participants responded 

to the direction of the smaller arrow, regardless of the direction of the larger arrow, which was 

perceptually more salient and, thus, processed more easily. Therefore, in this task, conflict was 

exclusively driven by this saliency imbalance between the two dimensions. Similarly to the other tasks, 

stimulus-related conflict occurred due to stimulus-stimulus overlap, while response-related conflict was 

driven by the two-dimensional overlaps between response and stimulus information.  

At the beginning of the experiment, general instructions were provided, informing participants of the 

procedure, the general task (i.e., indicating the direction of a target arrow), and the response mapping. It 

was also recommended to execute the experiment in a quiet environment without distractions and to 

maintain a comfortable posture that allowed them to look straight to the center of the screen and keep the 

responding fingers in contact with the response keys. Particular care was taken to keep the instructions as 

simple and clear as possible. 

The six tasks were then presented in separate blocks of 72 experimental trials each, preceded by one 

warm-up trial that was not included in the analyses. The experimental trials were equally divided in 

congruent and incongruent trials and both the four task-irrelevant and task-relevant characteristics (and 
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thus the responses) were presented the same number of times. A self-paced break was provided between 

the blocks, during which a reminder of the response mapping was presented (median duration = 28.9 s, IQR 

= 23.0 s). The experiment lasted less than 23 min in total on average (M = 22.7 min, SD = 7.1 min).  

At the beginning of each block, specific task instructions were presented, illustrating the stimuli and the 

task to be performed. Participants were also asked to respond as quickly and accurately as possible. The 

instructions were followed by a sub-block of practice trials, during which participants received feedback on 

their responses. In case of errors, the task-relevant information and the corresponding response mapping 

were repeated. Practice trials were presented until participants reached an accuracy of 75% within at least 

six trials, or for a maximum of 24 trials. In two cases (0.46% of all cases), the accuracy was below 75% within 

24 trials, but it was still well above the chance level (62.5 and 70.8%); in four other cases (0.93% of all cases) 

more than 6 trials were needed to reach the required level of accuracy.  

A randomized balanced order of presentation of the six tasks was used, based on a Williams Latin square 

design (Williams, 1949) to also account for first-order carryover effects. The order of presentation of the 

trials was pseudo-randomized so that there were at most three consecutive repetitions of congruency, and 

no repetitions of stimulus characteristics and/or responses, thus avoiding first order priming effects. 

3.2.2. Data analysis 

The data were analyzed in Jamovi (version 1.6; jamovi.org) and Matlab (version 2019b; The Mathworks, 

Inc. Natick, MA) to 1) estimate the magnitude of the Stroop effects in the six tasks we used, as well as their 

across-tasks differences, and 2) estimate their internal consistency reliability based on two analytical 

approaches. Analyses were performed not only on untransformed RTs, but also on both natural log-

transformed RTs (lnRTs) and inverse-transformed RTs (iRTs, computed as -1000/RTs). Indeed, the distribution 

of RTs was heavily right-skewed and their logarithmic transformation did not eliminate completely the right 

skewness, so that the lognormal distribution did not provide an adequate fit to our data (see Appendix A, 

Figure A.1). 

We first performed a “standard” general linear model (GLM) analysis, commonly used in cognitive 

psychology research, to facilitate comparison of our results with existing (and future) findings. This 

analytical approach requires aggregating participants’ performance across trials to obtain participants-by-

task scores, in line with the analytic framework of the classical test theory. However, this discards any trial-

by-trial variability that may contaminate participants-by-task scores, potentially decreasing their accuracy 

and generalizability (see also Rouder & Haaf, 2019). 

To avoid this potential problem, we used a multilevel modeling approach (or trial-by-trials hierarchical 

modeling), which is particularly useful to our aim. Indeed, multilevel modeling allows assessing the 
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experimental effects of interest (i.e., in our case, the Stroop effects in the different tasks and the differences 

between them) while partialling out the effects of lower-level confounding factors at the trial level, which 

can be seen as sources of trial-by-trial noise in the estimation of the Stroop effects at the subject level. This 

approach would thus provide more accurate and precise estimates of Stroop effects and, consequently, of 

their reliability as well, by explaining intra-subject/inter-trial sources of variance contributing to 

measurement error.  

Moreover, we assessed the robustness of our results to analytic flexibility (the so-called “researcher 

degrees of freedom” (Simmons et al., 2011) or “the garden of forking paths” (Gelman & Loken, 2013) by 

performing a series of robustness checks based on a multiverse analysis approach (Parsons, 2020; Steegen 

et al., 2016). 

Training trials, trials with errors or missed responses (3.97% of trials) and trials with RTs shorter than 150 

ms (none of the remaining trials) were excluded from all the analyses. We checked for the presence of 

participants with low compliance, defined as those having either a mean iRTs more than three standard 

deviations away from the sample mean or a mean accuracy lower than 75%. Based on these criteria, no 

participant was excluded from the analyses (see Appendix A, Figure A.2). 

3.2.2.1. Assessing the magnitude of the Stroop effects  

We first performed a standard GLM analysis using a repeated-measures ANOVA (rmANOVA) with Task 

(Peripheral, Perifoveal, Navon, Figure-Ground, Flanker, and Saliency) and trial Congruency (Congruent vs. 

Incongruent) as within-subject factors, and the Huynh-Feldt correction for sphericity violations were applied 

to the degrees of freedom. Post-hoc comparisons were performed using paired t-tests corrected for 

multiple comparisons with the Scheffe’s method. To better investigate the Task by Congruency interaction 

of interest (i.e., the across-tasks differences in the Stroop effect), a follow-up rmANOVA was performed on 

the Stroop effects (i.e., the difference between RTs in Incongruent and Congruent trials) across the six tasks. 

The statistical significance of the Stroop effect for each task was assessed by means of two-tailed one-

sample t tests against 0 and the corresponding effect size estimates were computed as the Cohen’s d. These 

analyses were performed on both RT and accuracy measures (for which we also performed a nonparametric 

Friedman ANOVA on Stroop effects).   

We then performed two multilevel modeling analyses, that is, a linear mixed-effects model analysis 

(LMM, Baayen et al., 2008) and a random coefficient analysis (RCA, also called random regression or two-

step regression, Lorch & Myers, 1990). We also performed RCA because LMMs usually fail to converge when 

trying to model complex random effects structures, that is, the inter-subject variability in experimental (and 

confounding) effects, especially when random effects are large and/or there are few observations (Barr et 
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al., 2013). Consequently, usually a simpler random-effects structure has to be modeled, thus constraining 

the remaining effects to be the same across participants. This assumption, however, is often untenable, 

severely limits the generalizability of the results, and prevents assessing the reliability of the effects for 

which the inter-subject variability is not modeled. By contrast, RCA allows assessing the inter-subject 

variability in all the modeled effects. Indeed, in RCA, by-subject regressions are first computed, thus 

allowing all the modeled effects to vary across participants, followed by a one-sample t-test against zero (or 

equivalent nonparametric tests) to test for their statistical significance.   

We included in the LMM several possible confounding predictors that were expected to explain trial-by-

trial variability in RTs. Indeed, as explained above, the aim was to obtain more accurate estimates of the 

Stroop effects, which can indeed be contaminated by these sources of removable noise at the trial level, like 

longitudinal effects during the task. Specifically, the final model for LMM comprised the following lower-

level confounding predictors as fixed effects: i) three continuous predictors for the effect of both the rank-

order of the blocks in the experiment (Block) and the rank-order of the trials in each block (Trial), as well as 

their interaction, to account for potential time-on-task effects like learning/adaptation or fatigue effects 

(e.g., Möckel et al., 2015); ii) a continuous predictor reflecting the RT of the preceding trial (preRT), to 

account for the well-known temporal dependency in response times (Baayen & Milin, 2010); iii) a predictor 

for the fixed effect of error commission in the preceding trial (PostERR), to account for the so-called post-

error slowing (Rabbitt, 1966). It is important to note that these fixed effects were modeled not only to 

improve the model fit and the estimation of the effects of interest, but also to avoid violating the 

assumption of the independence of observation for linear modeling. We also included two other lower-level 

confounding predictors as fixed effects, that is, the horizontal and vertical coding of the response 

(respectively, hResp and vResp), to account for potential differences due to the response hand and finger, 

respectively. Finally, we modeled the experimental effects of interest and their inter-individual variability by 

including predictors for the effects of the Stroop version (Task), the trial congruency (Cong), and their 

interaction, which were included in both the fixed and random part of the model (the inclusion of the 

effects of interest in the random part is necessary for calculating their reliability). The Wilkinson-notation 

formula for the final model is:  

RT ~ 1 + Block*Trial + preRT + PostERR + hResp + vResp + Task*Cong + (Task*Cong|Participant) 

The continuous predictors were scaled to facilitate model convergence and the interpretation of the 

results. We determined the final LMM model by performing a model-building procedure to assess whether 

the inclusion of the parameters for the above-mentioned effects was justified, using a log-likelihood ratio 

test to compare progressively more complex models with simpler models (Baayen et al., 2008). After this 

model-building procedure, we inspected the quantile-quantile plot for the residuals of the final model for 

evidence of stress in the model fit. We then refitted the final model after removing data points with 
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absolute standardized residuals exceeding 3. We report the estimated coefficient (b), standard error (SE), 

and t and p value for each fixed effect included in the trimmed final model (note that all the results 

reported in the present paper refer to the trimmed version of the final models). We calculated the p values 

by using Satterthwaite's approximation of degrees of freedom. An alpha level of .05 was set as the cut-off 

for statistical significance. Effect sizes for the Task by Congruency interaction of interest were estimated as 

Cohen’s d based on one-sample t tests on the random slopes.  

As regards the RCA, linear regressions were first run at the subject level using a regression model similar 

to the final LMM model described above. In this case, the Block predictor was not included in the model 

because it was confounded with the Task predictor at the subject level. The corresponding formula for the 

final RCA model is thus:  

RT ~ 1 + Trial + preRT + PostError + hResp + vResp + Task*Congruency 

Again, the model was refitted after exclusion of outliers as described above. Then, the statistical 

significance and the effect size of the modeled effects was assessed at the group level by performing one-

sample t tests against 0 on the estimated b coefficients for each participant.  

We also performed control analyses using multilevel modeling to verify the assumption that this 

analytical approach provides better estimates of Stroop effects and their reliability by explaining intra-

subject/inter-trial sources of variance contributing to measurement error. To this aim, we replicated both 

LMM and RCA analyses on iRTs without the inclusion of all the trial-level confounds described above and 

compared their results with those yielded by the full models. 

Finally, we examined commonality among spatial Stroop tasks by performing a correlational analysis. 

Specifically, we computed Pearson's correlations among the participants’ Stroop effects for the six tasks, 

separately for the GLM, LMM, and RCA analyses. The statistical significance of these correlations was 

corrected for multiple comparisons using the FDR method. We also performed an exploratory factor 

analysis on the participants’ Stroop effects using the maximum likelihood extraction method followed by an 

Oblimin rotation. The number of factors to be extracted was determined based on parallel analysis.  

3.2.2.2. Assessing the internal reliability of the Stroop effects  

 We first assessed the internal consistency reliability of the GLM-based aggregated Stroop effect in each 

task by computing split-half correlations corrected with the Spearman-Brown formula (rSB). Specifically, for 

each task, the observations were randomly split in two subsets and the participants’ Stroop effects were 

computed and correlated between the two subsets. 
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We then assessed the internal reliability of the Stroop effects estimated using the multilevel modeling 

approach. Specifically, for each task, the observations were randomly split in two subsets and both LMM 

and RCA analyses were performed for each subset to model the interindividual variability in the Stroop 

effect while controlling for the same confounding predictors used in the main analyses described above. 

Finally, for both the LMM and RCA analyses, the by-subject random slopes for the Cong effects for each task 

in the two subsets were correlated to obtain the rSB values. We also computed the reliabilities of the Stroop 

effects yielded by the reduced multilevel models described above, which did not include trial-level 

confounds. 

In all cases, 2000 randomizations were used. We report the median rSB values as well as the 

corresponding nonparametric 95% confidence intervals (CI95%). 

3.2.3. Participants  

Seventy-two participants were recruited (42 females and 27 males; mean age = 25.35 years, SD = 8.21 

years; three participants chose to not indicate gender and age). Participants consisted of a convenience 

sample recruited using researchers’ personal networks and were not compensated for their participation. 

All procedures performed were in accordance with the ethical standards of the 2013 Declaration of Helsinki 

for human studies of the World Medical Association. The study was approved by the Ethical Committee for 

the Psychological Research of the University of Padova (approved protocol reference number: 3725). 

Participants’ handedness was assessed using the Edinburgh Handedness Inventory (EHI, Oldfield, 1971). 

The sample comprised six left-handed participants (EHI scores < −50) and nine ambidextrous participants 

(EHI score between -50 and 50), but the results were substantially the same when excluding either left-

handed participants only or together with ambidextrous participants. Two participants reported to suffer 

from neurological or psychiatric disorders and to be under medication. Again, the exclusion of these 

participants did not substantially change the reported results, so we decided to not exclude them (see the 

“LMM - iRT - Control analyses” section of the analysis script available at osf.io/9xfkw). 

3.2.3.1. Power analysis 

We performed an a-priori power analysis in G* Power (Erdfelder et al., 1996) to compute the minimum 

sample size required to detect, with a statistical power of .80, the interaction of main interest (i.e., the 

difference in the Stroop effect across tasks) in a repeated measure ANOVA. We assumed a small-medium 

Cohen’s d effect size of .3 (corresponding to η2
p = .022), a correlation between repeated measures of .70, 

and a (Huynh-Feldt) non-sphericity correction ε of .5, as estimated conservatively from recent pilot studies 

with a similar design from our research group. This analysis revealed that at least 48 participants were 

required. We nonetheless decided to recruit as many participants as possible exceeding the required 

https://osf.io/9xfkw
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sample size, so as to be able to detect even smaller effects (by increasing the statistical power of our 

analyses) and to increase the precision of the experimental effects estimates. 

As regards the power estimation for the LMM analysis, it “is still a largely uncharted terrain containing 

many open and unresolved issues” (Kumle et al., 2021, p. 3). First, classical analytical approaches to power 

estimation, like the one used by G*Power, cannot be applied to LMMs because they lack the required 

flexibility (Kumle et al., 2021). Moreover, to the best of our knowledge, the available analytical solutions 

proposed to compute power for LMMs are not adequate for our complex model (e.g., the Westfall’s 

approach (Westfall et al., 2014) is only applicable for models with a single two-level fixed effect; see 

Brysbaert & Stevens, 2018). To solve these issues, the simulation-based approach to power analysis has 

been proposed for LMMs as a flexible and powerful alternative to analytical approaches (Brysbaert & 

Stevens, 2018; Green & MacLeod, 2016; Kumle et al., 2021). However, this approach is not suitable in our 

case, as it requires that an optimal model is selected a-priori, while we adopted a conservative hierarchical 

model building approach. Moreover, given our aim and the use of novel experimental tasks, no well-

powered data are available to allow us to generate accurate artificial data needed to run the simulation, and 

the complexity of our model and the amount of recorded data made it too computationally intensive to run 

multiple simulations with varying parameters. Nonetheless, it should be noted that, since we had 36 trials 

per condition, 45 participants were needed to reach the recommended minimum number of 1600 

observations per condition (Brysbaert & Stevens, 2018). It should also be noted that LMMs tend to provide 

higher power than standard GLM approaches. 

3.3. Results  

3.3.1. Magnitude of the Stroop effects 

Table 3.1 shows the descriptive statistics for the RTs (see Appendix A, Tables A.1-2 and Figure A.3, for the 

other measures) and the accuracy (percentage of correct trials). Participants’ overall accuracy was very high 

(M = 96.0%, range = [86.3% - 99.8%]) and at ceiling in all tasks for congruent trials (> 98.3%; M = 98.7%, 

range = [93.5% - 100%]) but not for incongruent trials (>89.5%; M = 93.3%, range = [77.3% - 100%]). 

Consequently, the participants’ Stroop effects on the accuracy heavily depended on their average accuracy 

(i.e., participants with a very high overall accuracy cannot show a Stroop effect). This severely limits the 

interpretability of the analyses on accuracy and introduces strong biases in the estimation of the reliability 

of this measure. For this reason, we do not report here the results of the analyses on the accuracy (but see 

osf.io/6rzsh for the GLM analysis on accuracy data) and did not assess the internal reliability of this 

measure. 

https://osf.io/6rzsh
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We report here the results of the analyses performed on iRTs because the distribution of RTs was heavily 

right-skewed (see Data Analysis section). Moreover, the assumption of normality was violated for the 

residual of the analyses on both lnRTs and RTs, and the latter also severely violated the homoscedasticity 

assumption (see Appendix A, Figures A.6, A.8, A15, and A.18). However, the results of the analyses 

performed on RTs and lnRTs are reported in the supplementary material available from our project 

repository on the Open Science Framework (see Appendix A, Sections A.4.2-3, A.5.2-3, A.6.2-3).  

Table 3.1. Descriptive statistics.  
 Peripheral Perifoveal Navon Figure-Ground Flanker Saliency 

 M SD M SD M SD M SD M SD M SD  

Accuracy              

C 99% 3% 98% 4% 99% 2% 99% 2% 99% 2% 98% 2%  

I 90% 9% 90% 11% 96% 6% 94% 8% 95% 7% 96% 6%  

Stroop 9% 8% 8% 9% 3% 6% 5% 8% 4% 7% 3% 5%  

RT (ms)              

C 586 158 529 169 544 114 500 90 523 124 490 105  

I 716 214 658 219 615 140 579 90 586 108 523 108  

Stroop 130 87 129 78 71 47 79 29 63 31 32 28  

Notes: C, congruent trials; I, incongruent trials. 

As regards the GLM-based analysis, the rmANOVA on iRTs revealed the statistical significance of all the 

investigated effects. The post-hoc comparisons on the main effects of Task [F(3.44, 244.31) = 33.9, p < 

.0001, η2
p = .32] revealed that participants were significantly slower in performing the Peripheral task as 

compared to all the other tasks (all ps < .003) and significantly faster in performing the Saliency task as 

compared to all the other tasks (all ps < .001).  On the other hand, the Perifoveal, the Navon, the Figure-

Ground and the Flanker tasks did not significantly differ from each other in terms of iRTs (all ps > .109). The 

effect of Congruency was also significant [F(1, 71) = 907.2, p < .0001, η2
p = .93], with a very high overall 

Stroop effect (M = .269, SD = .076). Crucially, the Stroop effects differed across tasks [F(3.33, 236.55) = 55.7, 

p < .0001, η2
p = .44], albeit they were all significant (all ps < .0001) with very high effect sizes (all ds > 1.57) 

and dominance values, that is, the percentage of participants showing a positive Stroop effect (see Figure 

3.2 and Table 3.2; see osf.io/cwh73 for the detailed statistics; see also osf.io/49kdh and osf.io/ysmjc for the 

analyses on lnRTs and RTs, respectively). Indeed, the post-hoc comparisons on the follow-up ANOVA 

revealed the following pattern of Stroop effects: Perifoveal > Figure-Ground & Peripheral > Flanker > Navon 

& Saliency.  

https://osf.io/cwh73
https://osf.io/49kdh
https://osf.io/ysmjc
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Figure 3.2.  
ANOVA results, Congruency*Task interaction. The plot shows the subjects’ mean iRTs in Congruent (C, blue 
line) and Incongruent (I, red line) trials as a function of the Task (x axis). The corresponding Stroop effects 
are also shown (black line). Error bars represent within-subjects 95% confidence intervals (Morey, 2008). 

Table 3.2. Stroop effects for iRTs as a function of the analytical approach.  
 GLM LMM RCA 
 M SD t d Dom M SD t d Dom M SD t d Dom 

Peripheral 0.324 0.137 20.1 2.37 100 0.343 0.113 25.7 3.02 100 0.346 0.145 20.3 2.39 100 

Perifoveal 0.391 0.141 23.5 2.77 100 0.415 0.129 27.3 3.21 100 0.408 0.153 22.7 2.67 100 

Navon 0.188 0.096 16.7 1.96 95.8 0.197 0.070 24.0 2.83 100 0.197 0.098 17.0 2.00 95.8 

FG 0.307 0.120 21.7 2.56 100 0.320 0.100 27.2 3.21 100 0.317 0.121 22.3 2.63 100 

Flanker 0.252 0.120 17.7 2.09 98.6 0.262 0.104 21.4 2.53 98.6 0.259 0.119 18.4 2.17 98.6 

Saliency 0.152 0.097 13.4 1.58 91.7 0.157 0.064 20.8 2.46 100 0.153 0.099 13.1 1.54 91.7 

Notes: iRT, inverse-transformed RTs; GLM, general linear model; LMM, linear mixed-effects model; RCA, 
random coefficient analysis; Dom, percentage of participants showing a positive Stroop effect; FG, Figure-
Ground task (see Data Analysis section for details). 

The ANOVA results were replicated by both multilevel modeling analyses. Indeed, the LMM analysis 

confirmed the statistical significance of the Congruency by Task interaction (p < .0001, see Table 3.3), with a 

similar pattern of the across-tasks differences in Stroop effects described above (see Appendix A, Table A.4). 

Moreover, albeit the pattern of participants’ Stroop effects was accurately recovered by LMM, with high 

correlations with the Stroop effects observed in the GLM analyses (all rs > .81), the corresponding effect 

sizes were all considerably larger, especially for the Peripheral and Perifoveal tasks, which resulted 

significantly larger (see Table 3.2; see also Appendix A, Tables A.1-2 and Section A.5.1.4). This was likely due 

to the partial pooling (also called shrinkage or regularization) used by LMMs to estimate random slopes, 

which reduced the between-subject variability of the Stroop effects by “shrinking” the participant-specific 

effects toward the sample average effect based on the assumed normality of their distribution. 
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Consequently, the LMM consistently underestimated the Stroop effects of participants showing larger 

Stroop effects and overestimated those of participants showing smaller Stroop effects. Indeed, linear 

regression analyses revealed that, for all tasks, the slope of the regression line for the Stroop effects yielded 

by the LMM relative to the GLM approach was significantly lower than 1, while the intercept was 

significantly larger than 0 (see Appendix A, Section A.5.1.4).  

The LMM analysis also revealed that all the confounding predictors significantly modulated participants’ 

iRTs (all ps < .0001, see Table 3.3). Specifically, the Trial by Block interaction indicates a learning/adaptation 

effect (i.e., a reduction of iRTs as the trials within a block went on) that decreased during the experiment 

(i.e., as the blocks went on). Moreover, there was a significant post-error slowing (i.e., participants’ iRTs 

were significantly higher after an erroneous trial) and a significant temporal dependency in iRTs (i.e., a 

positive correlation between iRTs at the current and preceding trial). Finally, participants were faster on 

average in providing a response with the index fingers and with the right hand (note that the participants’ 

EHI score did not significantly modulate this latter effect: χ2(2) = 0.81, p = .668).  

The conditional R2 of the LMM model was .70 and 0.99% of the observations was removed as outliers (>3 

absolute standardized residuals) to mitigate the stress of the model fit (i.e., to improve the normality of the 

residuals, see Appendix A, Figure A.4). The same model was also fitted on both RTs and lnRTs, confirming 

the results reported above (see Appendix A, Sections A.5.2-3). As anticipated above, however, the 

assumptions of homoscedasticity and normality of the residuals were violated in the analyses on lnRTs and 

RTs (see Appendix A, Figures A.6 and A.8), so results obtained on these data should be taken with caution. 

Moreover, it should be noted that the inclusion of the by-participants random slopes for the Congruency by 

Task interaction of interest resulted in a singular fit in all cases, likely due to the limited number of 

observations.   

The control LMM analysis performed using the reduced model without confounding predictors 

confirmed the across-task pattern of Stroop effects, with very high correlations with the Stroop effects 

observed using the full model (all rs > .983). However, participants’ Stroop effects obtained using the 

reduced model were all significantly and consistently smaller than those obtained in the main LMM analysis 

controlling for the trial-level confounding effects (all ps > .0001; see Appendix A, Section A.5.4). 

We thus performed the RCA analysis, which replicated the LMM results (see Appendix A, Table A.22). 

Indeed, the Congruency by Task interaction was significant, with the same pattern of across-tasks 

differences in Stroop effects revealed by the GLM analysis (see above, see also Appendix A, Table A.23). 

Notably, both the raw and standardized effect sizes for the Stroop effects were almost identical to those 

revealed by the GLM analysis (see Table 3.2). Indeed, the pattern of participants’ Stroop effects was 

recovered almost perfectly by RCA, as the correlations with the Stroop effects observed in the GLM analyses 



 

89 

were all very high (all rs > .96, see Appendix A, Sections A.3 and A.6.1.4) and higher than those observed for 

the LMM analysis in all tasks (see Appendix A, Section A.6.1.5). 

Table 3.3. LMM results.  

Effect F DF1 DF2 p 

Block 34.5 1 192.70 < .0001 

Trial 729.4 1 28887 < .0001 

postERR 437.3 1 29124 < .0001 

preRT 799.3 1 28950 < .0001 

hResp 111.9 1 28862 < .0001 

vResp 375.7 1 28859 < .0001 

Trial:Block 23.2 1 28868 < .0001 

CONG 437.3 1 72.23 < .0001 

TASK 51.6 5 71.21 < .0001 

CONG:TASK 58.2 5 88.46 < .0001 

Notes: postERR, post-error trials; preRT, iRT at the previous trial; hResp, horizontal coding of the response 
(i.e., the responding hand: right vs left); vResp, vertical coding of the response (i.e., the responding finger: 
middle vs index); CONG, Congruency; DF, degrees of freedom. P values were computed using the 
Satterthwaite’s approximation  

Moreover, all the effects of the confounding predictors on participants’ iRTs were confirmed (all ps < 

.001; see Appendix A, Table A.22, for the detailed statistics). The conditional R2 of the RCA model was .71 

and 0.8% of the observations was removed as outliers to mitigate the stress of the model fit (see Appendix 

A, Figure A.12). Again, the same model was also fitted on both RTs and lnRTs, confirming the results 

reported above (see Appendix A, Sections A.6.2 and A.6.3), but with violations of the assumptions of 

homoscedasticity and normality of the residuals (see Appendix A, Figures A.15 and A.18). To further check 

the robustness of our results, we ran similar RCA analyses after excluding the postERR predictor. Indeed, 

given the high accuracy, some participants had very few post-error trials, making the estimation of the post-

error slowing effect problematic. These analyses confirmed the results reported above. 

The control RCA analysis performed using the reduced model without confounding predictors confirmed 

the across-task pattern of Stroop effects, with very high correlations with the Stroop effects observed using 

the full model (all rs > .976). However, as for the LMM analysis, participants’ Stroop effects obtained using 

the reduced model were all significantly and consistently smaller than those obtained in the main LMM 

analysis controlling for the trial-level confounding effects (all ps > .025; see Appendix A, Section A.6.4). 

Finally, the correlational analysis performed to examine commonality across spatial Stroop tasks 

revealed a specific pattern of intercorrelations among Stroop effects that emerged in all the three analyses 

we performed (see Appendix A, Sections A.7.1-3). Specifically, there was a significant correlation between 
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the Stroop effects yielded by the Peripheral and Perifoveal tasks (r = .627, .860, and .594 for the GLM, LMM, 

and RCA analyses, respectively). Moreover, the Stroop effects for the Saliency task was significantly 

correlated with those yielded by the Navon (r = .304, .472, and .296), Figure-Ground (r = .491, .860, and 

.485), and Flanker (r = .443, .802, and .425) tasks. Finally, the Stroop effects yielded by the Figure-Ground 

and Flanker tasks were significantly correlated (r = .720, .878, and .720). The exploratory factor analysis 

confirmed this pattern of results. Indeed, it revealed the existence of two latent factors that consistently 

comprised, respectively, the Peripheral and Perifoveal Stroop effects (all loadings > .73) and the Figure-

Ground, Flanker, and Saliency Stroop effects (all loadings > .53). The Navon Stroop effect was inconsistently 

included in the first factor with small loadings (< .44) and high uniqueness (> .70) (see Appendix A, Table 

A.54; see also osf.io/zqemg).  

3.3.2. Internal reliability of the Stroop effects 

Figure 3.3 shows the internal reliability estimates (the median rSB and the corresponding nonparametric 

CI95%, see also Appendix A, Section A.8) of the Stroop effects for each task as a function of both the 

analytical approach and the RT transformation.  

A first notable result regards the influence of the analytical approach on the internal reliability estimates, 

which generally tended to be higher and more stable for RCA and LMM approaches as compared to the 

GLM one. By contrast, the RT transformations differently affected the internal reliability estimates across 

versions.   

Nonetheless, the internal reliability of both the Peripheral and Perifoveal versions was quite high and 

robust against the choice of the analytical approach and the RT transformation. Indeed, the median rSB 

values for these versions were consistently higher than .65 (range: from .72 to .88 and from .66 to .85, 

respectively) with relatively low variability across randomizations, albeit they still tended to be higher and 

more stable for RCA and LMM approaches as compared to GLM one, and lower for lnRTs and iRTs as 

compared to untransformed RTs.  

By contrast, the internal reliability of the other versions was generally lower and less robust as compared 

to that of the Peripheral and Perifoveal versions, with higher variability of median rSB values not only across 

randomizations, but also as a function of both the analytical approach and the RT transformation. 

Specifically, the internal reliability of the Navon version ranged from .39 to .79, with a similar pattern as the 

one observed for the Peripheral and Perifoveal versions. Conversely, the internal reliability of both the 

Figure-Ground and Flanker versions (median rSB values range: from .32 to .93 and from .42 to .95, 

respectively) tended to be higher and more stable for lnRT and, especially, iRT as compared to RT. 

Particularly good internal reliability estimates were observed for both versions in the LMM analyses on iRTs. 

https://osf.io/zqemg
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Finally, the internal reliability of the Saliency version was generally poor (median rSB values range: from .1 to 

.77), again except for the one observed in the LMM analyses on iRTs. 

 

Figure 3.3.  
Internal reliability of the Stroop effects. The plot shows the median internal reliability estimates (rsb) of the 
Stroop effects for each task as a function of both the analytical approach (GLM: general linear model, RCA: 
random coefficient analysis, LMM: linear mixed-effect model; x axis) and RT transformation (RT: 
untransformed response times –in orange–, lnRT: natural log-transformed RT –in purple–, iRT: inverse-
transformed RT –in green–; see Data analysis section for details). The error bars represent the 
nonparametric 95% confidence interval. 

Interestingly, the internal reliability of the Stroop effects yielded by the control multilevel analyses 

performed using the reduced models (i.e., without including the trial-level confounding predictors) was 

lower than that obtained using the full models (see Appendix A, Figure A.26), which also yielded larger 

Stroop effects. 

3.4. Discussion  

The spatial Stroop task is an experimental paradigm measuring cognitive control and interference 

resolution that offers some methodological advantages over the commonly used verbal Stroop task. 

However, the spatial Stroop tasks used in the literature all have methodological drawbacks that limit their 

potential of yielding a complete Stroop interference effect that is analogous to that engendered by verbal 

Stroop tasks. We recently proposed a spatial Stroop task (Puccioni & Vallesi, 2012a) that overcomes these 

limitations by ensuring conflict at multiple loci, that is, at the task, stimulus and response levels, with 
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complete alternated trials sequences, thus allowing to measure participants’ interference resolution and 

conflict adaptation abilities effectively. Nonetheless, this task (Peripheral) still has some weaknesses due to 

the use of peripherally presented visual stimuli. Therefore, we aimed at assessing alternative spatial Stroop 

versions that maintain the methodological advantages of the Peripheral spatial Stroop task while 

overcoming its limits. To this aim, we designed five novel versions of the spatial Stroop task (Perifoveal, 

Navon, Figure-Ground, Flanker, and Saliency) and performed an online study to compare the six spatial 

Stroop tasks in a within-subjects design. Although we predicted that they all would have produced a spatial 

Stroop effect, our goal was to identify the task yielding not only the largest and most dominant, but also the 

most reliable Stroop effect. Moreover, we performed various robustness checks to assess the robustness of 

our results to analytic flexibility. 

3.4.1. Magnitude of the Stroop effects 

The analysis assessing the magnitude of the Stroop effects in our tasks revealed that they all yielded very 

large Stroop effects. Indeed, regardless of the RT transformation of the analytical approach, the d values for 

all tasks were always well above the value of 0.8 (see Table 3.2), which is commonly considered as the 

threshold of large effect sizes. This confirms our expectation that all our spatial Stroop paradigms are 

effective at producing a spatial Stroop effect, in line with the dominance assumption (Rouder & Haaf, 2018, 

2019). Our results are thus generally in line with the idea that all individuals have a true positive Stroop 

effect (i.e., they truly respond more slowly in incongruent compared to congruent trials).  

In particular, our original Peripheral Stroop tasks seem to be universal (Parsons, 2020), with all 

participants showing an estimated positive Stroop effect that was very large and robust to analytic flexibility 

(median d = 2.09; range: from 1.43 to 3.02; see Appendix A, Section A.3), with the exception of one 

participant in the RCA analysis on RTs (who nonetheless showed an estimated raw Stroop effect of -1.7 ms, 

which was indistinguishable from a positive Stroop effect with the resolution of our experimental design). 

This result confirms our previous findings showing the complete dominance of the Stroop effect yielded by 

the Peripheral task: all the 287 and 57 participants in the Capizzi and colleagues’ (2017) and the Ambrosini 

and Vallesi (2017) studies, respectively, showed an estimated positive Stroop effect in a GLM-based analysis 

on lnRTs. Our analyses on the iRTs also revealed that this task yielded a Stroop effect that was consistently 

larger than those observed in the Navon, Flanker, and Saliency tasks (see Appendix A, Section A.3). 

Similar results were obtained for the Perifoveal task, which is a variation of the Peripheral task. Indeed, 

also in this case all participants showed an estimated positive Stroop effect that was robust and even larger 

than that yielded by the Peripheral task (median d = 2.47; range: from 1.65 to 3.23; see Appendix A, Section 

A.3), again except for one participant in the RCA analysis on RTs (who showed a raw Stroop effect of -1.8 

ms). Specifically, all the analyses on iRTs revealed that the Perifoveal Stroop effect was significantly larger as 
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compared to that observed for all the other tasks, including the original Peripheral one (see Appendix A, 

Tables A.4 and A.23; see also osf.io/cwh73). Since the only difference between these two tasks is the spatial 

arrangements of the visual stimuli (and the consequently lower eccentricity), these results indicate that 

large visuospatial attention shifts and/or eye movements were indeed present in the Peripheral task and 

that they may have led to an underestimation of the corresponding Stroop effect. Some support for the 

former conclusion comes from the significant main effect of Task, which showed that the Peripheral task 

had the longest overall RTs, confirming our initial assumption of the methodological limitations of the 

Peripheral task. Notwithstanding this difference, our results clearly indicated the commonality between the 

Peripheral and Perifoveal tasks, as their iRTs Stroop effects consistently showed a significant correlation ≥ 

.60 and loaded on the same latent factor, suggesting that they were related to the same cognitive processes 

(see Appendix A, Section A.7).   

Our analyses also revealed that the universality assumption holds for the Figure-Ground task as well, 

albeit it presents more radical methodological variations as compared to the two tasks discussed above. In 

this case, all participants showed an estimated positive Stroop effect that was robust to analytical flexibility 

and very large (median d = 3.02; range: from 2.56 to 5.52; see Appendix A, Section A.3). Specifically, all the 

analyses on iRTs revealed that the Figure-Ground Stroop effect was comparable to that observed in the 

Peripheral task and significantly larger as compared to those observed in the Navon, Flanker, and Saliency 

tasks (see Appendix A, Tables A.4 and A.23; see also osf.io/cwh73).  

Finally, looking at the Flanker task, it showed very large Stroop effects (median d = 2.49; range: from 2.07 

to 4.76) but with a lower level of dominance because some participants did not show a positive Stroop 

effect. By contrast, the Navon and, especially, the Saliency tasks yielded Stroop effects that were smaller 

and less robust than those observed for the other tasks (see Appendix A, Section A.3).  

3.4.2. Internal reliability of the Stroop effects 

Despite the dominance and large magnitude of the Stroop effects yielded by the Peripheral and 

Perifoveal tasks, their internal reliability was quite high and robust against the choice of the analytical 

approach and the RT transformation, also with a relatively low variability across randomizations (see Figure 

3.3 and Appendix A, Section A.8). This is at odds with the reliability paradox (Hedge et al., 2018), and 

related proposals (Rouder & Haaf, 2019) that if an experimental effect is so large and easily replicable to be 

called universal (Parsons, 2020), like the ones we obtained here, it would likely tend to have a between-

subjects variability that is not large enough to ensure an adequate reliability. Although the reliability of the 

spatial Stroop effects has hardly ever been reported, our results are in line with Paap and colleagues (2020), 

who reported a split-half correlation of .81, and with a recent large individual difference study (n = 287, 

Capizzi et al., 2017) in which we used our Peripheral task to detect a very large spatial Stroop effect on lnRTs 
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(d = 2.96) with an adequate internal reliability (rSB = .77). It is also important to note here that, given the 

limited number of trials we used, the internal reliability estimates we obtained here likely represent a lower 

bound on the actual internal reliability of these tasks. Indeed, as also shown by Hedge and coworkers 

(2018), there is a clear positive nonlinear relationship between reliability and number of trials. In other 

words, there is room for improvement for our Peripheral and Perifoveal spatial Stroop task as, by increasing 

the number of trials, their reliability will inevitably increase.  

Concerning the reliability of the Stroop effects yielded by the other tasks, it was quite high for the 

Figure-Ground task - despite the dominance and large magnitude of the Stroop effects -, at least for the 

analyses on iRTs. A similar pattern of results was obtained also for the Flanker task, which showed a good 

internal reliability, despite very large Stroop effects. On the contrary, the Navon and the Saliency tasks, 

which showed smaller Stroop effects, were also less reliable (see Figure 3.3 and Appendix A, Section A.8). 

3.4.3. Impact of the analytical approach 

Our results provide support for the idea that multilevel modeling can improve reliability estimates of the 

experimental effects by separating true experimental effects from measurement error (i.e., the intra-

subject, trial-by-trial variability, also called trial noise). Indeed, both the effect size and, especially, the 

reliability of our iRT Stroop effects were consistently higher for the LMM and RCA analyses as compared to 

the GLM analysis, which requires aggregating participants’ measures across trials, thus ignoring any trial-by-

trial variability that may contaminate them and, thus, estimates of experimental effects. More importantly, 

they were also consistently higher than those estimated using the reduced LMM and RCA models that did 

not include the confounding predictors accounting for (at least part of) the measurement error. Following 

the “reliability paradox” study (Hedge et al., 2018), some attempts using multilevel modeling have been 

made in trying to improve reliability estimates of experimental effects and their correlations (Haines et al., 

2020; Rouder & Haaf, 2019), with some promising results, albeit it has been shown that the use of more 

complex analytical approaches of this type is not sufficient alone to uncover the correlations between 

experimental effects (Rouder & Haaf, 2019).  

Here we made a step further by using the multilevel modeling approach in a more informed way, not 

only to simply remove trial noise, but also to explain and partial out the effects of lower-level confounding 

factors at the trial level. Indeed, we claim that part of the intra-subject, trial-by-trial variability is not just 

noise: at least in part, it represents the effects of well-known longitudinal effects and other confounding 

effects due to other perceptual, motor, and cognitive processes. These effects can be assumed based on the 

specific characteristics of the task at hand and the psychological mechanisms that generate behavior. 

Therefore, they can be included in the analytical model to improve the estimates of the experimental 

effects of interest and of their reliability as well. Of course, as we detailed in the Introduction, some of these 
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effects, like the sequential effects due to the trial-by-trial repetitions of the stimulus characteristics, can 

(and should, whenever possible) be controlled methodologically. We thus advocate the use of such a 

theoretically informed methodological approach in creating (or selecting) experimental tasks, followed by 

an informed hierarchical analytical approach to estimate the corresponding experimental effects. 

3.4.4. Differences across the task versions 

Apart from the evident communality between the Peripheral and Perifoveal tasks that we discussed 

above, our correlational and exploratory factor analyses were also able to identify the specific 

methodological differences among our tasks that are important to note here (see Appendix A, Section A.7). 

First, in the Peripheral and Perifoveal tasks, the irrelevant characteristic of the stimulus is intrinsic to the 

stimulus itself, while in the Figure-Ground, Flanker, and Saliency tasks it constitutes an extrinsic dimension, 

that is, it is a physically separate stimulus. The Navon task is peculiar in this aspect because the relevant 

stimulus (i.e., the large arrow) is created by illusory contour perception given by the spatial arrangement of 

the irrelevant stimuli (i.e., the small arrows).  

Moreover, in the Peripheral and Perifoveal tasks the relevant and irrelevant characteristics (i.e., the 

position and direction of the arrow, respectively) are different dimensions that are related to different 

perceptual processes (i.e., the spatial localization of a visual stimulus and the perception of its shape), while 

in the other tasks the relevant and irrelevant stimulus dimensions not only overlap but are identical and 

related to the same perceptual process, constituting what Kornblum called a “super-Stroop ensemble” 

(1992, p. 770). The involvement of a single perceptual process in the Figure-Ground, Navon, Flanker and 

Saliency tasks might be questionable because it could be interpreted as the absence of task conflict, which, 

in contrast, has been shown to be required for a complete Stroop effect (Augustinova et al., 2019; Parris et 

al., 2022). Since we agree with the multiple-loci accounts of the Stroop effect and, recently, we have 

stressed the importance of methodologically correct spatial Stroop designs (Viviani et al., 2022), we need to 

clarify why these four tasks can be considered fully-fledged Stroop tasks, ensuring interference not only at 

the stimulus and response levels but also at the task level. As pointed out in the introduction, they are also 

characterized by an asymmetrical relation between the two dimensions but, as opposed to the Peripheral 

and Perifoveal tasks, such asymmetry does not only rely on higher processing automaticity but also on 

higher perceptual salience of one dimension as compared to the other. Therefore, task conflict is present 

because our task-relevant stimuli still differ from the task-irrelevant ones from a conceptual and/or 

perceptual point of view, and, consequently, they activate task-sets that, despite belonging to the more 

general shape perception processing stream, are distinguishable. This is particularly striking in the Navon 

version, for which the distinction between local and global processing, together with global precedence, are 

well-documented. Therefore, it is highly likely that the prevailing but task-irrelevant global processing 
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interferes with the less habitual but task-relevant local processing. A similar assumption can be extended to 

the Figure-Ground task, wherein the distinction between global vs local processing streams might be also 

influenced by perceptual factors. The competing task-sets activated in the Flanker and in the Saliency tasks 

are instead more likely to be perceptual in nature. In the former, the task-irrelevant processing of 

surrounding arrows may be stronger because of their higher quantity as compared to the single and less 

salient central task-relevant arrow, whereas in the second, the task-irrelevant processing of the bigger 

arrow is stronger than the task-relevant processing of the smaller one for its greater size and saliency.  

The pattern of the across-tasks correlations we observed and the results of the exploratory factor 

analysis could thus reflect these across-tasks methodological differences, which, in turn, could explain our 

results on the magnitude and reliability of the different Stroop effects. For example, taking the most evident 

difference concerning task conflict, the fact that the Stroop effect was the most robust and reliable in the 

Peripheral and Perifoveal tasks might indicate that in these tasks the degree of interference at task level was 

the highest, probably due to the stronger asymmetry between position and direction processing. When, in 

contrast, such conflict was involved to a lesser extent due to a more perceptually-based asymmetry, such as 

in the remaining four tasks, both Stroop effect magnitude and reliability were lower, albeit quite good, 

especially in the Figure-Ground and Flanker tasks. These findings provide further evidence for the 

multiplicity of Stroop effect loci, confirming the importance of including all the required interference levels 

when designing Stroop tasks.  

Apart from the above-mentioned methodological differences related to interference resolution, the 

observed across-task differences in Stroop effect magnitude and reliability could also be explained, at least 

in part, by differences in non-conflict processes. For example, the across-task pattern of RT Stroop effects 

derived from the GLM analysis, reported in Table 3.1, seems to be related to the across-task pattern of RTs 

in Congruent trials: tasks with longer baseline RTs tended to produce larger Stroop effects. This could reflect 

something similar to what is generally observed, for example, in studies contrasting behavioral performance 

in older vs. younger adults (Faust et al., 1999). Therefore, across-task differences in general processing 

demands (or task difficulty) or other non-conflict processes could have modulated the corresponding Stroop 

effects independently of the underlying differences in produced interference that we discussed above. In 

line with this interpretation, recent simulations from evidence accumulation models produced larger RT 

Stroop effects with decreases in mean drift rates (reflecting general processing speed) and increases in 

boundary separation (reflecting strategic slowing – or more cautious responding) while keeping conflict 

effects constant (Hedge et al., 2018, 2022). However, the relation between Stroop effect magnitude (and 

reliability) and baseline performance/task difficulty across our tasks was strongly dependent on the 

analytical choices. Indeed, it was less evident both in the multilevel analyses on RTs and for RT 

transformations (see Appendix A); Moreover, it was strongly driven by the results of the Peripheral task, 
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which showed the slowest baseline performance and very large (and reliable) Stroop effects. More research 

is thus required to clarify the impact of task general processing requirements and other non-conflict 

processes on the magnitude and reliability of Stroop effects. 

Overall, these results and our methodological considerations highlight the importance for the 

researchers interested in using the tasks presented here to carefully consider their specific characteristics in 

light of their research questions, as they may have a non-negligible impact on the ability to identify the 

behavioral and neurophysiological correlates of Stroop-interference resolution. Moreover, albeit 

preliminary, our results suggest that our tasks were accurately tailored to adequately assess inter-individual 

variability in interference resolution and conflict adaptation in different populations and provide further 

support for the possibility to use these experimental effects in correlational research (e.g., see Ambrosini & 

Vallesi, 2017). 

3.5. Conclusions 

Overall, our results suggest that the best alternative to our original Peripheral task is the Perifoveal task. 

Indeed, they both showed a Stroop effect that was so large and robust to analytical flexibility to be used as 

a measure of interference resolution and conflict adaptation that satisfies the dominance assumption. 

Moreover, both the Peripheral and Perifoveal tasks showed an adequate internal reliability, making them 

viable options for scholars interested in conducting correlational research. The Figure-Ground and the 

Flanker tasks also showed a good balance between the reliability and the magnitude of the Stroop effect, 

but they also showed less robustness to analytical flexibility.  
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CHAPTER 4 

Tango of Control:  

The Interplay between Proactive and Reactive Control 

4.1. Introduction 

In the introductory chapter, we introduced the subject of this thesis, cognitive control, emphasizing that 

this umbrella term refers to a family of processes required to adaptively regulate, coordinate, and sequence 

our thoughts and action plans according to the context and internal goals (Braver, 2012; Chiew & Braver, 

2017). In addition to emphasizing the significant role of representations (Botvinick et al., 2001; Chiew & 

Braver, 2017; Cohen, 2017; Duncan, 2010), which will be directly explored in Chapter 6, we have highlighted 

interference resolution as a central component of cognitive control. Interference resolution refers to the 

ability to select weaker but task-relevant information when it competes with stronger and more habitual, 

but task-irrelevant information (Miller & Cohen, 2001; Nee et al., 2007; Tafuro et al., 2019). The need to 

select task-relevant information among conflicting one is pervasive in everyday life because we are always 

surrounded by great amount of sensory stimuli and possible actions, but only some of them are appropriate 

at any given moment (Gratton et al., 2018; Jiang et al., 2014; Nee et al., 2007).  

In the last decades, the mechanisms that underlie and adaptively regulate cognitive control have been 

intensively investigated. However, some methodological and theoretical issues not only undermine an 

exhaustive understanding of this fundamental process, but also its behavioral signatures are still not clear. 

What still remains unclear is whether the two mechanisms postulated by the Dual-Mechanisms of Control 

model (DMC; Braver, 2012; Braver et al., 2007), proactive and reactive control, can be distinguished at the 

behavioral level. In this chapter, we precisely address this issue by using the Stroop task. To achieve this, we 

devised a novel methodological approach that incorporates cutting-edge trial-level multilevel modeling 

techniques, ensuring accurate and reliable estimations of the Stroop effect, while finely manipulating the 

proxy variables for proactive and reactive control at the trial level. This fine-grained manipulation is crucial 

for gaining insights into the simultaneous presence and interplay of proactive and reactive control 

mechanisms while effectively controlling for potential confounding effects arising from low-level processes, 

such as contingency. 

Although in the present work, we explore whether proactive and reactive control are distinct through 

specific experimental manipulations related to proportion congruency, other approaches to investigate this 

experimental question could be used. For example, based on the rationale that proactive control is more 

https://www.zotero.org/google-docs/?wGtwUN
https://www.zotero.org/google-docs/?wGtwUN
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resource-demanding (Braver, 2012), it should be specifically affected by behavioral manipulations that 

overload cognitive resources, through dual tasks or a concurrent working memory task. If the use of this 

approach left the reactive control mode intact, this would mean that the two control modes are 

independent. This type of manipulations has been used in the literature but, as we will extensively discuss 

in this chapter, methodologically adequate manipulations that allow simultaneously distinguishing between 

proactive and reactive control are still missing. Extending the logic that proactive control is more resource-

demanding, some studies have explored this question using healthy aging populations, assuming that 

proactive control should be affected by a greater decline. Findings are in line with this assumption, revealing 

a deterioration of proactive control with age, in contrast to intact reactive control (e.g., Braver et al., 2005). 

In addition to these, lesion-based approaches could be an alternative to behavioral manipulations because 

they would allow temporarily disrupting not only proactive but also reactive control. However, to 

accomplish this, it would be necessary for the involved neural areas to be clearly defined and easily 

stimulable, which is still not the case. The lack of clarity of the implied neural bases is also due to the lack of 

neuropsychological evidence of a dissociation, as, to the best of our knowledge, there are no studies with 

patients showing a clear dissociation between proactive and reactive control.  

From this brief overview, it is clear that there are multiple possible approaches to dissociate between 

proactive and reactive control. However, it is also evident that the starting point should be methodological 

homogeneity, at least in the behavioral paradigms; otherwise, there is a risk of obtaining not robust results. 

For this reason, to pursue our goal, we have decided to start with a clear paradigm to test specific 

manipulations, paying attention to methodological rigor. These manipulations, specifically those involving 

proportion congruency, are widely used in the literature and represent an equally extensive topic. For this 

reason, in what follows we first describe the classic manipulations commonly employed to engage proactive 

and reactive control, along with their respective limitations that have been already introduced in Chapter 1. 

Subsequently, we will discuss how researchers typically address such flaws and highlight the associated 

costs of proposed solutions. Additionally, we will highlight why the commonly used approaches do not allow 

truly investigating the separability of the two mechanisms. We will thus propose an alternative approach to 

solve these issues.  

4.1.1. The Stroop task: Proportion Congruency (PC) manipulations and their limitations 

In the introductory chapter, we also introduced one of the most commonly used interference paradigms, 

the Stroop task (MacLeod, 1991; Stroop, 1935; see Section 1.2). In this task, cognitive control is engaged to 

overcome interference at the task level (i.e., reading vs. color naming), as well as interference occurring at 

the stimulus and response levels in incongruent trials (Gonthier et al., 2016; see also Chapter 2). Then, in 

Chapters 2 and 3, we discussed the methodological characteristics of this paradigm, laying the groundwork 
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for the current chapter. Here, we will delve into the experimental manipulations that are commonly 

employed to modulate the level of cognitive control engaged and consequently the magnitude of the 

Stroop effect (Bugg & Crump, 2012).  

 Cognitive control demand and the consequent magnitude of the Stroop effect can be modulated by 

manipulating the proportion congruency (PC), that is, the relative frequency/likelihood of congruent trials 

within the task blocks (Gonthier et al., 2016; Logan & Zbrodoff, 1979). The basic assumption is that 

information about the PC is used to adjust the cognitive control level and, as the size of the Stroop effect 

inversely reflects the success of interference resolution, it is postulated that when such effect is relatively 

small, a greater extent of cognitive control has been recruited (e.g., Braem et al., 2019; Lindsay & Jacoby, 

1994). More in detail, in mostly incongruent blocks (low PC), the high probability of encountering 

incongruent trials and experiencing interference increases cognitive control demands and this yields 

significantly smaller Stroop effects. In contrast, in mostly congruent blocks (high PC), due to a relatively 

lower frequency of incongruent trials, cognitive control is laxer and the Stroop effect gets larger (e.g., 

Lindsay & Jacoby, 1994).  

The high flexibility of the PC manipulation makes it suitable for our purpose of differentiating the distinct 

cognitive control mechanisms (Bugg, 2017; Bugg & Crump, 2012), namely, those postulated by the Dual-

Mechanisms of Control model (DMC, Braver, 2012; Braver et al., 2007). As outlined in Chapter 1 (see Section 

1.1), the DMC explains the intrinsic variability of cognitive control in terms of different temporal dynamics, 

postulating that proactive and reactive control are two qualitatively distinct cognitive control modes. The 

proactive control mode operates actively by maintaining task goals and anticipatorily biasing cognitive 

processes in a goal-driven manner. Thus, proactive control acts as a preparatory mechanism, engaged in a 

sustained fashion even before cognitively demanding events, like conflicts, are encountered. When 

proactive control is exerted, interference is reduced because top-down attentional biases favor the 

processing of the task-relevant information. By contrast, reactive control is mobilized transiently only as 

needed on a “just-in-time” basis. As such, reactive control relies upon a “late correction” mechanism 

reflecting the bottom-up reactivation of task goals to resolve interference.  

Previous works using the Stroop task have shown that these two cognitive control modes can be 

distinguished by manipulating the PC at the list-wide (LWPC) and item-specific (ISPC) levels (Bugg, 2012; 

Bugg & Crump, 2012)11. Indeed, although these PC manipulations produce a similar overall pattern, they 

favor the use of a cognitive control mode over the other, as the logic behind them is different (Bugg, 2017). 

The LWPC manipulation is used to stress the adoption of a proactive control mechanism to resolve Stroop 

                                                           

11 A third type of PC manipulation exists, the context-specific PC. Besides being akin to the ISPC, we will not discuss 

in detail the context-specific PC as it was not manipulated in the present work, but see Bugg and Crump (2012) and 
Bugg (2012) for reviews. 
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interference. It implies varying the PC within experimental blocks, that is, blocks with high LWPC, in which 

the proportion of congruent trials is higher (e.g., 75% congruent and 25% incongruent), are compared to 

blocks with low LWPC, wherein the ratio is reversed (e.g., 25% congruent and 75% incongruent). Typically, 

this manipulation yields the so-called LWPC effect, characterized by smaller Stroop effects in low-LWPC 

blocks as compared to high-LWPC blocks (e.g., Bugg & Crump, 2012; Lindsay & Jacoby, 1994; Logan & 

Zbrodoff, 1979). Such an effect would be yielded by a goal-driven modulation of control, which is possible 

because, after experiencing a number of trials within a block, participants learn the global likelihood of 

conflict and develop expectancies about the upcoming trials. Low LWPC leads to the implementation of 

early preparatory strategies operating even before stimulus onset, which entail imposing an attentional bias 

toward the task-relevant dimension and/or away from the task-irrelevant one. By contrast, when LWPC is 

high, the more prepotent task-irrelevant dimension is processed preferentially (Braver et al., 2007; Bugg, 

2017; Bugg & Chanani, 2011; Bugg & Crump, 2012; Lindsay & Jacoby, 1994; Logan & Zbrodoff, 1979). The 

highest level of proactive control is observed in low-LWPC blocks, yielding not only shorter RTs on 

incongruent trials, but also a congruency cost, namely a slowing on congruent trials as compared to 

congruent trials in high-LWPC blocks, since the attentional biases away from the task-irrelevant dimension, 

which are imposed anticipatorily and globally, reduce the facilitation on congruent trials (Gonthier et al., 

2016).  

In contrast, when the ISPC is manipulated, reactive control is dominant. As the name suggests, it is 

implemented by assigning different PCs to specific sets of items (Jacoby et al., 2003). Essentially, the 

manipulation targets one feature of an item, which is commonly the task-irrelevant dimension (i.e., the 

word dimension in the color-word Stroop task). Such stimulus feature signals a specific PC and two 

conditions can be distinguished within the same block: high ISPC (e.g., 75% probability for the word RED to 

appear in red ink) and low ISPC (e.g., 25% probability for the word BLUE to occur in blue ink) items. 

Therefore, low-ISPC items, by signaling a high level of expected interference, are assumed to produce the 

highest level of reactive control (e.g., Bugg, 2012, 2017; Bugg & Hutchison, 2013) triggered by a fast 

“stimulus-attention association” (Tafuro et al., 2020).12 Using this manipulation, previous studies found an 

ISPC effect, that is, smaller Stroop effects for low- than high-ISPC items (Bugg et al., 2011; Bugg & 

Hutchison, 2013; Jacoby et al., 2003). The different PC items are randomly intermixed and presented within 

the same block, and the global probability of congruent and incongruent trials is usually kept equal in that 

block (LWPC of 50%), so that this manipulation cannot imply a control modulation at the list level. Indeed, 

                                                           

12 Note that a second, later form of reactive control exists, as discussed in Chapter 1. Indeed, this later reactive 

control mechanism would come into play to resolve interference when other control processes failed, that is, when 
proactive control and the faster stimulus-driven reactive control are both low. In this case, indeed, incongruent trials 
elicit unexpected conflict that has to be resolved by cognitive control mechanisms at a later stage, likely involving the 
response selection processes. This later form of reactive control thus resembles that of the conflict monitoring 
account and is more purely reactive (and response-related) in nature (Tafuro et al., 2020). See also figure 1.6. 
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participants learn the conflict likelihood of the items, but they can use this item-specific information to 

impose attentional biases only after stimulus onset. The ISPC effect is thus a reactive modulation of control 

that, by operating on an item-by-item basis, is fast and flexible and is maximal when the item signals a high 

level of interference (Bugg, 2012, 2017; Bugg et al., 2011; Bugg & Hutchison, 2013).  

Overall, PC manipulations are fundamental as they allow scholars to investigate what is referred to as 

adaptive control, that is, the context-induced and time-varying adjustments intrinsic to cognitive control 

(Braem et al., 2019). However, several authors have called into question the validity/purity of adaptive 

control measures, including the PC manipulations discussed so far, claiming that they suffer from 

methodological issues (see Braem et al., 2019; Schmidt, 2019 for reviews).  

First, there is considerable controversy about whether cognitive control per se is necessary to resolve the 

Stroop interference elicited by PC manipulations or, conversely, whether adaptive control measures are 

merely the result of much simpler stimulus-stimulus or stimulus-response associative learning processes, as 

claimed by the contingency hypothesis (Schmidt, 2019; Schmidt et al., 2007; Schmidt & Besner, 2008). This 

view identifies contingency learning as a more plausible candidate for explaining PC effects, excluding the 

involvement of any high-level cognitive control modulation. Essentially, it postulates that by learning that 

responses tend to co-occur with specific stimuli, they can be facilitated. According to this hypothesis, 

participants’ cognitive system implicitly learns the contingencies (or correlations) between the task-

irrelevant and the task-relevant stimulus features, namely the responses, and uses the task-irrelevant 

dimension to predict high-contingency responses. When responses are highly predictable, namely, in high-

contingency trials, participants exploit (even implicitly) these learning-based shortcuts and respond faster 

(Schmidt et al., 2007; Schmidt & Besner, 2008).  

The contingency hypothesis challenges especially the ISPC effect, pointing out that such effect is only 

incidental, since ISPC manipulations are always confounded with contingency (Schmidt, 2019; Schmidt & 

Besner, 2008). Indeed, to manipulate the PC of the items, the frequency of specific irrelevant-relevant 

characteristic pairs is necessarily altered as well (Spinelli et al., 2019). In line with this hypothesis, the 

assessment of contingency learning controlling for PC effect (high- vs. low-contingency items of equal PC) 

reveals a contingency effect, while the assessment of PC effect controlling for contingency (high- vs. low-

ISPC items of equal contingency) yields no residual PC effect (Schmidt, 2013; Schmidt & Besner, 2008; see 

also Schmidt, 2019, for a detailed review). However, other evidence argues in favor of a more intermediate 

account that embraces the contribution of both contingency and item-specific control mechanisms. For 

example, in Bugg and colleagues (2011), the task-relevant dimension signaled the ISPC rather than the task-

irrelevant one and this, by equating contingency across conditions, allowed deconfounding ISPC and 

contingency and finding evidence for a control modulation. When, instead, the task-irrelevant dimension 

functioned as the ISPC signal, contingency was confounded with ISPC and accounted for its effect, as 
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predicted by the contingency hypothesis (Schmidt, 2019). Moreover, Bugg and Hutchison (2013, Experiment 

3), restoring the traditional ISPC design (the task-irrelevant dimension signaling the ISPC), found an ISPC 

control modulation when 4-item sets were used, while contingency was dominant when 2-item sets were 

used, suggesting that bigger set sizes promote reliance on item-specific control, whereas smaller ones favor 

the use of contingencies. Their findings support the existence of different mechanisms governing the ISCP 

effect depending upon the set size, with larger sets reducing high-contingency responses and the likelihood 

of learning contingency associations, especially for responding to incongruent items.  

Overall, this issue is still a matter of debate and a detailed discussion goes beyond the scope of the 

present work (see also Bugg, 2014; Bugg & Hutchison, 2013; Schmidt, 2013, 2019). However, what is clear is 

the need of methodologically correct/appropriate designs controlling for or removing contingency-related 

biases from the experimental design to verify whether ISCP effect is, even only partially, due to congruency 

modulation. To this end, apart from the strategy reported above, another solution is to manipulate 

contingency learning and ISPC in a partially independent way. When using a color-word Stroop task, this can 

be done by creating two non-overlapping 2-item-sized sets, so to have: i) the first set with mostly-congruent 

(MC) words, but mostly-incongruent (MI) colors (viceversa for the second set); ii) MC incongruent words 

presented only in the other MC colors; iii) MI incongruent words presented only in the other MI colors; iv) 

for each set, one high-contingency and one low-contingency incongruent word. To measure conflict 

adaptation effects, low-contingency MC incongruent items are compared to low-contingency MI 

incongruent items, whereas to measure contingency-related effects, low-contingency MI incongruent items 

are contrasted to high-contingency MI incongruent items. Of note, for congruent items, this does not 

dissociate between the two accounts (e.g., Spinelli & Lupker, 2020). Recently, Braem and colleagues (2019) 

summarized some guidelines on how to design cognitive control tasks avoiding confounds and, for what 

concerns ISPC manipulations, they suggest creating two sets of overlapping “inducer” items (one for MI and 

one for MC items) to trigger reactive control and a third set of “diagnostic” items with a PC of 50%, to which 

the PC-dependent level of cognitive control is assumed to be transferred, to measure the ISPC effect 

without item-frequency differences. Using the picture-word Stroop task, diagnostic items can be created by 

choosing a novel set of exemplars of the inducer items which can represent the same inducer item but in a 

different form (e.g., if among the inducer items there is a picture of a dog, select a different dog picture as a 

diagnostic item) or by selecting an alternative item belonging to the same category as the inducer item 

(e.g., if among the inducer items there is a picture of a lion, select a tiger picture as diagnostic item). 

Alternatively, they propose to use diagnostic items involving new task-irrelevant features, such as diagnostic 

trials with the same task-relevant features as the MC and MI items paired equally often with incongruent 

non-inducer task-irrelevant features (e.g., different distractor words in the color-word Stroop task). Faster 

responses for MI inducer task-relevant features paired with non-inducer incongruent task-irrelevant 

features than for MC inducer task-relevant features paired with non-inducer incongruent task-irrelevant 
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features are assumed to reflect a cognitive control-driven ISPC effect without contingency confounds. It is 

worth mentioning that although these solutions have been proposed in a consensus paper, the same 

authors admit that they come with cautionary notes. Indeed, they recommend the latter approach but still 

highlight that it has been rarely tested, and that it is “important to assess its robustness in future studies” 

[p. 778]. 

Another potential flaw of adaptive control measures concerns the LWPC manipulation. Some authors 

indeed pointed out that LWPC effects do not actually depend on list-level information but instead can be 

explained by a mechanism operating at the item level. Thus, this account excludes any proactive control 

involvement or, at least, posits that it cannot be elicited by the LWPC manipulation (Blais et al., 2007; Blais 

& Bunge, 2010; Bugg et al., 2008). Indeed, when low-PC blocks are composed of low-PC items and high-PC 

blocks are composed of high-PC items, LWPC is confounded with ISPC. To disentangle the two mechanisms, 

Bugg and Chanani (2011) randomly intermixed, in both high- and low-PC blocks, an additional set of items 

with an ISPC of 50% (unbiased or diagnostic items) to verify whether an LWPC effect could be observed for 

such items, which did not provide any item-specific or contingency information. This was the case, 

suggesting that the LWPC effect was driven by a mechanism using the information at the list-level, and thus 

it was modulated proactively. This procedure was proposed by Braem and colleagues (2019) too, who 

agreed on the need to use inducer items that trigger proactive control and diagnostic (or unbiased) items 

that measure its effect on performance. They also recommended presenting inducer items more frequently 

than diagnostic ones and using a set of at least three items.  

Although there is an emerging consensus on the need to use the approaches described above to design 

confound-minimized studies (Braem et al., 2019), their implementation comes at a cost. Indeed, both for 

LWPC and ISPC measures, distinguishing between inducer and diagnostic items is impractical and time-

consuming due to the need to measure PC-related effects only on diagnostic items, while excluding inducer 

ones from the analyses. Moreover, for what concerns ISPC manipulation specifically, the creation of multiple 

sets of stimuli consisting of a multitude of items is not always feasible as, except for picture-word Stroop 

tasks, the possible exemplars of items are limited (e.g., for the color-word Stroop task there are just limited 

colors among which to choose). Lastly, contingency-control manipulations in picture-word Stroop tasks 

might also be flawed, because when using different diagnostic pictures of the same exemplars of inducer 

items, response contingencies might still be predictable, while when using diagnostic pictures of the 

different exemplars but belonging to the same category as inducer items implies the assumption of within-

category transfer, which might not always occur. Therefore, in our view, to date there is no methodological 

approach free from limitations and how to control for PC-related confounders in a feasible and effective way 

still remains an open question. Here, the solutions proposed by the confound-minimized approaches will be 

referred to as design-level control, as their purpose is to control for confounders as much as possible at the 
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level of the experimental design. However, as just described, they imply some costs. As an alternative to this 

approach, there is the possibility of controlling for confounding effects at the statistical level, for which we 

will use the label analysis-level control. This statistical approach, which we have adopted here (as described 

below), offers greater flexibility in the experimental design, thus overcoming the limitations of the 

approaches controlling for confounders at the design level. 

These methodological controversies notwithstanding, the existence of two temporally distinct control 

modes seems plausible, at least as long as potential confounders are controlled for at the design level. 

However, the only way of verifying whether proactive and reactive control constitute truly independent 

mechanisms (Braver et al., 2007), ruling out that they are two poles on a continuum, is by obtaining 

independent estimates of these effects from the same sample of participants. This was done by Gonthier 

and colleagues (2016), who tried to dissociate proactive and reactive control by directly contrasting their 

behavioral signatures in a within-subject design to obtain independent estimates of LWPC and ISPC effects 

in the same participants. To this end, separate blocks were used: two LWPC blocks (one mostly congruent 

and one mostly incongruent) along with a set of unbiased items to avoid ISPC-related influence, and one 

ISPC block including an equal number of mostly congruent and mostly incongruent items, with a LWPC of 

50% to exclude LWPC effects. They found not only that LWPC and ISPC manipulations independently 

reduced the magnitude of the Stroop effect, but also that the two benefit indices were negatively 

correlated, suggesting that subjects relying more on one mechanism engage less the other one, thus 

providing evidence that the two effects are elicited by two distinct (i.e., dissociable) control mechanisms.  

Although the study by Gonthier and colleagues (2016) provided further and more solid evidence for the 

separability of LWPC and ISPC effects, thanks to its within-subjects design, and confirmed its suitability for 

measuring proactive and reactive control, it also suffers from some drawbacks. First, the effect of 

contingency learning was more strongly controlled for in the LWPC manipulation, for which unbiased 

diagnostic items were used (see footnote 2), while the influence of contingency on item-specific 

mechanisms was controlled for by using the task-relevant dimension to signal ISPC, leading to unequal 

frequencies of unique trial types and irrelevant stimulus characteristics. A second limitation of the study by 

Gonthier and colleagues (2016) is that, although they use a within-subjects design testing both proactive 

and reactive control in the same participants, the two control mechanisms were investigated separately, as 

the LWPC and ISPC manipulations are kept apart and implemented one at a time in different blocks. Indeed, 

more convincing evidence for their existence as distinct mechanisms would require testing their interaction 

while both manipulations are implemented. Indeed, this would allow exploring whether and how they 

covary, informing about the existence of two separate mechanisms.  



 

111 

4.1.2. Aim of the present study and methodological novelties 

Motivated by the considerations discussed above, our main aim here is to make a step further, by 

investigating in a more direct manner whether proactive and reactive control are two separable 

mechanisms. Essentially, we put forward a new approach that allows manipulating LWPC and ISPC at the 

same time, while controlling for the effect of stimulus-response associations, such as contingency. Although, 

to the best of our knowledge, only one attempt has been made to study both of them together using the 

Stroop task (see Hutchison, 2011), we believe that, to verify the specificity of these two control 

mechanisms, the most plausible way is to measure participants’ performance while both LWPC and ISPC are 

parametrically varied at the same time. Indeed, by doing so, we can verify whether proactive and reactive 

control modes have distinct effects on participants’ performance. Moreover, if we assume that they are 

indeed distinct mechanisms, they should also interact as (implicitly) predicted by the DMC model (Braver et 

al., 2009, 2021; De Pisapia & Braver, 2006). Thus, by measuring both at the same time, we can also test the 

three-way interaction between the Stroop effect, LWPC and ISPC, which can tell us more about the impact 

of variable amounts of proactive and reactive control activated by different levels of LWPC and ISPC. Lastly, 

since previous literature has confirmed the, at least partial, role of contingency on conflict adaptation, we 

decided not to exclude it but we allowed it to vary orthogonally (as much as possible) with respect to LWPC 

and ISPC, with the aim to estimate its effect and control for it at the statistical level so to measure the LWPC 

and ISPC effects regardless of contingency. As a consequence, in our tasks, trials will have at the same time 

a different level of LWPC, ISPC, and contingency. To do so, we combined this methodological approach with 

the use of a multilevel trial-level modeling analytical approach to assess the fine-grained effects of our 

predictors at the subject level, while partialling out the effect of contingency and of other lower-level 

confounding factors (Viviani et al., 2023 and Chapter 3). As we recently showed, indeed, trial-level 

confounders represent important sources of trial-by-trial noise that cannot be accounted for by standard 

general linear models (GLM), which require collapsing trial-level data to obtain participants-by-condition 

averages. They can instead be effectively estimated and removed by multilevel modeling (see Chapter 3 for 

a more exhaustive description of the advantages of multilevel modeling over GLM). 

 Moreover, to pursue our aim, we introduced an important methodological novelty, that is, we  

manipulated the different PCs at the list-wide and item-specific levels to explore how and to what degree 

they modulate the Stroop effect dynamically and in a fine-grained way. In other words, we aimed  to 

evaluate the impact of PC on participants’ Stroop performance on a trial-by-trial basis, using trial-level 

LWPC and ISPC estimates computed based on the actual recent history of trial congruency they 

experienced, rather than on their assumed (future) experience of trial congruency at the block-level.  

Indeed, it should be noted that the available literature used the block-level LWPC and ISPC variables, 

that is, those computed as the number of congruent trials within a block (in total or for each item, 

https://www.zotero.org/google-docs/?UbPp3x
https://www.zotero.org/google-docs/?UbPp3x
https://www.zotero.org/google-docs/?rciKzW
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respectively) divided by the total number of trials (in total or for each item, respectively) within the same 

block. However, these block-level LWPC and ISPC variables correspond for sure to the actual PCs at the end 

of the block only. This is true even if trial-level PC values are computed based on the trials experienced so 

far during that block, and especially if they are computed based on the local history of trials (e.g., using a 

moving window or a forgetting factor). Indeed, due to the commonly used (pseudo)randomization of the 

trial list, it is not unlikely that the LWPC value at, say, the 20th trial in a block deviates even dramatically from 

the expected block-level LWPC, being it, for example, as large as 40% and as small as 0% instead of 20%. 

This is especially important after an unsignalled block transition, especially between blocks with extreme 

opposite block-level LWPCs (e.g., 20% and 80%). In this case, indeed, the commonly used block-level 

approach implausibly assumes that, at the very first trial of a new block, participants immediately update 

their LWPC estimates (from 20% to 80% in this example) and, consequently, their proactive control level. 

Similarly, commonly used block-level ISPC values neglect the fact that participants first need to experience a 

sufficient number of trials for each item to estimate its ISPC value, thus unrealistically assuming that the 

items at the beginning of each block have already been associated to an ISPC value, without previously 

encountering them. Moreover, the commonly used block-level approach unrealistically assumes that all the 

trials within a block share the same PC values, not taking into account the fact that the local PCs vary within 

the block.  
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Therefore, and since participants are not aware of the probabilistic structure of the task, it is 

unreasonable to assume that their trial-by-trial performance is modulated by block-level PC values. Instead, 

it is more plausible to assume, as we do here, that their cognitive system implicitly and continuously 

estimates trial-level LWPC and ISPC values using some form of statistical learning based on the recent 

history of overall and item-specific PCs, respectively, implementing a specific level of control accordingly. 

We therefore employed a fine-grained manipulation of LWPC and ISPC, which were estimated trial-by-trial 

using an ideal Bayesian observer (Mathys et al., 2011). Our approach, thus, allows us to account for and 

estimate flexible, ongoing adjustments of cognitive control during the task (see Figure 4.1). Trial-by-trial 

estimates (which we will call continuous variables) were used as predictors in our analyses as they are more 

realistic than those computed using the block-level occurrences (which we will call discrete variables). Trial-

level estimates were also calculated for confounding variables of interest, including contingency, using the 

same approach.  

Figure 4.1.  
The plot shows the block-level LWPC (LW, blue line) and its trial-level estimates (LWb, red line) computed 
using the Hierarchical Gaussian Filter (Mathys et al., 2011) for one of the trial lists used in the experiment. 
The occurrence of congruent (CON = 1) and incongruent (CON = 0) trials is also depicted as plus signs.   

Finally, we addressed the important but frequently overlooked aspect of measure reliability. As 

highlighted by Gonthier and colleagues (2016), LWPC and ISPC effect indices have unknown psychometric 

properties, in addition to being effects calculated from difference scores, which, in turn, further reduces 

their reliability (Thomas & Zumbo, 2012). Despite this awareness, this issue has rarely been addressed in 

studies using such manipulations, and, as such, our study also aims to explore the reliability of such 

measures. To this aim, the use of multilevel trial-level modeling of participants’ performance is again 

fundamental, as we recently showed it to ensure estimations of the experimental effects with higher and 

more stable internal reliability compared to standard GLM approaches (see Chapter 3). 
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The three points mentioned above were addressed in two Experiments involving four-choice spatial 

Stroop tasks that require keypress responses to indicate the direction of a target arrow, ignoring its position. 

Both Experiments used exactly the same experimental procedure and design and differed only in the spatial 

arrangement of the experimental stimuli (see below), allowing us to assess the robustness of our 

experimental approach and results. These two spatial Stroop tasks, named Peripheral and Perifoveal spatial 

Stroop tasks, were chosen as they overcome some limitations intrinsic to the original color-word verbal 

Stroop task, while also ensuring a complete Stroop effect, that is, an effect including conflict at the task, 

stimulus, and response levels (see Chapter 2 for more details). In addition to these methodological 

advantages, in a recent work, we have shown that the Peripheral and Perifoveal spatial Stroop tasks are 

proper spatial Stroop adaptations, producing Stroop effects that not only have a large magnitude but are 

also robust to analytical flexibility and have a high and robust internal reliability (Viviani et al., 2023 or 

Chapter 3).  

4.1.3. Hypotheses  

As claimed above, we were interested in exploring if and how proactive and reactive control covary and 

interact to modulate the Stroop effect. To the best of our knowledge, this interaction has rarely been tested 

before, mainly because LWPC and ISPC have always been manipulated separately (but see Hutchison, 2011). 

As such, there is no solid evidence of how the Stroop effect is modulated when both proactive and reactive 

controls are implemented in the same experimental design and neither of whether these two control 

modes interact. Therefore, we put forward some hypotheses about what we expect to observe, proposing 

different theoretically plausible alternatives.  

All the hypotheses assume that when both LWPC and ISPC are high (lPro-lRea condition), the lowest level 

of control is applied (i.e., no form of proactive and reactive control is implemented) and thus the Stroop 

effect should be the largest (equal to 1 in our models). Conversely, when either LWPC or ISPC are low, a high 

level of proactive and reactive control, respectively, should be implemented (respectively, the hPro-lRea and 

hRea-lPro conditions), and thus the Stroop effect should be reduced. Finally, when both LWPC and ISPC are 

low (hPro-hRea condition), the highest level of control should be implemented and thus the smallest Stroop 

effect should be observed. 

The first point that differentiates our hypotheses is the size of the Stroop effect in the hPro-hRea 

condition. We hypothesized that, if proactive and reactive control do not interact with each other but still 

separately modulate the Stroop effect, their effects on the Stroop effect will be additive, thus still producing 

the smallest Stroop effect compared to the other conditions (ADD models; Figure 4.2A). If, in contrast, their 

interaction is significant, two alternative scenarios are possible: They could interact either in a synergistic 

(i.e., more than additive) way, producing a reduction of the Stroop effect that is greater than that assumed 
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by the additive hypothesis (SYN models; Figure 4.2B), or in an antagonistic (i.e., less than additive) way, 

producing a reduction of the Stroop effect that is smaller than that assumed by the additive hypothesis 

(ANT models; Figure 4.2C).  

The second distinction stems from the possibility that one of the two control modes could have a 

stronger impact on the Stroop effect than the other. This point differentiates our hypotheses only for what 

concerns the conditions wherein only proactive control or reactive control is implemented (respectively, 

hPro-lRea and lPro-hRea), while it should not affect the size of the Stroop effect in the conditions wherein 

neither or both forms of control are implemented (respectively, lPro-lRea and hPro-hRea). If we assume that 

proactive and reactive controls have the same strength, the Stroop effect should be the same size in the 

lPro-lRea and hPro-hRea conditions (Figure 4.2, left plots). Conversely, if we assume that the effect of 

proactive control is stronger, the Stroop effect should be smaller in the hPro-lRea condition compared to the 

lPro-hRea condition (Figure 4.2, right plots), while if the effect of reactive control is stronger, the Stroop 

effect should be smaller in the lPro-hRea condition compared to the hPro-lRea condition (Figure 4.2, middle 

plots).  

  

Figure 4.2.  
Predicted patterns of Stroop effect modulations by low and high levels (l and h, respectively) of LWPC-
related Proactive control (Pro) and ISPC-related Reactive control (Rea) according to our alternative 
hypotheses. ADD, additive effects of Pro and Rea; SYN, synergistic Pro by Rea interaction; ANT, antagonistic 
Pro by Rea interaction (see Hypotheses section for more details).  
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4.2. Experiment 1 - Peripheral 

4.2.1. Methods 

We report how we determined our sample size, all data exclusions, all inclusion/exclusion criteria, all 

manipulations, and all measures in the study. All inclusion/exclusion criteria were established prior to data 

analysis. All data and materials, as well as the code used to run the experimental tasks and generate and 

analyze the data of the current study, will be made available from our project repository on the Open 

Science Framework (OSF) platform at osf.io/qmu7g. No part of the study, including the analyses, was pre-

registered. 

4.2.1.1. Procedure and experimental tasks  

The experiment was programmed using Psytoolkit (Stoet, 2010, 2017) and administered online. The 

stimuli were presented in full-screen mode, with a resolution of 800 x 600 pixels, on a gray background 

(RGB: 128, 128, 128). Each trial started with a fixation stimulus presented at the center of the screen for 500 

ms and participants were instructed to fixate it. Then, the experimental stimulus appeared and remained on 

the screen until participants responded or up to a response time-out of 2000 ms. Participants had to pay 

attention to the task-relevant information, which was the pointing direction of a black arrow, and were 

required to indicate it via button press by using four keys on a computer keyboard, which were E, O, K, and 

D. These keys were spatially arranged to be compatible with the four possible arrow directions, which could 

be upper-left, upper-right, lower-right or lower-left, and had to be pressed using the left middle, right 

middle, right index and left index fingers, respectively. The experimental stimuli were also characterized by 

task-irrelevant information, which was the position where the arrow appeared. The position of the arrow 

overlapped with the four task-relevant directions, since the arrow could appear in an upper-left, upper-

right, lower-right, or lower-left position. The task-irrelevant position could match or not the task-relevant 

direction, yielding congruent and incongruent trials, respectively.  

In this study, we used a Peripheral spatial Stroop task (Viviani et al., 2023), wherein the target arrow 

could appear in one of four peripherally-located spatial positions. For this task, the fixation screen consisted 

of a black cross (36 x 36 pixels) presented at the center of the screen, along with four white squares (73 x 73 

pixels) at the four corners of an imaginary square of 600 x 600 pixels centered on the screen. Then, the 

target arrow was presented inside one of the four peripheral squares, and it could point to one of the same 

four directions. We used 12 of the 16 possible combinations of arrow positions and directions, as we 

excluded the four corresponding to the incongruent arrows pointing to the opposite direction (e.g., the 

arrow appearing at the upper-left corner and pointing toward the bottom-right corner) because they point 

towards the correct response. 

https://osf.io/qmu7g/
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List-wide (LWPC) and item-specific (ISPC) proportions of congruency were simultaneously manipulated 

to measure both proactive and reactive control, respectively. To this aim, the trial lists were designed by 

first dividing them into two main blocks made of 320 experimental trials each, with different LWPC values, 

one with 35% of congruent trials (LW35) and one with 65% of congruent trials (LW65). Then, distinct ISPC 

levels were used, nested within each LWPC block, so as to have 4 different ISPC values within each block. In 

the LW35 block, the ISPC ranged from 20% to 50% in steps of 10%, while in the LW65 block, the ISPC ranged 

from 50% to 80% in steps of 10%. Crucially, by using the same ISPC level (50%) in both LWPC blocks, we 

were able to assess the pure effect of LWPC (and thus proactive control) on Stroop effects, independently of 

ISPC (and thus reactive control) and contingency. Moreover, within each block, the occurrence of each 

position-direction combination was intentionally varied in trying to orthogonalize as much as possible the 

contingency to LWPC and ISPC, so that the effect of each of these variables could be disambiguated in the 

statistical analysis. In doing so, we allowed the probability of each of the four directions (and thus the 

responses) to slightly vary within each sub-block, while keeping the probability of each of the four positions 

constant. We thus obtained different contingency values , ranging from 5% to 80%, and within each ISPC 

level, two different contingency values differing by 10% were used for the two possible incongruent trials 

(see Figure 4.3). In addition to the 640 experimental trials, before each LWPC block, we added sub-blocks of 

40 trials to favor the familiarization of participants to the current block LWPC level. Moreover, the 640 

experimental trials were divided into 8 sub-blocks with self-paced breaks in between, and at the beginning 

of each sub-block we added 2 buffer trials. The habituation and buffer trials were then excluded from the 

analyses. Within each trial-list, the order of presentation of the trials was pseudorandomized using the 

software Mix (van Casteren & Davis, 2006) to avoid more than four consecutive repetitions of the same 

congruency and both total and partial repetitions of stimulus characteristics and/or responses in order to 

control for first-order priming effects.  

A second step in trial-list design was to compute trial-wise LWPC, ISCP and contingency for each trial-list 

version using the Hierarchical Gaussian Filter (HGF, Mathys et al., 2011). HGF is a filter that uses variational 

Bayes under a mean-field approximation to update the probability of an event on each trial. Specifically, 

trial-level estimates were computed reflecting trial-by-trial probabilities updated based on: i) the stimulus 

congruency, for LWPC; ii), the stimulus congruency conditional to a specific position, for ISPC; iii) the target 

direction (and thus the response) conditional to a specific position, for contingency. The HGF was also used 

to compute trial-by-trial probabilities of other variables used as confounding predictors in statistical 

analyses (see below).  

Before beginning the task, the participants received general instructions on the procedure, the task, and 

the response mapping.  Considering also that the task was completed online, we took particular care to 

keep the instructions as simple, detailed, and clear as possible. Participants were asked to respond as 
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quickly and accurately as possible and recommended performing the task in a quiet environment, 

maintaining a comfortable posture, and keeping the responding fingers in contact with the response keys. 

