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Abstract: To find the most optimal green valorization process of food by-products, sugar beet (Beta
vulgaris L.) leaves (SBLs) were freeze-dried and ground with/without liquid nitrogen (LN), as a
simple sample pretreatment method, before ultrasound-assisted extraction (UAE) of polyphenols.
First, the water activity, proximate composition, amino acid (AA) and fatty acid (FA) profiles, and
polyphenol oxidase (PPO) activity of dried and fresh SBLs were evaluated. Then, conventional
extraction (CE) and UAE of polyphenols from SBLs using water/EtOH:water 14:6 (v/v) as extracting
solvents were performed to determine the individual and combined effects of the sample preparation
method and UAE. In all the freeze-dried samples, the specific activity of PPO decreased significantly
(p ≤ 0.05). Freeze-drying significantly increased (p ≤ 0.05) the fiber and essential FA contents of
SBLs. The FA profile of SBLs revealed that they are rich sources of oleic, linoleic, and α-linolenic
acids. Although freeze-drying changed the contents of most AAs insignificantly, lysine increased
significantly from 7.06 ± 0.46% to 8.32 ± 0.38%. The aqueous UAE of the freeze-dried samples
without LN pretreatment yielded the most optimal total phenolic content (TPC) (69.44 ± 0.15 mg
gallic acid equivalent/g dry matter (mg GAE/g DM)) and excellent antioxidant activities. Thus,
combining freeze-drying with the aqueous UAE method could be proposed as a sustainable strategy
for extracting bioactive compounds from food by-products.

Keywords: food by-products; ultrasound-assisted extraction (UAE); lyophilization; green technolo-
gies; polyphenol oxidase; enzymatic browning; polyphenols; freeze-drying; amino acids; fatty acids

1. Introduction

As the population of the world is growing sharply, providing food security to meet
the optimal dietary needs of consumers has become a vital issue over the past few decades.
Thus, it is necessary to find new sustainable food supplies [1,2]. On the other hand, the
increased food production arising from this overpopulation leads to a noticeable generation
of by-products, which may cause many environmental concerns [3]. However, these by-
products could be considered nutritional resources as they possess high quantities of fiber,
minerals, antioxidants, proteins, etc. [4]. Therefore, not only does the valorization of these
by-products provide health benefits to consumers, but it can also increase global food
security [5,6].

Sugar beet (Beta vulgaris L.) is one of the most prominent edible plants cultivated in
Europe, where approximately 200 million tons of this plant are harvested annually. The
leaves of this crop remain mostly unexploited as a by-product, of which 120 million tons
per year are produced only in Europe [7]. Sugar beet leaves (SBLs) are more nutritious than
beetroot, as they are rich in essential amino acids (AAs) and fatty acids (FAs), proteins, and
polyphenols. Therefore, they could be considered a potent source of bioactive compounds,
making them a potential food matrix to further analyze their valorization capacity [8–10].
Thus, the efficient and sustainable disposal of SBLs needs to be evaluated following the
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full-component utilization concept proposed by Zhang et al. (2021) [11]. However, it has
been reported that there is high polyphenol oxidase (PPO) activity in SBLs [12], which
may decrease the efficiency of extracting polyphenols [6]. In addition, the high moisture
content of SBLs makes them perishable and difficult to store. Thus, it is required to apply a
pretreatment on them before the extraction of bioactive compounds [13]. Drying the plant
tissues is often suggested before the extraction process to reduce the moisture and overall
deterioration of bioactive compounds [14].

The significance of pretreating samples has mostly been neglected in experimental
designs. Finding faster, cheaper, and more environmentally friendly pretreatments is a
determining factor in the valorization processes [15]. Freeze-drying or lyophilization is
one of the mild procedures for removing water, which is proven to be the most optimal
technique for preserving the sensitive compounds of food because of lower temperature
and pressure, and the absence of water [16]. Therefore, it could be an appropriate treatment
to overcome the problems stemming from the high moisture content of SBLs. The low
temperature in this process maintains nutrients and bioactive compounds optimally and
controls the undesirable effects of the Maillard reaction [16] and enzymatic browning [17].
However, the freeze-drying process could be very energy-consuming [18], and in some
cases, it deteriorates the content of polyphenols [19,20]. Therefore, it is necessary to find a
solution to control these problems. A possible option for overcoming the problems of freeze-
drying is grinding the samples under liquid nitrogen (LN) before the drying process. In
this method, the food matrix, which is ground into small particles, is freeze-dried [21]. LN
is used for many cooling and cryogenic applications and boils at−195.80 ◦C in atmospheric
pressure. Grinding plant tissues with LN using mortar and pestle is a widely utilized
approach for recovering intracellular compounds [22]. It is crucial to appraise the impact of
LN before and after freeze-drying on the bioactive compounds present in food by-products
as a pretreatment before the extraction. Thus, the sample treatment method was designed
as shown in Figure 1.
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Figure 1. Preparation of samples with four different simple methods. FL: Fresh sugar beet leaves
(SBLs); FD: Lyophilized SBLs ground without liquid nitrogen (LN); NFD: Lyophilized SBLs ground
with LN before freeze-drying; FDN: Lyophilized SBLs ground with LN after freeze-drying.

In addition to the sample preparation, selecting a proper extraction method is another
key factor for achieving high yields of bioactive compounds, together with reducing the
amount of solvent, and saving time and energy. Since conventional extraction (CE) methods,
such as maceration, have many drawbacks, an attractive alternative is the ultrasound-
assisted extraction (UAE) method, which is considered a green technology [13]. In the UAE
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method, the pressure and cavitation of ultrasonic waves lead to the disruption of the plant
cell membrane, which results in the release of target components [23]. To our knowledge,
there is no research investigating the combined effect of freeze-drying with LN treatment
and UAE on the quantity and quality of bioactive compounds.

Therefore, this study aimed to evaluate the individual and combined effects of the
sample preparation method and UAE on the bioactive compounds of SBLs. It was antic-
ipated that the proper procedure of sample preparation and extraction conditions could
positively impact the efficiency of the results. Therefore, proximate composition, water
activity, and AA and FA profiles were first analyzed to better elaborate the chemical prop-
erties of different treatments of SBLs. Secondly, the PPO activity of SBLs was investigated
to understand its connection with total phenolic content (TPC) and the antioxidant activity
of the phenolic extracts, which were evaluated at the final stage of this project.

2. Results and Discussion
2.1. Proximate Composition and Water Activity of SBLs

The concentration of simple components in the plant tissues could have a noticeable
impact on the freeze-drying process. For instance, high lipid content may decrease the
quality of lyophilized products [21]. Table 1 shows the proximate composition and water
activity of SBLs. There is no significant difference (p > 0.05) among the ash contents of
different treatments. Various quantities of ash have been reported for SBLs in the literature,
such as 17.76 g/100 g dry matter (DM) [24], 16.40 g/100 g DM [25], and 20.80 g/100 g DM,
which are higher than the results of the present paper [26]. This could be due to the different
chemical compositions of sugar beets with various agronomic traits, harvest time, and
environmental factors (e.g., the geographical region, climate, and soil specifications) [24].

Table 1. Proximate composition and water activity of SBLs with different treatments.

