
Two block preconditioners for a class of double
saddle point linear systems

Fariba Bakrani Balani, Masoud Hajarian∗ and Luca Bergamaschi †

Abstract

Two different block preconditioners are introduced and studied for solving a class of double saddle
point linear systems. We provide an eigenvalue analysis for the preconditioned matrices, with
special focus on their inexact variants, and give some numerical experiments to illustrate the per-
formance of the studied preconditioning techniques.
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1. Introduction
The aim of this paper is to introduce two new preconditioners for a class of double saddle point

problems. More exactly, let us consider the solution of linear system of the type

Az ≡

 A BT 0
−B 0 −CT
0 C 0

uv
w

 =

fg
h

 ≡ b, (1.1)

where A ∈ Rn×n is a symmetric positive definite (SPD) matrix, B ∈ Rm×n and C ∈ Rp×m have
full row rank, f ∈ Rn, g ∈ Rm and h ∈ Rp are given vectors. This kind of linear systems may
arise in many applications such as constrained least squares problems [1], constrained quadratic
programming [2], liquid crystal problems [3, 4] and so on; see, e.g. [5–8]. Thus, efficient strategies
for the solution of the linear system (1.1) are often needed. According to the following partitioning
structure  A BT 0

−B 0 −CT

0 C 0

 ,

 A BT 0
−B 0 −CT
0 C 0

 , (1.2)

it is easy to see that the matrix A in the linear system of equations (1.1) is of classical saddle point
form

H =
(
E FT

−F 0

)
with E =

(
A BT

−B 0

)
, F =

(
0 −C

)
, (1.3)

or generalized saddle point form

K =
(
A GT

−G D

)
with D =

(
0 −CT
C 0

)
, G =

(
B

0

)
. (1.4)
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We can see that the submatrices in (1.3) and (1.4) for this problem have different properties than
those of the standard block two by two saddle point problems [9,10]. Due to the special structure
of the matrix A, it is important to study some viable numerical solutions to solve the linear system
(1.1). Since such these saddle point matrices are typically large and sparse, the efficient solution
by the iterative methods is crucial for the overall performance. Among all the iterative methods
currently available, Krylov subspace methods are successfully used for solving large and sparse
linear systems. However, computational efficiency and high-quality of this class of methods is
related to the choice of an appropriate preconditioning strategies.

There have been several effective preconditioners for the linear system (1.1) presented and studied
in the literature. An exact block diagonal preconditioner PD and its inexact version P̂D have been
studied in [11,12], which are defined as

PD =

A 0 0
0 S 0
0 0 CS−1CT

 , P̂D =

Â 0 0
0 Ŝ 0
0 0 CŜ−1CT

 . (1.5)

Here S = BA−1BT , Â and Ŝ are SPD approximations of A and S, respectively. Although the exact
form of the block diagonal preconditioner in (1.5) has nice eigenvalue properties, constructing the
preconditioner PD can be a time consuming process.

The shift-splitting preconditioner, originally proposed by Bai et al. [13] for non-Hermitian posi-
tive definite linear systems, was later used to precondition the saddle point problems [14] and the
generalized saddle point problems [15]. For linear system (1.1), the suggestion of Cao [16] is a
shift-splitting preconditioner PSS and a relaxed version of the shift-splitting preconditioner PRSS
which are structured as follows:

PSS = 1
2

αI +A BT 0
−B αI −CT
0 C αI

 , PRSS = 1
2

 A BT 0
−B αI −CT
0 C αI

 , (1.6)

where α is a positive constant and I is the identity matrix with proper size. The preconditioner
PSS is obtained based on a splitting of double saddle point problem (1.1) which results in an
unconditionally convergent stationary iterative method. In [17], the equivalent symmetric linear
system of (1.1) with coefficient matrix

B =

A BT 0
B 0 CT

0 C 0

 , (1.7)

is considered and three exact block preconditioners are introduced. It is also shown in [17] that
the preconditioned matrices have only at most three distinct eigenvalues. By introducing two
variable parameters, Huang [18] presented a variant of Uzawa iterative method for the problem
(1.7). Furthermore, Huang et al. [19] extended the well-known Uzawa method for solving the
linear system with coefficient matrix B of (1.7). They also proposed the inexact Uzawa method
and showed that the proposed inexact method is more effective than the exact one. However,
finding a practical way of choosing parameters is often difficult in this method. More recently,
Wang and Li [20] proposed an exact parameterized block SPD preconditioner to solve the double
saddle point linear system (1.1). In addition, the inexact version of the proposed preconditioner
has been examined.

