
24 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 9, 2023

Graph Wedgelets: Adaptive Data Compression on
Graphs Based on Binary Wedge Partitioning

Trees and Geometric Wavelets
Wolfgang Erb

Abstract—We introduce graph wedgelets - a tool for data com-
pression on graphs based on the representation of signals by
piecewise constant functions on adaptively generated binary graph
partitionings. The adaptivity of the partitionings, a key ingredient
to obtain sparse representations of a graph signal, is realized in
terms of recursive wedge splits adapted to the signal. For this, we
transfer adaptive partitioning and compression techniques known
for 2D images to general graph structures and develop discrete
variants of continuous wedgelets and binary space partitionings.
We prove that continuous results on best m-term approximation
with geometric wavelets can be transferred to the discrete graph
setting and show that our wedgelet representation of graph signals
can be encoded and implemented in a simple way. Finally, we
illustrate that this graph-based method can be applied for the
compression of images as well.

Index Terms—Binary graph partitioning, big data compression,
geometric wavelets, greedy algorithms on graphs, non-linear
approximation, graph wedgelets.

I. INTRODUCTION

IN LINE with the extraordinarily fast growth of stored and
transmitted digital information, and the increase in complex-

ity and interdependency of this Big Data, there is a strong need
of novel compression techniques that are able to efficiently com-
press large data sets on unstructured or semi-structured domains.
In many cases, these data sets and their interrelations can be
organized in terms of networks or graphs as underlying domains.
Adaptive algorithms able to compress data based on its intrinsic
content as well as on the topological structure of the surrounding
graph environment are therefore of main importance.

Efficient storage of data in image and signal processing de-
pends on how sparsely the data can be represented in terms of
suitable chosen dictionaries. The most common representation
techniques for graph signals have corresponding counterparts
in image processing and comprise, for instance, analogs of the
Fourier transform, the wavelet transform, or more general space-
frequency decompositions. A general overview about some of
these techniques in graph signal processing can be found in [29],
[39].
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Focusing on wavelet constructions, there are several ap-
proaches that give raise to a wavelet-type multiresolution anal-
ysis on graphs. The most prominent works in this direction
include diffusion wavelets [2], [9], [42], wavelets and vertex-
frequency localized frames based on the spectral decomposition
of the graph Laplacian [20], [38], [40], [41], graph wavelet
filterbanks [30], lifting based wavelets [24], [37], as well as the
construction of wavelets based on partitioning trees [8], [17],
[28]. Interesting for us is mainly the latter approach. This is for
two reasons: partitions of the graph vertices can be generated
very adaptively and efficiently by a multitude of available graph
clustering techniques, as, for instance, J-center clustering [18]
or spectral clustering [43]; Haar-type wavelets based on hierar-
chical partitioning trees are easy and cost-efficient to implement,
mainly due to the underlying tree structure and the inherent
orthogonality of the involved basis functions. Particular con-
struction of Haar wavelets and dictionaries based on hierarchical
spectral clustering, k-medoids clustering or spanning trees are,
for instance, described in [21], [22], [23], [36]. More gen-
eral wavelet-type orthogonal systems on weighted partitioning
trees have been studied in [5]. Wavelets based on partitioning
trees have several applications in machine learning as well, in
particular for scattering networks [4], and for semi-supervised
learning [17]. Further, in [34] improved Haar wavelets for classes
of smooth functions have been computed via a deep learning
approach.

The partitioning trees in the works above are solely guided by
the topology of the graph and do not take geometric properties
of graph signals into account. As shown in [17], the particular
structure of the partitions has however a strong impact on how
well a signal can be approximated sparsely in terms of the Haar
wavelets. For an efficient compression of graph signals it is
therefore essential that the partitioning trees are adapted to the
signal to be compressed.

Goal of this work is therefore to go one step beyond the
established non-adaptive constructions of partitioning trees and
to develop and analyze new partitioning strategies for graph
wavelets that allow for a signal-driven adaptivity in the refine-
ment of the partitions. This can be regarded as an attempt to
introduce a new generation of geometric signal-adapted wavelets
intrinsically defined on graphs.