Component
Type of Leaves

FL 1 FD 3 NFD 2 FDN 4

Water activity 0.98 ± 0.00 c 0.10 ± 0.00 b 0.08 ± 0.00 a 0.08 ± 0.00 a

Moisture (%) 82.42 ± 0.08 b 9.26 ± 0.33 a 8.63 ± 0.18 a 8.95 ± 0.60 a

Dry matter (%) 17.58 ± 0.08 a 90.74 ± 0.33 b 91.37 ± 0.18 b 91.05 ± 0.64 b

Ash (g/100 g DM 5) 10.23 ± 0.13 a 10.49 ± 0.18 a 10.08 ± 0.08 a 10.23 ± 0.25 a

Crude protein (g/100 g DM) 31.31 ± 0.05 d 27.76 ± 0.07 a 28.29 ± 0.08 b 28.75 ± 0.05 c

Crude fiber (g/100 g DM) 2.13 ± 0.03 a 4.04 ± 0.04 c 3.76 ± 0.04 b 3.77 ± 0.08 b

Crude lipid (g/100 g DM) 1.16 ± 0.05 bc 1.08 ± 0.08 b 1.30 ± 0.09 c 0.46 ± 0.10 a

Data are reported as mean ± SD (n = 3). a, b, c, d Different letters show that there is a significant difference
(p ≤ 0.05), according to one-way ANOVA and Tukey’s Honestly Significant Difference (HSD) tests; 1 Fresh SBLs;
2 Lyophilized SBLs ground without LN; 3 Lyophilized SBLs ground with LN before freeze-drying; 4 Lyophilized
SBLs ground with LN after freeze-drying; 5 Dry matter.

Since water content highly impacts the degradation of sensitive compounds, knowing
the content of moisture and water activity of raw material is essential [27]. The results show
that there are significant differences (p ≤ 0.05) between the moisture content and water
activity of fresh SBLs (FL) and other treatments. The lower moisture content in lyophilized
SBLs ground with LN before freeze-drying (NFD) could be related to the smaller size
of leaves’ particles as water is released more readily from ground leaves. Moreover, the
freezing rate in LN pretreatment significantly influences ice formation and determines the
drying rate. When LN is used to freeze samples, the liquid changes to ice rapidly with a
higher freezing rate and smaller crystal size [28], and the number of ice crystals increases.
The size of crystals can affect the rate of drying [21]. Sublimation of fast-frozen food with
small-sized ice crystals occurs rapidly in the first drying stage of the freeze-drying [18].
Based on these, in LN-pretreated samples (i.e., NFD), the moisture content decreases more
efficiently. Alfaro et al. (2018) reported the same decrease in moisture content when they
evaluated the effect of LN pretreatment on the osmotic dehydration of blueberries [29].
Since the freeze-drying method is very energy-consuming and requires a long drying
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period [18], the decrease in the moisture content by pretreating samples with LN could
decrease the time required for drying and consequently, reduce the energy needed for the
freeze-drying process.

The decrease in water activity after freeze-drying could be considered a beneficial
factor for preserving bioactive compounds because lower water activities result in an
increased viscosity preventing the mobility of compounds and chemical reactions [30].
However, Maldonado-Astudillo et al. (2019) reported that polyphenols are more extractable
in higher water activities, although the changes in the phenolic content are minor in low
water activities [31].

According to the results, there was a significant decrease in the crude protein content of
all the freeze-dried SBLs (p ≤ 0.05). Since freeze-drying causes stresses such as exposure to
ice-water interfaces, cold denaturation, and freeze-concentration, it can reduce the content
of protein in plant tissues [32]. Moreover, this decrease could result from an overestimation
of the protein content of FL as the Kjeldahl method uses a nitrogen-to-protein conversion
factor, considering most of the nitrogen in the leaves as protein. Therefore, different
amounts of non-protein nitrogen in samples cause this overestimation [33]. After all, it
should be noted that the quality of proteins is more important than their quantity. Thus,
it is necessary to characterize the AA profile of SBLs to specify the protein quality after
freeze-drying.

Despite the decrease in protein content after freeze-drying, the crude protein content
in SBLs is still high compared to the literature. The protein content of the SBLs on the basis
of DM has been reported as 24.02 g/100 g [24], 22.8 g/100 g [25], and 19.4 g/100 g [34].
All these quantities are lower than the protein content found in SBLs in the present paper.
The high protein content of SBLs makes them a promising source of sustainable vegetal
protein, meeting the requirements of vegetarian and vegan people. Furthermore, the
consumption of plant proteins could reduce cardiovascular diseases [35]. For all adults
above 18 years old, the recommended dietary allowance of proteins is 0.83 g of protein/kg
body weight/day [36]. Therefore, according to the total protein measured in the present
paper, consumption of 2.89 g DM of FDN/kg body weight/day can meet the recommended
protein intake of the body.

There is a significant increase (p ≤ 0.05) in the fiber content of all the freeze-dried SBLs.
Most parts of the fiber found in sugar beet are soluble pectin and insoluble hemicellulose,
with small quantities of lignin and cellulose [37]. Therefore, it is possible that SBLs also
have the same constituent. Fernandez et al. (2017) [38] reported that the fiber content in
the leaves of Beta vulgaris L. is approximately 2.93 g/100 g, almost identical to the results
obtained in the present paper. Dietary fibers contain carbohydrate polymers with some
non-carbohydrate components showing many health benefits, including the inhibition of
obesity, diabetes, stroke, hypertension, and coronary heart disease [39]. Therefore, the high
fiber content in the SBLs could have health benefits.

Moreover, fiber and polyphenols in plant-based food are essential in preventing
metabolic alterations. When fiber and polyphenols reach the colon, they are fermented
by the microbiota, resulting in the generation of short-chain fatty acids. These fatty acids
regulate food intake and improve the expression of anorectic hormones in the colon [40]. It is
reported that the fiber concentrations of sugar beet are practical in enhancing the rheological
properties of meat products, resulting in acceptable structural or textural characteristics [37].
Moreover, Asadi et al. reported that the enrichment of cookies with beetroot leaves powder
increased their crude fiber content from 0.78 ± 0.33% to 12.82 ± 0.32 [41]. Therefore, SBLs
could be used in formulating functional foods with high health benefits for consumers.

Abdo et al. (2020) reported that the crude lipid content of beetroot leaves was
0.43 ± 0.04 g/100 g DM [42]. Furthermore, Kiskini et al. (2016) reported that SBLs aged
three months have a lipid content of 4.20 g/100 g [25]. Since the leaves were going to be sub-
jected to the extraction of polyphenols in the next stage of the project, estimating the lipid
content is essential because the first step in extracting polyphenols is the removal of lipids
(defatting) from the food matrix [27]. In the present paper, the lipid content of raw material
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is low (1.16 ± 0.05 g/100 g), and there was no need to remove lipids from the leaves before
the extraction of polyphenols. Even though freeze-drying decreased the fat content of SBLs
significantly (p ≤ 0.05), they had significantly higher lipid content (p ≤ 0.05) when they
were pretreated with LN. However, this small increase could be beneficial to consumers
as it has been reported that lipids can interact with polyphenols and protect them in their
passage through the gastrointestinal tract, making it easy to deliver polyphenols to the
lower parts of the gastrointestinal tract [43]. Thus, the lipid content in the SBLs is beneficial
in the absorbance of polyphenols into the body.