The purpose of this work is to propose two block preconditioners for the solution of linear
system of equations (1.1) which can be effective for the Krylov subspace methods. Motivated by
the preconditioner suggested in [21], we construct a splitting preconditioner for solving (1.1) and
show that the corresponding iterative method is unconditionally convergent to the solution of linear
system (1.1). Moreover, a new block preconditioner based on the block diagonal preconditioner
PD and relaxed shift-splitting preconditioner PRSS , is also constructed.
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The sketch of the remaining sections is as follows. After introducing two block preconditioners
in section 2, we give the implementation details of the application of the preconditioners in con-
junction with a Krylov subspace method, such as GMRES. In section 3 we provide the convergence
property of the splitting iterative method and characterize the eigenvalues of the corresponding
preconditioned matrices. In section 4 we show some numerical results, and in section 5 we give our
conclusions.

2. Block preconditioners and their implementation details
This section is structured as follows. In section 2.1, the splitting iterative method and the

implementation of the preconditioner extracted from the splitting are described. In section 2.2, we
introduce another block preconditioner which can be considered for the system (1.1) in order to
increase the convergence rate of the Krylov subspace methods.

2.1. The splitting preconditioner
Motivated by the idea of [21], we are interested in the use of a preconditioner of the form

P =

 A BT 0
−B CTC 0
0 2C I

 , (2.1)

in an iterative solution method for (1.1). Specially, we are interested in an iteration of the form A BT 0
−B CTC 0
0 2C I

u(k+1)

v(k+1)

w(k+1)

 =

0 0 0
0 CTC CT

0 C I

u(k)

v(k)

w(k)

+

fg
h

 , (2.2)

which is associated to the splitting

A =

 A BT 0
−B CTC 0
0 2C I

−
0 0 0

0 CTC CT

0 C I

 = P −R. (2.3)

Equivalently, the iterative method (2.2) can be expressed in closed form as follows

z(k+1) = Gz(k) + d, (2.4)

where

G = P−1R =

 A BT 0
−B CTC 0
0 2C I

−10 0 0
0 CTC CT

0 C I

 , (2.5)

is the iteration matrix and d = P−1b. In general case we can say that any linear iterative method
of the form (2.4) can be utilized to define a preconditioner for matrix A and thus be embedded in a
Krylov subspace method; see [22] for further details. We now give the detail of the implementation
of the splitting preconditioner P. In order to apply the preconditioner P combined with a Krylov
subspace method, we need to solve the linear system Pz = r, i.e., A BT 0

−B CTC 0
0 2C I

z1
z2
z3

 =

r1
r2
r3

 . (2.6)

Therefore, in algorithm 1, we describe the application of this preconditioner to a vector:
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Algorithm 1 Computation of z = P−1r.

1. Solve At = r1 for t;
2. Solve (BA−1BT + CTC)z2 = r2 +Bt for z2;
3. Solve Az1 = r1 −BT z2 for z1;
4. Set z3 = r3 − 2Cz2.

An application of this preconditioner amounts to one solve with M = BA−1BT +CTC and two
solves with A. Since the matrices A and M are SPD, we can use the sparse Cholesky factorization
or the preconditioned conjugate gradient (PCG) method to solve these linear systems. In general,
solving the linear system with the coefficient matrix M is not a trivial task due to the practical
difficulty to form the Schur complement matrix BA−1BT . This is generally dense and hence cannot
be found explicitly, especially for large problem size. In practice, one possibility is to consider the
matrix M̂ = BÂ−1BT + CTC with Â being an approximation of A and solve the related linear
system either exactly or inexactly by using some inner iterative methods. Here we may expect
that the linear system with the coefficient matrix M̂ can be practically (if not cheaply) solved.

2.2. The new block preconditioner
In this section, to solve the linear system of equations (1.1), based on the block diagonal

preconditioner PD and relaxed shift-splitting preconditioner PRSS , we construct the new block
preconditioner

Q =

A BT 0
0 S −CT
0 C αI

 , (2.7)

with a parameter α > 0. We next give the implementation of the preconditionerQ. The application
of the preconditioner Q with a Krylov subspace method requires solving a linear system of the
following form A BT 0

0 S −CT
0 C αI

z1
z2
z3

 =

r1
r2
r3

 . (2.8)

As a result, we summarize the implementation of this preconditioner in the form of the following
algorithm.

Algorithm 2 Computation of z = Q−1r.