After the instructions, the participants completed a block of 20 practice trials with LWPC and ISPC at 50%, 

during which they received feedback on their performance, and, in the case of errors or time-out responses, 

they were also provided with a brief summary of instructions and response mapping. Practice trials were 

presented until 75% accuracy was reached. 

 

Figure 4.3.  
Block-wise structure of the task. Separately for one sub-block of each LWPC block (LW35, top row; LW65, 
bottom row), the image shows on the left the number of trials (occurrences) with a specific target direction 
(DIR) and position (POS). For example, in the LW35 sub-block, we had nine trials with the arrow appearing 
in the lower-left corner, but pointing towards the lower-right corner. The trials in the diagonal are the 
congruent ones (underscored). For each sub-block, the corresponding contingencies are also shown on the 
right, while the middle column shows the percentage of congruent trials (LWPC) and of congruent trials 
specific for each location (ISPC). The color scale indicates the relative probability of each trial 
type/contingency, as well as the relative level of the LW/ISPCs.  

4.2.1.2. Data analysis 

Various analyses were conducted to estimate the effect of LWPC and ISPC manipulations on the 

magnitude of the Stroop effect, while controlling for contingency, and to estimate the internal reliability of 

our effects. Statistical analyses were conducted using Matlab (version 2017b; The MathWorks, Inc. Natick, 

MA).  

The analyses were performed on inverse-transformed RTs (iRTs, computed as -1000/RTs). This 

transformation was employed to eliminate the heavy right skewness of the RT distribution, for which the 

logarithmic transformation was not enough. From the 62720 experimental trials, we excluded trials with 

incorrect responses (n = 2115, corresponding to 3.37% of the experimental trials), missed responses (n = 

235, corresponding to 0.37% of the experimental trials), and RTs shorter than 150 ms (n = 1, corresponding 
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to <0.01% of the experimental trials), which were all treated as errors, and post-error trials (n = 2103, 

corresponding to 3.35% of the experimental trials). Control analyses were performed on both 

untransformed RTs and natural log-transformed RTs (lnRTs) to assess the robustness of the results to 

analytical flexibility.  

We checked for the presence of participants with low compliance, defined as those having either a mean 

iRTs more than three standard deviations away from the sample mean or a mean accuracy lower than 70% 

(i.e., the level used in the practice block). Based on these criteria, no participant was excluded from the 

analyses (see Appendix B, Figure B.2) 

Assessing the magnitude of LWPC and ISPC effects  

The statistical analyses were performed using a multilevel modeling approach, also called trial-by-trial 

hierarchical modeling, by performing linear mixed-effects model analyses (LMM, Baayen et al., 2008). This 

approach is the most suitable for our experimental design and, thus, our aims. Indeed, using multilevel 

modeling, we were able to assess the distinct impact of LWPC and ISPC, as well as their interaction, in 

modulating the Stroop effect when they both varied. Moreover, this approach allowed us to do so while 

partialling out the effect of contingency and other lower-level confounding factors, which represent sources 

of trial-by-trial noise in the estimation of our effects of interest at the subject level. Finally, this approach 

allowed us to employ the trial-level estimates of our predictors because, as explained in the Introduction, 

considering trial-by-trial history is more realistic than using the respective discrete values. Multilevel 

modeling also allows one to overcome standard general linear model (GLM) drawbacks. Indeed, we recently 

showed that this approach ensures more accurate and precise estimates of the experimental effects of 

interest. Moreover, since this approach explains intra-subject/inter-trial sources of variance contributing to 

measurement error, it also provides better reliability of these estimates (Viviani et al., 2023).  

We tested a LMM model defined a priori based on our theoretical assumptions, which we named 

“continuous full model”. Indeed, this model included the trial-level estimates of our predictors for both 

experimental manipulations and confounders, indicated by the suffix “b” to the predictor names (because 

they were estimated using the ideal Bayesian observer). Specifically, in the fixed part of the model, we 

included several confounding predictors, for the reasons explained above. Each confounder was included 

based on well-known effects in the literature. Specifically, we included i) a continuous predictor reflecting 

the iRT of the preceding trial (iRTpre), to account for temporal dependency in RTs (Baayen & Milin, 2010) 

and thus to avoid violating the assumption of the independence of observations for linear modeling; ii) the 

continuous predictor for the effect of trial number (trialTOT) to account for potential time-on-task effects, 

such as the effects of learning/adaptation or fatigue; iii) the horizontal and vertical position of the stimulus 

on the screen (respectively, hS and vS), to account for potential (e.g., perceptual, attentional) differences 
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due to the location where the stimulus appeared (left vs right, above vs below, respectively); iv) the 

horizontal and vertical coding of the response (respectively, hR and vR), to account for potential (e.g., 

motor) differences due to the response hand and finger, respectively. Lastly, we included predictors for low-

level learning effects that have been shown to affect the Stroop interference resolution, threatening the 

interpretability of the Stroop performance with control-related accounts, that is, v) contingency, which is 

the conditional probability of the response given the stimulus, P(R|S) (PRSb), and vi) the probability of the 

response, P(R) (PRb). The experimental effects of interest were modeled by including the predictors for the 

LWPC and ISCP manipulations (LWb and ISb, respectively) and trial congruency (CON), as well as their 

interactions. The three-way interaction served to explore whether proactive and reactive control interacted 

in modulating the Stroop effect, and it was included in both the fixed and random parts of the model, as we 

assumed that it varied across subjects. The Wilkinson-notation formula for the continuous full model is as 

follows:  

RT ~ iRTpre + TrialTOT + hS + vS + hR + vR + PRSb + PRb + LWb*ISb*CON + (LWb*ISb*CON|SS) 

The continuous predictors iRTpre, TrialTOT, PRSb, and PRb were centered and scaled at the participant 

level to facilitate the convergence of the model and the interpretation of the results, while scaling was not 

necessary for LWb and ISb, since, by calculating their trial-level estimates, they were already on a scale 

centered at a 50% probability. The predictor for Congruency was coded with the values of 0 and 1 for the 

Incongruent and Congruent conditions, respectively, with the latter acting as the reference level.  

Then, to assess whether there was evidence of stress in the model fit, after fitting the model, we 

inspected the model residuals and we then re-fitted a trimmed version of the model obtained by excluding 

data points with absolute standardized residuals exceeding 3. 

We report the estimated coefficient (b), standard error (SE), and t and p values for each fixed effect 

included in the trimmed final model. We calculated the p-values by using Satterthwaite's approximation of 

degrees of freedom, which was also used to compute the corresponding effect size estimates (dS) for the 

experimental effects of interest. The effect sizes for the same effects were also computed as standardized 

differences based on the participants’ estimated condition means based on their random slopes (dr). An 

alpha level of .05 was set as the cut-off for statistical significance. We used the participants’ random slopes 

to compute the individual effects of interest (that is, the Stroop effect and its modulation by LWPC, ISPC, 

and their interaction) and the corresponding dominance values, that is, the percentage of participants 

showing them. 

We also performed some control analyses to verify whether our continuous full model was justified and 

ensured the best fit to the data. First, the same model was tested also using the block-level estimates of our 

variables, referred to as discrete variables (discrete full model), to assess the assumed theoretical 
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advantages of the trial-level estimates (besides favoring comparability with previous literature). To this aim, 

we compared the Akaike information criterion of the continuous and discrete full models to assess which 

one better explained our data. Moreover, to verify whether the inclusion of confounders actually increased 

the model goodness of fit, we compared the continuous full model to a reduced one (continuous reduced 

model), which included only the variables of theoretical interest but none of the confounding ones, using 

the log-likelihood ratio test (Baayen et al., 2008). Lastly, in the case in which the triple interaction was not 

significant, we tested the same continuous full model but after removing the term for the three-way 

interaction (i.e., leaving the terms for the two 2-way interactions CON_0:LWb and CON_0:ISb), to verify 

whether its inclusion might have interfered with the estimation of the effects of the two 2-way interactions 

testing for the distinct effects of proactive and reactive control (continuous full 2-way interaction model).  

To assess the robustness of our results to analytical flexibility, control analyses were also performed by 

replicating LMM results for the continuous full model using another multilevel modeling approach, that is, a 

random coefficient analysis (RCA, also called random regression or two-step regression; Lorch & Myers, 

1990). For the RCA analysis, we first ran linear regressions at the subject level using the same regression 

model as the final LMM model described above (continuous full model). The Wilkinson-notation formula for 

the RCA model is:  

RT ~ iRTpre + TrialTOT + hS + vS + hR + vR + PRSb + PRb + LWb*ISb*CON 

As for the LMM analysis, the model was refitted after the exclusion of data points with standardized 

residuals exceeding 3. Then, we assess the statistical significance and effect size of the tested effects at the 

group level by performing two-tailed one-sample t tests against 0 on the estimated b coefficients for each 

participant.  

We also performed additional analyses to assess the magnitude of the Stroop effect using a general 

linear model (GLM) approach, which is the standard approach in cognitive psychology and relies on the 

aggregation of the participants’ performance in trials of different conditions to obtain participants-by-

condition scores. However, this approach discards any trial-by-trial variability that can contaminate 

participant-by-condition scores, potentially decreasing their accuracy and generalizability (Rouder & Haaf, 

2019). More importantly, GLM analyses are not well-suited for our experimental design because it is 

incomplete (ISPC is nested in LWPC). This was not an issue for testing the Stroop effect magnitude per se, as 

we could aggregate congruent and incongruent trials across the LWPC and ISPC levels, but it prevented us 

from testing the effects of LWPC and ISPC while also controlling for contingency (see Assessing the 

magnitude of LWPC and ISPC effects). Indeed, due to our manipulation of LWPC, ISPC, and contingency, and 

since contingency is inevitably confounded with ISPC in congruent trials, we did not have all the required 

combinations of LWPC, ISPC, and contingency levels, and the trial number for the available combinations 
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was heavily unbalanced. These limitations notwithstanding, we decided to perform GLM analyses anyway to 

favor the comparison of our results on the Stroop effect magnitude with the literature.  

Assessing the internal reliability of LWPC and ISPC effects  

The internal consistency of the experimental effects of interest was assessed for the LMM results by 

computing split-half Pearson’s correlations corrected with the Spearman-Brown formula (rSB). We used 2000 

randomizations and calculated both the median rSB values and the corresponding nonparametric 95% 

confidence intervals (CI95%). 

Essentially, observations were randomly split into two subsets and, on each subset, LMM analysis was 

performed. As highlighted above, this allowed us to model the interindividual variability in the effects of 

interest (Stroop effect, proactive and reactive control and their interaction), while partialling out the effect 

of the confounding predictors described above. Then, the by-subject random slopes for the effects of 

interest in the two subsets were correlated to obtain the rSB values.   

4.2.1.3. Participants 

For the first experiment, we recruited 98 participants (55 females and 43 males; mean age = 25.89 years, 

SD = 6.42 years). Participants’ handedness was assessed using the Edinburgh Handedness Inventory (EHI, 

Oldfield, 1971). The sample comprised five left-handed participants (EHI scores < −50) and nine 

ambidextrous participants (EHI scores between −50 and 50). No participants reported suffering from 

neurological or psychiatric disorders or being under medication. Participants gave their informed consent to 

participate in the study, which was conducted in accordance with the ethical standards of the 2013 

Declaration of Helsinki for human studies of the World Medical Association. The study was approved by the 

Ethical Committee for the Psychological Research of the University of Padova. 

Participants consisted of a convenience sample recruited using researchers’ personal networks and were 

not compensated for their participation. To determine the sample size for the LMM analysis, the 

approaches available to date for power analysis are not adequate and/or feasible for our complex statistical 

model (see Viviani et al., 2023, or Chapter 3, for a detailed discussion), especially because it involves the 

interaction between continuous predictors. Nonetheless, it should be noted that the RCA and LMM 

approaches are quite similar and provide similar results (at least regarding the Stroop effects in our 

experimental paradigm), and the power analysis for RCA is trivial, as it concerns a simple one-sample t-test 

on the by-subject slopes for the effect of interest.  We thus performed an a priori power analysis in 

G*Power (Erdfelder et al., 1996) to compute the minimum sample size required to detect, with a statistical 

power of .80, the effect of main interest (i.e., the three-way interaction reflecting the Stroop effect 

modulation by the interaction between LWPC and ISPC) in a two-tailed one-sample t-test. We 
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conservatively assumed a small-medium Cohen’s d effect size of .35. This analysis revealed that at least 67 

participants were required. We nonetheless decided to recruit as many participants as possible, exceeding 

the required sample size, to be able to detect even smaller effects (by increasing the statistical power of our 

analyses) and to increase the precision of the experimental effects estimates. It is important here to note 

that LMMs tend to provide higher power than standard GLM approaches like the one-sample t-test we used 

here. 

4.2.2. Results 

4.2.2.1. Magnitude of LWPC and ISPC effects 

For all the analyses, we report here only the results for iRTs. Indeed, as mentioned above, the 

distribution of RTs was heavily right-skewed and the residuals of the analyses on both RTs and lnRTs violated 

the assumptions of normality and homoscedasticity (see Appendix B, Figures B.1 and B.3-5). 

GLM-based analyses were performed using t tests. The overall Stroop effect (i.e., collapsing across LWPC 

and ISPC values) was significant (t = 35.50, p < .0001) and with a very large effect size (d = 3.59). Our result 

indicates that all our participants were significantly slower in responding to Incongruent as compared to 

Congruent trials (dominance = 100%) (see Appendix B, Table B.1).  

Regarding the LMM analysis, we first compared the full continuous model to the full discrete model 

using the AIC model selection and we found that the best-fit model was the full continuous model (AIC = 

8352 vs 8436.7 of the full discrete model). Then, we compared our full continuous model with the reduced 

continuous one by performing the log-likelihood ratio test, which revealed that the full continuous model 

was justified (χ2(7) = 7530.5, p < .0001), confirming that the inclusion of confounders increased the model 

fit.  As such, here we report the results of the analysis performed on iRTs using the full model with 

continuous variables.  

The conditional R2 of the LMM model was .69 and 0.84% of the observations was removed as outliers 

(>3 absolute standardized residuals) to mitigate the stress of the model fit (i.e., to improve the normality of 

the residuals, see Appendix B, Figure B.3). This analysis revealed that all the confounding predictors were 

significant in modulating participants’ iRTs (all ps < .0001, see Table 4.1). Specifically, our results suggest that 

participants were faster as the trials progressed and when they responded to stimuli appearing on the 

upper and right sides of the screen using the middle finger and the right hand. Moreover, we found a 

significant temporal dependency in iRTs (i.e., a positive correlation between iRTs at the current and 

preceding trial). Lastly, responses were faster when the probability of the response (PRb) was higher.  
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For what concerns our predictors of interest, we found that the Stroop effect (CON_0) was significant (p 

< .0001), with slower responses to Incongruent trials. The Stroop effect had a very large effect size (dr = 

3.67, dS = 2.13) and a dominance value of 100%, that is, all participants showed a positive Stroop effect. The 

Stroop effect was significantly modulated by LWb (p < .0001, dr = 1.27, dS = 0.80, dominance = 92.86%), 

showing that as LWb increased, the Stroop effect increased, revealing the effect of proactive control. By 

contrast, the LMM analysis did not reveal a significant modulation of the Stroop effect by ISb (p = .1121, dr = 

0.62, dS = 0.05, dominance = 70.41%). Moreover, the triple interaction between the Stroop effect, LWb and 

ISb was not significant (p = .2461, dr = 0.16, dS = 0.12, dominance = 57.14%), suggesting that LWb and ISb 

did not interact in modulating the Stroop effect. Lastly, our analysis revealed a significant effect of 

Contingency (PRSb, p = .0005), indicating that participants responded faster when PRSb was higher.  

Table 4.1 – Results of the LMM analysis for Experiment 1 (continuous full model) 

Effect b SE t df p 

Intercept -1.9439 0.0350 -55.559 145.60 < .0001 

TrialTOT -0.0923 0.0023 -40.030 1967.43 <.0000 

CON_0 0.3521 0.0123 28.620 179.86 <.0000 

iRTpre 0.0551 0.0012 47.190 57392.28 <.0000 

hS -0.0104 0.0028 -3.700 12850.75 .0002 

vS -0.0791 0.0027 -29.056 19753.88 <.0000 

hR -0.0351 0.0026 -13.381 34201.64 <.0000 

vR -0.1013 0.0026 -39.379 39671.65 <.0000 

LWb -0.0086 0.0104 -0.825 97.51 .4112 

ISb -0.0135 0.0074 -1.827 435.59 .0684 

PRSb -0.0207 0.0059 -3.497 48890.40 .0005 

PRb -0.1234 0.0133 -9.256 49487.44 <.0000 

CON_0:LWb 0.0651 0.0081 8.071 101.81 <.0000 

CON_0:ISb 0.0162 0.0102 1.590 939.28 .1121 

LWb:ISb -0.0123 0.0109 -1.132 97.28 .2606 

CON_0:LWb:ISb 0.0140 0.0120 1.167 94.08 .2461 

Notes: b, coefficient estimates; SE, standard error, df, degrees of freedom computed with the 
Satterthwaite's approximation. See the main text for the spelling out of the acronyms for the effects 

To verify whether the effect of the CON_0:ISb interaction was hindered by the triple interaction, we also 

performed the continuous full 2-way model, excluding the triple interaction and keeping the two double 

interactions (CON_0:LWb and CON_0:ISb). This analysis confirmed the results reported above, and the 

interaction between ISb and CON_0 remained non-significant (p = .0920, dr = 0.50, dS = 0.06, dominance = 



 

125 

72.45%), confirming that in the Peripheral task, we did not find a significant modulation of the Stroop effect 

by ISb. Lastly, the effect of PRSb was again significant (p = .0004), showing that participants responded 

faster when PRSb was higher (see Appendix B, Table B.7).  

To confirm these results, RCA analysis was then performed on the iRTs using the continuous full model, 

namely the model including the triple interaction. All the effects of the confounding predictors on 

participants’ iRTs found in both LMM analyses were confirmed (all ps < .004, (see Appendix B, Table B.8)), 

with the exception of hS. RCA results regarding our predictors of interest partially replicated LMM results. 

Indeed, we similarly found a significant Stroop effect (p < .0001, dr = 2.32, dominance 98.98%), that is, 

longer iRTs for Incongruent trials, and a significant modulation of the Stroop effect by LWb (p < .0001, dr = 

.86, dominance = 77.55%). Moreover, the interaction between CON and ISb was still not significant (p = 

.9344, dr = 0.01, dominance = 46.94%), replicating previous analysis that failed to reveal the effect of 

reactive control in modulating the Stroop effect. However, the results of the triple interaction were in 

contrast with the LMM ones. Indeed, we found that LWb and ISb interacted significantly in modulating the 

Stroop effect (p = .0009, dr = 0.35, dominance = 65.31%). Lastly, the effect of PRSb was significant (p = .0001, 

dr = -0.40), confirming previous results.  

Since we found that the effect of PRSb was always significant while the effect of reactive control was 

never significant, we hypothesized that we did not find it because PRSb might have explained all the 

variance that could have been explained by the reactive control modulation of the Stroop effect. We thus 

performed a control analysis, running again the continuous full model after excluding PRSb (continuous full 

No_PRS model), both using LMM and RCA (see Appendix B, Tables B.9-10). These analyses confirmed the 

results of the previous ones, except for the fact that, by removing PRSb, the interaction between CON and 

ISb became significant (both ps < .0001, ds = 0.84 and dr = 0.83, respectively). Of note, the inclusion of PRSb 

in the model was justified and improved the model fit (χ2(1) = 30.1, p < .0001). 

4.2.2.2. Internal reliability of LWPC and ISPC effects  

We assessed the internal reliability of our effects of interest using LMM to explain intra-subject/inter-

trial variance, with the aim of obtaining more precise estimates of it.  

As expected, the internal reliability estimate of the Stroop effect was the highest and least variable 

among our effects of interest, with a median rSB value of .92 and a CI95% of .89-.94. The internal reliability of 

the proactive control effect had a median rSB value of .79 and a CI95% of .67-.87, while the median rSB internal 

reliability of the reactive control effect was .58 with a CI95% of .25-.79. Finally, the internal reliability of the 

triple interaction was similar to that of proactive control, with a median rSB value of .76 and a CI95% of .65-.83 

(see Figure 4.4 and Appendix B, Figure B.9). 
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Figure 4.4.  
Internal reliability (rSB) of the experimental effects of interest (Con, Stroop effect; Con:Pro, LWb modulation 
of Stroop effects) in the three analyses (Con:Rea, ISb modulation of Stroop effects; Con:Pro:Rea, interaction 
between LWb and ISb in modulating the Stroop effects). Error bars represent the non-parametric 95% 
confidence intervals.  

4.2.3. Discussion 

The results of our previous study (Viviani et al., 2023) showed that the Peripheral spatial Stroop is an 

experimental paradigm suitable for yielding a complete Stroop interference effect whose magnitude is also 

large and robust to analytic flexibility with adequate and robust internal reliability. In contrast to our 

previous study (Viviani et al., 2023), in which we just assessed the magnitude of the Stroop effect, here we 

used the same experimental paradigm but with different manipulations with the aim of measuring, 

simultaneously, the effect of proactive and reactive control in modulating the Stroop effect, as well as their 

interaction, while controlling for low-level effects, among which contingency.  

The analysis assessing the magnitude of such effects revealed different results based on the analytical 

approach employed. As explained in the methods, the standard GLM-based analysis is largely incompatible 

with our experimental design and was thus only used to assess overall Stroop effects. The two multilevel 

analytical approaches, which were instead more adequate for our purposes, showed a partially contrasting 

scenario. Indeed, both approaches converged on the existence of a proactive control mechanism 

modulating the Stroop effect, which was shown to be a large and universal effect, and on the absence of a 

reactive control mechanism that independently modulated the Stroop effect. On the contrary, a significant 

interaction of proactive and reactive control in modulating the Stroop effect was found only in the RCA-

based analysis but not in the LMM-based one, casting shadows on the robustness of such an effect. 
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A further consistent aspect revealed by our analyses is the relation between reactive control and PRSb. 

Indeed, they interestingly revealed that when PRSb was statistically controlled for, the ISb-dependent 

modulation of the Stroop effect was not significant, thus confirming the strong influence of contingency on 

ISPC-induced reactive control, as suggested by Schmidt (2019) (see also Schmidt & Besner, 2008). Moreover, 

the fact that the effect of reactive control was unveiled after removing PRSb from the model provides 

support to our methodological and analytical approaches, which allowed us to control for the impact of 

contingency at the statistical level, while this is practically impossible to do in a purely methodological way 

(i.e., with the design-level control). This point will be addressed more in more detail in the general 

discussion.  

Lastly, the internal reliability of the two significant effects of interest was quite high. Specifically, the 

Stroop effect had a very high internal reliability, characterized also by little variability, whereas the proactive 

control reliability was more variable but still quite good (see Figure 4.4).  

The inconsistencies regarding the interplay between proactive and reactive control observed in the 

present experiment could be in part explained by the Peripheral spatial Stroop weaknesses assumed also in 

our previous study (Viviani et al., 2023) and related to the peripheral visual presentation of the stimuli. 

Specifically, the peripheral arrangement of the stimuli promotes the employment of visuospatial attentional 

shifts and eye movements to fixate the stimulus and better perceive it, which is a necessary processing step 

to retrieve the PC specifically associated with the item and then employ reactive control accordingly. 

However, these processing steps delay the employment of reactive control, as compared to a task using a 

perifoveal arrangement of the stimuli. This might have hindered the strength of reactive control and, 

consequently, its interaction with proactive control, thus not allowing us to detect it consistently using 

different analytical approaches.  

Therefore, the use of the Perifoveal task in the second experiment helped us shedding light on the 

inconsistencies in our results, since we previously found that this experimental paradigm not only 

overcomes the weaknesses of the Peripheral task, but it is also the best alternative to it among all the task 

versions considered (Viviani et al., 2023). Indeed, by presenting the stimuli in the perifoveal vision, the 

Perifoveal spatial Stroop task does not require visuospatial attentional shifts or eye movements, thus it may 

favor a faster and more efficient reactive control employment.  
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4.3. Experiment 2 - Perifoveal 

4.3.1. Methods 

We report how we determined our sample size, all data exclusions, all inclusion/exclusion criteria, all 

manipulations, and all measures in the study. All inclusion/exclusion criteria were established prior to data 

analysis. All data and materials, as well as the code used to run the experimental tasks and generate and 

analyze the data of the current study, will be made available from our project repository on the Open 

Science Framework (OSF) platform at osf.io/qmu7g. No part of the study, including the analyses, was pre-

registered. 

4.3.1.1. Procedure and experimental tasks  

In this experiment, we used a Perifoveal spatial Stroop task (Viviani et al. 2023), wherein the target 

arrow could appear in one of four centrally-located spatial positions so that both the task-relevant and task-

irrelevant pieces of information could be seen in perifoveal vision. To do so, a different fixation screen was 

displayed, consisting of a vertically oriented thin black cross (30 x 30 pixels) enclosed in the partial outline of 

a black square (94 x 94 pixels) presented at the center of the screen. The partial outline of the square 

around the fixation cross created the impression of four small squares, allowing us to manipulate the 

position inside the fixation stimulus. Therefore, the target arrow was presented within one of these 

apparent small squares, and participants were required to indicate its pointing directions regardless of its 

position. Apart from this aspect, the experimental task and procedures were the same as in Experiment 1. 

4.3.1.2. Data Analysis 

The analyses were performed as in Experiment 1. As in Experiment 1, we excluded from the analyses 

training trials, habituation trials, and buffer trials at the beginning of each sub-block. From the resulting 

49920 experimental trials, we also excluded trials with incorrect responses (n = 1885, corresponding to 

3.78% of the experimental trials), missed responses (n = 57, corresponding to 0.11% of the experimental 

trials), and RTs shorter than 150 ms (n = 0), which were all treated as errors, and post-error trials (n = 1667, 

corresponding to 3.34% of the experimental trials). 

We checked for the presence of participants with low compliance, defined as those having either a mean 

iRTs more than three standard deviations away from the sample mean or a mean accuracy lower than 70% 

(i.e., the level used in the practice block). Based on these criteria, no participant was excluded from the 

analyses (see Appendix B, Figure B.11) 

https://osf.io/qmu7g/
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4.3.1.3. Participants 

For this Experiment, we recruited 78 participants (41 females and 37 males; mean age = 24.21 years, SD 

= 6.43 years). The sample comprised four left-handed participants (EHI scores < −50) and 13 ambidextrous 

participants (EHI scores between −50 and 50). No participants reported suffering from neurological or 

psychiatric disorders or being under medication. Participants gave their informed consent to participate in 

the study, which was conducted in accordance with the ethical standards of the 2013 Declaration of Helsinki 

for human studies of the World Medical Association. The study was approved by the Ethical Committee for 

the Psychological Research of the University of Padova. 

Participants consisted of a convenience sample recruited using researchers’ personal networks and were 

not compensated for their participation. A power analysis was performed as in Experiment 1; again, we 

decided to recruit as many participants as possible, exceeding the required sample size, to be able to detect 

effects even smaller than expected (by increasing the statistical power of our analyses) and to increase the 

precision of the experimental effects estimates. It is important here to note that LMMs tend to provide 

higher power than standard GLM approaches like the one-sample t-test we used here. 

4.3.2. Results 

4.3.2.1. Magnitude of LWPC and ISPC effects   

As for the analyses on the Peripheral task, here, we report only the results on iRTs, since the distribution 

of RTs was heavily right-skewed and the residuals of the analyses on both RTs and lnRTs violated the 

assumption of normality (see Appendix B, Figures B.10 and B.12-14). 

GLM-based analyses using t tests were first used to explore the overall Stroop effect (i.e., aggregating 

across LWPC and ISPC values). These analyses revealed that participants responded significantly slower to 

Incongruent as compared to Congruent trials (t = 33.43, p < .0001) with a very large effect size (d = 3.79) 

and 100% dominance (see Appendix B, Table B.14).  

Then, we performed analyses using both the continuous and the discrete full models. We found that the 

former provided a better fit to the data (AIC = 29422 vs. 29511 of the full discrete model). Then, we 

compared the continuous full model with the continuous reduced model performing the log-likelihood ratio 

test, which revealed that the full continuous model was justified (χ2(7) = 2971.6, p < .0001), suggesting that 

the inclusion of confounders increased the model fit. As such, here we report the results of the analysis 

performed on iRTs using the full model with continuous variables. 

The conditional R2 of the LMM model was .63 and 0.84% of the observations was removed as outliers 

(>3 absolute standardized residuals) to mitigate the stress of the model fit (i.e., to improve the normality of 



130 

the residuals, see Appendix B, Figure B.12). All the confounding predictors of our continuous full model 

significantly modulated participants’ iRTs (all ps < .04, see Table 4.2). We found that participants were faster 

as trials went on and when they responded to stimuli appearing in the lower and right halves of the screen 

using the middle finger and the right hand. Moreover, there was a significant temporal dependency in iRTs 

(i.e., a positive correlation between iRTs in the current and preceding trial), and the responses were faster 

when the probability of the response (PRb) was higher.  

Table 4.2 – Results of the LMM analysis for Experiment 2 (continuous full model) 

Effect b SE t df p 

Intercept -2.4845 0.0448 -55.449 128.21 < .0001 

TrialTOT -0.1018 0.0034 -29.687 2686.32 < .0001 

CON_0 0.3729 0.0177 21.059 138.27 < .0001 

iRTpre 0.0586 0.0017 35.077 45622.01 < .0001 

hS -0.0080 0.0039 -2.072 4301.02 0.0383 

vS 0.0110 0.0038 2.888 3793.44 0.0039 

hR -0.0608 0.0038 -16.143 31342.78 < .0001 

vR -0.0723 0.0037 -19.484 29671.40 < .0001 

LWb -0.0002 0.0145 -0.012 78.89 0.9907 

ISb -0.0025 0.0112 -0.223 262.95 0.8238 

PRSb -0.0516 0.0085 -6.062 40688.90 < .0001 

PRb -0.1572 0.0189 -8.300 39539.08 < .0001 

CON_0:LWb 0.0668 0.0119 5.606 77.49 < .0001 

CON_0:ISb -0.0066 0.0157 -0.416 422.46 0.6774 

LWb:ISb -0.0311 0.0149 -2.085 78.49 0.0403 

CON_0:LWb:ISb 0.0454 0.0204 2.226 78.29 0.0289 

Notes: b, coefficient estimates; SE, standard error, df, degrees of freedom computed with the 
Satterthwaite's approximation. See the main text for the spelling out of the acronyms for the effects. 

For what concerns our predictors of interest, the Stroop effect (CON_0) significantly modulated 

participants’ iRTs (p < .0001), who showed slower responses to Incongruent trials, with a very large effect 

size (dr = 3.01, dS = 1.79) and a dominance value of 100%, which indicates that all participants showed a 

positive Stroop effect. As for the Peripheral task, LWPC significantly modulated the Stroop effect (p < .0001, 

dr = 0.99, ds = 0.64, dominance = 82.05%), that is, there was an effect of proactive control, with larger 

Stroop effects as LWb increased. By contrast, the Stroop effect was not significantly modulated by ISb (p = 

.6774, dr = -0.11, ds = -0.02, dominance = 42.31%). In contrast to the Peripheral task, here, the three-way 

interaction was significant (p = .0289, dr = 0.31, ds = 0.25, dominance = 57.69%), revealing that the LWb and 
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ISb interacted in modulating the Stroop effect, that is, when both were high (namely, both proactive and 

reactive control were low), the Stroop effect was larger. Lastly, the effect of Contingency (PRSb) was again 

significant (p < .0001), indicating that participants responded faster when PRSb was higher. As opposed to 

the analysis on the Peripheral task, here we do not report the continuous full 2-way model, since the triple 

interaction was significant (but see Appendix B, Table B.16).  

We then performed an RCA analysis on the continuous full model, which basically confirmed the results 

of the LMM analysis. Indeed, all the confounding predictors were in the same direction as the LMM results, 

and all but hS and vS were significant (all ps < .0005). We also found a very large Stroop effect (p < .0001, dr 

= 2.09, dominance 98.72%), as well as its significant modulation by LWb (p < .0001, dr = 0.60, dominance = 

71.79%). In line with all previous results, the CON_0:ISb interaction was not significant (p = .7178, dr = -0.04, 

dominance = 51.28%), showing no reactive control effect on the Stroop effect. The RCA analysis also 

confirmed the triple interaction found with the LMM analysis on the Perifoveal task, showing that LWb and 

ISb significantly interacted in modulating the Stroop effect (p = .0006, dr = 0.41, dominance = 65.38%). Also, 

the effect of PRSb was again significant as in all our analyses (p = .0001, dr = -0.47) (see Appendix B, Table 

B.17).   

Lastly, we performed the same control analysis described for the Peripheral Experiment to verify 

whether the non-significant effect of reactive control was due to the effect of PRSb by rerunning the 

continuous full model using LMM and RCA but excluding PRSb (continuous full No_PRS model). The results 

were confirmed but, again, the interaction between CON_0 and ISb became significant after removing PRSb 

(both ps < .0001, ds = 0.71 and dr = 0.74, respectively). Of note, the inclusion of PRSb in the model was 

justified and improved the model fit (χ2(1) = 18.0, p < .0001) (see Appendix B, Tables B.18-19). 

4.3.2.2. Internal reliability of LWPC and ISPC effects 

The internal reliability estimate of the Stroop effect was the highest and least variable among our effects 

of interest, with a median rSB value of .94 and a CI95% of .89-.96. The internal reliability of proactive control 

had a median rSB value of .74 and a CI95% of .56-.84, while the median rSB internal reliability of reactive 

control was .82 with a CI95% of .70-.91. Finally, the internal reliability of the triple interaction was quite high, 

with a median rSB value of .82 and a CI95% of .73-.88 (see Figure 4.4 and Appendix B, Figure B.18). 

4.3.3. Discussion 

As discussed in our previous study (Chapter 3) and in the Peripheral Experiment discussion, the 

Perifoveal task has methodological advantages over the Peripheral one, while also showing good statistical 

properties, as it ensures a large and reliable Stroop effect (Viviani et al., 2023). Although, so far, this 

experimental paradigm was tested when only Congruency was manipulated (see Viviani et al., 2023), we 
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expected that its methodological advantages over the Peripheral task could be extended over different 

experimental manipulations, such as those used in the present study. As such, we predicted that we could 

have obtained more reliable and robust results by using the Perifoveal Stroop task to simultaneously 

measure the effect of proactive and reactive control in the modulation of the Stroop effect, as well as their 

interaction, while also controlling for contingency and other low-level effects.  

The results were in line with our predictions and the pattern and magnitude of our effects of interest 

were consistent across the two multilevel analytical approaches, which showed a significant modulation of 

the Stroop effect by proactive control alone and by the interaction between proactive and reactive control. 

Thus, as compared to the Peripheral Experiment, using the Perifoveal task we obtained evidence not only 

for the effect of proactive control but also for that of the three-way interaction, which was probably favored 

by the nature of the task that minimized the potential effect of confounders related to the peripheral 

allocation of attention. Indeed, by allowing a faster identification of the item, the PC associated with it was 

more effectively activated and reactive control was elicited accordingly. As a consequence, the three-way 

interaction might have had a larger magnitude, and thus might have been more easily detectable.  

Although we found reactive control to interact with proactive control in modulating the Stroop effect, no 

significant distinct reactive control effect emerged. This finding, obtained using an experimental paradigm 

that is more likely to favor an ISPC-related reactive control employment, provided further evidence for our 

hypothesis that, when PRSb was included in the model, there was no residual variance left to be explained 

by ISb. Indeed, after PRSb was removed from the model, the effect of ISPC-induced reactive control 

emerged. This control analysis further supported our claim for the need to statistically control for what 

cannot be controlled for at the design level.  

The results for internal reliability were in line with the Peripheral ones. The internal reliability of the 

Stroop effect was very high and showed little variability. Proactive control still had a good internal reliability, 

but was somewhat lower and more variable than that of the Stroop effect (see Figure 4.4).  

Overall, the methodological premises favoring the Perifoveal spatial Stroop task and the greater 

consistency of the results across different approaches could indicate that the results obtained using the 

Perifoveal task were more robust and trustable. However, since they are in contrast with those obtained 

using the Peripheral task, we performed a between-Experiment analysis to verify whether the patterns of 

results were actually different between the two experiments.  



 

133 

4.4. Between-Experiments comparisons 

4.4.1. Methods 

We report how we determined our sample size, all data exclusions, all inclusion/exclusion criteria, all 

manipulations, and all measures in the study. All inclusion/exclusion criteria were established prior to data 

analysis. All data and materials, as well as the code used to run the experimental tasks and generate and 

analyze the data of the current study, will be made available from our project repository on the Open 

Science Framework (OSF) platform at osf.io/qmu7g. The analyses were not pre-registered. 

4.4.1.1. Data analysis  

Between-Experiment differences in LWPC and ISPC effects  

We run all the previous analyses but now to compare whether the experimental effects differed among 

the Peripheral and Perifoveal experimental tasks. We again checked for the presence of participants with 

low compliance, defined as those having either a mean iRTs more than three standard deviations away from 

the sample mean or a mean accuracy lower than 70% (i.e., the level used in the practice block). Based on 

these criteria, no participant was excluded from the analyses (see Appendix B, Figure B.20) 

First, a GLM analysis was performed to verify whether the Stroop effects obtained in the two 

experiments differed. Specifically, we compared the overall Stroop effects using a two-sample t test and 

computing Cohen’s d to obtain the corresponding effect size estimate. 

For the LMM analysis, we added to the continuous full model used in the previous analyses the 

categorical variable Experiment, whose value was set to -.5 for the Peripheral Experiment and .5 for the 

Perifoveal one. As explained above, based on our theoretical assumptions, we a priori decided to test the 

model including the trial-level estimates of our predictors and to include all plausible confounders. The 

Experiment factor was tested in interaction with those predictors that we expected to be modulated by it. 

As regards low-level predictors, we hypothesized that Experiment, due to the spatial arrangement of the 

stimuli, interacted with hS and vS (but not with hR and vR since the response effectors were the same), and 

with PRS since the difference in the stimuli could have affected the contingency effects. Moreover, since we 

were interested in whether the proactive and reactive control interaction in the Stroop effect modulation 

differed among the two Experiments, the Experiment factor was also tested in interaction with them in the 

fixed part, thus including in the model a four-way interaction. The formula for the final model, referred to as 

the continuous full_btw4 model, is:  

https://osf.io/qmu7g/
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RT ~ iRTpre + TrialTOT + hR + vR + PRb +Experiment*(hS + vS + PRSb + LWb*ISb*CON) + 

(LWb*ISb*CON|SS) 

We inspected the results to identify whether the effect of the predictors we tested in interaction with 

the Experiment factor was significant or not and, in the latter case, we refitted the model without such 

interactions to exclude the possibility that they could have affected the estimation of the other effects. It is 

important here to note that the results were essentially the same. Then, we used the random slopes for 

each participant to obtain the participant’s mean for each combination of experimental conditions and 

compared the experimental effects between the two Experiments using independent-sample t tests. 

For the RCA analysis, we ran linear regressions at the subject level using the same regression model as 

the within-subjects analysis (continuous full model), that is, using the following formula:  

RT ~ iRTpre + TrialTOT + hS + vS + hR + vR + PRSb + PRb + LWb*ISb*CON 

After excluding outliers exceeding 3 SD, we refitted the model and we compared whether the 

parameters of interest differed between the two Experiments using independent-sample t tests.  

These analyses could also help us in case of inconsistencies in the results of the two within-subjects 

analyses as, by being performed on the two datasets together, it would provide an overall result based on a 

larger sample.  

Assessing the internal reliability of LWPC and ISPC effects  

The internal consistency of the experimental effects of interest was assessed for the LMM results in the 

aggregate sample as described in Experiment 1. 

4.4.2. Results 

4.4.2.1. Between-Experiments differences in LWPC and ISPC effects   

We report here only the results of the analyses performed on iRTs for the same reasons explained above.  

The GLM-based analysis using a two-tailed independent-samples t test showed that the mean Stroop 

effects in the two Experiments differed significantly, with the Perifoveal one yielding the larger Stroop effect 

(Mdiff = .0832, t = 4.77, p < .0001, d = 0.72).  

Regarding LMM analysis, the continuous full_btw4 model revealed that the low-level confounders that 

we tested in interaction with Experiment were significant, confirming our assumption that the Experiments 

differed for the horizontal position of the stimulus (p = .0172) and for the vertical position of the stimulus (p 
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< .0001). Moreover, the confounding predictors tested alone were all significant (p < .0001, see Appendix B, 

Table B.21). Specifically, participants responded faster as trials went on, responded faster to stimuli 

appearing in the upper and right positions, using the middle finger and the right hand, and when PRb was 

higher. We also found a significant temporal dependency in iRTs.  

For what concerns the predictors of interest tested in interaction with the Experiment factor, the four-

way interaction was not significant (p = .1588), revealing that the interaction between LWb and ISb in 

modulating the Stroop effect was not different between the two Experiments. The Stroop effect and the 

effects of proactive and reactive control did not differ between the Experiments (p = .4792, p = .6713 and p 

= .2110, respectively). By contrast, the effect of PRSb was significantly different between the two 

Experiments (p = .0002), with a greater effect of PRSb in the Perifoveal Experiment as compared to the 

Peripheral Experiment. Regarding the predictors of interest not tested in interaction with the Experiment, 

the results confirmed a significant Stroop effect (CON_0), with a very large effect size (p < .0001, dr = 3.33, 

dS = 1.95) and a dominance of 100%, indicating that all participants responded slower to Incongruent trials. 

Moreover, LWb significantly modulated the Stroop effect (p < .0001, dr = 1.15, ds = 0.71, dominance 

86.36%), revealing a significant effect of proactive control. Similar to previous analyses, we did not find a 

significant ISb modulation of the Stroop effect (p = .5849, dr = 0.12, ds  = 0.02, dominance 55.68%). 

Interestingly, the three-way interaction between LWb, ISb and CON_0 was significant (p = .0094, dr = 0.25, ds 

= 0.20, dominance 59.09%), suggesting that LWb and ISb interacted in modulating the Stroop effect. This 

result was in line with the Perifoveal task results but not with the Peripheral ones, and provided additional 

evidence for the interaction of proactive and reactive control in the modulation of the Stroop effect. Lastly, 

the effect of PRSb was again significant (p < .0001), indicating that participants responded faster when PRS 

was higher (see Appendix B, Table B.21).  

As explained in the methods section, we performed the same model but after excluding the interactions 

between Experiment and the predictors that resulted non-significant in the previous analysis, which 

essentially consisted in removing the interactions between Experiment and the experimental effects of 

interest (i.e., the effect of proactive and reactive control, as well as their interaction, in modulating the 

Stroop effect). This model (continuous full_btw model), is basically identical to the ones performed on the 

two Experiments separately, but here it was run on the two datasets aggregated together. As such, since the 

separate within-subjects analyses on the two Experiments revealed contrasting results, this analysis also 

helped us to resolve the inconsistencies between them, by verifying whether, by removing Experiment, the 

three-way interaction survived.  

This analysis confirmed the results reported above for the continuous full_btw4 model. The conditional 

R2 of the model was .72 and 0.95% of the observations was removed as outliers (>3 absolute standardized 

residuals) to mitigate the stress of the model fit (i.e., to improve the normality of the residuals, see 
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Appendix B, Figure B.22). The effects of low-level confounders, as well as their interaction with the 

Experiment factor, remained significant and in the same direction as in the previous analysis (see Table 4.3). 

Regarding the predictors of interest, the Stroop effect was again significant with a large effect size (p < 

.0001, dr = 3.28, dS = 1.95) and complete dominance. LWb still significantly modulated the Stroop effect (p < 

.0001, dr = 1.16, ds = 0.72, dominance = 87.5%), confirming the effect of proactive control. Similarly to the 

previous analysis, the ISb modulation of the Stroop effect was not significant (p = .4792, dr = 0.15, ds = .02, 

dominance = 56.82%). Lastly, the three-way interaction between LWb, ISb and CON_0 was again significant 

(p = .0150, dr = 0.24, ds = 0.19, dominance = 55.68%), indicating that LWb and ISb interacted in modulating 

the Stroop effect, and when they were both high, participants showed larger Stroop effects. Thus, these 

results confirmed both those from the Perifoveal Experiment and those reported above for the between-

Experiments continuous full_btw4 model results.  

Table 4.3 – Results of the LMM analysis for the btw-studies analysis (continuous full_btw model) 

Effect b SE t df p 

Intercept -2.2029 0.0278 -79.225 273.92 < .0001 

TrialTOT -0.0967 0.0020 -48.649 5466.32 < .0001 

CON_0 0.3612 0.0105 34.470 311.05 < .0001 

iRTpre 0.0568 0.0010 58.150 102923.55 < .0001 

hS -0.0103 0.0023 -4.394 17358.21 < .0001 

vS -0.0330 0.0023 -14.442 20631.10 < .0001 

hR -0.0463 0.0022 -21.001 72402.04 < .0001 

vR -0.0899 0.0022 -41.542 74362.37 < .0001 

LWb -0.0057 0.0087 -0.653 175.99 0.5144 

ISb -0.0083 0.0064 -1.291 656.11 0.1972 

PRSb -0.0356 0.0050 -7.152 91065.10 < .0001 

PRb -0.1335 0.0111 -11.977 92613.89 < .0001 

CON_0:LWb 0.0658 0.0069 9.590 177.58 < .0001 

CON_0:ISb 0.0063 0.0089 0.708 1198.54 0.4792 

LWb:ISb -0.0214 0.0090 -2.389 175.94 0.0180 

CON_0:LWb:ISb 0.0279 0.0113 2.458 174.02 0.0150 

Exp -0.4712 0.0448 -10.523 182.63 < .0001 

hS:Exp -0.0098 0.0041 -2.376 17548.36 0.0175 

vS:Exp 0.1047 0.0041 25.703 22145.14 < .0001 

PRSb:Exp -0.0229 0.0053 -4.357 336.10 < .0001 

Notes: b, coefficient estimates; SE, standard error, df, degrees of freedom computed with the 
Satterthwaite's approximation. See the main text for the spelling out of the acronyms for the effects 

RCA analysis was then performed to confirm between-Experiments LMM results and this was the case. 

Indeed, all the predictors of interest were not significantly different in the two Experiments (all ps > .14, see 

Appendix B, Table B.23). Therefore, this analysis confirmed the robustness of the results obtained with RCA. 
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Confounding predictors were all significant (all ps < .04, see Appendix B, Table B.22) and in the same 

direction as the previous results, except for vS, for which we obtained contrasting results in the two 

Experiments. Here, we found that participants were faster in responding to stimuli appearing in the upper 

part of the screen, as for the Peripheral Experiment. In line with previous results, we found a very large 

Stroop effect (p < .0001, dr = 2.18, dominance = 98.86%), which was significantly modulated by LWb (p < 

.0001, dr = 0.71, dominance = 75%) but not by ISb (p = .8147, dr = -0.02, dominance = 48.86%). Moreover, 

LWb and ISb interacted significantly in modulating the Stroop effect (p < .0001, dr = 0.37, dominance = 

65.34%), which is consistent with the RCA results from both Experiments. The effect of PRSb was also 

significant (p < .0001, dr = -0.43) (see Appendix B, Table B.22).   

Given that between-Experiments results also showed that PRSb was significant but the CON_0 by ISb 

interaction was not, we further tested our hypothesis that we did not find it because PRSb explained all the 

variance that could have been explained by the reactive control modulation of the Stroop effect. For both 

the LMM and the RCA analyses, the continuous full_btw No_PRS model showed the same pattern of results, 

both for confounders and predictors of interest, with the only exception that, after removing PRSb from the 

model, the interaction between CON_0 and ISb became significant (ps < .0001) and with large effect sizes 

(dr = 0.72 and 0.76, respectively; see Appendix B, Tables B.24-25). Of note, the inclusion of PRSb in the 

model was justified and improved the model fit (χ2(2) = 138.4, p < .0001). 

4.4.2.2. Comparison with the hypothesized models 

Lastly, we compared our results to the models we put forward in the Introduction to verify which one 

better explained the patterns we obtained. We decided to compute such a comparison directly on the data 

aggregated over the two Experiments, that is, those used in the between-Experiments analysis with the 

continuous full model. Specifically, we correlated the overall observed pattern of Stroop effects predicted by 

the LMM analysis (Figure 4.5A) with those predicted by each of our a priori models to identify which had 

the highest correlation. We found that the observed Stroop effects were correlated the most with the 

model assuming an antagonistic interaction with a higher effect of proactive compared to reactive control (r 

= .97) (see Figure 4.5B for all correlations).  

4.4.2.3. Internal reliability of LWPC and ISPC effects in the aggregated sample 

As expected, the internal reliability estimate of the Stroop effect was the highest among our effects of 

interest, with a median rSB value of .92 and a CI95% of .89-93. The internal reliability of proactive control had a 

median rSB value of .73 and a CI95%  of .64-.82, while the median rSB of reactive control was .75, with a CI95% of 

.64-.83. Finally, the internal reliability of the triple interaction was similar, with a median rSB value of .78 and 

a CI95% of. .71-.83 (see Figure 4.4). 
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Figure 4.5.  
A) The plot shows the observed pattern of Stroop effects, as estimated by the LMM continuous full_btw 
model, as a function of the level of proactive control (hPro, blue line, corresponding to low-LWb conditions; 
lPro, blue line, corresponding to high-LWb conditions) and reactive control (hRea, corresponding to low-ISb 
conditions; lRea, corresponding to high-ISb conditions). B) Correlations between the observed pattern of 
Stroop effects and the hypothesized models (see the Hypotheses section). Error bars represent the standard 
error of the correlation. ADD, additive effects models; SYN, synergistic effects models; ANT, antagonistic 
effects models; Pro, Proactive control effect; Rea, Reactive control effect.  

4.5. General discussion 

According to the Dual-Mechanism of control model (DMC, Braver, 2012; Braver et al., 2007), cognitive 

control operates via two distinct mechanisms, proactive and reactive control, which are qualitatively 

different in terms of their temporal dynamics. Although this model could account for the great variability 

intrinsic to this ability, the evidence currently available for it is not compelling. In the laboratory, the DMC 

has been frequently assessed with the Stroop task, which allows varying the Proportion of Congruency (PC) 

at the list-wide (LWPC) and/or at the item-specific (ISPC) levels to specifically target proactive and reactive 

control, respectively. However, these manipulations have been called into question, especially by the 

contingency hypothesis, which claims that they elicit low-level processes instead of control-driven ones 

(Schmidt, 2019; Schmidt et al., 2007; Schmidt & Besner, 2008). Although several confound-minimized 

manipulations have been proposed to solve this issue, in our view, they still suffer from some limitations 

and are impractical. Moreover, the two control mechanisms have always been explored separately by 

implementing each PC manipulation one at a time, which prevents from assessing their specific effects 

when both are manipulated and, especially, the interplay between the two control mode mechanisms.  

Therefore, to date, there is no compelling evidence clearly supporting the existence of two distinct 

mechanisms, while also controlling for the potential influence of low-level confounders. Our aim here was 
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indeed to tackle this issue by combining multilevel modeling, the state-of-the-art trial-level analytical 

approach to estimate the Stroop effect effectively and reliably (see Viviani et al., 2023) and its control-

related modulations with a novel methodological approach allowing to manipulate both LWPC and ISPC in a 

fine-grained way at the trial-by-trial level. 

In brief, our main results consistently indicate that proactive control induced by trial-level LWPC 

manipulations modulated the Stroop effect, whereas ISPC-induced reactive control did not, probably due to 

the confounding effect of contingency. However, both control modes interacted in modulating the Stroop 

effect.    

4.5.1. Advantages of our methodological and analytical approach 

Before elaborating on the findings, it is worthy to discuss the methodological and analytical novelties of 

the present study, to fully understand their advantages compared to classical approaches primarily implying 

design-level control only. To make a step further, we used an analysis-level control, leveraging trial-level 

multilevel modeling to put forward a new approach in which LWPC and ISPC were manipulated 

simultaneously. This is indeed a more effective way to i) directly explore whether proactive and reactive 

control can coexist, that is, whether each mechanism can be active while also the other is activated; ii) 

investigate whether proactive and reactive control interact, since if we assume that they are distinct 

mechanisms, it is also plausible that they interact as (implicitly) postulated by the DMC. Moreover, to 

control for contingency-related effects, we did not balance stimulus-response combinations so as to make 

the contingency orthogonal to LWPC and ISPC as much as possible, and then we controlled for its effect at 

the statistical level. 

Overall, our approach introduces some main novelties, which our data suggested to be advantageous as 

compared to the traditional approaches used in the literature. 

The first original aspect of our approach consisted of calculating the trial-wise probabilities of our 

variables of interest. These provided more realistic estimates of our variables at each trial, because they 

were based on the updating of the trial-by-trial probability based on the trial history. Our expectation of a 

better model fit when using continuous as compared to discrete values was indeed confirmed by the model 

comparisons that we performed. Notably, these findings offer indirect support for frameworks that started 

conceptualizing cognitive control in terms of Bayesian inference (Jiang et al., 2014; Parr et al., 2023), 

suggesting a potential alignment between the observed results and the principles of the predictive brain 

(Clark, 2013).  

The second novel aspect of our study concerns the analytical approach, as we used multilevel modeling, 

which was particularly suitable for our aims. First, it allowed us to assess all our experimental effects of 

https://www.zotero.org/google-docs/?zHZE5T
https://www.zotero.org/google-docs/?pnlsm3
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interest at the same time, that is, the Stroop effect, proactive control, reactive control and their interaction 

in modulating the Stroop effect, which was our main aim and was not feasible using classical GLM-based 

approaches. As detailed in the Methods sections, GLM analyses were used just to assess the overall Stroop 

effect (and thus allowing its comparison with the existing studies) but they were not suitable for our 

experimental design and aim. Indeed, the second important advantage of multilevel modeling was that it 

ensured that the estimates of our effects were partialled out from the effect of lower-level confounders at 

the trial level, which represent sources of trial-by-trial noise that can affect the estimation of the effects at 

the subject level. This advantage, in line with the results of our previous study (Viviani et al., 2023), was 

confirmed by the comparisons of the full model with the reduced one, which showed that, in all our 

analyses, the former better explained our data. These results suggest that including in the model low-level 

predictors based on the characteristics of the task at hand ensured that the estimates of our effects of 

interest were more accurate and precise since intra-subject/inter-trial sources of variance, that contribute 

to measurement error, were explained. Moreover, using this approach, we successfully cleaned our effects 

of interest from the effect of contingency which represents a great issue when using PC manipulations as, in 

our view (see Section 4.1.1), they can hardly be properly controlled at the design level only. Indeed, it 

should be noted that it is practically impossible to de-confound ISPC and contingency measures for 

congruent trials, as they are both computed in the same way (i.e., the ratio between the occurrence of 

congruent trials and the total number of trials for that item within a block). Our results indeed indicate that 

controlling for the effects of contingency at the analysis level, that is, by including it in the model, 

represents a valid alternative to controlling for it at the design level. We indeed found that ISPC-related 

results changed dramatically when contingency was removed from the statistical model as compared to 

when it was included. This indicates that not controlling for contingency-related effects severely affected 

the results, leading to misleading conclusions about spurious effects of reactive control.  

4.5.2. LWPC and ISPC effects and between-Experiments differences 

The Peripheral and the Perifoveal Experiments yielded contrasting results for what concerns the three-

way interaction (namely, between the Stroop effect, LWPC and ISPC), with the former not finding any 

interaction between proactive and reactive control in Stroop effect modulation and the latter showing it 

instead. To shed light on this discrepancy, a between-Experiments analysis was performed, by running a 

model that compared the effects of interest as well as the low-level ones that were assumed to be different 

(i.e., stimulus position and contingency) to assess whether they differed between the two Experiments. 

Low-level results confirmed our assumption that the two Experiments implied different effects of stimulus 

position, which was quite predictable as the Perifoveal task had been intentionally designed to reduce 

visuospatial attention shifts and/or eye movements. Moreover, the difference in contingency might also be 

explained in terms of different spatial arrangements, as the greater effect of contingency in the Perifoveal 
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task might have been explained by the lower eccentricity of the stimuli. The keypresses used to provide 

responses were indeed spatially arranged more similarly to the Perifoveal stimuli, as they also had a low 

eccentricity. This might have led to a greater stimulus-response overlap in the Perifoveal task13 which, in 

turn, might have favored the learning of stronger stimulus-response associations. No Experiment-

dependent difference was instead observed for the effects of interest.  

Given that between-Experiments results revealed that the two Experiments were not different for what 

concerns the effects of interest, we aggregated the two samples to assess the results on both Experiments 

together, as this could tell us more about which pattern of results was more consistent, that is, whether the 

emerging results on the aggregated samples were more compatible with the Peripheral or the Perifoveal 

within-subjects results. Importantly, the analysis on the aggregated sample, as compared to the within-

subjects ones, was expected to yield more robust evidence by ensuring more power and more precise 

estimates. Interestingly, the results of the aggregated analysis reflected those obtained in the Perifoveal 

Experiment, although that was the Experiment with the smaller sample size. Essentially, we found again 

that proactive control, but not reactive control, modulated the Stroop effect, and that both control modes 

interacted in modulating the Stroop effect.  

Therefore, for what concerns the three-way interaction, these results could seem in contradiction with 

the between-Experiments results that did not reveal its significance as, after aggregating the two samples, 

they showed results in line with one Experiment but not with the other. To try to explain this inconsistency, 

we put forward a possible explanation based on the results of our previous study (Viviani et al., 2023, 

Chapter 3), wherein we found that the greater visuospatial attention shifts characterizing the Peripheral 

task led to an underestimation of the Stroop effect magnitude whereas, when they were reduced, such as in 

the Perifoveal task, the Stroop effect was more robust and larger. As such, these attentional shifts might 

have reduced the magnitude of the three-way interaction in the Peripheral task, making it not detectable 

with the within-subjects analysis, probably because the Peripheral Experiment was too underpowered to 

detect it, but revealing such interaction in the aggregated samples analysis, thanks to the greater power. Of 

note, the direction of the three-way interaction in the Peripheral task tested alone, despite being not 

significant, was consistent with the direction of the three-way interaction in the Perifoveal and in the 

aggregated sample, supporting our hypothesis that the difference among the two Experiments was not 

qualitative but just quantitative due to the effect of visuospatial attention shifts. This notwithstanding, the 

difference in the magnitude of the two three-way interactions in the two Experiments was not large enough 

to be significant and thus could not be detected by the between-Experiments analysis. Therefore, this 

interpretation would reconcile our apparently contrasting results, supporting both the presence of distinct 

                                                           

13 According to Kornblum (e.g., 1992), stimulus-response overlap is fundamental to yield a complete Stroop effect 

(see also Chapter 2), thus the stronger such overlap, the greater the Stroop effect.  
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patterns, as shown by the within-subjects results, and the absence of evidence for a difference among the 

Experiments, as found in the between-Experiments results, allowing us to more safely rely on the 

aggregated sample results to draw our conclusions.  

The robustness of the pattern of results provided by the aggregated sample analysis appears to be well 

substantiated also by the RCA analyses which served us to confirm LMM results. Indeed, the RCA analyses 

did not show contradictory results and always revealed that the Stroop effect was modulated by proactive 

control alone and by the interaction between proactive and reactive control. Therefore, this further 

supported our interpretation that the lack of a significant three-way interaction in the Peripheral 

Experiment alone using LMM analysis was the consequence of the underestimation of such effect due to 

the factors discussed above. Still, the fact that this effect emerged only under certain conditions and 

depending on the analytical approach leads us to suggest taking it with some caution and indicates that 

further investigations are needed before drawing definitive conclusions about it.   

A result that was instead always consistent was the absence of the main effect for the reactive control 

modulation of the Stroop effect. Indeed, none of our analyses showed a significant interaction between 

item-specific proportion congruency and the Stroop effect (ISb and CON_0). The absence of such interaction 

was observed also in one of the control analyses performed on the Peripheral Experiment using the LMM 

approach, in which we removed from the model the three-way interaction, as it was not significant, to 

assess whether it interfered with the estimation of reactive control effects. Even after excluding the three-

way interaction, the effect of reactive control by itself did not emerge, suggesting that it was not masked by 

the three-way interaction.  

Therefore, to provide a possible explanation for why ISPC-induced reactive control alone never 

modulated the Stroop effect, we performed control analyses on both single and aggregated samples by 

excluding from the model the contingency predictor. This was done because there is extensive literature 

showing that reactive control is specifically confused with contingency when ISPC is manipulated (e.g., 

Schmidt, 2019; Schmidt & Besner, 2008). Moreover, as explained above, it is very difficult to totally 

decorrelate contingency and ISPC at the design level while also keeping this manipulation item-specific. As a 

consequence, we assumed that the effect of ISb and CON_0 interaction might have been non-significant 

since Contingency (PRSb) included in the model explained all its variance. This was exactly the case: in all 

the control analyses, the removal of PRSb produced the same pattern of results, except for the interaction 

between ISb and CON_0, which became significant after this change. Thus, these consistent results 

confirmed our assumption that PRSb alone can explain all the variance of reactive control modulation and 

have several implications, as detailed in the following paragraph.  
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First, ISPC-induced reactive control and contingency are intrinsically related since the manipulation used 

to induce such a mechanism is inevitably confused with contingency, especially for congruent items. 

Second, as confound-minimized designs that have been proposed in the literature are, in our view, 

unpractical and partially flawed (see Section 4.1.1), the more adequate approach to control for contingency 

is the analysis-level one, as it effectively estimated the contingency-related confounding effect, allowing us 

to suggest that our estimation of reactive control effects was not biased by contingency. As discussed 

above, the model comparisons provided further evidence in favor of analysis-level control, which showed 

that the observed data were better explained when confounding predictors, among which contingency, 

were included in the statistical model. The third implication regards the fact that, although ISPC-induced 

reactive control alone was not significant, its interaction with proactive control to modulate the Stroop 

effect was significant even when contingency was in the model, suggesting that our experimental design 

was effective at yielding a reactive control effect partialled out from contingency, albeit an indirect one. This 

claim was further supported by another follow-up control analysis testing a model wherein PRSb and ISb 

were switched, so that, instead of ISb, PRSb was included in the three-way interaction to assess whether 

PRSb interacted with LWb in modulating the Stroop effect, that is, to exclude that the PRSb effect was 

masked by the inclusion of ISb. This, however, did not occur as the three-way interaction did not result 

significant, providing further evidence for the significant role of ISb in the three-way interaction and also 

indicating that it was successfully partialed out from the effect of contingency (see Appendix B).  

A further result robust to analytical flexibility, and thus consistent across all our analyses, was the Stroop 

effect modulation by proactive control, which is in line with previous findings (e.g., Bugg & Chanani, 2011; 

Hutchison, 2011). Indeed, the interaction between LWb and CON_0 was not only always significant in our 

main LMM and RCA analyses, but it was also accompanied by d values that were greater than .5, which is 

considered the threshold of medium effect sizes. In the aggregated sample results, proactive control had a 

medium-to-large effect size (d = .71) and a dominance of almost 87%, indicating that our paradigms were 

effective in producing a proactive control effect in the expected direction in most of the participants (i.e., 

larger Stroop effects when LWb was higher).  

It has to be noted also that this evidence for a proactive control modulation of the Stroop effect was 

obtained while controlling for possible confounding factors that might influence it. Indeed, whether LWPC 

manipulation is effective in inducing a control mechanism operating at the list-level and not just at the item 

level has been challenged. Essentially, some authors argued that LWPC is inevitably confused with ISPC since 

low-PC blocks are composed of low-PC items and high-PC blocks are composed of high-PC items (e.g., Blais 

et al., 2007; Blais & Bunge, 2010; Bugg et al., 2008). This is an inevitable consequence of LWPC 

manipulation. Indeed, although we tried to orthogonalize LWPC and ISPC as much as possible, our 

predictors were still correlated. However, by using multilevel modeling and including both predictors in the 
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model, we were able to control for that confound. Therefore, since the LWPC by Congruency interaction 

consistently emerged, as opposed to the ISPC by Congruency interaction, which was never significant, we 

can reasonably claim that the observed variance was explained by the proactive (but not by the reactive) 

control manipulation. These results further highlighted the advantages of analysis-level control, which can 

overcome issues that cannot easily be addressed by the design-level control.  

The last important result concerns the magnitude of the Stroop effect. Although in this work we were 

not specifically interested in the Stroop effect per se, it was essential that our paradigms yielded an effect 

that was robust, and this was the case. The Stroop effect was indeed observed in all our analyses and was 

characterized by very large effect sizes. Specifically, in the aggregated analysis, it had a d value of 1.95 and 

all individuals showed a true positive Stroop effect, that is, they all responded more slowly in incongruent 

compared to congruent trials, as indicated by a dominance of 100%. These results are in line with those 

from our previous study, in which we found that both the Peripheral and the Perifoveal tasks were effective 

in producing large Stroop effects. However, the present results did not confirm the larger Stroop effects we 

found for the Perifoveal as compared to the Peripheral task in our previous study (Viviani et al., 2023, 

Chapter 3). Indeed, albeit in the same direction, this between-task difference was not significant in the 

present study. 

Overall, this complex pattern of results allows us to start to answer one of our research questions, that 

is, whether proactive control exists per se also while reactive control is present and vice versa, and whether 

they interact as well. For the reasons explained above, such a question will be addressed considering the 

results produced by the aggregated sample analysis because its higher statistical power ensured more 

precise estimates of the effects of interest, which, inter alia, did not differ among the two Experiments.  

Interestingly, our results suggest that proactive control independently operated by modulating the 

magnitude of the Stroop effect, even when reactive control was manipulated, whereas ISPC-induced 

reactive control did not affect the Stroop effect by itself, but it only interacted with the proactive control in 

modulating the Stroop effect. As such, this might indicate that, overall, proactive control is stronger than 

reactive control, but this claim will be better discussed in the testing of a priori formal model section.  

However, care must be taken in interpreting this pattern of results. Indeed, there is no clear evidence 

against reactive control that exists independently of proactive control because of the limitations of the ISPC 

manipulation that have been pointed out in the literature and confirmed in our work. Indeed, what clearly 

stood out from our work, and especially from the comparison between the main results and the control 

ones, was that the effect of reactive control was masked by that of contingency to such an extent that, 

when both were included in the statistical model, contingency alone explained all the variance. As already 

pointed out, this is very likely to be the consequence of the imperfect orthogonalization due to the 
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inevitable overlap of contingency and ISPC for congruent trials. However, although the correlation between 

our ISb and PRSb predictors was not that high (17% of shared variance), contingency still preferentially 

emerged as a significant modulator of participants’ performance, suggesting its stronger influence. This 

claim seems to be in line with previous works showing that the ISPC effect was only incidental and 

exclusively due to contingency learning (e.g., Schmidt, 2019; Schmidt & Besner, 2008). It is worth noting 

that the conclusions drawn by the contingency learning account have been quite radical, pointing towards a 

mere low-level associative learning, rather than conflict-related resolution of the interference in the Stroop 

task. However, our data do not seem to support such an extreme view either, revealing that a more 

intermediate and balanced position might better fit the available data.  

Essentially, on the one hand, our results are consistent with the contingency learning account for what 

concerns the inevitable influence of contingency learning on performance. Contingency prevailed especially 

over ISPC-induced reactive control which, when considered by itself, did not survive the presence of such 

low-level learning effect. Therefore, we agree on the need to control for contingency learning and that 

considerable attention must be paid in interpreting reactive control effects. However, our results also 

revealed that the impact of reactive control still remained significant even after partialling out the effect of 

contingency, that is, when reactive control interacted with proactive control in modulating the Stroop 

effect. Therefore, it might be that contingency is stronger than reactive control per se, but this does not 

necessarily exclude a strategic implementation of control, which can also operate in a reactive way but only 

when moderated by proactive control levels. Such modulation was, in fact, specifically driven by reactive 

control as shown by one of our control analyses, as discussed above (also see Appendix B), which allowed 

us to exclude the role of contingency learning in such a higher-level modulation. More importantly, the 

pattern of the significant interaction between proactive and reactive control in modulating the Stroop effect 

offers another alternative explanation for the fact that the reactive control modulation of the Stroop effect 

did not reach the significance level per se. Indeed, as we discuss in detail below, our results indicate that the 

effect of reactive control emerges only when the level of proactive control is low. However, in our models 

the effect of the interaction between congruency and the trial-level ISPC estimate is conditional to an 

intermediate level of the trial-level LWPC estimate and, consequently, an intermediate level of proactive 

control, which thus could have been high enough to prevent the need for reactive control. 

Hence, our work contributed to provide consistent evidence for the specificity of the proactive control 

mechanism, by showing that it operates independently from the concurrent activation of reactive control 

and/or contingency learning. Moreover, we have provided initial evidence that cognitive control can also 

operate through a reactive control mechanism. The latter, however, emerges only in interaction with 

proactive control as, when assessed by itself, it can be explained mainly by contingency. This pattern thus 
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suggests that proactive control is mainly engaged to solve Stroop interference, with a greater impact on 

participants' performance, as compared to ISPC-induced reactive control. 

4.5.3. Testing of a-priori formal models  

The pattern of results discussed above suggested that, although proactive and reactive control 

interacted, the former had a stronger effect than the latter, as it also operated by itself. At first glance, this 

claim matches one alternative of our a priori hypotheses, that is, the one predicting a dominant role of 

proactive over reactive control. However, we tested all of our hypotheses to verify whether our data 

actually correlated the most with that alternative or whether another model better fitted the pattern of 

results we found.  

The model that was more highly correlated to our data, and thus that best explained the obtained 

pattern of results, was the one predicting the dominance of proactive over reactive control and an 

antagonistic interaction between them. This result thus confirmed the asymmetrical pattern we observed in 

our results. Moreover, it further supported our claim that proactive control had a stronger effect than 

reactive control. This is in line with the fact that, in all our analyses, reactive control did not survive by itself 

and thus it would have been odd if our data were better explained by the model implying an equal strength 

of proactive and reactive control or, even more, by the model predicting the dominance of reactive control. 

 What is even more noteworthy here, as it emerged less straightforwardly from our results, was the 

direction of the three-way interaction. The fact that the best model was the one predicting an antagonistic 

interaction provides a better insight into how proactive and reactive control interacted to modulate the 

Stroop effect. This suggests that proactive and reactive control interacted in an antagonistic manner and, 

when both were high, they yielded a Stroop effect reduction that was smaller than that predicted by their 

additive effects. This means that one of the two mechanisms produced a mitigation of the strength of the 

effect of the other. As the stronger control mode was the proactive one, it can be assumed that it exerted 

such moderator effect on reactive control, probably because this latter mechanism was not useful or 

effective; in other words, the possibility of relying on the trial-level LWPC estimates to exert proactive 

control, the stronger and more effective mode, made the implementation of reactive control unnecessary. 

Figure 4.5A clearly displays this, as can be seen from the pattern of observed results, when proactive 

control was high (blue line, hPro-hRea and hPro-lRea conditions), the Stroop effect did not decrease (and 

was even numerically larger) when both control strategies were available (hPro-hRea) as compared to when 

just proactive control strategies were implemented (hPro-lRea). By contrast, when proactive control was 

low (red line, lPro-hRea and lPro-lRea conditions), the Stroop effect was lower when reactive control was 

implemented (lPro-hRea), even if still higher than that observed under proactive control, as compared to 

when no control mode was available (lPro-lRea).  
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Importantly, the observed pattern of the interaction between proactive and reactive control in 

modulating the Stroop effects is well in line with the DMC proposal (De Pisapia & Braver, 2006), which 

assumes that reactive control preferentially operates when proactive control is not possible or 

advantageous. However, to the best of our knowledge, this interplay between proactive and reactive control 

has never been tested directly, by actually manipulating the corresponding experimental variables, like 

LWPC and ISPC, respectively. Indeed, DMC-inspired studies investigating or interpreting the behavioral and 

neurophysiological correlates of proactive and reactive control usually only varied LWPC (or LWPC-like) 

experimental variables and then assumed that reactive control operated for lower levels of proactive 

control. Our results thus represent a substantial contribution to the field by showing, for the first time, the 

actual fine-grained pattern of the proactive-reactive control interplay in modulating Stroop performance. 

More importantly, our results also raise severe concerns about the assumptions made by the existing 

studies mentioned above, namely, that when there is no or low proactive control, then reactive control 

must necessarily be active. Indeed, our results clearly showed that, when LWb was high (and thus proactive 

control was low), the Stroop effect decreased only when ISb was low (and thus reactive control was high), 

whereas it was very large when ISb was also high (and thus reactive control was low). In other words, high 

levels of LWPC would be a necessary but not sufficient condition for the activation of reactive control, as it 

can actually be implemented only when there are low levels of ISPC. It is important here to note that this 

argument is valid only for the “faster” or “associative” form of reactive control, that is, the one signaled by 

ISPC (or other forms of stimulus-related information) that, in turn, activates a sort of stimulus-attention 

association to apply attentional biases to stimulus-related processing in a reactive way (Tafuro et al., 2020; 

Bugg, 2017; Bugg & Crump, 2012). 

Overall, the model testing confirmed in a more straightforward way what we obtained from our 

analyses. Therefore, it did not add more information to the result parameters we present in Table 4.3. 

However, we believe that it could add two main strengths to the present work: i) the graphical 

representation displaying the model better showing the results provides a clearer and more easily 

interpretable overview of the pattern of results; ii) it encourages comparability with other works testing 

both similar and distinct hypotheses.  

4.5.4. Internal reliability 

The internal reliability of our effects of interest was overall quite high for all of our analyses. In the 

results from the aggregated sample, the internal reliability of the effects was always higher than .73. The 

Stroop effect showed the highest internal reliability with an rSB value of .92, and this value was even higher 

than those obtained in our previous study (Viviani et al., 2023), probably due to the higher number of trials 

used in the present study. Indeed, we previously found that the Peripheral task had an internal reliability of 
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.80, whereas here it reached an rSB  value of .92, and the Perifoveal task had an internal reliability of .80, 

whereas here it reached an rSB value of .94. Moreover, all of these values had low variability across 

randomizations.  

The internal reliability of the proactive control effect was slightly lower, but still remained quite high (rSB 

value of .73 in the aggregated sample) and was similar not only to that of the reactive control effect (rSB 

value of .75 in the aggregated sample), but also to that of the three-way interaction (rSB value of .78). This 

latter result is surprising, since the reliability of differential effects is generally lower.  

Overall, these results confirmed our previous findings (Viviani et al., 2023), as they are still at odds with 

the reliability paradox (Hedge et al., 2018) and related proposals (Rouder & Haaf, 2019) according to which, 

if an experimental effect is large and universal, its internal reliability can hardly be large enough. As such, 

this further supports our choice of using multilevel modeling which, by allowing explaining intra-

subject/inter-trial variance, has been shown to effectively provide more precise estimates of the effects of 

interest.  

4.6. Conclusions 

In two behavioral Experiments, we aimed to investigate the dual-mechanisms of control model (DMC) 

and its application to the Stroop task by developing a novel methodological approach and combining it with 

the state-of-the-art trial-level multilevel modeling that ensures accurate and reliable estimates of the 

Stroop effect. This approach allowed us not only to manipulate LWPC and ISPC simultaneously, but also in a 

fine-grained way at the trial level, which is crucial for understanding the coexistence and interaction of 

proactive and reactive control, while also controlling for the confounding effects of low-level processes, 

including contingency. 

Our results provided consistent evidence for the existence of LWPC-dependent proactive control 

mechanisms modulating Stroop performance regardless of confounders and also ISPC-dependent reactive 

control levels. Moreover, albeit we did not find evidence for the existence of specific ISPC-dependent 

reactive control effects, they still interacted with proactive control in modulating Stroop performance, with 

the characteristic pattern assumed by the DMC. 

Although further research is needed to validate these findings and understand the nature of the three-

way interaction between congruency and proactive and reactive control, thanks to our novel approach, our 

study provided new insights into the DMC model and the cognitive mechanisms underpinning the 

modulation of the Stroop effect. These insights specifically concern three points; first, our results reveal that 

using trial-level estimates of the PC provides a better account of adaptive control employment, thus 
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encouraging future studies to do the same to reach a more realistic understanding of adaptive control 

modulations. Second, thanks to the simultaneous and fine-grained manipulation of LWPC and ISPC, we 

provided evidence for the interplay between proactive and reactive control in modulating the Stroop effect, 

which set the bases for further studies that deepen the understanding of the two control modes postulated 

by the DMC. Third, thanks to our analysis-level control approach used to control for (and estimate) the 

effect of contingency, we unveiled the interplay between ISPC-induced reactive control and contingency, 

shedding light on the related still unresolved diatribe between pure associative learning and adaptive 

control accounts of the Stroop performance, promoting a more moderate view. Overall, our results valuably 

contribute to the ongoing research on cognitive control mechanisms and their implications for 

understanding human cognition. 
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CHAPTER 5 

Following the waves: 

A Univariate Exploration of Control Processes 

5.1. Introduction 

In the previous Chapter, we highlighted that whether proactive and reactive control are distinguishable 

at the behavioral level is still far from being clear, providing some initial evidence for that. However, this 

matter is even more unresolved at the electrophysiological level. Indeed, how cognitive control functions in 

our brain has been investigated extensively over the past decades but, this effort notwithstanding, many 

questions regarding its underlying neural mechanisms remain unanswered.  

Just as in behavioral studies, researchers have sought to uncover the electrophysiological signatures of 

cognitive control and interference resolution by examining performance on the Stroop task alongside 

electrophysiological measures. Event-Related Potentials (ERPs) have been extensively used to study control 

processes and the N2, N450, and LP components have been commonly reported (for reviews see for 

example Heidlmayr et al., 2020; Larson et al., 2014). These ERP components have been generally 

interpreted based on the conflict monitoring account (Botvinick et al., 2001). For example, the unified 

model by Heidlmayr and colleagues (2020) proposes the following time course in the Stroop ERP correlates: 

a fronto-central N2 component reflecting conflict monitoring generated by the anterior cingulate cortex 

(ACC), a centro-posterior N450 reflecting interference suppression generated by ACC and prefrontal cortex 

(PFC), and a late positive component (LPC) reflecting conflict resolution. It should be noted that the centro-

posterior N450, consisting in a less prominent P3-like positivity for incongruent stimuli (and thus a negative 

deflection in the incongruent - congruent difference wave), has been labeled inconsistently in the literature 

(e.g., P3 by West, 2000, Ninc by Appelbaum, and MPN by West 2000; see also Di Russo & Bianco, 2023); 

here we will use the label P3-like. 

More recently, there has been a growing interest in exploring oscillatory signals, which subserve 

important functions in the brain. As such, investigating process-dependent changes of spectral power across 

different frequency bands through event-related spectral perturbations (ERSPs) can provide additional 

information, as compared to ERPs, and thus valuable insights into cognitive control processes (Engel & Fries, 

2010; Heidlmayr et al., 2020). The frequency bands most commonly associated with cognitive control are 

theta (4-7 Hz), alpha (8-12 Hz), and beta (13-30 Hz). Such frequency band functional meaning has been 
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interpreted based on existing theoretical frameworks, but in a less direct manner as compared to the 

above-described ERPs. For example, it has been proposed that theta frequency signals the need of cognitive 

control during conflicting situations, especially over mid-frontal scalp regions (e.g., Cavanagh & Frank, 2014; 

Hanslmayr et al., 2008; Mückschel et al., 2016), alpha frequency is a marker of inhibition involved in the 

suppression of the processing of irrelevant items (e.g., Gutteling et al., 2022; Jensen & Mazaheri, 2010), and 

beta frequency is implied in the maintenance of the cognitive set favoring endogenous top-down biases and 

in the modulation of response conflict (Engel & Fries, 2010; Wang et al., 2014).   

All these ERP and ERSP signatures emerged quite consistently across studies (although not always in the 

same direction or with the same characteristics), but the functional meanings attributed to them highly 

depend on the adopted theoretical framework, and the landscape of cognitive control theories is 

heterogeneous. As we already mentioned in Chapter 1 (see Section 1.1), we chose to adopt the Dual-

Mechanisms of control model (DMC) proposed by Braver and colleagues (Braver, 2012; Braver et al., 2007) 

instead of the conflict monitoring model (Botvinick et al., 2001). This was based on the fact that, the DMC, 

by expanding the single mechanism postulated by the conflict monitoring model, accounts for different 

time scales of control effects and, thus, allows explaining commonly observed forms of cognitive control 

adjustments (i.e., conflict adaptation (CA) and proportion congruency (PC) effects). The DMC proposal of 

the existence of two qualitatively and temporally distinct control mechanisms, proactive and reactive 

modes, is supported by available evidence showing the need for multiple control mechanisms to account 

for commonly observed effects (Torres-Quesada et al., 2013).  

In the present study, we will thus adopt the DMC as our theoretical framework to investigate cognitive 

control more comprehensively, considering the different temporal dynamics of the two control 

mechanisms, with a particular emphasis on proactive control, which has been less investigated. Besides 

being a clear framework, the DMC has the advantage to have inspired extensive literature that has used 

specific manipulations to distinguish between the two control modes by targeting the PC at the list-wide 

(LWPC) and item-specific (ISPC) levels, especially when using the Stroop task (Bugg, 2012; Bugg & Crump, 

2012). Please refer to Chapter 4 for a detailed description of the LWPC and ISPC manipulations.  

As is evident from the overview of the electrophysiological evidence presented above, the 

electrophysiological correlates of cognitive control have been less frequently studied from the DMC 

perspective. Only a few studies have indeed tried to dissociate proactive and reactive control signatures. For 

what concerns ERPs measured during the Stroop task, to date, findings are not conclusive. For example, 

Tillman and Wiens (2011) found greater N450 amplitude in incongruent compared to congruent trials when 

LWPC was high, as compared to low-LWPC blocks, interpreting this component as a marker of greater 

interference. In contrast, West and Bailey (2012) revealed greater N450 (also called medial frontal 

negativity, MFN) amplitude in incongruent trials in low LWPC blocks, interpreting this ERP component as the 
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correlate of proactive control. Moreover, by finding greater medial posterior negativity (MPN) amplitude in 

high LWPC blocks, they proposed that this component was a marker of reactive control14. In another study, 

Appelbaum and colleagues (2014) found that the frontocentral negative-polarity incongruency wave (Ninc) 

was sensitive to the overall level of conflict, whereas the late positive component (LPC) was increased in 

high LWPC blocks, thus when proactive control was reduced. Regarding ERSPs, findings are even more 

scarce, and to the best of our knowledge, still no study has investigated the spectral dynamics of proactive 

and reactive control using the Stroop task in the DMC framework. In contrast, using the AX-Continuous 

Performance Task, Eisma and colleagues (2021) found that reactive control was associated with higher theta 

power than proactive control. 

Overall, to date it is difficult to draw firm conclusions about ERP and ERSP correlates of proactive and 

reactive control due to the heterogeneity among the experimental paradigms and the manipulations used. 

Indeed, EEG studies investigating control from a DMC perspective have rarely employed the PC 

manipulations, especially those for reactive control (i.e., ISPC). Although the validity of such PC 

manipulations in tapping control-related mechanisms have been called into questions (i.e., by the 

contingency hypothesis, for a review see Schmidt, 2019; see also Chapter 4), there is evidence that the PC 

approach has the potential to answer quantitative questions about control-based adjustments (e.g., Braem 

et al., 2019; Bugg & Crump, 2012). Therefore, taking advantage of shared manipulations and experimental 

rigor should be the first step towards the understanding of the electrophysiological processes underlying 

proactive and reactive control. Moreover, no compelling evidence exists either for whether the two control 

mechanisms are independent and separable at the electrophysiological level, as postulated by the DMC. 

Indeed, to date such dissociation has been explored mainly using the fMRI technique, which has provided 

evidence for anatomical and functional distinctions (e.g., Braver, 2012 see also Braver et al., 2021). 

However, given that the main DMC fundamental tenet is that the two mechanisms have distinct temporal 

dynamics, the higher temporal resolution of the EEG technique might provide even more valuable insights 

by directly testing the DMC explicit predictions regarding such temporal dynamics. Indeed, EEG technique 

has the potential to provide a more fine-grained distinction between sustained proactive processes and 

transient reactive ones. 

Here, we capitalize on our previous behavioral study, wherein we directly addressed this issue by putting 

forward a new approach to simultaneously manipulate LWPC and ISPC, while controlling for the effect of 

contingency (see Chapter 4). As such, the aim of the present study is to investigate the ERP and ERSP 

correlates of proactive and reactive control, assessing whether they are distinguishable at the neural level. 

                                                           

14 This interpretation is consistent with the DMC and is based on the assumption that when proactive control is 

low, reactive control is high. Indeed, according to De Pisapia and Braver (2006), when LWPC is high, cognitive control 
is likely to be engaged reactively.  
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Since, to do so, both control mechanisms need to be activated at the same time (Jiang et al., 2014), we will 

measure participants’ EEG activity while both LWPC and ISPC are manipulated using a spatial Stroop task. 