2.2. Amino Acid Profile of Fresh and Lyophilized Leaves

AAs are categorized as nonessential and essential based on the ability of the body to
synthesize them. The human body cannot synthesize essential AAs, and the only source
for these AAs is dietary protein. Moreover, some nonessential AAs (e.g., arginine, cysteine,
glutamine, glycine, proline, and tyrosine) could become essential in conditions such as
premature birth. Thus, to overcome the deficiency of AAs and for the proper functioning
of the body, it is crucial to consume dietary proteins containing all AAs [36].

SBLs possess a balanced amino acid profile. The presence of essential AAs, including
threonine, leucine, phenylalanine, isoleucine, valine, lysine, and methionine, reveals the
particular nutritional quality of SBLs [24]. Table 2 shows the AA profile of SBLs treated
with different methods. Figure 2 shows the representative chromatograms corresponding
to the AA profiles of freeze-dried and fresh SBLs. The results show that SBLs contain a
significant number of essential AAs, such as threonine, valine, phenylalanine, isoleucine,
leucine, lysine, and methionine. Furthermore, glutamic acid has the highest concentration.
This compound could be used as a food additive in the form of monosodium glutamate, a
well-known flavor enhancer [24]. Therefore, the powder of SBLs could be used as a flavor
enhancer as it has a high quantity of glutamic acid.

Table 2. Amino acid profile of samples.

Amino Acids
(% Total AAs)

Type of Leaves

FL FD NFD FDN

Histidine 3.81 ± 0.16 a 3.59 ± 0.00 a 3.67 ± 0.01 a 3.59 ± 0.08 a

Arginine 5.45 ± 0.06 a 5.54 ± 0.00 a 5.43 ± 0.10 a 5.44 ± 0.05 a

Serine 5.63 ± 0.14 a 5.62 ± 0.01 a 5.80 ± 0.02 a 5.71 ± 0.08 a

Glycine 7.34 ± 0.37 a 6.88 ± 0.01 ab 6.71 ± 0.03 a 6.73 ± 0.03 a

Aspartic acid 9.89 ± 0.15 a 10.24 ± 0.01 b 10.86 ± 0.00 c 10.79 ± 0.08 c

Glutamic acid 14.32 ± 0.21 a 14.49 ± 0.02 a 15.92 ± 0.02 a 14.50 ± 1.44 a

Threonine 5.81 ± 0.54 b 5.13 ± 0.01 ab 4.98 ± 0.02 a 5.23 ± 0.27 ab

Alanine 5.57 ± 0.27 a 5.82 ± 0.03 a 5.73 ± 0.01 a 5.86 ± 0.12 a

Proline 4.85 ± 0.16 a 4.77 ± 0.01 a 4.66 ± 0.02 a 4.70 ± 0.05 a

Lysine 7.06 ± 0.46 a 8.14 ± 0.01 b 7.95 ± 0.01 b 8.32 ± 0.38 b

Methionine 1.29 ± 0.14 a 1.38 ± 0.01 a 1.28 ± 0.02 a 1.23 ± 0.04 a

Tyrosine 3.91 ± 0.19 b 3.62 ± 0.01 a 3.64 ± 0.01 a 3.62 ± 0.01 a

Valine 4.93 ± 0.19 ab 5.12 ± 0.01 b 4.64 ± 0.01 a 4.91 ± 0.26 ab

Cysteine + Cystine 1.54 ± 0.087 a 1.44 ± 0.01 a 1.39 ± 0.01 a 1.46 ± 0.09 a

Isoleucine 3.44 ± 0.29 ab 3.78 ± 0.01 b 3.26 ± 0.01 a 3.54 ± 0.28 ab

Leucine 7.88 ± 0.11 ab 7.97 ± 0.00 b 7.54 ± 0.01 a 7.81 ± 0.27 ab

Phenylalanine 5.09 ± 0.12 b 4.91 ± 0.01 ab 4.73 ± 0.01 a 4.85 ± 0.13 a

Tryptophan 2.19 ± 0.14 c 1.54 ± 0.01 a 1.82 ± 0.01 b 1.70 ± 0.11 ab

Data are reported as mean ± SD (n = 3). a, b, c Different letters show that there is a significant difference (p ≤ 0.05),
according to one-way ANOVA and Tukey’s HSD test.
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Most of the changes in the AA content of the leaves were insignificant (p > 0.05) after
the freeze-drying and LN treatments. However, there were some significant increases in
the content of some important AAs, including aspartic acid, lysine, valine, and isoleucine.
The increase in the content of lysine after freeze-drying is a positive result as it is an
essential AA, and its recommended intake ranges from 30 to 64 mg/kg body weight/day in
different age groups [36]. Moreover, valine and isoleucine have positive effects on muscle
development. Aspartic acid is also vital in synthesizing arginine, lysine, methionine,
threonine, and isoleucine [24]. Since SBLs are rich sources of these AAs, they could be used
as food supplements.

2.3. Fatty Acid Profile of SBLs

FAs are regarded as one of the most crucial nutrients for humans, and they are
categorized according to the presence or absence of double bonds as saturated (SFA),
monounsaturated (MUSFA), and polyunsaturated fatty acids (PUSFA) [44].

Table 3 summarizes the FA profile of fresh and treated SBLs. The results show some
significant increases in short-chain and medium-chain SFAs in the freeze-dried and LN-
treated samples. Although SFAs are correlated to some metabolic diseases, it is also widely
acknowledged that their metabolic impacts differ according to their chain length. For
instance, while long-chain SFAs are known to cause metabolic diseases, medium-chain SFAs
have beneficial effects in promoting metabolism [45]. Many FAs, such as lauric, linoleic, and
myristic acids are known to have antibacterial and antifungal properties [44]. Therefore,
it could be claimed that the health benefits of freeze-dried SBLs are greater than those of
fresh SBLs as the short-chain SFAs are generally used for their antibacterial, antiviral, and
antioxidant properties, as human immunity enhancers and digestion improvers, and for
other health-benefiting functions [46].

Freeze-drying increased the essential FAs (i.e., linoleic acid and α-linolenic acid)
significantly (p ≤ 0.05). As anticipated, the results show that SBLs are a rich source of
omega-3 and omega-6 which are the principal constituents of the membrane glycerolipids
and the photosynthetic tissues of leaves [47]. Similar to the present paper, it was also
reported that dried red beet leaves contain critical polyunsaturated FAs, such as linoleic
acid and α-linolenic acid [10]. Similarly, Shukla et al. (2018) reported that Cassia tora leaves
possess a high quantity of essential FAs [44]. Consuming foods rich in α-linolenic acid
can prevent disorders such as prostate cancer, rheumatoid arthritis, colon cancer, coronary
diseases, and brain cancer [10]. Moreover, co-supplementing omega-3 FAs and vitamin
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E can reduce the very low-density lipoprotein (VLDL) [48]. Thus, SBLs could have many
anti-disease effects on consumers.

Table 3. Profile of FAs in the fresh and freeze-dried leaves.