For the compression of images, several approaches for the
generation of adaptive partitions are known. Using a function on
a continuous 2D domain to describe the image, these approaches
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usually involve an adaptive segmentation of the image in which
the image is approximated by piecewise constant or polynomial
functions on the extracted segments. The main idea of this
type of compression scheme, and, at the same type also the
inherent challenge, is to find a cost-efficient and meaningful
splitting procedure such that the resulting segmentation contains
only a few relevant elements. On these relevant segments the
image is then approximated by simple elementary functions,
mainly constant functions or low-order polynomials. If such a
meaningful segmentation is found, the resulting compression
schemes are highly competitive for low-bit compression [32].
Important examples of such adaptive segmentation schemes are
adaptive triangulations [7], [11], [12], [13], quadtree approxima-
tions [27], [35], tetralets [26], wedgelets [15], [16], [44] or binary
space partitioning trees [31], [32]. The latter two, wedgelets and
binary space partitioning trees, will be the most relevant for
this work, as their main concepts can be transferred easily to
partitions on graphs. In particular, for binary space partitionings,
there exists a well-developed theory on the m-term approxima-
tion with geometric wavelets [10], [25] that can be translated
directly to the graph setting. In this work, the respective discrete
partitionings will be called binary graph partitionings (BGPs).
Ideas from continuous wedgelet decompositions and binary
space partitionings will further lead to the development of the
new discrete graph wedgelets.

A. Main Contributions

1) We provide a theoretical framework for the sparse approx-
imation of graph signals with geometric wavelets defined
upon adaptive binary graph partitioning (BGP) trees. This
will be done in terms of non-linearm-term approximation
of functions in discrete Besov-type smoothness classes on
graphs. This is an adaption to the discrete graph setting of
corresponding continuous results developed in [10], [25].

2) We will give a simple and highly efficient novel construc-
tion of BGP trees in terms of recursive wedgelet splits on
graphs. We will refer to them as binary wedge partitioning
(BWP) trees. The BWP trees can be implemented and
stored cost-efficiently by an ordered set of graph nodes.

3) In several experiments, we will study the properties of
BWP trees and analyze how well signals on graphs or
images can be approximated using adaptive BWPs.

B. Basic Terminology on Graphs

In this work, we consider simple graphs G = (V,E,A, d)
with the following structural components:

1) A set V = {v1, . . . , vn} consisting of n graph vertices.
2) A set E ⊆ V × V containing all edges ei,i′ = (vi, vi′),

i �= i′, of the graphG. We will assume thatG is undirected.
3) A symmetric adjacency matrix A ∈ Rn×n with

Ai,i′ > 0 if i �= i′ and vi, vi′ are connected,
Ai,i′ = 0 else.

(1)

The positive elementsAi,i′ , i �= i′, of the adjacency matrix
A contain the connection weights of the edges ei,i′ ∈ E.

4) The graph geodesic distance d on the vertex set V , i.e., the
length of the shortest path connecting two graph nodes.
The distance d satisfies a triangle inequality and, as G is
undirected, defines a metric on V . We assume that G is
a connected graph and, thus, that the distance d between
two arbitrary nodes is finite.

In this work, we are interested in decompositions of graph
signals, i.e. of the functions x : V → R on the vertex set V
of the graph G. By L(V ), we denote the corresponding n-
dimensional vector space of graph signals. As the vertices in
V are ordered, we can represent every signal x also as a vector
x = (x(v1), . . . , x(vn))

ᵀ ∈ Rn. We can endow the space L(V )
with the inner product

yᵀx :=
n∑

i=1

x(vi)y(vi). (2)

The Hilbert space with the norm ‖x‖2L2(V ) = xᵀx, will be

denoted as L2(V ). The system {δv1
, . . . , δvn

} of unit vectors
forms a canonical orthonormal basis of L2(V ), where δvi′ are
defined as δvi′ (vi) = δi,i′ for i, i′ ∈ {1, . . . , n}. In addition, we
consider the Lr(V ) spaces equipped with the quasi-norms

‖x‖Lr(V ) =

(
n∑

i=1

|x(vi)|r
) 1

r

, r > 0.

It is well-known that for r ≥ 1 the latter quantity satisfies a
triangle inequality and, thus, defines a norm.

II. BINARY GRAPH PARTITIONINGS (BGPS)

The theory of geometric graph wavelets is based on a signal-
driven recursive binary partitioning of the vertex set V . In
particular, the graph partitioning will be adapted to the graph
topology as well as on the approximated signal. We start with a
general theory on binary partitioning trees on graphs.