Indeed, if we assume that proactive and reactive control co-exist, each mechanism should modulate Stroop 

performance also while the other is activated. We will thus verify this assumption by simultaneously testing 

both the interaction between LWPC and the Stroop effect, reflecting proactive control, and the interaction 

between ISPC and the Stroop effect, reflecting reactive control. Manipulating both LWPC and ISPC will also 

allow us to explore for the first time the interplay between proactive and reactive control in modulating 

Stroop effect neural markers (i.e., by testing the three-way interaction between Stroop effect, LWPC and 

ISPC). Moreover, we will allow contingency to vary to accurately estimate its impact on Stroop performance 

and ER(S)P correlates and to partial out its effect in the statistical analyses (i.e., to measure LWPC and ISPC 

effects regardless of contingency). 

Our study was aimed to assess the effects of the simultaneous LWPC and ISPC manipulations which, to 

the best of our knowledge, has never been done before within the same experimental paradigm. Another 

additional aim was to explore how the PC manipulation at each level modulates cognitive control 

adjustments on a trial-by-trial basis. This is motivated by the assumption that, since participants are not 

informed about the block-level probabilistic structure of the task (which is the basis for the computation of 

LWPC and ISPC in all existing studies), they cannot be aware of it. It is instead more likely that they implicitly 

and progressively infer it from the trial-by-trial variations of the PC. As such, at each given trial, participants 

would implement a specific level of control because they estimate the PC at the current trial based on the 

history of previous trials. This scenario is more plausible than assuming that participants exert the same 

level of control for every trial within a block regardless of the local temporal variations of PC, as assumed by 

all existing studies using traditional block-wise approaches, which therefore do not account for the flexible 

adjustments of cognitive control. Indeed, the classical LWPC manipulation relies on the implausible 

assumption that all the trials within each block have the same PC value and that, at each block transition, 

the PC is immediately updated. Similarly, traditional ISPC estimates neglect that participants first need to 

experience each item for a while to attribute to each of them an ISPC value, thus unrealistically assuming 

that the items at the beginning of the experiment have already been associated to a PC value, without 

previously encountering them. 

 To account for trial-by-trial variations, we will leverage a fine-grained manipulation of LWPC and ISPC, 

which will be estimated trial-by-trial using an ideal Bayesian observer. Trial-by-trial estimates (which we will 

call continuous variables) will be used as predictors in our analyses, as they are more realistic than those 

computed using the block-level occurrences (which we will call discrete variables). Note that we will 

compute trial-level estimates also for confounding variables of interest, such as contingency. A further 

advantage of using these continuous variables is that it allows us to better orthogonalize LWPC, ISPC, and 
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contingency predictors. Indeed, our discrete LWPC and ISPC predictors inevitably shared a large portion of 

variance with each other (≈46%) and shared, respectively, ≈7% and ≈13% of variance with contingency; by 

contrast, the portion of variance shared between our continuous LWPC and ISPC predictors dropped 

dramatically (≈3%), as did that shared between them and contingency (≈2% and ≈5%, respectively). 

As mentioned above, we will use a spatial Stroop paradigm requiring four-choice keypress responses to 

indicate the direction of a target arrow appearing in a congruent or incongruent spatial position. The spatial 

Stroop version is preferable over the original color-word verbal one, as it ensures a complete Stroop effect 

including conflict at the task, stimulus and response levels even while using manual responses, which are 

less problematic (i.e., easier to record and less prone to artifactual movements) than vocal ones, especially 

for neuroimaging studies (Viviani et al., 2023). Specifically, we will adopt the perifoveal version of it, which 

we have shown to produce a Stroop effect that is large, robust to analytical flexibility, with a high internal 

reliability and, for the spatial arrangement of the stimuli, is assumed to produce fewer physiological  

artifacts (i.e., ocular movements) during EEG recordings (Viviani et al., 2023).  

5.2. Methods  

5.2.1. Experimental task and stimuli  

We administered a perifoveal spatial Stroop task as the one used in Chapter 4. The task was 

implemented in Psychtoolbox and also response times (RTs) and accuracy were recorded. Participants were 

seated at about 57 cm from the monitor. Stimuli were presented in full-screen mode on a 19-inch monitor, 

with a resolution of 1920 x 1080 pixels, and they appeared on a gray background (RGB: 128, 128, 128). 

Participants were instructed to pay attention to the task-relevant information, which was the pointing 

direction of the arrow, and were required to indicate it regardless of the task-irrelevant information, which 

was the position where it appeared. Each trial started with a fixation stimulus presented at the center of the 

screen for 1700 ms, consisting in a vertically oriented thin black cross (39 x 39 pixels) enclosed in the partial 

outline of a black square (117 x 117 pixels), and participants were instructed to fixate it. The partial outline 

of the fixation stimulus created the impression of four small squares, each of which denoted a position, 

which could be upper-left, upper-right, lower-right or lower-left. Then, the experimental stimulus appeared 

and remained on the screen until participants responded or up to a response time-out of 1500 ms. The 

experimental stimulus was a small black arrow, presented within one of the four apparent small 

squares/positions and it could indicate one of four possible directions, which were upper-left, upper-right, 

lower-right or lower-left. To respond, they pressed one of four possible keys on a computer keyboard (E, O, 

K and D) using the left middle, right middle, right index and left index fingers. The keys were spatially 

arranged to be compatible with the four possible arrow directions (and also with the four possible 



 

159 

positions). The task-relevant arrows could either match or not the task-irrelevant position, yielding 

congruent and incongruent trials, respectively. We used 12 out of the 16 possible combinations of arrow 

directions and positions, since we excluded the four incongruent arrows pointing to the opposite direction 

as they pointed to the response and thus were less incongruent than the other incongruent off-diagonal 

stimuli (e.g., the arrow appearing in the upper-left position and pointing towards the lower-right direction).  

List-wide (LWPC) and item-specific (ISPC) proportions of congruency were simultaneously manipulated 

to measure proactive and reactive control, respectively. Moreover, since we were interested in measuring 

the trial-by-trial PC variations, we varied both LWPC and ISPC as much as possible. To this aim, we designed 

a trial list composed of 17 small blocks, including 40 experimental trials each. The blocks could have three 

different LWPC values: 30% of incongruent trials (LW30), 50% of incongruent trials (LW50) and 70% of 

incongruent trials (LW70). The blocks with different LWPC values were intermixed in order not to have two 

consequent blocks with the same LWPC and to counterbalance all the possible LWPC transitions. Then, 

distinct ISPC levels were nested within each LWPC block, so as to have a minimum of 2 different ISPC values 

within each block. In the LW70 blocks, the ISPC could be 40% or 80%, in the LW50 blocks, the ISPC could be 

20%, 40%, 50%, 60% or 80%, and in the LW30 blocks ISPC could be 20% or 60%. Moreover, within each 

block, the occurrence of each position-direction combination was intentionally varied with the aim of 

orthogonalizing as much as possible contingency to LWPC and ISPC, so that the effect of these three 

variables could be disambiguated in the statistical analysis. To do so, we slightly varied within each block the 

probability of each of the four directions (and thus the response; from 15% to 37.5%), while keeping the 

probability of each of the four positions constant. We thus obtained that the majority of the trials had 

distinct levels of LWPC, ISPC and Contingency, with this latter ranging from 10% to 80%, in steps of 10%. In 

addition to the 680 experimental trials, we added 16 training trials at the beginning of the task, with LWPC 

and ISPC both at 50%. Thirty-second breaks were placed every 90 trials and they did not correspond to the 

transitions between experimental blocks (which were not signaled to participants). The order of blocks was 

decided a priori, as described above and, within each block, the order of presentation of the trials was 

pseudorandomized using the software Mix (van Casteren & Davis, 2006) to avoid more than four 

consecutive repetitions of the same congruency and both total and partial repetitions of stimulus 

characteristics and/or response to control for first-order priming effects.  

With this procedure, we obtained a trial list composed of discrete variables, that is, computed on the 

block-level occurrences. However, as discussed in the introduction, our aim was to use the trial-level 

estimates as predictors in our analyses. Therefore, in a second step, we computed trial-by-trial probabilities 

of our variables of interest, namely LWPC and ISPC, but also of Contingency and other variables used as 

confounding predictors in the statistical analyses (see below). To do so, we used the Hierarchical Gaussian 

Filter (Mathys et al., 2011), which uses variational Bayes under a mean-field approximation to update the 
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probability of an event on each trial. As such, trial-level estimates were calculated based on the update of 

trial-by-trial probabilities of i) the stimulus congruency, for LWPC; ii) the stimulus congruency conditional to 

a specific position, for ISPC; iii) the response (corresponding to the target direction) conditional to a specific 

position, for Contingency; iv) the response.  

General instructions regarding the procedure, the task and the response mapping were provided to 

participants before the beginning of the task. They were instructed to respond as quickly and accurately as 

possible and were encouraged to maintain a comfortable posture, while keeping the responding fingers in 

contact with the response keys, and to avoid movements as much as possible. During the 16 practice trials, 

they received feedback on their performance accuracy and, in case of errors or time-out responses, were 

provided with a brief summary of instructions and response mapping. Blocks of practice trials were 

presented until 75% accuracy was reached.  

5.2.2. EEG recording and pre-processing  

The data were recorded at 500 Hz using BrainAmp amplifiers (Brain Products, Munich, Germany) from 64 

Ag/AgCl electrodes mounted on an elastic cap (EASYCAP GmbH, Germany), according to the 10-10 system. 

We also recorded electrooculographic activity with an electrode placed under the left eye. The channel 

impedances were measured and adjusted until they were kept below 10 kΩ before testing. All electrodes 

were referenced online to FCz during the recording and an electrode positioned at AFz was used as ground.  

Offline signal preprocessing was performed with MATLAB (Version 2017b; The MathWorks, Inc. Natick, 

MA) using scripts created ad hoc based on the functions from the EEGLAB toolbox (version 14.1.2; Delorme 

& Makeig, 2004). All criteria were established prior to data analysis.  

Channels F1 and F2 were removed in all participants due to technical issues during the recording. Then, 

continuous raw data were filtered offline using zero-phase Hamming-windowed sinc FIR high-pass and low-

pass filters (cut-off frequencies: 0.1 and 45 Hz, transition bandwidth: 0.2 and 10 Hz. respectively). 

Moreover, to facilitate the identification and removal of artifacts, we created a temporary cleaner dataset to 

be submitted to the independent component analysis (ICA) algorithm (Winkler et al., 2015). Specifically, we 

performed the following temporary pre-processing steps: 1) we applied a stronger high pass filter (cut-off 

frequency: 1 Hz, transition bandwidth: 2 Hz); 2) we detected and removed bad channels by means of the 

clean_rawdata function, using a maximum flatline duration of 5 s and a correlation threshold of .8 (these 

criteria led to the exclusion of 1.34 channels of average, SD = 1.89, range = [0 – 8]). ICA was then performed 

on this temporary dataset, using the fastICA algorithm with a symmetric approach, followed by equivalent 

dipole fitting performed using dipfit. To identify non-brain components (e.g., eye movements, blinks, and 

muscular activity), we first used an automatic selection procedure based on an IClabel classification 
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probability of being brain IC lower than 50% and a residual variance higher than .2 according to the dipfit 

model. Then, we visually inspected all the components to confirm or modify the automatically flagged ones 

based on their scalp topography, dipole location, evoked time course and power spectrum.  

The ICA solution was applied to the original dataset (after excluding bad channels in it too, so to have the 

same number of channels in the two datasets) and the previously identified artifactual ICs were rejected, 

obtaining EEG data cleaned from artifacts detected by ICA.  

Subsequently, removed channels (including F1 and F2) were interpolated by using a spherical spline 

method (Perrin et al., 1989) and data were re-referenced to a common average reference. To detect and 

remove bad epochs, we used a two-step procedure. We first segmented data into epochs (from -1700 ms to 

1500 ms, corresponding to the duration of the experimental trials) with respect to the stimulus onset and 

we used an automatic procedure to detect artifactual epochs based on extreme values (threshold: +/- 125 

µV) and improbability and kurtosis criteria (for both, SD > 6 for the single-channel and SD > 4 for the global 

threshold). We then segmented data into longer epochs (from -1900 ms to 2200) and used the Trial by Trial 

(TBT) plugin of EEGLAB, which allowed rejecting and interpolating channels on a trial-by-trial basis. 

Specifically, epochs with more than 6 bad channels were removed whereas, if this criterion was not met, 

the channels were interpolated. The three criteria together led to the exclusion, on average, of 6.68 epochs 

(SD = 4.08, range = [0 – 17]). After these steps, we removed the ocular electrode and re-referenced all 

channels to a common average reference. Lastly, we saved two distinct clean datasets: one dataset without 

baseline correction, since in some analyses we were interested in the entire pre-stimulus time window, and 

one dataset on which we applied a baseline correction from -200 to 0 ms. An additional clean dataset was 

then created by locking the baseline-corrected data to the response time for that trial and epoching them 

using a temporal window ranging from -2000 to 700 ms.  

5.2.3. Data analyses 

The statistical analyses were performed using the same statistical approach for the behavioral and EEG 

data (i.e., the dependent variables, DV). We used a multilevel modeling approach by performing a random 

coefficient analysis15 (RCA, also called random regression or two-step regression; (Lorch & Myers, 1990). 

This approach allowed us to assess the specific impact of LWPC and ISPC, as well as their interaction, in 

modulating the Stroop effect when they both varied. Moreover, by using multilevel modeling, we were able 

to employ the trial-level estimates of our predictors while partialling out the effect of contingency and of 

other lower-level confounding factors, which represent sources of trial-by-trial noise in the estimation of 

                                                           

15 We decided to use RCA instead of linear mixed-effects model analysis (Baayen et al., 2008) because the latter is 

computationally less efficient and does not allow controlling for the effect of many confounders at the participant 
level (since including such effects in the random part the model causes convergence issues). 
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our effects of interest at the subject level (see Viviani et al., 2023 for a more exhaustive description of the 

advantages of multilevel modeling over standard general linear model). In brief, this approach consists in 

first running multiple linear regressions at the participant level and then assessing statistical significance of 

the tested effects at the group level. 

We defined a-priori the statistical model to test, based on our theoretical assumptions and our previous 

behavioral results (see Chapter 4), using the trial-level estimates of predictors for the effects of both the 

experimental manipulations and confounders, indicated by the suffix “b” added to the predictor name. The 

confounding predictors, which were included to fit well-known effects in the literature, were i) the 

continuous predictor for the effect of trial number within each block (TrialBlock) interacting with the 

continuous predictor for the effect of block number (Block) to account for potential time-on-task effects, 

such as the effects of learning/adaptation or fatigue; ii) a continuous predictor reflecting the  inverse-

transformed RTs (iRTs, computed as -1000/RTs) of the preceding trial (iRTpre), to account for temporal 

dependency in response times (Baayen & Milin, 2010) and thus to avoid violating the assumption of the 

independence of observations for linear modeling; iii) the horizontal and vertical position of the stimulus on 

the screen (respectively, hS and vS), to account for potential differences due to the location where the 

stimulus appeared (left vs right, above vs below, respectively); iv) the horizontal and vertical coding of the 

manual response (respectively, hR and vR), to account for potential differences due to the response hand 

and finger, respectively. Moreover, we modeled the effects that have been shown to affect the Stroop effect 

resolution through low-level learning mechanisms, by including the trial-level predictors for the effects of v) 

the contingency, namely the conditional probability of the response given the stimulus (i.e., P(R|S), PRSb), 

and vi) the probability of response (P(R), PRb). The experimental effects of interest were modeled by 

including the predictors for LWPC and ISPC (LWb and ISb, respectively) and trial congruency (CON), as well 

as their interactions. In particular, the three-way interaction between our effects of interest was included to 

explore whether proactive and reactive control interacted in modulating the Stroop effect. The Wilkinson-

notation formula for the continuous full model is:  

DV ~ TrialBlock*Block + hS + vS + hR + vR + iRTpre + PRSb + PRb + CON*LWb*ISb  

The continuous predictors iRTpre, TrialBlock and Block were centered and scaled at the participant level 

to facilitate the model convergence and the interpretation of results. The confounding variables for the 

horizontal/vertical stimulus position and manual response were coded as .5 and -.5, with .5 indicating 

stimuli appearing in the right and the upper quadrant for hS and vS, respectively, and responses given using 

the right hand and middle finger for hR and vR, respectively. The predictor for Congruency was coded with 

the value of -.5 and .5 for the congruent and incongruent conditions, respectively. Lastly, PRSb, PRb, LWb 

and ISb did not require any transformation since they were already estimated on a scale centered at a 50% 

probability. After fitting the model, we assessed whether there was evidence of stress in the model fit, by 
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inspecting the model residuals and then refitting a trimmed version of the model, wherein we excluded 

data points with absolute standardized residuals exceeding 3.  

After running the regressions at the participant level, we assessed statistical significance of each 

predictor at the group level by performing two-tailed one-sample t tests against 0 on the estimated b 

coefficients for each participant, whereas for variables for which we had a clear directional hypothesis, one-

tailed one-sample t tests were performed. Specifically, for the behavioral analysis, we expect to find the 

Stroop effect (i.e., longer RTs for Incongruent compared to Congruent trials) and, for what concerns the 

interactions, we predicted that as either LWb or ISb increased, the Stroop effect increased. In contrast, we 

expected that higher values of PRSb and PRs were related to shorter RTs. 

We reported the mean of the estimated coefficients (b) for each participant, the standard deviation (SD), 

and t and p values for each effect included in the trimmed final model. Moreover, for the experimental 

effects, we computed the effect sizes as Cohen’s d and dominance values as the percentage of participants 

showing each effect.  An alpha level of .05 was set as the cut-off for statistical significance.  

In the case in which the three-way interaction was not significant, we tested the same continuous full 

model but after removing it, to verify whether its inclusion might have interfered with the estimation of the 

effects of the two 2-way interactions which separately tested the specific effects of proactive and reactive 

control (continuous 2-way interaction model). 

A control analysis was also performed to verify whether the inclusion of continuous variables in the 

model was justified and ensured the best fit to the data, assessing the assumed theoretical advantage of 

the trial-level estimates. To do so, the same regression models were fitted using the block-level estimates of 

our variables, referred to as discrete variables (discrete full model), and then the r2 of the continuous and 

discrete full models were compared to assess which one better explained our data. This control analysis was 

performed only on the behavioral data, and in the case in which the continuous model resulted in a better 

model fit, it was the only model run in the subsequent EEG analyses.   

5.2.3.1. Behavioral analysis 

Behavioral analyses were performed on inverse-transformed RTs (iRTs, computed as -1000/RTs) as this 

transformation eliminates the heavy right-skewness of RTs distribution more effectively than the logarithmic 

transformation. We excluded from the analyses the training trials (no participant needed more than one 

training cycle of 16 trials). From the resulting 27200 trials, we also excluded trials rejected in the EEG pre-

processing (n = 304, corresponding to 1.12% of the experimental trials), as well as the first trial of each 

block, error trials (which comprise incorrect and missed responses), and post-error trials (n = 1643, 

corresponding to 6.11% of the remaining trials).  
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As explained above, behavioral analyses were run on control models as well, to verify which model 

better explained our data so to choose which one to use in the EEG analyses. Therefore, we ran both the full 

and 2-way interaction models and both the continuous and discrete models.  

5.2.3.2. ERP analysis 

Event-related potentials (ERPs) were extracted to obtain pre-stimulus, stimulus- and response-locked 

ERP datasets. Pre-stimulus ERPs were extracted from the stimulus-locked non-baseline-corrected data in a 

temporal window ranging from -1000 to 0 ms, whereas stimulus-locked ERPs were extracted from the 

stimulus-locked baseline-corrected data from 0 to 1000 ms. Lastly, baseline-corrected response-locked data 

were used to extract response ERPs in a temporal window ranging from -500 to 500 ms around the RT.  

Three separate analyses were then run on the three ERP datasets, using the same exclusion criteria 

described in the behavioral analysis section so as to have the same set of trials. Specifically, we ran multiple 

linear regressions as detailed above for each channel, time point, and participant. Then, at the group level, 

we performed two-tailed one-sample t tests against 0 on the participants’ estimated regression coefficients. 

Of note, on stimulus-locked and response-locked ERPs, we ran the same model reported above (continuous 

full model), whereas on the pre-stimulus ERPs we ran a model including only the predictors that were 

meaningful in the pre-stimulus phase, excluding Congruency, the related interactions and the confounders 

related to the stimulus and response (i.e., hS, hR, etc.). In contrast, we kept in the model the time-on-task 

confounders and all the predictors related to the trial-level probabilities, both the congruency- and the 

(stimulus-)response-related ones, as we were interested in exploring how such probabilities were 

computed, maintained, and updated before stimulus appearance. The resulting pre-stimulus model formula 

was: 

pre-Stim ERPs ~ TrialBlock*Block + iRTpre + PRSb + PRb + LWb + ISb  

Statistical significance for the effects of interest was then tested using the threshold-free cluster-

enhancement (TFCE) method, which optimized the detection of both diffuse, low-amplitude effects and 

localized, high-amplitude ones, while correcting for multiple comparisons with non-parametric permutation 

tests (Smith & Nichols, 2009). TFCE was applied on all the channels and time points, using 5000 

permutations.  

Our aim was to assess whether the ERP Stroop effect was modulated by the interaction of LWPC and 

ISPC manipulations and, if it was not the case, we excluded the three-way interaction from the model to 

separately explore LWPC and ISPC modulations (2-way interaction model, see above). Moreover, since 

behavioral results revealed that the data were better explained by the continuous model as compared to 

the discrete one (see Results), ERP analyses were performed only on continuous models. 
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We then ran mass-brain-behavior correlations, correcting them using the TFCE method. Specifically, we 

ran multiple linear regressions at the participant level using iRTs as the DV and included in the model the 

ERPs (for each channel, time point, and trial). As above, we performed three separate analyses on the three 

ERP datasets with the same model used for both the behavioral and the post-stimulus ERP analyses. 

Subsequently, we used the ERP results to mask the obtained significant correlations so to report only the 

correlation results that were related to significant ERP effects. In the case in which ERP results for the 

continuous full model were the same as those for the 2-way interaction model, correlations were run only 

on the former. 

5.2.3.3. ERP latency analysis 

The Residue Iteration Decomposition (RIDE) method (Ouyang et al., 2015) was used to extract trial-wise 

latencies of ERP cognitive components. The RIDE approach assumes that the ERP waveform consists of 

distinct overlapping components: the sensory S component, time-locked to stimulus onset, the response-

related R component, time-locked to RT, and central cognitive C components that exhibit variable latencies 

from trial to trial. RIDE follows an iterative process: (1) estimation of single trial latencies for the C 

components, (2) decomposition of S, C, and R components based on stimulus onsets, estimated C latencies, 

and RTs, (3) use of the decomposed C in (2) as a template to re-estimate C latencies, and (4) repetition of 

steps 2 and 3 until convergence is achieved. Using RIDE, hence, it is possible to obtain trial-wise latencies of 

the C component. Given that the latency of the central cognitive component (C) is determined based on its 

spatiotemporal pattern, the RIDE algorithm returns a single latency value  for the whole scalp for each trial. 

The RIDE analysis was run on each participant’s EEG stimulus-locked baseline-corrected dataset. Epochs 

ranged from -100 to 1300 ms to allow a good estimation of S and R components. Since the RIDE analysis 

requires all epochs to include RT, epochs from trials with RT >= 1000ms were excluded from the analysis. 

Finally, the time windows for component extraction were [0, 500] ms for S component, [100, 900] ms for C 

component, [−300, 300] ms around RTs for the R components. Statistical analyses on the C latencies were 

performed as described in the Data Analysis section. 

5.2.3.4. Source analysis 

We estimated the neuronal sources of our scalp-based ERP data at the trial level using the Brainstorm 

toolbox (Tadel et al., 2011). In particular, we estimated the current strength dynamics of the EEG cortical 

sources using the depth-weighted minimum norm estimation approach (Baillet et al., 2001) and a boundary 

element methods (BEM) conductive head model generated with OpenMEEG (Gramfort et al., 2010; Kybic et 

al., 2005) using the adaptive integration method. The solution space was constrained to the estimated 

cerebral cortex, modeled as a three-dimensional grid of 15002 vertices representing elementary current 

dipoles based on the FreeSurfer brain template (FSAverage; see Fischl et al., 1999). The obtained solution of 
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the inverse problem was used to compute the current strength time courses at the trial level for each of the 

three datasets we used for the analyses, that is, the pre-stimulus, stimulus and response ERP datasets. 

Then, the source-level stimulus-locked ERP dataset was z-scored with respect to the 200-ms time window 

before stimulus appearance, while both the pre-stimulus and the response-locked ones were z-scored with 

respect to the entire epoch (respectively, from -1500 to 0 ms and from -500 to 500 ms). Again, we used the 

same exclusion criteria described in the behavioral analysis section so to have the same set of trials. All the 

source-level ERP data were finally averaged across the vertices composing each of the 210 parcels of the 

Brainnetome atlas (Fan et al., 2016) to reduce spatial dimensionality for the subsequent mass-univariate 

analyses, and converted into absolute values. The statistical analyses were conducted for each time point 

and parcel as described for the scalp-level ERP data and results were corrected for multiple comparisons 

using the TFCE procedure.  

5.2.3.5. ERSP analysis 

ERSPs were extracted  from both stimulus- and response-locked non-baseline-corrected data. Time-

frequency decomposition was performed via modified complex Morlet wavelet convolution in the 

frequency range from 4 and 30 Hz (linearly spaced, 1 Hz resolution) using wavelets with a temporal window 

ranging from 750 to 533 ms, which corresponds to a linearly increasing number of cycles (from 3 to 12 

cycles, linearly spaced, for the 4 and 30 Hz frequencies, respectively). The baseline correction was applied 

trial by trial using the average power in the time window used in the analysis (i.e., from -1500 to 1500 ms 

for stimulus-locked data and from -500 to 300 ms for response-locked data).  

Three separate analyses were then run on pre-stimulus, stimulus-, and response-locked ERSPs, using the 

same exclusion criteria described in the behavioral analysis section so as to have the same set of trials. 

Specifically, we ran multiple linear regressions for each channel, frequency, time point, and participant and 

then, at the group level, we performed two-tailed one-sample t tests against 0. Statistical significance was 

then tested using the TFCE method as described above (Smith & Nichols, 2009).  

Our aim was to assess whether the ERSP Stroop effect was modulated by the interaction of LWPC and 

ISPC manipulations, and since ERP analysis revealed that the 2-way interaction model confirmed the full 

model (see Results), we ran only this latter for computational reasons. Of note, as for the ERP analyses, a 

different model was tested for pre-stimulus ERSPs.  

5.2.4. Participants 

We recruited 41 participants (28 females and 13 males; mean age = 24.71 years, SD = 3.76 years), but 

one was excluded due to technical problems during the EEG recording. No participants reported having 

suffered from neurological or psychiatric disorders and to be under medication.  



 

167 

Participants consisted of a convenience sample recruited using researchers’ personal networks and were 

compensated for their participation (25 €). We performed an a priori power analysis in G*Power (Erdfelder 

et al., 1996) to compute the minimum sample size required to detect, with a statistical power of .80, the 

interactions of main theoretical interest (that is, those between Congruency and either LWPC and ISPC, 

assessing respectively proactive and reactive control modulation of Stroop effects) in a two-tailed one-

sample t test on the by-subjects slopes. We assumed a medium Cohen’s d effect size of at least 0.5 based 

on the results of our previous studies (Tafuro et al., 2020; see Chapter 4). This analysis revealed that at least 

34 participants were required. We nonetheless decided to recruit as many participants as possible 

exceeding the required sample size, so as to be able to detect even smaller effects (by increasing the 

statistical power of our analyses) and to increase the precision of the experimental effect estimates. Note 

that the final sample size of 40 participants ensured us to be able to find effects as small as d = 0.45. 

5.3. Results  

5.3.1. Behavioral results  

As described in the method section, we first assessed whether our trial-level estimates better explained 

the data by comparing the R2 of the continuous full model and the discrete full model and we found that 

the best-fit model was the continuous full one (one-tailed t(39) = 2.20, p = .0167, d = 0.349).  

As such, only the results of the analysis on iRTs using the model with continuous variables are reported. 

We found that all the lower-level confounding predictors but the hS were significant in modulating 

participants’ iRT (all ps <.001, see Table 5.1), indicating that participants were slower as trials went on and 

when they responded to stimuli appearing in the upper quadrant of the screen, while they were faster 

when they responded using the right hand and the middle finger. Moreover, we found a significant temporal 

dependency in iRTs (i.e., positive correlation between iRTs at the current and preceding trial). Lastly, the 

effect of our confounding predictors of interest, namely PRb and PRSb, was also significant as participants 

responded faster when PRb (p < .0001, d = -1.28) and PRSb (p < .0001, d = -1.36) were higher. 

Regarding our predictors of interest, we found that the Stroop effect (CON) was significant (p < .0001) 

and with a very high effect size (d = 3.59), with slower responses to Incongruent trials. Moreover, all 

participants showed a positive Stroop effect, as indicated by a dominance value of 100%. In addition, the 

Stroop effect was significantly modulated by LWb (CON x LWb, p < .0001, d = 1.21, dominance = 95%) and 

the interaction effect was in the predicted direction, that is, longer iRTs as LWb increased. By contrast, the 

ISb modulation of the Stroop effect was not significant (CON x ISb, p = .982, d = -.34, dominance = 65%). 

Lastly, the three-way interaction between Stroop effect, LWb and ISb was not significant (p = .21, d = .2, 

dominance = 45%), indicating that LWb and ISb did not interact in modulating the Stroop effect.  
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Table 5.1 – Results of the RCA analysis on the behavioral data 

Effect M SD t(39) p d Dom 

Intercept -2.151 0.347 -39.24 < .0001 -6.205 100 

iRTpre 0.066 0.033 12.58 < .0001 1.989 100 

Block -0.080 0.062 -8.18 < .0001 -1.293 95 

TrialBlock 0.001 0.014 0.56 .5813 0.088 47.5 

CON 0.324 0.090 22.71 < .0001 3.590 100 

LWb 0.021 0.034 3.81 .0005 0.602 77.5 

ISb 0.013 0.025 3.25 .0024 0.514 75 

PRSb -0.048 0.035 -8.63 < .0001 -1.365 90 

PRb -0.091 0.072 -8.07 < .0001 -1.276 82.5 

hS -0.015 0.051 -1.92 .0628 -0.303 60 

vS 0.029 0.051 3.55 .0010 0.561 75 

hR -0.074 0.107 -4.38 .0001 -0.692 72.5 

vR -0.133 0.117 -7.20 < .0001 -1.139 87.5 

Block:TrialBlock 0.013 0.014 5.88 < .0001 0.929 77.5 

CON:LWb 0.063 0.052 7.65 < .0001 1.210 95 

CON:ISb -0.027 0.079 -2.16 .9816 -0.342 65 

LWb:ISb 0.011 0.033 2.12 .0408 0.335 70 

CON:LWb:ISb 0.013 0.062 1.29 .2062 0.203 45 

Notes: M, mean of the coefficient estimates; SE, standard error; Dom, percentage of participants showing 
that effect. See the main text for the spelling out of the acronyms for the effects 

Since the three-way interaction was not significant, we tested the same model but after removing it 

(continuous 2-way interaction model; see methods), to assess whether it interfered with the estimation of 

the effects of the two 2-way interactions separately testing the effect of proactive and reactive control. We 

found that this was not the case, as the pattern of results remained unchanged, suggesting that including 

the three-way interaction did not interfere with the estimation of the other effects. For this reason, we 

decided to continue testing the continuous full model also in the subsequent EEG analyses.  

5.3.2. ERP and brain-behavior correlation results  

5.3.2.1. Stimulus-locked ERPs 

RCA analysis on stimulus-locked ERPs performed using the continuous full model revealed that ERPs 

were significantly modulated by Congruency, proactive control (Congruency x LWb interaction), and 

Contingency (PRSb) (see Figure 5.1).  
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Figure 5.1.  
Results of the RCA analysis on stimulus-locked ERPs. The raster diagrams show channels/timepoints 
significantly modulated by the effect indicated in the corresponding title. Significant effects are reported as 
t values that are color mapped to indicate positive and negative differences (warm and cold colors, 
respectively). 

The effect of Congruency was observed in a first temporal cluster in an early time-window (from 176 to 

216 ms) peaking at around 200 ms and distributed bilaterally over posterior electrodes, characterized by a 

greater negativity for Congruent as compared to Incongruent trials and resembling the well-known N170 or 

posterior N2 component. This posterior spatial cluster was coupled with a frontal spatial cluster, which was 

slightly left-lateralized, with a greater P2 positivity for Congruent than Incongruent trials (see Figure 5.2).  

 

Figure 5.2.  
The figure shows the Congruency effect in the first cluster revealed by the RCA analysis on stimulus-locked 
ERPs. The trace plots on the left show the ERPs for Congruent (C, in blue) and Incongruent (I, in red) trials, 
as well as the corresponding difference wave reflecting the ERP Stroop effect (in black), averaged over the 
channels indicated by white markers in the topoplot on the right and reported in the title of the trace plots. 
The time window of the significant effect is indicated by the thicker portion of the plots. The topoplot on 
the right shows the t values averaged over the significant time window (which is also indicated in the title). 
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Subsequently, Congruency modulated a spatio-temporal cluster peaking at around 300 ms (236 – 432 

ms), characterized by an enhanced P3-like positive deflection for Congruent trials at centro-parietal 

electrodes. An additional cluster was found in a similar time-window (240 – 420 ms, peak at around 290 

ms), distributed bilaterally over frontal scalp regions, resembling a so-called LFN (lateral frontal negativity) 

and showing a greater negative deflection for Congruent trials (see Figure 5.3). 

 

Figure 5.3.  
The figure shows the Congruency effect in the second cluster revealed by the RCA analysis on stimulus-
locked ERPs. See Figure 5.2 for conventions. 

Significant Congruency-related ERP modulations were observed also in later time-windows with two 

spatio-temporal clusters akin to late potential (LP) components. In a temporal cluster ranging from 488 to 

750 ms, Incongruent trials elicited a more sustained negativity at left frontal electrodes and a more 

sustained positivity at parietal electrodes, bilaterally but more right-lateralized (see Figure 5.4).  

 

Figure 5.4.  
The figure shows the Congruency effect in the third cluster revealed by the RCA analysis on stimulus-locked 
ERPs. See Figure 5.2 for conventions. 
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Lastly, we found two post-response components (from 800 to 1000 ms), that is, a centro-frontal cluster 

characterized by a more negative ERP for Incongruent trials and a bilateral temporal cluster characterized by 

a more positive ERP to Incongruent trials.  

The effect of proactive control revealed by the interaction between Congruency and LWb (see Figure 5.1) 

was significant in a first temporal cluster (254 - 278 ms) peaking at 270 ms and reflecting the initial part of 

the LFN, revealing larger ERP Stroop effects (i.e., larger difference between Incongruent and Congruent 

trials) for higher LWb levels, with a greater negative deflection for Congruent trials. In the same time-

window, we found a second spatial cluster over posterior scalp regions, bilateral but more strongly left-

lateralized, and reflecting the initial part of a P3-like component characterized by larger Stroop effects for 

higher LWb levels, with a greater positive deflection for Congruent trials (see Figure 5.5). 

 

 

Figure 5.5.  
The figure shows the Congruency by LWb effect in the first cluster revealed by the RCA analysis on stimulus-
locked ERPs. The trace plots show the ERPs for low-LWb Congruent (C_lLW, in blue) and Incongruent 
(I_lLWb, in red) trials, for high-LWb Congruent (C_hLW, in green) and Incongruent (I_hLW) trials, and for the 
corresponding difference wave reflecting the ERP Stroop effect in low- and high-LWb conditions (in gray and 
black, respectively), averaged over the channels indicated by white markers in the topoplot on the right and 
reported in the title of the trace plots. See Figure 5.2 for other conventions. 

The same pattern of ERP modulations was observed slightly later. In a time window from 330 to 430 ms 

and peaking at around 350 ms, we observed larger ERP Stroop effects for high-LWb trials, with a negative 

deflection for Congruent trials. This frontal spatial cluster was coupled with a left parietal cluster, in which we 

observed a P3-like component, with larger Stroop effects for higher LWb and greater positive deflection for 

Congruent trials (see Figure 5.6). A third cluster, emerging slightly later (340 - 440 ms) over right temporo-

parietal electrodes, was different from the other two: while for high LWb we found a more positive deflection 

for Congruent trials, for low LWb we found a more positive deflection for Incongruent trials.  
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Figure 5.6.  
The figure shows the Congruency by LWb effect in the second cluster revealed by the RCA analysis on 
stimulus-locked ERPs. See Figure 5.5 for conventions. 

Finally, we found a proactive control modulation of the ERP Stroop effect in two later spatio-temporal 

clusters. One cluster ranged from 470 to 680 ms, reflecting the parietal LP (the descending part of the P3), 

as suggested by the centro-parietal scalp distribution and the larger Stroop effect for higher LWb, but with a 

more sustained positivity for Incongruent trials. In a similar time-window, we observed the reverse 

amplitude pattern at frontal electrodes, bilaterally, related to the frontal LP (see Figure 5.7).  

 

Figure 5.7.  
The figure shows the Congruency by LWb effect in the third cluster revealed by the RCA analysis on 
stimulus-locked ERPs. See Figure 5.5 for conventions. 

Lastly, we found that Contingency significantly modulated the ascending part of the early N170 ERP 

component (from 192 to 208), with greater negativity at left parieto-occipital electrodes for low-PRS trials 

(see Figures 5.1 and 5.8).  
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Figure 5.8.  
The figure shows the PRSb effect revealed by the RCA analysis on stimulus-locked ERPs. The trace plots on 
the left show the ERPs for low-PRSb (lPRS, in orange) and high-PRSb (hPRS, in brown) trials, as well as the 
corresponding difference wave (in black), averaged over the channels indicated by white markers in the 
topoplot on the right and reported in the title of the trace plots. The time window of the significant effect is 
indicated by the thicker portion of the plots. See Figure 5.2 for other conventions. 

 

Brain-behavior correlations using stimulus-locked ERPs revealed that the identified components 

generally explained the behavioral performance. In particular, we found that the frontal P2 over both 

fronto-polar and frontal electrodes modulated the behavioral performance, with the amplitude of the 

former related to better performance and that of the latter inversely related to the performance. 

Additionally, we observed a significant effect of both the parietal P3-like component and its frontal 

counterpart, as revealed by more prominent ERPs related to a better performance. Lastly, behavioral 

performance was explained by both frontal and parietal LP components, with greater LP amplitude related 

to worse performance (see Figure 5.9).   

 

Figure 5.9.  
The figure shows the significant brain-behavior correlations for stimulus-locked ERPs. The trace plots on the 
left of each panel show the predicted iRTs (-1000/ms; lower values indicate better performance) for ERPs 2 
SDs lower (lERP, in blue) and higher (hERP, in red) than the average, averaged over the channels indicated by 
white markers in the topoplot on the right and reported in the title of the trace plots. See Figure 5.2 for 
other conventions. 
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Of note, our control analysis using a model in which the contingency predictor was removed replicated 

the results reported above, confirming that they were not biased by low-level stimulus-response 

associations and indeed reflect specific control-related modulations. Moreover, they revealed two 

significant ISPC-dependent modulations of ERP Stroop effect, an early and very phasic one at around 240 

ms over left parieto-occipital channels, with a larger positivity for high-ISPC Incongruent trials and low-ISPC 

Congruent trials (that is, those with the highest probability of occurrence), and a later one from 420 to 520 

ms over left central channels, with a larger positivity for high-ISPC Congruent trials (that is, those with the 

least amount of reactive control need). However, these results cannot be interpreted safely as they are 

confounded with the effect of contingency, which was not controlled for in this control analysis, so they will 

not be discussed. 

5.3.2.2. Response-locked ERPs 

Response-locked ERP analysis using the continuous full model found a significant effect of Congruency 

only and revealed three distinct temporal clusters (see Figure 5.10). 

 

Figure 5.10.  
Results of the RCA analysis on response-locked ERPs. See Figure 5.1 for conventions. 

The first one peaked at about -200 ms before response (from -450 to -140) and corresponded to the pre-

response time-window. Within this temporal cluster, we found a posterior spatial cluster, characterized by a 

more sustained positivity for Incongruent trials, and a left frontal spatial cluster, characterized by a more 

sustained PRN (pre-response negativity) for Incongruent trials (see Figure 5.11).  
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Figure 5.11.  
The figure shows the Congruency effect in the first cluster revealed by the RCA analysis on response-locked 
ERPs. See Figure 5.2 for conventions. 

In the peri-response time-window (approximately from -120 to 0 ms), a parietal cluster peaking at about 

-30 ms was observed, characterized by greater positivity for Congruent trials, coupled with a bilateral frontal 

cluster peaking at about -100 ms, with greater negativity for Congruent trials (see Figure 5.12).  

 

Figure 5.12.  
The figure shows the Congruency effect in the second cluster revealed by the RCA analysis on response-
locked ERPs. See Figure 5.2 for conventions. 

Lastly, in the post-response phase (from 90 to 500 ms), we distinguished two additional components: a 

negative deflection more prominent for Incongruent trials, distributed over left frontal scalp regions, 

resembling a CRN (correct-response negativity), and a positive deflection more prominent for Congruent 

trials, distributed over occipital scalp regions (see Figure 5.13).  
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Figure 5.13.  
The figure shows the Congruency effect in the third cluster revealed by the RCA analysis on response-locked 
ERPs. See Figure 5.2 for conventions. 

Two of the identified ERP components correlated with behavioral performance as well. Specifically, the 

pre-response cluster over both parietal and left frontal electrodes explained behavior with greater 

amplitudes related to longer RTs. Additionally, behavior was modulated by the peri-response parietal and 

frontal clusters, as revealed by greater amplitudes related to a better performance (see Figure 5.14).  

 

Figure 5.14.  
The figure shows the significant brain-behavior correlations for response-locked ERPs. See Figure 5.9 for 
conventions. 

As explained in the method section, control analyses using the continuous 2-way interaction models 

were also performed to assess whether the inclusion of the three-way interactions interfered with the two 

2-way interactions, but again no reactive control modulation was found and the general pattern of results 

was confirmed, both for stimulus- and response-locked ERPs. 
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5.3.2.3. Pre-Stimulus ERPs 

Lastly, we found that Contingency (PRSb) and the Response Probability (PRb) significantly modulated 

pre-stimulus ERPs.  

For what concerns Contingency, we found an extended temporal cluster ranging from -1000 ms to 

stimulus appearance, characterized by a more sustained positivity for high-PRSb trials, distributed over mid-

frontal scalp regions. Moreover, we observed a more temporally limited cluster (from -720 to -110) at 

occipital electrodes, characterized by a more sustained negativity for high PRSb trials. In the same time-

window, we also found a right-lateralized temporal negativity, more prominent for high PRSb trials  (see 

Figure 5.15).  

 

Figure 5.15.  
The figure shows the effect of PRSb revealed by the RCA analysis on pre-stimulus ERPs. The trace plots on 
the left of the left and right panels show,respectively,  the ERPs for low-PRSb and low-PRb (lPRS and lPR, in 
orange) and high-PRSb and high-PRb (hPRS and hPR, in brown) trials, as well as the corresponding 
difference wave (in black), averaged over the channels indicated by white markers in the topoplot on the 
right and reported in the title of the trace plots. See Figure 5.8 for other conventions. 

The effect of Response Probability revealed two spatio-temporal clusters. The former ranged from -620 

to -520 ms and was characterized by a greater positive deflection for high-PRb trials at mid-frontal 

electrodes, followed by a second cluster ranging from -400 to -200 and characterized by a greater positive 

deflection for high PRb trials at central electrodes.  

Behavioral performance was modulated by both the mid-frontal and the occipital ERP components, with 

a negative relationship between amplitude and performance. 

5.3.2.4. Stimulus-locked ERP latency 

Results are reported in Table 5.2. Concerning our variables of interest, the only significant effects were 

found for CON (p < .001, d = 0.56) and CON x LWb (p < .001, d = 0.61). In particular, C latencies were longer 

for Incongruent than Congruent trials, and this difference increased with increasing LWb.  



178 

Table 5.1 – Results of the RCA analysis on the behavioral data 

Effects t(39) p d 

(Intercept) 0.44 .664 0.07 

iRTpre 2.48 .018 0.39 

Block -0.33 .740 -0.05 

TrialBlock 1.40 .169 0.22 

CON 3.79 <.001 0.60 

LWb 1.09 .281 0.17 

ISb -0.34 .739 -0.05 

PRSb -1.50 .142 -0.24 

PRb 0.04 .972 0.01 

hS -0.60 .555 -0.09 

vS 3.18 .003 0.50 

hR -1.16 .254 -0.18 

vR -0.64 .524 -0.10 

Block:TrialBlock 1.19 .240 0.19 

CON:LWb 3.83 <.001 0.61 

CON:ISb -0.21 .834 -0.03 

LWb:ISb 1.02 .312 0.16 

CON:LWb:ISb 0.69 .493 0.11 

Notes: See the main text for the spelling out of the acronyms for the effects 

5.3.3. Source analysis results  

Source analyses were performed to investigate the effects of our experimental manipulations on the 

cortical electrophysiological activity using a massive approach.  

5.3.3.1. Stimulus-locked ERPs 

In the stimulus-locked data, after correction, only Congruency and Response Probability clusters 

survived.  

The analyses revealed that the cortical sources of Congruency effects can be divided into three main 

temporal clusters. First, from about 260 ms, we found a positive cluster distributed over right medial 

parietal regions, accompanied by a negative cluster distributed over right ventral and lateral occipito-

temporal areas, both peaking at 282 ms. Subsequently, at about 320 ms, the positive cluster disappeared, 

and only the ventral and lateral occipito-temporal one remained significant till 380 ms.  
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Subsequently, from approximately 360 to 1000 ms, a widespread and sustained positive cluster 

emerged. This cluster was observed mainly over medial frontal regions, including the bilateral paracentral 

lobule and the supplementary motor area (SMA), and peaking at about 460 ms. In addition to these medial 

frontal regions, from about 460 to 600 ms, bilateral lateral (pre-)frontal and anterior temporal regions were 

observed, peaking at 500 ms. Then, after 690 ms, only a dorsal ACC pattern remained significant. 

A last small temporal cluster was then observed from 800 ms over insula and left opercoli.  

For what concerns Response Probability, we found a first early cluster (from about 250 to 344 ms), 

distributed over left posterior parietal cortex and then, after 290 ms and till 540 ms, the cluster expanded 

over left insula, anterior superior temporal regions and occipital areas. Finally, a small later cluster (from 

about 500 to 540 ms) was observed over left sensorimotor areas.  

5.3.3.2. Response-locked ERPs 

Response-locked analyses revealed the cortical sources of both Congruency and Contingency, which 

survived after correction.  

Specifically, two clusters were observed for Congruency: a pre- and peri-response (from about -166 to 60 

ms) negative left cluster distributed over ventrolateral and opercular prefrontal areas, and a post-response 

(from about 62 to 174 ms) positive right cluster, distributed over occipito-temporal areas and TPJ. This latter 

cluster was characterized also by sustained effect over a posterior superior temporal sulcus (STS) region, 

which remained significant till 370 ms.  

The cortical source of Contingency was found in a negative right-lateralized cluster, spanning from -440 

to -140, and distributed over medial frontal and posterior cingulate areas, including also the SMA.  

5.3.3.3. Pre-stimulus ERPs 

Source analysis of pre-stimulus data revealed that the cortical sources of LWb and ISb survived after 

correction. Specifically, for LWb, we found a positive right cluster spanning from about -920 to -820 ms, 

distributed over medial frontal areas, including SMA. The effect of ISb was instead revealed by a positive 

right cluster from about -440 to stimulus appearance, distributed over dorsolateral PFC cortex, inferior 

frontal sulcus (IFS), insula and anterior ventro-lateral temporal regions.  
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5.3.4. ERSP results  

5.3.4.1. Stimulus-locked ERSPs 

RCA analysis on stimulus-locked ERSPs performed using the continuous full model revealed that 

Congruency, proactive control (Congruency x LWb) and Contingency (PRSb) significantly modulated the 

spectral power across different frequencies.  

For Congruency (see Figure 5.16), we found an early cluster in Theta (approximately from 20 to 360 ms) 

mainly distributed over both frontopolar scalp regions and right parieto-occipital, characterized by a greater 

power increase for Congruent trials compared to Incongruent trials (see Figure 5.17). The same scalp 

regions also showed a greater steady relative decrease in power for Congruent trials in a later cluster from 

about 850 to 1200 ms. We also found a Theta clusters from ̴about 420 to 750 ms over both mid-fronto-

central and right temporal channels, showing a steeper power reduction for Congruent trials (see Figure 

5.17). In the Theta-Alpha frequency bands we also found a late cluster, from ̴about 1000 ms till the end of 

the window over bilateral central channels, showing a steeper power increase for Congruent trials.  

 

Figure 5.16.  
Results of the RCA analysis on stimulus-locked ERSPs. The raster diagrams show channels/timepoints 
significantly modulated by the Congruency effect, averaged over the frequencies for the different bands. 
See Figure 5.1 for conventions. 
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Figure 5.17.  
The figure shows the Congruency effect in the first (left panel) and second (right panel) Theta clusters 
revealed by the RCA analysis on stimulus-locked ERSPs. The trace plots on the left show the ERSPs for 
Congruent (C, in blue) and Incongruent (I, in red) trials, expressed as % change from the baseline, as well as 
the corresponding difference wave reflecting the ERSP Stroop effect (in black), averaged over the channels 
indicated by white markers in the topoplot on the right and reported in the title of the trace plots. See 
Figure 5.2 for other conventions. 

As regards the Alpha frequency band, we found an earlier (from approximately 300 to 850 ms) greater 

and more sustained power suppression for Incongruent trials over bilateral parieto-occipital and right 

prefrontal scalp regions (see Figure 5.18). A similar pattern of power reduction for Incongruent trials was 

also found for the entire Beta band, which was however observed over more medial posterior regions (see 

Figure 5.18).  

 

Figure 5.18.  
The figure shows the Congruency effect in the Alpha (left panel) and Beta (right panel) clusters revealed by 
the RCA analysis on stimulus-locked ERSPs. See Figure 5.17 for conventions. 

 

The analysis also showed the effect of proactive control on ERSPs, revealed by the interaction between 

Congruency and LWb (see Figure 5.19).  
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Figure 5.19.  
Congruency by LWb interaction on stimulus-locked ERSPs. See Figure 5.16 for conventions. 

 

This effect was found in a cluster involving Alpha and Beta1 over right parieto-occipital and left central 

channels, and in a cluster mainly involving higher frequencies (Beta2 and Beta3) over medial fronto-central 

and bilateral posterior channels. For all frequencies, the effect was found in a consistent time-window 

approximately ranging from 460 to 860 ms and showed the same pattern. Specifically, we found a greater 

ERSP Stroop effect, with a more sustained power reduction for Incongruent trials in the high-LWb condition 

as compared to high-LWb Congruent trials and to all the other conditions (see Figure 5.20).  

 

Figure 5.20.  
The figure shows the Congruency by LWb effect on stimulus-locked ERSPs in the Alpha-Beta1 (left panel) 
and Beta2-3 (right panel) frequency bands. See Figures 5.5 and 5.17 for conventions. 

Lastly, Contingency modulated significantly a first small medial occipito-parietal cluster involving Alpha-

Beta2 frequency bands from 440 to 700 ms, with a greater and more sustained power reduction for low-

PRSb trials. Later, and till 1120 ms, two significant clusters were observed in Beta1-2 frequency bands, at 

bilateral central electrodes, revealing a greater relative power increase for high-PRSb trials.  
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5.3.4.2. Response-locked ERSPs 

The response-locked analysis found significant Congruency (Figure 5.21) and Contingency ERSPs. The 

results pertaining to the post-response temporal window are not reported here for the sake of conciseness. 

 

Figure 5.21.  
Congruency effect on response-locked ERSPs. See Figure 5.16 for conventions. 

Regarding Congruency effect, bilateral fronto-parietal electrodes showed a greater Theta and Alpha 

power increase for Incongruent trials in the early pre-response time-window (-500 to -340), followed by an 

inverted pattern in a later pre-response window (-300 to 0 ms) (see Figure 5.22). 

 

Figure 5.22.  
The figure shows the Congruency effect in the Theta-Alpha frequency bands revealed by the RCA analysis 
on response-locked ERSPs. See Figure 5.17 for conventions. 

Additionally, we found a widespread cluster peaking over bilateral central channels, which showed a 

more pronounced power decrease for Incongruent trial for Beta2-3 frequencies in an earlier pre-response 

phase (from -500 to -160) and for Beta1 frequencies in a later pre-response window (from -280 to -140 ms) 

over more posterior channels  (see Figure 5.23).  



184 

 

Figure 5.23.  
The figure shows the Congruency effect in the Beta2-3 (left panel) and Beta1 (right panel) frequency bands 
revealed by the RCA analysis on response-locked ERSPs. See Figure 5.17 for conventions. 

This was followed by a widespread cluster in the peri-response phase (from -120 to 100 ms), mainly 

distributed over right frontal channels, wherein the pattern of Beta power was reversed, with a greater and 

more sustained Beta2 power decrease for Congruent trials (see Figure 5.24). 

 

Figure 5.24.  
The figure shows the peri-response Congruency effect in the Beta2 frequency band revealed by the RCA 
analysis on response-locked ERSPs. See Figure 5.24 for conventions. 

The effect of Contingency on response-locked ERSPs involved only the Theta frequency band, with a right 

parieto-occipital cluster in the early pre-response phase (from -500 to -400 ms), characterized by a more 

pronounced power increase for low-PRSb trials.  

5.3.4.3. Pre-stimulus ERSPs 

Lastly, pre-stimulus ERSPs were modulated by LWPC, Contingency and Response Probability. Specifically, 

LWb modulated early pre-stimulus high-Alpha ERSPs (from about -1260 to -1110 ms) mainly over mid-right 

fronto-central electrodes, showing a power increase for high-LWb trials and a power decrease for low-LWb 

trials. 
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Contingency modulation involved all frequency bands in an early pre-stimulus time window, ranging 

approximately from -1260 to -1000 ms, with a widespread cluster mainly distributed over frontopolar and 

parietal channels, characterized by a power increase for low-PRSb trials. In the same scalp regions, we 

found a more pronounced and more sustained Alpha-Beta1 power decrease for high-PRSb trials both in an 

earlier (from -1500 to -1300 ms) and in a later (from -700 ms till stimulus onset) pre-stimulus window. In the 

same time window, for all Beta frequencies, the high-PRSb trial power decrease was still observed but 

became steeper and was mainly distributed over bilateral central scalp regions. Lastly, from about -360 to -

60 ms before stimulus, we found a small parietal cluster involving Theta, characterized by a greater relative 

power increase for low-PRSb trials.  

The effect of Response Probability was then found in the modulation of aAlpha frequency band from 

about -520 to -200, with a left centro-parietal and a slightly right-lateralized prefrontal cluster showing a 

power increase for high-PRb trials compared to a power decrease for low-PRb trials. 

5.4. Discussion  

In the present study, we aimed to investigate the electrophysiological correlates of cognitive control by 

adopting the Dual-Mechanisms of Control (DMC) framework. Our main goal was to differentiate between 

proactive and reactive control and determine if each mechanism operates independently when the other is 

assumed to be activated as well. 

While researchers have made efforts to uncover the neural signatures of cognitive control and 

interference resolution, there are still many inquiries lacking definitive answers. Moreover, most studies 

have predominantly focused on reactive forms of cognitive control from a conflict monitoring perspective, 

largely neglecting proactive and anticipatory mechanisms. To date, our understanding of proactive and 

reactive control primarily stems from fMRI studies and thus primarily regards its anatomical and functional 

organization. However, fMRI lacks the temporal resolution required to directly test the central tenet of the 

DMC, which emphasizes the distinct temporal dynamics characterizing proactive and reactive control. 

Techniques with high temporal resolution, such as EEG, are better suited for exploring these dynamics. 

Although a few EEG studies have attempted to dissociate proactive and reactive control by mainly focusing 

on ERPs, their findings remain inconclusive due to methodological heterogeneity. For instance, the direct 

manipulation of both mechanisms was not performed in studies like West and Bailey's (2012), where only 

proactive control was manipulated, and the ERP correlates for reactive control were inferred from the 

absence of proactive control.  

To address these gaps, we explored ERP correlates of Stroop resolution. To overcome previous 

limitations, our experimental paradigm was carefully designed, incorporating methodological rigor to 
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effectively dissociate the correlates of proactive and reactive control. We employed a spatial Stroop task 

with perifoveal stimuli, manipulating the proportion of congruent trials (PC) at both the list-wide level 

(LWPC) and the item-specific level (ISPC). Indeed, previous literature suggests that manipulating LWPC 

reveals proactive control, while manipulating ISPC highlights reactive control. In contrast to prior studies, 

our approach introduced three key novelties. Firstly, we simultaneously manipulated LWPC and ISPC to 

examine their specific effects on Stroop effect resolution and explore their interplay. Secondly, we 

controlled for the well-known effect of contingency, manipulating it to be as orthogonal as possible to LWPC 

and ISPC, and included it as a predictor in our statistical model. Lastly, all analyses were conducted on the 

trial-level estimates of our variables, enabling a more realistic and fine-grained assessment of LWPC, ISPC, 

and confounding effects. 

5.4.1. Advantages of our experimental manipulations and statistical approach 

The behavioral results provided evidence for the advantages of our experimental paradigm and 

manipulations (in line also with Chapter 4 results). Indeed, given their innovative nature, we first tested 

them on the behavioral data to verify their assumed advantages and to make reasonable decisions about 

the subsequent EEG analyses. Of note, similar manipulations were also employed in our previous behavioral 

study. Thus, the present behavioral results, which were generally consistent with our previous results, 

contributed to strengthen our previous findings and were in turn based on more solid evidence.  

In particular, we found that trial-level estimates of our variables were indeed more adequate than the 

block-level ones in reflecting temporal dynamics of cognitive control (and confounding) effects as, when we 

compared the continuous and discrete models, we found that the former better explained the data. These 

results confirmed our assumption that trial-level variables for LWPC and ISPC better account for cognitive 

control flexibility. Indeed, by taking into account the history of previous trials, our trial-level variables were 

dynamically updated trial-by-trial and created probabilistic expectations for PC of the upcoming trials, that, 

in turn, flexibly adjusted the control level to implement. In contrast, as explained in more details in the 

introduction, these flexible adjustments are instead not accounted for by traditional block-wise approaches. 

Moreover, trial-by-trial updating is also well-suited for variables such as contingency, which also relies on 

the trial history and needs to be updated continuously. Based on that, and to fully leverage our fine-grained 

manipulations, we decided to perform the subsequent EEG analyses testing only the continuous model.  

An additional fundamental aspect of our design was that we simultaneously manipulated both proactive 

and reactive control, which allowed us to explore whether the two control mechanisms may co-exist. To 

leverage our experimental design, we used a multilevel modeling approach, which allowed us to test our 
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two experimental effects of interest at the same time16. As such, our finding that proactive control was 

significant, even when reactive control was present, suggests the existence of a distinguishable form of 

control implemented proactively to modulate the behavioral performance. On the other hand, we did not 

find the behavioral markers for reactive control, in line with our prior study results (see Chapter 4) 

highlighting that, in contrast to the strong Stroop effect modulation exerted by proactive control alone, 

reactive control effect on the Stroop effect was only indirect, that is, it exerted its effect by modulating the 

impact of proactive control on the Stroop effect. However, when testing in the present study the three-way 

interaction to explore the potential interplay between proactive and reactive control, its effect was not 

significant, in contrast to our previous study (Chapter 4). This apparent inconsistency might be explained by 

the difference in the sample sizes between the two studies (N =175 vs N = 40), along with the fact that the 

three-way interaction we found in the previous study was not so large and, especially, not so robust.  

To get a better insight into reactive control, we ran two control analyses, starting with testing the same 

model but after the removal of the three-way interaction, to verify whether it interfered with reactive 

control, by masking it. Not only this was not the case, as again reactive control did not emerge, but we also 

found that the model including the three-way interaction did not interfere with the estimation of any of the 

other effects, reason for which we decided to keep using the full model in the subsequent EEG analyses. 

The second control analysis was instead performed by removing from the model the predictor for 

contingency, since there is evidence in the literature suggesting that the ISPC manipulation is more 

commonly confused with contingency; thus, the assumed reactive interference resolution might be nothing 

but the effect of learning stimulus-response associations (e.g., Schmidt, 2007; Schmidt, 2019). As predicted, 

we found that, without controlling for contingency, the effect of reactive control was significant, indicating 

that, in the full model, contingency explained all the variance of reactive control. This result suggests that, 

when interference must be resolved in a reactive manner, no cognitive control but low-level learning is 

implemented. However, as highlighted in our previous behavioral study (Chapter 4), this appears to be a too 

extreme view, whereas a more moderate alternative interpretation could be plausible. We proposed that 

the effect of contingency is stronger than that of reactive control per se, but still reactive control can be 

strategically implemented, especially when proactive control is not engaged. Of note, given the present 

results, this remains a tentative interpretation due to the absence of a significant three-way interaction. 

This possibility could be however explored by comparing the resulting performance patterns predicted by 

the alternative models, since the effect of contingency should be opposite to that of reactive control, and 

this was the case. When contingency was in the model, the modeled behavioral pattern was in line with 

                                                           

16 The use of multilevel modeling was not just the only way to simultaneously test proactive and reactive control, 

but it also allowed us to improve their estimates at the subject-level. Indeed, by including in the model also lower-
level confounders, the estimates of proactive and reactive control were partialed out from their effects at the trial 
level, since intra-subject/inter-trial sources of variance that contribute to measurement error were explained (see also 
Chapter 3 for a more detailed discussion).  
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what predicted by the contingency hypothesis, that is, a better performance for high-PRS trials, regardless 

of congruency (i.e., no Stroop effect differences). In contrast, with the no-contingency model, the significant 

effect of reactive control was accompanied by a modeled pattern consistent with a control-induced Stroop 

effect resolution, opposite to the other, that is, a larger Stroop effect when ISPC was higher. To summarize, 

our results thus confirm the idea that overlooking the effect of contingency unavoidably poses the risk that 

results are misleadingly attributed to cognitive control, while in fact were driven by contingency. However, 

this notwithstanding, we leave open the possibility that Stroop interference is resolved also via a reactive 

control mechanism.  

This leads to the third advantage of our study, which specifically regards the statistical approach. Indeed, 

given the fundamental effect of contingency, as shown also by its large effect size (d = -1.36), by varying 

contingency and including it in the statistical model, we effectively partialled its effect out, ensuring that 

proactive and reactive control results did not reflect the effect of contingency. Therefore, we confirmed 

what was found in our previous studies (Viviani et al., 2023; Chapter 4), that is, the advantage of using 

multilevel modeling approach to control for the effect of possible confounders. The latter, in our case, were 

not only contingency but also response probability and lower-level ones.  

5.4.2. Control-related stimulus ERPs 

Our results regarding the ERPs locked to the stimulus revealed some control-related effects, each 

composed of distinct ERP components appearing at different times in the post-stimulus time window.  

Starting with congruency, in the early time-window, we found two components associated with visuo-

spatial attentional processes. First, we found a negative deflection over bilateral posterior electrodes, 

greater for Congruent trials, whose pattern resembles that of the N170 (also called visual N2, N2p or N2pb) 

found for example by Soltész et al. (2011) and Zurrón et al. (2013). This finding suggests an enhanced 

processing of visual characteristics of the target when it is made of two compatible features, such as in the 

Congruent condition. Additionally, we found a frontal positive deflection greater for Congruent stimuli and 

also reflecting heightened processing of congruent stimuli, a finding aligning with previous studies labeling 

this pattern as P2 component (Szűcs & Soltész, 2010). Moreover, we found that the amplitude of the P2 

component explained the behavioral performance, with higher amplitude correlating with shorter RTs.  

Compared to Stroop ERP literature, we did not find any early conflict-related component such as the 

fronto-central N2, which is characterized by greater negative amplitude for Incongruent stimuli (Folstein & 

Van Petten, 2008; Larson et al., 2014). This notwithstanding, we found that the behavioral performance was 

modulated by a frontal negative component and, when its amplitude was higher, RTs increased. This 



 

189 

significant correlation might reflect the effect of the conflict-related frontal N2, based on their spatio-

temporal patterns, whose significant effect might have been masked by the stronger effect of P2.  

Two other components modulated by Congruency and with a more clear conflict-related pattern were 

then observed in a later time window (from about 250 to 430 ms) that actually included two clusters related 

to the same ERPs. In particular, we found a positive centro-parietal P3-like component whose amplitude 

was attenuated in Incongruent relatively to Congruent trials. This pattern aligns with ERP literature on 

interference processes and strictly resembles the medial parietal negativity (MPN) found by West & Bailey 

(2012), the P3 found by West & Alain (2000), Zurrón et al. (2013) and Vurdah et al. (2023), the N450 found 

by Tillman & Wiens (2011) and Lansbergen & Kenemans, (2008; see also Di Russo & Bianco, 2023) and the 

Ninc of Appelbaum et al. (2014). Although with different labels, this component, which we will call P3-like, 

seems to be related to conflict processing in a peculiar way. Indeed, when participants do not experience 

interference, such as in Congruent trials, no P3 amplitude attenuation was observed, whereas the 

occurrence of interference, such as in Incongruent trials, induced a “negative deflection of the P3 wave” 

(West & Alain, 2000). This more difficult processing of the stimulus due to the experienced conflict calls for 

the intervention of cognitive control (e.g., Vurdah et al., 2023); this attenuation would thus reflect conflict 

processing (e.g., Zurrón et al., 2013) and possibly the activation of processes involved in response conflict 

(e.g., Tillman & Wiens, 2011). The P3 amplitude attenuation observed in Incongruent trials could also be 

explained in light of the results of the RIDE analyses performed on the latency of the cognitive component 

of the ERP, which likely correspond to our P3-like ERP component. Indeed, the later latencies we found for 

incongruent compared to congruent trials, which would reflect a delayed engagement of P3-related 

cognitive processes due to conflict processing in Incongruent trials, might have caused the P3 attenuation 

observed in those trials. 

Moreover, the neural generators of the P3-like component were found to be located in a large cluster of 

medial parietal and frontal regions, including also the ACC, confirming the role of this latter region in 

conflict evaluation and processing (e.g., Lansbergen & Kenemans, 2008). Specifically, we found that this 

cluster of regions was more active during incongruent trials, suggesting its role in detecting conflict and 

subsequently modulating other regions, whose activity was reflected in the attenuation of the P3-like 

component. Our interpretation is further supported by our correlation results showing that the amplitude 

of the P3-like component was positively related to the behavioral performance. This suggests that 

participants’ performance was unaltered when the P3-like amplitude was the largest, but it dramatically 

worsened as a function of the P3-like amplitude attenuation, which thus would reflect conflict processing. 

This finding seems in line with Zurrón et al. (2013), who showed that the P3 amplitude correlated negatively 

with task difficulty.  
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Along with the P3-like component, we found a lateral frontal negativity (LFN) resembling the pattern of 

the P3-like component but with a reversed polarity. Indeed, its amplitude was again reduced for 

Incongruent trials, which showed less negativity. A component with a similar scalp distribution and with the 

same pattern was identified by West & Alain (2000), who classified it as the reversed polarity of the N450 

and by Lansbergen & Kenemans (2008) who, by computing the difference wave, labeled it as P450. Similarly 

to the P3-like, the positive deflection observed in the LFN seems to reflect the engagement of conflict 

evaluation processes reflected in medial parietal and frontal activity. Again, also the amplitude of this 

component was positively related to performance with the same pattern as that observed for the P3-like 

component.  

Two later LP components were also found to be modulated by Congruency from approximately 480 to 

750 ms. These two waves appear to be the descending/ascending part following the P3-like and LFN 

components, respectively, as suggested by the temporal contiguity, but, as opposed to the previous ones, 

they showed the reversed pattern for Congruent vs Incongruent trials. Indeed, the later parietal component 

revealed a more sustained positivity for Incongruent trials, whereas the frontal one showed a more 

sustained negativity for Incongruent trials. Moreover, their amplitude was negatively related to 

performance, further suggesting that the enhanced sustained positivity/negativity during Incongruent trials 

induced slower responses. Both these LP components are consistent with previous findings. For instance, 

Appelbaum et al. (2014) found a similar positive potential deflection over parietal areas, labeled as late 

positive component (LPC), whereas Lansbergen & Kenemans (2008) identified both a parietal and a frontal 

component, referred to as sustained potential (SP), negative-SP and positive-SP, respectively. These LPs have 

been interpreted as signaling the need for increased recruitment of cognitive control and conflict resolution 

(Appelbaum et al., 2014; Larsen et al., 2006; West & Bailey, 2012). Moreover, they might reflect interference 

resolution as suggested also by the cortical localization of their sources which was found in the dorsal ACC 

and dorso-medial PFC. Our results are consistent with what was found by Lansbergen & Kenemans (2008), 

that is, a similar cortical localization in the ACC. Based on that, they proposed that the earlier P3-like and 

the later LP have a common origin, as they are elicited in the same brain regions but by slightly different 

neural populations. In line with these findings, our P3-like and LP results seem to reflect different stages of 

Stroop interference resolution, with the former involved in early conflict processing/monitoring and the 

latter in subsequent and more complex conflict resolution processes.  

After 800 ms, the LP component pattern continued but shifted to different scalp areas, with the 

sustained positivity for Incongruent trials becoming more temporal and the sustained negativity becoming 

more fronto-medial. These components were found to be elicited by insular regions and might reflect later 

task-related cognitive control level assessment and readjustment (Appelbaum et al., 2014; Larsen et al., 

2006), which could imply the computation of the current PC level and its updating.  
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Proactive control modulation of the ERPs partially overlaps that by Congruency, as indicated by the fact 

that most of the ERP components of Congruency were also modulated by proactive control. This is in line 

with the prediction that Congruency ERPs are modulated differently depending on the specific amount of 

exerted proactive control.  

Specifically, proactive control modulated the two same conflict-related components found for 

Congruency, namely the P3-like and the LFN, in the same time-window. As compared to the P3-like and LFN 

Congruency modulation, we found a slight difference in the scalp distribution of their proactive control 

modulations, with more lateral clusters. Additionally, the P3-like component was left-lateralized, whereas 

the LFN was more right-lateralized. Of note, the association between a frontal component and proactive 

control has been found also by previous studies, such as West & Bailey (2012) (i.e., MFN) and Appelbaum et 

al. (2014) (Ninc), but their components were observed more medially.  

More in detail, we found that the P3-like pattern was consistent with our predictions, as Stroop effects 

were larger when proactive control was low, due to a greater positive deflection for Congruent trials and a 

more attenuated positivity for Incongruent trials for high-LWb trials. This indicates that, when a low level of 

proactive control was implemented, the P3-like component was emphasized during congruent trials. By 

contrast, its greater negative deflection during incongruent trials may signal the processing of the 

unexpected conflict and the sudden need of a greater amount of control, which could be implemented only 

in a reactive manner. A similar interpretation could account for the proactive control modulation of the LFN, 

as the attenuated negativity for Incongruent trials during low proactive control conditions might reflect 

unexpected conflict processing. On the other hand, for both components, when proactive control was high, 

no dramatic amplitude attenuation was observed, as the higher conflict probability made participants 

readier to face interference. In line with the DMC, when the probability of conflicting trials is higher, 

participants can establish in advance a task context on which they rely on, filtering out the irrelevant 

information. In contrast, when conflicting trials are less probable, it is more beneficial to rely on the 

conceptual information, as it is frequently equivalent between task-relevant and task-irrelevant information 

(see also West & Alain, 2000). As such, in high conflicting conditions, as participants engage in proactive 

control and do not require a late correction, no amplitude attenuation is needed. When instead they face 

unexpected conflict, the need for further conflict resolution processes is subserved by the amplitude 

attenuation. This proposed functional role of the P3/LFN amplitude attenuation reflecting (unexpected) 

conflict processing is also perfectly in line with the observed brain-behavior correlations we discussed 

above, as in high-LWb conditions the Congruent trials, showing the largest P3/LFN amplitudes, are those 

with the best performance, whereas the Incongruent trials, showing the most marked P3/LFN amplitude 

attenuation, are those with the worst performance. 
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However, no effect of proactive control was found for earlier visual-attentional processes (i.e., neither on 

N170 or P2 modulation), which is quite unexpected due to the nature of this control mode that, by 

definition, should affect early perceptual and attentional processes. However, we hypothesized that the 

processes of proactive control are evident later in time because, to be implemented, they require a 

representation of the global conflict likelihood. However, univariate approaches like those employed here 

are not sensitive to representations, which, by being encoded at the brain level through distributed 

multivariate activity patterns, require analytical approaches suitable for that, such as multivariate pattern 

analysis (Freund et al., 2021). This issue will be further introduced in the conclusions and addressed in 

Chapter 6. 

In a slightly later time-window (from about 340 to 440 ms), proactive control modulated a right 

temporo-parietal component which revealed a different pattern as compared to the previous waves. 

Specifically, when proactive control was low, Congruent trials elicited a more positive deflection, whereas 

when it was high, Incongruent trials elicited a positive deflection. This finding might be related to the 

relative probability associated with the two different LWPC conditions, so that the higher amplitude was 

associated with the Congruency conditions that was more probable in each LWPC conditions. Therefore, 

this component does not seem to be specifically related to conflict processing. Instead it reflects the higher 

readiness to the stimuli that are more probable in each condition (i.e., congruent when LWPC is high, 

incongruent when LWPC is low).  

As for Congruency, we found a proactive control modulation for two later conflict-induced LP waves, 

which again reflected the descending and ascending parts of the P3-like and LFN, respectively. The parietal 

and the frontal LPs were characterized by larger Stroop effects when proactive control was low and by a 

more sustained positivity/negativity during Incongruent trials in the low proactive control condition. 

Additionally, they negatively correlated with the behavioral performance, with higher amplitudes associated 

with longer RTs. This pattern is similar to the one found for Congruency and can thus be interpreted in 

terms of interference resolution. This notwithstanding, the presence or absence of a proactive control 

modulation induced a different need of interference suppression. Indeed, when proactive control is high 

and conflict is expected, less conflict resolution is required since interference is resolved in a more 

anticipatory manner. On the other hand, when proactive control is lacking, Incongruent trials require a 

greater amount of cognitive control to resolve the unexpected interference, and this might be subserved by 

the higher amplitudes of the LPs observed here. Such results are in line for example with those by 

Appelbaum et al. (2014), who also found that low proactive control induced an increase of the parietal LP 

component (called LPC), corroborating our assumption that the enhanced LP amplitude signals the need of 

greater conflict processing due to the reduced level of preparatory proactive control.  
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5.4.3. Control-related response ERPs  

Our response-locked ERP results revealed three congruency-dependent modulations of ERP components 

appearing at distinct time windows.  

First, in a pre-response time-window, we found a parietal positivity paralleled by a mid-frontal negativity, 

which were both more marked for Incongruent trials. In particular, the latter ERP component would 

correspond to the so-called mid-frontal pre-response negativity (PRN) or N-40, which has been observed 

only when a choice between alternative responses has to be made (Vidal et al., 2011), reflecting response 

conflict. This ERP component was thus proposed to reflect response selection (Carbonnell et al., 2013; Vidal 

et al., 2003), especially when it is more challenging, that is, when there is response conflict due to 

concurrent activation of incorrect responses (Burle et al., 2016). We thus interpret the more marked PRN 

we observed in Incongruent trials as a marker of the detection of the conflict at the response level. This 

interpretation is further supported by our correlation results showing that the amplitude of the PRN 

component was negatively related to the behavioral performance, indicating that participants’ performance 

was unaltered when the PRN amplitude was the largest, but it dramatically improved as a function of the 

PRN amplitude attenuation. This is in line with the finding that no (or, at least, a strongly attenuated) PRN is 

observed when there is no response conflict and thus no response selection is required (Vidal et al., 2011), 

like in Congruent trials in our study, leading to faster responses.  

We also found a congruency-dependent modulation of ERPs just before the response, with a bilateral 

parietal positivity coupled with a polar and bilateral frontal negativity that were more marked for congruent 

trials. These ERPs also correlated with participants’ behavioral performance, with participants showing 

slower responses when the neural signatures reflected by the ERPs were weaker. We also found the cortical 

sources of these Stroop ERPs to be distributed over ventrolateral and opercular prefrontal areas, which are 

known to mediate response selection and inhibition. These results thus indicate that the observed ERPs 

components are likely associated with the efficiency and accuracy of response execution, and suggest that 

they could also reflect final stages of Stroop interference resolution related to response-response 

competition (e.g., see Chen et al., 2011).  

Finally, we found a congruency-dependent modulation of post-response ERPs, with a posterior positivity 

coupled with a mid-frontal negativity, both more marked for Incongruent trials. In particular, the latter ERP 

component would correspond to the so-called correct-related negativity (CRN, Grützmann et al., 2014; Vidal 

et al., 2000), an ERP component proposed to reflect response evaluation processes, in particular those 

related to post-response conflict monitoring and uncertainty about response correctness (Vastano et al., 

2020), which are more relevant in Incongruent trials.  

https://www.zotero.org/google-docs/?3IX9X8
https://www.zotero.org/google-docs/?3IX9X8
https://www.zotero.org/google-docs/?CbX6Mt
https://www.zotero.org/google-docs/?CbX6Mt
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However, our results also showed that the Stroop effects we found for the response-locked ERPs were 

not significantly modulated by our PC manipulations. At first sight, these negative results, especially that 

related to the PRN, are in contrast with a recent mouse-tracking-EEG coregistration study from our lab 

(Tafuro et al., 2020), in which we found larger PRN Stroop effects for low-PC trials. That finding indeed 

suggested that PRN may reflect a “reactive control brake” to suppress an incorrect motor plan (i.e., a mouse 

movement in that case) and thus counteract the interference at the response level to provide the correct 

response, in line with the proposed role of the PRN as a marker of reactive control engagement (e.g., 

Czernochowski et al., 2010). However, it should be noted that our previous finding was specifically related 

to the suppression of an ongoing motor act (i.e., the peak deceleration of a mouse movement), while here 

we analyzed ERPs locked at participants’ RTs, which constitute the final outcome of the Stroop interference 

resolution and reflect a response output (i.e., a key press) that cannot (easily) be corrected. Therefore, the 

lack of ISPC-dependent modulations of the PRN Stroop effect could also indicate that our manipulations 

assessing the cognitive control modulation of Stroop interference in our study mostly targeted stimulus–

stimulus competition at the stimulus processing stage (i.e., the stimulus locus, Parris et al., 2022; see also 

De Houwer, 2003; Zhang & Kornblum, 1998), rather than response-response competition at the response 

selection stage (i.e., the response locus), which instead likely was the primary target of cognitive control in 

our previous mouse-tracking-EEG study. It is important here to note that our ISPC modulation specifically 

targeted the type of reactive control mechanism mediated by the fast stimulus-attention association, which 

is assumed to act before the response selection stage (Tafuro et al., 2020; Bugg, 2012, 2017; Bugg & 

Hutchison, 2013). This point will be addressed more in detail in the conclusions.  

5.4.4. Control-related stimulus ERSPs 

Our results regarding the ERSPs locked to the stimulus revealed two main control-related effects, that is, 

Congruency and proactive control.  

Congruency-dependent ERPS modulations were also quite in line with what was found for ERPs. In 

discussing our ERPS results, we will thus try to link them not only to the available ERSP literature, but also to 

the ERP components we identified. 

Starting with Theta frequency, the early cluster found over bilateral frontal and right parietal scalp 

regions, revealing a greater power increase for Congruent trials, probably reflects the Theta involvement in 

both visuo-spatial attentional processing of the target and performance enhancement. 

Firstly, the enhanced power increase for Congruent trials can be related to the N170 component that we 

found in similar scalp regions (i.e., posterior electrodes), which we explained as enhanced visual processing 

in case of two compatible features, such as Congruent trials (Soltész et al., 2011; Zurrón et al., 2013). The 

https://www.zotero.org/google-docs/?D8FN9O
https://www.zotero.org/google-docs/?D8FN9O
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relation between this Theta congruency modulation and the N170 component is also supported by a 

previous work by Freunberger and colleagues (2011), showing that Theta modulated the N170 component 

in parieto-occipital regions (they called it visual P2). Moreover, our finding is also in line with ERPS 

literature, that has provided evidence for the functional role of Theta band in enhancing target processing, 

as shown by works revealing the involvement of this frequency in conscious target perception and 

procedural resource allocation during visual perception (Slagter et al., 2009; van Vugt, 2014).  

Secondly, the greater Theta power increase for Congruent trials is consistent with our frontal P2 

component, whose greater amplitude correlated with better performance, probably suggesting a Theta 

modulation of the P2 component as well. This interpretation is also in line with the acknowledged 

functional role of phasic Theta in working memory and performance enhancement (Klimesch, 1999). 

Moreover, for its spatio-temporal pattern, the same result, namely the greater decrease in Theta power 

for Incongruent trials, can be linked to our P3 component as well, which also showed an amplitude 

attenuation for Incongruent trials. This interpretation is in line with the proposed role of Theta activity in 

mediating the P3 component (e.g., Başar et al., 2001; Demiralp et al., 2001). As such, we speculate that the 

Theta modulation we found could also reflect the processing of unexpected conflict, in line with our 

interpretation of the P3 functional role.  

In the later cluster that we found over similar scalp regions, Theta frequency modulation of Congruency 

showed instead a greater steady relative decrease in power for Congruent trials. This finding, which could 

be related to the frontal and parietal LP ERP components, is likely to reflect the later functional role of Theta 

frequency in increasing the recruitment of cognitive control and conflict resolution.  

Theta frequency was involved in signaling the need for control recruitment also in an earlier cluster, 

observed at around the response, over mid-fronto-central and right temporal clusters, as suggested by the 

greater power increase for Incongruent trials. This results, which is in line with classical findings of mid-

frontal Theta increase for Incongruent trials, might also reflect the oscillatory activity underlying the frontal 

N2 that we found to modulate behavioral performance, which, by showing greater negative amplitude for 

Incongruent trials, was also associated to conflict-related processing.  

The other analyzed frequencies modulated Congruency as well, revealing greater Alpha and Beta power 

reduction for Incongruent trials, starting from approximately 300 ms and sustained in time (till 850 ms). This 

power suppression was observed over right prefrontal scalp regions and over bilateral parieto-occipital 

scalp regions, with a more medial distribution for Beta bands. This finding is partially consistent with that 

found by Tafuro and colleagues (2019), who suggested the functional role of especially Beta2 and Beta3 

frequencies in selecting the task-relevant information during interference resolution. Moreover, the 

congruency-dependent Alpha modulation we found in lateral parieto-occipital scalp regions is in line with 

https://www.zotero.org/google-docs/?broken=HtN2eH
https://www.zotero.org/google-docs/?broken=HtN2eH
https://www.zotero.org/google-docs/?broken=HtN2eH
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the functional role of this frequency band in the integration of stimulus perceptual information to activate 

the relevant task-set (S-R rule) and response (Nurislamova et al., 2019), and in goal-directed suppression of 

the irrelevant spatial information (Cohen & Ridderinkhof, 2013).  

Proactive-dependent ERPS modulations were also consistent with our ERP results, revealing that 

proactive control modulation affected similar conflict-related ERSPs found for Congruency. Specifically, the 

greater Alpha and Beta1 power reduction found for Incongruent trials in the high-LWb condition over right 

parieto-occipital scalp regions partially overlapped at the spatial level with the congruency-dependent 

Alpha suppression for Incongruent trials discussed above, which however showed a more bilateral pattern. 

This more pronounced power suppression for Incongruent trials when proactive control was low might have 

the functional role of signaling the need of a greater amount of cognitive control to resolve the 

interference, required because conflict was unexpected. In contrast, when proactive control was high, such 

power suppression was not required as participants, by expecting a higher conflict probability, were readier 

to resolve interference of Incongruent trials. The same pattern was also found for Beta2 and Beta3 

suppression but over more mid-central scalp regions, revealing the functional role of Beta2 and Beta3 

frequency bands as well in signaling the need of a greater control recruitment in case of unexpected 

conflict. Moreover, this modulation implied the same scalp regions observed for congruency-related Beta2 

and Beta3 ERSPs. Overall, these proactive control-related modulations of ERPSs can be related to the 

corresponding modulation we found for the P3-like component. Indeed, the greater P3-like attenuated 

positivity for Incongruent high-LWb trials might rely on the greater power suppression of Alpha and Beta 

frequencies found for the same condition, as suggested also by their similar distribution over centro-

posterior scalp regions. This interpretation is further supported by findings showing the role of Alpha 

suppression in generating the P3 component (Bernat et al., 2007). 