Fatty Acids (% of Total FA Content) FL FD NFD FDN

SFAs 2

Caproic acid (6:0) 0.37 ± 0.06 bc ND 1 0.50 ± 0.10 c 0.24 ± 0.03 b

Enanthic acid (7:0) 0.18 ± 0.03 b ND ND 0.01 ± 0.01 a

Caprylic acid (8:0) 0.09 ± 0.02 a 0.34 ± 0.06 b 2.72 ± 0.02 c 0.32 ± 0.03 b

Pelargonic acid (9:0) 0.08 ± 0.02 b ND ND 0.01 ± 0.01 a

Capric acid (10:0) 0.07 ± 0.04 a 0.25 ± 0.04 b 1.88 ± 0.04 c 0.23 ± 0.02 b

Lauric acid (12:0) 0.11 ± 0.03 a 0.29 ± 0.03 b 1.41 ± 0.02 c 0.38 ± 0.11 b

Myristic acid (14:0) 0.68 ± 0.03 b 0.53 ± 0.05 a 0.74 ± 0.06 b 0.54 ± 0.04 a

Pentadecanoic acid (15:0) 0.34 ± 0.05 a 0.24 ± 0.03 a 0.27 ± 0.02 a 0.27 ± 0.06 a

Palmitic acid (16:0) 27.87 ± 0.33 c 15.97 ± 0.35 a 15.83 ± 0.14 a 18.40 ± 0.50 b

14-Methylhexadecanoic acid (17:0 anteiso) 0.03 ± 0.01 a 0.03 ± 0.02 a ND 0.01 ± 0.01 a

Margaric acid (17:0) 1.60 ± 0.07 c 1.45 ± 0.04 b 1.41 ± 0.02 b 1.17 ± 0.05 a

16-Methylheptadecanoic acid (18:0 iso) 0.02 ± 0.01 a 0.04 ± 0.02 a 0.02 ± 0.01 a 0.03 ± 0.02 a

Stearic acid (18:0) 3.05 ± 0.09 c 1.14 ± 0.09 b 0.91 ± 0.04 a 1.20 ± 0.02 b

Arachidic acid (20:0) 0.24 ± 0.03 a 0.31 ± 0.16 a 0.23 ± 0.03 a 0.27 ± 0.09 a

Heneicosylic acid (21:0) 0.14 ± 0.02 b 0.12 ± 0.03 b 0.04 ± 0.01 a 0.12 ± 0.03 b

Behenic acid (22:0) 0.69 ± 0.02 a 0.61 ± 0.04 a 0.57 ± 0.02 a 0.66 ± 0.10 a

Tricosanoic acid (23:0) 0.34 ± 0.03 a 0.23 ± 0.03 a 0.23 ± 0.03 a 0.30 ± 0.07 a

Lignoceric acid (24:0) 1.10 ± 0.10 a 1.06 ± 0.02 a 1.05 ± 0.01 a 1.28 ± 0.27 a

MUSFAs 3

Myristoleic acid (14:1 cis-9) 0.04 ± 0.01 b ND ND 0.01 ± 0.01 a

trans-10-Pentadecenoic acid (15:1 trans-10) 0.00 ± 0.01 a ND ND 0.02 ± 0.03 a

trans-6-Hexadecenoic acid (16:1 trans-6) 0.10 ± 0.03 b 0.02 ± 0.00 a ND 0.05 ± 0.04 ab

cis-7-Hexadecenoic acid (16:1 cis-7) 1.58 ± 0.08 b 0.86 ± 0.04 a 0.91 ± 0.02 a 0.68 ± 0.16 a

Palmitoleic acid (16:1 cis-9) 3.47 ± 0.22 d 1.09 ± 0.04 b 0.53 ± 0.03 a 2.35 ± 0.20 c

cis-11-Hexadecenoic acid (16:1 cis-11) 0.01 ± 0.02 a ND ND ND
cis-9-Heptadecenoic acid (17:1 cis-9) 1.29 ± 0.03 b 0.85 ± 0.02 a 0.94 ± 0.04 a 0.85 ± 0.15 a

Elaidic acid (18:1 trans-9) 0.10 ± 0.02 b ND ND 0.01 ± 0.02 a

Oleic acid (18:1 cis-9) 25.34 ± 0.39 c 8.77 ± 0.23 a 6.60 ± 0.28 a 14.60 ± 2.96 b

Vaccenic acid (18:1 cis-11) 1.69 ± 0.05 c 0.67 ± 0.06 b 0.38 ± 0.08 a 0.69 ± 0.04 b

cis-10-Nonadecenoic acid (19:1 cis-10) 0.17 ± 0.03 a 0.12 ± 0.01 a 0.14 ± 0.01 a 0.14 ± 0.03 a

Gondoic acid (20:1 cis-11) 0.28 ± 0.03 b 0.19 ± 0.01 a 0.20 ± 0.02 a 0.28 ± 0.02 b

Gerucic acid (22:1 cis-13) 0.27 ± 0.02 b 0.03 ± 0.02 a ND 0.06 ± 0.04 a

Nervonic acid (24:1 cis-15) 0.00 ± 0.01 a ND ND 0.02 ± 0.03 a

PUSFAs 4

cis, cis-6,9-Hexadecadienoic acid (16:2 cis, cis-6,9) 0.02 ± 0.01 a 0.10 ± 0.02 bc 0.12 ± 0.02 c 0.06 ± 0.03 ab

All cis-7,10,13-Hexadecatrienoic acid (16:3 all cis-7,10,13) 0.32 ± 0.04 a 1.31 ± 0.02 b 1.23 ± 0.05 b 0.79 ± 0.55 ab

trans, cis-8,13-Octadecadienoic acid (18:2 trans, cis-8,13) 0.07 ± 0.03 b 0.02 ± 0.02 a ND 0.02 ± 0.01 a

Linoleic acid (18:2 cis, cis-9,12) 15.15 ± 0.42 a 19.30 ± 0.06 b 22.86 ± 0.04 c 19.82 ± 1.43 b

γ-Linolenic (18:3 all cis-6,9,12) 0.10 ± 0.02 a 0.19 ± 0.04 b 0.13 ± 0.02 ab 0.11 ± 0.04 b

Dihomo-γ-Linolenic acid (DGLA) (18:3 all cis-8,11,14) 0.01 ± 0.01 a 0.06 ± 0.02 b 0.04 ± 0.01 ab 0.02 ± 0.02 a

α-Linolenic acid (18:3 all cis-9,12,15) 12.70 ± 0.20 a 43.65 ± 0.15 d 37.97 ± 0.04 c 33.70 ± 1.90 b

Stearidonic acid (18:4 all cis-6,9,12,15) 0.03 ± 0.01 a 0.02 ± 0.01 a 0.02 ± 0.01 a 0.02 ± 0.01 a

cis, cis-11,14-Eicosadienoic acid (20:2 cis, cis-11,14) 0.03 ± 0.01 a 0.03 ± 0.01 a 0.04 ± 0.00 a 0.10 ± 0.08 a

All cis-8,11,14-Eicosatrienoic acid (20:3 all cis-8,11,14) 0.03 ± 0.01 b ND ND ND
All cis-11,14,17-eicosatrienoic acid (20:3 all cis-11,14,17) 0.02 ± 0.01 a 0.04 ± 0.02 ab 0.04 ± 0.01 ab 0.05 ± 0.00 b

Arachidonic acid (20:4 all cis 5,8,11,14) 0.13 ± 0.02 b 0.04 ± 0.00 a 0.03 ± 0.01 a 0.06 ± 0.02 a

Cetoleic acid (22:2 cis-11) 0.01 ± 0.01 a 0.01 ± 0.00 a 0.02 ± 0.00 a 0.03 ± 0.02 a

Osbond acid (22:5 all cis-4,7,10,13,16) ND 0.01 ± 0.00 b ND 0.02 ± 0.00 c

Cervonic acid (22:6 all cis-4,7,10,13,16,19) 0.02 ± 0.01 b ND ND ND

Data are reported as mean± SD (n = 3). a, b, c, d Different letters show that there is a significant difference (p≤ 0.05),
according to one-way ANOVA and Tukey’s HSD test; 1 Not detected; 2 Saturated fatty acids; 3 Monounsaturated
fatty acids; 4 Polyunsaturated fatty acids.

