Closed normal subgroups of free pro-S-groups of finite rank

Andrea Lucchini
(Communicated by Nigel Boston)

1 Introduction

Let S be a finite simple group. A poly- S group is a finite group with all composition factors isomorphic to S. A profinite group is said to be a pro- S group if it is an inverse limit of poly- S groups. In [6] Jarden and Lubotzky determined some properties of pro- S groups and called for a systematic study of them. When S is the cyclic group of order p, the category of pro- S groups coincides with that of pro- p groups and has been intensively studied in the literature. Interesting results about pro- S groups when S is a non abelian simple group have been recently obtained by Fireman [4]. In this short note we solve an open question posed in Fireman's paper.

Let G be a pro- S group and let M be the intersection of all maximal open normal subgroups of G. It turns out that $G / M \cong S^{\alpha}$ for a suitable cardinal α, which is called the S-rank of G. In [10] Mel'nikov studied closed normal subgroups of infinitely generated free pro- S groups; in particular he proved that the free pro- S group $\hat{F}_{\mathfrak{m}}(S)$ of infinite rank \mathfrak{m} has a closed normal subgroup with S-rank \mathfrak{n} for each $\mathfrak{n} \leqslant \mathfrak{m}$. However Mel'nikov's methods are inapplicable in the finitely generated case and this led Fireman to propose the following open question.

Problem 1.1 ('Mel'nikov problem'). Does each free pro-S group of finite rank have a closed normal subgroup of S-rank n for each $n \in \mathbb{N}$?

Fireman [4, Proposition 4.3] proved that in order to solve this problem, one has to prove or disprove the following.

Conjecture 1. Given $e \geqslant 2$, for every $n \in \mathbb{N}$ there exists an e-generated poly-S group with a normal subgroup isomorphic to S^{n}.

In this paper we prove that the conjecture is true if $e \geqslant 3$ or $|S|$ is large enough.
Theorem 1.2. Let S be a finite nonabelian simple group and let $l(S)$ be the smallest index of a proper subgroup of S.
(i) For every $n \in \mathbb{N}$ there exists a 3-generated poly-S group with a normal subgroup isomorphic to S^{n}.
(ii) If $S^{l(S)}$ is 2-generated, then for every $n \in \mathbb{N}$ there exists a 2-generated poly-S group with a normal subgroup isomorphic to S^{n}.

As is well known (see for example [5]), S^{n} is 2-generated if and only if there are at least n orbits for the conjugation action of the automorphism group of S on the set of ordered pairs of elements of S that generate S. Hence $S^{l(S)}$ is 2-generated if and only if $P(S)|S| \geqslant l(S) \mid$ Out $S \mid$, where $P(S)$ denotes the probability of generating S by 2 randomly chosen elements. If $S=\operatorname{Alt}(6)$, then $P(S)=53 / 90$, so

$$
P(S)|S|=212 \geqslant l(S)|\mathrm{Out} S|=24
$$

If $S \neq \operatorname{Alt}(6)$, then $2 \mid$ Out $S \mid \leqslant l(S)\left[1\right.$, Lemma 2.7] and $l(S)^{2} \leqslant|S|[11$, Proposition 3.9], hence the condition $P(S)|S| \geqslant l(S) \mid$ Out $(S) \mid$ is satisfied whenever $P(S) \geqslant 1 / 2$. It is proved in [7] that $P(S)$ approaches 1 as $|S|$ approaches ∞, so $S^{l(S)}$ is 2-generated if $|S|$ is large enough and we have the following.

Corollary 1.3. If $|S|$ is large enough, then a free pro-S group of rank 2 has a closed normal subgroup of S-rank n for each $n \in \mathbb{N}$.

Notice that if $N \cong S^{m}$ is a minimal normal subgroup of a poly- S group, then either $m=1$ or $m \geqslant l(S)$. In particular if a 2-generated poly- S group G contains a normal subgroup N isomorphic to $S^{l(S)-1}$, then $S^{l(S)-1}$ is an epimorphic image of G and must be 2-generated. So the hypothesis " $S^{l(S)}$ is 2-generated" in Theorem 1.2 cannot be weakened too much.

2 Proof

We first recall some results useful for estimating the minimal number of generators $\mathrm{d}(G)$ of a finite group G.

Let L be a monolithic group, that is a group with a unique minimal normal subgroup N. For each positive integer k we let L^{k} be the k-fold direct power of L. The crown-based power of L of size k is the subgroup L_{k} of L^{k} defined by:

$$
L_{k}=\left\{\left(l_{1}, \ldots, l_{k}\right) \in L^{k} \mid l_{1} \equiv \cdots \equiv l_{k} \bmod N\right\}
$$

Crown-based powers arise naturally when studying finite groups that need more generators than any proper quotient. A proof of the following theorem can be found in [2].