These ERSP results, complementing and validating the modulation pattern found for ERPs, offer valuable 

insights into the functioning of proactive control. In fact, both analyses revealed that this modulation 

directly affected congruency correlates, as demonstrated by the involvement of similar correlates in both 

congruency-related and proactive control-related ER(S)Ps. Notably, while the modulation for ERPs shares 

temporal characteristics, the proactive control modulation in ERSPs seems to occur slightly later in time.  

5.4.5. Control-related response ERSPs 

Our results regarding the ERSPs locked to the response revealed only the control-related effect of 

Congruency, with a peculiar pattern. We found a Theta and Alpha greater power increase for Incongruent 

trials in an early pre-response time window over bilateral parieto-occipital and prefrontal scalp regions, 

followed by an inversion of the power pattern over the same regions till the response. These results may 

indicate the involvement of these low-frequency EEG oscillations in mediating conflict processing to guide 

https://www.zotero.org/google-docs/?2pe5Xa
https://www.zotero.org/google-docs/?broken=hLuRHn
https://www.zotero.org/google-docs/?broken=ON0aOX
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behavior. This interpretation is in line with the role of lower frequencies, and especially Theta, in mediating 

the integration and prioritization of information to enable goal-directed control processes, like the selection 

of the relevant task set (Capizzi et al., 2020; Cooper et al., 2015), by promoting parieto-frontal information 

transfer and integration (e.g., Sauseng et al., 2010) in an earlier phase of conflict processing. Our 

interpretation is also supported by the fact that the congruency-dependent Alpha modulation we found just 

before the response was consistent with the corresponding effect we found in the stimulus-locked analysis, 

also reflecting the integration of perceptual information to select the relevant task set and response (see 

above).  

We also found a congruency-dependent effect for higher frequencies, with a greater suppression of Beta 

power in an early pre-response time window also involving bilateral parieto-frontal scalp regions. This result 

further supports our interpretation of the role of Beta EEG oscillations in selecting the task-relevant 

information to resolve Stroop interference. 

5.5. Summary and conclusions 

To sum up, our complex pattern of results provides interesting insights into control-related Stroop effect 

modulations while both control modes were explicitly manipulated. 

The first key finding regards proactive control, for which we identified the specific ER(S)P correlates. 

Indeed, in line with DMC predictions, we found that proactive control exerted a modulatory influence on 

the same ER(S)P components found for Congruency. When low-LWPC elicited higher proactive control, 

thanks to anticipatory attentional allocation, the Stroop effect was reduced; when instead the high-LWPC 

did not induce a proactive control modulation, such anticipatory strategies were not implemented. To be 

noted that proactive control correlates were observed after partialling out the effect of all the other 

predictors, including ISPC and contingency, thus more genuinely reflecting the specific effect of proactive 

control only. What instead is not so consistent with the DMC predictions, is the temporal/functional 

dynamic of the proactive control ER(S)P we found. Indeed, given the early and anticipatory nature of this 

control mode, we expected to find earlier LWPC-dependent modulations of processes preceding conflict 

detection and reflecting the assumed proactive mechanisms, even before stimulus appearance (see e.g., 

Bianco et al., 2021, showing control-related modulations of different pre-stimulus ERPs; see also Perri et al., 

2021). These effects should occur in addition to what we observed, that is, the ER(S)P correlates engaged 

when proactive control was low and interference could not be anticipated. Our interpretation for the 

absence of such a finding is that interference anticipation more strongly relies on the representation of the 

global likelihood of conflict, which however cannot be explored using the analytical techniques employed in 

this study (see below).  

https://www.zotero.org/google-docs/?2K4QFp
https://www.zotero.org/google-docs/?0Yk4pk
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Second, it is worth discussing more in depth what we found for reactive control. Although we observed 

that the effect of contingency manipulation overshadowed the impact of reactive control, this was not true 

for reactive control in general. Specifically, we believe that a distinction should be made between ISPC-

induced reactive control and reactive control as a late correction mechanism per se. When reactive control 

results from the ISPC manipulation, it reflects stimulus-attention associations, with each item inducing a 

specific attentional modulation based on its PC (Tafuro et al., 2020; Bugg, 2012, 2017; Bugg & Hutchison, 

2013). Thus, by knowing that conflict is more probable for items with low-PC, participants can implement 

attentional strategies that are reactive in nature, as first the stimulus must be seen, but they can potentially 

start being executed even before conflict detection since they only require stimulus identity as input. 

Therefore, the fact that ISPC and contingency effects are hard to disentangle can be due to their similarity, 

also in terms of temporal characteristics. Indeed, also the effect of contingency, by implying that each 

stimulus elicits more or less strongly a response based on previous stimulus-response associations, can start 

immediately after stimulus appearance. As such, after seeing each stimulus, both these two alternative 

strategies could be activated, but probably the early reactive control modulation induced by ISPC is not so 

strong to survive while controlling for the other. This notwithstanding, we were able to observe ER(S)P 

correlates of a second form of reactive control (i.e., a greater P3-like attenuation, a greater and more 

sustained Alpha/Beta1 right posterior suppression, and a greater and more sustained Beta2-3 central 

suppression for high-LWPC incongruent stimuli). Indeed, we found that a later reactive control mechanism 

came into play when other control processes failed, that is, when proactive control was low, incongruent 

trials elicited unexpected conflict, consequently activating cognitive control mechanisms at a later stage to 

resolve such interference. This second reactive control type thus resembles that of the conflict monitoring 

and DMC accounts and is more purely reactive in nature.  

Moreover, ISPC-induced control, by prompting attentional strategies immediately after stimulus 

presentation, is likely to act on the stimulus locus of the Stroop task. Therefore, it should not be observed at 

the response level either, in line with our results. Since our experimental design did not allow us to clearly 

disentangle the effects of ISPC on stimulus versus response loci (Parris et al., 2022), we were unable to 

observe a significant ISPC-related effect, probably because its small effect was masked by the effect of 

contingency. Further studies are warranted to explore this issue more comprehensively.  

Alternatively, the absence of observable ISPC-related reactive control may be that due to the fact that it 

operates at a representation level, which the univariate analyses performed here cannot detect. Specifically, 

classical  univariate approaches, by abstracting a limited number of experimental factors, can only shed light 

on what occurs at the process level, that is, whether the process is present or absent (alternatively, more or 

less engaged), neglecting dynamic modulations induced by representations, which instead are the core of 

most cognitive control theories, including the DMC. Indeed, PC-dependent modulations in general are likely 
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to rely on representations, which are distributed and high-dimensional patterns in the brain containing the 

required information for dynamically modulating the control level to execute (Freund et al., 2021). In the 

present study, we made a step in that direction, by manipulating our variables trial-by-trial, thus obtaining 

more dynamic estimates to be used in the analysis. This however is not enough, and more sophisticated 

multivariate techniques are needed to explore it effectively. This approach, in addition to providing insights 

into ISPC-induced reactive control, could also shed light on the early representations required for proactive 

control to anticipate interference, as highlighted above. Based on that, future studies using multivariate 

analytical methods should be conducted to directly explore cognitive control representations, and this is 

exactly the topic of Chapter 6. 

One last point regards the consistent absence of a three-way interaction between proactive and reactive 

control in the modulation of the Stroop effect. Although we found it in our prior behavioral study (see 

Chapter 4), such finding appears to be elusive and not robust enough to draw conclusions on it. Moreover, 

our interpretation of results regarding reactive control leaves open the possibility that such three-way 

interaction exists but, by testing such interaction including only the ISPC-dependent reactive control and not 

the later reactive control form, we could not observe it here. As such, this hypothesis should be tested in 

future studies using either reactive control manipulations specifically targeting the response locus or 

measures assessing the conflict at the response selection stage.  

To conclude, our study provides valuable insights into the ER(S)P correlates of proactive and reactive 

cognitive control during Stroop interference resolution. It highlights the significant influence of proactive 

control on interference resolution and sheds initial light on the distinction between ISPC-related and late 

correction reactive control mechanisms. The absence of observable ISPC-related effects could be attributed 

to the confounding effect of the contingency manipulation, the potential stimulus locus of ISPC-related 

control, or the reliance on representations that may not be readily detected by univariate analyses. Further 

investigations employing more refined multivariate techniques are warranted to elucidate these 

mechanisms more comprehensively and enhance our understanding of cognitive control processes. 
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CHAPTER 6 

Cracking the DMC Code: 

A Multivariate Exploration of Control Representations 

6.1. Introduction 

The importance of representations for cognitive control has been emphasized from the beginning of this 

thesis (see Chapter 1), but it has become evident from the results and conclusions of the previous chapter. 

We have indeed highlighted that by focusing only on processes and remaining blind to representational 

patterns, we may not have fully captured the neural dynamics of cognitive control. This applies to both 

LWPC-induced proactive control, for which we did not find correlates preceding conflict detection, and 

ISPC-induced reactive control, for which we did not find observable ER(S)Ps. These (null) empirical findings 

and the conclusions drawn on them are quite in line with how cognitive control functioning is commonly 

described: a mechanism that, to flexibly regulate behavior, operates by maintaining and updating internal 

representations of the information necessary for executing the processes involved in task performance 

(Cohen, 2017; Sakai, 2008). Such representations encode multiple information, such as the goals and the 

relevant stimulus/response features, to influence and coordinate individuals’ perceptual, motor and 

cognitive processes. By doing so, they enable individuals to act in the most appropriate way for the given 

goal and context, effectively completing demanding tasks (Cellier et al., 2022; D’Esposito, 2007; 

Kriegeskorte & Diedrichsen, 2019; Schumacher & Hazeltine, 2016).  

Before delving into why representations have a pivotal role in cognitive control, it is essential to 

elucidate the concept of representation within the context of neuroscience. Broadly speaking, a 

representation can be defined as the neural symbolic counterpart of specific aspects/features of the 

external world. It is thus endowed with content to carry information, which in turn has the function of 

producing an effect on cognitive processes and behavior (deCharms and Zador, 2000). However, while 

patterns of neural activity are commonly referred to as representations in neuroscience, it is crucial to 

acknowledge the absence of a universally shared definition and consensus on their precise meaning and 

function. This lack of a precise definition in turns implies heterogeneity in the exploration of 

representations in neuroscience (Baker et al., 2021). With the aim of systematizing the role of 

representations in neuroscience, Baker and colleagues (2021) outlined three essential criteria for defining a 

neural representation. First, to consider a representation as the neural counterpart of an external world 

feature, it has to correlate with it, that is, they should match. This aspect, which is the most commonly 
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considered, is not enough to classify a neural pattern as a representation. The second important criterium 

regards the function of representations, highlighting that the neural pattern representing a feature should 

also have an effect on the behavior. Establishing whether a representation explains behavior allows 

disentangling between neural pattern that correlate with the feature and do have an effect on behavior 

and those that correlate but do not have such effect. In addition to this, something further is needed, as 

representations should serve some aim. This teleological aspect can be investigated having clear 

hypotheses about whether and how the neural representation is implied in reaching a specific aim. Based 

on these criteria, it is thus clear that a biunivocal relation between neural patterns and external features is 

meaningless if not integrated into a causal and teleological view.  

Returning to cognitive control, representations form the foundation of numerous cognitive control 

theories (Badre et al., 2021; Braver, 2012; Cellier et al., 2022; Cohen et al., 1990). Indeed, in specifying 

cognitive control in terms of representations, theories describe the information encoded by the activity of 

neural units, such as neuron ensembles or areas (Freund, Etzel, et al., 2021; Kriegeskorte & Diedrichsen, 

2019). Furthermore, the concept of representation offers a powerful/robust explanation of cognitive 

control brain functioning by bridging cognition and brain activity. Indeed, it has been posited that neuronal 

activity serves the specific function of representing and transforming contents by encoding them as activity 

patterns which downstream neurons use to produce successful behavior (Diedrichsen & Kriegeskorte, 

2017; Kriegeskorte & Diedrichsen, 2019; Kriegeskorte & Kievit, 2013). Hence, the linkage between cognition 

and brain activity through representation would provide valuable insights into understanding cognitive 

control dynamics at the neural level. Moreover, this assumption that representations are involved in 

cognitive control would meet the criteria proposed by Baker and colleagues (2021) for defining a 

representation as such, as it implies also causal and teleological aspects.  

Despite the undeniable significance of representations in understanding cognitive control, they have not 

been the primary focus of investigation. Our poor understanding of control representations is thus likely to 

be one of the reasons why, after more than half a century, we still lack a comprehensive description of how 

cognitive control operates (Freund, Etzel, et al., 2021). Cognitive control representations have been 

neglected because of the analytical methods employed by most neuroimaging studies which, so far, have 

mainly described brain activity using mass-univariate approaches (Freund, Etzel, et al., 2021; Kriegeskorte & 

Diedrichsen, 2019). In particular, this term refers to the most classical neuroimaging analyses, in which a 

small number of abstract factor levels (i.e., the experimental conditions, like congruent and incongruent 

ones) are defined, and according to which experimental stimuli are aggregated. Then, the signal for each 

abstract condition is extracted, often after averaging across trials (and/or across voxels or recording 

channels for fMRI and M/EEG, respectively, and/or across samples for M/EEG), and statistics are computed 
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to contrast the obtained functional measures across the different conditions (Cheng, 2021; Etzel et al., 

2020; Freund, Etzel, et al., 2021).  

This univariate analytical approach offers insights into the overall level of activation and changes in 

activity elicited by experimental manipulations, for example by revealing which condition elicits a higher 

control demand, and this is taken as the hallmark of the underlying process (Cheng, 2021). However, it 

completely discards the rich information reflected in the multidimensional nature of neural signals (Gluth et 

al., 2012; Popal et al., 2019) and consequently cannot effectively identify representational content (Freund, 

Etzel, et al., 2021). Therefore, despite univariate analyses being powerful for revealing activation 

differences (Friston et al., 1994), they provide only process-level measures which are indirect proxies of 

control representations (Freund, Etzel, et al., 2021). Indeed, unveiling control processes provides us with 

insights into the function of a neural unit (e.g., a brain region) abstracted over the encoded information, 

but it does not allow us to reveal how such information is represented, that is, how it is encoded by that 

neural unit (Diedrichsen & Kriegeskorte, 2017; Freund, Etzel, et al., 2021). As such, the contribution of 

studies using the classical approach is necessary but incomplete (Freund, Etzel, et al., 2021).  

It is very likely that cognitive control processes rely on representations, as noted above, and that these 

representations are encoded in a complex manner through distributed patterns of activity (e.g., Etzel et al., 

2020). Thus, there is a clear need to use methods sensitive to the multidimensional coding underlying such 

representations to better understand the content of the neural code used by representations (Badre et al., 

2021). Therefore, to overcome the limitations of univariate approaches, using multivariate approaches is 

fundamental to measure such multivariate distributed patterns of information, by assessing whether and 

how information is encoded in a distributed manner and by testing its specific contribution to reveal the 

representational content (Davis et al., 2014; Popal et al., 2019).  

To address the gaps in cognitive control literature, researchers have started employing multivariate 

approaches, also known as multivariate pattern analysis (MVPA), confirming the hypothesized advantages. 

For example, Qiao and colleagues (2017) revealed how task set dynamic changes are represented at the 

neural level; Kikumoto and Mayr (2020) showed that integrated representations encompassing relevant 

rules, stimuli and responses were involved in successful action selection; Etzel and colleagues (2020) found 

evidence that multivariate approaches were effective at revealing working memory-related content even 

when univariate activity levels did not change; Freund, Bugg and coworkers (2021) demonstrated theory-

based functional dissociations during the completion of the Stroop task; and Cellier and colleagues (2022) 

characterized the properties of task representations (see also Badre et al., 2021, for a brief review of 

dimensionality of control representations). 



208 

Although MVPA was initially developed to be used with fMRI for investigating spatially distributed 

multivariate patterns, this approach has also garnered recognition and adoption in EEG (and MEG) research 

(Fahrenfort et al., 2018). The use of MVPA with EEG not only enables harnessing the aforementioned 

advantages of the multivariate approach but also enhances EEG analysis sensitivity by identifying 

differences between conditions that are more challenging to detect through univariate analyses (Fahrenfort 

et al., 2017). Furthermore, MVPA EEG analyses have the potential to provide valuable insights into neural 

representations that may be less accessible using fMRI, due to the advantage of a higher temporal 

resolution. Specifically, by examining the temporal dynamics of neural activation patterns, MVPA with EEG 

can capture the inherent dynamic nature of representations more effectively and hold the promise of 

potentially detecting interactions between representations (Badre et al., 2021; Cellier et al., 2022).  

Based on the foregoing, the aim of this study is to further advance the understanding of cognitive 

control by employing a multivariate approach to explore the Dual-Mechanisms of Control model (DMC; 

Braver, 2012; Braver et al., 2007). Specifically, our investigation focuses on the representational perspective 

of the two postulated control modes, namely proactive and reactive control. More precisely, the present 

study builds upon our previous study (see Chapter 5), in which we examined the correlates of proactive and 

reactive control using univariate analyses (ERPs and ERSPs). As exploring cognitive control processes (i.e., 

using univariate techniques) is necessary but not sufficient to achieve a comprehensive understanding of 

cognitive control (Freund, Etzel, et al., 2021), here we focus on how proactive and reactive control are 

encoded at the neural level. Hence, by doing so, we may obtain a more comprehensive view beyond the 

univariate results, which only indicate the specific cognitive processes involved, shedding light on the 

representational content encoded within these processes. Consequently, we could also gain valuable 

insights into the interplay between cognitive processes and their associated neural representations, as 

these aspects are inherently interconnected (Cheng, 2021).  

From a practical standpoint, we will leverage the high temporal resolution provided by the EEG 

technique, as discussed earlier. Moreover, we will adopt a multimethod approach, utilizing the two most 

common multivariate techniques, to explore both the encoding and decoding of cognitive control 

representations. The following paragraph will offer a more comprehensive description of these two 

techniques, emphasizing their respective advantages, limitations, and their interrelationship. 
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6.1.1. MVPA methods: encoding and decoding models 

In neuroimaging studies, multivariate analyses use two predominant methods, decoding and encoding17. 

The former takes neural activity patterns as input to predict condition/stimulus information, thereby 

investigating the causal process through which it could be interpreted. The latter entails utilizing the 

description of information about experimental conditions/stimuli as input to predict brain patterns, thereby 

attempting to capture the causal process that generates a representation (e.g., Kriegeskorte & Diedrichsen, 

2019; Kriegeskorte & Douglas, 2019; Wu et al., 2006). It is important to note that a decoder does not serve 

as the inverse of an encoder (Kriegeskorte & Diedrichsen, 2019), but still can be considered complementary 

as they operate in opposite directions (Kriegeskorte & Douglas, 2019; Naselaris et al., 2011).  

A decoding model serves as a tool to uncover the content of the neural code by assessing whether the 

brain pattern contains a specific type of information (Kriegeskorte & Douglas, 2019). In the literature, 

decoding models are usually denoted as classification-based decoders or classifiers (Freund, Etzel, et al., 

2021). In general terms, classification involves the determination of a decision function, which takes various 

features in an exemplar data and predicts the corresponding class of that particular example (Mahmoudi et 

al., 2012). The most commonly employed decoder is the linear classifier which takes the activity pattern as 

input and returns as output class labels to which stimuli belong to (Duda et al., 2001). Hence, linear 

decoding has been employed to reveal the explicit information present in the neural pattern, that is, 

whether such pattern contains a specific category-related representation and whether it allows 

discriminating between classes (Kriegeskorte & Kievit, 2013). The underlying assumption is that successful 

classification indicates discriminability between classes and, in turn, the presence of information about the 

decoded variable(s) in that activity pattern (Diedrichsen & Kriegeskorte, 2017; Kriegeskorte & Douglas, 

2019; Kriegeskorte & Kievit, 2013; Nili et al., 2014; Popal et al., 2019). 

In the field of cognitive control, there has been a noticeable increase in the use of classification-based 

decoding methods in recent years (Cole et al., 2016; Freund, Etzel, et al., 2021; for a review see Woolgar et 

al., 2011). However, since this type of classifiers can only address binary questions, they remain strongly 

tied to univariate approaches, limiting the full exploitation of the potential offered by multivariate analyses 

(Freund, Etzel, et al., 2021). Additionally, linear classifiers might fail in classifying if the information is 

encoded in a complex format (Kriegeskorte & Douglas, 2019).  

                                                           

17In the current study, we will use the term Multivariate Pattern Analysis (MVPA) to refer to the broader category 

of multivariate analyses, encompassing both decoding and encoding models. However, it should be noted that in the 
literature, MVPA is often used interchangeably with decoding, and thus, in this case, MVPA is exclusively employed to 
refer to classification questions addressed by decoding models. Additionally, the acronym MVPA can also refer to 
Multivoxel Pattern Analysis (Mahmoudi et al., 2012) and thus specifically employed in fMRI studies, where the 
objective is to classify spatial patterns based on experimental conditions. 

https://www.zotero.org/google-docs/?broken=XRgHZY
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The limits posed by linear classifiers (i.e., they can only decode categorical variables, that is, predict class 

labels) can be overcome by using regression-based decoding, which allows a more fine-grained decoding of 

the neural activity pattern. Indeed, regression-based decoding uses the multivariate pattern of brain 

activity in each trial to predict continuous experimental or performance variables (Bode et al., 2021; Cohen 

et al., 2011; Popal et al., 2019). An example of regression-based decoding approach is the ridge regression, 

a method to estimate the coefficients of multiple-regression model (i.e., the strength with which each 

feature of the multivariate brain activity pattern contributes to the decoding performance) when the 

independent variables (i.e., the features constituting the multivariate brain activity pattern) are very 

numerous and/or have a high degree of multicollinearity. This is particularly important in EEG decoding, 

because the multivariate patterns used in regression-based decoding are usually composed by numerous 

features (e.g., the scalp distribution of voltage values at a given time or the time points of an ERP trace at a 

given channel) that are also highly correlated due to the high spatial and temporal autocorrelation in EEG 

signals.  

However, regardless of which decoding model is used, whether it is a classifier or a regression, decoding 

cannot explore the entire representational space (Diedrichsen & Kriegeskorte, 2017). Indeed, the principal 

constraint of decoding models is their insensitivity to how information is encoded within the neural pattern 

(Popal et al., 2019). As such, their limited power in disentangling the format of the information does not 

allow fully characterizing how it is represented at the neural level, that is, which specific features are 

encoded and the strength of each of them (Diedrichsen & Kriegeskorte, 2017; Nili et al., 2014). What is 

even more crucial is that when we use a decoder we cannot be aware of the precise information exploited 

by it, making impossible any type of inference on whether the information used for decoding is the same as 

that actually employed by the brain for representation. As such, successful decoding does not warrant that 

what has been decoded reflects that there is a represented information (see Ritchie et al., 2019 for a 

detailed discussion on implausibility of the so-called decoder’s dictum). Given these drawbacks, decoders 

do not appropriately allow the modeling of brain information processing, as they oversimplify excessively, 

thus overlooking the complexity of the underlying computations (Kriegeskorte & Diedrichsen, 2019; 

Kriegeskorte & Douglas, 2019) and are potentially biologically and psychologically implausible (Ritchie et al., 

2019). Indeed, at the neural level, a representation can be conceptualized as a multidimensional space, 

characterized by a specific representational geometry constituted by a neural population code representing 

a specific content and the format in which it is encoded. The neural activity pattern can take the form of 

many combinations giving rise to a rich representational space, which decoders are insensitive to 

(Kriegeskorte & Diedrichsen, 2019; Kriegeskorte & Kievit, 2013).  

To go beyond decoder limitations, encoding models can be used as they offer the advantage of testing 

complex predictions concerning the rich representational space (Diedrichsen & Kriegeskorte, 2017), 
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thereby ideally providing a more comprehensive explanation of the activity pattern (Kriegeskorte & 

Douglas, 2019). Indeed, by predicting the brain activity pattern from the properties of the experimental 

conditions, encoding models can serve as brain-computational models (Kriegeskorte & Douglas, 2019). In 

the neuroimaging literature, this is commonly performed using Representational Similarity Analysis (RSA), a 

type of encoding model that serves for exploring the higher-order representational space to get the whole 

picture of it (Diedrichsen & Kriegeskorte, 2017; Kriegeskorte et al., 2008). It works by making predictions 

about the rich representational geometry and by testing different computational models, to evaluate the 

representational strength of each of them (Cellier et al., 2022; Kriegeskorte et al., 2008; Kriegeskorte & 

Diedrichsen, 2019). As such, by employing RSA, it becomes possible to thoroughly describe the 

representational geometry, encompassing all represented features, their relative strength and the 

interrelationships among the activity patterns associated with different features (Diedrichsen & 

Kriegeskorte, 2017). 

One of the main advantages of RSA in the study of cognitive functions is its flexibility in comparing 

different types of representational spaces. This flexibility stems from its focus on the (dis)similarity 

structure of neural activity patterns rather than the activity patterns themselves (Kriegeskorte et al., 2008). 

Additionally, RSA explicitly models the representational structure, allowing for inference in a forward 

manner, namely, from the representational model to the brain pattern, as opposed to decoding models, 

which operate in the opposite direction and, as a result, are agnostic in characterizing the content of the 

representations (Freund, Etzel, et al., 2021; Popal et al., 2019). As such, through RSA, it is possible to test 

competing representational models, as well as their interactions and while controlling for confounders, in 

order to assess the extent to which they can explain the similarity observed in brain activity patterns. This 

thus allows probing existing theories (e.g., Freund, Etzel, et al., 2021). In practical terms, this is done by 

quantifying the degree of similarity, quantified in terms of distance, between brain activation patterns and 

the pattern predicted by theory-based models through the use of representational dissimilarity matrices 

(RDMs), which contain the information content and reflect its organization (e.g., Diedrichsen & 

Kriegeskorte, 2017; Etzel et al., 2020; Kriegeskorte et al., 2008; Kriegeskorte & Kievit, 2013). Lastly, 

leveraging MVPA using RSA methods overcomes the limited biological and psychological plausibility of 

decoding methods by directly linking the space of the activation patterns and the structure of behavior 

(Ritchie et al., 2019).  

The flexibility and the capability to directly test the representations theorized by models of cognitive 

control make RSA particularly well-suited for exploration in this area. To explore cognitive control, the 

adoption of the RSA framework is still relatively uncommon (Freund, Etzel, et al., 2021). However, in cases 

where it has been utilized, it has confirmed its advantages and suitability (e.g., Cellier et al., 2022; Etzel et 

al., 2020; Freund, Bugg, et al., 2021; Kikumoto & Mayr, 2020). 
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Given the remarkable advantages of RSA in providing a full characterization of representations 

compared to decoding models, it is essential to elaborate on our objective of employing a multimethod 

approach, encompassing both RSA and decoding, to explain why both methods can be beneficial in 

investigating proactive and reactive control from a representational perspective. In the present study, 

decoding will be used following RSA, based on the rationale that, if information is encoded, it should also 

be available to be read by downstream neurons for it to be used (Kriegeskorte & Diedrichsen, 2019). By 

doing so, we will first seek to finely characterize the representational geometry of proactive and reactive 

control using RSA. Subsequently, a decoding model will be employed to determine whether such 

information patterns are truly available for use, that is, whether its successful decoding is possible. Of note, 

we adopted a regression-based approach because the content of such representations is likely to be 

complex and linear classifiers might be too simplistic and thus not suitable for decoding it. Specifically, we 

used ridge regression, which not only allows decoding the neural activity pattern in a fine-grained manner, 

but can also be used with continuous variables as those used in the present study (see below).  

6.1.2. Aim of the present study 

As stated above, our aim is to test one of the most influential models of cognitive control, the DMC, 

proposed by Braver and colleagues (Braver et al., 2007; Braver, 2012). Previous neuroimaging studies have 

investigated the DMC, but, as for cognitive control in general, the understanding of how the two control 

mechanisms operate at the neural level is still elusive. In our prior ER(S)P study (see Chapter 5), we 

observed evidence for proactive control ER(S)P correlates but found no such evidence for ISPC-induced 

reactive control. This may be attributed to the univariate approach utilized, which neglected that the 

dynamic modulations of the PC might act upon representations rather than processes. In the present study, 

our aim is to advance this line of research by delving into the investigation of cognitive control-related 

multivariate activity patterns. 

Although previous studies have applied MVPA to study cognitive control in the context of the Stroop 

task (Freund, Bugg, et al., 2021), to the best of our knowledge, no existing work has utilized the LWPC and 

ISPC manipulations to specifically target proactive and reactive control, respectively. Here, we will 

manipulate both of them simultaneously to explore whether the two mechanisms co-exist while also the 

other is activated (see Chapters 4 and 5). Furthermore, to better account for the dynamic and flexible 

nature of cognitive control, we will manipulate PC-induced control adjustments on a trial-by-trial basis to 

better account for the flexibility in cognitive control dynamics (see Chapters 4 and 5 for advantages). These 

trial-level manipulations are extremely suitable for being used with RSA, as by avoiding collapsing trials into 

a small number of abstract conditions, they generate a condition-rich design which allows to 

https://www.zotero.org/google-docs/?broken=3QC1hb
https://www.zotero.org/google-docs/?broken=Ko4C18
https://www.zotero.org/google-docs/?broken=RRMlJA
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comprehensively characterize the representational space, thus fully leveraging RSA advantages 

(Diedrichsen & Kriegeskorte, 2017).  

6.2. Methods  

6.2.1. Procedure and experimental task  

The present study is a re-analysis of the EEG data collected for the study presented in Chapter 5. 

Therefore, the procedure, experimental task, and stimuli are described there. 

6.2.2. EEG recording and pre-processing  

The EEG recording and preprocessing are described in Chapter 5. 

6.2.3. Data analysis 

We conducted two multivariate analyses, RSA and Decoding, the details of which will be provided in the 

subsequent sections. Despite each of them involving different computations, the variables used in the 

analyses were the same. Here we describe how we computed them for both analyses.  

Given that the experimental task was still the perifoveal spatial Stroop, each experimental stimulus was 

characterized by a relevant feature, the arrow direction, and an irrelevant feature, the arrow position. We 

thus had two categorical variables: i) direction (DIR), corresponding to the correct response with four 

possible values (the four directions: upper-left, upper-right, lower-right, lower-left), and ii) position (POS), 

corresponding to the stimulus position with four possible values (the four position: upper-left, upper-right, 

lower-right, lower-left). From these two categorical variables, we were able to calculate the binary variables 

that we used in the analyses. These are: 

1. congruency (CON), which takes the value of -.5 when DIR is equal to POS (Congruent, Con), or .5 when 

DIR is different from POS (Incongruent, Inc); 

2. horizontal position of the stimulus on the screen (hS), which takes the values of -.5 for left POS or .5 for 

right POS;  

3. vertical position of the stimulus on the screen (vS), which takes the values of -.5 for lower POS or .5 for 

upper POS;  

4. the horizontal coding of the manual response (hR), which takes the values of -.5 for left DIR or .5 for 

right DIR;  

5. the vertical coding of the manual response (vR), which takes the values of -.5 for lower DIR or .5 for 

upper DIR.  

https://www.zotero.org/google-docs/?broken=Y5X9Tf
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For what concerns the other variables, based on the reasons extensively described throughout the 

thesis (see Chapters 1, 4, 5), analyses were performed on trial-level estimates. To compute these trial-level 

variables, we started from the block-level ones, corresponding to the ones described in the experimental 

task and stimuli section. We then used the Hierarchical Gaussian Filter (Mathys et al., 2011), which uses 

variational Bayes under a mean-field approximation to update the probability of an event on each trial. As 

such, all the trial-level variables were computed as probability based on the update of trial-by-trial 

probabilities and using all the trials, including the practice ones, as follows:  

1. List-wide Proportion Congruency (LWb) is the trial-by-trial probability of the stimulus CON, so to 

compute it, HGF uses the CON binary variable.  

2. Item-specific Proportion Congruency (ISb) is the trial-by-trial probability of the stimulus CON conditional 

to a specific POS, so HGF calculated it using the binary variable of CON for each POS. By doing so, we 

obtained a trial-level PC for each POS. Therefore, for each trial, we had 4 estimates, one for the PC of 

the POS of the stimulus at that trial, and three for the PC for the POS that are not observed at that trial. 

We will thus refer to the distribution of the 4 Item-specific PCs as total ISPC (ISbt). From this, we 

selected the ISPC of the POS of each trial, referring to it as ISb. Lastly, we computed a measure taking 

into account both ISb and ISbt, by comparing the probability of ISb to the average of the ISbt 

probabilities, using the Kullback-Leibler divergence (DKL). This variable, called weighted ISPC (ISbw), 

provides a better estimate of ISb at each trial, as it also takes into account its weight relative to the PC 

values associated with the other POS at the same trial.  

3. Contingency (Response probability given the stimulus, PRS), is the trial-by-trial probability of the target 

DIR (corresponding to the response) conditional to a specific POS. To calculate it, HGF used the 

categorical variable of DIR conditional to each POS, thus obtaining 4x4 estimates (namely, 4 PR 

estimates for each POS), so we will refer to it as total PRS (PRSbt). From these estimates, we then 

extracted the correct one, that is, the one corresponding to both DIR and POS observed at each trial. 

Lastly, weighted PRS was computed (PRSbw) using DKL as described for ISbw.  

4. Lastly, we also computed the trial-level estimates for the low-level variables described above (hS, vS, hR, 

vR), referring to them as PhS, PvS, PhR, and PvR, respectively. These variables reflect the trial-by-trial 

probability to encounter a specific horizontal/vertical position and to respond using a specific response 

hand/finger. To compute it, HGF used each low-level binary variable.  

We excluded from the analyses the training trials. From the resulting 27200 trials, we also excluded 

trials rejected in the EEG pre-processing (n = 304, corresponding to 1.12% of the experimental trials), as 

well as the first trial of each block, error trials (which comprise incorrect and missed responses), and post-

error trials (n = 1643, corresponding to 6.11% of the remaining trials).  
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6.2.4. Representational similarity analysis (RSA) 

RSA works by computing the so-called representational dissimilarity matrices (RDMs), which encapsulate 

the information content and how it is organized. RDMs are built comparing the distance (which reflects the 

dissimilarity) between each pair of conditions/trials for the theory-based information (model RDMs) and for 

the multivariate brain activation pattern (brain RDMs). Then, the representational geometry of the 

experimental variables based on theoretically specified models, namely the model RDMs, are fitted to the 

representational geometry observed in the neural activation patterns, namely the brain RDMs. The 

obtained representational similarities indicate which model better explains the observed neural activation 

pattern (Diedrichsen & Kriegeskorte, 2017; Etzel et al., 2020; Freund, Etzel, et al., 2021; Kriegeskorte et al., 

2008; Kriegeskorte & Kievit, 2013).  

The analytical approach classically (and most often) used in the EEG encoding (but also decoding) 

literature is the so-called time-resolved approach. In this approach, the brain RDMs are computed for each 

time point using the whole multivariate spatial patterns of EEG activity (i.e., the scalp distribution of the 

ERP voltages at a given time). By contrast, in the space-resolved approach, the brain RDMs are computed 

for each channel using the whole multivariate temporal patterns of EEG activity (i.e., the time course of the 

ERP voltage at a given channel). Both approaches suffer from one main drawback. Indeed, the use of all the 

information in one dimension (i.e., either time or space) yields results that are blind to such dimension. So, 

with the unidimensional time- and space-resolved approaches, it is not possible to get insights into (and 

thus draw inference about) which time points and channels, respectively, most contributed to encode the 

representations based on the experimental variables. Therefore, even if both unidimensional analyses are 

performed, the interpretability of the results is considerably limited as the two sets of results cannot be 

interpreted in an integrated manner. 

To overcome this issue, the so-called searchlight approach can be used (e.g., Popal et al., 2019). In this 

approach, brain RDMs are computed for each time point and channel using a limited portion of the 

multivariate spatio-temporal (i.e., multidimensional) pattern of EEG activity (i.e., the ERP voltages in a time 

window around the tested time point for a spatial window around the tested channel). This spatio-

temporal approach ensures a better understanding of the multivariate patterns, as it allows using both 

spatial and temporal information simultaneously while allowing for both spatial and temporal inferences. 

However, this approach still remains blind to spectral information, which might be rich in representational 

meaning. Indeed, evoked changes in spectral power in different frequency bands are known to play an 

important functional role in encoding (and communicating) different types of information. Therefore, a 

natural development of using both spatial and temporal patterns is to also use spectral patterns to get a 

more complex multidimensional, multivariate picture of how the brain encodes theory-based 

representations. 

https://www.zotero.org/google-docs/?broken=WeYeTp
https://www.zotero.org/google-docs/?broken=WeYeTp
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Therefore, we employed such spatio-temporo-spectral analyses to fully leverage the complex nature of 

the EEG signal. To do so, we used a searchlight approach by computing brain RDMs for each time point, 

channel, and frequency using a limited portion of the multidimensional spatio-temporo-spectral pattern of 

EEG spectral activity (i.e.., the event-related spectral perturbation (ERSP) values in a time window around 

the tested time point, for a spatial window around the tested channel, and a spectral window around the 

tested frequency; see below and Figure 6.1). 

6.2.4.1. Theoretical RDM computation 

To explicitly test whether the observed multivariate EEG patterns encoded our experimental variables, 

we modeled them as trial-by-trial representational dissimilarity matrices (RDM) as detailed in what follows: 

1. for hS, vS, hR, vR, CON, we calculated the trial-by-trial pairwise Euclidean distances. Therefore, since 

these variables are binary, in the obtained RDMs, there is trial-to-trial similarity when both trials have 

the same value (e.g., for CON, both trials are congruent or both are incongruent), and dissimilarity when 

one trials have a different value (e.g., for CON, one trial is congruent and the other is incongruent. 

2. In order to obtain an RDM that specifically reflected the presence of conflict, in line with Freund, Bugg, 

et al., (2021), we computed logical divergences based on the CON RDM. Specifically, in the resulting 

conflict RDM there is trial-to-trial similarity when both trials are incongruent, thus involving conflict (vs. 

dissimilarity when one trial or both are congruent, this not involving conflict). Thus, this RDM reflects 

CON in the incongruent trials (CON_I). We also computed a complementary RDM (CON_C), reflecting 

the absence of Conflict, with trial-to-trial similarity when both trials are congruent. We choose to not 

compute an RDM reflecting the congruency similarity and directly computed based on the binary CON 

variable (which corresponds to the logical union of the CON_C and CON_I RDMs) because, in that case, 

the obtained theoretical model would have additionally assumed that the similarities between pairs of 

congruent trials and pairs of incongruent trials would have been the same.  

3. To explore the representations of the task-related features, that is, both the task-relevant one 

(direction, corresponding to the required response) and the task-irrelevant one (position), as in Freund, 

Bugg, et al., (2021), we computed an RDM reflecting trial-to-trial similarity when the two trials have the 

same target feature (i.e., same arrow direction), referred to as Target RDM, and a RDM reflecting trial-

to-trial similarity when the two trials have the same distracting feature (i.e., same arrow position), 

referred to as Distractor RDM. To do so, we computed logical divergences using the DIR and POS 

categorical variables, respectively.  

4. LWb RDM was computed to be symmetric by using the pairwise Jensen-Shannon divergences; these 

were computed based on the two DKL values obtained by comparing the LWb probability of each trial of 

the pair to the mean LWb probability of the two trials.  

5. PhS, PvS, PhR, and PvR RDMs were computed using the same approach described for LWb.  

https://www.zotero.org/google-docs/?l2IXCd
https://www.zotero.org/google-docs/?l2IXCd
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6. for ISb, we first computed an RDM based on the ISb probability for the item (POS) presented in each 

trial, weighted for the average of the 4 possible ISb probabilities by using DKL. The trial-by-trial pairwise 

dissimilarities were then computed as Euclidean distances. We also computed a total ISb RDM (ISb_t) 

based on the four ISb values and computed using the pairwise symmetric Chi-squared (Taneja, 2005). 

7. PRSb RDMs were computed as ISb ones. We first computed an RDM based on the PRSb probability of 

the actual response for the POS presented in each trial, weighted for the average of the 16 possible 

PRSb probabilities (resulting from the combination of the four responses conditional to each POS) by 

using DKL. The trial-by-trial pairwise dissimilarities were then computed as Euclidean distances. We also 

computed a total PRSb RDM (PRSb_t) based on the multinomial probability distributions and computed 

using the pairwise Symmetric Chi-squared (Taneja, 2005). 

 

Figure 6.1.  
Schematic representation of searchlight RSA computation. From right to left: Competing representational 
accounts (modeled as Representational Dissimilarity Matrices (RDMs); here are shown some examples of 
model RDMs that we used, namely that for Conflict, LWPC and ISPC) are used to predict EEG RDMs (here 
are shown two examples of brain RDMs. On the left: An example of two EEG RDM computations is shown. 
The fuchsia EEG RDM is computed by correlating the ERSP for one channel and its neighbors (black dots on 
the upper topoplots), for the central timepoint of the time window highlighted in fuchsia, and for a 
frequency band and its neighbors (for simplicity, here we represent only three frequency bands, and, in this 
case, only two of them are selected). This is performed across trials, thus correlating the same channels, 
time points, and frequencies from the first to the last trial. The lilac EEG RDM is computed in the same way, 
but now correlating different channels, time points and frequencies. This is done for each channel and its 
neighbors, each time point with a temporal window of 80 ms, and each frequency with a 7-Hz spectral 
window, across trials. From up to bottom: Trial-level two-step multiple regression analysis. First, multiple 
linear regressions are performed for each participant using the formula shown below, resulting in beta 
values (slopes), reflecting the representational strength of each brain RDM in explaining the observed brain 
activation pattern. Then, one-sample t tests are performed on the obtained beta values to assess group-
level effects.    
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6.2.4.2. Brain RDM computation  

As mentioned above, we employed a spatio-temporo-spectral RSA approach to fully leverage the 

complex nature of the EEG signal. To this aim, we first performed a time-frequency decomposition using 

modified complex Morlet wavelet convolution in the frequency range from 4 and 30 Hz (i.e., from Theta to 

Beta3 frequencies, linearly spaced, with a 1-Hz resolution) to obtain ERSP values with a 20-ms temporal 

resolution. The employed wavelets had temporal windows ranging from 750 to 533 ms, which corresponds 

to a linearly increasing number of cycles (from 3 to 12 cycles, linearly spaced, for the 4 and 30 Hz 

frequencies, respectively). The baseline correction was applied trial by trial using the average power in the 

entire time window (i.e., from -1500 to 1500 ms for stimulus-locked data and from -500 to 300 ms for 

response-locked data).  

For each participant, the trial-by-trial spatio-temporo-spectral RDMs were then computed using the 

obtained ERSP data by correlating the ERSPs values for each channel, time point, and frequency using a 

searchlight approach based on each channel neighbors (defined using an Euclidean distance < 50 mm), an 

80-ms time windows (corresponding to five time points), and a 7-Hz spectral window (see also Figure 6.1). 

A common practice in the literature involves employing classification accuracy as dissimilarity measure. 

Nevertheless, we opted not to adopt this measure as it, by converting continuous dissimilarity measures 

into binary outcomes (correct vs. incorrect), is less informative and less sensitive than directly using the 

continuous RDMs (Walther et al., 2016).  

RSA was performed in three distinct time windows. For stimulus-locked data, we distinguished between 

pre-stimulus (from -1000 to 0 ms) and post-stimulus (from 0 to 1000 ms) windows, with 0 referring to 

stimulus onset. For response-locked data, we used a peri-response time window ranging from -500 to 300 

ms, with 0 referring to the response time.  

6.2.4.3. RSA computation  

The theory-based model RDMs (see above) were used to predict the EEG RDMs using a condition-rich 

RSA approach based on trial-level multilevel modeling. Specifically, we used trial-level two-step multiple 

regressions at the whole-brain level: multiple linear regressions were first performed for each participant to 

predict the observed brain RDMs using as predictors the model RDMs as detailed below; then, group-level 

one-sample t-tests were performed on the obtained b values (slopes) reflecting the corresponding 

representational strengths (see also Figure 6.1).  

For the post-stimulus analyses, this analytical approach is similar to the full factorial RSA used by Freund, 

Bugg, et al. (2021), as we included the same four theory-based models, that is, the two conflict-related 
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models CON_C and CON_I and the two task-related models Target and Distractor. However, we also 

controlled for the effect of contingency (PRSb) to exclude that the observed results could be explained by 

this lower-level variable (as per the contingency hypothesis, see Schmidt, 2019, for a review). More 

importantly, as our experimental question specifically regards the effect of LWPC/ISPC on interference 

resolution, our regression model also included the interactions between both Conflict-related and Task-

related RDMs and both LWPC and ISPC RDMs. Indeed, we were interested in exploring how the latter PC 

representations are encoded in the brain depending on the representations of both the presence/absence 

of conflict and both the task-relevant/irrelevant features. 

Therefore, for both the post-stimulus and the response-locked RSA analyses, the model formula was: 

Brain ~ PRSb + (CON_C + CON_I + Target + Distractor) * (LWb + ISb) 

As regards the pre-stimulus analysis, both the Conflict-related and Task-related models could not be 

used, as they reflect representations of features that are unknown before stimulus appearance. Moreover, 

in this analysis, for ISb and PRSb we used the representational models based on the multinomial probability 

distributions, instead of those based on the weighted univariate probabilities (see Section 6.2.4.2), because 

the latter are also based on features that are unknown before stimulus appearance, while the former 

allowed us to investigate whether the brain encode the multivariate representations of these experimental 

variables. For the same reason, we also tested the representational models reflecting the expectations 

about the low-level features of the stimulus position and the response. The LWb RDM was also included in 

the model: 

 Brain ~ PhS+PvS+PhR+PvR+PRSb_t+ISb_t+LWb 

Before fitting the multiple linear regressions (using ordinary least squares), the upper triangles of the 

model RDMs were unwrapped into vectors and z-scored to be assembled into the RSA design matrix. 

Then, we assessed the statistical significance and effect size of the tested effects at the group level by 

performing one-sample t-tests against 0 on the estimated b coefficients for each participant. One-tailed 

and two-tailed tests were performed, respectively, for the encoding strength of the single model RDMs and 

for the interaction terms.  

For each predictor included in the statistical model, we thus obtained a spatio-temporo-spectral 

statistical parametric map of observed t values with 1-channel, 20-ms, and 1-Hz resolution, which 

correspond to 88128 tests for both the stimulus-locked analyses (i.e., 64 channels x 51 time points x 27 

frequencies) and 70848 tests for the response-locked analysis (i.e., 64 channels x 51 time points x 27 

frequencies). These statistical parametric maps were corrected for multiple comparisons by using a cluster-
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based permutation approach based on the tmass statistics, using 2000 permutations to estimate the null 

distribution. 

To further limit the risk of type-I errors and to aid the identification of the most consistent results, the 

corrected statistical parametric maps were further masked using both an alpha threshold of .005 and a 

cluster size threshold of 40 connected samples. 

6.2.5. Ridge-based decoding  

Ridge regression decoding is a regularized version of ordinary least square multiple linear regression 

that uses the multivariate pattern of neural activity in each trial to predict continuous dependent variables 

like participants’ performance measures or, more commonly, experimental variables. In doing so, ridge 

regression allows mitigating the multicollinearity issue that affects EEG data by using a regularization 

method.    

The ridge-regression decoding analysis was performed using a searchlight approach similar to that used 

for RSA. Indeed, we computed the spatio-temporo-spectral multivariate pattern of ERSP activity, which in 

this approach serves as the design matrix to predict the experimental variables, by using the same spatio-

temporo-spectral searchlight, but in this case, data were smoothed in time (using a 5-samples moving 

average) and downsampled (every 2 time points) to reduce measurement noise. Moreover, since this 

analysis is more computationally intensive as compared to RSA, we limited the resolution of the analytical 

space. Specifically, the spatial dimension was downsampled by testing the 31 channels corresponding to 

the extended 10-20 system (i.e., Fp1/2, F7/3/z/4/8, FT9/10, FC5/1/2/6, T7/8, C3/z/4, TP9/10, CP5/1/2/6, 

P7/3/z/4/8, O1/2), the temporal dimension was downsampled by a factor of 2, thus obtaining a final 40-ms 

resolution, and the spectral dimension was downsampled by keeping five frequency bands: Theta (4-7 Hz), 

Alpha (8-12 Hz), Beta1 (13-18 Hz), Beta2 (19-24 Hz), Beta3 (25-30 Hz). 

We tested different models for the post- and pre-stimulus analyses for the reasons explained above (see 

Section 6.2.4.3) but the predicted variables corresponded to the trial-level experimental variables and 

Bayesian estimates detailed above (see Section 6.2.3). Indeed, differently from RSA, the ridge-regression 

analysis aims to decode the trial-level experimental variables, rather than the corresponding theoretical 

trial-by-trial RDMs, so it was not possible to try decoding the pairwise dissimilarity variables such as CON_C, 

CON_I, Target, and Distractor. The predicted variables for the post-stimulus analyses were the low-level 

binary variables hS, vS, hR, and vR; the low-level continuous estimate of contingency, PRSb; the binary 

variable of interest CON; the continuous estimates of LWPC and ISPC (LWb and ISb, respectively), as well as 

their interaction with CON. For the pre-stimulus analysis, the predicted variables were the low-level 

continuous estimates PhS, PvS, PhR, and PvR, and the continuous estimate of LWPC, LWb.   
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A five-fold stratified cross-validation loop with three repetitions was implemented and classification was 

performed using the LDA algorithm. After a preliminary optimization, we set the lambda hyperparameter 

(which set the magnitude of the applied regularization) to .1. The performance parameter was the mean 

squared error of the decoding prediction. 

Statistical significance of the results was calculated using a non-parametric approach as in Linde-

Domingo et al. (2019). Specifically, we computed 150 permutations at the participant level and we 

compared results to null distribution using permutation tests for significance (10000 permutations). Lastly, 

the obtained statistical non-parametric maps were corrected for multiple comparisons using a similar 

cluster-based permutations approach as that used in the RSA analyses.  

Finally, we performed an intersection analysis to identify the spatio-temporo-spectral samples for which 

there was both a significant (corrected) encoding of a given theoretical representational model and a 

significant (corrected) decoding of the corresponding experimental variable (e.g., the spatio-temporo-

spectral mask of significant results of the encoding of either the CON_C and CON_I RDMs was intersected 

with the spatio-temporo-spectral mask of significant ridge-regression decoding of the CON variable). To 

note that the intersection analysis could not be performed for the Target and Distractor RDMs, as they did 

not have a corresponding trial-level experimental variable, as explained above. 

6.3. Results 

6.3.1. Representational similarity analysis  

We performed spatio-temporo-frequency RSA to explore the representational structure of proactive 

and reactive control, assessing whether the observed multivariate spatio-temporo-spectral brain activity 

patterns were explained by the theory-based representations postulated by the DMC. As explained above, 

the model also included predictors for confounders, but their effect will not be reported here, for the sake 

of conciseness. Moreover, for stimulus-locked analyses, we will present only results found within 600 ms, 

whereas for response-locked ones, we will report only pre- and peri-response results. 

6.3.1.1. Stimulus-locked data  

RSA on stimulus-locked data showed that the absence of conflict (CON_C), Target, Distractor, and LWPC 

were significantly represented. Additionally, we found the representations of LWPC interacting with the 

absence of Conflict (LWPC*CON_C), Conflict (LWPC*CON_I), Target (LWPC*Target), and of ISPC interacting 

with the absence of Conflict (ISPC*CON_C) and Distractor (ISPC*Distractor).  
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In particular, CON_C was significantly encoded by the spatio-temporo-spectral brain patterns in two 

clusters: an earlier one from 240 to 400 ms over left fronto-central electrodes and mainly involving the 

Beta2 band (see Figure 6.2), followed by a cluster (from about 420 to 540 ms) over right temporo-parietal 

regions in the same band.  

 

Figure 6.2.  
RSA effect of CON_C on stimulus-locked data. The raster diagram on the left shows timepoints/frequencies 
significantly modulated by the effect for the channel indicated in the title; the one in the middle shows 
timepoints/channels significantly modulated by the effect for the frequencies in the band indicated in the 
title. The topoplot shows the scalp distribution of the effects for the same frequencies in the time window 
indicated in the title. Significant effects are reported as t values, using the colormap corresponding to the 
colorbar near the topoplot. 

The Target was significantly represented by the multivariate activity pattern in an early cluster till 340 

ms distributed over central electrodes, slightly right lateralized and involving Beta1 and low Beta2 

frequencies, followed by a right mid-frontal cluster till 500 ms in the Beta3 band. 

The Distractor was instead significantly encoded by three clusters of multivariate activity; a Beta3 cluster 

spanning from about 200 to 320 ms with a central scalp distribution and a Beta1 cluster from about 260 to 

380 ms over left centro-parietal electrodes. From about 480 to 660 ms, there was a Beta2 cluster 

distributed over right prefrontal and central electrodes.  

The multivariate activity representing LWPC was found in an early Theta cluster from 120 to 300 ms over 

left parietal scalp regions (see Figure 6.3).  
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Figure 6.3.  
RSA effect of LWPC on stimulus-locked data. See Figure 6.2 for conventions. 

The multivariate activity pattern significantly represented the interaction between LWPC and the 

absence of Conflict (LWPC*CON_C) in a right centro-parietal cluster from 380 to 560 ms, involving high 

Alpha frequencies.  

The interaction between LWPC and Conflict (LWPC*CON_I) was significantly encoded by multivariate 

activity patterns in four clusters. We found two early clusters (from about 240 to 380 ms), a Beta2 one over 

right temporo-parietal electrodes, and a Theta one over mid-frontal scalp regions, slightly right-lateralized 

and including also low Alpha frequency. From about 360 ms, we found a Beta1 cluster over right fronto-

central electrodes and a Beta3 cluster over left fronto-central electrodes.  

The significant multivariate activity patterns representing the interaction between LWPC and Target 

were identified in three early clusters and four later ones. At stimulus appearance, there was a Beta1 

cluster lasting till 160 ms over left parietal electrodes, followed by an Alpha cluster over right prefrontal 

electrodes  (see Figure 6.4) and a Beta1 cluster mainly over left fronto-temporal electrodes, both lasting till 

about 300 ms. From 400 till about 600 ms, we found a Beta3 cluster, first over left temporal scalp regions 

and then over right posterior scalp regions. Lastly, from about 520 to 700 ms, there were a Beta3 cluster 

over right midfrontal electrodes and an Alpha cluster over left centro-parietal electrodes.  
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Figure 6.4.  
RSA effect of the LWPC*Target interaction on stimulus-locked data. The upper and lower panels show, 
respectively, the results for the Alpha and Beta1 cluster. See Figure 6.2 for conventions. 

The multivariate activity pattern significantly represented the interaction between ISPC and the absence 

of Conflict in a first early and widespread Alpha cluster (from 160 to 340 ms) mainly over right parieto-

occipital scalp regions (see Figure 6.5) and then in a Beta2 cluster (from 300 to 420 ms) distributed over left 

fronto-central electrodes.  

 

Figure 6.5.  
RSA effect of the ISPC*CON_C interaction on stimulus-locked data. See Figure 6.2 for conventions. 

Lastly, the multivariate activity representing the ISPC by Distractor interaction was observed in three 

clusters: two early ones immediately after stimulus, one involving Beta1/2 frequencies over left frontal 

electrodes till 140 ms, and one involving Theta over left centro-parietal electrodes till 380 ms. From 240 to 

420  ms, we found a right centro-parietal cluster involving the Beta2 and Beta3 bands (see Figure 6.6).  
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Figure 6.6.  
RSA effect of the ISPC*Distractor interaction on stimulus-locked data. See Figure 6.2 for conventions. 

6.3.1.2. Response-locked data  

RSA on response-locked data revealed that Conflict (CON_I), Distractor, LWPC and ISPC were 

significantly represented. Moreover, we found the representations of LWPC interacting with the absence of 

conflict (LWPC*CON_C), Conflict (LWPC*CON_I), and Distractor (LWPC*Distractor), and of ISPC interacting 

with the absence of conflict (ISPC*CON_C), Conflict (ISPC*CON_I), Target (ISPC*Target) and Distractor 

(ISPC*Distractor).  

Specifically, the presence of Conflict (CON_I) was significantly represented by the multivariate activity 

pattern in a left-lateralized fronto-central cluster, found in the peri-response time window (from -40 to 40 

ms) and involving Beta1 and Beta2 frequencies (see Figure 6.7).  

 

Figure 6.7.  
RSA effect of CON_I on response-locked data. See Figure 6.2 for conventions. 

The Distractor representation was found in the multivariate activity of two pre-response clusters: one 

earlier (from -300 ms) Alpha and Beta1 cluster over right parietal electrodes, and a later (from -120 to -40 

ms) Theta and Alpha cluster over left fronto-central scalp regions. 

LWPC was significantly encoded by the multivariate pattern in three clusters. In the pre-response, from - 

300 to -160 ms, we found a Theta and Alpha cluster mainly distributed over left centro-posterior scalp 
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regions. Moreover, there was a Beta1 right parietal cluster (from -240 to -120 ms), followed by a Beta3 left 

fronto-temporal cluster lasting till response (see Figure 6.8). 

 

Figure 6.8.  
RSA effect of LWPC on response-locked data. See Figure 6.2 for conventions. 

The representation of ISPC was instead significantly encoded in the pre-response time window from -

280 to -180 ms by the multivariate activity pattern of a Beta2 cluster distributed over left fronto-centro-

parietal scalp regions (see Figure 6.9). 

 

Figure 6.9.  
RSA effect of ISPC on response-locked data. See Figure 6.2 for conventions. 

The interaction between LWPC and the absence of Conflict was significantly encoded by multivariate 

activity patterns in five clusters: two pre-response clusters from about -480 to 360 ms, involving Theta 

frequency over mid-frontal electrodes and Beta1 band cluster over left frontal electrodes. Moreover, from -

380 to -200 ms, we found a Beta3 cluster over left posterior electrodes, followed by a cluster involving 

Theta over left centro-parietal scalp regions and lasting almost till response (see Figure 6.10). In the peri-

response time window, there was a Theta cluster over right fronto-central electrodes. 
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Figure 6.10.  
RSA effect of the LWPC*CON_C interaction on response-locked data. The upper and lower panels show, 
respectively, the results for the Beta and Theta bands. See Figure 6.2 for conventions. 

LWPC interacted with Conflict as well, and this was significantly encoded by the multivariate activity 

pattern in three clusters. An earlier and a later cluster (from -500 to -420 ms and from -220 to -100 ms), 

mainly distributed over parietal electrodes, slightly left-lateralized, and involving Theta band (see Figure 

6.11). Two additional small clusters were found in the late pre-response time window (from about -80 to -

20 ms), one over left temporal electrodes, involving Alpha frequency, and a occipital one involving Beta1 

band.  
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Figure 6.11.  
RSA effect of the LWPC*CON_I interaction on response-locked data. The upper and lower panels show, 
respectively, the results for the earlier and later Theta cluster. See Figure 6.2 for conventions. 

The multivariate activity representing the LWPC*Distractor interaction was observed in two clusters: 

one before the response (from -440 ms), distributed over right pre-frontal electrodes and involving Beta2 

band (see Figure 6.12), and one around the response, over right parietal electrodes and involving Beta1 

frequency. 

 

Figure 6.12.  
RSA effect of the LWPC by Distractor interaction on response-locked data. See Figure 6.2 for conventions. 

The representation of the interaction between ISPC and the absence of conflict (CON_C) was 

significantly encoded by the multivariate pattern in four clusters. Three were in the pre-response time-

window: a Beta1/2 cluster over right parietal electrodes from -220 to -20 ms, a Theta widespread cluster 

distributed mainly over right fronto-temporo-posterior electrodes from -140 to 0 ms (see Figure 6.13), and 
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a Beta2/3 cluster over parietal electrodes from -60 to 0 ms. Around the response, we found a left central 

cluster involving Theta band.  

 

Figure 6.13.  
RSA effect of the ISPC*CON_C interaction on response-locked data. The upper and lower panels show, 
respectively, the results for the Beta1 and Theta cluster. See Figure 6.2 for conventions. 

We also found the representation for the interaction between ISPC and Conflict (CON_I), in four pre-

response clusters. From -500 to -460 ms, there was a cluster involving Theta over left frontal scalp regions, 

followed by three clusters from about -240 to -100 ms, one over right fronto-central electrodes involving 

Beta2 frequency, one over right posterior electrodes involving Alpha frequency (see Figure 6.14), and a 

widespread one mainly distributed over left fronto-polar regions involving Theta band.  
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Figure 6.14.  
RSA effect of the ISPC*CON_I interaction on response-locked data. The upper and lower panels show, 
respectively, the results for the Beta2 and Alpha cluster. See Figure 6.2 for conventions. 

The multivariate activity pattern significantly encoded the ISPC*Target interaction in five clusters. In the 

early pre-response (from about -500 to -400 ms), there was a widespread Beta2 cluster mainly over left 

fronto-temporal electrodes and a Beta1 cluster over right parietal electrodes, followed by a small posterior 

cluster involving Beta1 over left posterior electrodes (see Figure 6.15). Around the response, we found an 

Alpha fronto-polar cluster and a Beta2 centro-parietal cluster (see Figure 6.15). 

 

Figure 6.15.  
RSA effect of the ISPC*Target interaction on response-locked data. The upper and lower panels show, 
respectively, the results for the Beta1 and Beta2 cluster. See Figure 6.2 for conventions. 

Lastly, the interaction between ISPC and Distractor was significantly encoded by the multivariate pattern 

in two clusters. In the pre-response time window (from -500 to -40 ms), we found a sustained and 
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widespread fronto-posterior cluster involving Theta, Alpha, and Beta1 frequencies, followed, in the peri-

response, by a Beta3 cluster distributed over posterior scalp regions (see Figure 6.16). 

 

Figure 6.16.  
RSA effect of the ISPC*Distractor interaction on response-locked data. See Figure 6.2 for conventions. 

6.3.1.3. Pre-stimulus data  

RSA on pre-stimulus data did not find any significant representation for our variables of interest, but 

only for low-level ones (i.e., PhS, PvS, PhR, and PvR, not reported here).  

6.3.2. Ridge-based decoding  

We performed ridge-based decoding to explore whether the spatio-temporo-spectral multivariate 

activity pattern predicted the continuous variables we manipulated to test proactive and reactive control. 

As for RSA results, we will report only the significant results for the effects of interest and, for stimulus-

locked analyses, the results found within 600 ms, whereas for response-locked ones, the pre- and peri-

response results. 

6.3.2.1. Stimulus-locked data  

Ridge regression on stimulus-locked data revealed that Congruency (CON), LWPC, ISPC and the 

interaction between ISPC and Congruency (ISPC*CON) were successfully decoded.  

In particular, the spatio-temporo-spectral multivariate pattern successfully predicted Congruency in two 

clusters. The first cluster ranged from 240 to 440 ms mainly over posterior scalp regions and involved Alpha 

frequency, followed by a Theta cluster from about 320 to 520 ms distributed bilaterally over centro-parietal 

electrodes.  

LWPC was significantly predicted by the multivariate activity pattern of a first early cluster involving 

Alpha frequency over mid-frontal, left centro-parietal and right temporal scalp regions. Subsequently, from 
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about 320 ms, we found a Theta fronto-centro-parietal cluster and a Beta1 cluster over bilateral frontal, 

mid-central and parietal electrodes.  

The multivariate activity pattern predicted ISPC early in time in four clusters: A left frontal and bilateral 

parietal cluster ranging from 120 to 200 ms and involving Alpha band, followed by three clusters ranging 

from about 200 to 300 ms, one involving Theta frequency over centro-parietal electrodes, one involving 

Beta1 over left centro-frontal and right posterior electrodes and one involving Beta2/3 frequencies over left 

frontal electrodes.   

Successful decoding of the interaction between ISPC and CON relied on the multivariate activity pattern 

in two clusters. A first early Beta2 cluster was expressed over right parietal and left fronto-central scalp 

regions which, from 200 ms, involved Beta1 frequency. An additional early cluster was found (from 120 to 

280 ms), involving Theta and Alpha frequencies over occipito-parietal electrodes.   

6.3.2.2. Response-locked data  

Ridge regression on response-locked data successfully decoded Congruency (CON), LWPC, ISPC, and the 

interaction between ISPC and Congruency (ISPC*CON).  

The multivariate activity pattern successfully predicted Congruency in an early and sustained cluster in 

the pre-response time window (from -500 to -20 ms), distributed bilaterally over posterior regions and 

involving Theta, Alpha, and Beta1 frequencies.  

LWPC was successfully predicted by the multivariate activity pattern of a pre-response left parieto-

temporal and right parietal and frontal cluster involving Theta and Alpha bands.  

The multivariate activity pattern predicted ISPC in three pre-response clusters. The earlier (from -380 to 

-220 ms) involved Alpha frequency and was distributed over left prefrontal and bilateral posterior scalp 

regions, while the second (from about  -240 to -60 ms) involved Theta frequency and was distributed over 

fronto-polar and right fronto-parietal electrodes. A third cluster was found at around -220 ms before 

response, involving Beta1 and Beta2 frequencies over left frontal, midfrontal and right posterior scalp 

regions.  

Contingency was predicted by the multivariate activity pattern of an early and sustained pre-response 

cluster (from about -500 to -60 ms), distributed over right prefrontal and bilateral posterior electrodes, 

involving Theta, Alpha and Beta2 frequencies.  

Lastly, the interaction between ISPC and Congruency was successfully decoded from the multivariate 

activity pattern from -300 ms, in a Beta1 cluster over right posterior scalp regions. Moreover, in the late 
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pre-response time window and around the response (from about -140 to 100 ms), we found a Theta and 

Alpha cluster distributed over centro-posterior electrodes.  

6.3.2.3. Pre-stimulus data  

Ridge-decoding on pre-stimulus data did not successfully predict any of our variables of interest, but 

only low-level ones (i.e., PvS and PvR, not reported here). Of note, the pre-stimulus multivariate activity 

patterns successfully predicted RTs in a Theta and Alpha cluster at about -60 ms, with a widespread 

distribution.  

6.3.3. RSA-Ridge intersection 

RSA and ridge decoding results were then compared to test whether, to decode our variables, ridge 

regression used the same multivariate activity patterns that we had previously identified encoding the 

same variables. Indeed, exploring commonalities allowed us to verify whether the information patterns of 

the representations were available for successful decoding and in turn, to provide stronger evidence for the 

representations we found. 

It is important to note that one-to-one comparisons were not always feasible, since some variables that 

were meaningful to be modeled as RDMs in the RSA analysis could not be used in the ridge analysis. For 

example, CON_I and CON_C used in the RSA correspond to CON in the ridge analysis, which included both 

of them. As such, we compared results for both CON_C and CON_I to those for CON, and the same was 

done for the interactions. In contrast, LWPC and ISPC were directly comparable, whereas Target and 

Distractor could not be compared as they could not be included in the ridge statistical model. 

This notwithstanding, we tried to perform comparisons as meaningful as possible. In what follows, we 

will report the results for the comparisons that have shown multivariate activity patterns in common 

between RSA and ridge regression.  

6.3.3.1. Stimulus-locked data  

Analyses on stimulus-locked data showed multivariate activity patterns in common between CON_C and 

CON, between LWPC, and between the ISPC*CON_C and ISPC*CON interactions.  

Specifically, the multivariate activity patterns in common between CON_C and CON were found in two 

clusters: a first cluster early in time (from about 120 to 200 ms), involving Beta3 frequency and distributed 

over central scalp regions, left lateralized, followed by a cluster distributed over the same electrodes but 

involving the entire Beta band (see Figure 6.17).  
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Figure 6.17.  
RSA-Ridge intersection effect of CON_C/CON on stimulus-locked data. See Figure 6.2 for conventions. 

The multivariate activity patterns found by both analyses for LWPC were found in an early Theta and 

Alpha cluster (from about 80 to 360 ms) distributed over parietal electrodes and more left lateralized (see 

Figure 6.18).  

 

Figure 6.18.  
RSA-Ridge intersection effect of LWPC on stimulus-locked data. See Figure 6.2 for conventions. 

Lastly, the interactions ISPC*CON_C and ISPC*CON shared common multivariate activity patterns in an 

early cluster from 0 to 360 ms, involving Alpha frequency and distributed over right posterior scalp regions.  

6.3.3.2. Response-locked data  

Response-locked analyses revealed similar multivariate activity patterns for CON_I and CON, LWPC, and 

ISPC. Additionally, ISPC*CON_C and ISPC*CON interactions and ISPC*CON_I and ISPC*CON interactions 

shared multivariate activity patterns. 

In particular, we found that CON_I and CON shared the multivariate activity patterns in the early pre-

response time window (from about -500 to -220 ms), in a Theta and Beta1 cluster over left posterior 

electrodes and in the peri-response time window (from -140 to 20 ms), in a cluster involving the same 

frequencies but distributed over left fronto-central and right parietal scalp regions (see Figure 6.19).  
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Figure 6.19.  
RSA-Ridge intersection effect of CON_I/CON on response-locked data. See Figure 6.2 for conventions. 

The shared multivariate activity patterns for LWPC were found in a pre-response cluster from about -

420 to -60 ms involving Theta and Alpha frequencies and distributed over left temporo-parietal electrodes 

(see Figure 6.20). 

 

Figure 6.20.  
RSA-Ridge intersection effect of LWPC on response-locked data. See Figure 6.2 for conventions. 

The multivariate activity patterns found by both analyses for ISPC involved Beta2 frequencies at about 

220 ms before response and over left fronto-central electrodes (see Figure 6.21). 

 

Figure 6.21.  
RSA-Ridge intersection effect of ISPC on response-locked data. See Figure 6.2 for conventions. 

The ISPC*CON_C and ISPC*CON interactions shared common multivariate activity patterns in two pre-

response clusters: an earlier (from -260 to -20 ms) cluster over right parietal electrodes involving Beta2 

frequency, and a later (from -140 to 140 ms) cluster over left centro-parietal and right parietal electrodes, 

involving Theta and Alpha frequencies (see Figure 6.22).  
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Figure 6.22.  
RSA-Ridge intersection effect of the ISPC*CON_C/CON interaction on response-locked data. See Figure 6.2 
for conventions. 

Lastly, we also identified common multivariate activity patterns for the interactions ISPC*CON_I and 

ISPC*CON in two pre-response clusters: a widespread one involving Alpha band from -220 to -20 ms mainly 

distributed over left frontal and medial parietal scalp regions, and a smaller one involving Beta2 frequency 

from -180 to -140 ms over left centro-parietal electrodes.  

6.3.3.3. Pre-stimulus data  

In the pre-stimulus time window, no multivariate activity pattern in common survived.  

6.4. Discussion 

Cognitive control works through the retention and updating of internal representations containing the 

information required for task execution (Cohen, 2017; Sakai 2008). Given their pivotal role, representations 

stand at the core of numerous theories of cognitive control (Badre et al., 2021; Braver, 2012; Cellier et al., 

2022; Cohen et al., 1990). However, our understanding of these representations remains limited, which 

accounts for the lack of a comprehensive understanding of cognitive control dynamics at the neural level 

(Freund, Etzel, et al., 2021).  

In the present study, our aim was to advance in this direction by investigating one of the most influential 

models of cognitive control, the Dual-Mechanisms of Control (DMC; Braver, 2012; Braver et al., 2007). 

Specifically, our goal was to explore whether and how proactive and reactive control are encoded at the 

neural level. To pursue our aim, in an EEG study, we manipulated LWPC and ISPC at the trial level to induce 

proactive and reactive control, respectively, and then we employed Multivariate Pattern Analysis (MVPA) 

approaches which, despite having been employed previously to study cognitive control, have not yet been 

https://www.zotero.org/google-docs/?broken=Y7L9Uz
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utilized to investigate these two control modes. In particular, we employed the two most predominant 

multivariate techniques to investigate both the encoding and decoding of proactive and reactive control 

representations. RSA was first used to directly test the representations theorized by the DMC and to 

characterize the representational geometry of proactive and reactive control representations. Then, 

assuming that, if the representational content is encoded, then it should also be available for downstream 

neurons to use it, ridge regression decoding was used to verify whether successful decoding was possible, 

that is, whether such informational patterns were available. For both MVPA techniques, we adopted a 

spatio-temporo-spectral approach to fully exploit the information carried by the EEG signal, and we were 

then able to intersect RSA and ridge regression results to identify converging evidence for such 

representations. 

Before delving into the discussion of our results, it is necessary to provide a preamble to underscore the 

difficulty (and limitations) inherent in our aim to explore representations of cognitive control. Indeed, 

investigating representations in neuroscience poses challenges, not only methodologically (as evident in the 

issues related to MVPA and especially decoding methods, as outlined in the introduction) but also in terms 

of the very meaning of representations. This issue is first of all relevant from a philosophical point of view 

as mapping world features onto neural functioning in an intuitive manner, presupposing that the brain 

functions just as we perceive the world and truly relies on the verbal definitions we use to describe it, is 

already a significant problem in itself. Without being certain that the verbal categories commonly employed 

when studying the brain, such as functions and mechanisms, are not merely indefinable essences but rather 

entities genuinely existing and utilized/present in the brain, there is a possibility that we are overlooking 

the true essence of how the brain operates (Brick et al., 2022; Duncan, 2010). However, addressing this 

huge issue, which also concerns neural representations, goes beyond the scope of the present work and 

would require more than one PhD thesis (but see Brick et al., 2022 for a deep discussion on this topic). The 

second challenge has been outlined in the introduction of this Chapter, that is the lack of a precise 

definition of representation. Therefore, given our aim of exploring cognitive control representations, in 

discussing our results we will try to stuck as much as possible to the criteria provided by Baker and 

colleagues (2021), which are clear and systematic. This will be of particular importance because cognitive 

control is already a complex construct in itself, making it even more challenging to understand the implied 

representations, and it is probably not the first construct from which one should start to comprehend the 

meaning and functioning of neural representations. This notwithstanding, most of the fundamental aspects 

provided by Baker and colleagues (2021) to define a representation as such are generally ensured by our 

approach. First, by using RSA we directly measure the correlation between world features, modelled as 

RDMs, and neural activation patterns, thus being able to explore whether they match or not. Second, by 

having hypotheses about how cognitive control functions, we can quite safely ensure that the identified 

representations have a teleological side, that is, are used with specific purposes. What instead cannot be 
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ensured by our approach is the causal effect of these representations on behavior, which would require to 

perform further analyses, such as RSA-behavior correlations, which were not included in the present work 

because they would have required a much larger sample size than that we used here. Therefore, they will 

be performed in future ad-hoc studies.  

6.4.1. Conflict representations  

Before delving into proactive and reactive control representations, we will discuss whether and how the 

presence (or absence) of Conflict was represented. Conflict-related representations were fundamental to 

explore as both proactive and reactive control modes, according to the DMC, are postulated to depend on 

the presence or absence of Conflict. Therefore, it is reasonable to assume that, at the representational 

level, the encoding of the presence or absence of conflict can influence the encoding of LWPC and ISPC 

representations, which are necessary to implement the required amount of proactive and reactive control, 

respectively. Thus, to modulate LWPC and, especially, ISPC encoding, a Conflict representation should also 

be encoded per se. To explore this hypothesis using RSA, we modeled two distinct RDMs, one representing 

the absence (CON_C) and one representing the presence (CON_I) of Conflict.  

Our analysis revealed that, at the stimulus level, only the absence of Conflict was encoded, while at the 

response level, only the presence of Conflict was represented around the time of the response.  

The fact that the presence of Conflict was more strongly represented around the time of the response, 

but not early in time after stimulus appearance, could suggest that this representational encoding could be 

related to conflict resolution at the response level. Nonetheless, it is important to acknowledge that our 

study did not specifically manipulate response conflict and that this type of conflict constitutes just one of 

the conflict components included in the Stroop effect (i.e., there are also stimulus and task conflicts, see 

Viviani et al., 2023; see also Chapters 2 and 7). Therefore, this leaves open the possibility for the effect of 

other forms of Conflict-related representations in modulating PC representations. This notwithstanding, the 

stronger Conflict representation emerging late in time might also reflect a form of conflict that cannot be 

resolved by the proactive and reactive control modes manipulated in this study, as discussed in Chapter 5. 

Indeed, our ISPC manipulation induces an early form of reactive control relying on stimulus-attention 

associations (Tafuro et al., 2020; Bugg, 2012, 2017; Bugg & Hutchison, 2013), which could act to resolve the 

conflict at the stimulus level. However, a later form of conflict can arise at the response level when 

proactive and ISPC-dependent reactive control mechanisms fail in resolving the earlier form of conflict at 

the stimulus level, and thus a more response-related and late-in-time form of control needs to be 

implemented. This later form of reactive control, more akin to the late correction mechanism postulated by 

the DMC and the later stages of control resolution postulated by the Cascade of Control model (Banich, 

2009), could thus have contributed here to strengthen Conflict representation encoding at the response 
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level (in line with our ER(S)P results, see Chapter 5; see also Tafuro et al., 2020). Moreover, this 

interpretation is in line with the adaptive control models assuming that conflict detection occurs in the 

response module (i.e., conflict is detected when two incompatible responses are activated), thus explaining 

why Conflict representation is encoded only when response conflict occurs (Botvinick et al., 2001).  

However, we also speculate that early conflict detection is more likely to be more easily detected by a 

standard process-based analysis than by a representation-based one like our RSA analysis. What we found 

here is thus more likely to be the consequence of conflict detection processes that contributed to create a 

representation of the current presence of Conflict, which then could have been used to resolve it in 

response-related control stages, and to update the PC-related estimates to control performance in 

following trials. Moreover, the absence of Conflict was also encoded, quite after stimulus appearance and 

at the stimulus level, probably indicating a complex relation between conflict detection processes and the 

encoding of Conflict-related representations.  

Moreover, the fact that both the presence and absence of Conflict were, at least partially, spatially and 

spectrally overlapped, suggests that they might be complementary aspects of the same complex 

representation. Indeed, they were both encoded mainly through left fronto-central Beta2 activity.  This 

points to the functional role of Beta frequency band in encoding conflict-related representations, in line 

with findings suggesting its involvement in inhibiting competing task sets and selecting relevant task sets 

and information to support task performance (Cellier et al., 2021, Riddle et al., 2020, Buschman et al., 2012; 

Antzoulatos & Miller, 2016; Spitzer & Haegens, 2017; see also Tafuro et al., 2019). 

The multivariate activity pattern encoding for Conflict was also effectively used by ridge regression to 

decode our Congruency variable. Indeed, although with ridge regression we had to test the presence and 

absence of Conflict altogether, by including in the model Congruency which comprises both (see Section 

6.2.5), we found multivariate activity patterns in common between RSA and ridge results. In particular, 

both revealed, late after stimulus appearance, a left central cluster involving Beta frequencies and, around 

the response, a left fronto-central cluster involving Beta1 frequency. The fact that multivariate activity 

patterns similar to those found by RSA significantly predicted Congruency provides stronger evidence for 

the Conflict representation. Additionally, in ridge-based analysis, finding a similar pattern at the stimulus 

and response level by testing the entire Conflict representation further supports our interpretation above, 

that is, although Conflict is more strongly represented during response-related processes, it relies on a 

complex representational pattern that starts to be encoded after stimulus and strongly relies on conflict at 

the response level.  
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6.4.2. Proactive control-related representations 

To induce proactive control, we manipulated LWPC and, assuming that it is dynamically updated based 

on trial history, we estimated it at the trial-level obtaining its continuous values. At the neural level, we 

expected to find a representation of LWPC which would serve as the basis for implementing proactive 

control. The underlying assumption is that, if such representation can be identified, it means that it is 

available to be used by downstream processes of proactive control. Testing the similarity between model-

based LWPC RDM and the observed brain patterns thus provided a means to investigate the presence of 

proactive control from a representational perspective.  

LWPC representation should be available relatively early and before response to enable the 

implementation of the required level of proactive control. Our findings support this assumption, as we 

found the representation of LWPC at both the stimulus and response levels early in time. Specifically, at the 

stimulus level, the representation of LWPC was encoded in a left occipito-parietal cluster as early as 120 ms 

after the stimulus onset (till 300 ms), and its encoding involved Theta frequency. Therefore, its early nature 

could enable it to be accessed and utilized proactively. The decoding results further supported the RSA-

based finding, showing that the same multivariate activity pattern was used by ridge regression to predict 

LWPC. Indeed, the intersection analysis indicated the involvement of a Theta cluster over left parietal scalp 

regions during a similar time window (from 80 to 360 ms), thus revealing strong converging evidence for 

how LWPC is encoded at the stimulus level.  

Response-based results were consistent with stimulus-based findings. RSA revealed a left centro-parietal 

Theta cluster before response. Although this cluster was significant still quite early in the pre-response time 

window (from -300 ms before response), it emerged slightly later than the stimulus-locked cluster, 

probably due to a motor involvement, as also suggested by the concomitant presence of a Beta1 cluster 

over right parietal scalp regions. The intersection between RSA and ridge results showed that the 

multivariate activity pattern used to predict LWPC at the response level involved the same Theta left 

parietal cluster identified by RSA, which was also observed in a similar time window before response. As 

such, this provides converging evidence for the role of the LWPC representation in modulating not only 

stimulus-locked, but also response-locked neural activity.  

The fact that LWPC representation was encoded by lateralized posterior Theta activity is consistent with 

the available evidence for the importance of this frequency band for the encoding of new information 

(Klimesch, 1999), as well as the formation of complex memory representations and the transfer of 

information into and out of long-term memory (Lisman, 2010; Sans-Dublanc et al., 2017; Backus et al., 

2016; Lega et al., 2012). Indeed, in order to represent the trial-by-trial dynamics of our manipulated LWPC, 

the experienced Congruency has to be integrated with the memory of the recent history of Congruency, 
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and the obtained updated LWPC representation has to be retrieved to adapt proactive control 

engagement.  

The specific LWPC representation, revealed by both our analyses, thus suggests that such a 

representational pattern was robust and had a strong cognitive nature, as it was similar at both the 

stimulus and response levels, and not specifically locked to either purely perceptual- or response-

dependent encoding. Given its proactive and early nature, one might speculate that the representation of 

LWPC could be observed even before the stimulus onset. However, we did not find evidence for a 

significant pre-stimulus encoding, likely because it is cognitively demanding to sustain an active 

representation constantly, and it is more efficient to activate it early as soon as the stimulus appears. As 

such, we could speculate that it was encoded even before stimulus appearance but that the strength of 

such encoding was not enough to be revealed. Future studies should adopt more sensitive experimental 

and analytical approaches to unveil whether this is the case (see Section 8.5.2). 

Our statistical model tested also the interactions between LWPC and the presence/absence of Conflict, 

which were central to our aim of exploring proactive control representations. Indeed, these interactions 

could show how the representational content necessary to implement proactive control was dynamically 

used based on Conflict presence/absence and the multivariate activity patterns encoding for that. Such 

dynamics may act directly on the LWPC encoding, modifying it, but also the involvement of additional 

multivariate activity patterns could be plausible. 

The interaction between the absence of Conflict and LWPC was significant both at the stimulus and the 

response levels, but the more consistent results were the response-locked ones, as they more strongly 

reflected a modification of the representation of LWPC by the representation of the absence of Conflict. 

Indeed, we found that the interaction was encoded as a multivariate activity pattern observed over left-

parietal scalp regions, as for LWPC, and in a similar time window (from -380 ms before response), and 

involving Beta3 frequency, but also Theta band, as for LWPC. Although these findings were not supported 

by ridge regression results, they plausibly reflect a direct modulation of the LWPC representation by the 

absence of Conflict. Moreover, identifying such direct modulation at the response but not at the stimulus 

level, might be due to the greater strength of the complex representational pattern of Conflict at the 

response level, as suggested above. Indeed, it probably took time for the absence of Conflict to be 

represented, and consequently to use the LWPC representation accordingly.  

The interaction between Conflict and LWPC was again more robust at the response level. Indeed, it was 

encoded by a multivariate activity pattern very similar to LWPC, with an early pre-response and sustained 

Theta cluster over parietal scalp regions, slightly left lateralized. As such, as it overlapped with LWPC 

representation, it is likely that the presence of Conflict directly modulated the LWPC encoding pattern. The 
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finding of such modulation at the response but not at the stimulus level is in line with our interpretation 

above, that is, Conflict was more strongly represented at the response level and thus it took some time for 

it to be encoded and then, in turn, for its effect to modulate the LWPC representation.  