1. Solve (BA−1BT + 1
αC

TC)z2 = r2 + 1
αC

T r3 for z2;

2. Solve Az1 = r1 −BT z2 for z1;

3. Set z3 = 1
α (r3 − Cz2).

In the implementation based on the above algorithm, the application of matrices N = BA−1BT+
1
αC

TC and A are required to apply this preconditioner. As we already discussed in previous section,
the solution of linear system with coefficient matrix N can be problematic in this preconditioner.
However, we can choose an approximation to the matrix N such that the linear system is easy to
be solved. Note that in actual computations, if α is too small, then the matrix system becomes
ill-conditioned.
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3. Convergence analysis and preconditioning properties
In this section, we present the unconditional convergence analysis of the splitting iterative

method (2.4). Moreover, we study results concerning the eigenvalues of the preconditioned matrices
P−1A and Q−1A. For the general theory of iterative methods, it is well-known that the vector
iterates (2.4) are convergent if and only if the spectral radius of the iteration matrix G is less than
unity.

We now state the following lemma that will be used in the convergence analysis of the splitting
iterative method. The proof of the lemma is straightforward computations, and is omitted.

Lemma 1. Let

P1 =

 A BT 0
−B CTC 0
0 0 I

 , P2 =

I 0 0
0 I 0
0 2C I

 . (3.1)

Then we have P = P1P2 and

P−1 = P−1
2 P

−1
1 =

A−1 −A−1BTQ−1BA−1 −A−1BQ−1 0
Q−1BA−1 Q−1 0

−2CQ−1BA−1 −2CQ−1 I

 , (3.2)

with Q = S + CTC and S = BA−1BT .

Based on Lemma 1, we obtain the following result.

Theorem 1. Suppose that A ∈ Rn×n is an SPD matrix, B ∈ Rm×n and C ∈ Rp×m are matrices
with full row rank. Then the spectral radius of the iteration matrix G satisfies ρ(G) < 1, meaning
that the splitting iterative method (2.4) converges unconditionally to the unique solution of the
linear system of equations (1.1).

Proof. In light of the relation (3.2), we get

G = P−1R =

A−1 −A−1BTQ−1BA−1 −A−1BQ−1 0
Q−1BA−1 Q−1 0

−2CQ−1BA−1 −2CQ−1 I

0 0 0
0 CTC CT

0 C I


=

0 −A−1BQ−1CTC −A−1BQ−1CT

0 Q−1CTC Q−1CT

0 −2CQ−1CTC + C I − 2CQ−1CT

 .

(3.3)

It can be easily shown that

G =

I 0 0
0 I 0
0 C I

−10 0 −A−1BQ−1CT

0 0 Q−1CT

0 0 I − CQ−1CT

I 0 0
0 I 0
0 C I

 , (3.4)

which is similar to

H =

0 0 −A−1BQ−1CT

0 0 Q−1CT

0 0 I − CQ−1CT

 . (3.5)

Since the iteration matrix G is similar to the matrix H, we can compute the eigenvalues of G by
computing the eigenvalues of H. From (3.5), we see that the matrix H has n + m eigenvalues at
zero and the remaining ones come from the eigenvalues of matrix K = I − CQ−1CT . To proceed
we must study the eigenvalues of the matrix K. The matrix K can be written as follows

K = I − CQ−1CT = I − C(S 1
2S

1
2 + CTC)−1CT

= I − (CS− 1
2 )
(
I + (CS− 1

2 )T (CS− 1
2 )
)−1

(CS− 1
2 )T .

(3.6)
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Because rank(C) = p and S is SPD, we know that rank(CS− 1
2 ) = p. Denote the singular value

decomposition of the matrix CS− 1
2 by

CS−
1
2 = U(Σ, 0)V T , (3.7)

where U ∈ Rp×p and V ∈ Rm×m are orthogonal matrices and Σ = diag(ν1, ν2, . . . , νp) ∈ Rp×p

is a diagonal matrix with ν1 ≥ ν2 ≥ . . . ≥ νp > 0 being the nonzero singular values of CS− 1
2 .

Therefore, the matrix K can be computed as follows

K = Ip − U(Σ, 0)
(
Ip + Σ2 0

0 Im−p

)−1(Σ
0

)
UT

= Udiag
( 1

1 + ν2
1
,

1
1 + ν2

2
, . . . ,

1
1 + ν2

p

)
UT .

(3.8)

From (3.8), we deduce that the nonzero eigenvalues of the matrix H are 1
1+ν2

i
(i = 1, . . . , p). We

therefore obtain
ρ(G) = ρ(H) = max

1≤i≤p

1
1 + ν2

i

= 1
1 + ν2

p

< 1, (3.9)

which completes the proof of theorem.

Theorem 1 leads to the following result on the eigenvalues of the preconditioned matrix P−1A.

Theorem 2. Suppose that A ∈ Rn×n is an SPD matrix, B ∈ Rm×n and C ∈ Rp×m are matrices
with full row rank. Then the preconditioned matrix P−1A has n + m eigenvalues at one and the
rest of eigenvalues are expressed by ν2

i

1+ν2
i

(i = 1, . . . , p), where νi is the singular value of CS− 1
2 .