Definition II.1: A binary graph partitioning (BGP) tree T of
the graph G is a binary tree consisting of subsets of the vertex
set V that can be ordered recursively in partitionsP(m),m ∈ N,
of V by the following rules:

1) The vertex setV is the root of the BGP tree T and provides
the first trivial partition P(1) = {V }.

2) IfP(m) = {W (m)
1 , . . . ,W

(m)
m } is a partition of V consist-

ing ofm elements in the BGP treeT , then the next partition
P(m+1) of V in T is obtained by applying a dyadic split
to one of the subsets in P(m).

If W ′ is an element of P(m+1) obtained from a dyadic split
of a set W ∈ P(m), then W ′ ⊂W corresponds to a child of W
in the tree T . We call two elementsW,′W ′′ ∈ T siblings if both
are children of the same W ∈ T . Note that, as T is binary, a set
W ∈ T can only have two children or no children at all. In the
latter case we call W a leave of the tree T .

We call a BGP tree T balanced if there exists 1
2 ≤ ρ < 1 such

that for every child W ′ of an element W ∈ T we have

(1− ρ)|W | ≤ |W ′| ≤ ρ|W |.
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We call a BGP tree T complete if it has n leaves, each
containing a single vertex of the graph G. A complete and
balanced BGP tree will be referred to as BGP(ρ) tree.

To see whether a graph signal f can be approximated sparsely
by piecewise constant functions on the elements of a BGP tree,
we will analyze the L2-error ‖f − Sm(f)‖L2(V ), where Sm(f)
denotes the best m-term approximation

Sm(f) =

m∑
i=1

ψWi
(f)(v) (3)

of the function f in terms of m wavelets ψWi
(f), i ∈

{1, . . . ,m}. These Haar-type wavelets are determined by the
elementsWi of a BGP tree T , and sorted descendingly in terms
of the L2-norm:

‖ψW1
(f)‖L2(V ) ≥ ‖ψW2

(f)‖L2(V ) ≥ ‖ψW3
(f)‖L2(V ) ≥ · · · .

The wavelets with respect to a BGP tree T are defined in the
following way: let W,′W ∈ T such that W ′ is a child of W .
Then, the wavelet component ψW ′(f) is given as the signal

ψW ′(f)(v) =

(
〈f, χW ′ 〉
|W ′| − 〈f, χW 〉

|W |

)
χW ′(v), (4)

where χW ′ denotes the indicator function of the set W ′. In this
way, we obtain for every child W ′ in T a wavelet component
ψW ′(f) of f . For the root V ∈ T , we additionally set

ψV (f)(v) =
〈f, χV 〉
|V | .

Now, picking the m components with the largest L2-norm, we
obtain exactly the non-linear m-term approximation Sm(f) of
f given in (3). If the BGP tree T = T (f) depends on f the
respective wavelets are called geometric wavelets.

To study the convergence of the m-term approximation the
following energy functional is of main relevance (see [14] for
a general overview). It is the discrete counterpart of a corre-
sponding functional given in [10] for binary space partitionings
in hypercubes. In wavelet theory, it is usually used in the char-
acterization of Besov spaces and measures in some sense the
sparseness of the wavelet representation of a signal f . In our
case, this sparseness is strongly related to the partitions given
within the BGP tree T .

Definition II.2: For 0 < r <∞, we define the r-energy of
the wavelet components of f with respect to a BGP tree T as

Nr(f, T ) =

(∑
W∈T

‖ψW (f)‖rL2(V )

) 1
r

.

We can say the following about the decomposition of f in
terms of BGP wavelets. The proof is given in the Appendix.

Theorem II.3: LetG be a graph withn nodes, andT a BGP(ρ)
tree on G, i.e., T is complete and balanced. Then:

i) The tree T contains 2n− 1 elements.
ii) For every signal f ∈ L(V ) we have

f =

2n−1∑
j=1

ψWj
(f),

i.e., f can be decomposed in terms of 2n− 1 wavelets.
iii) For 0 < r < 2, we have

‖f‖L2(V ) ≤ CNr(f, T )

with a constant C > 0 depending only on ρ.

III. m-TERM APPROXIMATION ERROR FOR GEOMETRIC

WAVELETS ON NEAR BEST BGP TREES

Similar as the r-energy functional Nr(f, T ) also the follow-
ing Besov-type smoothness term quantifies how well a function
f can be approximated with piecewise constant functions on the
elements of a BGP tree.