Overall, our RSA results provided evidence that LWPC was modulated by Conflict representations and 

that the strength of this modulation was greater at the response level than at the stimulus level. Indeed, 

both response-related Conflict representations (CON_C and CON_I) showed clear evidence for it, by directly 

modulating the LWPC multivariate activity pattern. However, also stimulus-locked Conflict representations 

modulated LWPC encoding, and relatively early in time, suggesting a role for these effects in subserving 

proactive control processes, even though more indirectly, namely through distinct multivariate activity 

patterns. Therefore, it is plausible that a complex interplay between the presence and the absence of 

Conflict modulated the LWPC encoding, and this modulation started to be encoded at the stimulus level, 

but became stronger at the response level as proactive control representations might be used to 

proactively control responses. It has to be noted that these findings were obtained only with RSA analyses, 

thus were not confirmed in the opposite decoding direction, probably because the complexity of such 

multivariate activity patterns was too high and not so strong to be clearly decoded. 

The two additional interactions we tested for LWPC contributed instead to explore how proactive 

control might work, that is, whether it enhances strength of representations related to the goal 

(LWPC*Target) or reduces the strength of those related to the distracting task/features (LWPC*Distractor). 

Of note, they could be explored only using RSA and thus we did not have bidirectional evidence for them.  

The interaction between LWPC and Target was encoded by early multivariate activity patterns at the 

stimulus level, but not at the response level. This result is in line with a proactive control modulation of the 

goal that should occur in advance, being more related to the task set compared to the response level. 

Indeed, the LWPC representation should contain the information regarding the level of proactive control 

that needs to be implemented immediately after stimulus onset so as to enhance Target representation 

accordingly. For example, when proactive control is higher (i.e., when Conflict is more probable), the 

representation of Target should be stronger. Such interaction was encoded by an Alpha right prefrontal 

cluster and a Beta1 left lateral cluster from about 160 to 300 ms, while Target was represented by a central 

cluster in the same time window involving Beta1 band. Therefore, it seems that proactive control 

modulated in a complex manner the Target representation. The fact that the encoding of Target 

representation, as well its modulation by LWPC, involved the Alpha/Beta1 frequencies activity is in line with 

the role of these frequency bands in representing task-relevant, stimulus-specific information and in 

encoding the content of working memory (Michelmann et al., 2022; Kikumoto & Mayr, 2018; Kikumoto et 

al., 2022).  
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The interaction between LWPC and Distractor was found only at the response level. Specifically, it was 

encoded quite early (from -440 ms) by a multivariate activity pattern involving Beta2 frequency over right 

prefrontal scalp regions. Therefore, this might reflect the proactive control modulation of the Distractor 

representation held in working memory (e.g., Estefan et al., 2023), which could work by reducing the 

strength of its encoding at the motor level. This modulation did not overlap with the multivariate activity 

pattern found to encode Distractor representation per se at the response level, as it was observed later, 

over more posterior right scalp regions and involving Beta1 band, suggesting again a complex modulatory 

pattern. 

Overall, these findings contribute valuable insights to the existing literature, offering quite robust and 

converging evidence for the specific representation of proactive control. Indeed, these representations are 

likely utilized by the proactive control processes previously identified through studies employing univariate 

approaches (for example, those found in our ER(S)P study, see Chapter 5). Moreover, we provided initial 

insights into how Conflict-related representations modulated proactive control. Testing such complex 

modulation was possible thanks to our continuous LWPC manipulation that allowed us to use a model RDM 

for LWPC reflecting in a fine-grained manner proactive control, which was thus more suitable for revealing 

its dynamic modulations. Lastly, our findings suggest that proactive control might work by enhancing the 

strength of goal representation at the stimulus level, but also by reducing the strength of the distracting 

representation at the response level.  

6.4.3. Reactive control-related representations  

Reactive control was induced by manipulating ISPC, which, similarly to LWPC, is likely to be dynamically 

updated based on trial history. However, unlike LWPC, which involves a single binomial distribution, the 

manipulation of ISPC induces the trial-by-trial updating of four binomial distributions (the PC of each 

possible position), with only one of them being the one observed by participants (the PC of the observed 

stimulus position). Therefore, for the analyses we used trial-level estimates of the ISPC weighting it 

relatively to the ISPC values of the other positions at the same trial. This allowed us to test the ISPC 

representation with a high degree of precision.  

To explore reactive control from a representational standpoint, we assessed the similarity between the 

model-based ISPC RDM and the observed brain patterns. Indeed, discovering that ISPC is encoded at the 

neural level would imply that it is accessible for downstream processes that execute reactive control. 

Before delving into its neural encoding, a clarification is necessary. As noted in Chapters 1 and 5, the 

manipulation of ISPC induces a form of reactive control which is early in nature as it relies on stimulus-

attention associations (Tafuro et al., 2020; Bugg, 2012, 2017; Bugg & Hutchison, 2013). This is because 

participants, upon seeing the stimulus (and thus its position), can activate the PC associated with that item 
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and engage a specific amount of reactive control accordingly. Therefore, despite the reactive nature of the 

control mechanism induced by ISPC, the encoding of its representation may not necessarily be observed 

exclusively around the response, and it may also be encoded early in time. Our RSA results were only 

partially consistent with this assumption, revealing that ISPC was not encoded at the stimulus level, but its 

encoding was significant early in time at the response level. 

 While our expectation was to observe also a stimulus-locked ISPC representation, the strength of its 

encoding at the stimulus level might not have been sufficient to be detected by RSA due to the time 

required for its activation. Indeed, since it cannot be activated proactively, that is, before seeing the 

stimulus, it likely requires a variable amount of time to be stably encoded. However, ridge regression 

decoding on stimulus-locked data successfully predicted ISPC through early multivariate activity patterns 

occurring within 300 ms after stimulus, and involving Theta, Alpha and Beta2 frequencies mainly over left 

fronto-centro-parietal scalp regions.  

Conversely, RSA showed that ISPC was prominently encoded at the response level, indicating its direct 

impact at the response level. To be noted that, as hypothesized above, it was significantly represented 

quite early before response, from about -280 ms (till -180 ms), in a left fronto-centro-parietal cluster 

involving Beta2 frequency. This multivariate activity pattern also overlapped with the one used by ridge 

regression to predict response-locked ISPC, providing converging evidence for the involvement of left 

fronto-central Beta2 frequency at about -220 ms. The early encoding of ISPC at the level of response might 

reflect that stimulus-attention associations were activated early in time but were specifically linked to 

response. As such, this representation could have subsequently enabled the implementation of reactive 

processes operating at the level of the response. 

Therefore, we identified the ISPC representation necessary for the execution of reactive control 

processes. The stable encoding of this representation at the response level and mainly involving left Beta2 

frequency may suggest a strong involvement of response-related representations in the implementation of 

reactive control, in line with the functional role of this frequency band in encoding task-relevant 

representations to guide downstream action selection mechanisms (Buschman et al., 2012; Sherfey et al., 

2020; see also Cannon et al., 2014). Nevertheless, the early encoding of response-locked ISPC, coupled with 

ridge regression successfully predicting ISPC using a similar stimulus-locked multivariate activity pattern, 

hints that ISPC encoding might initiate almost immediately following stimulus onset, albeit with a 

somewhat lesser strength. 

The representation of ISPC was explored also in the pre-stimulus time window, but using a different 

RDM that reflected the similarity between all four possible positions, as it is not possible to know which one 

will appear before seeing the stimulus. Although this representation should be active before the stimulus 
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onset, to allow the selection of the PC associated with the observed position, we did not find evidence for 

its encoding before stimulus appearance. It is likely that, just like pre-stimulus LWPC, sustaining an 

anticipatory representation throughout the entire pre-stimulus period is cognitively demanding and, for 

this reason, probably its encoding was not strong enough to be detected (see also Section 8.5.2). 

Similarly to proactive control-related representations, we also explored how Conflict-related 

representations modulated the encoding of ISPC representation, by testing it in interaction with the 

presence/absence of Conflict.  

The interaction between the absence of Conflict and ISPC was encoded both at the stimulus and at the 

response levels. Specifically, the stimulus-locked ISPC representation was modulated by the absence of 

Conflict early, from 160 ms onwards, mainly over right parieto-occipital scalp regions and involving Alpha 

frequency. This multivariate activity pattern was also used to decode the ISPC*CON interaction by ridge 

regression, as shown by the intersection results. Therefore, these findings support our prior interpretation 

that ISPC starts to be encoded at the stimulus level but it takes time for it to be stably encoded. Indeed, the 

absence of Conflict, by showing a role in modulating the stimulus-locked encoding of ISPC immediately 

after stimulus onset, probably reflects the necessary time for it to be stably encoded, suggesting that, as it 

emerged, the absence of Conflict modulated its encoding strength. This is also consistent with the fact that, 

later in time, from 300 ms, RSA revealed an additional significant representation for such interaction, 

involving Beta2 over left fronto-central scalp regions. This encoding pattern overlapped with that for ISPC 

alone, which may reflect the result of the direct modulatory effect of the absence of Conflict on the ISPC 

encoding. 

The response-locked interaction between CON_C and ISPC was encoded in the pre-response time 

window, first in a Beta1/2 cluster over right parietal scalp regions, and then in a Theta cluster over right 

temporo-parietal scalp regions. Ridge regression-RSA result intersection was found for both clusters, 

showing that they implied the same multivariate activity patterns used to decode the response-locked 

ISPC*CON interaction. Such converging evidence for an earlier right parietal Beta1/2 cluster and a later 

parietal Theta cluster provides further evidence for the previously identified strong encoding of ISPC at the 

response level and further suggests that the strength of the ISPC encoding was modified through a complex 

modulation by the absence of Conflict. Indeed, the ISPC informational content, mainly represented over left 

fronto-central scalp regions through Beta2 frequency, was modulated by response-locked representations 

encoded through the same frequency but more posteriorly.  

The interaction between ISPC and Conflict was encoded only at the response level, specifically from -240 

ms before response, mainly represented over right posterior scalp regions involving Alpha frequency and 

over right fronto-central scalp regions involving Beta2 frequency. The intersection between the RSA and 
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ridge regression results provided converging evidence for the involvement of these clusters, showing that 

their multivariate activity patterns were also employed in decoding the response-locked ISPC*CON 

interaction. At the temporal level, the encoding of the interaction representation had a timing similar to the 

encoding of ISPC and the previous interaction (ISPC*CON_C). As such, this suggests that not only ISPC 

representation was encoded quite early before response, but also that in the same temporal window its 

strength was modulated by Conflict-related representations. Moreover, this modulation occurred in a 

direct manner, as suggested by the Beta2 involvement in both the encoding of ISPC and in the modulation 

of its strength through Conflict representation. This finding  suggests a relevant role of Beta2 in dynamically 

marking the reactive control-related representation.  

Overall, we found evidence that ISPC was modulated by Conflict-related representations and that this 

modulation was stronger at the response level. Both the presence and absence of Conflict, through a 

complex interplay, were involved in modulating ISPC representation strength after seeing the stimulus and 

retrieving its PC, for response-related processes. Furthermore, our results show that ISPC was encoded and 

modulated within a specific time window, although it started to be encoded early after stimulus onset.   

Finally, the other two interactions contributed to exploring how reactive control operates. In particular, 

the interaction between ISPC and Target was encoded at the response level only. This is in line with a 

reactive control modulation of the goal, whose strength, upon seeing the stimulus and retrieving its PC, 

plausibly requires time to be modulated by the ISPC representational content. Furthermore, it suggests that 

even though the representation of ISPC is cognitive in nature, it may operate by modulating early in time 

the response aspects of goal representation, as suggested by its encoding in a left posterior cluster from -

300 ms involving Beta1 frequency. Additionally, the cluster found around the response time and involving 

centro-parietal Beta2 frequency could reflect a direct modulatory effect as it partially overlapped with the 

one of ISPC representation. 

Lastly, we found that the interaction between ISPC and Distractor was encoded both at the stimulus and 

response levels. In particular, the stimulus-locked representation of this interaction emerged from 240 ms 

over right centro-parietal scalp regions, in Beta2/3 frequencies, while the response-locked representation 

relied on a sustained pre-response fronto-posterior and spectrally widespread cluster and on a peri-

response posterior cluster involving Beta3 frequency. It is therefore reasonable to suggest that ISPC 

modulated the Distractor representation in two phases: first, after stimulus onset, reducing its strength at 

the perceptual level, and then diminishing the representational strength of the Distractor representation by 

acting at the response level.  

Overall, aided by the use of a finely detailed model RDM reflecting the ISPC dynamics, our findings 

extend beyond prior literature. Indeed, we found initial but converging evidence for the specific 
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representation of ISPC-induced reactive control, revealing that it was characterized by an encoding pattern 

distinct from that of proactive control. To the best of our knowledge, such distinction has never been 

revealed at the neural level before. This could likely be attributed to the fact that prior studies primarily 

employed univariate approaches, which lack sensitivity in detecting reactive control signatures, as this type 

of control is more likely rooted in representation rather than process. In our preceding study (see Chapter 

5), utilizing univariate analyses on the same dataset, we indeed did not find any evidence for ER(S)P 

correlates of ISPC-induced reactive control processes. This absence of evidence might have been 

attributable to the overshadowing effects of contingency mechanisms at the process level. However, the 

fact that in the present study, while still controlling for contingency, we were able to uncover ISPC-related 

reactive control encoding patterns, might suggest that the employed multivariate approaches are indeed 

more suitable for exploring the multivariate nature of reactive control representations. 

Furthermore, our analyses provided insights into how conflict-related representations modulated the 

ISPC representation, thereby revealing a complex picture of such dynamics. Finally, our results unveiled 

how reactive control might function, that is, by strengthening  goal representation at the response level, 

and diminishing distracting representation strength at both perceptual and motor levels. 

6.5. Conclusions 

In the pursuit of our aim of ascertaining whether and how proactive and reactive control 

representations are encoded at the neural level, we provided evidence for distinct encoding patterns for 

each of these two control modes, revealing that proactive and reactive control can be differentiated at the 

neural level. 

Indeed, in doing so, we were also able to characterize proactive and reactive encoding patterns, showing 

that proactive control representation acts at both stimulus and response levels, and that reactive control 

representation starts to be activated after the stimulus onset but it is more specifically linked to response. 

This evidence was robust and converging as it derived from the intersection of RSA and ridge regression 

results.  

While these findings expand the existing literature on proactive control by offering evidence for the 

representations underlying its previously identified processes, they hold even greater significance for 

reactive control. In the case of reactive control, indeed, our results are particularly revealing, as they 

provide initial but substantial evidence for the actual existence of an ISPC-induced reactive control 

mechanism at the neural level and confirm that reactive control has a complex multivariate nature, that can 

thus be uncovered effectively by multivariate approaches.  
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Furthermore, our results provided further insights on proactive and reactive control dynamics. First, we 

found that conflict-related representations exerted distinct modulatory effects on proactive and reactive 

control representations, showing a plausible scenario of dynamic utilization of LWPC and ISPC 

representations contingent on the presence or absence of conflict. Second, our results suggest that LWPC 

and ISPC representations might be then used to enhance the strength of the goal information and 

diminishing the strength of the distracting information in different manners, thus providing further 

evidence for their functional dissociation.   
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CHAPTER 7 

Back to the Origin: 

Decomposing the Stroop effect  

7.1. Introduction 

In this chapter, we will address a topic introduced at the outset of this thesis, namely, the composite 

nature of the Stroop effect. However, our approach in this chapter extends beyond a review of the 

hypotheses put forth in the literature. Instead, we will directly investigate whether there is empirical 

evidence that the Stroop effect indeed arises from the effect of multiple components.   

To understand the objective of this chapter, we need to jump back to Chapter 2 (Section 2.2.2), where 

we briefly summarized the theoretical accounts that have evolved over the years to explain the 

characteristics of the Stroop effect. The initial efforts to explain it as a single-stage effect, attributing it to 

response-based processes (also known as late-selection accounts; e.g., Posner & Snyder, 1975) or stimulus-

based processes (called early-selection accounts; e.g., Hock & Egeth, 1970; Seymour, 1977), were 

subsequently supplanted by multiple-stage accounts that posited that it could be the result of both of them 

(De Houwer, 2003; Zhang & Kornblum, 1998) or even of more than two processes, suggesting a more 

complex nature than initially thought (e.g., Risko et al., 2006).  

A recent review by Parris and colleagues (2022) explored whether there is evidence in the literature that 

the Stroop effect is composed of multiple loci, that is, whether different processing levels contribute to it. 

They distinguished between stimulus- and response-related loci (together referred to as informational loci), 

and task locus, with the former two implied in generating both interference and facilitation effects, and the 

latter involved in interference only. Specifically, stimulus-related effects arise due to the overlap between 

the irrelevant and the relevant stimulus features, while the response-related effects arise from the overlap 

between the stimulus and the response. Task conflict, instead, arises when two task sets compete for 

resources. They overall found support for the multiple-loci account, suggesting that evidence in the 

literature indicates that the Stroop effect arises at different loci, but that stimulus and response loci are still 

hardly disambiguated by the (limitations of the) existing measures. This notwithstanding, they claim that 

models of Stroop task performance should more effectively account for such multiple loci nature.  

We have based all the studies included in this thesis on Parris and colleagues’ (2022) conclusions, always 

taking particular care to ensure that the designed Stroop tasks guarantee stimulus, response, and task loci. 
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However, the existence of these three separate loci has been taken for granted as, to the best of our 

knowledge, there are no previous studies that have empirically investigated the existence of these loci in 

spatial Stroop tasks. With the aim of directly exploring the existence of multiple loci in the Stroop task, in 

this study, we decompose the Stroop effect by separately measuring each of these sub-components to 

verify their existence in our spatial Stroop task.  

Previous attempts of decomposing the Stroop effect have been made, but specifically targeting verbal 

versions of the Stroop task (mainly color-word and semantic Stroop tasks). Specifically, Augustinova and 

colleagues (2018), focusing on Stroop interference only, explored whether it was composed of semantic (or 

stimulus), response, and task conflicts. They found evidence of these conflict types, but only when vocal 

responses were used (see Chapter 2 for more details). However, their findings cannot be extended to the 

spatial Stroop task used here. This is because Stroop tasks involving verbal stimuli are inherently different 

from spatial Stroop tasks, and these differences, additionally, bring along some methodological issues.  

When trying to isolate stimulus conflict using verbal Stroop tasks, more than one verbal processing layer 

has to be taken into account, such as lexical, semantic, and phonological ones. However, as suggested by 

Parris and colleagues (2022), the measures used for this purpose are themselves problematic. This was 

plausibly the reason for which, in Parris and colleagues’ (2022) review, no clear evidence was found for the 

existence of separate mechanisms for stimulus and response conflicts. Conversely, by using spatial versions 

of the Stroop task we could overcome this issue, specifically focusing on purer stimulus-related processing, 

excluding the complexity related to the use of verbal stimuli. The fact that verbal stimuli imply several 

processing layers leads to the second difference, that is, in verbal Stroop tasks each of these layers might 

activate a different sub-task. For this reason, different neutral stimuli can be used, implying, in turn, that 

different possible measures of conflict can be computed, both at the stimulus and task levels. However, 

Augustinova and colleagues (2018) only considered one of these linguistic layers, namely the semantic one, 

neglecting the possible effect of lexical and phonological processes. This work thus cannot be entirely 

extended to verbal Stroop tasks either. Moreover, it overall reinforces the suggestion we extensively put 

forward in the entire thesis: to circumvent such complexity, the use of spatial Stroop tasks seems to be 

advantageous, not only for the reasons outlined in the previous chapters, but also when trying to 

decompose the Stroop effect, as we will do in the work reported in this chapter. This complexity also 

emerges from other works that have decomposed the Stroop effect using verbal Stroop tasks (Quetard et 

al., 2023) because, in trying to address such complexity, the task locus was neglected, thus still not 

providing clear evidence either for the assumed multiple-loci nature or for the weight of each locus. Aware 

of such complexity, the same authors proposing the multiple-loci account, which also included the task 

locus, in a subsequent review pointed out that there is still not a clear measure for task interference, and 

even questioned the role of task interference in Stroop performance, providing alternative accounts for the 
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most commonly used measure of task interference, that is, reverse facilitation (for a review see Parris et al., 

2023). 

Therefore, the advantageous use of the spatial Stroop task may allow us to more clearly distinguish 

stimulus, response, and task loci, overcoming the previously highlighted issues, including those related to 

the task locus measure, as explained later. Moreover, in the present study, we addressed a further open 

question, that regarding the facilitation effect. As explained in the Introduction of Chapter 2, it is widely 

known that the Stroop effect is composed of both an Interference Effect (IE) and a Facilitation Effect (FE), 

which can be disentangled only by using appropriate neutral conditions. However, Stroop facilitation has 

generally received much less attention than the global Stroop effect and the IE, probably because its 

magnitude has often been observed to be smaller and less consistent. In addition to whether it is truly 

smaller, which is probably mainly due to the fact that its measure strongly relies on the type of neutral 

baseline used to calculate it, knowledge is even more scarce regarding the processing levels contributing to 

it (Brown, 2011) and their separability from interference-related ones (Di Russo & Bianco, 2023). Therefore, 

with the aim of decomposing the Stroop effect as comprehensively as possible, we will distinguish IE and 

FE, thus exploring not only the processing levels contributing to the global Stroop effect, but also those 

specifically contributing to the facilitation and interference effects. Therefore, to separately assess 

interference and facilitation at the stimulus and response loci, we will also use neutral stimuli, which will be 

contrasted to incongruent and congruent ones. By contrast, the task locus necessarily entails only 

interference caused by the simultaneous presence of two tasks (i.e, the activation of a secondary task 

cannot facilitate the execution of the primary task).  

To pursue our aims, we started by pre-registering and performing a pilot study. This is not included in 

the present Chapter but its pre-registration form can be found at osf.io/zhckv. In brief, we designed 

different experimental tasks requiring button-press responses and characterized by specific types of 

interference (and facilitation), except for the Stroop task, which comprises all interference and facilitation 

levels. For what concerns the first two interference and facilitation types, we used the dimensional overlap 

model and the relative taxonomy proposed by Kornblum (1992) as a reference guide.  

Based on that, we designed i) a Stroop-like (Flanker) task to investigate the stimulus locus, due to the 

overlap between relevant and irrelevant stimulus features, ii) a Simon task to explore the response locus, 

due to the overlap between the irrelevant stimulus feature and the response. Moreover, we designed a 

simple identification task requiring participants to indicate the position of a visual stimulus (POS, a 

stimulus-response compatibility task) that, by having the overlap between the relevant stimulus feature 

and the response, but no irrelevant stimulus features, was used as a baseline task due to the absence of 

both interference and facilitation effects. Lastly, to isolate the effect of task conflict, we used a task-

switching paradigm, wherein participants were required to switch between the Simon and the POS tasks. 

https://osf.io/zhckv
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The assumption here was that embedding the POS task within a mixed block in which the Simon task was 

also present, the latter task set (i.e., process and respond to the stimulus color) was tonically activated also 

when participants performed the POS task (i.e., process and respond to the stimulus position), even during 

repeat neutral POS trials, in which no task switching was required and no irrelevant stimulus color was 

present, thus causing task-level interference.  

In that pilot study we aimed to directly decompose the Stroop effect by separately measuring each of its 

sub-components assumed by the multiple loci hypothesis (i.e., stimulus- and response-based 

conflict/facilitation and task conflict, Parris et al., 2021), while also distinguishing between interference and 

facilitation at the stimulus and response levels. We then pre-registered (osf.io/etbrp) and conducted a 

subsequent study, which is the object of the present Chapter, based on the results obtained from the pilot 

study. The aim of the second study was to make a further step in the same direction, by more directly 

addressing our experimental questions.  

As in our pilot study, we designed different experimental tasks characterized by stimulus and response 

interference (and facilitation), except for the Stroop task, which comprises all interference and facilitation 

levels, and we did this by using Kornblum’s (1992) taxonomy as reference guide. To explore the response 

locus, we used the same paradigm of our previous study, namely the Simon task (Sim, irrelevant stimulus – 

response overlap), whereas we used a Stroop-like task in place of the Flanker task to assess the stimulus 

locus. The latter task, indeed, presents some methodological characteristics, like entailing the same process 

(i.e., color identification) as both the relevant and irrelevant tasks and using physically separate stimuli to 

signal the task-relevant and task-irrelevant stimulus dimensions, which require the assumption that color 

identification has different levels of automaticity based on its task-relevance. By contrast, the Stroop-like 

task entails two distinct tasks which, in this study, were color identification and reading (we called this task 

verbal Stroop, VS). Moreover, the Stroop-like task implies the overlap between relevant and irrelevant 

stimulus features, but since responses to verbal stimuli were given manually, no stimulus-response overlap 

was present, distinguishing this task from the Stroop task.  

Compared to our previous study, here we measured task interference more directly, proposing a task 

interference measure that could overcome the issue inherent to the previously employed measures, as 

discussed above, thus more effectively filling the gap highlighted by previous works (Parris et al., 2023). 

Indeed, in the pilot study, we used a task-switching paradigm with participants required to switch 

between the Simon and the POS tasks. We then analyzed neutral POS trials, in which no task switching 

was required and no irrelevant stimulus color was present, to isolate task-level interference, assuming 

that they were affected by the concurrent activation of the other task set (as extensively shown by the 

literature on task switching). However, by isolating task interference in this way, we used a task that 

differed greatly from the Stroop task (that we wanted to decompose) and required the use of the task-

https://osf.io/etbrp
https://www.zotero.org/google-docs/?rN43Th
https://www.zotero.org/google-docs/?rN43Th
https://www.zotero.org/google-docs/?rN43Th
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switching paradigm (for which we collected many trials, but we used less than half). Here we still used 

the same assumption, but we directly manipulated the task interference by comparing paradigms 

involving a single identification task to paradigms involving the same task along with another conflicting 

task that is exogenously activated. We assumed that task interference could be isolated by comparing 

neutral trials (thus free from other types of facilitation/interference) in paradigms involving two 

conflicting tasks to trials involving the same primary task and stimuli (which are necessarily neutral), but 

presented within a single task paradigm. Indeed, the neutral trials in conflict tasks involving two task-sets 

imply the same task and stimuli as the trials presented in a identification task, but since they appear 

intermixed with congruent and incongruent trials, which activate also the alternative conflicting task 

(Parris et al., 2023), they should also elicit the conflicting task and are thus likely to be affected by task 

interference, yielding a worse performance than single task identification neutral trials (free from all 

types of facilitation and interference). In practical terms, for each paradigm involving task conflict for the 

presence of two tasks, we included in the study a paradigm implying just the relevant of the two tasks 

(and the same of very similar stimuli) so to have one identification block for each task, namely a block 

implying a single task. As such, we had four identification tasks: Position task (POS, corresponding to the 

POS task used in the pilot study), Direction task (DIR), Word task (WRD), and Color task (COL, 

corresponding to the COL mapping task used in the pilot study). These single tasks were needed as the 

task interference paradigms were the Simon task (Sim, COL vs POS), two verbal Stroop-like tasks, 

requiring participants to indicate either the stimulus ink color, like in the original color-word Stroop (VSc, 

COL vs WRD), or the color indicated by the word, like in the reverse word-color Stroop (VSw, WRD vs 

COL), respectively, and two spatial Stroop tasks, requiring participants to indicate either the stimulus 

direction, like in our original spatial Stroop task (SSd, DIR vs POS), or its position (SSp, POS vs DIR), 

respectively. 

To provide a more comprehensive understanding of Stroop performance, beyond exploring the 

existence and weight of the three assumed loci, here we directed our attention to additional factors that 

might have a substantial impact on the final performance. These factors include the task automaticity and 

the asymmetry between the tasks, which are typically taken for granted and, to the best of our knowledge, 

have rarely been quantified. Their influence was initially explored in the pilot study, but here we made even 

greater efforts to better investigate them. 

Task automaticity was indeed worthy of greater attention, as we predicted that it plays a significant 

role in modulating the performance in the paradigms involving task conflict. Specifically, we defined 

automaticity as the strength/easiness of processing of a stimulus feature. In the pilot study, we just 

focused on the automaticity of the relevant task (i.e., the automaticity of processing the relevant 

stimulus features). In contrast, here, by separately measuring the performance in each single 
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identification task, we were able to estimate the precise weight of automaticity of each task, regardless 

of whether it is relevant or irrelevant. Moreover, as in the pilot study, we assumed that automaticity also 

reflects how prepotent the responses elicited by the tasks are (that is, how automatic the S-R mapping 

is). It is also important to note that, by estimating task automaticity based on the identification task 

performance, our measure also takes into account the dimension discriminability/saliency of the 

employed stimuli (Melara & Algom, 2003).  

By also using  the automaticity of the irrelevant task, we refined our hypotheses about the facilitation, 

interference, and congruency effects at the stimulus and response levels. In particular, here we assumed 

that the degree of stimulus/response facilitation/interference exerted by the irrelevant task directly 

depends on its automaticity: if the processing of the irrelevant information and its S-R mapping are more 

automatic, we assumed that they should exert a greater facilitation/interference in processing and 

responding to the relevant information, with greater facilitation/interference at both the stimulus and 

response levels. 

Task asymmetry was instead defined as the difference in the automaticity of the two tasks involved in 

conflict tasks. In our pilot study, we (arbitrarily) assigned an asymmetry score to each conflict paradigm, 

whereas here, we could make a step further. By obtaining the precise estimates of automaticity for each 

task, we were able to directly compute task asymmetry by calculating the relative automaticity of the two 

tasks (i.e., the irrelevant task automaticity divided by the relevant task automaticity). We indeed expected 

that task interference would be greater when the irrelevant task is more automatic than the relevant one. 

Therefore, task interference effects were then weighted using the corresponding task asymmetry 

estimates.  

Finally, based on the results of our pilot study, to further refine our hypotheses about the facilitation, 

interference, and congruency effects, we considered the relative weight of task interference and both 

stimulus and response loci of facilitation/interference in contributing to the overall performance in conflict 

tasks. 

7.2. Methods 

We report how we determined our sample size, all data exclusions, all inclusion/exclusion criteria, all 

manipulations, and all measures in the study. All inclusion/exclusion criteria were established prior to data 

analysis. We will make all data and materials available from our project repository on the Open Science 

Framework (OSF) platform at osf.io/j9w7p. As already mentioned, the study was pre-registered on OSF 

(osf.io/etbrp). 

https://osf.io/j9w7p/
https://osf.io/etbrp
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This was a cross-sectional observational study. Participants were not randomly assigned to different 

conditions and performed the same experimental tasks, with the only difference that the tasks were 

presented in two different orders (see below). No blinding was involved and participants were not 

informed about the experimental manipulations before the experiment. 

7.2.1. Experimental tasks and procedure 

The experiment was programmed using Psytoolkit (Stoet, 2010, 2017) and administered online. All the 

participants were recruited by the experimenters and given a link to perform the task online. The stimuli 

were presented in full-screen mode, with a resolution of 800 x 600 pixels, on a gray background (RGB: 166, 

166, 166). Each trial started with a fixation stimulus presented at the center of the screen for 700 ms and 

participants were instructed to fixate it. For all the tasks, the fixation stimulus consisted in a vertically 

oriented thin black cross (24 x 24 pixels) enclosed in the partial outline of a black square (110 x 110 pixels), 

which was then replaced by the experimental stimulus (see Figures 7.1-2). Next, the experimental stimulus 

was presented until participant’s response or up to a response time-out of 2000 ms, whatever came first. 

Each of the tasks involved different experimental stimuli, as detailed below, based on their task-relevant 

and (potential) task-irrelevant features (see Figure 7.1-2): 

 

Figure 7.1. 
S-R mapping in the identification tasks. The top row shows the two identification tasks involving an 
automatic, spatial S-R mapping between the relevant feature of the stimulus (POS, stimulus position; DIR, 
arrow direction) and the response keys, which were arranged spatially to have a strong dimensional overlap 
with the four possible relevant spatial features of the stimuli. The bottom row shows the two identification 
tasks involving an arbitrary, non-spatial, color-coded S-R mapping between the relevant feature of the 
stimulus (WRD, meaning of the color word; COL, stimulus color) and the response keys (here colored 
according to the four possible relevant features of the stimuli for illustrative purpose). In all cases, the 
required response was that corresponding to the upper-left key (displayed with higher saturation). 
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Figure 7.2. 
Exemplar Congruent (C, top row), Neutral (N, middle row), and Incongruent (I, bottom row) stimuli in the 
conflict tasks. In all examples shown here, the response to be provided is that corresponding to the upper-
left key (which also mapped the BLU word/color). In all the Incongruent trials shown here, the incorrect 
response evoked by the irrelevant stimulus feature is that corresponding to the upper-right key (which also 
mapped the READ word/color). The irrelevant stimulus feature has a neutral/null value in the Neutral 
stimuli, so it does not evoke a response. Task abbreviations: Simon (Sim), Verbal Stroop responding to color 
(VSc), Verbal Stroop responding to word (VSw), Spatial Stroop responding to direction (SSd), Spatial Stroop 
responding to position (SSp). See Section 7.2.1 for details. 

1. Position identification task (POS). This is a classical S-R compatibility (SRC) task, a Type-2 ensemble. The 

stimulus was a small square (24 x 24 pixels) that was presented at one of four possible positions inside 

the fixation stimulus (i.e., upper-left, upper-right, lower-right, or lower-left), corresponding to the task-

relevant feature, and it was empty (i.e., not colored) and with a black outline, so there was no task-

irrelevant feature. 

2. Direction identification task (DIR). This is a classical S-R compatibility (SRC) task, a Type-2 ensemble. The 

stimulus was a small arrow (24 x 24 pixels) that pointed towards one of four possible directions (i.e., 

upper-left, upper-right, lower-right, or lower-left), corresponding to the task-relevant feature, and was 

presented at the center of the fixation stimulus and colored in black, so there was no task-irrelevant 

feature. 

3. Word identification task (WRD). This is a classical simple choice reaction time task, a Type-1 ensemble. 

The stimulus was the Italian word for one of four possible colors (i.e., blue, red, yellow, or green, 

corresponding to the Italian words BLU, ROSSO, GIALLO, and VERDE), corresponding to the task-relevant 

feature, which was presented in uppercase, bold Calibri font at the center of the fixation stimulus 

(maximum dimensions: 55 x 14 pixels), and was printed in black, so there was no task-irrelevant feature. 

4. Color identification task (COL). This is a classical simple choice reaction time task, a Type-1 ensemble. 

The stimulus was a small square (24 x 24 pixels) that was colored in one of the same four possible colors 
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used in the WRD task (i.e., blue, red, yellow, or green, corresponding to the RGB codes [68, 114, 196], 

[255, 0, 0], [255, 255, 255], and [0, 128, 50]), corresponding to the task-relevant feature, and was 

presented at the center of the fixation stimulus, so there was no task-irrelevant feature. 

5. Simon task (Sim). This is an adaptation of the classical Simon task, a Type-3 ensemble. The stimulus was 

a small square (24 x 24 pixels) that was colored in one of the same four possible colors used in the COL 

task, corresponding to the task-relevant feature, and was presented in one of five possible positions 

inside the fixation stimulus, that is, the same four possible positions used in the POS task, which were 

used as the task-irrelevant feature in the Congruent and Incongruent conditions, or the central position 

for the Neutral condition.  

6. Color-word Verbal Stroop task (VSc). This is the classical color-word Stroop task with manual responses, 

a Type-4 (or Stroop-like) ensemble. The stimulus was one of the same four possible color words used in 

the WRD task or a non-pronounceable character string (#%?&@), which were printed in one of the same 

four possible colors used in the COL task, corresponding to the task-relevant feature. The meaning of 

the color words was the task-irrelevant feature used in the Congruent and Incongruent conditions; the 

non-pronounceable character string was instead used for the Neutral condition.  

7. Word-color Verbal Stroop task (VSw). This is the standard reverse Stroop task with manual responses, a 

Type-4 (or Stroop-like) ensemble. The stimulus was one of the same four possible color words used in 

the WRD task, whose meaning was the task-relevant feature, which were printed in either one of the 

same four possible colors used in the COL task, corresponding to the task-irrelevant feature used in the 

Congruent and Incongruent conditions, or in black for the Neutral condition. 

8. Direction-position Spatial Stroop task (SSd). This is the Perifoveal spatial Stroop task we used in all the 

studies of the present thesis, a Type-8 ensemble. The stimulus was the same arrow used in the DIR task, 

which pointed towards one of the same four possible directions (i.e., upper-left, upper-right, lower-

right, or lower-left), corresponding to the task-relevant feature, and was presented in one of the same 

five possible positions used in the Sim task, that is, the same four possible positions used in the POS 

task, which were used as the task-irrelevant feature in the Congruent and Incongruent conditions, or the 

central position for the Neutral condition.  

9. Position-direction Spatial Stroop task (SSp), a Type-8 ensemble. This is the reverse variant of the SSd 

task. The stimulus was either the same arrow used in the DIR task or a thick black diagonal cross (22 x 22 

pixels), which was created based on the arrow stimuli (i.e., the arms of the cross corresponded to the 

tail of the arrow). The stimulus was presented in one of the same four possible positions used in the POS 

task, corresponding to the task-relevant feature. The arrow stimulus pointed towards one of the same 

four possible directions (i.e., upper-left, upper-right, lower-right, or lower-left) used in the DIR task, 

corresponding to the task-irrelevant feature used in the Congruent and Incongruent conditions. The 

cross stimulus was instead used for the Neutral condition. 
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In all the tasks, participants had to pay attention to and indicate the task-relevant feature of the 

stimulus, corresponding to the response. Participants were required to indicate their response by selecting 

one out of four keys on a computer keyboard, which were E, O, K, and D, by using the left middle, right 

middle, right index and left index fingers, respectively. These keys were spatially arranged to be compatible 

with the possible spatial features of the non-neutral stimuli, that is, either the position or the direction, 

which could be upper-left, upper-right, lower-right, or lower-left (see above). Therefore, this S-R mapping 

ensured the dimensional overlap between the response and the spatial features of the stimuli in the tasks 

involving at least one of these spatial features (i.e., POS, DIR, Sim, SSd, and SSp; see table 7.1). By contrast, 

there was no S-R dimensional overlap for the non-spatial feature of the stimuli, that is, either the color or 

the meaning of the word, as well as for the neutral task-irrelevant spatial feature of the stimuli, that is, the 

central position for the Sim and SSd tasks (see table 7.1). 

Based on the task-relevant and the task-irrelevant stimulus features, we manipulated congruency in the 

conflict tasks so as to have Congruent, Neutral and Incongruent stimuli. More in detail, Congruent and 

Incongruent stimuli were those wherein the relevant and irrelevant features matched and did not match, 

respectively, whereas Neutral stimuli were those wherein the irrelevant feature was either missing or 

neutral (e.g., a non-pronounceable character string). The first four tasks (i.e., POS, DIR, WRD, and COL) 

were thus simple identification tasks that did not involve a task-irrelevant feature, so they only involved 

Neutral trials (see Figure 7.1). Conversely, the remaining tasks also involved Congruent and Incongruent 

trials based on the irrelevant stimulus feature, and thus can be considered as conflict tasks (see Figure 7.2).  

Table 7.1. Classification of the experimental tasks and conditions and parameters for the hypotheses 

 
Notes. S Type, the task evoked by the relevant and irrelevant stimulus features (SREL and SIRR, respectively); 
S, stimulus; R, response; T, task; AUT, automaticity; ASY, asymmetry. See the description of the tasks 
(Section 7.2.1) for the corresponding abbreviations. 
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The experimental trials were 36 for both the POS and DIR tasks and 108 for the WRD and COL task, 

which were balanced across the four relevant features and were all Neutral as explained above. The 

experimental trials were 108 for all the conflict tasks, balanced across the relevant and irrelevant features 

and the three congruency conditions. The trials for the different tasks were presented in the same block, at 

the beginning of which there was a buffer trial. Self-paced breaks were provided at the end of each task 

block. 

Before each task block, the participants completed a practice block of either 12 (for the identification 

tasks) or up to 28 trials (for the conflict tasks), during which they received feedback on their performance 

and, in the case of errors or time-out responses, they were also provided with a brief recap of the 

instructions and the response mapping. For the conflict tasks, practice trials were presented until 70% 

accuracy was reached (but no less than 12 trials were presented). Within each task block, the order of 

presentation of the trials was pseudorandomized using the software Mix (van Casteren & Davis, 2006) to 

avoid more than four consecutive repetitions of the same congruency and both total and partial repetitions 

of stimulus characteristics and/or responses in order to control for first-order (positive and negative) 

priming effects.  

At the beginning of the experiment, general instructions were provided, informing participants of the 

procedure and the general task (i.e., indicating the relevant feature of a visual stimulus by pressing a 

keyboard key). Participants were also recommended to execute the experiment in a quiet environment 

without distractions and to maintain a comfortable posture that allowed them to look straight to the center 

of the screen and keep the responding fingers in contact with the response keys. Particular care was taken 

to keep the instructions as simple and clear as possible. Before executing each task (i.e., before each 

practice block), specific task instructions were presented, illustrating the stimuli, the task to be performed, 

and the stimulus-response mapping. Participants were also asked to respond as quickly and accurately as 

possible. 

We used two block orders to control for the confounding time-on-task effect by including the block 

order in the multilevel models used in the analyses. The two block orders were decided a-priori based on 

theoretical and practical reasons. Specifically, in each order, each identification task was presented before 

the conflicting task requiring to respond to the same relevant feature and having the same S-R mapping 

(e.g., WRD before VSw). This was especially important for the tasks requiring to respond to words (WRD 

and VSw) and colors (Simon, COL, VSc), for which the S-R mapping is arbitrary and, thus, has to be learnt by 

participants. Moreover, these tasks were presented in the same half of the experimental session. 

Moreover, to be sure that participants had learnt the color and word keys before executing the 

experimental tasks, single task blocks for COL and WRD were longer than the other single task blocks (108 

vs 36 trials) so that the first 72 trials served as mapping (not included in the analyses), whereas only the last 
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36 ones were  analyzed. The two block orders were: i) DIR, SSd, POS, SSp, COL, VSc, WRD, VSw, Sim; ii) COL, 

VSc, WRD, VSw, Sim, DIR, SSd, POS, SSp. 

7.2.2. Measures and Hypotheses 

Our experimental design corresponds to a within-subject (repeated-measures) design, as all participants 

completed all the experimental tasks and conditions, which can be described as a 2-factor (9 (Task: POS, 

DIR, COL, WRD, Sim, VSc, VSw, SSd, SSp) x 3 (Congruency: Congruent, C; Neutral, N; Incongruent, I)) 

incomplete design. The design is incomplete because in the four identification tasks, Congruent and 

Incongruent trials are not feasible (only Neutral ones can be used) (see Table 7.1). 

In Table 7.1, all the tasks, as well as the experimental conditions deriving from the combination of Task 

and Congruency, are classified based on the methodological criteria that guided our hypotheses. 

Specifically, the tasks are first classified as the ensemble types as per the Kornblum’s (1992) taxonomy (see 

above), based on the type of stimulus features they involved (i.e., POS, DIR, WRD, and COL, which are 

coded in the same way as for the four simple identification tasks requiring to respond to them). Then, 

based on both the ensemble type and the type of relevant and (potential) irrelevant stimulus feature, we 

coded the experimental conditions based on the presence (1) or absence (0) of the dimensional overlaps 

between the relevant and irrelevant stimulus features (SREL and SIRR, respectively) and between them and 

the response (R). It is important here to note that no dimensional overlaps were assumed when the 

irrelevant stimulus feature was Neutral; moreover, no SREL-SIRR or SIRR-R dimensional overlap was possible 

for the simple identification tasks because they did not involve an irrelevant stimulus feature.  

Moreover, to directly test our hypotheses regarding the experimental effects at the three loci, as per the 

multiple loci account (Parris et al., 2022), we operationalized them by using three categorical predictors for 

the stimulus, response, and task loci (S, R, and T, respectively). Based on the involved dimensional overlaps 

for both the S and R loci, we coded the Congruent and Incongruent conditions as +1 and -1, respectively, to 

operationalize an improvement (facilitation effect) and a decline (interference effect) in performance as 

compared to the Neutral conditions due to the SIRR effect; the Neutral conditions were thus coded as 0 to 

act as the reference level. In this way, the facilitation/interference effect in the conflict tasks were assumed 

to specifically operate at the locus where there was a dimensional overlap involving SIRR. Consequently, no 

facilitation/interference effects were possible for the simple identification tasks due to the lack of SIRR. 

For the task locus, we operationalized the task interference (T_IE) using a code of 0 for the simple 

identification tasks, for which there was no secondary task, and -1 for all the conflict tasks, for which a 

secondary task set was assumed to be automatically activated by the irrelevant stimulus feature (Parris et 

https://www.zotero.org/google-docs/?LbBdtS


 

265 

al., 2023). Task interference is indeed assumed to emerge from the concomitant (automatic) activation of a 

secondary task while performing the relevant task (see Figure 7.3). 

Based on the Congruency conditions, we computed participants’ Congruency effects (CE) in the conflict 

tasks as the difference between RT in incongruent (I) and congruent (C) trials (formally, CE = RT_I - RT_C). 

CE can also be obtained by summing interference effect (IE) and facilitation effect (FE) (CE = IE + FE). In 

turn, participants’ IE were computed as the difference between I and Neutral trials (N) (formally, IE = RT_I - 

RT_N), whereas FE were computed as the difference between N and C trials (formally, FE = RT_N - RT_C) 

(see Figure 7.3).  

 

Figure 7.3. 
Assumed pattern of performance in a simple identification task (DIR) and the corresponding conflict task 
having the same relevant stimulus, namely Spatial Stroop direction, and the corresponding experimental 
effects. Note that the two conditions used to assess the task interference effect (T_IE) are here matched for 
both the stimulus and the task/SREL (relevant stimulus feature). 

It is important here to note that the FE and IE for our verbal Stroop-like tasks are equivalent to the pure 

facilitation and interference effects at the S locus. Indeed, these tasks are Type-4 ensembles, which only 

involve the SREL-SIRR dimensional overlap (i.e., between the ink color and the meaning of the color word), 

but do not involve the SIRR-R dimensional overlap due to the arbitrary S-R mapping. Moreover, the FE and IE 

for the Simon task are equivalent to the pure facilitation and interference effects at the R locus. Indeed, this 

task is a Type-3 ensemble, which only involves the SIRR-R dimensional overlap (i.e., between the stimulus 

position and the response) due to the automatic spatial S-R mapping we employed, but does not involve 

the SREL-SIRR dimensional overlap. By contrast, the FE and IE for our Stroop tasks originate from both S and R 

loci, as assumed by the multiple loci account (Parris et al., 2022).  

The IE at the task level (T_IE) was computed contrasting each identification task to the Neutral condition of 

the corresponding conflict task involving the same relevant stimulus feature. Indeed, due to the absence of a 

task-irrelevant feature, the four identification tasks could not activate a secondary task set, which was instead 
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automatically activated in the corresponding conflict tasks by the irrelevant stimulus feature (Parris et al., 

2023). We chose to use the N condition to compute the T_IE in order to avoid confounding its estimate with 

the concomitant FE/IE that occurred at the S and R level for C and I trials, respectively. More importantly, the 

trials in each identification task and those in the N condition of the corresponding conflict task both required 

participants to perform the same task (e.g., identify the arrow direction for the DIR and SSd task) and use the 

very same (or very similar) stimuli (e.g., the same arrow presented centrally and pointing toward the upper-

left direction) and the same S-R mapping. In other words, the only relevant difference between each 

identification task and the N trials of the corresponding conflict tasks is the block context, that is, the fact that 

the latter were embedded in a block in which C and I trials were also included, which were constituted by 

stimuli also entailing an irrelevant feature that is (automatically) processed, as evidenced by the FE and IE.  

Our experiment design thus allowed us to test the following hypotheses:  

1) A set of auxiliary hypotheses for the basic effects reported in the literature for all the conflict tasks we 

used. Specifically, for all these tasks, we predicted to observe both an FE, that is, a better performance to C 

as compared to N trials, and an IE, that is, a better performance to N as compared to I trials (see above). 

These hypotheses needed to be satisfied first, in order to proceed with verifying our background 

assumptions. Note that for both the S-locus (i.e., the Stroop-like task) and the Stroop effects, two possible 

contrasts were possible (for VSc and VSw, and for SSd and SSp, respectively):  

H1.1a (VSc_FE, or S_FE1): (VSc_C - VSc_N) > 0; 

H1.1b (VSw _FE, or S_FE2): (VSw_C -VSw_N) > 0; 

H1.2a (VSc_IE, or S_IE1): (VSc_N - VSc_I) > 0; 

H1.2b (VSw _IE, or S_IE2): (VSw_N - VSw_I) > 0; 

H1.3 (Sim_FE, or R_FE): (Sim_C - Sim_N) > 0; 

H1.4 (Sim_IE, or R_IE): (Sim_N - Sim_I) > 0; 

H1.5a (SSd_FE, or Str_FE1): (SSd_C - SSd_N) > 0; 

H1.5b (SSp_FE, or Str_FE2): (SSp_C - SSp_N) > 0; 

H1.6a (SSd_IE, or Str_IE1): (SSd_N - SSd_I) > 0; 

H1.6b (SSp_IE, or Str_IE2): (SSp_N - SSp_I) > 0; 

Moreover, as detailed above, by having both simple identification tasks and conflict tasks with Neutral 

conditions, we were also able to measure the pure effect of task interference, obtaining five T_IE measures:  

H1.7a (POS_IE or T_IE1): (POS - SSp_N) > 0; 

H1.7b (DIR_IE or T_IE2): (DIR - SSd_N) > 0; 

H1.7c (WRD_IE or T_IE3): (WRD - VSw_N) > 0; 

H1.7d (COL_IEa or T_IE4): (COL - VSc_N) > 0; 

H1.7e (COL_IEb or T_IE5): (COL - Sim_N) > 0; 

2) A set of hypotheses on the CE effects in our conflict tasks, which were related to and directly 

dependent on H1s (note that if the hypotheses about a specific pair of FE and IE held true, the hypothesis 

about the corresponding CE held also necessarily true). We predicted to find the verbal Stroop and Simon 
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CEs, which indicate a better performance on C than I trials, reflecting the sum of pure FE/IE effects at the S 

and the R locus, respectively:  

H2.1 (VSc_CE, or S_CE1): (VSc_C - VSc_I) > 0, or (S_FE1 + S_IE1) > 0;  

H2.2 (VSw_CE, or S_CE2): (VSw_C - VSw_I) > 0, or (S_FE2 + S_IE2) > 0;  

H2.3 (Sim_CE, or R_CE): (Sim_C - Sim_I) > 0, or (R_FE + R_IE) > 0; 

We also predicted to find the Stroop CE: 

H2.4 (SSd_CE, or Str_CE1): (SSd_C - SSd_I) > 0, or (SSd_FE1 + SSd_IE1) > 0; 

H2.5 (SSp_CE, or Str_CE2): (SSp_C - SSp_I) > 0, or (SSp_FE2 + SSp_IE2) > 0; 

3) A set of hypotheses that allowed us to answer our main experimental question about the interplay 

between effects at the different loci, that is, whether and to what degree the Stroop task implies 

interference (and facilitation) at multiple loci (ML: the S, R and T levels). Based on the multiple loci account, 

we expected the Stroop CE (and also the Stroop IE and FE) to be greater than the corresponding single 

effects in both the Stroop-like and the Simon task. Indeed, the Stroop task should entail CEs at both the S 

and R loci, while the CEs for the Stroop-like and Simon tasks were expected to entail only one of them, 

respectively (it is important here to note that all the three tasks entail task interference in all conditions).  It 

is also important to note that, for simplicity, at this stage we were making some assumptions: 1) all the 

effects does not depend on the type of irrelevant task/feature (but see below for predictions taking this 

aspect into account); 2) the S and R effects do not interact with each other (but see below for predictions 

taking this aspect into account);  3) the S and R effects have the same magnitude; 4) all the effects does not 

depend on the general performance in the task yielding them. We made 18 directional hypotheses as 

follows : 

H3.1a-f (FE_MLa-f): (Str_FE1 & Str_FE2) - (S_FE1 & S_FE2 & R_FE) > 0; 

H3.2a-f (IE_MLa-f): (Str_IE1 & Str_IE2) - (S_IE1 & S_IE2 & R_IE) > 0;  

H3.3a-f (CE_MLa-f): (Str_CE1 & Str_CE2) - (S_CE1 & S_CE2 & R_CE) > 0; 

 4) A set of hypotheses to test for the possible interaction between the effects at the three loci. Indeed, 

one of the following three possible alternatives may be observed:  

i) the Stroop effects are given by the sum of the effects at the multiple loci (additive hypothesis, ADD);  

ii) the Stroop effects are the result of the synergic interaction of the single effects at the multiple loci, 

implying that it is greater than their simple sum (synergic interaction, SYN);  

iii) the Stroop effects result from the antagonist interaction between the single effects, implying that they 

are smaller than their simple sum (antagonist interaction, ANT). 

We arbitrarily assumed a 40% increase/decrease of the effect of multiple FEs/IEs, respectively, for the 

SYN and ANT hypotheses. These alternative hypotheses were tested with two-tailed t-tests, but we 

predicted that the Stroop effects are not the result of the simple sum of the pure effects at the S and R loci, 
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since there is no available strong evidence for their independence. Rather, we predicted that the Stroop 

effects are smaller than their sum (ANT), because of the likely non-complete separability of the S and R loci. 

H4.1a-d (Str_FEs_ADD): Str_FEs - (S_FEs + R_FE) = 0; 

H4.1e-h (Str_FEs_SYN): Str_FEs - (S_FEs + R_FE) > 0; 

H4.1i-n (Str_FEs_ANT): Str_FEs - (S_FEs + R_FE) < 0; 

H4.2a-d (Str_IEs_ADD): Str_IEs - (S_IEs + R_IE) = 0; 

H4.2e-h (Str_IEs_SYN): Str_IEs - (S_IEs + R_IE) > 0; 

H4.2i-n (Str_IEs_ANT): Str_IEs - (S_IEs + R_IE) < 0; 

H4.3a-d (Str_CEs_ADD): Str_CEs - (S_CEs + R_CE) = 0; 

H4.3e-h (Str_CEs_SYN): Str_CEs - (S_CEs + R_CE) > 0; 

H4.3i-n (Str_CEs_ANT): Str_CEs - (S_CEs + R_CE) < 0; 

5) All the hypotheses detailed above, derived from the multiple loci and dimensional overlap accounts, 

are specifically related to the pattern of experimental effects (i.e., FE, IE, and CE) that can be observed in 

conflict tasks. As such, and for the sake of simplicity, they were assumed to be independent from the 

general performance in the specific tasks. Therefore, we also developed a set of hypotheses for the general 

pattern of results. To do so, we assessed the impact of other effects known in the literature to modulate 

the performance in the Stroop task (and in any conflict task, more generally). 

In particular, we assessed whether the performance in our tasks was modulated by the automaticity (or 

strength) of both the processing of the stimulus features used in our tasks (i.e., POS, DIR, WRD, and COL) 

and their mapping onto the responses elicited by them (i.e., how automatic their S-R mapping was). We 

also assessed whether the performance in our tasks was modulated by the so-called task asymmetry.  

In order to initially define our hypotheses, we assigned an overall automaticity score (AUT) to the 

different tasks, taking into account both processing and S-R mapping automaticity, which we derived from 

our pilot study and adapted based on the literature findings and our expectations. These AUT scores were 

then used to specify the scores to assess the impact of task asymmetry (ASY), which we directly defined as 

the ratio in the AUT score of the two tasks involved in conflict tasks (i.e., irrelevant task AUT / relevant task 

AUT). 

However, these parameters were also estimated more accurately based on the participants’ 

performance we observed in the simple identification tasks in the present study, so as to have more precise 

hypotheses about the general pattern of performance in the conflict tasks (see below): 

Specifically, for the AUT parameters: 

i) the POS task required responding to the stimulus position, which we assumed had the most automatic 

processing and the strongest S-R mapping. We thus gave POS the highest AUT score. In our pilot study, 

the mean iRT in the POS task was around 2.5, so we gave an AUT score of 2.5 to the POS task;  
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ii) the DIR task required responding to the pointing direction of an arrow, which we assumed having a 

rather automatic processing and a strong S-R mapping, so overall it should take a slightly lower AUT 

score (10%, arbitrarily decided) as compared to the POS task. We thus gave an AUT score of 2.25 to the 

DIR task, that is, 10% lower than that of the POS task;  

iii) the COL task required responding to the stimulus color, whose processing was assumed to be not so 

automatic and which, especially, had an arbitrary S-R mapping (so there is no SREL-R dimensional 

overlap), thus it should take the lowest AUT score. In our pilot study, the mean iRT in the last 36 trials of 

the COL task was around 1.6, so we gave an AUT score of 1.6 to the COL task; 

iv) the WRD task required responding to the meaning of color words, which was assumed to be a strongly 

automatic process but also had an arbitrary S-R mapping, since responses were provided manually (so 

there is no SREL-R dimensional overlap), so overall it should take a slightly higher AUT score as 

compared to the COL task. We thus gave an AUT score of 1.75 to the WRD task, that is, about 10% 

higher than that of the COL task. 

For the ASY parameters:  

i) the single tasks only entailed a relevant task, so we gave it an ASY score of 0;   

ii) the Simon task entailed the relevant COL task (AUT = 1.6) and the irrelevant POS task (AUT = 2.5), thus 

taking an ASY score of 2.5/1.6 ≈ 1.56;  

iii) the VSc task entailed the relevant COL task (AUT = 1.6) and the irrelevant WRD task (AUT = 1.75), thus 

taking an ASY score of 1.75/1.6 ≈ 1.09;  

iv) the VSw task entailed the relevant WRD task (AUT = 1.75) and the irrelevant COL task (AUT = 1.6), thus 

taking an ASY score of 1.6/1.75 ≈ 0.91;  

v) the SSd task entailed the relevant DIR task (AUT = 2.25) and the irrelevant POS task (AUT = 2.5), thus 

taking an ASY score of 2.5/2.25 ≈ 1.11;  

vi) the SSp task entailed the relevant POS task (AUT = 2.5) and the irrelevant DIR task (AUT = 2.25), thus 

taking an ASY score of 2.25/2.5 = 0.9  

Based on the considerations about task automaticity, we thus had the following hypotheses for the 

differences in general performance across our identification tasks: 

H5.1: POS - DIR > 0; 

H5.2: DIR - WRD > 0; 

H5.3: WRD - COL > 0; 

Based on the considerations about both task automaticity and asymmetry, we expected to observe the 

following pattern of general performance (i.e., net of FE/IE) across our conflict tasks, considering conflict 

Neutral trials only (that are free of FE/IE at the S and R loci), which correspond to 4 additional sequential 

directional hypotheses: 

H5.4: SSp_N - SSd_N > 0; 
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H5.5: SSd_N - VSw_N > 0; 

H5.6: VSw_N - VSc_N > 0; 

H5.7: VSc_N - Sim_N > 0; 

Moreover, as we mentioned in the Introduction, we also took into account the estimated AUT 

parameter of the irrelevant task to refine our estimations about FE/IE/CE at both the S and R loci. Indeed, 

we assumed that if the processing of the irrelevant stimulus feature and its S-R mapping are more 

automatic, then they should exert a greater facilitation/interference in processing and responding to the 

relevant stimulus feature, with greater facilitation/interference at both the S and R levels. Therefore, we 

used the irrelevant task AUT to weight the corresponding FE/IE at the S and R loci. For example, using the 

parameters detailed above, we assigned to the stimulus facilitation effect in the VSw task a parameter of 

1.6 (corresponding to the estimated AUT parameter for the irrelevant COL task), while we assigned to the 

stimulus facilitation effect in the VSc task a parameter of 1.75 (corresponding to the estimated AUT 

parameter for the irrelevant WRD task).  

We also took into account the estimated ASY parameters to refine our estimations about the task 

interference effects, as we expected to find a greater task interference when the irrelevant task is more 

automatic than the relevant one (e.g., for the SSd task) as compared to when the relevant task is more 

automatic than the irrelevant one (e.g., for the SSp task). Therefore, task interference effects were 

weighted using the corresponding ASY estimates. 

Based on these considerations, we defined a further set of hypotheses about FE/IE/CE: 

H6.1a-c: The S-related effects will be larger in the VSc compared to the VSw task  

H6.2a-c: The Stroop effects will be larger in the SSd compared to the SSp task  

H6.3a-d: The following pattern of task interference effects will be observed: Sim > SSd > VSc > VSw > SSp  

Finally, as we also mentioned above, we further refined our hypotheses about the FE/IE/CE in conflict 

tasks based on the results of our pilot study. Specifically, we assigned different weights to task interference 

and to facilitation/interference effects at both stimulus and response loci. Specifically, in our previous study 

we found a Stroop CE of about 0.44, which corresponds to about 26.8% of the performance in the Stroop 

Neutral condition (about 1.66), free of CE/IE at the S and R loci. Therefore, since we assumed for simplicity 

that the Stroop CE should correspond to the sum of both FE and IE at both the S and R loci (under the ADD 

model, see above), we assigned to these four constituting effects (i.e., S_FE, S_IE, R_FE, and R_IE) a weight 

of 6.7% (i.e., one fourth of 26.8%).  

Similarly, in our pilot study we found a task interference effect of about 0.42, which corresponds to 

about 16.5% of the performance in the corresponding identification task (about 2.46), free of task 

interference. Therefore, we used for task interference predictions, which were based on the 
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corresponding ASY parameters, a weight 16.5% (because we dummy coded task interference contrasts as 

0 vs -1). 

To sum up, taking together all the sources of performance modulations detailed above, we expected 

that the pattern of our results in the different experimental conditions is modulated by both the task 

automaticity (AUT) and asymmetry (ASY) scores, which would add to the multiple loci (ML) effects detailed 

above, giving the hypothesized patterns of results shown in Figure 7.4. 

 

Figure 7.4. 
Predicted performance (iRT: 1000/RT in ms) in all the experimental conditions under the assumption of no 
interaction between the effects at the different loci (ADD, blue line), or either a synergistic (SYN, green 
line), or an antagonistic (ANT, red line) interaction. See the description of the tasks (Section 7.2.1) for the 
abbreviations. 

As we wrote above, after having tested H5.1-3, we estimated the AUT scores of each identification task 

based on the participants’ actual performance, so to replace the estimates based on our pilot study with 

these more precise estimates.  

7.2.3. Data analysis 

We were specifically interested in measuring RTs. Accuracy was measured but not analyzed as we 

predicted it would be too high. Raw RTs were transformed into inverse-transformed RTs (iRTs, computed as 

1000/RTs to directly map participants’ performance: higher iRTs values reflect better performance). We 

decided a priori that our outcome variable were iRTs, as previously we repeatedly found that it is 

distributed more normally as compared to untransformed RTs and log-transformed ones (see for example 

Viviani et al., 2023).  
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We first checked for participants’ compliance, excluding those with overall iRTs longer than -3 SDs from 

the entire sample, as well as those that did not complete all the tasks or with an overall accuracy lower 

than 70% (i.e., the accuracy level targeted in the practice blocks). Moreover, we excluded from the iRT 

analyses the trials with incorrect or missed responses, or with RTs lower than 150 ms, which were all 

treated as errors, as well as the first trial of each block. The first 72 trials of the COL and WRD identification 

tasks (i.e., the Type-1 ensemble tasks) were not analyzed because they served to let participants familiarize 

themselves with the arbitrary S-R mapping for the tasks that required them to respond either to colors or 

to word meaning. 

A first set of analyses was performed to directly test our directional hypotheses about interference, 

facilitation, and congruency effects (i.e., IE, FE, and CE, respectively) across tasks (see Section 7.2.2). To 

do so, we performed the corresponding planned pairwise comparisons using one-tailed one-sample t-

tests, while two-tailed one-sample t-tests were used to test H4s. The TOST analysis (Lakens, 2017) was 

used to test for equivalence in case of non-significant results. For the TOST, the smallest effect size of 

interest (SESOI) was set as Cohen’s d = .35 (corresponding to the minimum effect size that a one-tailed 

one-sample t-test can detect with a statistical power of .80 and the planned sample size of 52, see 

below). 

We also tested our hypotheses regarding FE and IE at the different loci and the general pattern of the 

results in the experimental conditions by correlating participants’ performance in the different Task by 

Congruency conditions to the different hypothesized patterns detailed above. This analysis also allowed us 

to further test for the alternative hypotheses of either additive effects at the three loci or their synergic or 

antagonist interactions. 

We assessed the internal consistency (reliability) of the effects in each task by computing split-half 

correlations corrected with the Spearman-Brown formula (rSB). Specifically, for each task, the observations 

were randomly split in two subsets (2000 randomizations were used) and the participants’ effects were 

computed and correlated between the two subsets. We reported the median rSB values as well as the 

corresponding nonparametric 95% confidence intervals (CI95%). 

A standard p < .05 criterion was used for significance testing for all the analyses. Effect sizes were 

computed as Cohen’s d. We pre-registered additional multilevel modeling analyses that are still ongoing 

and thus are not reported here. 

7.2.4. Participants 

We recruited 126 participants (98 females and 18 males; mean age = 21.91 years, SD = 4.51 years). 

Participants’ handedness was assessed using the Edinburgh Handedness Inventory (EHI, Oldfield, 1971). 
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The sample comprised ten left-handed participants (EHI scores < −50) and ten ambidextrous participants 

(EHI scores between −50 and 50). No participants reported suffering from neurological or psychiatric 

disorders or being under medication. Participants gave their informed consent to participate in the study, 

which was conducted in accordance with the ethical standards of the 2013 Declaration of Helsinki for 

human studies of the World Medical Association. The study was approved by the Ethical Committee for the 

Psychological Research of the University of Padova. 

Participants consisted of a convenience sample recruited from the available university students and 

social pools and the link to the online experiment was spread among as many potential participants as 

possible using researchers’ professional and social networks.  

We used G*Power to conduct the power analysis on one- and two-tailed one-sample t tests, which were 

used to perform the planned pairwise comparisons to test our hypotheses (see Section 7.2.2). Our goal was 

to obtain a .8 power to detect a small-to-medium effect size of d = .35 at the standard .05 alpha error 

probability. This analysis revealed that 52 and 67 participants were needed, respectively for one- and two-

tailed one-sample t tests. We also used the TOSTER worksheet (Equivalence_Tests_TOSTER.xlsx; Lakens, 

2016) to compute the sample size required to perform the planned TOST analyses assuming a smallest 

effect size of interest of d = .35 with an alpha of .05 and a power of .80. This analysis revealed that 70 

participants are needed.   

Our target sample size was thus of 70 participants, but we tried to recruit as many participants as 

possible in a one-month period, exceeding the required sample size, to improve statistical power and the 

precision of our estimates, also because we expected that some participants could not complete all the 

tasks and/or could be excluded from the analyses due to poor performance.  

7.3. Results and Discussion 

Three participants were excluded from the analyses based on our exclusion criteria, because their 

overall accuracy (64.6%, 10.8%, and 7.9%) indicated poor performance. Figure 7.5 shows the participants’ 

performance, in terms of iRT, in all the experimental conditions.  
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Figure 7.5. 
Observed performance (iRT: 1000/RT in ms) in all the experimental conditions (Task by Congruency 
combinations). The error bars indicate the SE. See the description of the tasks (Section 7.2.1) for the 
abbreviations. 

Table 7.2 shows the outcomes of the first set of our hypotheses, which regards the FE and IE in the five 

conflict tasks, and Figure 7.6 shows the corresponding observed effects.  

Table 7.2. Results of the first set of (auxiliary) hypotheses regarding facilitation and interference effects 

H Loci_Eff Task M SD t(122) p d DOM (%) TOST 

H1.3 R_FE Sim 0.212 0.130 18.09 < .0001 1.632 96.7  

H1.1a S_FE1 VSc 0.068 0.101 7.47 < .0001 0.674 73.2  

H1.1b S_FE2 VSw 0.072 0.103 7.77 < .0001 0.701 74.0  

H1.5a Str_FE1 SSd 0.213 0.119 19.92 < .0001 1.796 96.7  

H1.5b Str_FE2 SSp 0.083 0.138 6.71 < .0001 0.605 74.8  

H1.4 R_IE Sim 0.072 0.090 8.85 < .0001 0.798 74.8  

H1.2a S_IE1 VSc 0.169 0.132 14.28 < .0001 1.287 90.2  

H1.2b S_IE2 VSw 0.144 0.121 13.21 < .0001 1.191 89.4  

H1.6a Str_IE1 SSd 0.280 0.115 27.13 < .0001 2.446 99.2  

H1.6b Str_IE2 SSp 0.081 0.171 5.24 < .0001 0.473 70.7  

H1.7e T_IE5 Sim 0.149 0.169 9.79 < .0001 0.883 82.1  

H1.7d T_IE4 VSc 0.218 0.159 15.19 < .0001 1.370 91.1  

H1.7c T_IE3 VSw 0.138 0.276 5.53 < .0001 0.499 82.1  

H1.7b T_IE2 SSd 0.361 0.233 17.16 < .0001 1.547 95.1  

H1.7a T_IE1 SSp -0.030 0.200 -1.67 .9516 -0.151 35.0 * 

Notes. H, hypothesis (see Section 7.2.2); R, effect at the response locus; S, effect at the stimulus locus; Str, 
Stroop effect (i.e., effect at both S and R loci); T, effect at the task locus; FE, facilitation effect; IE, 
interference effect; DOM%, effect dominance, corresponding to the percentage of participants showing the 
effect. The asterisk in the TOST column indicates effects that are significantly smaller than the SESOI. See 
the description of the tasks (Section 7.2.1) for the corresponding abbreviations. 
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Figure 7.6. 
Results of the first set of hypotheses. Experimental facilitation/interference effects (expressed as iRT 
differences) observed in the conflict tasks involving the different loci (S, stimulus; R, Response; T, Task; Str, 
Stroop, corresponding to both S and R loci). The violin plots illustrate the distribution of the participants’ 
effects (each dot is the effect of one participant). The superimposed black line plot indicates the sample 
average. 

The analyses confirmed all but one of our 15 auxiliary directional hypotheses. Specifically, all the 

facilitation effects (reflecting the better performance in C compared to N trials) were significant, with effect 

sizes ranging from medium (0.605) to very high (1.796) and dominance (i.e., percentage of participants 

showing the effect) ranging from 73.2 to 96.7%. Similarly, all the interference effects at the S/R loci 

(reflecting the better performance in N compared to I trials) were significant, with effect sizes ranging from 

medium (0.473) to very high (2.446) and dominance ranging from 70.7 to 99.2%. The task interference 

effects (T_IE), reflecting the better performance in simple identification tasks (requiring to respond to a 

single, task-relevant stimulus feature) compared to that in N trials in the corresponding conflict tasks (also 

entailing a task-irrelevant stimulus feature in both C and I trials), were significant in all but the SSp task, 

with effect sizes ranging from medium (0.499) to very high (1.547) and dominance ranging from 82.1 to 

95.1%. By contrast, the T_IE was not significant and in the opposite direction compared to our hypothesis, 

but the TOST revealed that it was significantly smaller than the SESOI (t(122) = 2.21, p = .0144). 

As regards the internal consistency of the FE/IE effects at the stimulus and response loci, it was generally 

low for the facilitation effects (see Figure 7.7), especially for the SSp task (median rSB = .174) and the 

Stroop-like VSc and VSw tasks (median rSB = .201 and .300); the SSd task showed the highest reliability 

(median rSB = .593), followed by the Sim task (median rSB = .478). The reliability of the interference effects 

was generally higher, except for the Sim task, for which it was very poor (median rSB < .001). Again, the SSd 

task showed the highest internal consistency (median rSB = .683). As regards the internal consistency of the 

task interference effect, it was consistently higher than that of FE/IE effects  (see Figure 7.7), especially for 

the SSd and VSw tasks (median rSB = .924 and .910, respectively).    



276 

 

Figure 7.7. 
Internal consistency reliability of the experimental facilitation/interference effects observed in the conflict 
tasks involving the different loci (S, stimulus; R, Response; T, Task; Str, Stroop, corresponding to both S and 
R loci). The violin plots illustrate the distribution of rSB values (each dot is the rSB obtained in one of the 2000 
random splits). The superimposed black line plot indicates the average. 

Overall, the results of the first set of our hypotheses confirmed our predictions and established the 

necessary prerequisites for the subsequent sets of hypotheses.  

First, we found that all our conflict tasks produced both facilitation and interference effects, which was 

fundamental to our subsequent aim of exploring whether such effects arise from multiple loci. Moreover, it 

is interesting to note that facilitation effects were observed quite consistently and, in some cases, with 

effect sizes and dominance values comparable to those of interference effects, suggesting that this often 

neglected component of the Stroop effect may instead play a prominent role in contributing to it. 

Therefore, as highlighted in the introduction, the fact that the facilitation effect has been commonly found 

to be smaller (and less consistently) than the interference effect, may probably be attributed to the 

inadequacy of the neutral baselines commonly used to calculate it, which is a thorny issue especially when 

using verbal Stroop tasks (Brown, 2011). It should also be noted, however, that the internal consistency of 

the interference effects was generally higher than that of facilitation effects, which was generally poor 

(except for the Simon task, for which the pattern was reversed). The low reliability of facilitation effects 

may thus be a contributing cause for the observation that the facilitation effect is typically smaller and less 

stable compared to the interference effect in the existing studies.  

One interesting finding is that the facilitation and interference effects yielded by the SSd task (i.e., the 

task used in the studies presented in the present thesis) were not only the largest and most dominant ones, 

but also the ones with the highest reliability, confirming it as a methodologically valid task to investigate 

Stroop performance. By contrast, the effects yielded by its reversed version, the SSp task, appeared to be 

consistently smaller, less dominant, and less reliable (see the results for our fifth set of hypotheses below, 

for the corresponding statistical test). 

https://www.zotero.org/google-docs/?zESLRw
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Overall, thus, our results about facilitation and interference effects thus suggest the importance of using 

neutral conditions, revealing also that facilitation and interference effects can be disentangled. Moreover, 

they provide further evidence for the advantages of using spatial versions of the Stroop task, especially the 

SSd, namely the one we used in the present thesis.  

The second relevant finding regards task interference. Specifically, our results provide initial evidence 

for  our hypothesis that when neutral trials are presented intermixed with congruent and incongruent 

trials, namely in conflict task blocks, also the alternative conflicting task set is inevitably activated, thus 

producing task interference. Indeed, the fact that RTs to respond to these neutral trials were longer as 

compared to RTs responding to neutral trials in pure identification blocks, which involved identical (or very 

similar) stimuli activating the same task set, suggest  that this was very likely due to the interference 

between two conflicting task sets. Therefore, our findings not only reveal that task interference may indeed 

be present, likely affecting Stroop performance, in contrast with Parris and colleagues’ (2023) latest review, 

but also provide a possible effective way to measure its effect, even with very high reliability for the SSd 

and VSw tasks, overcoming limitations of the previously employed measures. Of note, the only result not in 

line with our predictions, that is, the absence of task interference in the SSp task, does not jeopardize the 

effectiveness of our task interference measure. Indeed, this negative finding is likely attributed to the 

inherent asymmetry characteristics of the SSp task. Specifically, the task set associated with POS, which was 

the relevant task in the SSp task, may be too strong and automatic to be influenced by the task set linked to 

DIR, thus consequently resulting in a lack of interference from the irrelevant DIR task set, despite its high 

automaticity.  

Table 7.3 shows the outcomes of the second set of our hypotheses, which regarded the CE in the five 

conflict tasks, and Figure 7.8 shows the corresponding observed effects.  

Table 7.3. Results of the second set of hypotheses regarding congruency effects 

H Loci_Eff Task M SD t(122) p d DOM (%) TOST 

H2.3 R_CE Sim 0.284 0.138 22.73 < .0001 2.050 99.2  

H2.1 S_CE1 VSc 0.238 0.131 20.12 < .0001 1.814 98.4  

H2.2 S_CE2 VSw 0.216 0.121 19.81 < .0001 1.787 97.6  

H2.4 Str_CE1 SSd 0.493 0.161 33.97 < .0001 3.063 100.0  

H2.5 Str_CE2 SSp 0.164 0.198 9.22 < .0001 0.831 80.5  

Notes. See Table 7.2 for conventions 



278 

 

Figure 7.8. 
Results of the second set of hypotheses. Experimental congruency effects (expressed as iRT differences) 
observed in the conflict tasks involving the different loci (S, stimulus; R, Response; T, Task; Str, Stroop, 
corresponding to both S and R loci). The violin plots illustrate the distribution of the participants’ effects 
(each dot is the effect of one participant). The superimposed black line plot indicates the sample average. 

The analyses confirmed all of our 5 directional hypotheses (but given the results reported above for H1s, 

this was necessarily true for all the conflict tasks, as all the pair of hypotheses about S/R FE and IE were 

both confirmed, and CE are equivalent to the sum of FE and IE). Specifically, all the congruency effects 

(reflecting the better performance in C compared to I trials) were significant, with effect sizes ranging from 

high (0.831) to very high (3.063) and dominance ranging from 80.5 to 100%.  

As regards the internal consistency of the congruency effects, it was good for the Sim and SSp task 

(median rSB = .637 and .687, respectively) and, especially, the SSd task (median rSB = .837) (see Figure 7.9). 

The internal consistency of the Stroop-like task was instead lower (median rSB = .559 and .550).   

 

Figure 7.9. 
Internal consistency reliability of the experimental congruency effects observed in the conflict tasks 
involving the different loci (S, stimulus; R, Response; T, Task; Str, Stroop, corresponding to both S and R 
loci). The violin plots illustrate the distribution of rSB values (each dot is the rSB obtained in one of the 2000 
random splits). The superimposed black line plot indicates the average. 
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Although this second set of hypotheses was directly dependent on the first one, the finding that all our 

tasks showed CE furnishes additional evidence for the suitability of our conflict tasks and further 

strengthens the foundation upon which we tested the hypotheses of interest to address our research 

questions. Indeed, these findings revealed that even when contrasting congruent to incongruent 

conditions, the resulting effects were very large and characterized by high dominance values, reaching the 

100%. Specifically, the task yielding the largest effect size, a 100% dominance to be called universal, and the 

highest internal consistency was the SSd task. This result, in line with the findings of our previous study 

(Viviani et al., 2023, and Chapter 3), further confirms the goodness of this experimental paradigm and 

substantiates our choice to use it in the present thesis. It is also worth noting that these results emerged in 

this study even without the use of a multilevel modeling approach, unlike the Chapter 3 study, suggesting 

that even when trial noise was not excluded, this paradigm yielded large and reliable Stroop effect 

measures. 

Table 7.4 shows the results of the third set of our hypotheses, regarding the difference between the 

Stroop effects, involving both the S and R loci, and the Stroop-like and Simon effects, involving either the S 

or R loci, respectively. We thus compared the FE/IE/CE at each of the two Stroop tasks with those at the 

Stroop-like and at the Simon tasks. Figure 7.10 shows the corresponding observed differential effects.  

Table 7.4. Results of the third set of hypotheses on the difference between Stroop and S/R effects 

H Loci_Eff 
Str 

Task 
S/R 
Task 

M SD t(122) p d 
DOM 
(%) 

TOST 

H3.1c FE_ML3 SSd Sim 0.001 0.173 0.08 .4684 0.007 51.2 * 

H3.1a FE_ML1 SSd VSc 0.145 0.147 10.95 < .0001 0.988 88.6   

H3.1b FE_ML2 SSd VSw 0.141 0.155 10.04 < .0001 0.906 78.9   

H3.1f FE_ML6 SSp Sim -0.128 0.173 -8.26 > .9999 -0.745 18.7 ns 

H3.1d FE_ML4 SSp VSc 0.015 0.165 1.02 .1550 0.092 46.3 * 

H3.1e FE_ML5 SSp VSw 0.011 0.163 0.75 .2269 0.068 49.6 * 

H3.2c IE_ML3 SSd Sim 0.208 0.147 15.69 < .0001 1.415 92.7   

H3.2a IE_ML1 SSd VSc 0.111 0.168 7.32 < .0001 0.660 75.6   

H3.2b IE_ML2 SSd VSw 0.136 0.157 9.62 < .0001 0.867 83.7   

H3.2f IE_ML6 SSp Sim 0.009 0.194 0.54 .2966 0.048 48.8 * 

H3.2d IE_ML4 SSp VSc -0.088 0.211 -4.63 1.0000 -0.418 29.3 ns 

H3.2e IE_ML5 SSp VSw -0.063 0.194 -3.60 .9998 -0.325 39.8 ns 

H3.3c CE_ML3 SSd Sim 0.210 0.187 12.44 < .0001 1.122 85.4   

H3.3a CE_ML1 SSd VSc 0.256 0.209 13.60 < .0001 1.226 87.0   

H3.3b CE_ML2 SSd VSw 0.277 0.187 16.39 < .0001 1.478 95.9  

H3.3f CE_ML6 SSp Sim -0.119 0.227 -5.82 1.0000 -0.525 26.0 ns 

H3.3d CE_ML4 SSp VSc -0.073 0.232 -3.50 .9997 -0.316 33.3 ns 

H3.3e CE_ML5 SSp VSw -0.052 0.213 -2.71 .9961 -0.244 36.6 ns 

Notes. Ns, non-significant. See Table 7.2 for other conventions. 
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Figure 7.10. 
Results of the third set of hypotheses. Difference between the FE/IE/CE effects (expressed as iRT 
differences) observed in each of the two Stroop tasks (involving both the S and R loci) and those observed 
in the Simon and the two Stroop-like tasks (involving either the S or R loci, respectively). The violin plots 
illustrate the distribution of the participants’ effect difference (each dot is the effect of one participant). 
The superimposed black line plot indicates the sample average. 

The analyses confirmed all but one of our 9 directional hypotheses regarding the Stroop effect in the SSd 

task. Specifically, the SSd FE was larger than both the VSc and VSw ones originating at the S locus, with 

large effect sizes (0.988 and 0.906, respectively) and high dominance (78.9 and 88.6%, respectively), but 

were basically indistinguishable from the Sim FE (TOST: t(122) = -3.80, p = .0001). The IE and CE yielded by 

the SSd task were all larger than those yielded by the Sim, VSc, and VSw tasks, with effect sizes ranging 

from medium (0.660) to very high (1.478) and dominance ranging from 75.6 to 95.9%. By contrast, and 

contrary to our hypotheses, none of the effects yielded by the SSp task was larger than those yielded by the 

non-Stroop conflict tasks. Specifically, the SSp FE were only numerically larger than both the VSc and VSw 

ones originating at the S locus, but with an effect size significantly smaller than the SESOI (TOST: t(122) = -

2.86 and -3.13, p = .0011 and .0024, respectively), and the same was true for the SSp IE as compared to the 

Sim one (TOST: t(122) = -3.35, p = .0005). However, in all other cases the effects yielded by the SSp task 

were even smaller than those yielded by the non-Stroop conflict tasks (and they would have been 

significantly smaller at a two-tailed test). 

The results from this third set of analyses showed  that the SSd task, which demonstrated to be the most 

effective among the conflict tasks, produced a Stroop effect that confirmed (almost all of) our predictions 

and provided initial evidence for  the presence of the assumed loci. In contrast, the SSp task did not confirm 

our predictions, exhibiting a pattern opposite to what was expected. 

Starting with the SSd task, our results suggested that the Stroop Congruency Effect (CE) was larger than 

the respective single effects observed in both the Stroop-like and the Simon tasks. Thus, this difference may  

be attributed to the multiple-locus nature of the SSd task, including both S and R loci, in comparison to the 

other tasks involving only one of these two loci. If we had tested our experimental question solely on the 

CE, we would have suggested that it is likely to be composed of both S and R loci, but we would have 
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missed a significant portion of the entire pattern that instead emerged thanks to the differentiation 

between FE and IE.  

The findings regarding the IE are in line with predictions, showing that the IE in the SSd was always 

greater than IE in all the other tasks, thus suggesting that the IE produced by this Stroop task was bigger 

probably because it arose from two loci, S and R, instead of one locus, as the other tasks.  

The findings regarding the FE are not totally in line with our predictions, but still very interesting. The 

fact that the FE in the SSd task was not significantly different from the FE in the Simon task suggests, 

although indirectly by analogy, that facilitation in the Stroop task may be essentially equivalent to the 

facilitation in the Simon task. Thus, this likely suggests that in the Stroop task, the FE may be primarily 

driven by response facilitation. Furthermore, the larger FE observed in the Stroop task compared to the two 

Stroop-like tasks may suggest that response facilitation in the Stroop task might be more pronounced than 

any facilitation at the stimulus level (if such stimulus-level facilitation exists). It is worth noting that in this 

third set of hypotheses, we had not yet considered the AUT of the irrelevant task, as we did in the sixth set 

of hypotheses. In the latter, we indeed refined our predictions regarding FE and IE based on the level of 

automaticity of the irrelevant task. Given that both facilitation and interference effects were expected to 

be greater as the automaticity of the irrelevant task increased, more specific hypotheses that took this into 

account were likely to provide more valuable insights. This was particularly relevant, for example, in the 

comparison between the FE in the SSd task and the FE in the Simon task, both of which involve the same 

irrelevant task, namely POS, which is also the most automatic. 