However, arachidonic acid decreased significantly (p ≤ 0.05) after the freeze-drying.
The change in the unsaturated FAs results from the attachment of oxygen atoms, the
disruption of fatty acid molecules at the site of double bonds, the breakdown of these
unstable intermediates, and the formation of oxygen derivatives of organic compounds [49].
In addition, the results show that SBLs are rich in oleic acid content. MUSFAs such as
oleic and palmitoleic fatty acids can reduce the level of low-density lipoproteins (LDL) and
maintain the level of high-density lipoproteins (HDL) constant, which is vital to controlling
blood levels of cholesterol in the plasma [50].

2.4. Polyphenol Oxidase Activity of SBLs

The enzymatic browning of plant foods results from mechanical and physical stresses
happening in the processing and storage of food products. This reaction is mainly driven by
PPO, an intracellular o-diphenol oxidase [51]. PPO is a copper-containing oxidoreductase
enzyme that uses polyphenols as a substrate in the enzymatic browning reaction [5]. This
reaction occurs when the cell structure ruptures, and the subsequent interaction between
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PPO and polyphenols causes a color change and a decrease in antioxidant activity, leading
to the deterioration of the nutritional properties of food matrices. In addition, the reaction
between PPO and polyphenols gives rise to their oxidation, resulting in a decrease in TPC,
which negatively impacts the extraction process of polyphenols from food by-products.
Therefore, finding a suitable method for reducing the disadvantages derived from PPO
is crucial [6]. Partial or full cessation of PPO activity could be achieved by removing the
enzyme substrates (e.g., polyphenols), controlling the pH of the medium, adding sodium
sulfite and ascorbic acid, or thermal inactivation [52]. Some studies have reported that
freeze-drying can deactivate the PPO enzyme [53].

Figure 3a indicates the specific activity of PPO. Freeze-drying significantly decreased
(p≤ 0.05) the specific activity of PPO in SBLs, causing a reduced enzymatic browning in the
PPO extract of freeze-dried SBLs, as shown in Figure 3b. This inactivation is consistent with
the results obtained by Valadez-Carmona et al. (2017) [53]. They reported that freeze-drying
reduced the activity of PPO by 52% in cacao pod husks. The reduction in PPO activity
could result from an increase in the H+ concentration during freezing, which can change
the pH value by three units, reducing the stability of PPO [30]. The reduction in PPO
content may positively affect the extraction of polyphenols from food by-products since the
reaction between PPO and polyphenols gives rise to their oxidation resulting in a decrease
in TPC [6]. Therefore, the decrease in PPO obtained by the freeze-drying method can
improve the extraction efficiency of polyphenols. The changes among the freeze-dried SBLs
were insignificant, although there was a minuscule increase in the PPO activity of samples
treated with LN. PPO in plant cells exists in both free and bound states. The free PPO
mostly exists in the cell serum, and the bound PPO is mainly present in chloroplasts and
vacuoles. These two states of PPO can be changed by freezing, as it can partially inactivate
the free state enzymes, while part of the bound state enzymes in the cell wall and other
organelles can be released and converted into the free state due to freezing [28].
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Figure 3. (a) Specific activity of polyphenol oxidase (PPO) in different SBLs. (b) Color change of PPO
extracts after 180 s in the presence of catechol. Data are presented as mean ± SD (n = 3). Different
letters show that there is a significant difference (p≤ 0.05), according to one-way ANOVA and Tukey’s
Honestly Significant Difference (HSD) tests.

2.5. Total Phenolic Content (TPC) and Antioxidant Activity of Extracts

In many studies, plant leaves are considered a potential source of bioactive com-
pounds providing health benefits to consumers [3,54–56]. Polyphenols are one of these
biologically active substances possessing antibacterial, antifungal, anti-inflammatory, and
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anti-cancer properties [5]. SBLs are rich in polyphenols with high antioxidant activity [57].
De Castro et al. (2019) reported that freeze-dried red beet leaves are a potential dietary food
product that can prevent obesity [58]. Lorizola et al. (2018) investigated the impact of pheno-
lic compounds of SBLs on oxidative liver damage in mice fed with a high-fat diet, and they
reported that dried SBLs decreased the adverse impacts of this diet on lipid metabolism,
reduced fasting blood glucose levels, lowered cholesterol levels, and decreased glutathione
peroxidase and glutathione reductase activities in mice [59]. Moreover, consuming SBLs
could be beneficial due to their high polyphenol content because polyphenols can inhibit
acetylcholinesterase, which is an enzyme linked to the development of Alzheimer’s disease.
Indeed, acetylcholinesterase is involved in the metabolic hydrolysis of acetylcholine at
cholinergic synapses in the central and peripheral nervous system and deteriorates the level
of the neurotransmitter acetylcholine. Polyphenols block the action of acetylcholinesterase
and thus enhance the brain’s level of acetylcholine [60].

Figure 4 illustrates the TPC of the phenolic extracts obtained from the SBLs using
the CE and UAE (i.e., ethanolic and aqueous) methods. The results from the two-way
ANOVA showed that the extraction method and sample preparation method both have
significant effects (p ≤ 0.05) on the results. Although the aqueous UAE of lyophilized SBLs
ground without LN (FD) had the highest TPC (69.44 ± 0.15 mg gallic acid equivalent/g
dry matter (mg GAE/g DM)), it had the lowest TPC (15.12 ± 0.19 mg GAE/g DM) when
extracted using ethanolic CE. These results show that the extraction conditions, including
the sample preparation method and extracting solvent type, are important for achieving
the optimal results. It is reported that the content of polyphenols in food by-products may
be affected by the freeze-drying technique [61]. Tan et al. (2020) showed that freeze-drying
is the most optimal drying method for maintaining total polyphenols and their antioxidant
activities [62]. Moreover, Esteban-Lustres et al. (2022), comparing the effect of freeze-drying
and conventional drying treatments before UAE, reported that the freeze-drying procedure
improves the extraction yield of polyphenols from food waste [13]. On the other hand,
some research has reported the negative effect of this process on polyphenols [19,20].
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Figure 4. Total phenolic content (TPC) of phenolic extracts obtained from SBLs. Data are presented as
mean ± SD (n = 3). Different capital letters indicate significant differences in the extraction method,
and different small letters show significant differences in the sample preparation method (p ≤ 0.05),
according to two-way ANOVA and Tukey’s HSD test.

Sakakibara et al. (2003) pretreated fresh vegetables and fruits using nitrogen before
freeze-drying, and they reported that these samples had a good phenolic recovery efficiency
ranging from 68 to 92% [63]. The reason for the higher TPC in LN-pretreated samples could
be related to the higher freezing rate of these samples compared to the other samples frozen
in the refrigerator. Rapid freezing of food matrices using LN has the advantages of a high
heat transfer coefficient, fast freezing rate, short freezing time, and the formation of small
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ice crystals, which can result in better preservation of nutrients [28,64]. However, this was
true only when we used ethanol as the extracting solvent.