Proof. From Theorem 1, it follows that n + m eigenvalues of P−1R are zero and the other ones
are of the form 1

1+ν2
i

(i = 1, . . . , p). Since

P−1A = I − P−1R, (3.10)

hence the n+m eigenvalues of the preconditioned matrix P−1A are equal to one and the nonunit
eigenvalues are obtained from ν2

i

1+ν2
i

(i = 1, . . . , p).

Remark 1. From the earlier eigenvalues derivation, it is not difficult to see that the minimal
polynomial of P−1A takes the form

p(x) = (x− 1)
p∏
i=1

(
x− ν2

i

1 + ν2
i

)
.

Therefore, the order of the minimum polynomial of P−1A is p+ 1 and from [23], we find that the
dimension of the Krylov subspace K (P−1A, b) is p+1. Hence, termination of the Krylov subspace
methods is guaranteed in at most p+ 1 iterations.

In the remainder of this section, we discuss the eigenvalues of the preconditioned matrix Q−1A.

Theorem 3. Let A ∈ Rn×n be an SPD matrix, and let B ∈ Rm×n and C ∈ Rp×m be matrices with
full row rank. Then the preconditioned matrix Q−1A has n+m eigenvalues at 1, and the remaining
p eigenvalues are given by µi

α+ µi
(i = 1, 2, . . . , p), where µi are the eigenvalues of CS−1CT and

therefore µi = ν2
i (i = 1, . . . , p).

Proof. We know that the eigenvalues of Q−1A and AQ−1 are equal, therefore we study the spec-
trum results of

AQ−1 =

 A BT 0
−B 0 −CT
0 C 0

A BT 0
0 S −CT
0 C αI

−1

. (3.11)
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It can be directly verified that

AQ−1 =

 I 0 0
−BA−1 I 0

0 Φ CS−1CTG−1

 , (3.12)

where G = αI+CS−1CT . As the precise form of Φ is irrelevant for the argument, we do not write
it here. It is clear that n+m eigenvalues of AQ−1 are unit (λi = 1), and the other eigenvalues are
determined by its (3, 3) block. These p eigenvalues satisfy the generalized eigenvalue problem

CS−1CTw = λi(αI + CS−1CT )w, (3.13)

and from which we obtain
λi = µi

α+ µi
= ν2

i

α+ ν2
i

. (3.14)

Therefore, we have proved the theorem.

Remark 2. From Theorems 2 and 3, we deduce that all nonunit eigenvalues of P−1A and Q−1A
lie inside the open complex disk centered at (1,0) with radius 1, which may improve the convergence
rate of the Krylov subspace methods.

Remark 3. The eigenvalue distribution previously characterized shows that the two proposed
preconditioners are expected to behave in a similar way, when α = 1.

3.1. Approximate preconditioner
The application of two proposed preconditioners in the previous sections requires the solution

of linear systems with matrices M = BA−1BT +CTC or N = BA−1BT + 1
αC

TC. Implementation
of these tasks rests on the:

1. Explicit computation of A−1

2. Explicit construction of M or N .
3. Solution of a linear system with either M or N , at each iteration of the Krylov solver of

choice.

Sub-task 1. will possibly destroy the sparsity in matrices M and N and make the proposed
preconditioners completely inefficient. Hence in the numerical experiments, we may work with
approximate preconditioner Â; for example it can be approximated by its diagonal/tridiagonal
part. This approximation will make the application of the preconditioner more effective. At the
same time the nice eigenvalue distribution proved in the previous theorems will not hold anymore.
To characterize the eigenvalue distribution in the approximate case, we consider the preconditioner
Q̂ defined as

Q̂ =

Â BT 0
0 Ŝ −CT
0 C αI

 , (3.15)

where Â is an SPD (sparse) approximation of A and Ŝ = BÂ−1BT is computed accordingly. Let
us define a measure of the error in the (1, 1) block approximation as the matrix ∆A = AÂ−1 − I.
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The preconditioned matrix reads in this case

AQ̂−1 =

 Â BT 0
−B 0 −CT
0 C 0

+

A− Â 0 0
0 0 0
0 0 0

Â BT 0
0 Ŝ −CT
0 C αI

−1

=

 I 0 0
−BÂ−1 I 0

0 Ψ CŜ−1CTG−1


+

∆A −∆AB
T Ŝ−1(I − CTG−1CŜ−1) −∆AB

T Ŝ−1CTG−1

0 0 0
0 0 0

 ,

(3.16)

where nowG = αI+CŜ−1CT . The eigenvalues of the (1, 1) block in (3.16) are exactly characterized
by Theorem 3. The second matrix will produce a perturbation of these eigenvalues whose size
depends on the norm of the matrix ∆A.