Moving on to the results regarding the SSp task, the fact that the obtained pattern was entirely opposite 

to what was predicted could be attributed, as in the previous results, to the idea that the POS task is even 

more strong and automatic than what we expected and estimated. Indeed, the results reported so far 

suggest that the relevant POS task may not only be completely immune to the interference from the 

irrelevant but exogenously activated DIR task (see above), but may also be partially resistant to both 

interference and facilitation at the stimulus and response loci exerted by the irrelevant DIR task, as also 

suggested by the apparent relatively lower magnitude of these effects, compared to the SSd task (see 

above). Based on our assumptions, these findings are quite surprising because the irrelevant DIR task 

should still exert pronounced effects, as it is the second most automatic task. However, they are partially in 

line with the idea that the irrelevant task has to be more automatic than the relevant one to exert 

facilitation/interference effects, an idea that is evident in the common definition of the cognitive processes 

assessed with the Stroop tasks. Therefore, refining the effect of the loci using the automaticity of the 

irrelevant task, as we did with our sixth set of hypotheses, may be helpful in gaining a better understanding 

of these results. 
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Table 7.5 shows the outcomes of the fourth set of our hypotheses, which explored whether and how the 

individual S and R effects interacted in composing the Stroop effects. Specifically, these hypotheses directly 

tested whether the Stroop effects, thought to originate at both the S and R loci, could be explained as the 

sum of the two effects originating at each of these loci, as predicted by a simple additive model, or if they 

were smaller or larger than this sum. We thus compared the FE/IE/CE at each of the two Stroop tasks with 

the sum of those yielded by the Sim task and those yielded by either of the two Stroop-like tasks.  Figure 

7.11 shows the corresponding observed differential effects.  

It is crucial to emphasize that these hypotheses were built on the ones in the third set, which had to be 

confirmed first. In other words, if the Stroop effects were not greater in magnitude than both the S and R 

ones individually, it became unjustifiable to investigate whether they were greater (or even equal) to the 

cumulative effects of both the S and R components. However, for the sake of completeness, we report the 

results for all the pre-registered tests. 

Table 7.5. Results of the fourth set of hypotheses on the additive vs. interactive nature of S/R effects in 
composing Stroop effects 

H Loci_Eff Str Task S+R Task M SD t(122)a p d TOST 

H4.1ab Str_FE_ADD1 SSd Sim+VSc -0.067 0.191 -3.89 .0002 -0.351  

H4.1bb Str_FE_ADD2 SSd Sim+VSw -0.071 0.209 -3.77 .0003 -0.340   

H4.1cb Str_FE_ADD3 SSp Sim+VSc -0.197 0.192 -11.35 < .0001 -1.024   

H4.1db Str_FE_ADD4 SSp Sim+VSw -0.201 0.203 -11.00 < .0001 -0.992   

H4.2a Str_IE_ADD1 SSd Sim+VSc 0.039 0.188 2.31 .0227 0.208   

H4.2b Str_IE_ADD2 SSd Sim+VSw 0.064 0.188 3.80 .0002 0.343   

H4.2cb Str_IE_ADD3 SSp Sim+VSc -0.160 0.227 -7.81 < .0001 -0.705   

H4.2db Str_IE_ADD4 SSp Sim+VSw -0.135 0.219 -6.81 < .0001 -0.614   

H4.3a Str_CE_ADD1 SSd Sim+VSc -0.028 0.231 -1.34 .1814 -0.121 * 

H4.3b Str_CE_ADD2 SSd Sim+VSw -0.007 0.233 -0.32 .7515 -0.029 * 

H4.3cb Str_CE_ADD3 SSp Sim+VSc -0.357 0.258 -15.33 < .0001 -1.382  

H4.3db Str_CE_ADD4 SSp Sim+VSw -0.335 0.261 -14.28 < .0001 -1.288  

Notes. a Two-tailed paired-sample t-test. c These hypotheses are not justified given the results of H3s 
hypotheses. See Table 7.2 for conventions. 
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Figure 7.11. 
Results of the fourth set of hypotheses. Difference between the FE/IE/CE effects (expressed as iRT 
differences) observed in each of the two Stroop tasks (involving both the S and R loci) and the sum of those 
observed in the Simon and each of the two Stroop-like tasks (involving either the S or R loci, respectively). 
The violin plots illustrate the distribution of the participants’ effect difference (each dot is the effect of one 
participant). The superimposed black line plot indicates the sample average. 

Eight of the 12 hypotheses (namely, all the 6 involving the SSp effects and the 2 involving the SSd FE) 

were not justified based on the results regarding the third set of hypotheses, as noted above. All of these 

pairwise comparisons showed that the Stroop effect was significantly smaller than the sum of the S and R 

effects. As regards the remaining hypotheses, the SSd IE was significantly larger than the sum of the S and R 

IE, but with effect sizes that were small (0.208 and 0.343) and even numerically smaller than our SESOI. The 

SSd CE was instead not significantly different from the sum of the S and R CE, as also indicated by the 

significant results of the TOST analysis  (t(122) = 2.54 and 3.56, p = .0062 and .0003). 

Overall, the results from the fourth set of hypotheses appeared to support our predictions, namely that 

the loci in the Stroop CE were likely to interact in an antagonistic way, thus producing effects smaller than 

their sum. 

However, most of these hypotheses were not justified based on the results of the third set of 

hypotheses, as explained above. Therefore, these results should be taken with caution. Moreover, this set 

of hypotheses was limited to exploring the interplay of only the S and R loci, without yet considering the 

role of task interference in overall Stroop performance. Subsequent tests instead provided much more 

informative insights into the interplay between all the loci. 

Table 7.6 shows the outcomes of the fifth set of our hypotheses, which examined differences in overall 

performance across our tasks. As detailed in Section 7.2.2, these hypotheses were initially formulated 

based on the AUT and ASY scores we estimated from the performance in the POS and COL tasks, as 

observed in our pilot study. Additionally, they were based on the assumptions we made for the DIR and 

WRD tasks, respectively, which were themselves based on those earlier estimations.  
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Table 7.6. Results of the fifth set of hypotheses about the pattern of across-tasks differences in overall 
performance  

H Task1 Task2 M SD t(122) p d TOST 

H5.1 POS DIR 0.296 0.201 16.35 < .0001 1.474  

H5.2 DIR WRD 0.667 0.364 20.34 < .0001 1.834   

H5.3 WRD COL -0.096 0.289 -3.69 .9998 -0.332 ns 

H5.4 SSp SSd 0.687 0.332 22.95 < .0001 2.069  

H5.5 SSd VSw 0.444 0.307 16.04 < .0001 1.446  

H5.6 VSw VSc -0.016 0.166 -1.09 .8602 -0.098 * 

H5.7 VSc Sim -0.068 0.149 -5.05 > .9999 -0.455 ns 

Notes. All the hypotheses predicted a better performance in Task1 compared to Task2. Note that only 
neutral trials were used for these tests. See Table 7.2 for conventions. 

As regards the hypotheses about the simple identification tasks, the results confirmed that the 

performance was better in the POS compared to the DIR task, which in turn had a better performance 

compared to the WRD (and COL, not shown) task. However, contrary to our expectations, the performance 

in the WRD task was worse, rather than better, than that in the COL task. As regards the hypotheses about 

the conflict tasks, the results confirmed that the performance was better in the SSp compared to the SSd 

task, which in turn had a better performance compared to the VSw (and VSc and Sim, not shown) task. 

However, contrary to our expectations, the performance in the VSw task was statistically indistinguishable 

(TOST: t(122) = 2.80, p = .0030) and numerically worse, rather than better, than that in the VSc task. 

Moreover, and again contrary to our expectations, the performance in the VSc task was worse, rather than 

better, than that in the Sim task. 

As we noted above, these hypotheses were based on our assumptions about the overall performance in 

the DIR and WRD identification tasks, which were in turn built upon the performance in the POS and COL 

identification tasks observed in our pilot study. The predicted pattern was confirmed for what concerns 

POS and DIR, with the former representing the most automatic task, and both of them being more 

automatic than the other tasks. Therefore, these results suggest that the use of POS as the irrelevant task in 

spatial Stroop tasks seems the optimal choice, as it is effective in eliciting strong facilitation and 

interference effects.  

However, as clearly shown by the results we just reported, we were wrong in assuming that word 

reading, even if responding by button presses was required, is more automatic and easier than responding 

to colors. This finding is unexpected as our assumption of WRD more automatic than color was based on 

the literature which, although less attention has been devoted to reverse Stroop tasks (reading color 

words, ignoring their ink color), has quite consistently shown that print colors typically interfere with (or 

facilitate) color reading with a less extent (e.g., Blais & Besner, 2007; MacLeod, 1991; Stroop, 1935). 

However, our results regarding the performance in the Stroop-like tasks seem to be consistent with prior 

https://www.zotero.org/google-docs/?HvIR9q
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findings revealing a reverse Stroop effect when participants performing reverse Stroop tasks were required 

to point to matching colors (Blais & Besner, 2007; Durgin, 2000). As such, it is plausible that the use of 

manual responses, as required in our task, has made color identification more automatic than word 

reading, with the latter losing its assumed greater automaticity when, after reading the word, responses 

had to be provided using keypress responses. This reversed asymmetry between color identification and 

word reading may thus have been the result of less strong S-R mapping when the reading output had to be 

transcoded as a manual response, an issue worth being investigated further in the future.  

Although our predictions based on the pilot revealed to be wrong, as per our pre-registration, we then 

refined our hypotheses about the pattern of performance differences across our conflict tasks based on the 

participants’ performance we observed in the identification tasks in this study. The revised AUT estimates 

were as follows (our initial estimates are reported in brackets): POS =  2.5522 (2.5); DIR = 2.2565 (2.25); COL 

= 1.6856 (1.6); WRD = 1.5894 (1.75). Accordingly, the revised ASY estimates were as follows (our initial 

estimates are reported in brackets): SSp = 0.8861 (0.9); VSc = 0.9365 (1.0938); VSw = 1.0678 (0.9143); SSd = 

1.1285 (1.1111); Sim = 1.5243 (1.5625). It is important here to emphasize that the revised ASY estimates 

assume a reversed pattern of task asymmetry between VSw and VSc tasks, given that the COL task had a 

better performance than the WRD one. As a result, the revised hypotheses about the pattern of overall 

performance in the conflict tasks were SSp > SSd > VSc > Sim > VSw.  The revised hypotheses correctly 

predicted a better performance in VSc as compared to VSw. However, they still erroneously predicted a 

better performance in VSc as compared to Sim, which showed a surprisingly good performance in spite of 

its predicted very high ASY score. This totally unexpected result could be speculatively explained by the fact 

that the two tasks involved in the Simon, although very asymmetric, rely on totally different 

neural/cognitive codes, so that when participants responded to colors, ignoring the position was easier 

than ignoring the word meaning, because the latter shared the same code as identifying colors, also due to 

the fact that in the VSc colors and words implied in our task the same response mapping.  

Overall, by testing these hypotheses we added an additional layer of complexity, exploring not only the 

existence and interplay between the loci, but also the influence of well-established effects on the 

modulation of the overall performance in conflict tasks, namely task automaticity and task asymmetry, 

finding initial evidence that they both strongly depended on the response modality.  

Table 7.7 shows the outcomes of the sixth set of our hypotheses, which examined the across-tasks 

difference in the effects at the S and R loci after weighting them by the AUT score of the irrelevant stimulus 

feature (which causes the S/R facilitation/interference effects), as well as the across-tasks difference in the 

task interference effects after weighting them by the ASY estimates. 

 

https://www.zotero.org/google-docs/?5WcW2h
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Table 7.7. Results of the sixth set of hypotheses about the effects weighted for AUT/ASY  

H Effect  Task1 Task2 M SD t(122) p d TOST 

H6.1a FE VSc VSw -0.004 0.137 -0.33 0.6292 -0.030 * 

H6.1b IE VSc VSw 0.025 0.189 1.49 0.0693 0.134 * 

H6.1c CE VSc VSw 0.021 0.174 1.36 0.0889 0.122 * 

H6.2a FE SSd SSp 0.130 0.177 8.14 < .0001 0.734   

H6.2b IE SSd SSp 0.199 0.206 10.74 < .0001 0.968   

H6.2c CE SSd SSp 0.329 0.232 15.73 < .0001 1.418   

H6.3a TIE Sim SSd -0.212 0.274 -8.55 > .9999 -0.771 ns 

H6.3b TIE SSd VSc 0.144 0.262 6.07 < .0001 0.547  

H6.3c TIE VSc VSw 0.080 0.314 2.82 0.0028 0.255  

H6.3d TIE VSw SSp 0.168 0.338 5.51 < .0001 0.497  

Notes. All the hypotheses predicted a larger effect  in Task1 compared to Task2. See Table 7.2 for 
conventions. 

The hypotheses about the difference in magnitude for the effects in the VSc vs. VSw tasks were not 

confirmed. The TOST revealed that the differences in the effects were significantly smaller than the SESOI 

(all |t|s(122) > 2.39, all ps < .0091). However, this also entails that the same hypotheses based on the AUT 

score estimated based on the performance in the identification tasks in the present study were also not 

confirmed.   

As discussed above, these results for the two Stroop-like tasks may have strongly relied on the response 

modality, which showed a stronger influence than we expected. However, as we here considered AUT as an 

ensemble of both processing strength and S-R mapping, we could not disentangle the effect of each of 

them. Future studies are thus required to provide evidence for our interpretation that the unexpected 

observed pattern was due to the use of manual responses. For example, this could be done by comparing 

tasks with the same processing strength but with different response mappings (e.g., responding to COL with 

manual vs verbal responses).  

Although we could precisely quantify the extent to which manual responses contributed to yielding 

similar effects in the two Stroop-like tasks, these findings suggest that the use of manual responses may 

pose challenges when employing verbal Stroop(-like) tasks. This issue holds relevance for the Stroop 

literature, where it is common to encounter tasks labeled as Stroop but employing manual responses. This 

would pose a validity issue not only because, as extensively discussed in Chapter 2, these tasks should 

instead be categorized as Stroop-like tasks, but also because the use of this response modality may impact 

task asymmetry to an extent that is not yet fully understood, leading to unexpected effects. This 

observation is in line with the findings of Augustinova and colleagues (2019), who reported that, when 

using verbal Stroop tasks, the manual response modality does not engender task conflict.  

https://www.zotero.org/google-docs/?Ur0f6r
https://www.zotero.org/google-docs/?Ur0f6r
https://www.zotero.org/google-docs/?Ur0f6r
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Conversely, the hypotheses about the difference in magnitude for the effects in the SSd vs. SSp tasks 

were all confirmed with large effect sizes. These findings seem to be the consequence of what was found 

above, that is, that the POS task set was the strongest and most automatic one. Moreover, finding that CE, 

FE, and IE were greater when POS was the irrelevant task than when DIR was the irrelevant task may 

suggest that by using such an automatic irrelevant task, such effects are observed in the expected direction. 

Therefore, as argued above, designing spatial Stroop tasks using DIR as the relevant and POS as the 

irrelevant task appears to be effective in order to obtain CE, FE and IE with large effect sizes. Moreover, the 

fact that the DIR task set, despite being very automatic, did not yield similar effects when used as the 

irrelevant task further suggests that using spatial versions of the Stroop task, by relying upon a clear task 

asymmetry, is advantageous. This becomes evident when we compare these results with those obtained 

from the comparison between VSc and VSw, whose involved tasks, as discussed earlier, did not show a 

clear asymmetry, as the asymmetry seemed to be strongly contingent on the response modality. Indeed, 

the use of manual responses in the VSc and VSw may be problematic, not only because it renders them not 

genuine Stroop tasks but Stroop-like tasks, but also because even when intentionally employed as such, the 

impact of task asymmetry when manual responses are used remains unclear. However, as discussed in 

Chapter 2, the utilization of manual responses versus verbal responses can have advantages, and since 

manual responses are adequate (and necessary) in spatial Stroop tasks, we overall reinforce our argument 

that spatial Stroop tasks surpass verbal ones in various respects. 

Finally, the hypotheses about the difference in magnitude for the task interference effects across our 

conflict tasks were all confirmed with small-medium effect sizes, apart from the one predicting a larger T_IE 

in Sim as compared to SSd, which instead showed the opposite pattern. Overall, these results provided 

initial evidence for our assumption that the asymmetry between the tasks may affect the amount of task 

interference, so when the asymmetry is greater, the task interference should be larger. However, this was 

not true for the Simon task. Indeed, as shown from the comparison between task interference in the Simon 

and in the SSd, a counterintuitive pattern emerged. These two tasks implied the same irrelevant task set, 

POS, but different relevant task sets, namely COL for Simon and DIR for SSd. Following the logic underlying 

task interference, given that COL was assumed to be the least automatic, in the Simon we should have 

observed greater task interference than the SSd. However, we speculated that this may not have been the 

case because POS and COL, as suggested above, may imply more distinct neural/cognitive codes as 

compared to POS and DIR in the SSd, in which there might have been greater task interference due to the 

fact that these two tasks conceivably rely on much more similar neural/cognitive codes and have the same 

strong (and not arbitrary) response mapping as well.   

If we consider this finding concerning less task interference in the Simon task compared to the SSd task, 

along with the previously discussed finding of better performance in the Simon task compared to the VSc 
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task, we could make a consideration: task interference may not depend solely on the asymmetry between 

the tasks, even though this seems to be necessary, as suggested by the other results that aligned with our 

predictions. In addition to this, a sort of dimensional overlap between the two tasks might be required. 

Indeed, our results suggest that if such an asymmetry is at its maximum but the two tasks do not share the 

same neural codes, or the response mapping used to respond to the relevant task does not overlap or is 

not strongly interconnected with the response mapping activated by the irrelevant task, as in the Simon 

task, task interference is probably reduced. The dynamics are again more complex than expected, 

suggesting the need for future studies to further elucidate this matter. For instance, future research could 

consider predicting task interference not only in terms of the asymmetry between the tasks but also by 

weighing its effect based on a form of dimensional overlap between the tasks. 

We finally tested our hypotheses regarding the experimental effects at the different loci, also 

considering the overall pattern of the results in the experimental conditions, modulated not only by the SREL 

and SIRR AUT, but also by the task ASY scores, which we used to weight the multiple loci (ML) effects, as 

detailed above. The observed data were better fitted by the ANT model, assuming an antagonistic 

interaction between the effects at the S, R, and T loci, with a very high correlation of r = .9425 (see Figure 

7.12).  

The finding that the ANT model was the one better explaining the performance in our conflicting tasks 

provides further evidence in line with the results obtained from the fourth set hypothesis. As highlighted 

previously, indeed, these latter results could shed light on the antagonistic interplay between the S and R 

loci only. Now, we could instead move beyond that, because this last set of results took into account also 

the task locus. The fact that the loci interacted in an antagonistic manner, thus producing an effect that was 

smaller than their sum, was not so unexpected, and was indeed predicted. This is based on the assumption 

that the S and R loci are plausibly strongly interconnected. Our findings align with Parris and colleagues’ 

(2022) conclusions, which claimed that there is evidence for an informational locus, but that the S and R 

loci included in it are difficult to disentangle. Their conclusion, however, was only partially true. Indeed, 

with our experimental design, we showed initial evidence that these two loci can be disentangled, 

obtaining pure measures of both the S and the R loci, as suggested by our findings in the third set of 

hypotheses. Specifically, the finding that the IE was larger than both IE in the Stroop-like tasks and the IE in 

the Simon task may suggest that we had successfully distinguished between the effects of the S and R loci. 

In contrast to the conclusions of Parris and colleagues (2022), we argue that it might be not so much the 

measures of the S and R loci that are problematic, as it seems that they can be disentangled. Rather, their 

antagonistic interaction probably lies in the fact that when generating performance in the Stroop task, 

these loci might be interconnected, given their anatomical and functional similarities at the brain level. 
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Figure 7.12. 
Correlation between the predicted (x axis) and observed (y axis) pattern of performance in the 
experimental conditions under the assumption of an antagonistic interaction between the effects at the 
three loci. 

Overall, with this final study we provided initial but valuable insights into how the Stroop performance 

might be generated, not only showing the effect of each specific locus, but also revealing that they are 

likely to interact in an antagonistic manner. However, one of the issues that remain to be addressed is 

whether this antagonistic interplay occurs only between the S and R loci which, as previously mentioned, 

would make sense given their strong interconnectedness, while the task locus has an additive effect. 

Alternatively, it is possible that the antagonistic interplay also involves the task locus. Although we predict 

that the first option is more plausible, as highlighted by Parris and colleagues (2022), who found initial 

evidence that the task locus can be distinguished from the first two loci, and therefore, it is expected to 

have more of an additive effect, the analyses presented so far cannot test this hypothesis. While this aspect 

is not covered in the current chapter, our pre-registration outlines how to test this hypothesis. Due to time 

constraints, we have not yet conducted the remaining planned analyses, but these will be conducted 

shortly to provide more detailed insights into the dynamics of Stroop performance. 
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7.4. Summary and Conclusion 

In this chapter, we directly explored the composite nature of the Stroop effect, which throughout the 

entire thesis was used as a methodological benchmark to design valid spatial Stroop tasks. Given that the 

multiple-loci hypothesis for the Stroop performance relies on evidence that is not completely compelling, 

as highlighted in the introduction, and it derives mainly from studies using verbal versions of the Stroop 

task, it was necessary to explore its empirical foundation using spatial versions of the Stroop task, which are 

more suitable for this purpose, as they exclude the confounding effects that are inherent to verbal Stroop 

tasks (i.e., the involvement of distinct linguistic layers).  

Therefore, our aim here was to distinguish the stimulus, response and task loci in the spatial Stroop task 

to directly assess their influence on both the Stroop facilitation and interference effects and, ultimately, on 

the Stroop performance. Based on a prior pilot pre-registered study, we could refine our measures for the 

explored loci and put forward and test very specific a priori hypotheses, considering not only the effect of 

each locus, but also the weight of task automaticity and of the asymmetry between the tasks.  

Overall, our study revealed that the Stroop performance may indeed have originated from the three 

hypothesized loci, which interacted in an antagonist manner. However, thanks to our distinction between 

facilitation and interference, we found evidence that it was mainly the interference effect that originated 

from the interplay between all the three loci; the facilitation effect, instead, was mostly due to the effect at 

the response locus, suggesting that Stroop facilitation might essentially be response facilitation. Our study 

has not only set the first step, showing these initial but interesting findings, which require additional 

analyses to elucidate the nature of such interplay, as already delineated in the pre-registration form, but it 

has also brought forth many other intriguing insights. For example, the task set influence might also 

differentially affect facilitation and interference effects (see Di Russo & Bianco, 2023), an open question 

that merits further investigation.  

One key aspect of the present study is that we provided an effective alternative to measure task 

interference, overcoming the limitations of previously used measures, showing that it likely affects Stroop 

performance, in contrast with Parris and colleagues (2023). Indeed, the comparison between neutral trials 

presented in conflict tasks, thus intermixed with congruent and incongruent trials, and neutral trials 

presented in simple identification tasks, revealed longer RTs, which might thus be attributed to the 

concomitant activation of two conflicting task sets. However, our results also led us to suggest that, 

contrary to our expectations, this might not occur when the relevant task is too strong and automatic, such 

as the POS task used here, which was not influenced by the interfering effect of the irrelevant task set of 

DIR.  
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Our basic results, namely those regarding the facilitation and interference effects observed in all our 

conflict tasks, are informative for the Stroop literature in general, as they showed that, in contrast with 

previous findings, facilitation was consistently observed, even if with poor internal consistency. It was also 

relevant that the SSd, which is the task used in all the studies included in the present thesis, showed the 

largest, most dominant, and most reliable facilitation and interference effects, not only providing further 

evidence for its methodological validity, but also overcoming one of the main limitations of the present 

thesis, namely the use of only congruent and incongruent trials, which allowed us to compute only the 

global measure of Stroop effect. Our future studies will thus capitalize on the present study, and also 

neutral conditions will be included to disentangle facilitation and interference effects, which is significant 

also for our purpose of exploring proactive and reactive control.  

Lastly, an aspect worthy of consideration is the role of task automaticity and task asymmetry, which 

often goes unnoticed when decomposing the Stroop performance but, as highlighted by our results, likely 

has an impact that should not be overlooked. For what concerns the automaticity of the task sets involved 

in conflict tasks, which we considered as an ensemble of both processing strength and S-R mapping, our 

results suggested that weighting the facilitation and interference effects for it is important to more 

precisely predict the performance, in all conflict tasks and not only in the Stroop task. However, one 

limitation of this study was that we could not disentangle the effect of the two components involved in 

automaticity, which however will be necessary in future studies, as highlighted by our results, some of 

which were in contrast with our predictions probably for this precise reason. Indeed, when estimating the 

automaticity of the tasks, specific attention should be paid to the response modality employed, whose 

importance was for example suggested  by the fact that using manual responses made the COL task-set, 

which is always assumed to be not so automatic, more automatic than WORD reading, which instead is 

commonly predicted to be quite automatic. The task automaticity was predicted and also shown to be 

directly involved in task asymmetry (computed as the difference between the automaticity of the two 

tasks), which in turn affected task interference. But again, some of our predictions were not satisfied, 

probably because task interference is not so simply affected by task asymmetry, but the effect of 

asymmetry strongly relies also on whether the two tasks share or not neural/cognitive codes. As such, even 

though asymmetry is the greatest, if the two conflicting tasks do not share such neural/cognitive codes (i.e., 

in the Simon task), the task interference might be  reduced. Overall, our results thus provided initial and 

potentially useful insights into task asymmetry, leading us to propose that a sort of dimensional overlap 

between the two tasks is required for task asymmetry to fully exert its effect.  

Overall, this study addressed and started to answer some important open questions, while at the same 

time uncovering further inquiries that require more thorough investigation due to their complexity. This 

thus paves the way for many future studies on this interesting and complex matter.   
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CHAPTER 8 

General Discussion 

8.1. From where we started: overview of background and aims 

The present doctoral thesis aimed to shed light on a complex and still open issue: the comprehensive 

understanding of cognitive control. Cognitive control is among the cognitive abilities that most distinctly 

characterize human beings, as it enables us to flexibly regulate our behavior in order to achieve our goals 

(Chiew & Braver, 2017; Cohen, 2017). By replacing automatic responses with adaptive behaviors, cognitive 

control frees ourselves to act appropriately within a given context and in accordance with our objectives 

(Miller & Cohen, 2001). 

The undeniable significance of cognitive control has led to numerous efforts over the past decades 

dedicated to unraveling its functioning and neural underpinnings. However, despite these endeavors, our 

knowledge in this domain remains limited. Various theories have been proposed, exhibiting considerable 

heterogeneity among them. While some of these theories are supported by robust evidence, others are 

less so. Yet, this diversity has contributed to rendering the landscape of our understanding even more 

intricate and obscure. It is evident that achieving a true comprehensive understanding of cognitive control 

within the scope of a thesis is not feasible. Nonetheless, our endeavor has been to make our contribution 

as significant as possible by rigorously addressing this intricate aspect of human cognition, both at the 

theoretical and methodological levels.  

In particular, two theoretical assumptions have served as the guiding thread for this thesis, with the first 

being the selection of the theoretical framework to be adopted. Given the multitude of existing theories, it 

is indeed crucial to opt for and consistently employ a single theoretical framework in order to better 

systematize the results. This facilitates the coherent interpretation of both the behavioral signatures and 

the functional significance of neural correlates. Specifically, we have embraced the dual mechanism of 

control model (DMC; Braver, 2012; Braver et al., 2007) for this purpose. As extensively expounded 

throughout this work, this model represents an advancement compared to classical models like the conflict 

monitoring one (Botvinick et al., 2001). The DMC model has the advantage of comprehensively elucidating 

commonly observed phenomena, such as the proportion of congruency effects, and accommodating the 

intrinsic variability inherent to cognitive control. Therefore, the rationale behind our adoption of the DMC 

model stems from its capacity to address the complexity of cognitive control, a facet which renders it 

unrealistic to attribute to a single mechanism (Braver, 2012, 2012; Torres-Quesada et al., 2013). 

https://www.zotero.org/google-docs/?t8k2LD
https://www.zotero.org/google-docs/?t8k2LD
https://www.zotero.org/google-docs/?t8k2LD
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https://www.zotero.org/google-docs/?8usuEb
https://www.zotero.org/google-docs/?8usuEb
https://www.zotero.org/google-docs/?ErmQ3z
https://www.zotero.org/google-docs/?jxnGia
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Consequently, our utilization of this model has steered our exploration of cognitive control towards 

presupposing the existence of two distinct control modes, proactive and reactive control, and we aimed to 

ascertain the potential separability between these modes, evaluating whether they are genuinely distinct.  

The second critical theoretical premise, which we have underscored from the outset but that has 

become notably pronounced during our exploration of neural correlates (see Chapters 5 and 6), centers on 

the significance of representations. While our understanding of cognitive control remains limited, 

representations stand out as its core components. In fact, the behavioral flexibility ensured by cognitive 

control is assumed to heavily rely on the maintenance and continual adjustment of goal representations 

(Chiew & Braver, 2017; Cohen, 2017; Diamond, 2013; Miller & Cohen, 2001). It is through these 

representations encoded at the neural level that downstream neurons can enact the neural processes 

essential for executing goal-relevant actions. The notion of representations, encompassing the neural basis 

capable of encoding all requisite goal-related information, thus assumes a fundamental role in fully 

understanding the dynamics of cognitive control (Cellier et al., 2022; D’Esposito, 2007; Diedrichsen & 

Kriegeskorte, 2017; Kriegeskorte & Diedrichsen, 2019; Schumacher & Hazeltine, 2016).  

The potential of the representational perspective on cognitive control is also recognized by the theories 

delineating cognitive control in terms of representations (e.g., Badre et al., 2021; Braver, 2012; Cohen et al., 

1990; Freund et al., 2021; Kriegeskorte & Diedrichsen, 2019). This conceptualization can be extended to 

encompass the predictions of the DMC. At the foundation of the two control modes, one can posit the 

existence of representations that encode information relevant to achieving the goal, expecting these 

representations to exhibit distinctions based on whether the goal is pursued in a proactive or reactive 

manner. Therefore, to gain a deeper understanding of cognitive control, it becomes evident that 

considering representations is essential, and this involves directly testing theories regarding cognitive 

control. Our current limited comprehension of cognitive control may indeed stem from the significant 

oversight of representations, with instead the primary focus often centered on processes that serve merely 

as indirect proxies for them (Freund et al., 2021). Therefore, investigating these representations and their 

relationship with processes would enable a more comprehensive understanding of cognitive control.  

These considerations thus elucidate the overarching objective of this doctoral thesis: to delve into both 

the neural processes of cognitive control and the neural representations upon which these processes 

depend. Given our adoption of the DMC as the theoretical framework, we have undertaken a specific 

examination of the neural processes and representations associated with both proactive and reactive 

control. The aim has been to ascertain whether these control modes exhibited distinct characteristics at the 

neural level. However, given the absence of robust evidence for this separability even at the behavioral 

level, we found it necessary to take a step back and first verify the distinctness of the behavioral signatures 

of proactive and reactive control as well. 

https://www.zotero.org/google-docs/?FIpEFv
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8.2. Tracing Our Path: Methodological and statistical considerations  

The objective of this thesis was multifaceted, and to achieve it effectively, besides establishing 

theoretical foundations, we had to accord significant importance to methodological rigor. Consequently, 

while addressing our research questions, we have both highlighted and addressed various methodological 

and statistical issues. These challenges assumed substantial significance within this project, serving as the 

foundational bedrock and essential means for attaining our goals. However, these methodological and 

statistical aspects were not solely the path through which we navigated to achieve our objectives; they also 

formed an integral and pivotal component of this work. Hence, they warrant thorough discussion and can 

be summarized into the following three key points. 

8.2.1. Methodological and statistical properties of the Stroop effect 

The first relevant aspect we addressed pertained to the methodological and statistical properties of the 

measure to employ, which is intertwined with the primary methodological decision we needed to make – 

namely, the selection of the experimental paradigm. 

We commenced with the premise that, within cognitive psychology, the experimental paradigm is 

pivotal, given that it is the sole tool at our disposal for gauging cognitive processes. Measurement in 

psychology is particularly intricate, as cognitive phenomena are often explored through latent constructs 

that remain unobservable directly. Consequently, when there is no strong evidence regarding the measure 

validity, we encounter a deficiency in the essential information required to assess each type of validity and, 

consequently, the validity of the study conclusions (Flake & Fried, 2020). 

For all the studies envisaged in this project, we opted to employ the Stroop task (Stroop, 1935), a highly 

influential and widely used interference task. Its extensive history spanning nearly a century in evaluating 

interference resolution has yielded an extensive body of literature underscoring the generation of a 

universal effect by this paradigm (Parsons, 2020). Furthermore, our selection was influenced by the task 

suitability for experimental manipulations that differentiate between proactive and reactive modes, 

aligning precisely with our aim. However, despite the undeniable advantages of the Stroop task as a 

paradigm, selecting the most suitable version for our purposes was not straightforward, as such benefits 

cannot be automatically extended to all the variants that have been proposed. Indeed, these variants 

exhibit a high degree of heterogeneity among themselves to the extent that some might not warrant the 

label of Stroop task. Labeling them as such could potentially jeopardize measurement validity, as the 

measure attainable through these variants might not truly reflect what is intended to be measured. 

Therefore, in selecting the most appropriate Stroop version for our studies, we aimed to prioritize 

measurement validity. As such, we assessed various Stroop variants to determine which ones yielded a 

https://www.zotero.org/google-docs/?TmDtx2
https://www.zotero.org/google-docs/?DW5geP
https://www.zotero.org/google-docs/?66TkNg
https://www.zotero.org/google-docs/?66TkNg
https://www.zotero.org/google-docs/?66TkNg
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Stroop effect that closely resembled the original effect in all respects. However, this preliminary work, 

originally conceived solely for the purpose of selecting a methodologically valid Stroop version, has shed 

light on the profound methodological confusion that plagues the extensive literature on the Stroop task. 

The pressing need for systematization compelled us to undertake a significantly larger effort—a 

methodological review of the Stroop task, outlined in Chapter 2. This endeavor was undertaken not only to 

benefit the current thesis project but also to contribute to the literature on this subject.  

Among the primary merits of this review is the provision of a structured approach to designing 

methodologically robust Stroop tasks, underscoring the crucial point that, in order to obtain valid measures 

of Stroop effects, these tasks must account for its multifaceted nature. Our main message in brief was that, 

considering that the Stroop effect arises from multiple loci, experimental designs that generate conflict at 

the task locus while inducing interference/facilitation at the stimulus and response loci are essential for 

producing comprehensive measurements of the Stroop effect and in turn upholding measurement validity. 

The second strength of the review lies in the fact that, having determined that a significant portion of 

the most known alternative adaptations of the Stroop task lacked the capacity to yield valid Stroop effect 

measures, we proposed a solution. This involves employing spatial Stroop tasks that tap spatial interference 

by presenting stimuli with semantic attributes indicating a spatial location while simultaneously displayed 

in a physical position. A methodologically sound example of this task is the one used in our previous studies 

and proposed by Puccioni and Vallesi (2012a,b,c). The strength of this Stroop adaptation, although only 

when realized in purely spatial versions, is twofold. It not only generates a comprehensive Stroop effect 

involving interference between two competing task sets and stimulus- and response-related 

conflicts/facilitations, but it also addresses certain drawbacks associated with the classical Stroop version, 

such as reducing linguistic confounding and requiring manual responses.  

Overall, the review constituted a preliminary effort that enabled us to clarify the methodological 

principles for designing methodologically valid Stroop tasks. This clarification is important for two reasons: 

firstly, these principles consistently emerged throughout the entire project, proving relevant not only for 

our work but also for the broader Stroop literature; secondly, the review aided us in selecting a valid 

measure of the Stroop effect. 

In psychology, as in any scientific discipline, the utilization of valid measures is undoubtedly crucial; 

however, this alone is insufficient. Therefore, having established the required methodological 

characteristics for the measure we intended to employ, in Chapter 3, we investigated its statistical 

properties, with a specific focus on reliability. Indeed, although often overlooked, reliability is fundamental 

for examining interindividual differences through correlational research in cognitive neuroscience and 

psychology (e.g., Dang et al., 2020; Elliott et al., 2020; Rouder et al., 2019; Wennerhold & Friese, 2020).  

https://www.zotero.org/google-docs/?PVdrCE
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Moreover, assessing the reliability of our measure was particularly crucial considering the reliability 

paradox (Hedge et al., 2018) and related proposals (Rouder & Haaf, 2019), according to which experimental 

effects that are large and consistently replicable to the extent of being deemed universal (Parsons, 2020), 

much like the Stroop effect, are likely to lack sufficient reliability. Therefore, to ensure that the chosen 

Stroop measure was not only valid and capable of eliciting a large Stroop effect, but also reliable, we 

conducted a subsequent study, preliminary to the entire project. We seized this opportunity to examine 

alternative spatial Stroop versions to the one proposed by Puccioni and Vallesi, termed Peripheral spatial 

Stroop. Indeed, while this spatial Stroop version is methodologically sound and adheres to the established 

criteria, it does have some potential weaknesses stemming from its use of peripherally presented stimuli. 

As a result, five alternative spatial Stroop task versions were devised, retaining the methodological benefits 

of the Peripheral spatial Stroop while addressing its limitations. 

One of the strengths of this study was our utilization of an innovative approach to assess reliability, 

which provided evidence contrary to the reliability paradox and offered a solution to overcome it. 

Specifically, we demonstrated that multilevel modeling approaches effectively improved the precision of 

the estimates of our experimental effects by disentangling true experimental effects from measurement 

error, represented by trial-by-trial variability (also known as trial noise) within subjects. This in turn 

enhanced the reliability of our experimental effects. Demonstrating that this approach enhances the 

reliability of measurements was significant not only for reliability itself, but also to emphasize the general 

utility of employing multilevel modeling approaches to estimate experimental effects with precision, which 

is of utmost importance in (psychological) research. This conclusion also relies on another strength of this 

study, in which we assessed the robustness of results to analytical flexibility by directly comparing different 

analytical approaches (as well as different measure transformations). We thus can safely claim that 

multilevel modeling approaches, by providing more precise and reliable estimates of the experimental 

effects, are preferable as compared to GLM. For these reasons, multilevel modeling analyses were then 

used in the entire project. 

Overall, this study has not only offered valuable insights into relevant statistical issues, such as reliability 

and analytical flexibility, but it has also provided a significant statistical groundwork for the current project. 

This foundation enabled us to identify the most suitable spatial Stroop task as the one yielding a Stroop 

effect that was the largest, the most robust to analytical flexibility, and the most reliable. These statistical 

properties, besides the methodological ones, were mainly satisfied by the spatial Stroop task called 

Perifoveal. It works exactly as the Peripheral one, while overcoming its limitations. Indeed, it mitigates 

possible biases due to eye movements and (re)orienting of visuospatial attention. Therefore, the Perifoveal 

spatial Stroop task, being suitable for neuroimaging and electrophysiological studies, was then used in all 

the subsequent studies, both behavioral and EEG ones.  

https://www.zotero.org/google-docs/?j0aDiF
https://www.zotero.org/google-docs/?sV7PrG
https://www.zotero.org/google-docs/?3BMD64
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8.2.2. Validity of proactive and reactive control measures and how to test them 

After identifying a Stroop effect measure that was methodologically valid and with adequate statistical 

properties, these same facets were again investigated, albeit with a shift in focus toward measures of 

proactive and reactive control. Chapter 4, which presents the behavioral study, precisely tackled this 

subject. In striving to identify the behavioral signatures of the two control modes, it also served to test and 

validate a novel approach for accomplishing this goal, also for subsequent studies. 

The necessity to devise a means of obtaining valid measures for proactive and reactive control arose 

from the fact that approaches commonly employed in the literature suffer from limitations that jeopardize 

the validity of the resultant measures. Our critique is not so much directed at the manipulations employed 

to elicit proactive and reactive control, namely, the List-Wide Proportion Congruency (LWPC) and the Item-

Specific Proportion Congruency (ISCP), respectively, but rather at the approaches with which these 

manipulations are commonly employed. In particular, these approaches have primarily emerged in 

response to a significant critique directed toward the manipulations of the PC, which is referred to as the 

contingency hypothesis (Schmidt, 2019; Schmidt & Besner, 2008). If this hypothesis were to entirely 

account for the effects of PC manipulations, the implication would be a complete lack of validity in the 

obtained measures of proactive and reactive control. This would stem from the fact that what is being 

measured does not align with the intended construct – the proactive and reactive modulation of the Stroop 

effect – but rather reflects the mere effect of something else at a considerably lower level, namely, 

stimulus-response associative learning processes. We completely agree with the necessity to control and 

exclude the possibility that the effect of PC manipulations is biased by the contingency effect. However, 

what we do not align with is the commonly employed approach that we have termed the design-level 

control, which has been conceived for this purpose. Briefly, this family of approaches, also recommended in 

a consensus paper (Braem et al., 2019) and described more extensively in Chapter 4, involves meticulously 

controlling the experimental design (i.e., by using inducer and diagnostic items) to prevent any contingency 

effect.  

While it might seem beneficial to methodically eliminate every potential low-level effect at the level of 

the experimental design, in our view, these approaches are not only excessively impractical and time-

consuming but also not always feasible. Furthermore, some of them are founded on assumptions that 

might not always be assured. What holds even greater significance is that, in their efforts to control for 

confounding variables at the design level, these approaches substantially compromise the measurement 

validity of the DMC assumption. In fact, they are all purposely limited to manipulating only one control 

mode at a time (in order to control for the effect of the other one), inherently excluding the possibility of 

simultaneously manipulating both the LWPC and ISPC. As a consequence, by measuring only one control 

mode at a time, it becomes impossible to discern the impact of the other control mode, even though, in 

https://www.zotero.org/google-docs/?T4VH30
https://www.zotero.org/google-docs/?Bqr2dV
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accordance with the DMC, it is inevitably evoked given the assumed dual-mechanism nature of control. To 

eliminate the influence of the unmeasured control mode, its PC should ideally be set at 100. However, this 

manipulation is not possible. Commonly, to nullify the unmeasured control mode, the PC is set at 50, 

implying that this control mode, though unmeasured, is elicited at an average level, but its effect is then 

neglected.  

A direct consequence of the infeasibility of design-level control approaches to simultaneously 

manipulate both LWPC and ISPC is the inability to test the interaction between proactive and reactive 

control. However, their interplay is indeed implicitly assumed by the DMC, given that reactive control 

should prevail when proactive control is unfeasible or less advantageous (e.g., Braver, et al., 2009; 2021; De 

Pisapia & Braver, 2006). The solution we proposed to ensure the validity of measures for proactive and 

reactive control was to test them when both are manipulated, that is, by simultaneously varying both the 

LWPC and the ISPC. This approach enables a direct examination of the DMC assumption positing the 

coexistence of proactive and reactive control, by revealing whether each mechanism is activated while the 

other is also in operation. Furthermore, by having precise knowledge of the PC at both the list-wide and 

item-specific levels, we can effectively track the impact of each control mode on performance. And lastly, 

we can also explore the interplay between proactive and reactive control by testing the interaction 

between LWPC and ISPC.  

The advantages elucidated above, and particularly the accurate tracking of each control mode effect, 

were further augmented by our utilization of trial-by-trial estimates of LWPC and ISPC. Indeed, the 

conventional manipulations of LWPC and ISPC, even when implemented simultaneously, are insufficient to 

provide an accurate estimation of the impact of each control mode at each trial. This limitation arises from 

the fact that these manipulations are traditionally computed at the block level. Specifically, LWPC and ISPC 

are derived by calculating the number of congruent trials (either overall or for each item, respectively) 

within a block, divided by the total number of trials (either overall or for each item, respectively) within the 

same block. However, these block-level LWPC and ISPC variables unequivocally correspond to the actual 

PCs solely at the conclusion of the block. Instead, the PCs in the middle, and especially at the beginning of 

the blocks, do not genuinely reflect the PC estimated by participants, given that participants are not 

typically aware of the probabilistic structure of the task. Participants are thus likely to continuously, trial-

by-trial, implicitly estimate the LWPC and ISPC values using some form of statistical learning based on the 

history of previous trials, and then implement a specific level of control accordingly. Consequently, when 

LWPC and ISPC are calculated at the block level, the resulting measures of proactive and reactive control 

are inherently not fully valid. The design-level control approach works by operationalizing LWPC and ISPC as 

block-level measures, given that the PC from an individual trial can be meaningfully interpreted only when 

aggregated across all trials, lacking meaningful significance when taken in isolation. However, as elucidated 
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earlier, this approach is not realistic, and it does not accurately reflect adaptive control, which is inherently 

dynamic and more likely to operate at the trial level. What we have done, therefore, is to vary both LWPC 

and ISPC at the design level and then, starting from these block-level measures, we estimated trial-by-trial 

LWPC and ISPC utilizing an ideal Bayesian observer. These estimates were then employed as predictors in 

our analyses. By doing so, we obtained more fine-grained and realistic measures, thus enhancing the 

measurement validity of proactive and reactive control. The comparisons between models including block-

level vs trial-level predictors indeed revealed that the latter models better explained the data, so trial-level 

predictors were then used for all our analyses (see Chapter 4, but also Chapter 5). 

Both these novelties were implemented, overcoming the limitations of conventional design-level 

approaches. However, to maximize the efficiency and flexibility of our approach, and to control for 

confounding factors that are typically addressed at the design level, we introduced another innovation: 

analysis-level control. For instance, even though LWPC and ISPC were manipulated to be as orthogonal as 

possible with respect to contingency, our design could not entirely exclude the influence of low-level 

learning effects. Hence, we employed multilevel modeling approaches and, by including contingency as a 

predictor in the model, we could control for its effect. The findings that ISPC-related effects, which are very 

likely to be confounded with contingency, consistently emerged when contingency was removed from the 

statistical model suggest that the inclusion of contingency in the model is necessary to control for that (see 

Chapter 4). Another advantage of our statistical approach (see Chapter 3) is that the utilization of multilevel 

modeling analyses enhanced the precision of our experimental effect estimates, as noted above. By 

incorporating predictors not only for confounders like contingency but also for low-level variables reflecting 

trial-by-trial variability into the model, we were thus able to disentangle effects due to trial noise from the 

true experimental effects. Model comparisons, conducted before the analyses of interest, indeed showed 

that including all the confounders in the model increased the model fit (see Chapter 4). Furthermore, these 

statistical models were the only ones that enabled us to leverage our simultaneous manipulation of 

proactive and reactive control, which was not easily achievable through classical GLM-based approaches 

(see Chapter 4). Indeed, by employing multilevel modeling, we could concurrently estimate the effects of 

proactive and reactive control, along with their interaction, in modulating the Stroop effect. 

Overall, with our approach and its relative advantages, we were able to achieve our objective of 

obtaining proactive and reactive control measures that were not only more valid but also more reliable. 

8.2.3. MVPA potential and methodological choices  

The same novel approach, validated in the behavioral study, was subsequently used in the EEG study. 

The findings presented in Chapter 5 provided additional empirical evidence for the advantages delineated 
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in the behavioral study. This evidence was not solely rooted in the behavioral analyses conducted within 

the EEG study, but extended to the ERP and ERSP analyses as well. 

The advantages of our approach transcended behavioral measurements alone, extending to EEG 

measures because they allowed us to achieve more precise estimations of the dynamics of proactive and 

reactive control at the neural level. Particularly noteworthy was our capability to examine the neural 

correlates of each mechanism even when the other was concurrently activated, in addition to unveiling the 

neural underpinnings of their potential interplay. Moreover, the neural evidence we obtained was founded 

on more precise estimations of the effects. This was possible thanks to the multilevel modeling analyses 

using trial-by-trial predictors for proactive and reactive control, which take full advantage of EEG high 

temporal resolution. 

One aspect that our approach alone could not achieve was the unveiling of proactive and reactive 

control representations. As extensively emphasized throughout the entire thesis, representations are 

fundamental for comprehending cognitive control and therefore deserve the same level of attention 

dedicated to the study of processes. This consequently leads us to another novel aspect of the present 

project: the analysis of our electrophysiological data using multivariate analytical approaches, in addition to 

univariate ones, with the aim of exploring not only processes but also representations. The results of the 

univariate analyses further underscored the necessity of incorporating multivariate approaches: The ER(S)P 

results suggested that solely exploring proactive and reactive control processes was insufficient, and that 

investigating the representations underlying these processes was also imperative to achieve a more 

comprehensive understanding of proactive and reactive control.  

The fundamental significance assumed by the multivariate analyses employed in the current project to 

delineate the neural correlates of proactive and reactive control more precisely is particularly evident from 

the results. This aspect will be elucidated in the forthcoming section, where we will provide a 

comprehensive overview of our findings and endeavor to establish connections between univariate and 

multivariate results. Within this current paragraph, we briefly discuss the most relevant methodological 

advantages of the multivariate approaches we used. 

A first general strength lies in our utilization of MVPA on EEG data which, due to the superior temporal 

resolution of EEG compared to fMRI, has the potential to more effectively capture the intrinsic dynamic 

nature of representations (Badre et al., 2021; Cellier et al., 2022). This aspect held particular importance in 

light of our aim to explore proactive and reactive control, whose representations are likely to be extremely 

dynamic. Additionally, considering that one of the main assumptions of the DMC is their temporal 

distinctiveness, investigating whether proactive and reactive control representations rely on temporally 

distinct neural encoding patterns using high temporal resolution seems to be advantageous. 

https://www.zotero.org/google-docs/?broken=UkNRGp
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The second strength lies in the fact that our MVPA was not limited to decoding, which does not enable 

the exploration of the entire representational space due to its insensitivity to rich representational spaces 

(Diedrichsen & Kriegeskorte, 2017; Kriegeskorte & Diedrichsen, 2019; Kriegeskorte & Kievit, 2013). To 

overcome this notable limitation of decoding models, we chose to primarily use Representational Similarity 

Analysis (RSA). This approach offers the advantage of testing complex predictions and thereby 

characterizing the representational space in a more fine-grained manner, encompassing all represented 

features and their interrelationships (Diedrichsen & Kriegeskorte, 2017). By using RSA, we also maximally 

leveraged our trial-level multilevel modeling approach. Indeed, RSA is extremely flexible as the models to 

be tested are specified through Representational Dissimilarity Matrices (RDMs). Therefore, by utilizing 

dissimilarity measures based on comparisons between (distributions of) probabilities, we maximized the 

probabilistic nature of our trial-level variables. Lastly, the specific RSA approach we employed to compute 

brain RMDs played a substantial role in characterizing the representational space in a complex manner. 

Unlike more traditional time-resolved and space-resolved approaches, our utilization of a searchlight 

approach concurrently incorporating portions of spatial, temporal, and spectral EEG information, enabled 

us to fully harness the intricate nature of the EEG signal. Given that our ERSP results provided additional 

relevant information beyond ERPs, we recognized the importance of incorporating spectral information in 

our MVPA analyses as well. Overall, this searchlight approach enabled us to obtain more comprehensive 

multidimensional, multivariate pictures of how proactive and reactive control were encoded at the neural 

level. Simultaneously, it increased the interpretability of our outcomes, as we were not entirely blind to any 

specific piece of information by utilizing only a part of each information at a time. 

The third strength of our MVPA analyses is that, even though we believe that RSA offers significant 

advantages over decoding, we chose not to exclude decoding, as we recognized its potential in providing a 

more comprehensive picture. In fact, by employing decoding following RSA, we intentionally aimed to 

explore a fundamental assumption concerning the functional role of representations. It has been proposed 

that the functional role of cognitive control representations is to encode the required information (i.e., 

goal-related information) at the neural level so that downstream neurons enacting neural processes can 

utilize such information to execute goal-relevant actions (Cellier et al., 2022; D’Esposito, 2007; Diedrichsen 

& Kriegeskorte, 2017; Kriegeskorte & Diedrichsen, 2019; Schumacher & Hazeltine, 2016). Thus, one way to 

explore this assumption is to investigate whether such encoded information is truly available for use, and 

decoding can serve such a purpose. The successful decoding could indeed indicate the availability of such 

information. Moreover, by employing both approaches, we were able to intersect their results. The 

overlaps that revealed similar neural activation patterns allowed us to suggest that, if both approaches 

consistently identified the same neural activation pattern, the evidence in favor of it was stronger. 

https://www.zotero.org/google-docs/?hWu0ZT
https://www.zotero.org/google-docs/?M3DHLM
https://www.zotero.org/google-docs/?x3dBt8
https://www.zotero.org/google-docs/?x3dBt8
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One final point warrants a brief discussion, that is, the decoding technique we employed. Indeed, by 

using ridge-based decoding, we overcame the limitations of more conventional decoding techniques, 

namely classification-based ones. Although classification-based methods are widely used (Cole et al., 2016; 

Freund et al., 2021; Woolgar et al., 2011), they can only address binary questions and thus remain closely 

tied to univariate approaches, limiting the full potential offered by multivariate analyses (Freund et al., 

2021). Therefore, ridge-based decoding allowed us to avoid constraining the decoding of representations to 

binary questions, as classification-based methods do. Indeed, the latter are overly simplistic, whereas ridge-

based decoding enabled us to decode our trial-level variables in a more fine-grained manner, capturing 

neural activity patterns with greater precision and ultimately enhancing comparability with our RSA results 

(Bode et al., 2021; Cohen et al., 2011; Popal et al., 2019). 

Before concluding the discussion on the advantages of our MVPA approach, we must make a 

specification. As mentioned earlier, our study was designed to accommodate both univariate and 

multivariate analyses. Therefore, it represents just an initial attempt to lay the groundwork for future 

studies. If future studies are purposefully designed to exclusively employ multivariate approaches, they will 

be able to provide further support for (and potentially refine) the preliminary conclusions drawn here. 

8.3. The road so far: Key Findings for Proactive and Reactive Control 

Based on our overarching goal of studying cognitive control in the context of the DMC framework, which 

posits the existence of two distinct control modes – proactive and reactive – we initiated our investigation 

with a behavioral study. Exploring the neural underpinnings of proactive and reactive control would have 

been premature without first identifying the behavioral signatures that reflect the effects of these control 

modes on performance. Neural dynamics gain indeed meaning only when observable in behavior. Despite 

the numerous behavioral studies that have examined the effects of proactive and reactive control, as 

opposed to the relatively fewer neuroimaging and electrophysiological studies, so far, there is still no clear 

behavioral evidence supporting the separability of proactive and reactive control. This primarily stems from 

the prevalent use of design-level control approaches and, consequently, robust empirical support for the 

existence of two distinct mechanisms, while also controlling for the potential influence of low-level 

confounders, is still lacking. 

As of today, the primary evidence supporting the separability of proactive and reactive control stems 

from a study conducted by Gonthier and colleagues (2016), who examined proactive and reactive control 

separately in the same participants, manipulating each mechanism at a time. This, however, resulted only 

in providing partial evidence due to the inherent limitations of single-mechanism manipulations in ensuring 

measurement validity, as outlined above (see Section 8.2.2). Therefore, by leveraging the advantages of our 

https://www.zotero.org/google-docs/?JDtZ3I
https://www.zotero.org/google-docs/?JDtZ3I
https://www.zotero.org/google-docs/?TTx75o
https://www.zotero.org/google-docs/?TTx75o
https://www.zotero.org/google-docs/?rhpiPc
https://www.zotero.org/google-docs/?lHgtBf
https://www.zotero.org/google-docs/?lHgtBf
https://www.zotero.org/google-docs/?lHgtBf
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innovative approach to rigorously examine the behavioral effects of these control modes, we aimed to 

provide a more solid empirical basis for the proactive and reactive control distinct existence at the 

behavioral level.  

While our behavioral findings provided compelling evidence for only one of the control mechanisms, 

namely proactive control, their contribution is significant due to the complex and intriguing pattern they 

revealed. Further complexity has also been suggested by our EEG findings which, in line with the behavioral 

results, have more clearly highlighted the existence of specific correlates for proactive control only but have 

also provided valuable insights into reactive control mechanism(s). Indeed, thanks to the use of a 

multimethod EEG approach, involving both univariate and multivariate analyses, the emerging picture is far 

from simple, indicating initial evidence that what is postulated by the DMC may be true, but in reality, 

things may not be so straightforward. 

In what follows, we aim to summarize our key findings by linking behavioral and EEG results to provide a 

comprehensive overview of proactive and reactive control. This will first be done separately for each 

control mode and then, in the final section, we will compare them to draw conclusions.  

8.3.1. Behavioral and Neural correlates of interference 

The Stroop effect has been the critical measure that we have consistently employed throughout the 

entire project. It reflects the cost in performance due the Stroop interference that was experienced, and 

thus, the behavioral Stroop effect is the outcome of the cognitive processes that have been implemented 

to execute the task. As such, we have used it as the key measure to assess the effect of the investigated 

control mechanisms, as the proactive and reactive control mechanism engagement could be observed only 

as their effects on Stroop effect magnitude. Therefore, before delving into our comprehensive discussion 

on our proactive and reactive control results, we first have to discuss the findings on the Stroop effect. 

Based on these premises, at the behavioral level it was a fundamental prerequisite to observe a Stroop 

effect that was large, robust to analytical flexibility, and reliable, and this was the case. Whether we 

consider the Peripheral or the Perifoveal paradigms in the behavioral study, as well as the behavioral 

results derived from the EEG study using the Perifoveal spatial Stroop task, a common thread emerged. In 

all these cases, we consistently observed a Stroop effect characterized by very large effect sizes and high 

values of reliability. Moreover, such results were consistent and robust, regardless of the employed 

analytical approach, with the Stroop effect showing a 100% of dominance, meaning that it was observed in 

the expected direction in all our participants. Finding a consistent Stroop effect signature provided a solid 

foundation for our aim, since observing a substantial Stroop effect served as a crucial backdrop against 

which we could examine the effect of proactive and reactive control. 
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However, response times are only the final output of the cognitive processes required to perform the 

Stroop task, and thus the behavioral investigation of the Stroop effect does not allow making inferences on 

how the interference-related processes operate and unfold over time. The EEG is thus vital to solve this 

issue and unveil the temporal dynamics and real-time evolution of the neural activity reflecting these 

cognitive processes that are finally translated into the behavioral Stroop effect. In turn, assessing 

interference-related neural processes was essential as it provided a foundational context for then 

examining how proactive and reactive control mechanisms modulated them. Therefore, by first establishing 

the neural underpinnings of Stroop interference, we were better equipped to investigate whether and how 

proactive and reactive control modes influence and interact with these neural processes. 

In our investigation of interference-related processes using univariate analyses, we identified a 

consistent pattern that unfolded in three main steps across both ERPs and ERSPs. This pattern likely 

represents the temporal sequence of neural processes involved in detecting and handling interference.  

In the initial stage, interference affected visuo-spatial perceptual and attentional processes. This was 

evident from the bilateral posterior N170 and frontal P2 ERP components, which play key roles in 

processing the target stimuli. These components are particularly enhanced when the target consists of two 

compatible features, as seen in the case of Congruent stimuli, in line with prior research (Soltész et al., 

2011; Szűcs & Soltész, 2010; Zurrón et al., 2013). Therefore, during this early stage, when interference was 

present due to the incompatibility of stimulus features, the amplitude of these components was reduced, 

likely reflecting the initial phase of interference processing. The P2 functional role was further supported by 

its correlation with behavioral performance. Specifically, the attenuation of the P2 component led to worse 

performance (longer RTs), further indicating a more challenging target processing during Incongruent trials. 

We proposed that both of these ERP components were modulated by Theta frequency activity over 

bilateral frontal and right parietal scalp regions, aligning with prior research that has established a relation 

between Theta frequency and the N170 component (Freunberger et al., 2011). Moreover, there is evidence 

supporting a similar functional role of Theta in visuo-spatial attentional processing and performance 

enhancement (Klimesch, 1999), specifically by enhancing target processing (Slagter et al., 2009; van Vugt, 

2014).  

Following the initial early visuo-attentional phase, there was a subsequent involvement of conflict-

related processes, signaling the necessity for recruiting control mechanisms. While we did not clearly 

observe an increase in fronto-central negativity (N2 component) for Incongruent stimuli, as is typically 

reported in the literature (Folstein & Van Petten, 2008; Larson et al., 2014), this absence might be 

attributed to the stronger effect of the P2 component. However, brain-behavior correlations unveiled that 

a greater negativity of a frontal component modulated performance with longer RTs, indicative of 

heightened conflict-related processing demands. This interpretation was further substantiated by our ERSP 

https://www.zotero.org/google-docs/?BAvjbh
https://www.zotero.org/google-docs/?BAvjbh
https://www.zotero.org/google-docs/?VFJRQ8
https://www.zotero.org/google-docs/?AQ8a9n
https://www.zotero.org/google-docs/?mW7hhi
https://www.zotero.org/google-docs/?mW7hhi
https://www.zotero.org/google-docs/?u9OL4S
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results, which revealed the presence of classical mid-frontal Theta activity characterized by a greater power 

increase during conflict trials (e.g., Cavanagh & Frank, 2014; Hanslmayr et al., 2008). 

Conflict-related processing entered a third stage, revealing a complex pattern of interference resolution. 

In this phase, conflict was first reflected by a notable attenuation in the amplitude of the centro-parietal 

P3-like component and the lateral frontal negativity (LFN). This pattern aligns with findings from studies 

such as Vurdah et al., (2023), West & Alain (2000), and Zurrón et al., (2013) for the former, and Lansbergen 

& Kenemans (2008), and West & Alain (2000) for the latter. Both of these components exhibited a peculiar 

pattern: in the absence of conflict, no amplitude attenuation was observed; however, such attenuation 

became evident when conflict was experienced. Our findings are also supported by the positive correlation 

between the amplitude of these components and task performance. Moreover, since their neural 

generators were located across a broad cluster of medial parietal and frontal regions, including the ACC, 

these components may reflect conflict processing. From about 480 ms the voltage pattern of these 

components reversed, showing two later LP components over similar scalp regions (in line with Appelbaum 

et al., 2014; Lansbergen & Kenemans, 2008), whose cortical sources were found in the dorsal ACC and 

dorso-medial PFC. 

 Overall, these results suggest that this third stage involves interference resolution which unfolds in a 

complex manner, with the earlier components serving the functional role of conflict processing and the 

later ones conflict resolution, in line with Lansbergen and Kenemans’ (2008) findings. Moreover, such 

dynamics were characterized by distinct latencies, as shown by our RIDE analysis, revealing that during 

Incongruent trials the engagement of these components was delayed by conflict processing (e.g., 

Lansbergen & Kenemans, 2008). These components were probably modulated by the power suppression 

observed for Alpha and Beta frequencies in a similar time window, suggesting the functional role of these 

frequencies in conflict processing. Specifically, the suppression of Beta2 and Beta3 frequencies was 

probably implied in the selection of task-relevant information (Tafuro et al., 2019), while Alpha suppression 

is likely reflective of the necessary activation of the relevant task set and response to overcome 

interference (Nurislamova et al., 2019) and may also reflect the goal-directed suppression of irrelevant 

spatial information (Cohen & Ridderinkhof, 2013). 

Response-locked analyses offered a deeper understanding of response conflict occurring at this stage, 

revealing two successive ERPs within a similar time window as the P3-like component. During conflict trials, 

we observed an early increase in frontal negativity (PRN) coupled with an enhanced parietal positivity. This 

was followed by a voltage pattern inversion, with all these components also influencing behavioral 

performance. The functional role of these components relates to response competition, which occurs when 

alternative conflicting responses are pre-activated. These response-locked components thus likely reflect 

response selection and inhibition of irrelevant responses, aligning with findings from prior studies (e.g., 

https://www.zotero.org/google-docs/?ynxUnT
https://www.zotero.org/google-docs/?ynxUnT
https://www.zotero.org/google-docs/?ynxUnT
https://www.zotero.org/google-docs/?ynxUnT
https://www.zotero.org/google-docs/?ynxUnT
https://www.zotero.org/google-docs/?ynxUnT
https://www.zotero.org/google-docs/?ynxUnT
https://www.zotero.org/google-docs/?JqIAZU
https://www.zotero.org/google-docs/?JqIAZU
https://www.zotero.org/google-docs/?JqIAZU
https://www.zotero.org/google-docs/?JqIAZU
https://www.zotero.org/google-docs/?em0wJh
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https://www.zotero.org/google-docs/?BqNYu4
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Burle et al., 2016; Carbonnell et al., 2013; Chen et al., 2011; Vidal et al., 2003). Our ERSP results also 

provided evidence regarding the involvement of Theta and Alpha/Beta frequencies during this response-

related stage. These findings complemented our understanding of the functional role of the identified ERPs 

in response conflict. Specifically, Theta activity may be implied in the selection of the relevant task set 

(Capizzi et al., 2020; Cooper et al., 2015; Sauseng et al., 2010), and this probably occurs by prioritizing the 

stimulus information through Alpha/Beta frequencies involvement (Nurislamova et al., 2019). These neural 

processes likely represent the response-related counterparts of the stimulus-locked Alpha/Beta activity. 

Although the pattern revealed by univariate analyses is inherently complex, a deeper understanding was 

attained through multivariate analysis findings. These findings not only elucidated the intricacies of conflict 

processes but also provided evidence for the representations that underlie them. Although no previous 

literature provided us with a firm foundation for interpretations, we attempted to establish connections 

between univariate and multivariate findings and offer tentative explanations. 

Specifically, we postulated that the visuo-spatial attentional processes observed in the initial stage of 

interference resolution (N170 and P2), which were more pronounced during Congruent trials (indicating an 

absence of conflict), might have played a role in creating a representation of the absence of Conflict. This 

representation could thus be subsequently encoded by a left-lateralized Beta2 neural activity pattern. 

Then, the absence of Conflict representation could have influenced the LFN and P3-related processes, 

contributing to the observed greater amplitude during Congruent trials. Conversely, when this 

representation, specific to the absence of Conflict, remained inactive due to the presence of Conflict, it led 

to an amplitude attenuation in the P3/LFN components. 

The situation was different at the response level, where a very early PRN component signaling conflict 

may have contributed to form a representation for the presence of Conflict, which was encoded at the 

response level by Beta2 activity over left motor regions. Then, this Conflict representation could have been 

used to modulate later conflict resolution processes, potentially influencing response selection processes, 

as indicated by the similar spectral involvement of the Beta2 frequency found in response-locked ERSP 

analyses. Therefore, the delayed identification of Conflict representation in our multivariate analyses might 

be attributed to the necessity of conflict to be initially detected by processes mainly relying on response 

competition. 

8.3.2. Behavioral and Neural correlates of proactive control 

One of the key findings of the present thesis is that both behavioral and EEG analyses converged on 

indicating the existence of a proactive control mechanism modulating the Stroop effect, revealing also its 

neural dynamics.  

https://www.zotero.org/google-docs/?pViuAB
https://www.zotero.org/google-docs/?broken=XRtGxX
https://www.zotero.org/google-docs/?broken=XRtGxX
https://www.zotero.org/google-docs/?broken=XRtGxX
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Briefly, proactive control is postulated to modulate interference in an anticipatory manner, and thus the 

main prediction was that when proactive control level is high, the interference, by being anticipated, can be 

reduced. This pattern should thus be observed both at the behavioral level, with reduced Stroop effects, 

and at the neural level, with a modulation of the conflict-related correlates. Of note, at the neural level this 

premise holds for the univariate analyses only, and from a representational perspective, we expected to 

find, early in time, a representation of LWPC that, by encoding the global likelihood of conflict, would serve 

as the basis for implementing proactive control processes.  

The behavioral signatures we obtained for proactive control are robust and compelling, as the 

behavioral results for both the behavioral and the EEG studies showed the hypothesized proactive 

modulation of the Stroop effect, with smaller Stroop effects when the LWPC was lower, thus when 

proactive control was higher. This effect was not only robust across all our analyses (both LMM and RCA) 

and highly reliable, but it also exhibited consistently medium to large effect sizes (greater than .5). 

Furthermore, this proactive control effect was observed in the vast majority of our participants, with a 

dominance value of nearly 87%.  

Our novel approach, involving the simultaneous manipulation of LWPC and ISPC and the analysis-level 

control strategy, allows us to confidently assert that the observed proactive control effect was estimated 

net of the effect of reactive control (as well as of contingency). This revealed that proactive control 

operated independently from the concurrent activation of reactive control (and/or contingency). 

Therefore, this finding provides robust and compelling evidence for the existence of a proactive control 

mechanism, substantiating that it can operate by itself. Moreover, thanks to our approach, we were able to 

reveal the dominance of proactive control as the stronger control mode. This conclusion is not only 

supported by the lack of strong evidence for a standalone reactive control mechanism but also by our 

interpretation of the three-way interaction results based on our a-priori hypothesis testing. Indeed, the 

model that best fitted our data predicted the dominance of proactive over reactive control. Additionally, 

our results revealed an antagonistic interplay between proactive and reactive control. This sheds light on 

the role of proactive control, demonstrating that it serves as a moderator for the effect of reactive control, 

thereby further emphasizing its dominance.  

As for interference, the assessment of proactive control at the behavioral level provides valuable 

insights into the modulation of RTs (in terms of Stroop effect reduction). However, this behavioral measure 

only captures the final output of proactive control processes. To gain a deeper understanding of these 

processes, investigating their neural correlates and temporal dynamics, using the EEG was again crucial. 

This is particularly relevant because the DMC posits specific assumptions about the temporal characteristics 

of proactive control. 
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Our investigation of proactive control-related processes through univariate analyses revealed that 

proactive control primarily influenced the conflict-related ER(S)Ps discussed earlier, suggesting that 

proactive control played a direct role in modulating conflict detection and resolution. However, it is worth 

noting that this modulation did not involve cognitive processes preceding conflict detection, which may 

seem contrary to expectations and DMC postulates, since proactive control is assumed to act by imposing 

an attentional bias to relevant stimuli/processes even before conflict occurrence. However, we will provide 

a plausible (but speculative) explanation for this observation shortly. 

Proactive control initially modulated the P3-like and LFN components over similar but more lateralized 

scalp regions compared to those identified for interference and, subsequently, it also modulated the LP 

components identified earlier. These findings align with previous research (Appelbaum et al., 2014; West & 

Bailey, 2012). Therefore, they suggest that these modulations influenced both the earlier conflict detection 

and the later interference resolution components. Specifically, when proactive control was high, 

participants were better prepared to experience conflict, resulting in a reduced need for these processes. 

This may be because they anticipated interference and, as a result, did not need to resolve it when 

encountered. Hence, in conditions of high proactive control, there was no significant attenuation in P3/LFN 

amplitude followed by an increase of LP amplitude when participants encountered conflict trials. 

Conversely, the greater amplitude attenuation followed by the greater increase in amplitude that we 

observed during unexpected conflict trials, that is, when Incongruent trials were encountered during low 

proactive control conditions, suggests that participants needed to make a late correction to manage 

unexpected conflict. This has to be done using a form of reactive mechanism, which implies engaging in a 

just-in-time manner in greater conflict processing, both in terms of conflict detection and interference 

resolution. 

Furthermore, we posited that this late conflict processing, necessary when proactive control was low, 

was modulated in a manner akin to the conflict-related processes discussed earlier. Specifically, this 

modulation involved Alpha and Beta power reduction, serving the functional role of signaling the need for a 

greater amount of control, necessary as conflict arose unexpectedly. In contrast, when proactive control 

was high, such power reductions were unnecessary because participants could anticipate and pre-engage 

the required control level. These spectral modulations likely influenced mainly the earlier ERP components, 

given their similar pattern, with more substantial evidence pointing to the role of Alpha suppression in the 

generation of the P3 component (Bernat et al., 2007).  

If we were to base our conclusions solely on the results discussed so far, we would claim that, at the 

neural level, the effect of proactive control is strong and evident. However, the processes underlying this 

effect are counterintuitive. This is because the effects of proactive control that we found on ER(S)Ps 

predominantly reflected the differences in neural processes when proactive control was absent/low, that 

https://www.zotero.org/google-docs/?LSZFxK
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is, enhanced conflict processing required when unexpected conflict was encountered. In other words, the 

ER(S)P Stroop effects were only observed when LWPC was high, with more pronounced ER(S)P for 

Incongruent than Congruent trials. We interpreted these findings as the correlate of the enhanced conflict 

processing required when unexpected conflict was encountered. This, in turn, triggered a late form of "just 

in time” reactive control, which, as we will discuss below, is inherently distinct from the ISPC-induced 

reactive control. Therefore, in a sense, our ER(P)S results seem to shed light on the neural dynamics of 

when proactive control was not engaged, leading us to assume that, since such no ER(S)P Stroop effect 

reflecting conflict processing was observed when proactive control was high, something must have 

occurred earlier to prevent it from being necessary. However, this is only an indirect assumption that is not 

supported by evidence regarding what these early mechanisms might be. A further crucial point is the fact 

that the ER(S)P correlates of proactive control we found are related to conflict processing, in contrast to the 

assumptions of the DMC. Indeed, according to DMC, proactive control is a tonic mechanism with neural 

correlates that should be evident even before conflict processing, possibly modulating perceptual 

processes to reflect the effect of the attentional bias. Despite expecting to find some early processes 

related to proactive control, our ER(S)P results overall support one of the fundamental assumptions of this 

thesis: that investigating univariate correlates allows us to identify only the processes, but a crucial role in 

understanding the neural dynamics of cognitive control is played by representations, which can only be 

investigated using multivariate techniques. Representations are particularly important for the proactive 

control mode because we can assume that, to implement proactive processes of interference anticipation, 

our brain must rely on a representation that encodes, in a distributed and complex manner, the global 

likelihood of conflict. Therefore, relying on such a representation that specifies when conflict is highly 

predictable is probably the best explanation for why, during conditions of conflict but with high proactive 

control, the late reactive conflict-related processes, as we have seen from our univariate analyses, were not 

found to be engaged. This interpretation, to be supported, needs to verify whether LWPC is encoded in the 

brain, and that is exactly what we did, providing positive evidence for it and for how it was modulated.  

As done previously, in discussing the results of the representations, we will try to link them to the 

univariate findings to provide more comprehensive interpretations, which, however, are speculative and 

require future studies.  

The identification of the LWPC representation, evident early in time both at the stimulus and response 

levels, aligned seamlessly with the assumptions of the DMC regarding the proactive control temporal 

dynamics and also underscored the pronounced cognitive nature of this representation. Furthermore, the 

consistent finding that it was encoded through a left centro-parietal activation pattern, involving Theta 

frequency, as revealed by both RSA and ridge regression analyses, enhanced the robustness of this result. 

Previous studies showing the functional role of Theta frequency in the encoding and formation of complex 
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memory representations (e.g., Lisman, 2010; Sans-Dublanc et al., 2017; Backus et al., 2016) are aligned with 

our result, suggesting that LWPC can be considered a sort of complex memory representation containing 

the global likelihood of Conflict, that has formed based on previous trial congruency. Therefore, if the brain 

encodes the global likelihood of conflict, we may assume that this representation subsequently informs 

downstream cognitive processes. Although this marks an initial stride towards elucidating the neural 

multivariate correlates of proactive control, it does not provide a complete account of the proactive control 

underlying neural dynamics at work. The fact that we have identified an LWPC representation, without 

ascertaining the presence of an early process (and, if present, its corresponding ER(S)P correlates) that 

utilized this representation to anticipate interference, represents a limitation of the current study. As such, 

it necessitates further investigation in future research endeavors. 

Our multivariate investigations have also provided deeper insights into how the LWPC representation 

was dynamically utilized in response to the presence or absence of Conflict. Our findings overall indicate 

that the LWPC representation was encoded early in time, but its use, or strength, was shaped by the 

contextual presence or absence of Conflict. 

Regarding the Conflict absence, the preliminary formation of the CON_C representation might have 

been a prerequisite. As elucidated earlier, this representation likely emerged subsequent to visuo-spatial 

attentional processes relying on the N170 and P2 components. The absence of Conflict representation 

might have then influenced the LWPC representation by directly modulating its encoding pattern, 

considering their spatial and temporal overlap. This modulation was further reflected in the involvement of 

the Beta2 frequency, characterizing the CON_C representation, as well as the Theta frequency 

characterizing the standalone LWPC representation. This integrative perspective is likely to reflect the 

potential mechanism by which the strength of the LWPC representation was adjusted to be subsequently 

used.  

Similarly, distinct stages were also assumed to modulate the LWPC representation in response to the 

presence of Conflict. First, the representation of Conflict was encoded, initiated by processes signaling 

Conflict via the early PRN component (see above). Then, the representation of Conflict appears to have 

modulated the LWPC representation quite directly, as suggested by the spatial and spectral overlap 

observed in the interaction pattern, suggesting a direct influence of the Conflict representation on the 

LWPC representation. 

To conclude this section, we provide an alternative explanation for the absence of specific proactive 

control-related processes. We suggest that it could be that proactive control per se operates not through a 

specific process but rather has effects on processes directly involved in successful task execution. It is 

plausible that the LWPC representation is not used by a process itself, but rather, after being modulated by 
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the presence/absence of Conflict, the information it encodes is used to modulate the strength of the Target 

and Distractor representations. It could then be the strength of these representations, in turn, that would 

produce the predicted behavioral effects. For instance, when the LWPC representation is enhanced by the 

presence of Conflict, as described earlier, it could lead to an enhanced Target representation (and/or a 

weakening of the Distractor representation). Subsequently, given that a strong Target representation is 

crucial for task success, it is possible that interference is experienced to a lesser extent when the Target 

representation is strong, and thus it is anticipated. Consequently, there may be no need for late reactive 

mechanisms to resolve interference. This scenario would perfectly reflect a high level of engagement of 

proactive control. 

Interpreting proactive control from this purely representational perspective suggests that it may not 

require a distinct process per se to be implemented. This may explain why the interaction we found 

between LWPC and interference in our univariate analyses actually reflected only the absence of proactive 

control. Furthermore, it suggests that proactive control may exist at the level of processes, but it relies 

more on the specific processes directly involved in target prioritization (and/or distractor inhibition), which 

thus should be explored. Our multivariate results regarding the interaction between LWPC and 

Target/Distractor provided support for this explanation. 

The interaction between LWPC and Target, encoded by an Alpha right prefrontal cluster and a Beta1 left 

lateral cluster early in time, could thus reflect that LWPC modulated the strength of the Target 

representations so that this could then be used by downstream processes accordingly, based on the level of 

proactive control (i.e., enhancing the Target strength when proactive control was higher). The involvement 

of Alpha and Beta frequencies further supports these interpretations, as previous evidence has shown the 

functional role of these frequencies in the selection of the task-relevant stimulus-specific information and 

in working memory encoding (Michelmann et al., 2022; Kikumoto & Mayr, 2018; Kikumoto et al., 2022), 

which are essential to pursue the goal encoded in the Target representation.  

Concurrently, the LWPC representation was also implicated in modulating the representation of the 

Distractor. In this case, it likely weakened the Distractor representation when proactive control was higher. 

The interaction, encoded by an early right prefrontal cluster involving Beta2, is consistent with previous 

findings suggesting a functional role of Beta frequency in modulating the processing of dominant 

information (Engel & Fries, 2010). 

Therefore, in summary, it is plausible that proactive control relies on a representation containing 

information about the global likelihood of conflict. The strength of this representation seems to be 

modulated by the presence or absence of conflict and, in turn, the proactive control representation may 

modulate the strength of representations of task goal and distractor. These latter representations are 
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indeed assumed to contain information about the required level of prioritization of task-relevant 

information and of inhibition of distractors. Consequently, these pieces of information may then be used to 

implement the necessary processes, ultimately producing the proactive control effect. 

8.3.3. Behavioral and Neural correlates of reactive control 

Our investigation of reactive control has not yielded results as clear as those regarding the presence of 

proactive control. When it comes to reactive control, the picture is considerably more complex. 

Nevertheless, thanks to our approach, which allowed us to test the three-way interaction and statistically 

control for the effect of contingency, and through multivariate analyses, the pattern of results we obtained 

has provided us with valuable insights, which appear to indicate a complex yet intriguing pattern.  

Before discussing our findings, however, we must make a preliminary remark. According to the most 

common description of the DMC, reactive control in the Stroop task represents a late correction 

mechanism activated just in time, especially when conflict is detected. Investigating such a late reactive 

correction would require inducing participants to implement reactive mechanisms after conflict detection, 

as needed. However, this is challenging to manipulate directly. The manipulation typically employed to tax 

reactive control, which we also used, involves varying the PC at the item level. This variation prompts 

participants to engage reactive mechanisms based on the conflict likelihood indicated by the item, and not 

on the conflict actual occurrence. It thus induces stimulus-attention associations (Tafuro et al., 2020; Bugg, 

2012, 2017; Bugg & Hutchison, 2013), which are reactive in the sense that they require knowledge of the 

item to determine the associated likelihood of conflict, subsequently enabling the application of 

appropriate reactive mechanisms. However, this occurs immediately after viewing the stimulus, and it is 

not contingent on conflict detection. Therefore, the ISPC manipulation, which provides a more controllable 

means of inducing reactivity, instigates a reactive control mechanism that differs from the later purely 

reactive one postulated by the DMC, involving a sort of proactive component (see Figure 1.6). 

Based on these considerations, the primary prediction is that when an item triggers a high level of 

reactive control, interference can be reduced even before encountering the actual conflict. Therefore, 

although it is a reactive mechanism as it follows the stimulus, interference is, in a sense, (proactively) 

anticipated (see Figure 1.6). This pattern should manifest both at the behavioral level, with reduced Stroop 

effects, and at the neural level, with a modulation of conflict-related correlates. The neural modulation 

theoretically might occur in a manner similar to proactive control but with a longer latency, as prior 

identification of the stimulus is required to activate stimulus-attention associations. However, as we 

observed, the nature of proactive control processes was not as early; thus, based on those results alone, it 

could be anticipated that this assumption might not be supported in our findings of reactive control as well. 

From a representational perspective, similar to LWPC, we expected to identify an ISPC representation 
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relatively early in time since it relies on the stimulus. This representation, by encoding the likelihood of 

conflict associated with each of the four items, would serve as the foundation for implementing reactive 

control processes that could utilize the informational content associated with each observed stimulus. 

The behavioral results for ISPC-induced reactive control are robust and consistent, but in a negative 

sense: all our behavioral analyses, both from the behavioral study and the EEG study, demonstrated no 

significant modulation of the Stroop effect by reactive control. However, this is not the sole result we 

observed, and indeed, discussing the other effects is even more interesting. 

The first crucial point is that this result was obtained net of the effect of contingency. Therefore, 

controlling for contingency by including it in the model allowed us to disentangle its effect from that of 

ISPC. This was further confirmed by the fact that, when we removed contingency from the model, it indeed 

emerged that reactive control was modulating the Stroop effect. Hence, we could confidently assert that 

when assessed independently, reactive control did not operate separately from the concurrent activation 

of contingency (and/or proactive control). In fact, reactive control effects can be predominantly explained 

by contingency. However, our results do not exclude the possibility of an ISPC-induced reactive mechanism 

either, which leads to the second crucial point. This was only made possible by testing the three-way 

interaction between proactive, reactive, and Stroop effect, the significant effect of which suggested the 

existence of a reactive mechanism that, albeit indirectly, modulated the Stroop effect. Indeed, reactive 

control interacted with proactive control in modulating the Stroop effect, even when the contingency effect 

was statistically controlled for. The effect of this interaction, however, was not robust as it did not emerge 

in all our behavioral analyses. Indeed, it was observed in the behavioral study using the Perifoveal paradigm 

and in the aggregated sample, but not in the behavioral study using the Peripheral paradigm and in the EEG 

study using the Perifoveal paradigm. Despite these inconsistencies, the possible reasons for which are 

discussed in Chapter 4, our results provide initial evidence for the fact that a strategic control 

implementation can also operate reactively but is contingent on the level of proactive control. Specifically, 

the fact that the effect of ISPC-induced reactive control emerged only when the level of proactive control 

was low indicated that the implementation of reactive control was not the preferred control mode for 

participants, who resorted to it only when the proactive control mechanism was not available. 

Our univariate EEG results were consistent with the observation that we did not find a substantial 

behavioral effect of ISPC-induced reactive control, as they did not reveal a significant influence of ISPC-

induced reactive control on the univariate correlates. As the behavioral study, our EEG study also employed 

an analysis-level control approach to account for the effect of contingency, and as observed in the 

behavioral study, when contingency was included in the model, it better explained the data. Consequently, 

our univariate results revealed the correlates for contingency but not those for ISPC-induced reactive 

control. However, the univariate analyses did not either reveal the three-way interaction that emerged in 
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the behavioral study. This discrepancy may be due to the less robust nature of this effect, as discussed 

earlier, and the possibility that the EEG study was underpowered to detect it. Therefore, based on these 

results, we cannot draw insights that explain the interaction between proactive and reactive control found 

in the behavioral study, nor can we confidently assert the existence of a mechanism, albeit not dominant, 

of ISPC-induced reactive control, as we did not find the ER(S)P correlates for it.  