The TPCs of all freeze-dried samples in the present paper are noticeably higher than
the results obtained by Duck et al. (2022) when they extracted polyphenols using UAE
from SBLs. The highest TPC reported by them was 17.89 ± 0.38 mg GAE/g DM, which
was extracted from dried SBLs with a 2:100 solid:liquid ratio (w/v), 100% amplitude, and
9 min extraction time [8]. Therefore, it could be confirmed that the method proposed in
the present paper is a reliable procedure with good efficiency. Moreover, Abdo et al. (2020)
reported that ethanolic extracts of beetroot leaves recovered instantly had a TPC of 8.54 mg
GAE/g DM [42]. The lower yield of TPC in their work could be related to the extraction
method they used to recover polyphenols.

Arjeh et al. (2022) extracted polyphenols from the flesh and peel of freeze-dried
sugar beet root using the UAE method and methanol and ethanol as solvents, and the
highest TPC yielded was 19.70 ± 1.10 mg GAE/g DM in the methanolic extract of its peel,
which is much lower than the TPC obtained by the aqueous UAE of FD in the present
paper [65]. Goyeneche et al. (2020) recovered polyphenols from beetroot leaves using
supercritical CO2 extraction, and the best result obtained was a TPC of 3.37 mg GAE/g DM
and DPPH of 1.45 mg Trolox equivalent/g dry matter (mg TE/g DM) [56]. Bengardino et al.
(2019) optimized the recovery of polyphenols from beet leaves and they reported a TPC
of 31.70 mg GAE/g DM [55]. Therefore, the SBLs have more phenolic content than their
root. Ebrahimi et al. (2022) reported that the phenolic extracts of SBLs are rich in pyrogallol,
4-hydroxybenzoic acid, and syringic acid [57].

Figure 5 shows the antioxidant activity of the phenolic extracts of the SBLs. The
antioxidant activity is highly connected to the quantity of polyphenols. However, it should
be noted that the type and quality of phenolic compounds are more responsible for the
amount of antioxidant activity than their quantity [5]. According to the results, UAE
increased the TPC and antioxidant activities in almost all the samples. The reason for this
could be the ability of the UAE to increase the penetration of the solvent into the solid
matrix and facilitate the mass transfer rate of phenolic compounds from the food matrix
to the solvent [66]. Moreover, UAE could cause a decrease in the PPO content of food
matrices by changing the environment of the enzyme, disrupting Vander Wall binding and
hydrogen bonding in the enzyme, which results in loss of enzyme activity [67]. This can
increase the extractability of polyphenols, which results in higher antioxidant activity.

Over the last few decades, the industrial community has had a massive push to
utilize sustainable processing for the production of food [68]. According to the results, the
aqueous UAE of the SBLs pretreated only with freeze-drying had the most optimal TPC
and antioxidant activity. Thus, it could be proposed that extracting polyphenols from the
freeze-dried sample using water, as a green solvent, and UAE, as a green extraction method,
is an effective process that can increase the efficiency of the valorization of food by-products.
UAE enhances the efficiency of the extraction process by having a shorter process time,
better penetration, lower solvent consumption, and higher extraction yield. Therefore, UAE
could be considered a sustainable alternative to CE methods [66,69]. In addition, water
is a suitable extracting solvent broadly applied for the extraction of biologically active
compounds [70]. Kumar et al. (2020) highlighted that when cold water was used to extract
polyphenols from the lyophilized leaves of Talinum triangulare L., the obtained TPC was
higher than that of other solvents [71].
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Figure 5. DPPH (a) and FRAP (b) of phenolic extracts obtained from SBLs. Data are presented as
mean ± SD (n = 3). Different capital letters indicate significant difference in the extraction method,
and different small letters indicate significant difference in the sample preparation method (p ≤ 0.05),
according to two-way ANOVA and Tukey’s HSD tests.

3. Materials and Methods
3.1. Materials and Chemicals

The SBLs were of a sugar beet plant (Beta Vulgaris L., var. SMART DJERBA-KWS) aged
10 months (March–January 2021), cultivated at a local farm in Padova, Italy. The area and
weight of the SBLs were about 20–30 cm2 and 2–3.5 g, respectively. They were transported
to the laboratory in thermal boxes.

All the chemicals and solvents used in this work were of analytical grade. Sodium
hydroxide, citric acid, sodium citrate tribasic dehydrate, sulfuric acid, hydrochloric acid,
EtOH, MeOH, polyvinylpolypyrrolidone, triton X-100, 3,3′-dithiodipropionic acid, bar-
ium hydroxide, sodium acetate, potassium carbonate, sodium methoxide, acetonitrile,
sodium carbonate, Folin–Ciocalteu reagent, gallic acid, Trolox, iron(III) chloride, 2,4,6-Tri(2-
pyridyl)-s-triazine (TPTZ), and 2,2-diphenyil-1- picrylhydrazyl (DPPH) were bought from
Sigma (St. Louis, MO, USA). AccQTag Ultra Derivatization Kit, and 6-aminoquinolyl-N-
hydroxysuccinimidyl carbamate (AQC) were purchased from Waters (Milford, CT, USA).
The water utilized in all the analyzes was deionized and distilled.
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3.2. Sample Preparation

In preparing samples, all the steps were performed with high care to prevent any
physical damage to the leaves. First, the SBLs were washed with distilled water to remove
the soil, and their stalks were separated. Next, the cleaned SBLs were treated using four
different methods, as shown in Figure 1. Mortar and pestle were used to grind the SBLs
while frozen using LN before/after the freeze-drying process. Freeze-drying was performed
under the pressure of 28 mbar at −50 ◦C for four days using a freeze dryer (Modulyo,
Edwards, West Sussex, UK). All samples were vacuum-packed and stored at −18 ◦C until
the following analysis.

3.3. Extraction of PPO from SBLs

The PPO was extracted in triplicate using the method described by Tinello et al. (2018)
with some modifications [72]. Briefly, 1 g of leaves was added to 20 mL of 0.1 M sodium
citrate buffer at pH 6.0 containing 0.10 g insoluble Polyvinylpolypyrrolidone (PVPP) and
500 µL Triton X-100. Then, the mixture was ultraturraxed (T-25 high-speed homogenizer,
IKA-Werke GmbH and Co. KG, Staufen, Germany) at 1000× g in an ice bath for 2 min
twice, with a 1-min interval in the middle. Then, the enzymatic extracts were centrifuged
at 4000× g for 10 min at 4 ◦C and filtered through Whatman No. 1 filter papers and
0.45-µm syringe filter membranes. Finally, the extracts were refrigerated at −18 ◦C until
the following analyses.

3.4. UAE and CE of Polyphenols from SBLs

The extraction of polyphenols was performed according to the methods reported
by Ebrahimi et al. (2022) with some minor modifications [57]. CE was carried out by
macerating the leaves in EtOH:water 14:6 (v/v) for 24 h at 25 ◦C. UAE was performed using
an ultrasound apparatus (HD 2200.2, Bandelin, Berlin, Germany) connected to a 6 mm
titanium probe (KE 76, Bandelin, Berlin, Germany) which was immersed for 2 m in the
mixture. Figure 6 shows the assembly of the used UAE system. The UAE conditions were
as follows: 200 W output power, 25% amplitude, 20 kHz frequency, and 15 min extraction
time. The extraction was performed in two consecutive cycles, and the combined extracts
were used for further analysis. During the UAE, the extracting cell was placed in a beaker
containing ice to prevent increasing the temperature. Distilled water/EtOH:water 14:6
(v/v) was used as the extracting solvent for UAE. For both UAE and CE methods, the
solid:liquid ratio was 1:20 (w/v), and after the extraction processes, the obtained mixtures
were centrifuged at 4000× g and 4 ◦C for 10 min. The extracts were filtered with Whatman
No. 1 filters and stored at −18 ◦C until the analytical measurements. The extraction
processes were performed in triplicate.