The next theorem will characterize the eigenvalues of the preconditioned matrix AQ̂−1. The
real eigenvalues are characterized by the reasoning as in [24], in terms of the eigenvalues of the
matrix Ã = Â−1/2AÂ−1/2, which is similar to the matrix AÂ−1.
Notation. We denote with γmin and γmax the extremal eigenvalues of Ã and γ a generic value of

its Rayleigh Quotient: γ = zT Ãz

zT z
for a given nonzero vector z.

Theorem 4. The real eigenvalues of AQ̂−1 lie in the interval [λ0, 1 + γmax], where λ0 > 0.
Moreover, the truly complex eigenvalues lie in a circle of the Gauss plane, with center the real
number 1 and radius 1.

Proof. The eigenvalues of AQ̂−1 must satisfy the following equations

Ax+BT y = λ(Âx+BT y),

−Bx− CT z = λ(Ŝy − CT z),
Cy = λ(Cy + αz),

(3.17)

which can be expressed in matrix form as Aψ = λQ̂ψ: A BT 0
−B 0 −CT
0 C 0

xy
z

 = λ

Â BT 0
0 BÂ−1BT −CT
0 C αI

xy
z

 . (3.18)

Now we define the block diagonal matrix

D = blkdiag(Â−1/2, Ŝ−1/2, I),

then the previous generalized eigenvalue problem has the same eigenvalues as DADw = λDQ̂Dw: Ã RT 0
−R 0 −KT

0 K 0

uv
t

 = λ

I RT 0
0 I −KT

0 K αI

uv
t

 , (3.19)

where
R = Ŝ−1/2BÂ−1/2, K = CŜ−1/2 and ψ = Dw.

Note that KTK = S−1/2CTCS−1/2 and RRT = I. The rest of the proof is divided into two parts:
Real eigenvalues. If λ ∈ R and λ 6∈ [γmin, γmax], then from the first equation of (3.19) we obtain

u = (Ã− λI)−1(λ− 1)RT v, (3.20)
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and from the third equation of (3.19) we have

t = 1− λ
λα

Kv. (3.21)

Substituting the above relations into the second equation of (3.19) yields

(1− λ)R(Ã− λI)−1RT v − λv − (1− λ)2

λα
KTKv = 0. (3.22)

Now premultiplying (3.22) with v∗

v∗v results in

v∗(1− λ)R(Ã− λI)−1RT v

v∗v
− λ− (1− λ)2

λα

v∗KTKv

v∗v
= 0. (3.23)

Since Ã − λI is an SPD or minus SPD, there exists an SPD matrix such that Ã − λI = J2 (or
−J2). Defining s = J−1p and p = RT v, we rewrite the first term of (3.23) as

(1− λ) s
∗s

p∗p

p∗p

v∗v
= (1− λ) s∗s

s∗(Ã− λI)s
v∗RRT v

v∗v
= (1− λ) s∗s

s∗(Ã− λI)s
= 1− λ
γ − λ

. (3.24)

After denoting the quantity v∗KTKv
v∗v by µ, we rewrite (3.23) as

q(λ) ≡ 1− λ
γ − λ

− λ− (1− λ)2

λα
µ = 0. (3.25)

The real eigenvalues of the preconditioned matrix not lying in [γmin, γmax] are the zeros of equation
(3.25). To obtain an upper bound for the real eigenvalue we observe that if λ > γmax + 1, then

1− λ
γ − λ

− λ = λ2 − (1 + γ)λ+ 1
γ − λ

< 0, (3.26)

since the numerator is positive for λ > γ + 1. Then it follows that q(λ) < 0, ∀ λ > γmax + 1. To
obtain a lower bound we consider γ < 1 and observe that

lim
λ→0+

q(λ) = −∞, lim
λ→γ−

q(λ) = +∞,

so there is a zero of q(λ), λ0 ∈ (0, γ), which is bounded away from zero.

Complex Eigenvalues. The equations (3.19) can be written as follows

Ãu+RT v = λ(u+RT v), (3.27)
−Ru−KT t = λ(v −KT t), (3.28)

Kv = λ(Kv + αt). (3.29)

Multiplying (3.27) by u∗ on the left, the transposed conjugate of (3.28) by v on the right and
(3.29) by t∗ on the left, we derive

u∗Ãu− λ‖u‖2 = (λ− 1)u∗RT v, (3.30)
− u∗RT v + (λ̄− 1)t∗Kv = λ̄‖v‖2, (3.31)
(1− λ)t∗Kv = λα‖t‖2, (3.32)

We assume that λ 6= 1. From (3.32), it can be seen that

t∗Kv = λα‖t‖2

1− λ ,
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and substituting the above relation into (3.31), we get

u∗RT v = −λ̄‖v‖2 + (λ̄− 1)λα‖t‖
2

1− λ . (3.33)