Theorem 2.1. Let m be a natural number and let G be a finite group such that $\mathrm{d}(G / N) \leqslant m$ for every non-trivial normal subgroup N, but $\mathrm{d}(G)>m$. Then there exists a group L with a unique minimal normal subgroup N such that $G \cong L_{k}$ for some k.

Let $\phi(d, G)$ denote the number of d-bases of G. In the case where the socle N of the monolithic group L is non-abelian, a bound on $\mathrm{d}\left(L_{k}\right)$ can be obtained using the following result [2].

Proposition 2.2. Let L be a group with a unique minimal normal subgroup N such that N is non-abelian and let Γ denote the group of those automorphisms of L that act trivially on L / N. Assume $\mathrm{d}(L) \leqslant d$. Then $\mathrm{d}\left(L_{k}\right) \leqslant d$ if and only if $k \leqslant \frac{\phi(d, L)}{\phi(d, L / N) \mid \Gamma\rceil}$.

A family of monolithic groups will play an important role in our discussion. Let S be a finite non abelian simple group and let $l=l(S)$ be the smallest index of a proper subgroup of S. The group S has a transitive faithful permutation representation of degree l; the wreath product $S \imath S$ with respect to this permutation representation of S can be viewed as an imprimitive transitive permutation group of degree l^{2} and, more generally, for each positive integer k, the k-iterated wreath product $S \imath \cdots \imath S$ has a transitive faithful permutation representation of degree l^{k}. We will denote this k-iterated wreath product by $L(S, k)$. Notice that $L(S, k)$ is a monolithic group, $\operatorname{soc}(L(S, k)) \cong S^{l^{k-1}}$ and if $k>1$ then $L(S, k) / \operatorname{soc}(L(S, k)) \cong L(S, k-1)$. It follows from the classification of the finite simple groups that $\mathrm{d}(S)=2$ and the main result of [9] implies that $\mathrm{d}(L(S, k))=\mathrm{d}(L(S, k-1))=\mathrm{d}(S)=2$. The following holds.

Lemma 2.3. Let $L=L(S, k)$.
(i) If $P(S)|S| \geqslant l(S)|\operatorname{Out}(S)|$, then $\mathrm{d}\left(L_{t}\right) \leqslant 2$ for each $t \leqslant l(S)$.
(ii) $\mathrm{d}\left(L_{t}\right) \leqslant 3$ for each $t \leqslant l(S)$.

Proof. Let $l=l(S), N=\operatorname{soc} L$ and

$$
\omega=\frac{\phi(2, L)}{\phi(2, L / N)|\Gamma|}=\frac{P(L)|N|^{2}}{P(L / N)|\Gamma|}
$$

We have that $N \cong S^{n}$ with $n=l^{k-1}$.
Suppose $P(S)|S| \geqslant l(S)|\operatorname{Out}(S)|$. If $k=1$, then $L=S$ and

$$
\omega=\frac{P(S)|S|}{\mid \text { Out } S \mid} \geqslant l .
$$

Suppose $k>1$. It is not difficult to prove (see for example the proof of [3, Lemma 1]) that $|\Gamma| \leqslant n\left|S^{n}\right| \mid$ Out $S \mid$. Moreover in [12] it is proved that

$$
P(L) \geqslant P(S)\left(1-\frac{16}{5} \frac{1}{2^{l}}\right) .
$$

Hence

$$
\omega \geqslant \frac{P(L)|N|}{n \mid \text { Out } S \mid} \geqslant \frac{P(S)}{\mid \text { Out } S \mid}\left(1-\frac{16}{5} \frac{1}{2^{l}}\right) \frac{|S|^{n}}{n} \geqslant l\left(1-\frac{16}{5} \frac{1}{2^{l}}\right) \frac{|S|^{n-1}}{n} .
$$

Since $n \geqslant l \geqslant 5$ and $|S| \geqslant 60$,

$$
\left(1-\frac{16}{5} \frac{1}{2^{l}}\right) \frac{|S|^{n-1}}{n} \geqslant \frac{9 \cdot 60^{n-1}}{10 \cdot n} \geqslant 1
$$

So $\omega \geqslant l$ in all the cases. Now, if $t \leqslant l$, then $t \leqslant \omega$, hence $\mathrm{d}\left(L_{t}\right)=2$ by Proposition 2.2. This proves (1).