Molecules 2022, 27, x FOR PEER REVIEW  14  of  21 
 

 

3.4. UAE and CE of Polyphenols from SBLs 

The extraction of polyphenols was performed according to the methods reported by 

Ebrahimi et al. (2022) with some minor modifications [57]. CE was carried out by macer‐

ating the leaves in EtOH:water 14:6 (v/v) for 24 h at 25 °C. UAE was performed using an 

ultrasound apparatus (HD 2200.2, Bandelin, Berlin, Germany) connected to a 6 mm tita‐

nium probe (KE 76, Bandelin, Berlin, Germany) which was immersed for 2 m in the mix‐

ture. Figure 6 shows the assembly of the used UAE system. The UAE conditions were as 

follows: 200 W output power, 25% amplitude, 20 kHz frequency, and 15 min extraction 

time. The extraction was performed in two consecutive cycles, and the combined extracts 

were used for further analysis. During the UAE, the extracting cell was placed in a beaker 

containing  ice  to prevent  increasing  the  temperature. Distilled water/EtOH:water  14:6 

(v/v) was used as  the extracting solvent  for UAE. For both UAE and CE methods,  the 

solid:liquid ratio was 1:20 (w/v), and after the extraction processes, the obtained mixtures 

were centrifuged at 4000× g and 4 °C for 10 min. The extracts were filtered with Whatman 

No. 1 filters and stored at −18 °C until the analytical measurements. The extraction pro‐

cesses were performed in triplicate. 

 

Figure 6. Schematic of UAE assembly with ultrasound probe system. 

3.5. Analysis of Chemical Properties and PPO Activity of the Leaves 

3.5.1. Proximate Composition and Water Activity of the Leaves 

Water  activity  was measured  using  a  LabMaster.aw  instrument  (Novasina  AG, 

Lachen, Switzerland) at 25 °C. The moisture, crude protein, crude fiber, and ash of SBLs 

were determined by the method described by Meng et al. (2022) [33]. The moisture content 

was determined using the oven‐drying method at 105 °C for 24 h. Since the food matrices 

are concentrated after freeze‐drying, the dry matter was calculated to report the results 

based on DM. Ash content was measured by weighing the samples before and after burn‐

ing them in a muffle furnace at 550 °C for 6 h. The crude protein content was evaluated 

using the Kjeldahl method, and the results were multiplied by the nitrogen conversion 

factor of 6.25. The crude fiber was evaluated by boiling the leaves in 0.26 M sulfuric acid 

for 30 min. The obtained insoluble residue was filtered and washed, and the filtrate was 

boiled in 0.31 M sodium hydroxide and was filtered and rewashed. The final filtrate was 

dried at 130 °C  for 120 min. The weight  loss was measured at 350 °C. The crude  lipid 

content was determined according to the Soxhlet technique using a Soxtec™ 2046 Extrac‐

tion System (FOSS, Hillerød, Denmark). 

Figure 6. Schematic of UAE assembly with ultrasound probe system.



Molecules 2022, 27, 8110 13 of 19

3.5. Analysis of Chemical Properties and PPO Activity of the Leaves
3.5.1. Proximate Composition and Water Activity of the Leaves

Water activity was measured using a LabMaster.aw instrument (Novasina AG, Lachen,
Switzerland) at 25 ◦C. The moisture, crude protein, crude fiber, and ash of SBLs were
determined by the method described by Meng et al. (2022) [33]. The moisture content was
determined using the oven-drying method at 105 ◦C for 24 h. Since the food matrices are
concentrated after freeze-drying, the dry matter was calculated to report the results based
on DM. Ash content was measured by weighing the samples before and after burning
them in a muffle furnace at 550 ◦C for 6 h. The crude protein content was evaluated using
the Kjeldahl method, and the results were multiplied by the nitrogen conversion factor
of 6.25. The crude fiber was evaluated by boiling the leaves in 0.26 M sulfuric acid for
30 min. The obtained insoluble residue was filtered and washed, and the filtrate was boiled
in 0.31 M sodium hydroxide and was filtered and rewashed. The final filtrate was dried at
130 ◦C for 120 min. The weight loss was measured at 350 ◦C. The crude lipid content was
determined according to the Soxhlet technique using a Soxtec™ 2046 Extraction System
(FOSS, Hillerød, Denmark).

3.5.2. Determination of AA Profile

An Agilent 1260 Infinity HPLC (Agilent Technologies, Santa Clara, CA, USA), which
was equipped with a reversed-phase column C18 (CORTECS C18, 2.7 µm, 2.1 × 150 mm)
kept at 45 ◦C and a diode array detector (Agilent 1260 Series, DAD VL+), was used for
the separation and quantification of amino acids in SBLs. AAs were analyzed after acid
hydrolysis and pre-column derivatization with AQC, separated by RP-HPLC and analyzed
by UV detection according to the method described by Bosch et al. (2006) [73]. An AccQTag
Ultra Derivatization Kit was used for HPLC standards. Briefly, for the determination of
alanine, arginine, aspartic acid, glutamic acid, glycine, histidine, isoleucine, leucine, lysine,
methionine, phenylalanine, proline, serine, threonine, tyrosine, and valine, the protein
of the sample was hydrolyzed with hydrochloride acid 6 M at 105 ◦C for 24 h. Cys was
determined as the sum of cysteine and cystine after the reaction with 3,3′-dithiodipropionic
acid, producing a mixed disulfide, which then underwent acid hydrolysis accordingly [74].
After hydrolysis, the samples were neutralized with sodium hydroxide 8 M, adjusted
to volume, and filtered with 0.45 µm filters. The derivatization step was conducted by
adding 70 µL of AccQ-Tag Ultra borate buffer and 10 µL of the filtered sample to a vial.
Then, the solution was mixed by means of a vortex for several seconds. Next, 20 µL of the
derivatization agent (dissolved in acetonitrile) was added, and the mixture was heated
for 10 min at 55 ◦C. The sample was further diluted with 900 µL borate buffer and 5 µL
was injected.

Tryptophan (Try) was determined following the method adapted from CD 2000/45/EC [75].
First, 100 mg of the sample was placed in a Teflon hydrolysis tube, then 8 g barium hydroxide
and 16 mL water were added, and the tubes were incubated at 105 ◦C for 24 h. Hydrolysates
were cooled down, neutralized to pH 7 using 6 N HCl, and diluted to 100 mL with 1 M sodium
borate buffer. Aliquots of these solutions were filtered through a 0.22 µm syringe filter. A total
of 20 µL of the sample was injected into the column (Xselect HSS T3, 5 µm; 4.6 × 250 mm),
and the separation was performed by an isocratic elution system consisting of 25 mM sodium
acetate/acetonitrile (91:9) delivered at 0.9 mL/min and detected with a DAD at 280 nm.

3.5.3. Determination of FA Profile

The content of FAs in SBLs was analyzed using the two-dimensional gas chromatogra-
phy technique (GC × GC), according to the research conducted by Ebrahimi et al. (2022)
with some modifications [76]. For doing so, a gas chromatograph (GC) (Agilent 7890A,
Agilent Technologies, Milan, Italy) equipped with an Agilent 7683 autosampler, a flame
ionization detector (FID), and an Agilent CFT modulator was employed.