Inserting (3.33) into equation (3.30), we obtain

u∗Ãu− λ‖u‖2 = (λ− |λ|2) α‖t‖2 + (λ̄− |λ|2)‖v‖2. (3.34)

Let λ = a+ ib. By exploiting the real and imaginary parts of (3.34), we have

−b‖u‖2 = bα‖t‖2 − b‖v‖2, (3.35)
u∗Ãu− a‖u‖2 = (a− a2 − b2)(α‖t‖2 + ‖v‖2). (3.36)

For truly complex eigenvalues, (3.35) yields (b 6= 0)

‖v‖2 = ‖u‖2 + α‖t‖2. (3.37)

Equation (3.36) tells that we can not have complex eigenvalues with negative real part. Moreover,
in view of the identity: |λ− 1|2 − 1 = a2 + b2 − 2a it is equivalent to

u∗Ãu− a(‖u‖2 − α‖t‖2 − ‖v‖2) = −(|λ− 1|2 − 1)(α‖t‖2 + ‖v‖2), (3.38)

and in view of relation (3.37), we write (3.38) as

u∗Ãu+ 2aα‖t‖2 = −(|λ− 1|2 − 1)(α‖t‖2 + ‖v‖2). (3.39)

It follows that

|λ− 1|2 = 1− u∗Ãu+ 2aα‖t‖2

α‖t‖2 + ‖v‖2 = 1− ρ,

with

ρ = u∗Ãu+ 2aα‖t‖2

α‖t‖2 + ‖v‖2 > 0,

and the thesis holds.

4. Numerical experiments
This section considers the performance of the GMRES and the flexible GMRES (FGMRES)

methods with two inexact proposed preconditioners, and compares the performance of these pre-
conditioners with the preconditioners P̂D and PRSS for solving the linear system (1.1). Here the
right-preconditioned GMRES method is utilized. In the tables, the number of iterations and the
elapsed CPU time in seconds are denoted by IT and CPU, respectively. The initial guess is taken
to be zero vector and the iterations will be stopped whenever

‖b−Az(k)‖2/‖b‖2 < tol.

We also report the accuracy of the methods under ERR = ‖z(k) − z(∗)‖2/‖z(∗)‖2. In the tables,
the symbol (–) means that the iterations do not reach the given tolerance or the direct method for
solving blocks is out of memory. In all tests, the right-hand side vector b is to be adjusted such
that the exact solution of (1.1) is z∗ = (1, 1, . . . , 1)T ∈ Rn+m+p.

As already mentioned, the computation of the coefficient matrices M and N in Algorithms 1
and 2 is expensive. So, we replace M and N with their approximations M̂ = BÂ−1BT +CTC and
N̂ = BÂ−1BT + 1

αC
TC that are easy to implement. Here we consider Â = diag(A), the diagonal

part of A. The parameter of the preconditioner PRSS is taken as α = 0.01.
The numerical experiments presented in this work have been carried out on a computer with the

configuration: Intel Core i7-8550U CPU @ 1.80GHz processor and 12 GB RAM using Matlab
2022a.
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Example 1. ( [16,17]) As the first example, we consider the linear system of equations (1.1) where
the block matrices in this problem are defined as

A =
(
I ⊗ T + T ⊗ I 0

0 I ⊗ T + T ⊗ I

)
∈ R2p2×2p2

, B =
(
I ⊗ F F ⊗ I

)
∈ Rp

2×2p2
,

C = E ⊗ F ∈ Rp
2×p2

,

with
T = 1

h2 · tridiag(−1, 2,−1) ∈ Rp×p, F = 1
h
· tridiag(0, 1,−1) ∈ Rp×p,

E = diag(1, p+ 1, . . . , p2 − p+ 1),

in which the symbol ⊗ denotes Kronecker product and h = 1
p+1 is the discretization size.

In Table 1, we report the numerical results for the GMRES method with the proposed block
preconditioners, P̂D and PRSS . In the inexact block diagonal preconditioner P̂D, the matrix Ŝ is
taken as Ŝ = diag(BÂ−1BT ). The linear subsystems involved in these preconditioners are solved
exactly via the Cholesky factorization of the coefficient matrices.

From Table 1, we can conclude that the preconditioners P̂D and PRSS require high computational
cost for solving the linear system of equations (1.1) and the preconditioners P and Q display a
good performance to speed up the convergence rate of Krylov subspace methods. Apparently, the
preconditioner PRSS is more efficient as it takes less iterations. However, its application cost is
not comparable with that of P and Q and this is clearly revealed by the CPU times.