Nevertheless, our results seem to support the existence of a different form of reactive control, late in 

nature, which more closely resembles the “late correction” reactive control model postulated by the DMC, 

that is, the mechanism engaged to resolve conflict when other forms of conflict failed (or were not 

activated). As mentioned earlier, if we examine the results of the proactive control modulation of the 

ER(S)P from another perspective, namely when proactive control was low, they indeed seem to indicate a 

late reactive mechanism. In fact, when participants were not proactively prepared, they had to make a late 

correction to handle unexpected conflict trials, as highlighted by the greater P3/LFN amplitude attenuation 

followed by the later LP amplitude increase, modulated by the Alpha and Beta power reduction. In addition 

to the correlates found when proactive control was low, we also identified some response-locked 

interference-related ER(S)Ps that were not modulated by proactive control and may reflect a late form of 

reactive control as well, which seems to be inherently linked to response-locked conflict processing. 

Indeed, we hypothesized that such late reactive mechanism, for which we did not have a specific 

manipulation, was first reflected in the early mid-frontal pre-response negativity (PRN), which has been 

shown to signal conflict at the level of response when alternative conflicting responses are pre-activated 

(Burle et al., 2016; Carbonnell et al., 2013; Vidal et al., 2003). Theta and Alpha frequency power increase 

and Beta2 power suppression, which probably mediated such negativity increase, instead likely reveal that 

such response-locked conflict was managed by processes subserving the integration and prioritization of 

task-relevant information (Capizzi, et al., 2020; Cooper et al., 2015). Moreover, we assumed that the 

subsequent attenuated polar and bilateral frontal negativity, reflecting the final stages of response conflict 

resolution (Chen et al., 2011), might also reflect the final stages of the late reactive control mechanism. 

Therefore, these results suggest that conflict at the response level may play a significant role in late 

reactive control. 

Overall, such findings, by showing the processes occurring when proactive control was low and when 

there was high response conflict, plausibly reflect the ER(S)P correlates of a late form of reactive control, 

which works by signaling the need for a greater amount of control at the response level to resolve 

unexpected interference. Moreover, these results, and especially those related to the absence of proactive 

control, are in line with the assumption of the DMC, according to which when proactive control is low, 

control is engaged reactively (Braver et al., 2009, 2021; De Pisapia & Braver, 2006).  

https://www.zotero.org/google-docs/?Xj0zLY
https://www.zotero.org/google-docs/?K7iwnN
https://www.zotero.org/google-docs/?TKnAPz
https://www.zotero.org/google-docs/?FyLv9D
https://www.zotero.org/google-docs/?FyLv9D
https://www.zotero.org/google-docs/?FyLv9D
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The results discussed so far seem to support the existence of a late reactive control mechanism, 

engaged upon conflict detection, rather than an ISPC-induced reactive mechanism relying on the conflict 

likelihood. However, these two forms of reactive control do not necessarily exclude each other. Indeed, it 

could be that both forms of reactive control exist, and the relatively weaker effect of ISPC-induced reactive 

control at the behavioral level might have made it less detectable in neural processes. This probably 

occurred also because stimulus-response associations (i.e., contingency learning), on which participants 

more likely rely, might have overshadowed the ISPC-induced reactive control effect. However, this does not 

necessarily exclude the possibility that the brain encodes ISPC, thus having an ISPC-induced reactive control 

representation, as our results indeed indicate. Of note, it might seem pointless to represent ISPC if it is not 

subsequently used to implement ISPC-induced reactive control processes. However, as we discussed for 

proactive control, it is more likely that representations of PC do not serve to implement specific control 

processes but instead serve to modulate the representations of the Target and/or Distractor. The 

information contained in the PC representations could indeed be used to implement target prioritization 

and/or distractor inhibition processes. This likely holds true for ISPC-induced reactive control as well. In line 

with that, we observed that ISPC representation was indeed encoded at the neural level. This encoding, 

involving a Beta2 left fronto-centro-parietal cluster, was response-locked and quite early before response. 

The discovery of this early pre-response encoding, not contingent on conflict detection, further reinforced 

the notion that ISPC induces a form of reactive control that relies on stimulus-attention associations, 

influenced by the likelihood of conflict rather than the actual occurrence of conflict. Moreover, our results 

suggest that by encoding the information about the conflict likelihood of the specific items prominently 

through Beta2 frequency, such representation probably served the encoding of task-relevant information 

to guide downstream action selection (Buschman et al., 2012; Sherfey et al., 2020; see also Cannon et al., 

2014). This consequently implies that the brain likely utilizes this information in some way.  

However, as said above, the encoded ISPC-related information may not be primarily utilized by 

downstream processes of reactive control, in line with our univariate results. Instead, it might be employed 

to directly modify the strength of the encoding of Target and Distractor representations. Insights into this 

assumption were provided by the results concerning the interactions between ISPC and Target/Distractor, 

which likely indicate how ISPC-induced reactive control operated at the representational level. These 

interactions were indeed encoded at the neural level: the Target representation was modulated at the 

response level only in a left posterior cluster from -300 ms involving Beta1 frequency; the Distractor 

representation was modulated at both the stimulus and response levels, involving a Beta2/3 right centro-

parietal cluster and Beta3 fronto-posterior clusters, respectively. Our MVPA results thus may suggest that 

ISPC informational content was used to reactively (i.e., upon seeing the stimulus and retrieving its ISPC) 

modulate the Target encoding, whose representational strength could have then guided task-relevant 

information prioritization accordingly, by means of task-relevant stimulus-specific information selection 
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and working memory-related processes, as suggested by Beta1 frequency involvement (Michelmann et al., 

2022; Kikumoto & Mayr, 2018; Kikumoto et al., 2022). Moreover, ISPC reactively modulated the Distractor 

encoding, which, when reactive control was higher, might have reduced the strength of the distracting 

feature/task, first at the perceptual level and then at the response level. The encoding of this interaction 

through Beta2/3 frequencies suggests that this might have occurred by modulating the processing of the 

dominant information (Engel & Fries, 2010).  

Overall, our reactive control findings suggest a complex scenario: MVPA results indicate that a strategic 

implementation of reactive control based on ISPC is plausible, but this seems to operate only at the 

representational level. Furthermore, it appears to coexist with a more purely reactive mechanism occurring 

after encountering conflict, which is likely to be more evident at the process level. However, we cannot 

exclude that even the late form of reactive control could operate at the representational level, but further 

studies are needed to support this idea. This could be investigated, for example, by testing the 

representation of conflict at the response level since the late reactive mechanism is more predominant at 

this level. Furthermore, to support the existence of both reactive mechanisms, future studies should 

manipulate both of them to gain further insights into their distinctions or commonalities. 

8.3.4. Conclusions: What can we say about proactive and reactive control? 

Drawing firm conclusions about proactive and reactive control from our results is not a straightforward 

task, but we can certainly assert that the pattern we have uncovered is extremely intricate. Our objective of 

investigating whether the control modes postulated by the Dual-Mechanisms of Control (DMC) model 

exhibit specific behavioral and EEG signatures has been partially achieved, as we provided initial evidence 

for that. Nonetheless, it is even clearer that overly simplistic characterizations are not possible. At the 

outset of our investigation, we were aware of the inherent complexity of the subject matter, so we 

endeavored to address as much as possible the issues highlighted by prior literature. Ultimately, however, 

we have unveiled a reality that is even more complex than initially expected. 

Our behavioral results indicated that proactive control exerted a distinct and stronger influence on 

participants’ performance by modulating the magnitude of the Stroop effect. On the other hand, the 

reactive control induced by ISPC did not exhibit by itself a direct impact on the Stroop effect. Interestingly, 

participants’ performance was better explained by the contingency manipulation rather than by the ISPC 

one, implying that participants relied more on learning associations between stimuli and responses, rather 

than (estimating and) using the item-specific PC information to control their behavior. Nonetheless, our 

analysis revealed an additional layer of complexity, which was possible only thanks to the inclusion of the 

three-way interaction between LWPC, ISPC and the Stroop effect. We found that ISPC-induced reactive 

control did indeed modulate the Stroop effect, but this modulation depended upon the level of proactive 
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control, suggesting that ISPC-induced reactive control can modulate the Stroop effect only when proactive 

control is low. This revealed that the strategic deployment of control mechanisms can operate in a reactive 

manner as well, but still proactive control is the prevailing control mechanism influencing the behavioral 

performance. 

This behavioral exploration allowed us to ensure that any neural findings we subsequently uncovered 

could be properly contextualized within the framework of behaviorally observed control mechanisms. In 

sum, our EEG analyses employing multiple approaches have demonstrated that proactive control engaged 

both process-level and representational mechanisms, whereas reactive control predominantly hinged on 

representations. Delving into further detail, proactive control exhibited a direct influence on conflict 

detection and resolution through the modulation of conflict-related ER(S)Ps. While this revealed specific 

univariate correlates related to proactive control, implying its engagement at the level of processes, it 

primarily reflected neural dynamics associated with the absence of proactive control rather than a specific 

proactive process operating earlier to anticipate interference. Conversely, we did not find any impact of 

reactive control on ER(S)P correlates. Nevertheless, our univariate analyses seem to point to the existence 

of a late reactive mechanism, likely triggered when both LWPC-induced and ISPC-induced reactive control 

modes were absent and/or ineffective. This mechanism appeared to exert a more prominent effect at the 

response level. Consequently, this form of reactive control might predominantly reflect the detection and 

resolution of response conflict. 

Relying solely on these univariate results, we can thus conclude that they partially align with the 

assumptions posited by the DMC as we found two distinct control modes characterized by specific ER(S)P 

correlates. The former corresponds to a proactive control mode induced by LWPC, for which however we 

did not find a specific correlate for the process underlying interference anticipation; rather, we did identify 

specific correlates for when interference anticipation failed (i.e., as in the case of high LWPC). Evidence for 

proactive control ER(S)Ps, based solely on when it was engaged to a lower extent, thus offers incomplete 

support for the mechanism postulated by the DMC, as its neural dynamics can only be indirectly inferred. 

The same holds true for the second mechanism, the reactive one, for which we also found indirect 

evidence. Indeed, it did not correspond to the one we manipulated, namely the ISPC-induced reactive 

control, but rather it represented a late mechanism resulting from the absence of proactive control when 

interference occurred unexpectedly and when there was high response conflict. Therefore, this leads to 

two considerations. First, the reactive control postulated by the DMC at the level of processes appears to 

be more related to response conflict and, in line with DMC assumptions, this is the mechanism engaged 

when proactive control is not activated (Braver et al., 2009, 2021; De Pisapia & Braver, 2006). The second 

consideration is that, even though ISPC is the manipulation predominantly used in the literature to measure 

https://www.zotero.org/google-docs/?yxnKOu
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reactive control in light of the DMC, it may not be entirely suitable for this purpose, as it does not fully 

capture the late correction characteristic of the reactive control postulated by the DMC.  

The multivariate results have enriched these findings, albeit with further increase in complexity. They 

have indeed shown that proactive and reactive control strongly relied on representations, suggesting that 

they probably operate at the representational level. Not only have we found that the brain encoded both 

LWPC and ISPC and that the strength of this encoding was modulated by the presence/absence of Conflict, 

but also that such informational content was used to modulate the strength of Target and Distractor 

representations. This latter finding thus provides a plausible way of how LWPC-induced proactive and ISPC-

induced reactive mechanisms might operate. The effects of these manipulations, besides being better 

captured by analyses considering neural patterns that are multivariate and distributed, are in line with what 

is postulated for proactive control by the DMC, given the early nature of the LWPC representation, and 

plausibly explain what we were did not identify with univariate analyses, namely the early mechanisms of 

interference anticipation. Regarding ISPC-induced reactive control, it cannot be entirely in line with the 

DMC since, as explained earlier, the most commonly postulated reactive mechanism is more akin to a late 

correction. However, discovering that ISPC is represented suggests that reactive control can also rely on a 

strategic allocation of attention, which allows for interference anticipation, albeit in a reactive manner, 

namely after seeing the stimulus. 

It is noteworthy that the modulation of the Target and Distractor representations occurred in a similar 

manner by both LWPC and ISPC representations. Specifically, LWPC and ISPC representations involved 

Beta1 frequency for the modulation of the Target, whereas Beta2/3 frequencies were involved in the 

modulation of the Distractor. However, this modulation occurred at distinct levels: proactive control 

influenced the Target at the stimulus level and at an earlier stage, compared to reactive control, which 

influenced it at the response level and at a later stage, as it would be expected. The Distractor, on the other 

hand, was influenced at the stimulus level and earlier by LWPC, while it was influenced at both the stimulus 

and response levels and at a later stage by ISPC. In addition to revealing that both proactive and reactive 

control modes are likely to operate at the representational level, this pattern of similarities and differences 

suggests that LWPC- and ISPC-induced control modes are qualitatively similar in certain aspects but distinct 

in terms of timing and level of action. 

Therefore, what we can infer from our overall results is that proactive and reactive control are not 

merely two fingerprints of the same mechanism. In contrast, cognitive control likely operates through 

multiple mechanisms. These include the LWPC-induced and ISPC-induced mechanisms, which are 

qualitatively similar in that they both involve a strategic deployment of control which, in both cases, allows 

for the anticipation of interference, albeit through different means and timings. These two control modes 

would primarily (and exclusively for what concerns ISPC-induced reactive control) operate at the level of 
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representations. In other words, the informational content encoded by the LWPC and ISPC representations 

is not used to implement specific proactive and reactive processes, but rather to modulate the 

representation of the goal and the distractor, according to the current level of proactive and reactive 

control. This informational content, in turn, is used to modulate the processes that enable the execution of 

goal-directed behavior. Conversely, when such strategic control modes are not sufficiently engaged or 

cannot be implemented, a third form of control must come into play to resolve interference at the last 

moment. 

Overall, yes, our results seem to suggest that cognitive control operates via two distinct control modes, 

proactive and reactive. However, it is interesting to note that they appear to suggest a scenario composed 

of three mechanisms, rather than two, with the most robust evidence, based on our data, supporting the 

existence of a proactive mechanism. However, since our goal is to understand how cognitive control works 

rather than proposing further fragmentation, aware that it would increase inconsistencies even more, we 

limit ourselves to suggesting that, in light of our results, further studies are urgently needed, especially to 

clarify the differences observed between the two reactive control mechanisms.  

8.4. Where we are going: Future developments 

The complexity of the object of study has been further heightened by our utilization of a 

(methodologically valid) Stroop task. Indeed, the paradigm we employed was designed to induce a Stroop 

effect encompassing task, stimulus, and response effects (Parris et al., 2022; see also Chapter 2). While this 

was pivotal in ensuring measurement validity, there is a flip side: the effect we obtained, upon which we 

measured the proactive and reactive control effects, constitutes a global composite outcome of effects 

operating at multiple levels. However, if the Stroop effect is indeed composed of multiple loci, proactive 

and reactive control mechanisms are very likely to distinctly influence each of the implied layers. Therefore, 

just as it is true that focusing only on RTs provides only the output of cognitive processes but leaves us blind 

to the unfolding neural dynamics, to gain a better understanding of how proactive and reactive control 

operate, it is necessary to assess whether they act differently at different loci, and if so, how. However, 

apart from some earlier attempts (Augustinova et al., 2018; 2019), there are not many studies that have 

quantitatively decomposed the Stroop effect, to assess whether multiple loci are actually implied and, if so, 

to estimate the contribution of each locus at the empirical level.  

Driven by the goals of assessing whether the Stroop effect resulting from methodologically valid 

paradigms is actually composed of distinct/independent loci and, if it is true, of estimating their weights, 

we conducted the study outlined in Chapter 7. This study served a dual function of better understanding 

the Stroop effect itself and how it is affected by proactive and reactive control. It included two experiments 
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(the first of which served as a pilot for the second one), beginning anew from the behavioral measures 

necessary to establish a solid foundation. This study not only allowed us to estimate the contribution of the 

assumed loci, confirming their existence, but also to take into account other aspects such as distinguishing 

between facilitation and interference effects, which was not considered in our previous studies, and 

addressing crucial factors in interference tasks, such as the role of automaticity of the two tasks involved 

and the asymmetry between them.  

In brief, in the study outlined in Chapter 7, we designed distinct interference tasks, all implying 

interference at the task locus. These tasks were different as they also implied effects at distinct loci, 

according to the Kornblum’s taxonomy: the stimulus locus only (for this we had two Stroop-like tasks), the 

response locus only (for this we had one Simon task), and the stimulus and response loci (for this we had 

two spatial Stroop tasks, one of which was very akin to the perifoveal spatial Stroop task employed in all 

our studies). As stated above, for each task, we also included neutral conditions to calculate not only the 

global effect (called Congruency effect, which corresponds to the global Stroop effect in the Stroop task), 

but also its constituents, namely the interference effect (IE) and the facilitation effect (FE). This thus 

allowed us not only to explore the existence of each locus, but also to better assess the involvement of 

each locus in generating the facilitation and interference effects, separately. It is indeed possible that, 

although the Stroop effect is assumed to involve all the three loci, its constituent effects imply just one (or a 

different mixture) of them.  

The first key finding of our study was that all our interference tasks yielded both facilitation and 

interference effects, confirming all our a priori hypotheses, with one exception that is discussed more in 

detail in Chapter 7 and not relevant to the present discussion. Moreover, by testing the set of hypotheses 

regarding the composite measure including both FE and IE, namely the Congruency Effect (CE), we provided 

evidence that the perifoveal spatial Stroop task employed in this thesis was the most suitable interference 

paradigm, as it yielded the largest CE, characterized by a 100% dominance, and with the highest reliability 

(which further supports the results presented in Chapter 3). These results did not provide a direct answer 

to our question, but they still represented the necessary condition that had to be satisfied before 

proceeding testing our core hypotheses, namely those related to the loci. Moreover, they suggest that the 

measure of task interference that we used, which to the best of our knowledge was novel as compared to 

previously employed ones, was valid, thus effectively measuring the pure effect of interference at the task 

level. This was significant, because it allows filling a gap in the literature, considering that, as highlighted by 

Parris et al. (2023), there is still no clear and effective measure of task interference.  

The second set of results, on the other hand, delves deeper into our aim of exploring whether the 

Stroop task implies more than one processing locus, and specifically whether it involves both stimulus and 

response loci (the task locus for this set of hypothesis was taken for granted as we directly compared all our 



324 

interference tasks which thus, by assumption, should involve task interference, as also shown by the results 

discussed above). Specifically, we tested directional hypotheses assuming that the CE in the Stroop task 

(and also the IE and FE), which should imply both the stimulus and response loci, should be bigger than the 

CE (and IE and FE) in the other conflict tasks. Results were generally in line with this prediction for the 

perifoveal spatial Stroop task requiring to respond to the direction, thus the one employed in this thesis 

(see Chapter 7 for a better explanation for why the perifoveal spatial Stroop requiring to respond to the 

position yielded the opposite pattern of results, in contrast with our predictions). Specifically, this spatial 

Stroop task produced a CE (but also IE and FE) always bigger than the ones produced by the tasks assumed 

to imply just one locus (stimulus or response locus), namely the Stroop-like tasks and the Simon task. This 

result suggests that when the task taps only one locus, the resulting effect is smaller than when two loci are 

involved, thus supporting the multiple-loci nature of the Stroop task. However, we found a relevant 

exception to this: the FE produced by the Stroop task was equal to that produced by the Simon task, 

suggesting (although indirectly) that the FE of our spatial Stroop task actually primarily implied facilitation 

at the response level or, in other words, the FE of our spatial Stroop task was mostly composed of response 

facilitation. Overall, this suggests that it is the interference component of the CE of the Stroop task that 

implies multiple loci, while the facilitation component is probably entirely originating from the response 

locus.  

The last set of results that we will discuss here added further complexity to the overall picture. 

Specifically, we tested other hypotheses regarding the overall pattern of performance when task 

interference was also considered. Moreover, in these analyses, we also took into account the level of 

automaticity of the relevant task, as better explained in Chapter 7. Our findings were not only in line with 

our expectations of a multiple loci nature of the Stroop task, but they also provided additional insights into 

the relationship between the distinct loci. Indeed, we found that Stroop performance depended on the 

performance at the baseline task, which reflects the cost of identification and, more importantly, on the 

effects at the stimulus, response and task loci, which interacted with each other. Therefore, adding to the 

results we have just discussed, this study indicates that the interference effect originates from the interplay 

of all loci, whereas the facilitation effect probably originates from the response locus only. Therefore, the 

fact that, in our spatial Stroop task, the IE and the FE seem to comprise a different number of loci, as we 

initially hypothesized but with no more specific a priori predictions, is extremely relevant as it further 

supports the importance of using tasks involving a neutral condition to distinguish between IE and FE. 

Indeed, distinguishing between these two components of the CE is not an end in itself, but is fundamental 

to better account for their distinct nature which, in turn, could be differently affected by mechanisms such 

as the control modes we investigated in this thesis. As discussed previously, the absence of a neutral 

condition represented a limitation of the present thesis, but thanks to this final study, we validated a 

potential solution to overcome this limitation. Overall, these findings add a further layer of complexity, 
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which however can be leveraged in future explorations of proactive and reactive control by our group and 

others.  

The natural progression of this study is thus to investigate whether proactive and reactive control 

indeed affect the Stroop loci differently. Building upon the contribution of each locus to the Stroop 

performance provided by the study in Chapter 7, we will be in a position to empirically test some a priori 

hypotheses regarding the distinct impact of each control mode on the three loci. These hypotheses are 

grounded not only in the postulated nature of the two mechanisms, but also in our empirical findings. For 

example, our EEG results consistently showed that the effect of proactive control was mainly exerted at the 

stimulus level, probably suggesting its direct impact on the stimulus locus, but we can also hypothesize that 

proactive control should affect the task locus, given its anticipatory nature (as also suggested by the early 

LWPC encoding we found). Conversely, regarding reactive control, both the ISPC-induced and (especially) 

the late reactive mechanisms are more likely to affect the response locus, given their strong response-

locked nature emerged from our results. Moreover, understanding the specific effect on each locus could 

be useful in disentangling these two forms of reactive control. Specifically, ISPC-induced reactive control 

can also be assumed to affect the stimulus locus because it relies on stimulus-attention associations, 

although we did not find evidence for that. 

Moreover, capitalizing on the results of this behavioral study, we will design studies that allow 

overcoming a significant limitation of the majority of the studies included in the current thesis. As noted 

above, this regards the fact that we measured the effect of proactive and reactive control on the Stroop 

effect intended as Congruency effect, thus including in unknown amounts IE and FE. While this approach 

has provided valuable insights into the overall picture, it has left us unaware of the specific contributions of 

the multiple underlying constituents of the overall Stroop effect. Therefore, the behavioral study reported 

in Chapter 7 provided a solid foundation that has allowed us to validate a paradigm identical to the one 

used previously, but now incorporating a neutral condition. This enhancement ensures that, in future 

studies, we will be capable of evaluating the distinct influence of proactive and reactive control on both the 

interference and facilitation effects. In our previous studies, assessing the overall Stroop effect could only 

determine, for instance, whether there was a reduction in the Stroop effect under low-PC conditions. 

However, this reduction derives from both shorter RTs to incongruent stimuli and longer RTs to congruent 

stimuli (but in variable and unknown amounts). Therefore, by incorporating separate measures for 

interference and facilitation effects, we will be able to ascertain whether low PC conditions result in a 

reduction in both the interference and facilitation effects. 

Additionally, separately measuring interference and facilitation is particularly relevant in light of our 

results that have shown a substantial difference in terms of the involved loci between the overall Stroop 

effect and its components. Being aware that the Stroop facilitation seems to involve mainly the response 
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locus, while the Stroop interference also implies the stimulus and task loci, is particularly relevant for 

testing the hypotheses outlined earlier in a more fine-grained manner. As such, discerning the specific loci 

implicated in interference and facilitation facilitates a more targeted investigation, for which we propose 

the following predictions. Given that we previously predicted that proactive control should affect more the 

stimulus locus, and that the stimulus locus is implied only in the interference effect, in future studies we 

will specifically test the impact of proactive control on the interference effect, thus focusing on the contrast 

between incongruent and neutral stimuli. Conversely, to explore how proactive control affects the task 

locus, we will compare its effect on neutral trials of the Stroop task with trials in a simple discrimination 

task, in which no task interference should occur, thus isolating the measure of task interference we 

validated. For what concerns ISPC-induced reactive control, its effect on the stimulus locus can be explored 

as explained for proactive control, thus on the interference effect. By contrast, whether it affects the 

response locus could be explored using both the facilitation and interference effects, as the response locus 

seems to be involved in both. In turn, finding that ISPC-induced reactive control truly affects both the 

stimulus and response loci will offer the possibility of disentangling it from the late reactive control. Indeed, 

based on the logic that the effect is bigger when it involves more loci, given that the late reactive control 

can theoretically imply only the response locus, its effect should be in principle smaller than the effect of 

ISPC-induced reactive control, if this latter implies both stimulus and response loci, thus potentially 

distinguishing the two reactive mechanisms.    

In our forthcoming studies, we will begin with a behavioral study aimed at elucidating the behavioral 

signatures of proactive and reactive control in consideration of the locus weights determined in Chapter 7. 

Subsequently, we will conduct an EEG study employing the same logic, with the specific goal of elucidating 

how each control mode influences each Stroop locus and the specific underlying unfolding. This 

investigation will also provide an opportunity to establish connections with influential models like the 

Cascade of Control Model (Banich, 2009). By uncovering the precise neural correlates that underlie the 

impact of control modes on each locus, we can evaluate whether our findings align with the postulations of 

this model, which is based on the Stroop task in general. This alignment may potentially facilitate the 

extension of that model principles to the neural dynamics of proactive and reactive control. In pursuing this 

objective, we will not solely rely on univariate analyses but will also incorporate multivariate analyses, given 

the potential they have demonstrated in the present thesis. 

8.5. Other directions to explore: Open questions  

The present thesis work has provided additional insights into the behavioral signatures and neural 

dynamics of proactive and reactive control. However, as emphasized earlier, this endeavor has revealed 

that the landscape is even more complex than initially expected. Therefore, while we have addressed some 

https://www.zotero.org/google-docs/?5MgcZL
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crucial research questions, such as identifying the existence of ISPC-induced reactive control and its 

reliance on representations, we have also unveiled numerous further research questions that demand 

exploration. 

One of these open questions has been delineated in the previous section, in which we explained how we 

have laid the groundwork for the first step, along with our planned approach to address it in the future. 

Besides this one, there are other open questions that we have not yet had the opportunity to begin 

addressing, but their relevance has become clear throughout the entire thesis. Below, we present the 

primary ones. 

8.5.1. The dynamic duo of reactive control 

The first of these open questions has already been mentioned in the discussion of our results and 

concerns the fact that our findings suggest the existence of two reactive control modes. In our discussion, 

we attempted to offer a plausible explanation for the existence of both a strategic ISPC-induced reactive 

control and a late form of reactive mechanism. However, it is important to note that our interpretation was 

necessarily tentative because we manipulated only one of these two reactive control mechanisms. 

Therefore, the evidence for the late reactive mechanism was indirect, as it emerged as the mechanism that 

remained after accounting for the two we manipulated. To directly test whether two reactive control 

modes exist, it would be necessary to manipulate both of them simultaneously. This is based on the same 

logic that we have employed in this thesis: if we want to directly ascertain whether two mechanisms are 

distinct entities, we need to manipulate both of them at the same time to understand if one exists even 

when the other is engaged. This goal could be achieved, for instance, by manipulating the ISPC to induce a 

strategic reactive control mode and manipulating the response conflict to isolate the remaining reactive 

control when the strategic reactive control has been accounted for. Our proposal to use response conflict 

as a proxy for the late form of reactive control is grounded in two key reasons, as detailed below.  

First, the findings from this thesis indicate that the late form reactive control, which emerged when the 

effects of the two manipulated controls were accounted for, exhibited a predominantly post-conflict, 

response-locked nature. This is supported by our finding that the early response-locked PRN component 

played a significant role in signaling the presence of conflict between competing responses, implying that 

conflict detection primarily occurred at the response level. Furthermore, our MVPA results align with this 

interpretation, demonstrating that the representation of conflict required time to be encoded, likely relying 

on conflict signals from the PRN component. Thus, it became stably encoded only at the response level, 

probably because it was a consequence of response competition. Of note, this does not imply that conflict 

resolution affects only the response. As we emphasized earlier, considering the involvement of Beta2 

frequency in its encoding, conflict may contribute to conflict resolution through both response selection 
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processes and stimulus prioritization. However, this implies that the conflict at the response level plays a 

key role, leading us to suggest that the most effective way to manipulate it is by varying the frequency of 

response-level conflict. 

The second reason relies instead on the findings of a previous unpublished behavioral study not 

reported here, that we conducted to specifically manipulate response conflict, before fully developing the 

idea of the dual nature of reactive control that we are proposing here. We did so by parametrically varying 

the probability of the four possible responses, so as to have some responses that were pre-activated more 

strongly than others in incongruent trials. The idea is that it is harder to overcome the conflict between an 

erroneous but strongly pre-activated response and the correct but weekly pre-activated response, as 

compared to the opposite situation. This study indeed revealed that this was the case, suggesting that the 

measure of response conflict we proposed can be used to manipulate the level of control needed to resolve 

the Stroop interference at the response locus. 

To better understand the existence and potential relationship between the two reactive mechanisms, it 

would be preferable to manipulate them while keeping the level of proactive control stable, in order to 

obtain a specific result for reactive control only. However, to verify if we can indeed talk about three 

control mechanisms, a subsequent study would be necessary to determine if, by manipulating all of them 

together, they still remain separate entities. 

8.5.2. The phantom anticipator: what happens before the stimulus onset? 

The second pressing open question pertains to the neural dynamics occurring within the pre-stimulus 

time window. We intentionally did not mention the negative findings we found for the pre-stimulus time-

window previously in this concluding discussion, as we believe it deserves separate consideration. The 

absence of univariate and multivariate correlates in the pre-stimulus phase represents one of the major 

limitations of the results reported in this thesis, which therefore needs to be investigated more thoroughly 

in future research. 

All our EEG analyses, both multivariate and univariate ones, were performed also in the pre-stimulus 

time window because, given the strategic nature of the control mechanisms triggered by PC manipulations, 

it was plausible to assume (and we hypothesized) that such probabilities were computed, maintained, and 

updated prior to the stimulus presentation. Naturally, within the statistical model utilized for the pre-

stimulus analyses, predictors for low-level confounders and Congruency (or Conflict for RSA) were 

excluded. This exclusion was justified by their dependency on the subsequently presented stimulus, 

rendering them meaningless before stimulus onset. 
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Besides the probabilistic nature of PC manipulations, it was conceivable to identify some neural 

dynamics before stimulus onset, given the characteristics of the control modes induced by such 

manipulations. This is particularly evident for proactive control which, by definition, is an anticipatory and 

sustained control mechanism, suggesting its tonic activation even before stimulus presentation. Concerning 

ISPC-induced reactive control, the situation is less clear, especially when considering the definition provided 

by the DMC. As mentioned earlier, the predominant DMC definition aligns better with the late reactive 

mechanism rather than that induced by ISPC. This is why we previously suggested that the ISPC 

manipulation might not be the most suitable for probing reactive control, if it is intended as a late 

correction mechanism. However, despite this controversy, since ISPC-induced reactive control relies on 

stimulus-attention associations, it is likely that the EEG multivariate correlates of the encoding of these 

associations should be detectable even before stimulus onset. Indeed, if so, these associations can then be 

activated and selected when the stimulus is revealed. Consequently, although it may appear 

counterintuitive for ISPC, both PC manipulations were included in the pre-stimulus model. 

As for the univariate analyses, in the pre-stimulus time window, we predominantly found the 

electrophysiological correlates, both ERPs and ERSPs, related to probabilities of the lower-level effects, 

namely those considered confounding factors for PC manipulations. Among these, the contingency effect 

emerged as the most prominent, suggesting that such stimulus-response associations are strong enough to 

be identifiable even in the pre-stimulus phase. This finding aligns with, for example, the interpretation we 

provided regarding the absence of ISPC-induced reactive control, in which we hypothesized that it was 

overshadowed by the stronger and more consistent effect of contingency. The correlates of these 

confounding factors have intentionally not been discussed, as this goes beyond the scope of this thesis. 

However, what is certain is that future studies are necessary to delve deeper into them, especially at the 

neural level, given their prominent role found here. Moreover, the ERSPs results revealed a significant 

effect of LWPC in the early pre-stimulus time window which, however, exhibited a pattern that was not so 

clear and strong. Thus, we preferred to cautiously avoid making inferences on this pattern. Nevertheless, 

despite the difficult interpretability of this result, it might suggest that indeed some neural dynamics might 

occur in such a time window, providing further motivation for investigating it more thoroughly in the 

future.  

The fact that the univariate results did not show specific PC correlates in the pre-stimulus period actually 

was not such an unexpected finding, as it could be anticipated that, in this time window, there were no 

actual processes occurring but rather representations being encoded. For this reason, with the multivariate 

analyses, we expected to find such representations, but this was not the case. Indeed, just as the univariate 

results, our multivariate results showed that low-level confounders were quite consistently encoded, but 

the PC was not. This finding surprised us and is challenging to interpret. 
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The more plausible tentative explanation, based on the data we currently have, is that, for both LWPC 

and ISPC, actively sustaining an anticipatory representation throughout the entire pre-stimulus period is 

too demanding, and for this reason, their encoding probably could not be detected. Therefore, from a 

functional point of view, it might be more convenient to maintain these representations at a sub-threshold 

level and reactivate them as soon as the stimulus appears. This aligns with the fact that both LWPC and 

ISPC encodings, in the post-stimulus period, were quite early, suggesting that it is unreasonable to assume 

that these representations were created from scratch just after the stimulus. 

To test this assumption, in future studies, we will try to stress the encoding of PC in the pre-stimulus 

phase, inducing participants to keep these representations more active and, therefore, with a stronger 

encoding pattern. One way to do this, for example, is to vary the inter-trial-interval (ITI). In the present 

thesis, we always used a fixed and relatively long ITI (1500 ms), which might have led participants to try 

timing  themselves with the stimulus appearance without requiring to keep the PC representations strongly 

active for so long. Therefore, by becoming accustomed to this, they might have implicitly reduced the 

strength of encoding of PC representations since they were sure they would not need them within that 

1500 ms. Conversely, if participants do not know when the stimulus will appear, they might keep these 

representations more strongly encoded so that they can use them at any moment when the stimulus 

appears. An alternative manner would be maintaining long and variable ITIs but clearly signaling stimulus 

onset (e.g., with a 500-ms pre-stimulus screen) to induce participants activating PC representations just-in-

time for when they are needed.  

8.6. Conclusions 

As we conclude this phase of our research journey, it is evident that cognitive control is not a singular, 

unitary entity but a complex mechanism that can operate through multiple modes. What emerges also 

clearly is that it can operate through processes, but when control is modulated by contextual requests (i.e., 

PC-induced cognitive control), its implementation strongly relies on informational patterns that are 

encoded in the brain as representations. These representations would contain the information regarding 

the conflict likelihood that can then be used by control processes, but they could also serve to modulate 

the representations involved in goal-directed behaviors, whose encoded information might then be used by 

lower-level processes.  

Our work has made initial but significant strides in advancing the understanding of cognitive control. By 

elucidating the qualitative differences in control mechanisms within the DMC framework and employing a 

range of innovative methodologies, we have provided interesting evidence that represents another small 
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step toward the comprehension of this intricate cognitive phenomenon. Moreover, looking forward, our 

research opens the door to numerous exciting avenues for further exploration.  
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APPENDIX A: 

Supplementary Materials for Chapter 3 

A.1. Distributional analysis 

See the “Distributional analysis” section in the ManyStroopScript.m file 
 

 
Figure A.1. Distributional analysis of participants’ response times. 
The top row shows the histograms of untransformed RT values (left panel), natural log-transformed RTs 
(lnRT, middle panel), and inverse-transformed RTs (iRT, right panel), computed as -1000/RT. The 
superimposed red curves represent the normal density function fitted to the data. The black curve for the 
RT distribution represents the lognormal density function fitted to the data. The number of bins was 
determined using the Freedman-Diaconis rule as implemented in the Matlab histcounts function. The 
bottom row shows the corresponding Q-Q plots. 
 

A.2. Compliance checking 

See the “Check for SS compliance” section in the ManyStroopScript.m file 
 
 
 
 
Figure A.2. Participants’ overall performance. 
The violin plots show the distribution of the participants’ mean 
iRTs (left panel) and accuracy (right panel). The boxplots 
represent the median values (white dot at the center of the 
box), interquartile ranges (box), and dispersion outside the 
extreme quartiles (whiskers indicating 1.5 times the 
interquartile range).  
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A.3. Descriptive statistics 

See the “Descriptive statistics” section in the ManyStroopScript.m file. 
 
Table A.1. Descriptive statistics 

  Peripheral Perifoveal Navon Figure-Ground Flanker Saliency 

  M SD M SD M SD M SD M SD M SD 

Accuracy                         

C 99% 3% 98% 4% 99% 2% 99% 2% 99% 2% 98% 2% 

I 90% 9% 90% 11% 96% 6% 94% 8% 95% 7% 96% 6% 

Stroop 9% 8% 8% 9% 3% 6% 5% 8% 4% 7% 3% 5% 

RT             

C 586 158 529 169 544 114 500 90 523 124 490 105 

I 716 214 658 219 615 140 579 90 586 108 523 108 

Stroop 130 87 129 78 71 47 79 29 63 31 32 28 

lnRT             

C 6.32 0.23 6.21 0.26 6.27 0.19 6.19 0.16 6.23 0.19 6.16 0.19 

I 6.52 0.26 6.42 0.28 6.38 0.21 6.34 0.14 6.35 0.16 6.23 0.18 

Stroop 0.19 0.09 0.21 0.09 0.11 0.06 0.15 0.05 0.12 0.06 0.07 0.05 

iRT             

C -1.87 0.39 -2.10 0.47 -1.96 0.34 -2.10 0.32 -2.03 0.34 -2.17 0.37 

I -1.55 0.38 -1.71 0.43 -1.77 0.35 -1.79 0.24 -1.78 0.24 -2.02 0.33 

Stroop 0.32 0.14 0.39 0.14 0.19 0.10 0.31 0.12 0.25 0.12 0.15 0.10 

Notes: C, congruent; I, incongruent. 
 
Table A.2. Stroop effects 

 GLM LMM RCA 

 M SD t d Dom M SD t d Dom M SD t d Dom 

iRT                

Peripheral 0.324 0.137 20.08 2.366 100 0.343 0.113 25.65 3.023 100 0.345 0.143 20.47 2.412 100 

Perifoveal 0.391 0.141 23.48 2.767 100 0.415 0.129 27.25 3.212 100 0.410 0.155 22.43 2.644 100 

Navon 0.188 0.096 16.66 1.963 95.8 0.197 0.070 23.98 2.826 100 0.197 0.099 16.94 1.996 95.8 

FG 0.307 0.120 21.75 2.563 100 0.320 0.100 27.20 3.205 100 0.319 0.121 22.45 2.646 100 

Flanker 0.252 0.120 17.74 2.091 98.6 0.262 0.104 21.43 2.526 98.6 0.262 0.119 18.68 2.202 98.6 

Saliency 0.152 0.097 13.38 1.577 91.7 0.157 0.064 20.84 2.456 100 0.156 0.099 13.34 1.572 91.7 

lnRT                

Peripheral 0.195 0.093 17.74 2.090 100 0.205 0.086 20.38 2.402 100 0.205 0.099 17.65 2.080 100 

Perifoveal 0.213 0.086 20.98 2.473 100 0.223 0.069 27.38 3.227 100 0.223 0.091 20.88 2.460 100 

Navon 0.111 0.061 15.54 1.831 98.6 0.109 0.048 19.36 2.282 100 0.110 0.061 15.29 1.802 97.2 

FG 0.153 0.053 24.61 2.900 100 0.160 0.035 38.77 4.570 100 0.161 0.051 26.73 3.151 100 

Flanker 0.125 0.056 19.00 2.239 95.8 0.131 0.041 27.36 3.224 98.6 0.131 0.053 21.10 2.486 97.2 

Saliency 0.069 0.047 12.43 1.465 91.7 0.075 0.026 24.54 2.892 100 0.073 0.046 13.49 1.589 93.1 

RT                

Peripheral 129.8 86.7 12.70 1.497 100 129.5 79.7 13.79 1.625 100 133.2 92.9 12.17 1.434 98.6 

Perifoveal 129.3 78.1 14.06 1.657 100 127.7 65.0 16.67 1.964 100 126.6 76.8 13.98 1.648 98.6 

Navon 71.0 47.0 12.82 1.510 98.6 65.4 31.9 17.38 2.049 100 64.3 42.0 12.99 1.531 97.2 

FG 78.9 29.5 22.73 2.678 100 82.8 15.0 46.82 5.518 100 83.1 27.5 25.67 3.025 100 

Flanker 63.1 30.5 17.53 2.066 95.8 68.0 14.3 40.40 4.761 100 67.5 25.5 22.46 2.646 98.6 

Saliency 32.3 27.6 9.92 1.169 87.5 35.1 13.4 22.29 2.627 100 33.7 26.2 10.93 1.288 93.1 

Notes: Dom, percentage of participants showing a positive raw Stroop effect, FG, Figure-Ground task. 



 

341 

 
Figure A.3. Participants’ response times. 
The figure shows the participants’ mean response times in the congruent (C, blue line, left y axis) and 
incongruent (I, red line, left y axis) conditions, as well as the corresponding Stroop effects (black line, right y 
axis), as a function of the analytical approaches (GLM, LMM, RCA, in columns) and the response time 
transformation (RTs, lnRTs, iRTs, in rows). The error bars indicate the within-subjects 95% confidence 
interval. 

A.4. GLM 

A.4.1. GLM on iRTs 

See the “ManyStroop_iRT.omv” Jamovi file 
 

A.4.2. GLM on lnRTs 

See the “ManyStroop_lnRT.omv” Jamovi file 
 

A.4.3. GLM on RTs 

See the “ManyStroop_RT.omv” Jamovi file 
 

A.4.4. GLM on accuracy 

See the “ManyStroop_ACC.omv” Jamovi file 
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A.5. LMM  

A.5.1. LMM on iRTs 

A.5.1.1. Results  

See the “LMM - iRT - Model building & test” section in the ManyStroopScript.m file.  
 
Table A.3. LMM results, coefficients statistics 

Coefficient Estimate SE t DF p 

(Intercept) -1.8681 0.0396 -47.23 72.20 < .0001 

Block -0.0310 0.0053 -5.88 192.7 < .0001 

Trial -0.0421 0.0016 -27.01 28887 < .0001 

preRT 0.0669 0.0024 28.27 28950 < .0001 

TASKPerifov -0.2068 0.0307 -6.73 70.33 < .0001 

TASKNavon -0.0621 0.0277 -2.24 71.77 0.0279 

TASKFG -0.1948 0.0267 -7.30 69.50 < .0001 

TASKFlanker -0.1294 0.0278 -4.65 72.21 < .0001 

TASKSaliency -0.2463 0.0254 -9.68 71.44 < .0001 

hResp -0.0326 0.0031 -10.58 28862 < .0001 

vResp -0.0598 0.0031 -19.38 28859 < .0001 

postERR 0.1747 0.0084 20.91 29124 < .0001 

CONGInc 0.3425 0.0164 20.93 72.40 < .0001 

Trial:Block 0.0074 0.0015 4.81 28868 < .0001 

CONGInc:TASKPerifov 0.0729 0.0148 4.93 73.62 < .0001 

CONGInc:TASKNavon -0.1454 0.0175 -8.30 76.15 < .0001 

CONGInc:TASKFG -0.0222 0.0217 -1.02 71.92 0.3088 

CONGInc:TASKFlanker -0.0807 0.0202 -4.00 74.51 < .0001 

CONGInc:TASKSaliency -0.1851 0.0186 -9.97 72.72 < .0001 

Notes: preRT, iRT at the previous trial; Perifov, Perifoveal; FG, Figure-Ground; hResp, horizontal coding of 
the response (i.e., the responding hand: right vs left); vResp, vertical coding of the response (i.e., the 
responding finger: middle vs index); postERR, post-error trials; CONG, Congruency; Inc, Incongruent trials; 
DF, degrees of freedom. P values are computed using the Satterthwaite’s approximation. 
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A.5.1.2. Residual analysis 

See the “LMM – iRT – Inspect fit” section in the ManyStroopScript.m file 
 

 
Figure A.4. Inspection of residuals for the LMM analysis on iRTs. 
The figure shows the results of the analysis of the residuals for the LMM analysis on iRTs for the final model 
both before (upper panels) and after (bottom panels) excluding observations with absolute standardized 
residuals greater than 3. Left: histogram of the standardized residuals; the superimposed red curve 
represents the normal density function fitted to the data. Middle: quantile-quantile plot for the 
standardized residuals. Right: scatterplot of the fitted data (x) vs. the standardized residuals (y) for the 
visual inspection of the homoscedasticity; the gray line represents the corresponding linear regression line. 
 
 

A.5.1.3. Post-hoc  

See the “LMM – iRT – Post-hoc comparisons” section in the ManyStroopScript.m file 
 
Table A.4. LMM on iRTs, post-hoc pairwise comparisons of Stroop effects between tasks 

Task1 Task2 F DF1 DF2 p 

Peripheral Perifoveal 24.35 1 73.62 < .0001 

Peripheral Navon 68.95 1 76.15 < .0001 

Peripheral FigureGround 1.05 1 71.92 0.3088 

Peripheral Flanker 15.99 1 74.51 0.0001 

Peripheral Saliency 99.31 1 72.72 < .0001 

Perifoveal Navon 144.26 1 74.75 < .0001 

Perifoveal FigureGround 19.94 1 73.04 < .0001 

Perifoveal Flanker 49.32 1 71.67 < .0001 

Perifoveal Saliency 174.62 1 71.93 < .0001 

Navon FigureGround 51.74 1 78.12 < .0001 

Navon Flanker 15.18 1 81.12 0.0002 

Navon Saliency 8.49 1 100.15 0.0044 

FigureGround Flanker 21.53 1 118.14 < .0001 

FigureGround Saliency 144.69 1 78.83 < .0001 

Flanker Saliency 56.38 1 80.02 < .0001 

Notes: p values are computed using the Satterthwaite’s approximation. 
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A.5.1.4. Stroop effects comparison, LMM vs GLM  

See the “Compare GLM- and LMM-based Stroop effects - iRT” section in the ManyStroopScript.m file 
Table A.5. Comparison of Stroop effects between LMM and GLM 

Task r t(71) p d 

Peripheral 0.948 3.415 0.0011 0.402 

Perifoveal 0.956 4.872 < .0001 0.574 

Navon 0.817 1.421 0.1596 0.168 

FigureGround 0.930 2.409 0.0186 0.284 

Flanker 0.917 1.767 0.0814 0.208 
Saliency 0.840 0.765 0.4467 0.090 

 
 
 
 

 
Figure A.5. Comparison of Stroop effects between LMM and GLM. 
Each scatterplot shows the participants’ Stroop effects (red circles) yielded by the LMM (y axis) and GLM (x 
axis) analytical approaches. The two-dimensional boxplot represents the corresponding median values 
(black square at the center of the box), interquartile ranges (height and width of the box, respectively), and 
dispersion outside the extreme quartiles (vertical and horizontal whiskers, respectively, indicating 1.5 times 
the interquartile range). The red solid line represents the corresponding linear regression line. The diagonal 
dotted line represents the equivalent line. 
 
 
 
Table A.6. Comparison of Stroop effects between LMM and GLM – regression analysis, intercept vs 0 

Task Estimate SE t(70) p 

Peripheral 0.088 0.011 7.97 < .0001 

Perifoveal 0.073 0.013 5.50 < .0001 

Navon 0.085 0.011 8.06 < .0001 

FigureGround 0.082 0.012 6.81 < .0001 

Flanker 0.063 0.011 5.52 < .0001 
Saliency 0.073 0.008 9.36 < .0001 
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Table A.7. Comparison of Stroop effects between LMM and GLM – regression analysis, slope vs 1 

Task Estimate SE t(70) p 

Peripheral 0.785 0.032 -6.80 < .0001 
Perifoveal 0.875 0.032 -3.92 0.0002 
Navon 0.596 0.050 -8.04 < .0001 
FigureGround 0.775 0.037 -6.15 < .0001 
Flanker 0.789 0.041 -5.13 < .0001 
Saliency 0.557 0.043 -10.31 < .0001 

A.5.2. LMM on lnRTs 

A.5.2.1. Results  

See the “LMM – lnRT – Model test 
 
Table A.8. LMM results, ANOVA table 

Effect F DF1 DF2 p 

Block 35.4 1 191.39 < .0001 
Trial 769.3 1 28740 < .0001 
postERR 373.2 1 28979 < .0001 
preRT 794.9 1 29000 < .0001 
hResp 102.8 1 28721 < .0001 
vResp 357.6 1 28718 < .0001 
Trial:Block 32.0 1 28727 < .0001 
Cong 1275.1 1 72.59 < .0001 
Task 46.4 5 71.17 < .0001 
Cong:Task 57.8 5 86.62 < .0001 

Notes: see Table A.2 for conventions 
 
 
Table A.9. LMM results, coefficients statistics 

Effect Estimate SE t DF p 

(Intercept) 6.3152 0.0229 275.65 72.08 < .0001 
Block -0.0172 0.0029 -5.95 191.4 < .0001 
Trial -0.0238 0.0009 -27.74 28741 < .0001 
preRT 0.0368 0.0013 28.19 29000 < .0001 
TASKPerifov -0.1001 0.0179 -5.58 70.35 < .0001 
TASKNavon -0.0409 0.0173 -2.37 71.72 0.0206 
TASKFG -0.1111 0.0163 -6.80 69.49 < .0001 
TASKFlanker -0.0754 0.0175 -4.31 71.79 0.0001 
TASKSaliency -0.1291 0.0156 -8.28 70.70 < .0001 
hResp -0.0172 0.0017 -10.14 28721 < .0001 
vResp -0.0321 0.0017 -18.91 28718 < .0001 
postERR 0.0898 0.0046 19.32 28979 < .0001 
CONGInc 0.2055 0.0114 18.01 71.81 < .0001 
Trial:Block 0.0048 0.0008 5.66 28727 < .0001 
CONGInc:TASKPerifov 0.0178 0.0089 2.01 69.62 0.0488 
CONGInc:TASKNavon -0.0967 0.0122 -7.95 73.28 < .0001 
CONGInc:TASKFG -0.0453 0.0140 -3.24 71.91 0.0018 
CONGInc:TASKFlanker -0.0742 0.0138 -5.39 72.25 < .0001 
CONGInc:TASKSaliency -0.1304 0.0123 -10.58 72.45 < .0001 

Notes: see Table A.2 for conventions 
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A.5.2.2. Residual analysis 

See the “LMM – lnRT – Inspect fit” section in the ManyStroopScript.m file 
 

 
Figure A.6. Inspection of residuals for the LMM analysis on lnRTs. 
The figure shows the results of the analysis of the residuals for the LMM analysis on lnRTs for the final 
model both before (upper panels) and after (bottom panels) excluding observations with absolute 
standardized residuals greater than 3. 
Left: histogram of the standardized residuals; the superimposed red curve represents the normal density 
function fitted to the data. Middle: quantile-quantile plot for the standardized residuals. Right: scatterplot 
of the fitted data (x) vs. the standardized residuals (y) for the visual inspection of the homoscedasticity; the 
gray line represents the corresponding linear regression line. 
 

A.5.2.3. Post-hoc  

See the “LMM – lnRT – Post-hoc comparisons” section in the ManyStroopScript.m file 
 
Table A.10. LMM on lnRTs, post-hoc pairwise comparisons of Stroop effects between tasks 

Task1 Task2 F DF1 DF2 p 

Peripheral Perifoveal 4.02 1 69.62 0.0488 

Peripheral Navon 63.25 1 73.28 < .0001 

Peripheral FigureGround 10.47 1 71.91 0.0018 

Peripheral Flanker 29.05 1 72.25 < .0001 

Peripheral Saliency 111.84 1 72.45 < .0001 

Perifoveal Navon 115.72 1 74.77 < .0001 

Perifoveal FigureGround 27.20 1 73.32 < .0001 

Perifoveal Flanker 55.06 1 71.51 < .0001 

Perifoveal Saliency 163.42 1 71.45 < .0001 

Navon FigureGround 29.83 1 81.09 < .0001 

Navon Flanker 5.72 1 80.34 0.0192 

Navon Saliency 16.40 1 88.88 0.0001 

FigureGround Flanker 19.06 1 153.12 < .0001 

FigureGround Saliency 149.40 1 91.81 < .0001 

Flanker Saliency 61.74 1 79.10 < .0001 

Notes: p values are computed using the Satterthwaite’s approximation. 
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A.5.2.4. Stroop effects comparison, LMM vs GLM  

See the “Compare GLM- and LMM-based Stroop effects - lnRT” section in the ManyStroopScript.m file 
 
Table A.11. Comparison of Stroop effects between LMM and GLM 

Task r t(71) p d 

Peripheral 0.944 2.955 0.0042 0.348 

Perifoveal 0.958 3.184 0.0022 0.375 

Navon 0.825 -0.625 0.5343 -0.074 

FigureGround 0.868 2.090 0.0402 0.246 

Flanker 0.878 2.001 0.0492 0.236 
Saliency 0.831 1.831 0.0714 0.216 

 
 
 

 
Figure A.7. Comparison of Stroop effects between LMM and GLM. 
Each scatterplot shows the participants’ Stroop effects (red circles) yielded by the LMM (y axis) and GLM (x 
axis) analytical approaches. The two-dimensional boxplot represents the corresponding median values 
(black square at the center of the box), interquartile ranges (height and width of the box, respectively), and 
dispersion outside the extreme quartiles (vertical and horizontal whiskers, respectively, indicating 1.5 times 
the interquartile range). The red solid line represents the corresponding linear regression line. The diagonal 
dotted line represents the equivalent line. 
 
 

Table A.12. Comparison of Stroop effects between LMM and GLM – regression analysis, intercept vs 0 

Task Estimate SE t(70) p 

Peripheral 0.037 0.008 4.70 < .0001 

Perifoveal 0.059 0.006 9.43 < .0001 

Navon 0.037 0.007 5.48 < .0001 

FigureGround 0.072 0.006 11.28 < .0001 

Flanker 0.051 0.006 8.98 < .0001 

Saliency 0.043 0.003 14.23 < .0001 
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Table A.13. Comparison of Stroop effects between LMM and GLM – regression analysis, slope vs 1 

Task Estimate SE t(70) p 

Peripheral 0.867 0.036 -3.68 0.0005 

Perifoveal 0.771 0.027 -8.36 < .0001 

Navon 0.647 0.053 -6.66 < .0001 

FigureGround 0.576 0.039 -10.77 < .0001 

Flanker 0.642 0.042 -8.56 < .0001 

Saliency 0.459 0.037 -14.70 < .0001 

A.5.3. LMM on RTs 

A.5.3.1. Results  

See the “LMM – RT – Model test” section in the ManyStroopScript.m file 
 
Table A.14. LMM results, ANOVA table.  

Effect F DF1 DF2 p 

Block 23.5 1 199.57 < .0001 
Trial 739.7 1 28626 < .0001 
postERR 342.3 1 28870 < .0001 
preRT 660.5 1 28805 < .0001 
hResp 88.7 1 28604 < .0001 
vResp 310.0 1 28603 < .0001 
Trial:Block 37.3 1 28611 < .0001 
Cong 718.4 1 71.61 < .0001 
Task 34.5 5 70.94 < .0001 
Cong:Task 49.0 5 85.21 < .0001 

Notes: see Table A.2 for conventions 
 
Table A.15. LMM results, coefficients statistics 

Effect Estimate SE t DF p 

(Intercept) 577.37 15.70 36.78 71.90 < .0001 

Block -7.94 1.64 -4.85 199.6 < .0001 

Trial -14.26 0.52 -27.20 28626 < .0001 

preRT 20.50 0.80 25.70 28805 < .0001 

TASKPerifov -49.99 11.97 -4.18 70.29 0.0001 

TASKNavon -31.38 13.20 -2.38 71.57 0.0201 

TASKFG -70.28 12.41 -5.67 70.08 < .0001 

TASKFlanker -50.52 13.24 -3.82 71.45 0.0003 

TASKSaliency -73.54 12.12 -6.07 70.61 < .0001 

hResp -9.74 1.03 -9.42 28604 < .0001 

vResp -18.24 1.04 -17.61 28603 < .0001 

postERR 52.57 2.84 18.50 28870 < .0001 

CONGInc 129.50 9.94 13.03 70.30 < .0001 

Trial:Block 3.16 0.52 6.11 28611 < .0001 

CONGInc:TASKPerifov -1.84 8.20 -0.22 66.79 0.8231 

CONGInc:TASKNavon -64.12 9.96 -6.44 70.74 < .0001 

CONGInc:TASKFG -46.66 10.86 -4.29 70.76 0.0001 

CONGInc:TASKFlanker -61.54 10.70 -5.75 70.01 < .0001 

CONGInc:TASKSaliency -94.41 10.06 -9.39 70.75 < .0001 
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A.5.3.2. Residual analysis 

See the “LMM – RT – Inspect fit” section in the ManyStroopScript.m file 
 

 
Figure A.8. Inspection of residuals for the LMM analysis on RTs. 
The figure shows the results of the analysis of the residuals for the LMM analysis on RTs for the final model 
both before (upper panels) and after (bottom panels) excluding observations with absolute standardized 
residuals greater than 3. 
Left: histogram of the standardized residuals; the superimposed red curve represents the normal density 
function fitted to the data. Middle: quantile-quantile plot for the standardized residuals. Right: scatterplot 
of the fitted data (x) vs. the standardized residuals (y) for the visual inspection of the homoscedasticity; the 
gray line represents the corresponding linear regression line. 
 

A.5.3.3. Post-hoc  

See the “LMM – RT – Post-hoc comparisons” section in the ManyStroopScript.m file 
 
Table A.16. LMM on lnRTs, post-hoc pairwise comparisons of Stroop effects between tasks 

Task1 Task2 F DF1 DF2 p 

Peripheral Perifoveal 0.05 1 66.79 0.8231 

Peripheral Navon 41.41 1 70.74 < .0001 
Peripheral FigureGround 18.45 1 70.76 0.0001 
Peripheral Flanker 33.08 1 70.01 < .0001 

Peripheral Saliency 88.11 1 70.75 < .0001 
Perifoveal Navon 50.66 1 70.56 < .0001 
Perifoveal FigureGround 24.48 1 71.23 < .0001 
Perifoveal Flanker 40.44 1 70.34 < .0001 

Perifoveal Saliency 104.72 1 70.34 < .0001 
Navon FigureGround 9.66 1 83.71 0.0026 
Navon Flanker 0.21 1 81.33 0.6517 

Navon Saliency 34.30 1 85.76 < .0001 
FigureGround Flanker 14.02 1 175.37 0.0002 
FigureGround Saliency 143.55 1 122.96 < .0001 

Flanker Saliency 69.51 1 76.18 < .0001 

Notes: p values are computed using the Satterthwaite’s approximation. 
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A.5.3.4. Stroop effects comparison, LMM vs GLM  

See the “Compare GLM- and LMM-based Stroop effects - RT” section in the ManyStroopScript.m file 
 
Table A.17. Comparison of Stroop effects between LMM and GLM 

Task r t(71) p d 

Peripheral 0.934 -0.089 0.9292 -0.011 

Perifoveal 0.953 -0.562 0.5759 -0.066 

Navon 0.810 -1.700 0.0935 -0.200 

FigureGround 0.769 1.628 0.1080 0.192 

Flanker 0.712 1.828 0.0718 0.215 
Saliency 0.779 1.225 0.2248 0.144 

 
 

 
Figure A.9. Comparison of Stroop effects between LMM and GLM. 
Each scatterplot shows the participants’ Stroop effects (red circles) yielded by the LMM (y axis) and GLM (x 
axis) analytical approaches. The two-dimensional boxplot represents the corresponding median values 
(black square at the center of the box), interquartile ranges (height and width of the box, respectively), and 
dispersion outside the extreme quartiles (vertical and horizontal whiskers, respectively, indicating 1.5 times 
the interquartile range). The red solid line represents the corresponding linear regression line. The diagonal 
dotted line represents the equivalent line. 
 
 
 
 
Table A.18. Comparison of Stroop effects between LMM and GLM – regression analysis, intercept vs 0 

Task Estimate SE t(70) p 

Peripheral 18.092 6.100 2.97 0.0041 

Perifoveal 25.072 4.554 5.51 < .0001 

Navon 26.323 4.040 6.52 < .0001 

FigureGround 51.925 3.277 15.84 < .0001 

Flanker 46.950 2.745 17.10 < .0001 

Saliency 22.928 1.537 14.92 < .0001 
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Table A.19. Comparison of Stroop effects between LMM and GLM – regression analysis, slope vs 1 

Task Estimate SE t(70) p 

Peripheral 0.858 0.039 -3.62 0.0005 

Perifoveal 0.793 0.030 -6.85 < .0001 

Navon 0.550 0.048 -9.48 < .0001 

FigureGround 0.392 0.039 -15.63 < .0001 

Flanker 0.333 0.039 -17.00 < .0001 
Saliency 0.376 0.036 -17.22 < .0001 

 
 

A.5.4. Control analysis, reduced (i.e., minimal) LMM on iRTs 

A.5.4.1. Results  

See the “LMM - iRT - Control analysis (without confounders)” section in the ManyStroopScript.m file.  
 
Table A.20. LMM results, coefficients statistics 

Coefficient Estimate SE t DF p 

(Intercept) -1.8769 0.0466 -40.25 71.98 < .0001 

TASKPerifov -0.2271 0.0371 -6.13 71.71 < .0001 

TASKNavon -0.0852 0.0333 -2.56 72.04 0.0126 

TASKFG -0.2226 0.0337 -6.61 71.94 < .0001 

TASKFlanker -0.1543 0.0330 -4.67 71.99 < .0001 

TASKSaliency -0.2925 0.0321 -9.12 71.94 < .0001 

CONGInc 0.3243 0.0157 20.71 72.68 < .0001 

CONGInc:TASKPerifov 0.0712 0.0145 4.92 75.73 < .0001 

CONGInc:TASKNavon -0.1374 0.0168 -8.17 80.11 < .0001 

CONGInc:TASKFG -0.0173 0.0205 -0.84 72.04 0.4019 

CONGInc:TASKFlanker -0.0721 0.0196 -3.69 75.83 0.0004 

CONGInc:TASKSaliency -0.1734 0.0175 -9.91 73.51 < .0001 

Notes: Perifov, Perifoveal; FG, Figure-Ground; CONG, Congruency; Inc, Incongruent trials; DF, degrees of 
freedom. P values are computed using the Satterthwaite’s approximation. 
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A.5.4.2. Residual analysis 

See the “LMM - iRT - Control analysis (without confounders)” section in the ManyStroopScript.m file 
 

 
 
Figure A.10. Inspection of residuals for the control LMM analysis (with the reduced model) on iRTs. 
The figure shows the results of the analysis of the residuals for the LMM analysis on iRTs for the reduced 
model both before (upper panels) and after (bottom panels) excluding observations with absolute 
standardized residuals greater than 3. 
Left: histogram of the standardized residuals; the superimposed red curve represents the normal density 
function fitted to the data. Middle: quantile-quantile plot for the standardized residuals. Right: scatterplot 
of the fitted data (x) vs. the standardized residuals (y) for the visual inspection of the homoscedasticity; the 
gray line represents the corresponding linear regression line. 
 

A.5.4.3. Stroop effects comparison, full vs reduced LMM  

See the “LMM - iRT - Control analysis (without confounders)” section in the ManyStroopScript.m file 
 
Table A.21. Comparison of Stroop effects between LMM and GLM 

Task r t(71) p d 

Peripheral 0.992 9.676 < .0001 1.140 

Perifoveal 0.997 13.321 < .0001 1.570 

Navon 0.989 7.614 < .0001 0.897 

FigureGround 0.996 10.586 < .0001 1.248 

Flanker 0.993 6.497 < .0001 0.766 

Saliency 0.984 4.209 < .0001 0.496 
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Figure A.11. Comparison of Stroop effects between full and reduced LMM. 
Each scatterplot shows the participants’ Stroop effects (red circles) yielded by the reduced (y axis) and full 
LMM (x axis) analytical approaches. The two-dimensional boxplot represents the corresponding median 
values (black square at the center of the box), interquartile ranges (height and width of the box, 
respectively), and dispersion outside the extreme quartiles (vertical and horizontal whiskers, respectively, 
indicating 1.5 times the interquartile range). The red solid line represents the corresponding linear 
regression line. The diagonal dotted line represents the equivalent line. 

A.6. RCA 

A.6.1. RCA on iRTs 

A.6.1.1. Results  

See the “RCA - iRT” section in the ManyStroopScript.m file. 
 
Table A.22. RCA results, coefficients statistics 

Effect Estimate SE t DF p 

(Intercept) -1.8855 0.0397 -47.49 71 < .0001 

Trial -0.0416 0.0037 -11.26 71 < .0001 

preRT 0.0624 0.0042 14.69 71 < .0001 

TASKPerifov -0.1999 0.0316 -6.33 71 < .0001 

TASKNavon -0.0539 0.0280 -1.92 71 0.0586 

TASKFG -0.1780 0.0287 -6.21 71 < .0001 

TASKFlanker -0.1133 0.0282 -4.01 71 0.0001 

TASKSaliency -0.2283 0.0267 -8.54 71 < .0001 

hResp -0.0299 0.0079 -3.76 71 0.0003 

vResp -0.0620 0.0075 -8.27 71 < .0001 

postERR 0.1980 0.0170 11.62 71 < .0001 

CONGInc 0.3453 0.0169 20.47 71 < .0001 

CONGInc:TASKPerifov 0.0647 0.0159 4.08 71 0.0001 

CONGInc:TASKNavon -0.1486 0.0180 -8.27 71 < .0001 

CONGInc:TASKFG -0.0260 0.0219 -1.19 71 0.2396 

CONGInc:TASKFlanker -0.0838 0.0205 -4.08 71 < .0001 

CONGInc:TASKSaliency -0.1893 0.0189 -10.01 71 < .0001 

Notes: see Table A.2 for conventions 
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A.6.1.2. Residual analysis 

See the “RCA – iRT – Inspect fit” section in the ManyStroopScript.m file 
 

 
 
Figure A.12. Inspection of residuals for the RCA analysis on iRTs. 
The figure shows the results of the analysis of the residuals for the RCA analysis on iRTs for the final model 
both before (upper panels) and after (bottom panels) excluding observations with absolute standardized 
residuals greater than 3. 
Left: histogram of the standardized residuals; the superimposed red curve represents the normal density 
function fitted to the data. Middle: quantile-quantile plot for the standardized residuals. Right: scatterplot 
of the fitted data (x) vs. the standardized residuals (y) for the visual inspection of the homoscedasticity; the 
gray line represents the corresponding linear regression line. 
 
 

A.6.1.3. Post-hoc  

See the “RCA – iRT – Post-hoc comparisons” section in the ManyStroopScript.m file 
 
Table A.23. RCA on iRTs, post-hoc pairwise comparisons of Stroop effects between tasks 

Task1 Task2 F DF1 DF2 p 

Peripheral Perifoveal 16.61 1 71 0.0001 

Peripheral Navon 68.36 1 71 < .0001 

Peripheral FigureGround 1.41 1 71 0.2396 

Peripheral Flanker 16.64 1 71 0.0001 

Peripheral Saliency 100.19 1 71 < .0001 

Perifoveal Navon 131.03 1 71 < .0001 

Perifoveal FigureGround 18.41 1 71 0.0001 

Perifoveal Flanker 46.55 1 71 < .0001 

Perifoveal Saliency 155.67 1 71 < .0001 

Navon FigureGround 51.31 1 71 < .0001 

Navon Flanker 15.96 1 71 0.0002 

Navon Saliency 8.67 1 71 0.0044 

FigureGround Flanker 29.98 1 71 < .0001 

FigureGround Saliency 150.01 1 71 < .0001 

Flanker Saliency 57.46 1 71 < .0001 

Notes: p values are computed using the Satterthwaite’s approximation. 
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A.6.1.4. Stroop effects comparison, RCA vs GLM  

See the “Compare GLM- and RCA-based Stroop effects - iRT” section in the ManyStroopScript.m file 
 
Table A.24. Comparison of Stroop effects between RCA and GLM 

Task r t(71) p d 

Peripheral 0.985 7.298 < .0001 0.860 

Perifoveal 0.977 4.611 < .0001 0.543 

Navon 0.967 3.042 0.0033 0.359 

FigureGround 0.982 4.514 < .0001 0.532 

Flanker 0.990 4.813 < .0001 0.567 

Saliency 0.965 1.169 0.2463 0.138 

 
 
 
 

 
Figure A.13. Comparison of Stroop effects between RCA and GLM. 
Each scatterplot shows the participants’ Stroop effects (red circles) yielded by the RCA (y axis) and GLM (x 
axis) analytical approaches. The two-dimensional boxplot represents the corresponding median values 
(black square at the center of the box), interquartile ranges (height and width of the box, respectively), and 
dispersion outside the extreme quartiles (vertical and horizontal whiskers, respectively, indicating 1.5 times 
the interquartile range). The red solid line represents the corresponding linear regression line. The diagonal 
dotted line represents the equivalent line. 
 

Table A.25. Comparison of Stroop effects between RCA and GLM – regression analysis, intercept vs 0 

Task Estimate SE t(70) p 

Peripheral 0.012 0.008 1.53 0.1300 

Perifoveal -0.009 0.012 -0.82 0.4144 

Navon 0.010 0.007 1.46 0.1487 

FigureGround 0.015 0.007 2.09 0.0405 

Flanker 0.016 0.005 3.35 0.0013 

Saliency 0.005 0.006 0.87 0.3898 
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Table A.26. Comparison of Stroop effects between RCA and GLM – regression analysis, slope vs 1 

Task Estimate SE t(70) p 

Peripheral 1.031 0.022 1.42 0.1592 

Perifoveal 1.072 0.028 2.59 0.0116 

Navon 0.997 0.031 -0.11 0.9140 

FigureGround 0.989 0.022 -0.50 0.6197 

Flanker 0.976 0.017 -1.41 0.1639 

Saliency 0.991 0.032 -0.29 0.7717 

 

A.6.1.5. Stroop effects comparison, LMM vs RCA 

See the “Compare RCA- and LMM-based Stroop effects - iRT” section in the ManyStroopScript.m file 
 
Table A.27. Comparison of Stroop effects between LMM and RCA 

Task r t(71) p d 

Peripheral 0.954 -0.485 0.6291 -0.057 

Perifoveal 0.950 0.875 0.3846 0.103 

Navon 0.839 0.056 0.9551 0.007 

FigureGround 0.934 0.176 0.8606 0.021 

Flanker 0.912 0.051 0.9598 0.006 

Saliency 0.842 0.209 0.8352 0.025 

 
 
 
 

 
Figure A.14. Comparison of Stroop effects between LMM and RCA. 
Each scatterplot shows the participants’ Stroop effects (red circles) yielded by the LMM (y axis) and RCA (x 
axis) analytical approaches. The two-dimensional boxplot represents the corresponding median values 
(black square at the center of the box), interquartile ranges (height and width of the box, respectively), and 
dispersion outside the extreme quartiles (vertical and horizontal whiskers, respectively, indicating 1.5 times 
the interquartile range). The red solid line represents the corresponding linear regression line. The diagonal 
dotted line represents the equivalent line. 
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Table A.28. Comparison of Stroop effects between LMM and RCA – regression analysis, intercept vs 0 

Task Estimate SE t(70) p 

Peripheral 0.082 0.011 7.72 < .0001 

Perifoveal 0.091 0.014 6.62 < .0001 

Navon 0.080 0.010 7.94 < .0001 

FigureGround 0.073 0.012 6.08 < .0001 

Flanker 0.054 0.012 4.37 < .0001 

Saliency 0.073 0.008 9.44 < .0001 

 
 
Table A.29. Comparison of Stroop effects between LMM and RCA – regression analysis, slope vs 1 

Task Estimate SE t(70) p 

Peripheral 0.755 0.028 -8.63 < .0001 

Perifoveal 0.792 0.031 -6.66 < .0001 

Navon 0.594 0.046 -8.83 < .0001 

FigureGround 0.773 0.035 -6.41 < .0001 

Flanker 0.796 0.043 -4.77 < .0001 

Saliency 0.544 0.042 -10.95 < .0001 

 
 
Table A.30. Meng's test comparing LMM-GLM vs RCA-GLM correlations of Stroop effects 

Task z p 

Peripheral 5.269 < .0001 

Perifoveal 2.905 0.0037 

Navon 6.927 < .0001 

FigureGround 5.774 < .0001 

Flanker 8.498 < .0001 

Saliency 6.234 < .0001 
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A.6.2. RCA on lnRTs 

A.6.2.1. Results  

See the “RCA - lnRT” section in the ManyStroopScript.m file. 
 
Table A.31. RCA results, coefficients statistics 

Effect Estimate SE t DF p 

(Intercept) 6.3040 0.0231 273.12 71 < .0001 

Trial -0.0241 0.0022 -11.17 71 < .0001 

preRT 0.0357 0.0028 12.64 71 < .0001 

TASKPerifov -0.0973 0.0184 -5.28 71 < .0001 

TASKNavon -0.0374 0.0168 -2.22 71 0.0295 

TASKFG -0.1025 0.0173 -5.91 71 < .0001 

TASKFlanker -0.0677 0.0175 -3.87 71 0.0002 

TASKSaliency -0.1193 0.0159 -7.50 71 < .0001 

hResp -0.0167 0.0043 -3.89 71 0.0002 

vResp -0.0335 0.0042 -8.04 71 < .0001 

postERR 0.1173 0.0117 10.00 71 < .0001 

CONGInc 0.2054 0.0116 17.65 71 < .0001 

CONGInc:TASKPerifov 0.0175 0.0095 1.85 71 0.0679 

CONGInc:TASKNavon -0.0954 0.0124 -7.70 71 < .0001 

CONGInc:TASKFG -0.0444 0.0140 -3.17 71 0.0023 

CONGInc:TASKFlanker -0.0741 0.0135 -5.48 71 < .0001 

CONGInc:TASKSaliency -0.1328 0.0125 -10.61 71 < .0001 

Notes: see Table A.2 for conventions 
 

A.6.2.2. Residual analysis 

See the “RCA – lnRT – Inspect fit” section in the ManyStroopScript.m file 
 

 
 
Figure A.15. Inspection of residuals for the RCA analysis on lnRTs. 
The figure shows the results of the analysis of the residuals for the RCA analysis on lnRTs for the final model 
both before (upper panels) and after (bottom panels) excluding observations with absolute standardized 
residuals greater than 3. Left: histogram of the standardized residuals; the superimposed red curve 
represents the normal density function fitted to the data. Middle: quantile-quantile plot for the 
standardized residuals. Right: scatterplot of the fitted data (x) vs. the standardized residuals (y) for the 
visual inspection of the homoscedasticity; the gray line represents the corresponding linear regression line.  
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A.6.2.3. Post-hoc  

See the “RCA – lnRT – Post-hoc comparisons” section in the ManyStroopScript.m file 
 
Table A.32. RCA on lnRTs, post-hoc pairwise comparisons of Stroop effects between tasks 

Task1 Task2 F DF1 DF2 p 

Peripheral Perifoveal 3.44 1 71 0.0679 

Peripheral Navon 59.30 1 71 < .0001 

Peripheral FigureGround 10.03 1 71 0.0023 

Peripheral Flanker 30.01 1 71 < .0001 

Peripheral Saliency 112.58 1 71 < .0001 

Perifoveal Navon 97.75 1 71 < .0001 

Perifoveal FigureGround 23.84 1 71 < .0001 

Perifoveal Flanker 49.87 1 71 < .0001 

Perifoveal Saliency 145.70 1 71 < .0001 

Navon FigureGround 29.74 1 71 < .0001 

Navon Flanker 5.21 1 71 0.0254 

Navon Saliency 22.58 1 71 < .0001 

FigureGround Flanker 28.13 1 71 < .0001 

FigureGround Saliency 196.59 1 71 < .0001 

Flanker Saliency 71.04 1 71 < .0001 

Notes: p values are computed using the Satterthwaite’s approximation. 
 

A.6.2.4. Stroop effects comparison, RCA vs GLM  

See the “Compare GLM- and RCA-based Stroop effects - lnRT” section in the ManyStroopScript.m file 
 
Table A.33. Comparison of Stroop effects between RCA and GLM 

Task r t(71) p d 

Peripheral 0.973 3.930 0.0002 0.463 

Perifoveal 0.974 4.165 0.0001 0.491 

Navon 0.951 -0.571 0.5701 -0.067 

FigureGround 0.955 4.272 0.0001 0.503 

Flanker 0.965 3.882 0.0002 0.458 

Saliency 0.956 2.387 0.0196 0.281 
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Figure A.16. Comparison of Stroop effects between RCA and GLM. 
Each scatterplot shows the participants’ Stroop effects (red circles) yielded by the RCA (y axis) and GLM (x 
axis) analytical approaches. The two-dimensional boxplot represents the corresponding median values 
(black square at the center of the box), interquartile ranges (height and width of the box, respectively), and 
dispersion outside the extreme quartiles (vertical and horizontal whiskers, respectively, indicating 1.5 times 
the interquartile range). The red solid line represents the corresponding linear regression line. The diagonal 
dotted line represents the equivalent line. 
 
 
Table A.34. Comparison of Stroop effects between RCA and GLM – regression analysis, intercept vs 0 

Task Estimate SE t(70) p 

Peripheral 0.005 0.006 0.72 0.4714 

Perifoveal 0.005 0.007 0.71 0.4820 

Navon 0.004 0.005 0.79 0.4326 

FigureGround 0.019 0.006 3.51 0.0008 

Flanker 0.017 0.004 4.25 0.0001 

Saliency 0.009 0.003 3.04 0.0033 

 
 
Table A.35. Comparison of Stroop effects between RCA and GLM – regression analysis, slope vs 1 

Task Estimate SE t(70) p 

Peripheral 1.031 0.029 1.07 0.2895 

Perifoveal 1.026 0.028 0.91 0.3666 

Navon 0.955 0.037 -1.21 0.2310 

FigureGround 0.924 0.034 -2.21 0.0305 

Flanker 0.916 0.030 -2.84 0.0059 

Saliency 0.931 0.034 -2.02 0.0468 
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A.6.2.5. Stroop effects comparison, LMM vs RCA 

See the “Compare RCA- and LMM-based Stroop effects - lnRT” section in the ManyStroopScript.m file 
 
Table A.36. Comparison of Stroop effects between LMM and RCA 

Task r t(71) p d 

Peripheral 0.974 0.022 0.9827 0.003 

Perifoveal 0.956 0.104 0.9175 0.012 

Navon 0.871 -0.347 0.7294 -0.041 

FigureGround 0.868 -0.279 0.7811 -0.033 

Flanker 0.858 -0.036 0.9713 -0.004 

Saliency 0.834 0.731 0.4674 0.086 

 
 

 
Figure A.17. Comparison of Stroop effects between LMM and RCA. 
Each scatterplot shows the participants’ Stroop effects (red circles) yielded by the LMM (y axis) and RCA (x 
axis) analytical approaches. The two-dimensional boxplot represents the corresponding median values 
(black square at the center of the box), interquartile ranges (height and width of the box, respectively), and 
dispersion outside the extreme quartiles (vertical and horizontal whiskers, respectively, indicating 1.5 times 
the interquartile range). The red solid line represents the corresponding linear regression line. The diagonal 
dotted line represents the equivalent line. 
 

Table A.37. Comparison of Stroop effects between LMM and RCA – regression analysis, intercept vs 0 

Task Estimate SE t(70) p 

Peripheral 0.032 0.005 6.06 < .0001 

Perifoveal 0.060 0.006 9.43 < .0001 

Navon 0.034 0.006 5.90 < .0001 

FigureGround 0.064 0.007 9.36 < .0001 

Flanker 0.044 0.007 6.64 < .0001 

Saliency 0.041 0.003 12.68 < .0001 
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Table A.38. Comparison of Stroop effects between LMM and RCA – regression analysis, slope vs 1 

Task Estimate SE t(70) p 

Peripheral 0.844 0.023 -6.70 < .0001 

Perifoveal 0.730 0.027 -10.11 < .0001 

Navon 0.680 0.046 -6.98 < .0001 

FigureGround 0.595 0.041 -9.95 < .0001 

Flanker 0.661 0.047 -7.17 < .0001 

Saliency 0.474 0.037 -14.06 < .0001 

 
 
Table A.39. Meng's test comparing LMM-GLM vs RCA-GLM correlations of Stroop effects 

Task z p 

Peripheral 3.158 0.0016 

Perifoveal 2.146 0.0319 

Navon 5.227 < .0001 

FigureGround 4.548 < .0001 

Flanker 5.204 < .0001 

Saliency 5.522 < .0001 

 

A.6.3. RCA on RTs 

A.6.3.1. Results  

See the “RCA - RT” section in the ManyStroopScript.m file. 
 
Table A.40. RCA results, coefficients statistics 

Effect Estimate SE t DF p 

(Intercept) 565.36 14.49 39.01 71 < .0001 

Trial -14.79 1.46 -10.10 71 < .0001 

preRT 20.89 2.10 9.96 71 < .0001 

TASKPerifov -46.81 11.28 -4.15 71 0.0001 

TASKNavon -24.44 11.18 -2.19 71 0.0322 

TASKFG -60.83 11.29 -5.39 71 < .0001 

TASKFlanker -41.36 12.01 -3.44 71 0.0010 

TASKSaliency -64.67 10.64 -6.08 71 < .0001 

hResp -9.55 2.58 -3.70 71 0.0004 

vResp -19.62 2.72 -7.21 71 < .0001 

postERR 74.44 9.58 7.77 71 < .0001 

CONGInc 133.24 10.95 12.17 71 < .0001 

CONGInc:TASKPerifov -6.63 9.17 -0.72 71 0.4722 

CONGInc:TASKNavon -68.90 10.97 -6.28 71 < .0001 

CONGInc:TASKFG -50.16 11.42 -4.39 71 < .0001 

CONGInc:TASKFlanker -65.72 11.48 -5.73 71 < .0001 

CONGInc:TASKSaliency -99.53 10.89 -9.14 71 < .0001 

Notes: see Table A.2 for conventions 
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A.6.3.2. Residual analysis 

See the “RCA – RT – Inspect fit” section in the ManyStroopScript.m file 
 

 
 
Figure A.18. Inspection of residuals for the RCA analysis on RTs. 
The figure shows the results of the analysis of the residuals for the RCA analysis on RTs for the final model 
both before (upper panels) and after (bottom panels) excluding observations with absolute standardized 
residuals greater than 3. 
Left: histogram of the standardized residuals; the superimposed red curve represents the normal density 
function fitted to the data. Middle: quantile-quantile plot for the standardized residuals. Right: scatterplot 
of the fitted data (x) vs. the standardized residuals (y) for the visual inspection of the homoscedasticity; the 
gray line represents the corresponding linear regression line. 
 

A.6.3.3. Post-hoc  

See the “RCA – RT – Post-hoc comparisons” section in the ManyStroopScript.m file 
 
Table A.41. RCA on RTs, post-hoc pairwise comparisons of Stroop effects between tasks 

Task1 Task2 F DF1 DF2 p 

Peripheral Perifoveal 0.52 1 71 0.4722 

Peripheral Navon 39.43 1 71 < .0001 

Peripheral FigureGround 19.31 1 71 < .0001 

Peripheral Flanker 32.78 1 71 < .0001 

Peripheral Saliency 83.46 1 71 < .0001 

Perifoveal Navon 44.31 1 71 < .0001 

Perifoveal FigureGround 22.53 1 71 < .0001 

Perifoveal Flanker 36.53 1 71 < .0001 

Perifoveal Saliency 96.62 1 71 < .0001 

Navon FigureGround 10.98 1 71 0.0015 

Navon Flanker 0.33 1 71 0.5683 

Navon Saliency 34.95 1 71 < .0001 

FigureGround Flanker 22.54 1 71 < .0001 

FigureGround Saliency 209.56 1 71 < .0001 

Flanker Saliency 75.26 1 71 < .0001 

Notes: p values are computed using the Satterthwaite’s approximation. 
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A.6.3.4. Stroop effects comparison, RCA vs GLM  

See the “Compare GLM- and RCA-based Stroop effects - RT” section in the ManyStroopScript.m file 
 
Table A.42. Comparison of Stroop effects between RCA and GLM 

Task r t(71) p d 

Peripheral 0.958 1.082 0.2829 0.128 

Perifoveal 0.956 -1.002 0.3199 -0.118 

Navon 0.937 -3.420 0.0010 -0.403 

FigureGround 0.871 2.407 0.0187 0.284 

Flanker 0.866 2.466 0.0161 0.291 

Saliency 0.942 1.277 0.2058 0.150 

 
 

 
Figure A.19. Comparison of Stroop effects between RCA and GLM. 
Each scatterplot shows the participants’ Stroop effects (red circles) yielded by the RCA (y axis) and GLM (x 
axis) analytical approaches. The two-dimensional boxplot represents the corresponding median values 
(black square at the center of the box), interquartile ranges (height and width of the box, respectively), and 
dispersion outside the extreme quartiles (vertical and horizontal whiskers, respectively, indicating 1.5 times 
the interquartile range). The red solid line represents the corresponding linear regression line. The diagonal 
dotted line represents the equivalent line. 
 