The sample preparation for FA analysis was carried out by adding 40 mg of the SBLs
to a glass test tube containing 1 mL of sodium methoxide in MeOH (0.5 M). The resulting



Molecules 2022, 27, 8110 14 of 19

mixture was incubated at 50 ◦C for 15 min and cooled for 10 min at room temperature.
After adding 1.5 mL MeOH containing 5% of HCl, the mixture was incubated at 80 ◦C for
15 min and cooled at room temperature for 10 min. Then, 2 mL hexane and 2 mL potassium
carbonate 6% were added to the cooled mixture. The obtained solution was vortexed for
30 s and centrifuged at 4000× g at 4 ◦C for 5 min. The supernatant containing fatty acid
methyl ester (FAME) was injected into the GC.

The GC temperature programming was as follows: initial oven temperature of 40 ◦C
(2 min hold time), heating rate of 50 ◦C/min up to 170 ◦C (25 min hold time), temperature
increase by 2 ◦C/min up to 250 ◦C (14 min hold time), injection port temperature of
270 ◦C, and a detector port temperature of 300 ◦C. The injected volume was 1 µL in a
split mode (160:1). Hydrogen was used as the carrier gas. As the primary column, a
Supelco SP-2560 (75 m × 0.18 mm × 0.14 µm film thickness) with a flow rate ranging
from 0.25 to 0.28 mL/min at a rate of 0.0005 mL/min was used. An Agilent J&W HP-5 ms
(3.8 m × 0.25 mm× 0.25 µm film thickness) with a flow rate ranging from 20 to 28 mL/min
at a rate of 0.12 mL/min, was employed as the second column. The valves were set to a
modulation delay of 1 min, a modulation period of 3.2 s, and a sampling time of 3.08 s. One
microliter sample was injected in the pulsed split mode at a pressure of 25 psi for 18 s and
a split ratio of 120:1. The split/splitless inlet was performed at 270 ◦C.

The resulting two-dimensional chromatograms were processed with comprehensive
GC × GC software (GC Image R 2.2 GC × GC: Zoex Corp., Houston, TX, USA). The
individual FAs were reported as the % of total fatty acids.

3.5.4. Determination of Polyphenol Oxidase Activity

PPO activity was spectrophotometrically measured in the enzymatic extracts. The
enzyme activity was detected according to the method described by Zocca et al. (2011)
with some modifications [77]. The absorbance was recorded at 400 nm and 25 ◦C using a
spectrophotometer (Varian Carry 50 Bio UV/Vis, Agilent Technologies, Santa Clara, CA,
USA). The reaction sample included 1 mL of 10 mM catechol in sodium citrate buffer (0.1 M,
pH = 6) and 10 µL of PPO extract. The blank sample contained 10 µL of PPO extract and
1 mL sodium citrate buffer (0.1 M, pH = 6) without the substrate. The absorbance was
monitored continuously for 180 s considering the linear part of the PPO kinetic curve. For
calculating the specific activity of PPO, one unit of enzyme activity was defined as the
increase of 0.001 in absorbance per min, and the obtained value was divided by the protein
content of PPO extracts, which was measured using the method described by Bradford
(1976) [78].

3.6. Analysis of Phenolic Extracts
3.6.1. Determination of TPC

The TPC was measured using Folin–Ciocalteu colorimetric method as described by
Azuma et al. (1999) with some modifications [79]. In brief, 500 µL of the diluted extract was
added to a mixture of 1.25 mL sodium carbonate solution 7.5% and 250 µL Folin–Ciocalteu
reagent 50%. In the blank sample, 500 µL of the extracting solvent was used instead of the
extract. After keeping the final mixtures for 30 min in a dark place at room temperature,
the absorbance was recorded at 650 nm using the spectrophotometer. A standard curve of
gallic acid (y = 10.132x–0.0124, R2 = 0.996) at concentrations ranging from 0 to 0.15 mg/mL
was used to calculate and report results as mg GAE/g DM.

3.6.2. Determination of Antioxidant Activity

The antioxidant activity of extracts was analyzed using the DPPH and FRAP meth-
ods. The DPPH free radical scavenging activity of extracts was evaluated by the method
described by Massini et al. (2016) with some modifications [80]. Briefly, 200 µL of diluted
extracts was added to 1.8 mL of a 0.1 mM DPPH˙ solution in EtOH 95%. For the blank
sample, 200 µL of the extracting solvent was added instead of the extract. Then, the mix-
tures were kept at room temperature for 30 min, and the decrease in absorbance was read
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at 517 nm in the spectrophotometer. A standard curve of Trolox (y = 0.0093x − 0.0121,
R2 = 0.999) at concentrations ranging from 0 to 0.1 mg/mL was employed for reporting the
results as mg TE/g DM.

Ferric reducing antioxidant power (FRAP) was assayed based on the method described
by Stratil et al. (2006) with some modifications [81]. The FRAP reagent was prepared by
mixing 38 mM of anhydrous sodium acetate buffer (pH 3.6), 20 mM iron (III) chloride in
Milli-Q water, and 10 mM of TPTZ in 40 mM HCl, in a ratio of 10:1:1. Then, 900 µL of
prepared FRAP reagent was added to 100 µL of diluted extract/extracting solvent (blank).
The mixture was vortexed for 1 min and incubated for 30 min at 37 ◦C. After incubation,
the absorbance was recorded at 593 nm. A standard curve of Trolox (y = 0.0165x − 0.0022,
R2 = 0.999) at concentrations ranging from 0 to 0.1 mg/mL was employed for reporting the
results as mg TE/g DM.

3.7. Statistical Analysis

All the analyzes were carried out in triplicate (n = 3) for statistical analysis, and the
results were expressed as mean ± standard. The data collected from the assays were
processed using IBM SPSS Statistics (Version 20.0, SPSS Inc, Chicago, IL, USA).

Normality and homoscedasticity were tested using the Shapiro–Wilk and Levene’s
tests, respectively. Where needed, the data were normalized by log10 transformation. A
one-way Analysis of Variance (ANOVA) was used to analyze the results of proximate
composition, water activity, AA and FA profiles, and PPO activity. Moreover, a two-
way ANOVA was employed to process the data from TPC, DPPH, and FRAP tests. The
significance level and confidence level were 0.05 and 95%, respectively. The comparisons
were made using Tukey’s Honestly Significant Difference (HSD) test. Origin Pro 2022
(Northampton, MA, USA) was used for graphing the data.

4. Conclusions

Even though the proposed method could be considered a green extraction methodol-
ogy, more research should be carried out on other food by-products to confirm its effective-
ness on all plants. The most prominent results highlighted by the present study could be
summarized as follows:

1. Combining aqueous UAE and freeze-drying techniques could be a potential tool for
extracting polyphenols more efficiently, which may result from the inactivation of
PPO by freeze-drying and the breakage of the cell membrane by UAE.

2. The freeze-drying method decreases the lipid content and increases the fiber content,
essential fatty acids, and some essential amino acids and phenolic content of SBLs,
making this by-product a potential dietary food supplement and a suitable substrate
for fermentation.

3. The combined effect of aqueous UAE and freeze-drying techniques could be a circular
economy approach enhancing the by-products’ valorization.
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