Since the Cholesky factorization is unreasonable for large scale problems, it is important to solve
the linear subsystems with the coefficient matrices M̂ and N̂ inexactly. Therefore, in Table 2, we
report the results corresponding to FGMRES with the block preconditioners P and Q for different
values of α. We used the PCG method (with tolPCG = 1e − 03 ) to solve subsystems as a inner
iteration in the outer preconditioned FGMRES method. In addition, the incomplete Cholesky
factorization of matrices M̂/N̂ with drop tolerance τ = 1e− 03 are employed as preconditioner in
the inner PCG iteration. The total number of inner PCG iterations are reported in parenthesis.
We observe that the block preconditioners with FGMRES give reasonable numerical results in
terms of the number of FGMRES iterations required and CPU time taken to solve this problem,
especially for large scale problems.

Table 1: Numerical results of preconditioned GMRES method for Example 1 (tol = 1e − 7).

P̂D PRSS P Q (α = 10)

Size IT CPU IT CPU IT CPU IT CPU

1024 35 0.02 2 0.08 6 0.004 9 0.005
4096 38 0.16 2 0.13 6 0.01 8 0.02

16384 40 1.52 2 2.60 5 0.11 7 0.10
65536 44 88.51 - - 4 0.45 6 0.40

Table 2: Numerical results of preconditioned FGMRES method for Example 1 (tol = 1e − 10).

P Q (α = 0.1) Q (α = 1) Q (α = 10)

Size IT CPU IT CPU IT CPU IT CPU

16384 26 (48) 0.19 5 (5) 0.05 8 (8) 0.06 12 (12) 0.07
65536 25 (45) 0.98 5 (5) 0.27 7 (7) 0.35 11 (11) 0.34

262144 16 (28) 5.01 4 (4) 1.73 6 (6) 2.36 10 (10) 2.31
1048576 23 (40) 54.12 4 (4) 33.03 5 (5) 34.96 9 (9) 36.44
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We have also tested different values of the parameter α for preconditioner Q and results are
listed in Table 3. It is clear from Theorem 3 that a small value of α makes the eigenvalue of Q−1A
approaches 1, but the preconditioned GMRES method converges to a low accuracy solution. In
this paper, we consider α to be naturally moderate. A similar observation can be found in [21].

Table 3: Numerical results of preconditioned GMRES method for Example 1 with different α.

Q-GMRES

Size α = 1 α = 10 α = 20

16384 IT 4 7 9
CPU 0.0505 0.0585 0.0665
ERR 5.4× 10−4 1.5× 10−4 3.7× 10−5

65536 IT 3 6 8
CPU 0.3227 0.3838 0.4435
ERR 2.6× 10−3 6.4× 10−4 1.6× 10−4

Regarding the eigenvalue distribution, we plot in Figures 1, 2 and 3 the spectrum of matrices A,
P̂−1
D A, P−1A, Q−1A (exact preconditioner Q) and Q̂−1A (approximate preconditioner Q) for two

different values of α. These Figures show that all the eigenvalues of the preconditioned matrices
are well-clustered. From the Figures 2 and 3, we notice how the inexactness in matrix A makes the
real eigenvalues spread in the interval [0, 2] and the perturbation transforms the unit eigenvalues
into complex ones (yet close to the point (1, 0) in the complex plane).

Figure 1: Eigenvalue distribution on the complex plane of the matrix A (left), preconditioned
matrices P̂−1

D A (center) and P−1A (right).

Figure 2: Eigenvalue distribution on the complex plane of the preconditioned matrix with exact
Q (left) and with approximate Q (right) α = 1.
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Figure 3: Eigenvalue distribution on the complex plane of the preconditioned matrix with exact
Q (left) and with approximate Q (right) α = 10.

Example 2. ( [11,17]) In this example, we consider the linear system of equations (1.1) for which

A = diag
(
2WTW +D1, D2, D3

)
∈ Rn×n,

is a block diagonal matrix;

B = [E,−I2P1 , I2p2 ] ∈ Rm×n, and C = ET ∈ Rl×m,

are both full row rank matrices where p1 = p2, p2 = p(p + 1); W = (wij) ∈ Rp2×p2 with wij =
e−2((i/3)2+(j/3)2); D1 = Ip2 is an identity matrix; Di = diag(d(i)

j ) ∈ R2p1×2p1 , (i = 2, 3) are diagonal
matrices with

d2
j =

{
1, for 1 ≤ j ≤ p1,

10−5(j − p2
1), for p1 + 1 ≤ j ≤ 2p1,

d3
j = 10−5(j + p2

1), for 1 ≤ j ≤ 2p1;

and

E =
(
E1 ⊗ Ip
Ip ⊗ E1

)
, with E1 =


2 −1

2 −1
. . . . . .

2 −1

 ∈ Rp×(p+1).