 
Table A.43. Comparison of Stroop effects between RCA and GLM – regression analysis, intercept vs 0 

Task Estimate SE t(70) p 

Peripheral 0.05 5.74 0.01 0.9931 

Perifoveal 4.96 5.23 0.95 0.3461 

Navon 4.91 3.18 1.54 0.1274 

FigureGround 19.03 4.61 4.13 0.0001 

Flanker 21.89 3.50 6.25 < .0001 

Saliency 4.89 1.61 3.04 0.0033 
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Table A.44. Comparison of Stroop effects between RCA and GLM – regression analysis, slope vs 1 

Task Estimate SE t(70) p 

Peripheral 1.026 0.037 0.70 0.4832 

Perifoveal 0.941 0.035 -1.71 0.0909 

Navon 0.837 0.037 -4.36 < .0001 

FigureGround 0.811 0.055 -3.44 0.0010 

Flanker 0.723 0.050 -5.53 < .0001 

Saliency 0.892 0.038 -2.85 0.0057 

 
 

A.6.3.5. Stroop effects comparison, LMM vs RCA 

See the “Compare RCA- and LMM-based Stroop effects - RT” section in the ManyStroopScript.m file 
 
Table A.45. Comparison of Stroop effects between LMM and RCA 

Task r t(71) p d 

Peripheral 0.983 -1.534 0.1295 -0.181 

Perifoveal 0.973 0.436 0.6643 0.051 

Navon 0.841 0.382 0.7034 0.045 

FigureGround 0.767 -0.110 0.9125 -0.013 

Flanker 0.633 0.187 0.8520 0.022 

Saliency 0.776 0.650 0.5178 0.077 

 
 
 
 

 
Figure A.20. Comparison of Stroop effects between LMM and RCA. 
Each scatterplot shows the participants’ Stroop effects (red circles) yielded by the LMM (y axis) and RCA (x 
axis) analytical approaches. The two-dimensional boxplot represents the corresponding median values 
(black square at the center of the box), interquartile ranges (height and width of the box, respectively), and 
dispersion outside the extreme quartiles (vertical and horizontal whiskers, respectively, indicating 1.5 times 
the interquartile range). The red solid line represents the corresponding linear regression line. The diagonal 
dotted line represents the equivalent line. 
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Table A.46. Comparison of Stroop effects between LMM and RCA – regression analysis, intercept vs 0 

Task Estimate SE t(70) p 

Peripheral 17.21 3.06 5.62 < .0001 

Perifoveal 23.46 3.44 6.81 < .0001 

Navon 24.26 3.76 6.45 < .0001 

FigureGround 48.02 3.67 13.10 < .0001 

Flanker 44.04 3.73 11.80 < .0001 

Saliency 21.73 1.64 13.27 < .0001 

 
 
Table A.47. Comparison of Stroop effects between LMM and RCA – regression analysis, slope vs 1 

Task Estimate SE t(70) p 

Peripheral 0.843 0.019 -8.32 < .0001 

Perifoveal 0.823 0.023 -7.60 < .0001 

Navon 0.639 0.049 -7.36 < .0001 

FigureGround 0.419 0.042 -13.85 < .0001 

Flanker 0.354 0.052 -12.48 < .0001 

Saliency 0.396 0.038 -15.70 < .0001 

 
 
Table A.48. Meng's test comparing LMM-GLM vs RCA-GLM correlations of Stroop effects 

Task z p 

Peripheral 1.984 0.0472 

Perifoveal 0.293 0.7695 

Navon 4.564 < .0001 

FigureGround 2.544 0.0110 

Flanker 3.250 0.0012 

Saliency 5.466 < .0001 

 
 
 
  



 

367 

A.6.4. Control analysis, reduced (i.e., minimal) RCA on iRTs 

A.6.4.1. Results  

See the “RCA - iRT - Control analysis (without confounders)” section in the ManyStroopScript.m file. 
 
Table A.49. RCA results, coefficients statistics 

Effect Estimate SE t DF p 

(Intercept) -1.8796 0.0469 -40.11 71 < .0001 

TASKPerifov -0.2291 0.0368 -6.22 71 < .0001 

TASKNavon -0.0825 0.0331 -2.49 71 0.0152 

TASKFG -0.2214 0.0336 -6.59 71 < .0001 

TASKFlanker -0.1495 0.0331 -4.52 71 < .0001 

TASKSaliency -0.2905 0.0322 -9.03 71 < .0001 

CONGInc 0.3261 0.0163 20.00 71 < .0001 

CONGInc:TASKPerifov 0.0691 0.0156 4.42 71 < .0001 

CONGInc:TASKNavon -0.1385 0.0175 -7.91 71 < .0001 

CONGInc:TASKFG -0.0165 0.0209 -0.79 71 0.4325 

CONGInc:TASKFlanker -0.0746 0.0196 -3.81 71 < .0001 

CONGInc:TASKSaliency -0.1754 0.0176 -9.96 71 < .0001 

Notes: see Table A.2 for conventions 
 

A.6.1.2. Residual analysis 

See the “RCA - iRT - Control analysis (without confounders)” section in the ManyStroopScript.m file. 
 

 
 
 
Figure A.21. Inspection of residuals for the control RCA analysis (with the reduced model) on iRTs. 
The figure shows the results of the analysis of the residuals for the RCA analysis on iRTs for the reduced 
model both before (upper panels) and after (bottom panels) excluding observations with absolute 
standardized residuals greater than 3. 
Left: histogram of the standardized residuals; the superimposed red curve represents the normal density 
function fitted to the data. Middle: quantile-quantile plot for the standardized residuals. Right: scatterplot 
of the fitted data (x) vs. the standardized residuals (y) for the visual inspection of the homoscedasticity; the 
gray line represents the corresponding linear regression line. 
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A.6.4.3. Stroop effects comparison, full vs reduced RCA  

See the “RCA - iRT - Control analysis (without confounders)” section in the ManyStroopScript.m file. 
 
Table A.50. Comparison of Stroop effects between RCA and GLM 

Task r t(71) p d 

Peripheral 0.9869 6.999 < .0001 0.825 

Perifoveal 0.9885 5.313 < .0001 0.626 

Navon 0.9767 3.636 0.0005 0.428 

FigureGround 0.9900 4.815 < .0001 0.567 

Flanker 0.9924 5.746 < .0001 0.677 

Saliency 0.9814 2.296 0.0246 0.271 

 
 

 
 
Figure A.22. Comparison of Stroop effects between full and reduced RCA. 
Each scatterplot shows the participants’ Stroop effects (red circles) yielded by the reduced (y axis) and full 
RCA (x axis) analytical approaches. The two-dimensional boxplot represents the corresponding median 
values (black square at the center of the box), interquartile ranges (height and width of the box, 
respectively), and dispersion outside the extreme quartiles (vertical and horizontal whiskers, respectively, 
indicating 1.5 times the interquartile range). The red solid line represents the corresponding linear 
regression line. The diagonal dotted line represents the equivalent line. 
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A.7. Correlational analysis, Stroop effects 

A.7.1. GLM 

See the “Across-tasks Stroop correlations - GLM” section in the ManyStroopScript.m file. 
 
Table A.51. Between-tasks correlations of Stroop effects for each RT transformation 

 Periph Perifov Navon FG Flanker Saliency 

iRT       

1 - Peripheral  0.627 0.264 0.052 0.149 0.198 

2 - Perifoveal 6.734  0.260 0.139 0.092 0.156 

3 - Navon 2.290 2.252  0.200 0.255 0.304 

4 - FigureGround 0.438 1.171 1.704  0.720 0.491 

5 - Flanker 1.263 0.769 2.210 8.688  0.443 

6 - Saliency 1.694 1.318 2.674 4.713 4.137  

lnRT       

1 - Peripheral  0.655 0.224 -0.156 -0.078 0.089 

2 - Perifoveal 7.253  0.149 -0.086 -0.152 -0.065 

3 - Navon 1.924 1.260  0.053 0.091 0.263 

4 - FigureGround -1.324 -0.725 0.447  0.628 0.418 

5 - Flanker -0.656 -1.285 0.766 6.753  0.324 

6 - Saliency 0.748 -0.548 2.277 3.848 2.864  

RT       

1 - Peripheral  0.612 0.231 -0.148 -0.173 0.156 

2 - Perifoveal 6.473  0.155 -0.013 -0.195 -0.007 

3 - Navon 1.983 1.309  0.066 -0.015 0.301 

4 - FigureGround -1.251 -0.109 0.553  0.499 0.402 

5 - Flanker -1.473 -1.661 -0.125 4.822  0.241 

6 - Saliency 1.326 -0.058 2.642 3.677 2.078  

Notes: for each RT transformation, the upper triangles show the correlation coefficient, the lower triangles 
show the corresponding t values. The cells with a darker and lighter gray shade indicate significant 
correlations that did and did not survive the FDR correction for multiple correlations, respectively. 
 

 

 
 
 
 
 
 
Figure A.23. Stroop effects correlations. 
The figure shows the correlation matrix for the 

Stroop effects across the six tasks and the 

three RT transformations. The white asterisks 

indicate the FDR-corrected significant 

correlations between task pairs within each RT 

transformation.  
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A.7.2. LMM 

See the “Across-tasks Stroop correlations - LMM” section in the ManyStroopScript.m file. 
 
Table A.52. Between-tasks correlations of Stroop effects for each RT transformation 

 Periph Perifov Navon FG Flanker Saliency 

iRT       

1 - Peripheral  0.860 0.398 0.079 0.208 0.261 

2 - Perifoveal 14.084  0.482 0.223 0.187 0.335 

3 - Navon 3.634 4.608  0.212 0.304 0.472 

4 - FigureGround 0.666 1.914 1.813  0.878 0.860 

5 - Flanker 1.778 1.594 2.674 15.340  0.802 

6 - Saliency 2.260 2.977 4.477 14.096 11.236  

lnRT       

1 - Peripheral  0.854 0.290 -0.282 -0.187 0.104 

2 - Perifoveal 13.720  0.349 -0.222 -0.189 -0.110 

3 - Navon 2.534 3.117  -0.051 0.046 0.246 

4 - FigureGround -2.461 -1.903 -0.426  0.809 0.718 

5 - Flanker -1.593 -1.611 0.389 11.517  0.693 

6 - Saliency 0.872 -0.927 2.123 8.639 8.040  

RT       

1 - Peripheral  0.699 0.294 -0.215 -0.192 0.238 

2 - Perifoveal 8.181  0.247 -0.097 -0.329 -0.048 

3 - Navon 2.578 2.135  -0.044 -0.179 0.282 

4 - FigureGround -1.845 -0.819 -0.365  0.550 0.602 

5 - Flanker -1.637 -2.914 -1.519 5.509  0.567 

6 - Saliency 2.054 -0.399 2.455 6.305 5.766  

Notes: for each RT transformation, the upper triangles show the correlation coefficient, the lower triangles 
show the corresponding t values. The cells with a darker and lighter gray shade indicate significant 
correlations that did and did not survive the FDR correction for multiple correlations, respectively. 
 

 

 
 
 

 

 

 

 
Figure A.24. Stroop effects correlations. 
The figure shows the correlation matrix for the 
Stroop effects across the six tasks and the 
three RT transformations. The white asterisks 
indicate the FDR-corrected significant 
correlations between task pairs within each RT 
transformation.  
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A.7.3. RCA 

See the “Across-tasks Stroop correlations - RCA” section in the ManyStroopScript.m file. 
 
Table A.53. Between-tasks correlations of Stroop effects for each RT transformation 

 Periph Perifov Navon FG Flanker Saliency 

iRT       

1 - Peripheral  0.594 0.246 0.016 0.124 0.162 

2 - Perifoveal 6.183  0.287 0.172 0.110 0.132 

3 - Navon 2.127 2.503  0.133 0.208 0.296 

4 - FigureGround 0.132 1.464 1.127  0.720 0.485 

5 - Flanker 1.046 0.923 1.783 8.679  0.425 

6 - Saliency 1.370 1.112 2.594 4.635 3.923  

lnRT       

1 - Peripheral  0.644 0.201 -0.174 -0.059 0.062 

2 - Perifoveal 7.048  0.230 -0.080 -0.116 -0.105 

3 - Navon 1.717 1.974  0.004 0.034 0.244 

4 - FigureGround -1.482 -0.671 0.035  0.582 0.393 

5 - Flanker -0.499 -0.977 0.283 5.992  0.286 

6 - Saliency 0.522 -0.881 2.103 3.577 2.501  

RT       

1 - Peripheral  0.595 0.222 0.001 -0.042 0.159 

2 - Perifoveal 6.188  0.212 0.143 -0.084 0.039 

3 - Navon 1.902 1.814  0.093 0.094 0.236 

4 - FigureGround 0.012 1.208 0.785  0.451 0.419 

5 - Flanker -0.355 -0.702 0.791 4.225  0.182 

6 - Saliency 1.349 0.330 2.028 3.858 1.546  

Notes: for each RT transformation, the upper triangles show the correlation coefficient, the lower triangles 
show the corresponding t values. The cells with a darker and lighter gray shade indicate significant 
correlations that did and did not survive the FDR correction for multiple correlations, respectively. 
 

 

 

 
 
 
 
 
 
 
 
 
Figure A.25. Stroop effects correlations. 
The figure shows the correlation matrix for the 
Stroop effects across the six tasks and the 
three RT transformations. The white asterisks 
indicate the FDR-corrected significant 
correlations between task pairs within each RT 
transformation.  
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A.7.4. Exploratory factor analysis on Stroop effects 

See the “ManyStroop_IC_EFA.omv” Jamovi file 
 
Table A.54. Exploratory factor analyses on Stroop effects 

 GLM LMM RCA 

Task F1 F2 F1 F2 F1 F2 

Peripheral -0.02 0.85 -0.04 0.88 -0.04 0.79 

Perifoveal 0.01 0.73 0.01 0.97 0.04 0.74 

Navon 0.26 0.30 0.24 0.43 0.19 0.33 

FigureGround 0.88 -0.05 0.97 -0.09 0.89 -0.05 

Flanker 0.81 0.01 0.90 -0.01 0.79 0.02 

Saliency 0.55 0.15 0.89 0.13 0.53 0.14 

Notes: Factor loadings greater than .3 (in absolute terms) are indicated in bold. 

A.8. Internal reliability of the Stroop effects 

See the “Split-half reliability” section in the ManyStroopScript.m file. 
 
Table A.55. Spearman-Brown-corrected split-half correlations 

 GLM LMM RCA 

 
Media

n 
95%CIl 95%Ciu 

Media
n 

95%CIl 95%Ciu 
Media

n 
95%CIl 95%Ciu 

iRT          

Peripheral 0.720 0.598 0.809 0.812 0.715 0.876 0.768 0.679 0.839 

Perifoveal 0.649 0.482 0.773 0.814 0.699 0.884 0.726 0.594 0.814 

Navon 0.392 0.129 0.584 0.762 0.558 0.864 0.470 0.227 0.638 

FigureGround 0.747 0.644 0.822 0.927 0.864 0.966 0.754 0.651 0.835 

Flanker 0.776 0.676 0.849 0.950 0.907 0.980 0.785 0.694 0.857 

Saliency 0.445 0.228 0.606 0.767 0.570 0.867 0.515 0.286 0.668 

lnRT          

Peripheral 0.733 0.595 0.824 0.838 0.736 0.897 0.785 0.693 0.853 

Perifoveal 0.664 0.502 0.781 0.805 0.686 0.880 0.740 0.600 0.827 

Navon 0.460 0.236 0.623 0.773 0.606 0.867 0.534 0.315 0.686 

FigureGround 0.598 0.420 0.724 0.814 0.656 0.903 0.600 0.404 0.735 

Flanker 0.644 0.454 0.763 0.900 0.748 0.958 0.658 0.467 0.776 

Saliency 0.395 0.154 0.578 0.560 0.122 0.777 0.460 0.212 0.633 

RT          

Peripheral 0.793 0.671 0.873 0.876 0.771 0.931 0.835 0.735 0.896 

Perifoveal 0.769 0.612 0.855 0.851 0.728 0.923 0.803 0.652 0.883 

Navon 0.541 0.328 0.699 0.787 0.588 0.884 0.612 0.393 0.750 

FigureGround 0.475 0.132 0.665 0.319 -0.375 0.861 0.475 0.134 0.682 

Flanker 0.417 -0.104 0.661 0.728 -0.282 0.941 0.453 -0.110 0.687 

Saliency 0.414 0.146 0.617 0.100 -0.597 0.696 0.473 0.161 0.653 

Notes: 95%CIl and 95%CIu, lower and upper bound of the non-parametric 95% confidence interval. 
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Table A.56. Spearman-Brown-corrected split-half correlations for the reduced LMM and RCA models on 
iRTs 

 LMM RCA 

 Median 95%CIl 95%Ciu Median 95%CIl 95%Ciu 

iRT       

Peripheral 0.750 0.645 0.828 0.718 0.606 0.798 

Perifoveal 0.769 0.642 0.854 0.642 0.488 0.755 

Navon 0.708 0.440 0.830 0.383 0.141 0.584 

FigureGround 0.903 0.833 0.947 0.738 0.639 0.818 

Flanker 0.933 0.872 0.966 0.768 0.670 0.841 

Saliency 0.684 0.400 0.834 0.444 0.228 0.611 

 
 

 
Figure A.26. Internal reliability of the iRT Stroop effects estimated by the multilevel approaches – 
Reduced vs full models. 
The plot shows the median internal reliability estimates (rsb) of the Stroop effects for each task (x axis) as a 
function of both the analytical approach (left panel: LMM, linear mixed-effect model; right panel: RCA, 
random coefficient analysis) and models (Reduced/minimal model not including the trial-level confounding 
predictors, in green, vs Full model, in red; see main text for details). The error bars represent the 
nonparametric 95% confidence interval. 
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APPENDIX B: 

Supplementary Materials for Chapter 4 

B.1. Experiment 1 – Peripheral Stroop task 

B.1.1. Distributional analysis 

See the “Distributional analysis” section in the PeripheralAnalysis.m file 

 
 
Figure B.1. Distributional analysis of participants’ response times. 
The top row shows the histograms of untransformed RT values (left panel), natural log-transformed RTs 
(lnRT, middle panel), and inverse-transformed RTs (iRT, right panel), computed as -1000/RT. The 
superimposed red curves represent the normal density function fitted to the data. The black and blue 
curves for the RT distribution represent the lognormal and gamma density functions fitted to the data, 
respectively. The number of bins was determined using the Freedman-Diaconis rule as implemented in the 
Matlab histcounts function. The bottom row shows the corresponding Q-Q plots. 

B.1.2. Compliance checking 

See the “Check for SS compliance” section in the PeripheralAnalysis.m file 
 

 
 
 
 
 
Figure B.2. Participants’ overall performance. 
The Figure shows the distribution of the participants’ mean 
iRTs (left panel) and accuracy (right panel). The boxplots 
represent the median values (red line at the center of the 
box), interquartile ranges (box), and dispersion outside the 
extreme quartiles (whiskers indicating 1.5 times the 
interquartile range).   
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B.1.3. Descriptive statistics 

See the “Descriptive statistics” section in the PeripheralAnalysis.m file. 
 
Table B.1. Descriptive statistics and Stroop effects 

 C I Stroop 

 M SD M SD M SD t p d Dom 

iRT -1.934 0.314 -1.557 0.279 0.376 0.105 35.50 < .0001 3.586 100% 

lnRT 6.279 0.172 6.500 0.190 0.221 0.063 34.98 < .0001 3.534 100% 

RT 552.2 101.1 693.2 140.7 140.9 56.6 24.66 < .0001 2.491 100% 

Acc 99.17% 1.66% 93.05% 6.33% 6.12% 5.58% 10.86 < .0001 1.097 100% 

Notes: C, congruent; I, incongruent. 
 

B.1.4. Results  

B.1.4.1. LMM on iRTs, Continuous full model  

See the “LMM” section in the PeripheralAnalysis.m file (the continuous full model is coded as “cFull” there).  
 
Table B.2. LMM results, continuous full model (cFull), coefficients statistics 

Coefficient Estimate SE t DF p ds dr 

(Intercept) -1.9439 0.0350 -55.559 145.60 < .0001   

TrialTOT -0.0923 0.0023 -40.030 1967.43 < .0001   

CON_0 0.3521 0.0123 28.620 179.86 < .0001 2.134 3.674 

iRTpre 0.0551 0.0012 47.190 57392.28 < .0001   

hS -0.0104 0.0028 -3.700 12850.75 0.0002   

vS -0.0791 0.0027 -29.056 19753.88 < .0001   

hR -0.0351 0.0026 -13.381 34201.64 < .0001   

vR -0.1013 0.0026 -39.379 39671.65 < .0001   

LWb -0.0086 0.0104 -0.825 97.51 0.4112   

ISb -0.0135 0.0074 -1.827 435.59 0.0684   

PRSb -0.0207 0.0059 -3.497 48890.40 0.0005   

PRb -0.1234 0.0133 -9.256 49487.44 < .0001   

CON_0:LWb 0.0651 0.0081 8.071 101.81 < .0001 0.800 1.273 

CON_0:ISb 0.0162 0.0102 1.590 939.28 0.1121 0.052 0.622 

LWb:ISb -0.0123 0.0109 -1.132 97.28 0.2606   

CON_0:LWb:ISb 0.0140 0.0120 1.167 94.08 0.2461 0.120 0.159 

Notes: iRTpre, iRT at the previous trial; hS, horizontal coding of the stimulus position (i.e., the horizontal 
visual hemispace: right vs left); vS, vertical coding of the stimulus position (i.e., the vertical visual 
hemispace: upper vs lower); hR, horizontal coding of the response (i.e., the responding hand: right vs left); 
vR, vertical coding of the response (i.e., the responding finger: middle vs index); CON_0, Congruency 
(Incongruent trials); DF, degrees of freedom; ds, effect size computed using the Satterthwaite’s 
approximation of degrees of freedom; dr, effect size computed using the by-participant random slopes. P 
values are computed using the Satterthwaite’s approximation of degrees of freedom. 
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Figure B.3. Inspection of residuals for the LMM analysis on iRTs (cFull model). 
The Figure shows the results of the analysis of the residuals for the LMM analysis on iRTs for the cFull 
model both before (upper panels) and after (bottom panels) excluding observations with absolute 
standardized residuals greater than 3. Left: histogram of the standardized residuals; the superimposed red 
curve represents the normal density function fitted to the data. Middle: quantile-quantile plot for the 
standardized residuals. Right: scatterplot of the fitted data (x) vs. the standardized residuals (y) for the 
visual inspection of the homoscedasticity; the gray line represents the corresponding linear regression line. 
 

B.1.4.2. LMM on lnRTs, Continuous full model 

See the “LMM” section in the PeripheralAnalysis.m file (the continuous full model is coded as “cFull” there).  
 
Table B.3. LMM results on lnRTs, continuous full model (cFull), coefficients statistics 

Coefficient Estimate SE t DF p ds dr 

(Intercept) 6.2634 0.0191 327.216 160.00 < .0001   
TrialTOT -0.0577 0.0014 -40.422 3150.18 < .0001   
CON_0 0.2003 0.0075 26.732 178.26 < .0001 2.002 3.419 
iRTpre 0.0320 0.0007 45.550 57092.80 < .0001   
hS -0.0030 0.0017 -1.769 15133.95 0.0769   
vS -0.0419 0.0016 -25.491 22846.55 < .0001   
hR -0.0216 0.0016 -13.604 36158.54 < .0001   
vR -0.0611 0.0016 -39.375 41378.18 < .0001   
LWb -0.0022 0.0061 -0.366 95.07 0.7154   
ISb -0.0008 0.0041 -0.196 631.69 0.8447   
PRSb -0.0170 0.0036 -4.748 48361.30 < .0001   
PRb -0.0725 0.0080 -9.027 48329.83 < .0001   
CON_0:LWb 0.0385 0.0052 7.373 101.52 < .0001 0.732 1.085 
CON_0:ISb 0.0031 0.0060 0.512 1111.24 0.6090 0.015 0.262 
LWb:ISb -0.0039 0.0059 -0.659 97.91 0.5114   
CON_0:LWb:ISb 0.0065 0.0071 0.915 94.28 0.3626 0.094 0.125 

Notes: iRTpre, iRT at the previous trial; hS, horizontal coding of the stimulus position (i.e., the horizontal 
visual hemispace: right vs left); vS, vertical coding of the stimulus position (i.e., the vertical visual 
hemispace: upper vs lower); hR, horizontal coding of the response (i.e., the responding hand: right vs left); 
vR, vertical coding of the response (i.e., the responding finger: middle vs index); CON_0, Congruency 
(Incongruent trials); DF, degrees of freedom; ds, effect size computed using the Satterthwaite’s 
approximation of degrees of freedom; dr, effect size computed using the by-participant random slopes.  
P values are computed using the Satterthwaite’s approximation of degrees of freedom. 
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Figure B.4. Inspection of residuals for the LMM analysis on lnRTs (cFull model). 
The Figure shows the results of the analysis of the residuals for the LMM analysis on lnRTs for the cFull 
model both before (upper panels) and after (bottom panels) excluding observations with absolute 
standardized residuals greater than 3.  Left: histogram of the standardized residuals; the superimposed red 
curve represents the normal density function fitted to the data. Middle: quantile-quantile plot for the 
standardized residuals. Right: scatterplot of the fitted data (x) vs. the standardized residuals (y) for the 
visual inspection of the homoscedasticity; the gray line represents the corresponding linear regression line. 
 
 

B.1.4.3. LMM on RTs, Continuous full model 

See the “LMM” section in the PeripheralAnalysis.m file (the continuous full model is coded as “cFull” there).  
 
Table B.4. LMM results on RTs, continuous full model (cFull), coefficients statistics 

Coefficient Estimate SE t DF p ds dr 

(Intercept) 541.8439 11.2164 48.308 187.90 < .0001   
TrialTOT -36.3878 0.9514 -38.248 3528.74 < .0001   
CON_0 120.7666 6.0678 19.903 143.52 < .0001 1.661 2.321 
iRTpre 19.4817 0.4653 41.870 56834.53 < .0001   
hS -0.2332 1.1315 -0.206 15404.27 0.8367   
vS -22.7110 1.0912 -20.813 23250.47 < .0001   
hR -14.0414 1.0531 -13.334 36887.48 < .0001   
vR -38.6166 1.0301 -37.488 41978.78 < .0001   
LWb 0.1224 3.8316 0.032 92.35 0.9746   
ISb 1.4289 2.6167 0.546 888.66 0.5852   
PRSb -11.3229 2.3731 -4.771 46616.23 < .0001   
PRb -40.9244 5.3215 -7.690 48159.52 < .0001   
CON_0:LWb 24.9990 4.2554 5.875 99.34 < .0001 0.589 0.741 
CON_0:ISb 0.3573 4.0392 0.088 1016.33 0.9295 0.003 0.036 
LWb:ISb -1.0189 3.5808 -0.285 98.10 0.7766   
CON_0:LWb:ISb 2.8321 4.8406 0.585 95.19 0.5599 0.060 0.079 

Notes: iRTpre, iRT at the previous trial; hS, horizontal coding of the stimulus position (i.e., the horizontal 
visual hemispace: right vs left); vS, vertical coding of the stimulus position (i.e., the vertical visual 
hemispace: upper vs lower); hR, horizontal coding of the response (i.e., the responding hand: right vs left); 
vR, vertical coding of the response (i.e., the responding finger: middle vs index); CON_0, Congruency 
(Incongruent trials); DF, degrees of freedom; ds, effect size computed using the Satterthwaite’s 
approximation of degrees of freedom; dr, effect size computed using the by-participant random slopes.  
P values are computed using the Satterthwaite’s approximation of degrees of freedom. 
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Figure B.5. Inspection of residuals for the LMM analysis on RTs (cFull model). 
The Figure shows the results of the analysis of the residuals for the LMM analysis on RTs for the cFull model 
both before (upper panels) and after (bottom panels) excluding observations with absolute standardized 
residuals greater than 3. Left: histogram of the standardized residuals; the superimposed red curve 
represents the normal density function fitted to the data. Middle: quantile-quantile plot for the 
standardized residuals. Right: scatterplot of the fitted data (x) vs. the standardized residuals (y) for the 
visual inspection of the homoscedasticity; the gray line represents the corresponding linear regression line. 
 

B.1.4.4. LMM on iRTs, Discrete full model 

See the “LMM” section in the PeripheralAnalysis.m file (the discrete full model is coded as “dFull” there).  
 
Table B.5. LMM results, discrete full model (dFull), coefficients statistics 

Coefficient Estimate SE t DF p ds dr 

(Intercept) -1.8315 0.0319 -57.425 99.93 < .0001   
TrialTOT -0.0918 0.0021 -42.878 2918.74 < .0001   
CON_0 0.4334 0.0137 31.670 202.59 < .0001 2.225 4.232 
iRTpre -0.0133 0.0070 -1.916 98.62 0.0582   
hS -0.0550 0.0073 -7.525 910.87 < .0001   
vS 0.0415 0.0062 6.693 57112.79 < .0001   
hR -0.0124 0.0012 -10.441 57020.74 < .0001   
vR 0.0566 0.0012 48.610 57375.88 < .0001   
LW -0.0115 0.0030 -3.833 7427.13 0.0001   
IS -0.0751 0.0029 -25.995 10310.76 < .0001   
PRS -0.0335 0.0027 -12.510 27690.24 < .0001   
PR -0.1007 0.0026 -38.239 30089.41 < .0001   
CON_0:LW 0.0530 0.0055 9.702 111.35 < .0001 0.919 1.652 
CON_0:IS 0.0801 0.0102 7.851 1577.83 < .0001 0.198 3.631 
LWb:IS 0.0024 0.0074 0.321 97.96 0.7488   
CON_0:LW:IS -0.0049 0.0081 -0.601 97.43 0.5490 -0.061 -0.078 

Notes: iRTpre, iRT at the previous trial; hS, horizontal coding of the stimulus position (i.e., the horizontal 
visual hemispace: right vs left); vS, vertical coding of the stimulus position (i.e., the vertical visual 
hemispace: upper vs lower); hR, horizontal coding of the response (i.e., the responding hand: right vs left); 
vR, vertical coding of the response (i.e., the responding finger: middle vs index); CON_0, Congruency 
(Incongruent trials); DF, degrees of freedom; ds, effect size computed using the Satterthwaite’s 
approximation of degrees of freedom; dr, effect size computed using the by-participant random slopes.  
P values are computed using the Satterthwaite’s approximation of degrees of freedom. 
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Figure B.6. Inspection of residuals for the LMM analysis on iRTs (dFull model). 
The Figure shows the results of the analysis of the residuals for the LMM analysis on iRTs for the dFull 
model both before (upper panels) and after (bottom panels) excluding observations with absolute 
standardized residuals greater than 3. Left: histogram of the standardized residuals; the superimposed red 
curve represents the normal density function fitted to the data. Middle: quantile-quantile plot for the 
standardized residuals. Right: scatterplot of the fitted data (x) vs. the standardized residuals (y) for the 
visual inspection of the homoscedasticity; the gray line represents the corresponding linear regression line.  
 
 

B.1.4.5. LMM on iRTs, Continuous reduced model 

See the “LMM” section in the PeripheralAnalysis.m file (the continuous reduced model is coded as “cRedu” 
there).  
 
Table B.6. LMM results, continuous reduced model (cRedu), coefficients statistics 

Coefficient Estimate SE t DF p ds dr 

(Intercept) -1.9301 0.0317 -60.952 97.99 < .0001   

CON_0 0.3129 0.0128 24.403 181.34 < .0001 1.812 3.169 

LWb -0.0256 0.0159 -1.611 97.84 0.1104   

ISb 0.0273 0.0079 3.478 422.23 0.0006   

PRSb -0.0612 0.0062 -9.832 53301.98 < .0001   

CON_0:LWb 0.0412 0.0091 4.537 97.74 < .0001 0.459 0.709 

CON_0:ISb -0.0303 0.0112 -2.698 676.59 0.0071 -0.104 -0.795 

LWb:ISb -0.0073 0.0159 -0.458 97.62 0.6482   

CON_0:LWb:ISb -0.0025 0.0144 -0.177 94.82 0.8602 -0.018 -0.022 

Notes: CON_0, Congruency (Incongruent trials); DF, degrees of freedom; ds, effect size computed using the 
Satterthwaite’s approximation of degrees of freedom; dr, effect size computed using the by-participant 
random slopes.  
P values are computed using the Satterthwaite’s approximation of degrees of freedom. 
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Figure B.7. Inspection of residuals for the LMM analysis on iRTs (cRedu model). 
The Figure shows the results of the analysis of the residuals for the LMM analysis on iRTs for the cRedu 
model both before (upper panels) and after (bottom panels) excluding observations with absolute 
standardized residuals greater than 3. Left: histogram of the standardized residuals; the superimposed red 
curve represents the normal density function fitted to the data. Middle: quantile-quantile plot for the 
standardized residuals. Right: scatterplot of the fitted data (x) vs. the standardized residuals (y) for the 
visual inspection of the homoscedasticity; the gray line represents the corresponding linear regression line. 
 

B.1.4.6. LMM on iRTs, Continuous full 2-way model 

See the “LMM” section in the PeripheralAnalysis.m file (the continuous full 2-way model is coded as 
“c2way” there).  
 
Table B.7. LMM results, continuous 2-way model (c2way), coefficients statistics 

Coefficient Estimate SE t DF p ds dr 

(Intercept) -1.9532 0.0346 -56.450 145.31 < .0001   

TrialTOT -0.0930 0.0023 -40.273 2206.40 < .0001   

CON_0 0.3572 0.0118 30.229 200.95 < .0001 2.132 3.845 

iRTpre 0.0543 0.0012 46.250 57494.81 < .0001   

hS -0.0130 0.0026 -5.083 38849.99 < .0001   

vS -0.0800 0.0025 -31.719 41096.27 < .0001   

hR -0.0344 0.0025 -13.516 55455.85 < .0001   

vR -0.1005 0.0025 -40.014 55685.56 < .0001   

LWb -0.0092 0.0105 -0.872 97.23 0.3855   

ISb -0.0146 0.0077 -1.908 368.83 0.0572   

PRSb -0.0207 0.0059 -3.521 52849.48 0.0004   

PRb -0.1287 0.0132 -9.770 57095.70 < .0001   

LWb:ISb 0.0659 0.0077 8.543 101.87 < .0001 0.846 1.403 

CON_0:LWb:ISb 0.0173 0.0103 1.687 744.89 0.0920 0.062 0.499 

Notes: iRTpre, iRT at the previous trial; hS, horizontal coding of the stimulus position (i.e., the horizontal 
visual hemispace: right vs left); vS, vertical coding of the stimulus position (i.e., the vertical visual 
hemispace: upper vs lower); hR, horizontal coding of the response (i.e., the responding hand: right vs left); 
vR, vertical coding of the response (i.e., the responding finger: middle vs index); CON_0, Congruency 
(Incongruent trials); DF, degrees of freedom; ds, effect size computed using the Satterthwaite’s 
approximation of degrees of freedom; dr, effect size computed using the by-participant random slopes.  
P values are computed using the Satterthwaite’s approximation of degrees of freedom. 
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Figure B.8. Inspection of residuals for the LMM analysis on iRTs (c2way model). 
The Figure shows the results of the analysis of the residuals for the LMM analysis on iRTs for the c2way 
model both before (upper panels) and after (bottom panels) excluding observations with absolute 
standardized residuals greater than 3. 
Left: histogram of the standardized residuals; the superimposed red curve represents the normal density 
function fitted to the data. Middle: quantile-quantile plot for the standardized residuals. Right: scatterplot 
of the fitted data (x) vs. the standardized residuals (y) for the visual inspection of the homoscedasticity; the 
gray line represents the corresponding linear regression line. 
 

B.1.4.7. RCA on iRTs, Continuous full model 

See the “RCA” section in the PeripheralAnalysis.m file (the continuous full model is coded as “cFull” there).  
 
Table B.8. RCA results, continuous full model (cFull), coefficients statistics 

Coefficient Estimate SE t DF p dr 

(Intercept) -1.9069 0.0516 -36.972 97 < .0001 -3.735 
TrialTOT -0.0887 0.0090 -9.855 97 < .0001 -0.996 
CON_0 0.3291 0.0143 22.958 97 < .0001 2.319 
iRTpre 0.0564 0.0029 19.657 97 < .0001 1.986 
hS -0.0101 0.0060 -1.675 97 0.0971 -0.169 
vS -0.0793 0.0081 -9.835 97 < .0001 -0.993 
hR -0.0366 0.0067 -5.461 97 < .0001 -0.552 
vR -0.1032 0.0081 -12.796 97 < .0001 -1.293 
LWb -0.0174 0.0112 -1.560 97 0.1221 -0.158 
ISb -0.0028 0.0086 -0.325 97 0.7462 -0.033 
PRSb -0.0338 0.0086 -3.941 97 0.0002 -0.398 
PRb -0.0991 0.0333 -2.979 97 0.0037 -0.301 
CON_0:LWb 0.0661 0.0078 8.497 97 < .0001 0.858 
CON_0:ISb 0.0011 0.0130 0.082 97 0.9344 0.008 
LWb:ISb -0.0365 0.0099 -3.673 97 0.0004 -0.371 
CON_0:LWb:ISb 0.0405 0.0118 3.435 97 0.0009 0.347 

Notes: iRTpre, iRT at the previous trial; hS, horizontal coding of the stimulus position (i.e., the horizontal 
visual hemispace: right vs left); vS, vertical coding of the stimulus position (i.e., the vertical visual 
hemispace: upper vs lower); hR, horizontal coding of the response (i.e., the responding hand: right vs left); 
vR, vertical coding of the response (i.e., the responding finger: middle vs index); CON_0, Congruency 
(Incongruent trials); DF, degrees of freedom; dr, effect size computed using the by-participant random 
slopes.  
  



382 

B.1.4.8. Control analysis, LMM on iRTs, Continuous full model without PRSb 

See the “Control analyses” section in the PeripheralAnalysis.m file (the continuous full model without PRSb 
is coded as “cFullNoPRS” there).  
 
Table B.9. LMM results, continuous full model (cFull), coefficients statistics 

Coefficient Estimate SE t DF p ds 

(Intercept) -1.9483 0.0349 -55.758 145.41 < .0001  

TrialTOT -0.0931 0.0023 -40.481 2025.86 < .0001  

CON_0 0.3744 0.0105 35.563 97.05 < .0001 3.610 

iRTpre 0.0554 0.0012 47.604 57384.25 < .0001  

hS -0.0108 0.0028 -3.834 12845.78 0.0001  

vS -0.0790 0.0027 -29.008 19680.45 < .0001  

hR -0.0347 0.0026 -13.261 33582.63 < .0001  

vR -0.1012 0.0026 -39.341 39242.63 < .0001  

LWb -0.0098 0.0104 -0.942 97.34 0.3485  

ISb -0.0323 0.0051 -6.321 98.93 < .0001  

PRb -0.1279 0.0133 -9.628 50405.84 < .0001  

CON_0:LWb 0.0676 0.0080 8.430 100.52 < .0001 0.841 

CON_0:ISb 0.0456 0.0058 7.853 102.04 < .0001 0.777 

LWb:ISb -0.0122 0.0109 -1.123 97.30 0.2641  

CON_0:LWb:ISb 0.0159 0.0119 1.338 93.55 0.1840 0.138 

Notes: iRTpre, iRT at the previous trial; hS, horizontal coding of the stimulus position (i.e., the horizontal 
visual hemispace: right vs left); vS, vertical coding of the stimulus position (i.e., the vertical visual 
hemispace: upper vs lower); hR, horizontal coding of the response (i.e., the responding hand: right vs left); 
vR, vertical coding of the response (i.e., the responding finger: middle vs index); CON_0, Congruency 
(Incongruent trials); DF, degrees of freedom; dr, effect size computed using the by-participant random 
slopes. 
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B.1.4.9. Control analysis, RCA on iRTs, Continuous full model without PRSb 

See the “Control analyses” section in the PeripheralAnalysis.m file (the continuous full model without PRSb 
is coded as “cFullNoPRS” there).  
 
Table B.10. LMM results, continuous full model (cFull), coefficients statistics 

Coefficient Estimate SE t DF p dr 

(Intercept) -1.9135 0.0517 -36.978 97 < .0001 -3.74 

TrialTOT -0.0904 0.0090 -10.037 97 < .0001 -1.01 

CON_0 0.3643 0.0111 32.676 97 < .0001 3.30 

iRTpre 0.0569 0.0029 19.767 97 < .0001 2.00 

hS -0.0106 0.0060 -1.766 97 0.0806 -0.18 

vS -0.0794 0.0080 -9.974 97 < .0001 -1.01 

hR -0.0364 0.0066 -5.477 97 < .0001 -0.55 

vR -0.1034 0.0080 -12.966 97 < .0001 -1.31 

LWb -0.0193 0.0111 -1.739 97 0.0852 -0.18 

ISb -0.0329 0.0048 -6.867 97 < .0001 -0.69 

PRb -0.1072 0.0332 -3.232 97 0.0017 -0.33 

CON_0:LWb 0.0710 0.0075 9.436 97 < .0001 0.95 

CON_0:ISb 0.0477 0.0058 8.174 97 < .0001 0.83 

LWb:ISb -0.0381 0.0098 -3.886 97 0.0002 -0.39 

CON_0:LWb:ISb 0.0444 0.0114 3.902 97 0.0002 0.39 

Notes: iRTpre, iRT at the previous trial; hS, horizontal coding of the stimulus position (i.e., the horizontal 
visual hemispace: right vs left); vS, vertical coding of the stimulus position (i.e., the vertical visual 
hemispace: upper vs lower); hR, horizontal coding of the response (i.e., the responding hand: right vs left); 
vR, vertical coding of the response (i.e., the responding finger: middle vs index); CON_0, Congruency 
(Incongruent trials); DF, degrees of freedom; ds, effect size computed using the Satterthwaite’s 
approximation of degrees of freedom.  
P values are computed using the Satterthwaite’s approximation of degrees of freedom. 

B.1.4.10. Internal reliability 

See the “Split-half reliability” section in the PeripheralAnalysis.m file.  
 

Figure B.9. Internal reliability of the Stroop effect 
and its modulations estimated by the LMM. 
The boxplots shows the distribution of the internal 
reliability estimates (rsb) of the Stroop effect (Con) 
and its modulation by the Proactive (Con:Pro) and 
Reactive control (Con:Rea) and the interaction 
between them (Con:Pro:Rea), as estimated by the 
cFull LMM model. The boxplots represent the median 
values (red line at the center of the box), interquartile 
ranges (box), and dispersion outside the extreme 
quartiles (whiskers indicating 1.5 times the 
interquartile range). 
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B.2. Experiment 2 – Perifoveal Stroop task 

B.2.1. Distributional analysis 

See the “Distributional analysis” section in the PerifovealAnalysis.m file 
 

 
Figure B.10. Distributional analysis of participants’ response times. 
The top row shows the histograms of untransformed RT values (left panel), natural log-transformed RTs 
(lnRT, middle panel), and inverse-transformed RTs (iRT, right panel), computed as -1000/RT. The 
superimposed red curves represent the normal density function fitted to the data. The black and blue 
curves for the RT distribution represent the lognormal and gamma density functions fitted to the data, 
respectively. The number of bins was determined using the Freedman-Diaconis rule as implemented in the 
Matlab histcounts function. The bottom row shows the corresponding Q-Q plots. 
 

B.2.2. Compliance checking 

See the “Check for SS compliance” section in the PerifovealAnalysis.m file 
 

 
 
 
 
 
Figure B.11. Participants’ overall performance. 
The Figure shows the distribution of the participants’ mean 
iRTs (left panel) and accuracy (right panel). The boxplots 
represent the median values (red line at the center of the 
box), interquartile ranges (box), and dispersion outside the 
extreme quartiles (whiskers indicating 1.5 times the 
interquartile range).   
 

 
 
  



 

385 

B.2.3. Descriptive statistics 

See the “Descriptive statistics” section in the PerifovealAnalysis.m file. 
 
Table B.11. Descriptive statistics and Stroop effects 

 C I Stroop 

 M SD M SD M SD t p d Dom 

iRT -2.407 0.337 -1.950 0.338 0.458 0.121 33.43 < .0001 3.785 100% 

lnRT 6.055 0.149 6.274 0.185 0.219 0.069 28.06 < .0001 3.178 100% 

RT 439.1 70.7 552.3 111.4 113.2 52.0 19.22 < .0001 2.176 100% 

Acc 99.33% 0.94% 92.72% 9.43% 6.61% 9.08% 6.43 < .0001 0.729 100% 

Notes: C, congruent; I, incongruent. 
 

B.2.4. Results  

B.2.4.1. LMM on iRTs, Continuous full model 

See the “LMM” section in the PerifovealAnalysis.m file (the continuous full model is coded as “cFull” there).  
 
Table B.2.2. LMM results, continuous full model (cFull), coefficients statistics 

Coefficient Estimate SE t DF p ds dr 

(Intercept) -2.4845 0.0448 -55.449 128.21 < .0001   

TrialTOT -0.1018 0.0034 -29.687 2686.32 < .0001   

CON_0 0.3729 0.0177 21.059 138.27 < .0001 1.791 3.008 

iRTpre 0.0586 0.0017 35.077 45622.01 < .0001   

hS -0.0080 0.0039 -2.072 4301.02 0.0383   

vS 0.0110 0.0038 2.888 3793.44 0.0039   

hR -0.0608 0.0038 -16.143 31342.78 < .0001   

vR -0.0723 0.0037 -19.484 29671.40 < .0001   

LWb -0.0002 0.0145 -0.012 78.89 0.9907   

ISb -0.0025 0.0112 -0.223 262.95 0.8238   

PRSb -0.0516 0.0085 -6.062 40688.90 < .0001   

PRb -0.1572 0.0189 -8.300 39539.08 < .0001   

CON_0:LWb 0.0668 0.0119 5.606 77.49 < .0001 0.637 0.992 

CON_0:ISb -0.0066 0.0157 -0.416 422.46 0.6774 -0.020 -0.109 

LWb:ISb -0.0311 0.0149 -2.085 78.49 0.0403   

CON_0:LWb:ISb 0.0454 0.0204 2.226 78.29 0.0289 0.252 0.311 

Notes: iRTpre, iRT at the previous trial; hS, horizontal coding of the stimulus position (i.e., the horizontal 
visual hemispace: right vs left); vS, vertical coding of the stimulus position (i.e., the vertical visual 
hemispace: upper vs lower); hR, horizontal coding of the response (i.e., the responding hand: right vs left); 
vR, vertical coding of the response (i.e., the responding finger: middle vs index); CON_0, Congruency 
(Incongruent trials); DF, degrees of freedom; ds, effect size computed using the Satterthwaite’s 
approximation of degrees of freedom; dr, effect size computed using the by-participant random slopes.  
P values are computed using the Satterthwaite’s approximation of degrees of freedom. 
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Figure B.12. Inspection of residuals for the LMM analysis on iRTs (cFull model). 
The Figure shows the results of the analysis of the residuals for the LMM analysis on iRTs for the cFull 
model both before (upper panels) and after (bottom panels) excluding observations with absolute 
standardized residuals greater than 3. Left: histogram of the standardized residuals; the superimposed red 
curve represents the normal density function fitted to the data. Middle: quantile-quantile plot for the 
standardized residuals. Right: scatterplot of the fitted data (x) vs. the standardized residuals (y) for the 
visual inspection of the homoscedasticity; the gray line represents the corresponding linear regression line. 
 

B.2.4.2. LMM on lnRTs, Continuous full model 

See the “LMM” section in the PerifovealAnalysis.m file (the continuous full model is coded as “cFull” there).  
 
Table B.12. LMM results, continuous full model (cFull), coefficients statistics 

Coefficient Estimate SE t DF p ds dr 

(Intercept) 6.0108 0.0201 298.560 136.96 < .0001   
TrialTOT -0.0512 0.0017 -30.905 3962.77 < .0001   
CON_0 0.1697 0.0089 19.075 129.08 < .0001 1.679 2.645 
iRTpre 0.0277 0.0008 34.978 45420.67 < .0001   
hS -0.0005 0.0019 -0.286 6383.25 0.7746   
vS 0.0081 0.0018 4.400 5840.48 < .0001   
hR -0.0304 0.0018 -16.923 33066.77 < .0001   
vR -0.0375 0.0018 -21.238 31239.69 < .0001   
LWb -0.0042 0.0074 -0.559 77.86 0.5777   
ISb 0.0109 0.0049 2.238 380.87 0.0258   
PRSb -0.0307 0.0041 -7.578 41445.15 < .0001   
PRb -0.0745 0.0090 -8.289 39718.29 < .0001   
CON_0:LWb 0.0366 0.0074 4.964 74.24 < .0001 0.576 0.708 
CON_0:ISb -0.0171 0.0071 -2.394 568.52 0.0170 -0.100 -0.855 
LWb:ISb -0.0124 0.0064 -1.942 78.16 0.0558   
CON_0:LWb:ISb 0.0210 0.0095 2.199 77.50 0.0309 0.250 0.310 

Notes: iRTpre, iRT at the previous trial; hS, horizontal coding of the stimulus position (i.e., the horizontal 
visual hemispace: right vs left); vS, vertical coding of the stimulus position (i.e., the vertical visual 
hemispace: upper vs lower); hR, horizontal coding of the response (i.e., the responding hand: right vs left); 
vR, vertical coding of the response (i.e., the responding finger: middle vs index); CON_0, Congruency 
(Incongruent trials); DF, degrees of freedom; ds, effect size computed using the Satterthwaite’s 
approximation of degrees of freedom; dr, effect size computed using the by-participant random slopes.  
P values are computed using the Satterthwaite’s approximation of degrees of freedom. 
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Figure B.13. Inspection of residuals for the LMM analysis on lnRTs (cFull model). 
The Figure shows the results of the analysis of the residuals for the LMM analysis on lnRTs for the cFull 
model both before (upper panels) and after (bottom panels) excluding observations with absolute 
standardized residuals greater than 3. Left: histogram of the standardized residuals; the superimposed red 
curve represents the normal density function fitted to the data. Middle: quantile-quantile plot for the 
standardized residuals. Right: scatterplot of the fitted data (x) vs. the standardized residuals (y) for the 
visual inspection of the homoscedasticity; the gray line represents the corresponding linear regression line. 
 

B.2.4.3. LMM on RTs, Continuous full model 

See the “LMM” section in the PerifovealAnalysis.m file (the continuous full model is coded as “cFull” there).  
 
Table B.13. LMM results, continuous full model (cFull), coefficients statistics 

Coefficient Estimate SE t DF p ds dr 

(Intercept) 418.8132 9.6152 43.557 154.90 < .0001   
TrialTOT -26.1903 0.8681 -30.171 4683.08 < .0001   
CON_0 80.2266 5.5982 14.331 107.00 < .0001 1.385 1.841 
iRTpre 13.6985 0.4111 33.319 45263.25 < .0001   
hS 0.8766 0.9852 0.890 8866.71 0.3736   
vS 4.8119 0.9683 4.970 8360.65 < .0001   
hR -15.8045 0.9358 -16.889 32588.14 < .0001   
vR -20.1868 0.9197 -21.950 30499.11 < .0001   
LWb -2.5775 3.9762 -0.648 77.11 0.5188   
ISb 10.5945 2.3712 4.468 569.86 < .0001   
PRSb -18.5594 2.1121 -8.787 40904.89 < .0001   
PRb -33.6575 4.6726 -7.203 38472.09 < .0001   
CON_0:LWb 18.4681 4.4584 4.142 74.78 0.0001 0.479 0.549 
CON_0:ISb -14.4628 3.6776 -3.933 607.04 0.0001 -0.160 -1.443 
LWb:ISb -4.9362 2.8871 -1.710 77.70 0.0913   
CON_0:LWb:ISb 8.6872 4.8850 1.778 76.36 0.0793 0.204 0.251 

Notes: iRTpre, iRT at the previous trial; hS, horizontal coding of the stimulus position (i.e., the horizontal 
visual hemispace: right vs left); vS, vertical coding of the stimulus position (i.e., the vertical visual 
hemispace: upper vs lower); hR, horizontal coding of the response (i.e., the responding hand: right vs left); 
vR, vertical coding of the response (i.e., the responding finger: middle vs index); CON_0, Congruency 
(Incongruent trials); DF, degrees of freedom; ds, effect size computed using the Satterthwaite’s 
approximation of degrees of freedom; dr, effect size computed using the by-participant random slopes.  
P values are computed using the Satterthwaite’s approximation of degrees of freedom. 
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Figure B.14. Inspection of residuals for the LMM analysis on RTs (cFull model). 
The Figure shows the results of the analysis of the residuals for the LMM analysis on RTs for the cFull model 
both before (upper panels) and after (bottom panels) excluding observations with absolute standardized 
residuals greater than 3. Left: histogram of the standardized residuals; the superimposed red curve 
represents the normal density function fitted to the data. Middle: quantile-quantile plot for the 
standardized residuals. Right: scatterplot of the fitted data (x) vs. the standardized residuals (y) for the 
visual inspection of the homoscedasticity; the gray line represents the corresponding linear regression line. 

B.2.4.4. LMM on iRTs, Discrete full model 

See the “LMM” section in the PerifovealAnalysis.m file (the discrete full model is coded as “dFull” there).  
 
Table B.14. LMM results, discrete full model (dFull), coefficients statistics 

Coefficient Estimate SE t DF p ds dr 

(Intercept) -2.3200 0.0413 -56.162 79.76 < .0001   
TrialTOT -0.1056 0.0031 -33.606 3618.57 < .0001   
CON_0 0.4446 0.0213 20.827 142.07 < .0001 1.747 2.954 
iRTpre -0.0072 0.0099 -0.735 79.40 0.4648   
hS -0.0408 0.0116 -3.515 384.45 0.0005   
vS 0.0115 0.0089 1.287 45287.63 0.1980   
hR -0.0109 0.0017 -6.385 45342.87 < .0001   
vR 0.0599 0.0017 35.968 45621.15 < .0001   
LW -0.0080 0.0040 -1.998 2236.29 0.0458   
IS 0.0151 0.0040 3.805 1586.68 0.0001   
PRS -0.0594 0.0038 -15.465 27973.58 < .0001   
PR -0.0746 0.0038 -19.537 23624.22 < .0001   
CON_0:LW 0.0574 0.0082 7.007 85.23 < .0001 0.759 1.253 
CON_0:IS 0.0527 0.0157 3.350 643.37 0.0009 0.132 0.900 
LWb:IS -0.0086 0.0114 -0.752 77.87 0.4546   
CON_0:LW:IS 0.0176 0.0153 1.150 77.47 0.2538 0.131 0.149 

Notes: iRTpre, iRT at the previous trial; hS, horizontal coding of the stimulus position (i.e., the horizontal 
visual hemispace: right vs left); vS, vertical coding of the stimulus position (i.e., the vertical visual 
hemispace: upper vs lower); hR, horizontal coding of the response (i.e., the responding hand: right vs left); 
vR, vertical coding of the response (i.e., the responding finger: middle vs index); CON_0, Congruency 
(Incongruent trials); DF, degrees of freedom; ds, effect size computed using the Satterthwaite’s 
approximation of degrees of freedom; dr, effect size computed using the by-participant random slopes.  
P values are computed using the Satterthwaite’s approximation of degrees of freedom. 
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Figure B.15. Inspection of residuals for the LMM analysis on iRTs (dFull model). 
The Figure shows the results of the analysis of the residuals for the LMM analysis on iRTs for the dFull 
model both before (upper panels) and after (bottom panels) excluding observations with absolute 
standardized residuals greater than 3. Left: histogram of the standardized residuals; the superimposed red 
curve represents the normal density function fitted to the data. Middle: quantile-quantile plot for the 
standardized residuals. Right: scatterplot of the fitted data (x) vs. the standardized residuals (y) for the 
visual inspection of the homoscedasticity; the gray line represents the corresponding linear regression line.  

B.2.4.5. LMM on iRTs, Continuous reduced model 

See the “LMM” section in the PerifovealAnalysis.m file (the continuous reduced model is coded as “cRedu” 
there).  
 
Table B.15. LMM results, continuous reduced model (cRedu), coefficients statistics 

Coefficient Estimate SE t DF p ds dr 

(Intercept) -2.3823 0.0395 -60.335 77.96 < .0001   

CON_0 0.3288 0.0180 18.262 138.49 < .0001 1.552 2.618 

LWb -0.0445 0.0198 -2.252 78.25 0.0271   

ISb 0.0383 0.0115 3.323 261.97 0.0010   

PRSb -0.0974 0.0086 -11.258 41527.96 < .0001   

CON_0:LWb 0.0378 0.0124 3.053 73.65 0.0032 0.356 0.528 

CON_0:ISb -0.0526 0.0163 -3.234 407.73 0.0013 -0.160 -0.828 

LWb:ISb -0.0378 0.0165 -2.293 77.47 0.0246   

CON_0:LWb:ISb 0.0335 0.0225 1.491 78.10 0.1399 0.169 0.202 

Notes: CON_0, Congruency (Incongruent trials); DF, degrees of freedom; ds, effect size computed using the 
Satterthwaite’s approximation of degrees of freedom; dr, effect size computed using the by-participant 
random slopes.  
P values are computed using the Satterthwaite’s approximation of degrees of freedom. 
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Figure B.16. Inspection of residuals for the LMM analysis on iRTs (cRedu model). 
The Figure shows the results of the analysis of the residuals for the LMM analysis on iRTs for the cRedu 
model both before (upper panels) and after (bottom panels) excluding observations with absolute 
standardized residuals greater than 3. 
Left: histogram of the standardized residuals; the superimposed red curve represents the normal density 
function fitted to the data. Middle: quantile-quantile plot for the standardized residuals. Right: scatterplot 
of the fitted data (x) vs. the standardized residuals (y) for the visual inspection of the homoscedasticity; the 
gray line represents the corresponding linear regression line. 
 

B.2.4.6. LMM on iRTs, Continuous 2-way model 

See the “LMM” section in the PerifovealAnalysis.m file (the continuous 2-way model is coded as “c2way” 
there).  
 
Table B.16. LMM results, continuous 2-way model (c2way), coefficients statistics 

Coefficient Estimate SE t DF p ds dr 

(Intercept) -2.5041 0.0437 -57.328 129.48 < .0001   
TrialTOT -0.1032 0.0034 -30.105 2990.24 < .0001   
CON_0 0.3866 0.0158 24.515 176.70 < .0001 1.844 3.619 
iRTpre 0.0582 0.0017 34.751 45692.46 < .0001   
hS -0.0079 0.0037 -2.161 25881.28 0.0307   
vS 0.0091 0.0036 2.528 28109.26 0.0115   
hR -0.0585 0.0036 -16.025 39564.33 < .0001   
vR -0.0728 0.0036 -20.291 41438.36 < .0001   
LWb 0.0028 0.0145 0.191 78.68 0.8494   
ISb -0.0060 0.0118 -0.511 225.59 0.6100   
PRSb -0.0538 0.0084 -6.412 41568.60 < .0001   
PRb -0.1649 0.0186 -8.859 44953.82 < .0001   
LWb:ISb 0.0663 0.0115 5.785 78.58 < .0001 0.653 1.069 
CON_0:LWb:ISb -0.0078 0.0158 -0.491 365.94 0.6239 -0.026 -0.113 

Notes: iRTpre, iRT at the previous trial; hS, horizontal coding of the stimulus position (i.e., the horizontal 
visual hemispace: right vs left); vS, vertical coding of the stimulus position (i.e., the vertical visual 
hemispace: upper vs lower); hR, horizontal coding of the response (i.e., the responding hand: right vs left); 
vR, vertical coding of the response (i.e., the responding finger: middle vs index); CON_0, Congruency 
(Incongruent trials); DF, degrees of freedom; ds, effect size computed using the Satterthwaite’s 
approximation of degrees of freedom; dr, effect size computed using the by-participant random slopes.  
P values are computed using the Satterthwaite’s approximation of degrees of freedom. 
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Figure B.17. Inspection of residuals for the LMM analysis on iRTs (c2way model). 
The Figure shows the results of the analysis of the residuals for the LMM analysis on iRTs for the c2way 
model both before (upper panels) and after (bottom panels) excluding observations with absolute 
standardized residuals greater than 3. 
Left: histogram of the standardized residuals; the superimposed red curve represents the normal density 
function fitted to the data. Middle: quantile-quantile plot for the standardized residuals. Right: scatterplot 
of the fitted data (x) vs. the standardized residuals (y) for the visual inspection of the homoscedasticity; the 
gray line represents the corresponding linear regression line. 
 

B.2.4.7. RCA on iRTs, Continuous full model 

See the “RCA” section in the PerifovealAnalysis.m file (the continuous full model is coded as “cFull” there).  
 
Table B.17. RCA results, continuous full model (cFull), coefficients statistics 

Coefficient Estimate SE t DF p dr 

(Intercept) -2.4711 0.0670 -36.906 77 < .0001 -4.179 
TrialTOT -0.1019 0.0114 -8.970 77 < .0001 -1.016 
CON_0 0.3643 0.0198 18.412 77 < .0001 2.085 
iRTpre 0.0612 0.0040 15.446 77 < .0001 1.749 
hS -0.0104 0.0077 -1.360 77 0.1778 -0.154 
vS 0.0121 0.0066 1.828 77 0.0714 0.207 
hR -0.0608 0.0127 -4.784 77 < .0001 -0.542 
vR -0.0758 0.0109 -6.937 77 < .0001 -0.785 
LWb 0.0147 0.0130 1.129 77 0.2622 0.128 
ISb -0.0011 0.0148 -0.072 77 0.9430 -0.008 
PRSb -0.0533 0.0128 -4.183 77 0.0001 -0.474 
PRb -0.1513 0.0413 -3.661 77 0.0005 -0.415 
CON_0:LWb 0.0658 0.0124 5.299 77 < .0001 0.600 
CON_0:ISb -0.0075 0.0207 -0.363 77 0.7178 -0.041 
LWb:ISb -0.0395 0.0135 -2.922 77 0.0046 -0.331 
CON_0:LWb:ISb 0.0578 0.0162 3.580 77 0.0006 0.405 

Notes: iRTpre, iRT at the previous trial; hS, horizontal coding of the stimulus position (i.e., the horizontal 
visual hemispace: right vs left); vS, vertical coding of the stimulus position (i.e., the vertical visual 
hemispace: upper vs lower); hR, horizontal coding of the response (i.e., the responding hand: right vs left); 
vR, vertical coding of the response (i.e., the responding finger: middle vs index); CON_0, Congruency 
(Incongruent trials); DF, degrees of freedom; dr, effect size computed using the by-participant random 
slopes.  
  



392 

B.2.4.8. Control analysis, LMM on iRTs, Continuous full model without PRSb 

See the “Control analyses” section in the PerifovealAnalysis.m file (the continuous full model without PRSb 
is coded as “cFullNoPRS” there).  
 
Table B.18. LMM results, continuous full model (cFull), coefficients statistics 

Coefficient Estimate SE t DF p ds 

(Intercept) -2.4971 0.0448 -55.707 127.56 < .0001  

TrialTOT -0.1037 0.0034 -30.385 2711.29 < .0001  

CON_0 0.4262 0.0154 27.602 77.94 < .0001 3.127 

iRTpre 0.0589 0.0017 35.341 45614.71 < .0001  

hS -0.0089 0.0039 -2.296 4210.96 0.0217  

vS 0.0116 0.0038 3.054 3699.02 0.0023  

hR -0.0592 0.0038 -15.746 30903.41 < .0001  

vR -0.0725 0.0037 -19.537 29178.67 < .0001  

LWb -0.0045 0.0145 -0.310 78.74 0.7574  

ISb -0.0486 0.0083 -5.834 77.22 < .0001  

PRb -0.1709 0.0188 -9.079 40315.52 < .0001  

CON_0:LWb 0.0747 0.0116 6.434 75.90 < .0001 0.739 

CON_0:ISb 0.0653 0.0103 6.308 79.15 < .0001 0.709 

LWb:ISb -0.0329 0.0148 -2.221 78.47 0.0293  

CON_0:LWb:ISb 0.0524 0.0203 2.581 77.79 0.0117 0.293 

Notes: iRTpre, iRT at the previous trial; hS, horizontal coding of the stimulus position (i.e., the horizontal 
visual hemispace: right vs left); vS, vertical coding of the stimulus position (i.e., the vertical visual 
hemispace: upper vs lower); hR, horizontal coding of the response (i.e., the responding hand: right vs left); 
vR, vertical coding of the response (i.e., the responding finger: middle vs index); CON_0, Congruency 
(Incongruent trials); DF, degrees of freedom; dr, effect size computed using the by-participant random 
slopes. 
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B.2.4.9. Control analysis, RCA on iRTs, Continuous full model without PRSb 

See the “Control analyses” section in the PerifovealAnalysis.m file (the continuous full model without PRSb 
is coded as “cFullNoPRS” there).  
 
Table B.19. LMM results, continuous full model (cFull), coefficients statistics 

Coefficient Estimate SE t DF p dr 

(Intercept) -2.4863 0.0670 -37.082 77 < .0001 -4.20 

TrialTOT -0.1042 0.0114 -9.184 77 < .0001 -1.04 

CON_0 0.4201 0.0139 30.241 77 < .0001 3.42 

iRTpre 0.0617 0.0040 15.448 77 < .0001 1.75 

hS -0.0109 0.0078 -1.392 77 0.1678 -0.16 

vS 0.0132 0.0066 1.983 77 0.0509 0.22 

hR -0.0600 0.0128 -4.703 77 < .0001 -0.53 

vR -0.0766 0.0110 -6.959 77 < .0001 -0.79 

LWb 0.0108 0.0129 0.839 77 0.4042 0.09 

ISb -0.0473 0.0080 -5.908 77 < .0001 -0.67 

PRb -0.1673 0.0410 -4.083 77 0.0001 -0.46 

CON_0:LWb 0.0754 0.0121 6.241 77 < .0001 0.71 

CON_0:ISb 0.0648 0.0099 6.515 77 < .0001 0.74 

LWb:ISb -0.0401 0.0133 -3.002 77 0.0036 -0.34 

CON_0:LWb:ISb 0.0624 0.0158 3.955 77 0.0002 0.45 

Notes: iRTpre, iRT at the previous trial; hS, horizontal coding of the stimulus position (i.e., the horizontal 
visual hemispace: right vs left); vS, vertical coding of the stimulus position (i.e., the vertical visual 
hemispace: upper vs lower); hR, horizontal coding of the response (i.e., the responding hand: right vs left); 
vR, vertical coding of the response (i.e., the responding finger: middle vs index); CON_0, Congruency 
(Incongruent trials); DF, degrees of freedom; ds, effect size computed using the Satterthwaite’s 
approximation of degrees of freedom.  
P values are computed using the Satterthwaite’s approximation of degrees of freedom. 
 

B.2.4.10. Internal reliability 

See the “Split-half reliability” section in the PerifovealAnalysis.m file.  
 

Figure B.18. Internal reliability of the Stroop effect 
and its modulations estimated by the LMM. 
The boxplots shows the distribution of the internal 
reliability estimates (rsb) of the Stroop effect (Con) 
and its modulation by the Proactive (Con:Pro) and 
Reactive control (Con:Rea) and the interaction 
between them (Con:Pro:Rea), as estimated by the 
cFull LMM model. The boxplots represent the median 
values (red line at the center of the box), interquartile 
ranges (box), and dispersion outside the extreme 
quartiles (whiskers indicating 1.5 times the 
interquartile range). 
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B.3. Between-experiments analysis 

B.3.1. Distributional analysis 

See the “Distributional analysis” section in the BtwExpAnalysis.m file 
 

 
Figure B.19. Distributional analysis of participants’ response times. 
The top row shows the histograms of untransformed RT values (left panel), natural log-transformed RTs 
(lnRT, middle panel), and inverse-transformed RTs (iRT, right panel), computed as -1000/RT. The 
superimposed red curves represent the normal density function fitted to the data. The black and blue 
curves for the RT distribution represent the lognormal and gamma density functions fitted to the data, 
respectively. The number of bins was determined using the Freedman-Diaconis rule as implemented in the 
Matlab histcounts function. The bottom row shows the corresponding Q-Q plots. 
 

B.3.2. Compliance checking 

See the “Check for SS compliance” section in the BtwExpAnalysis.m file 
 

 
 
 
 
 
Figure B.20. Participants’ overall performance. 
The Figure shows the distribution of the participants’ mean 
iRTs (left panel) and accuracy (right panel). The boxplots 
represent the median values (red line at the center of the 
box), interquartile ranges (box), and dispersion outside the 
extreme quartiles (whiskers indicating 1.5 times the 
interquartile range).   
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B.3.3. Results  

B.3.3.1. LMM on iRTs, Continuous full_btw4 model 

See the “LMM” section in the BtwExpAnalysis.m file (the continuous full_btw4 model is coded as “cFull4” 
there).  
 
Table B.20. LMM results, continuous full_btw4 model (cFull4), coefficients statistics 

Coefficient Estimate SE t DF p ds dr 

(Intercept) -2.2047 0.0278 -79.283 273.83 < .0001   

TrialTOT -0.0967 0.0020 -48.617 5495.30 < .0001   

CON_0 0.3622 0.0105 34.584 313.90 < .0001 1.952 3.326 

iRTpre 0.0569 0.0010 58.197 102922.32 < .0001   

hS -0.0103 0.0023 -4.427 17405.20 < .0001   

vS -0.0331 0.0023 -14.489 20722.45 < .0001   

hR -0.0463 0.0022 -20.993 72277.05 < .0001   

vR -0.0899 0.0022 -41.515 74407.23 < .0001   

LWb -0.0050 0.0087 -0.575 176.33 0.5663   

ISb -0.0074 0.0064 -1.152 663.76 0.2498   

PRSb -0.0363 0.0050 -7.263 91171.13 < .0001   

PRb -0.1335 0.0111 -11.974 92379.92 < .0001   

CON_0:LWb 0.0654 0.0069 9.459 177.88 < .0001 0.709 1.150 

CON_0:ISb 0.0049 0.0089 0.546 1212.21 0.5849 0.016 0.118 

LWb:ISb -0.0230 0.0090 -2.548 176.10 0.0117   

CON_0:LWb:ISb 0.0299 0.0114 2.627 174.35 0.0094 0.199 0.253 

Exp -0.5031 0.0499 -10.084 177.35 < .0001   

hS:Exp -0.0098 0.0041 -2.382 18495.32 0.0172   

vS:Exp 0.1042 0.0041 25.578 22528.57 < .0001   

PRSb:Exp -0.0362 0.0099 -3.665 94964.00 0.0002   

CON_0:Exp 0.0148 0.0209 0.708 309.70 0.4792   

LWb:Exp 0.0104 0.0174 0.597 174.50 0.5511   

ISb:Exp 0.0123 0.0128 0.960 650.27 0.3375   

CON_0:LWb:Exp -0.0058 0.0137 -0.425 170.55 0.6713   

CON_0:ISb:Exp -0.0223 0.0178 -1.252 1190.82 0.2110   

LWb:ISb:Exp -0.0224 0.0180 -1.245 175.49 0.2147   

CON_0:LWb:ISb:Exp 0.0322 0.0228 1.415 174.01 0.1588     

Notes: iRTpre, iRT at the previous trial; hS, horizontal coding of the stimulus position (i.e., the horizontal 
visual hemispace: right vs left); vS, vertical coding of the stimulus position (i.e., the vertical visual 
hemispace: upper vs lower); hR, horizontal coding of the response (i.e., the responding hand: right vs left); 
vR, vertical coding of the response (i.e., the responding finger: middle vs index); CON_0, Congruency 
(Incongruent trials); Exp, Experiment (Exp1, Peripheral, vs Exp 2, Perifoveal); DF, degrees of freedom; ds, 
effect size computed using the Satterthwaite’s approximation of degrees of freedom; dr, effect size 
computed using the by-participant random slopes.  
P values are computed using the Satterthwaite’s approximation of degrees of freedom. 
 



396 

 
Figure B.21. Inspection of residuals for the LMM analysis on iRTs (cFull_btw4 model). 
The Figure shows the results of the analysis of the residuals for the LMM analysis on iRTs for the cFull4 
model both before (upper panels) and after (bottom panels) excluding observations with absolute 
standardized residuals greater than 3. Left: histogram of the standardized residuals; the superimposed red 
curve represents the normal density function fitted to the data. Middle: quantile-quantile plot for the 
standardized residuals. Right: scatterplot of the fitted data (x) vs. the standardized residuals (y) for the 
visual inspection of the homoscedasticity; the gray line represents the corresponding linear regression line. 
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B.3.3.2. LMM on iRTs, Continuous full_btw model 

See the “LMM Model2” section in the BtwExpAnalysis.m file (the continuous full_btw model is coded as 
“cFull” there).  
 
Table B.21. LMM results, continuous full model (cFull), coefficients statistics 

Coefficient Estimate SE t DF p ds dr 

(Intercept) -2.2029 0.0278 -79.225 273.92 < .0001   

TrialTOT -0.0967 0.0020 -48.649 5466.32 < .0001   

CON_0 0.3612 0.0105 34.470 311.05 < .0001 1.954 3.283 

iRTpre 0.0568 0.0010 58.150 102923.55 < .0001   

hS -0.0103 0.0023 -4.394 17358.21 < .0001   

vS -0.0330 0.0023 -14.442 20631.10 < .0001   

hR -0.0463 0.0022 -21.001 72402.04 < .0001   

vR -0.0899 0.0022 -41.542 74362.37 < .0001   

LWb -0.0057 0.0087 -0.653 175.99 0.5144   

ISb -0.0083 0.0064 -1.291 656.11 0.1972   

PRSb -0.0356 0.0050 -7.152 91065.10 < .0001   

PRb -0.1335 0.0111 -11.977 92613.89 < .0001   

CON_0:LWb 0.0658 0.0069 9.590 177.58 < .0001 0.720 1.159 

CON_0:ISb 0.0063 0.0089 0.708 1198.54 0.4792 0.020 0.151 

LWb:ISb -0.0214 0.0090 -2.389 175.94 0.0180   

CON_0:LWb:Isb 0.0279 0.0113 2.458 174.02 0.0150 0.186 0.235 

Exp -0.4712 0.0448 -10.523 182.63 < .0001   

hS:Exp -0.0098 0.0041 -2.376 17548.36 0.0175   

vS:Exp 0.1047 0.0041 25.703 22145.14 < .0001   

PRSb:Exp -0.0229 0.0053 -4.357 336.10 < .0001     

Notes: iRTpre, iRT at the previous trial; hS, horizontal coding of the stimulus position (i.e., the horizontal 
visual hemispace: right vs left); vS, vertical coding of the stimulus position (i.e., the vertical visual 
hemispace: upper vs lower); hR, horizontal coding of the response (i.e., the responding hand: right vs left); 
vR, vertical coding of the response (i.e., the responding finger: middle vs index); CON_0, Congruency 
(Incongruent trials); Exp, Experiment (Exp1, Peripheral, vs Exp 2, Perifoveal); DF, degrees of freedom; ds, 
effect size computed using the Satterthwaite’s approximation of degrees of freedom; dr, effect size 
computed using the by-participant random slopes.  
P values are computed using the Satterthwaite’s approximation of degrees of freedom. 
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Figure B.22. Inspection of residuals for the LMM analysis on iRTs (cFull_btw model). 
The Figure shows the results of the analysis of the residuals for the LMM analysis on iRTs for the cFull 
model both before (upper panels) and after (bottom panels) excluding observations with absolute 
standardized residuals greater than 3. Left: histogram of the standardized residuals; the superimposed red 
curve represents the normal density function fitted to the data. Middle: quantile-quantile plot for the 
standardized residuals. Right: scatterplot of the fitted data (x) vs. the standardized residuals (y) for the 
visual inspection of the homoscedasticity; the gray line represents the corresponding linear regression line. 
 

B.3.3.3. RCA on iRTs, Continuous full_btw model 

See the “RCA” section in the BtwExpAnalysis.m file (the continuous full_btw model is coded as “cFull” 
there).  
 
Table B.22. RCA results, continuous full model (cFull), coefficients statistics 

Coefficient Estimate SE t DF p dr 

(Intercept) -2.1570 0.0463 -46.582 175 < .0001 -3.511 
TrialTOT -0.0946 0.0071 -13.318 175 < .0001 -1.004 
CON_0 0.3447 0.0119 28.977 175 < .0001 2.184 
iRTpre 0.0586 0.0024 24.654 175 < .0001 1.858 
hS -0.0102 0.0048 -2.151 175 0.0328 -0.162 
vS -0.0388 0.0064 -6.110 175 < .0001 -0.461 
hR -0.0474 0.0068 -6.964 175 < .0001 -0.525 
vR -0.0911 0.0067 -13.664 175 < .0001 -1.030 
LWb -0.0032 0.0085 -0.375 175 0.7080 -0.028 
ISb -0.0020 0.0081 -0.251 175 0.8024 -0.019 
PRSb -0.0424 0.0074 -5.728 175 < .0001 -0.432 
PRb -0.1223 0.0261 -4.693 175 < .0001 -0.354 
CON_0:LWb 0.0660 0.0070 9.448 175 < .0001 0.712 
CON_0:ISb -0.0027 0.0116 -0.235 175 0.8147 -0.018 
LWb:ISb -0.0378 0.0081 -4.652 175 < .0001 -0.351 
CON_0:LWb:Isb 0.0482 0.0097 4.964 175 < .0001 0.374 

Notes: iRTpre, iRT at the previous trial; hS, horizontal coding of the stimulus position (i.e., the horizontal 
visual hemispace: right vs left); vS, vertical coding of the stimulus position (i.e., the vertical visual 
hemispace: upper vs lower); hR, horizontal coding of the response (i.e., the responding hand: right vs left); 
vR, vertical coding of the response (i.e., the responding finger: middle vs index); CON_0, Congruency 
(Incongruent trials); DF, degrees of freedom; dr, effect size computed using the by-participant random 
slopes.  
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Table B.23. RCA results, continuous full model (cFull), between-Experiment comparisons (Exp1 vs Exp2) 

Effect M SD t(174) p d 

CON_0 -0.0352 0.1573 -1.474 0.1422 -0.224 

CON_0:LWb 0.0006 0.1858 0.020 0.9837 0.003 

CON_0:ISb 0.0172 0.3096 0.365 0.7154 0.055 

CON_0:LWb:Isb -0.0693 0.5156 -0.885 0.3772 -0.134 

Notes: CON_0, Congruency (Incongruent trials); d, Cohen’s d effect size.  
 

B.3.3.4. LMM on iRTs, Continuous full_btw No_PRS model 

See the “Control analyses” section in the BtwExpAnalysis.m file (the continuous full_btw No_PRS model is 
coded as “cFullNoPRS” there).  
 
Table B.24. LMM results, continuous full model without PRS (cFullNoPRS), coefficients statistics 

Coefficient Estimate SE t DF p ds dr 

(Intercept) -2.2029 0.0278 -79.225 273.92 < .0001   

TrialTOT -0.0967 0.0020 -48.649 5466.32 < .0001   

CON_0 0.3612 0.0105 34.470 311.05 < .0001 1.954 3.283 

iRTpre 0.0568 0.0010 58.150 102923.55 < .0001   

hS -0.0103 0.0023 -4.394 17358.21 < .0001   

vS -0.0330 0.0023 -14.442 20631.10 < .0001   

hR -0.0463 0.0022 -21.001 72402.04 < .0001   

vR -0.0899 0.0022 -41.542 74362.37 < .0001   

LWb -0.0057 0.0087 -0.653 175.99 0.5144   

ISb -0.0083 0.0064 -1.291 656.11 0.1972   

PRb -0.1335 0.0111 -11.977 92613.89 < .0001   

CON_0:LWb 0.0658 0.0069 9.590 177.58 < .0001 0.720 1.159 

CON_0:ISb 0.0063 0.0089 0.708 1198.54 0.4792 0.020 0.151 

LWb:ISb -0.0214 0.0090 -2.389 175.94 0.0180   

CON_0:LWb:Isb 0.0279 0.0113 2.458 174.02 0.0150 0.186 0.235 

Exp -0.4712 0.0448 -10.523 182.63 < .0001   

hS:Exp -0.0098 0.0041 -2.376 17548.36 0.0175   

vS:Exp 0.1047 0.0041 25.692 21931.87 < .0001     

Notes: iRTpre, iRT at the previous trial; hS, horizontal coding of the stimulus position (i.e., the horizontal 
visual hemispace: right vs left); vS, vertical coding of the stimulus position (i.e., the vertical visual 
hemispace: upper vs lower); hR, horizontal coding of the response (i.e., the responding hand: right vs left); 
vR, vertical coding of the response (i.e., the responding finger: middle vs index); CON_0, Congruency 
(Incongruent trials); Exp, Experiment (Exp1, Peripheral, vs Exp 2, Perifoveal); DF, degrees of freedom; ds, 
effect size computed using the Satterthwaite’s approximation of degrees of freedom; dr, effect size 
computed using the by-participant random slopes.  
P values are computed using the Satterthwaite’s approximation of degrees of freedom. 
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Figure B.22. Inspection of residuals for the LMM analysis on iRTs (cFull_btw No_PRS model). 
The Figure shows the results of the analysis of the residuals for the LMM analysis on iRTs for the cFullNoPRS 
model both before (upper panels) and after (bottom panels) excluding observations with absolute 
standardized residuals greater than 3. Left: histogram of the standardized residuals; the superimposed red 
curve represents the normal density function fitted to the data. Middle: quantile-quantile plot for the 
standardized residuals. Right: scatterplot of the fitted data (x) vs. the standardized residuals (y) for the 
visual inspection of the homoscedasticity; the gray line represents the corresponding linear regression line. 
 

B.3.3.5. RCA on iRTs, Continuous full_btw No_PRS model 

See the “RCA” section in the BtwExpAnalysis.m file (the continuous full_btw No_PRS model is coded as 
“cFullNoPRS” there).  
 
Table B.25. RCA results, continuous full model without PRS (cFullNoPRS), coefficients statistics 

Coefficient Estimate SE t DF p dr 

(Intercept) -2.1673 0.0465 -46.573 175 0.0000 -3.511 

TrialTOT -0.0965 0.0071 -13.594 175 0.0000 -1.025 

CON_0 0.3890 0.0090 43.392 175 0.0000 3.271 

iRTpre 0.0590 0.0024 24.721 175 0.0000 1.863 

hS -0.0107 0.0048 -2.235 175 0.0267 -0.168 

vS -0.0384 0.0063 -6.052 175 0.0000 -0.456 

hR -0.0469 0.0068 -6.896 175 0.0000 -0.520 

vR -0.0915 0.0067 -13.754 175 0.0000 -1.037 

LWb -0.0059 0.0085 -0.701 175 0.4845 -0.053 

ISb -0.0393 0.0045 -8.810 175 0.0000 -0.664 

PRb -0.1339 0.0259 -5.163 175 0.0000 -0.389 

CON_0:LWb 0.0729 0.0068 10.760 175 0.0000 0.811 

CON_0:ISb 0.0553 0.0055 10.055 175 0.0000 0.758 

LWb:ISb -0.0389 0.0080 -4.855 175 0.0000 -0.366 
CON_0:LWb:Isb 0.0524 0.0094 5.553 175 0.0000 0.419 

Notes: iRTpre, iRT at the previous trial; hS, horizontal coding of the stimulus position (i.e., the horizontal 
visual hemispace: right vs left); vS, vertical coding of the stimulus position (i.e., the vertical visual 
hemispace: upper vs lower); hR, horizontal coding of the response (i.e., the responding hand: right vs left); 
vR, vertical coding of the response (i.e., the responding finger: middle vs index); CON_0, Congruency 
(Incongruent trials); DF, degrees of freedom; dr, effect size computed using the by-participant random 
slopes.  

 