By [8, Lemma 1], $d\left(L_{t}\right) \leqslant 3$ if $t \leqslant|N| / n=|S|^{n} / n$. Since $|S| \geqslant 60$, we have that $|S|^{n} / n \geqslant|S| \geqslant l$, so (2) is also proved.

Proof of Theorem 1.2. Let $n \in \mathbb{N}$ and let $l=l(S)$ be the smallest index of a proper subgroup of S. We can write n in the form

$$
n=a_{0}+a_{1} l+\cdots+a_{r} l^{r}
$$

with $a_{i} \in \mathbb{N}$ and $0 \leqslant a_{i}<l$ for each $i \in\{0, \ldots, r\}$ and $a_{r} \neq 0$. Let $X=L(S, r)$. For each $i \leqslant r$, we define an action of X on the l^{i}-power $M_{i}=S^{l^{i}}$ as follows:

- $M_{0} \cong S$ is centralized by X;
- if $i \neq 0$, then $L(S, i)$ is an epimorphic image of X, so X has a transitive permutation representation of degree l^{i} and acts on the direct power $M_{i}=S^{l^{i}}$ by permuting its coordinates.

The actions defined above can be used to define a diagonal action of G on M_{i}^{n}, for each $1 \leqslant i \leqslant r$ and $n \in \mathbb{N}$, so we may consider the semidirect product

$$
G:=\left(M_{0}^{a_{0}} \times \cdots \times M_{r}^{a_{r}}\right) \rtimes X
$$

Clearly G is an S-group with a normal subgroup $M_{0}^{a_{0}} \times \cdots \times M_{r}^{a_{r}}$ which is isomorphic to S^{n}. By Theorem 2.1, there exist a monolithic group L and an integer t such that L_{t} is an epimorphic image of G and $\mathrm{d}(G)=\mathrm{d}\left(L_{t}\right)$. By the way in which G has been constructed, the monolithic group L is either an epimorphic image of X, in which case $L \cong L(S, i)$ for some $i \leqslant r$, or $L \cong M_{i} \rtimes L(S, i) \cong L(S, i+1)$ for some $i \leqslant r$. Moreover a chief series of G contains exactly $a_{i}+1$ chief factors isomorphic to $S^{l^{i}}$ for each $i \in\{0, \ldots, r-1\}$ and a_{r} chief factors isomorphic $S^{l^{r}}$. This implies $t \leqslant l$ so, by Lemma 2.3, $\mathrm{d}(G)=\mathrm{d}\left(L_{t}\right) \leqslant 3$ and $\mathrm{d}(G)=\mathrm{d}\left(L_{t}\right)=2$ if $P_{S}(2)|S| \geqslant l(S)|\operatorname{Out}(S)|$.

References

[1] M. Aschbacher and R. Guralnick. On abelian quotients of primitive groups. Proc. Amer. Math. Soc. 107 (1989), 89-95.
[2] F. Dalla Volta and A. Lucchini. Finite groups that need more generators than any proper quotient. J. Austral. Math. Soc. Ser A 64 (1998), 82-91.
[3] F. Dalla Volta and A. Lucchini. The smallest group with non-zero presentation rank. J. Group Theory 2 (1999), 147-155.
[4] L. Fireman. On pro-S groups. J. Group Theory 13 (2010), 759-767.
[5] P. Hall. The Eulerian functions of a group. Quart. J. Math. (Oxford) 7 (1936), 134-151.
[6] M. Jarden and A. Lubotzky. Random normal subgroups of free profinite groups. J. Group Theory 2 (1999), 213-224.
[7] M. Liebeck and A. Shalev. The probability of generating a finite simple group. Geom. Dedicata 56 (1995), 103-113.
[8] A. Lucchini. On groups with d-generator subgroups of coprime index. Comm. Algebra 28 (2000), 1875-1880.
[9] A. Lucchini and F. Menegazzo. Generators for finite groups with a unique minimal normal subgroup. Rend. Sem. Mat. Univ. Padova 98 (1997), 173-191.
[10] O. V. Mel'nikov. Normal subgroups of free profinite groups. Math. USSR-Izv 12 (1978), 1-20.
[11] L. Pyber. Asymptotic results for simple groups and some applications. In Groups and computation, II (New Brunswick, NJ, 1995), DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 28 (Amer. Math. Soc., 1997), pp. 309-327.
[12] M. Quick. Probabilistic generation of wreath products of non-abelian finite simple groups II. Internat. J. Algebra Comput. 16 (2006), 493-503.

Received 9 October, 2010; revised 28 October, 2010
Andrea Lucchini, Dipartimento di Matematica Pura ed Applicata, Via Trieste 63, 35121 Padova, Italy
E-mail: lucchini@math.unipd.it