The numerical results of preconditioned GMRES method for tested example are listed in Table 6.
In the inexact block diagonal preconditioner P̂D, we consider Â = diag(A) and Ŝ = BÂ−1BT . It
can be seen numerically that the inexact block diagonal preconditioner P̂D, the preconditioners
P and Q are more convenient than the RSS preconditioner in terms of both iteration number
and CPU time. Computing the exact factorization of the Schur complement matrices is time and
memory consuming, and make it impossible to grow further the size of the problem. This issue
is circumvented by the use of preconditioned iterative solvers in combination with the FGMRES
method (as done in the previous example).

Table 5 report the corresponding results which show that we can increase the dimension up
to almost 107 unknowns and that the proposed preconditioners perform much better than the
preconditioners P̂D and PRSS , especially for the large problems.

In a nutshell, the preconditioners P and Q in the considered numerical experiments compare
favorably with some existing ones. In fact, the proposed preconditioners can be effective and
display high convergence rates for the Krylov subspace methods like (F)GMRES.
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Table 4: Numerical results of preconditioned GMRES method for Example 2 (tol = 1e− 10).

P̂D PRSS P Q (α = 1)

Size IT CPU IT CPU IT CPU IT CPU

2080 56 0.06 76 0.29 19 0.27 19 0.24
8256 71 0.76 76 4.10 15 0.84 15 0.79

32896 75 5.65 70 77.37 12 1.99 13 1.90
131328 62 69.72 – – 10 33.05 11 40.26

Table 5: Numerical results of preconditioned FGMRES method for Example 2 (tol = 1e− 10).

P̂D P Q (α = 1)
Size IT CPU IT CPU IT CPU

outer inner outer inner outer inner
32896 83 332 0.98 12 27 0.11 16 32 0.14

131328 70 279 2.84 10 21 0.28 13 25 0.38
524800 47 188 7.91 8 16 0.98 10 20 1.33

2098176 33 131 20.64 6 13 3.09 6 14 3.25
8390656 18 68 52.42 3 6 8.56 4 8 10.80

As the last experiment, we considered a further approximation in the application of the proposed
preconditioners which avoids the presence of two nested iteration. We then modified Algorithms 1
and 2 as described below.

Algorithm 3 Computation of z = P−1r.

1. Solve At = r1 for t;
2. Compute Â a (cheaply invertible)

approximation of A.
3. Compute an incomplete Cholesky fac-

torization LM of M̂ = BÂ−1BT +CTC

4. Solve (LMLTM )z2 = r2 +Bt for z2;
5. Solve Az1 = r1 −BT z2 for z1;
6. Set z3 = r3 − 2Cz2.

Algorithm 4 Computation of z = Q−1r.

1. Compute Â a (cheaply invertible)
approximation of A.

2. Compute an incomplete Cholesky fac-
torization LN of N̂ = BÂ−1BT + 1

αC
TC

3. Solve (LNLTN )z2 = r2 + 1
αC

T r3 for z2;
4. Solve Az1 = r1 −BT z2 for z1;
5. Set z3 = 1

α (r3 − Cz2).

The results of this last run are reported in Table 6. Inspecting this table we notice a further
reduction of the CPU time for the three preconditioners. This is justified by the fact that the
outer iteration number only slightly increase with respect to the FGMRES inner/outer solver, but
the cost for the preconditioner application is substantially reduced. Moreover these results confirm
the superiority of the proposed preconditioner.
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Table 6: Numerical results of preconditioned FGMRES method for Example 2 (tol = 1e − 10).
The application of the preconditioners is implemented following Algorithms 3 and 4.

P̂D P Q (α = 1)

Size IT CPU IT CPU IT CPU

32896 84 0.75 14 0.08 17 0.09
131328 70 2.31 11 0.21 13 0.23
524800 49 7.13 8 0.60 10 0.65

2098176 33 14.42 6 1.83 7 1.96
8390656 18 38.83 4 8.18 4 7.13

5. Conclusions
In this work we have introduced two block preconditioners for the solution of double saddle

point linear systems (1.1). We first showed that the splitting iterative method is unconditionally
convergent. Then, the eigenvalues of the corresponding preconditioned matrices were studied. Nu-
merical experiments obtained reveal that the proposed preconditioned (F)GMRES method results
in improved computational efficiency for solving double saddle-point problem (1.1) as compared to
preconditioners described in the literature.

Future work is aimed at generalizing this work to provide the eigenvalue distribution of more
general double saddle-point matrices, in particular those with nonzero (2, 2) and (3, 3) blocks, and
to test them on a wide number of realistic applications, such as, e.g., coupled poromechanical
models [25], and the coupled Stokes-Darcy equation [3, 26].
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