Definition III.1: For α > 0, 1
2 ≤ ρ < 1, and 0 < r <∞, we

define the geometric Besov-type smoothness measure | · |GBα
r

of
a function f ∈ L(V ) as

|f |GBα
r
= inf

T ∈BGP(ρ)

(∑
W∈T

|W |−αr sup
w∈W

∑
v∈W

|f(v)− f(w)|r
)1

r

.

In [10] (and similarly in [25]), the corresponding spaces of
functions have been referred to as geometric B-spaces. In con-
trast to the r-energy introduced in Definition II.2, the smoothness
measure |f |GBα

r
is not linked to one particular BGP tree but

allows to quantify the sparseness of f with respect to a largy
family of BGP(ρ) trees. This can be taken into account also
for the r-energy Nr(f, T ) by calculating the infimum over all
possible BGP(ρ) trees.

In practice, it might not be possible to determine the infimum
over all trees, only an approximate solution might be feasible.
Therefore, we say that an f -adapted BGP(ρ) tree Tr(f) is a near
best BGP(ρ) tree if there exists a constant C > 0 such that

Nr(f, Tr(f)) ≤ C inf
T ∈BGP(ρ)

Nr(f, T ).

This is the setting we have in mind when we design greedy
algorithms in the next section to create adaptive partitionings for
the compression of graph signals. For near best BGP(ρ) trees,
we have the following relation.

Theorem III.2: Let α > 0, 1
2 ≤ ρ < 1 and 1/r = α+ 1/2.

Further, let Tr(f) be a near best BGP(ρ) tree. Then, we have the
equivalences

C1Nr(f, Tr(f)) ≤ |f |GBα
r
≤ C2Nr(f, Tr(f))

with constants C1 and C2 that depend only on α and ρ.
We can finally conclude that if f is smooth with respect to the

Besov measure given in Definition III.1, it suffices to find a near
best BGP(ρ) tree to obtain the followingm-term approximation
rates.

Theorem III.3 (Jackson estimate): Let α > 0 and r > 0 be
related by 1/r = α+ 1/2. Then, for a graph signal f ∈ L(V )
and geometric wavelets with respect to a near best BGP(ρ) tree
Tr(f), we obtain the m-term approximation error

‖f − Sm(f)‖L2(V ) ≤ Cm−α|f |GBα
r

with a constant C > 0 that depends only on r and ρ.
Both, Theorem III.2 and III.3 are discrete versions of respec-

tive continuous results given for geometric wavelets on binary
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space partitionings [10] and piecewise polynomial approxima-
tion on nested triangulations [25]. The proofs are provided in the
appendix of this article. We note that all the results of this work
hold true also more generally for discrete metric spaces. Within
this class, graphs equipped with the graph geodesic distance as
a metric are however the most relevant examples for us.

IV. BWP TREES AND GRAPH WEDGELETS

After the general theory on BGPs, we are interested in finding
explicit constructions of adaptive partitioning trees on graphs.
For an efficient coding of the BGP trees we require simple
splitting strategies on graphs that can be adapted to the geometry
of a graph signal. For this, we propose as building elements the
following elementary wedge splits.

Definition IV.1: We call a dyadic partition {V,′ V ′′} of the
vertex set V a wedge split of V if there exist two distinct nodes
v′ and v′′ of V such that V ′ and V ′′ have the form

V ′ = {v ∈ V | d(v, v′) ≤ d(v, v′′)}, and

V ′′ = {v ∈ V | d(v, v′) > d(v, v′′)}.

A key advantage of the just defined wedge splits is that they
can be encoded very compactly in terms of the two nodes v′ in
V ′ and v′′ in V ′′. They have the following basic properties:

Property IV.2: If {V,′ V ′′} is a wedge split of V , then
1) V ′ and V ′′ are uniquely determined by v′ and v′′.
2) V ′ ∩ V ′′ = ∅ and V ′ ∪ V ′′ = V .
3) If the vertex set V is connected, then also V ′ and V ′′ are

connected subsets of the graph G.
While the first two properties follow immediately from the

Definition IV.1, the third property is a consequence of the fact
that d is the shortest path distance on G.

Using wedge splits we can define elementary wedgelets
ω+
(v,′v′′) and ω−

(v,′v′′) as the following indicator functions:

ω+
(v,′v′′)(v) = χV ′(v) =

{
1, if d(v, v′) ≤ d(v, v′′),
0, otherwise,

ω−
(v,′v′′)(v) = χV ′′(v) =

{
1, if d(v, v′) > d(v, v′′),
0, otherwise.

Using wedge splits, we generate now the following BGP trees:
Definition IV.3: A binary wedge partitioning (BWP) tree TQ

of G with respect to the ordered set Q = {q1, . . . , qM} ⊂ V is
a BGP tree constructed recursively as follows:

1) The root of TQ is the set V . It forms the trivial partition

P(1) = {V (1)
q1 } = {V } and is associated to q1 ∈ Q.

2) For a partition P(m) = {V (m)
q1 , . . . , V

(m)
qm } of V in TQ

associated to qi ∈ V
(m)
qi , i ∈ {1, . . . ,m}, m < M , con-

sider the node qm+1 ∈ V
(m)
qj for a j ∈ {1, . . . ,m}. We

split V (m)
qj by a wedge split based on qj and qm+1 into

two disjoint setsV (m)+
(qj ,qm+1)

(containingqj) andV (m)−
(qj ,qm+1)

(containing qm+1) and obtain the new partition

P(m+1) = {V (m+1)
q1

, . . . , V (m+1)
qm+1

}

with V
(m+1)
qi = V

(m)
qi if i �= {j,m+ 1}, V

(m+1)
qj =

V
(m)+
(qj ,qm+1)

and V (m+1)
qm+1 = V

(m)−
(qj ,qm+1)

.

A BWP tree TQ as given in Definition IV.3 is uniquely
determined by the ordered node set Q. This allows to store
TQ compactly in terms of the M nodes of Q. Further, adaptive
refinements of a BWP tree can be coded directly in terms of the
centers Q, i.e., in every refinement step an adaptive selection
of a node qj ∈ Q and the generation of new node qm+1 is
necessary. We collect some properties of BWP trees that follow
directly from Definition IV.3, Theorem II.3 and the general
Definition II.1 for BGPs.

Proposition IV.4: Let TQ be a BWP tree determined by the
ordered node set Q = {q1, . . . , qM}.

1) A BWP tree TQ contains 2M − 1 elements: 1 root and
2M − 2 children.

2) The M leaves of the binary tree TQ are given by the ele-

ments of theM -th. partitionP(M) = {V (M)
q1 , . . . , V

(M)
qM }.

3) A BWP tree TQ is complete if and only if |Q| = |V |.
4) A BWP tree TQ is balanced with 1

2 ≤ ρ ≤ n−1
n .

5) The characteristic function of the subset V (m)
qi can be

written as a product of m elementary wedgelets ω±
(qi,qj)

,
with qi, qj ∈ {q1, . . . , qm}, i < j.

Definition IV.5: The characteristic functions

ω(m)
qi

(v) = χ
V

(m)
qi

(v), 1 ≤ i ≤ m, 1 ≤ m ≤M,

of the sets V (m)
qi will be referred to as wedgelets with respect

to the BWP tree TQ. The wedgelets
{
ω
(m)
qi : 1 ≤ i ≤ m

}
form

an orthogonal basis for the piecewise constant functions on the
partition P(m) (using the inner product (2) in L2(V )).

Remark IV.6: It is possible to define larger families of BWP
trees than in Definition IV.3 (giving larger sets of wedgelets in
Definition IV.5, respectively) by allowing wedge splits inside
the subsets that are not linked to the centers qi. In this case, the
tree can however not be represented with a simple node set Q.
It leads also to a larger computational cost in the selection of a
proper wedge split when calculating the adaptive tree.

V. ADAPTIVE GREEDY GENERATION OF BWP TREES

To generate BWP trees TQ that are adapted to a given graph
signal f , every refinement step requires two principal pieces of
information. At each partition level m one of the sets V (m)

qj ,
j ∈ {1, . . . ,m}, has to be selected, and a new node qm+1 ∈
V

(m)
qj is required for the consequent elementary wedge split of

V
(m)
qj . In general, both choices can be made in an f -adapted or

in a non-adaptive way. As adaptive refinement procedures, we
consider the following three greedy methods:

Max-distance (MD) greedy wedge splitting: at stage m, the
domain V (m)

qj is chosen f -adaptively by selecting j such that

j = argmax
i∈{1,...,m}

‖f − f̄
V

(m)
qi

‖L2
(
V

(m)
qi

), (5)

where

f̄
V

(m)
qi

=
〈f,ω(m)

qi
〉

|V (m)
qi

|
= 1

|V (m)
qi

|

∑
v∈V (m)

qi

f(v)

denotes the mean value of f over the setV (m)
qi . This first selection

rule ensures that the chosen setV (m)
qj is the one with the maximal
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L2-error in (5). As soon as j, or equivalently, qj are determined,
a non-adaptive way to choose the subsequent node set qm+1 is
by the selection rule

qm+1 = argmax
v∈V (m)

qj

d(qj , v),

i.e., qm+1 is the vertex in V (m)
qj furthest away from qj . This

choice and the corresponding split can be interpreted as a two
center clustering of V (m)

qj in which the first node qj is fixed
(see a previous work [3] for more details on greedy J-center
clustering). One heuristic reason for this selection is that the
resulting binary partitions in the BWP tree might be more
balanced with a smaller constant ρ compared to the theoretical
upper bound 1− 1/n in Proposition IV.4.

Fully-adaptive (FA) greedy wedge splitting: in the FA-greedy
procedure the subset to be split is selected according to (5),
but also the node qm+1 determining the wedge split is chosen
according to an adaptive rule. If {V (m)+

(qj ,q)
, V

(m)−
(qj ,q)

} denotes the

partition of V (m)
qj for the wedge split determined by qj and a

second node q, we choose qm+1 such that

‖f − f̄
V

(m)+

(qj ,q)
‖2
L2

(
V

(m)+

(qj ,q)

) + ‖f − f̄
V

(m)−
(qj ,q)

‖2
L2

(
V

(m)−
(qj ,q)

) (6)

is minimized over all q ∈ V
(m)
qj . Compared to the semi-adaptive

MD-greedy procedure, the FA-greedy method is computation-
ally more expensive. On the other hand, as the wedge splits are
more adapted to the particular form of the underlying function
f , we expect a better approximation behavior for the FA-greedy
scheme. This expectation will be confirmed in the numerical
experiments performed in the last section.

Randomized (R) greedy wedge splitting: If the size of the
subsets V (m)

qj is large it might be too time-consuming to find the
global minimum of the quantity (6) in the FA-greedy scheme.
A quasi-optimal alternative to the fully-adaptive procedure is a
randomized splitting strategy, in which the minimization of (6)
is performed on a subset of 1 ≤ R ≤ |V (m)

qj | randomly picked

nodes of V (m)
qj . In this strategy, the parameterR acts as a control

parameter giving a result close or identical to FA-greedy if R is
chosen large enough.

The just described adaptive selection rules to generate BWP
trees and the respective wedgelet encoding and decoding vari-
ants are summarized in Algorithms 1 and 2.

Upper bounds for the computational cost: We assume that the
distance between two nodes can be calculated in O(1) opera-
tions. Further, in a worst-case scenario, the calculation of a mean
value over V (m)

qj requires O(n) operations. The computational
expenses of Algorithm 1 can thus be bounded by O(Mn2),
O(MRn) and O(Mn) operations for FA-greedy, R-greedy and
MD-greedy, respectively. In Fig. 8(e), the computational times
required by the three BWP variants are plotted for an image de-
composition. The measured times indicate that the dependence
of the cost on M is rather sublinear than linear.

Acceleration possibilities: For very large n, FA-greedy and
R-greedy (for large R) might be too expensive. In this case, a
possibility to increase the calculational speed is to split the graph
a priori into J subgraphs. Then, the adaptive BWP methods

Algorithm 1. Wedgelet Encoding of a Graph Signal.

Algorithm 2: Wedgelet Decoding of a Graph Signal.

Input: Q = {q1, . . . , qM}, {f̄
V

(M)
q1

, . . . , f̄
V

(M)
qM

}.

Calculate the partition P(M) = {V (M)
q1 , . . . , V

(M)
qM } of

V by elementary wedge splits along the BWP tree TQ
according to the recursive procedure in Definition IV.3.

Output: The wedgelet approximation

WMf(v) =
M∑
i=1

f̄
V

(M)
qi

ω(M)
qi

(v)

of f . For M = n, Wnf = f is reconstructed.

can be applied (also in a parallelized form) separately to each
subgraph. For this procedure, clustering algorithms as J-center
clustering [18] are available. In [3], this clustering method has
been used for partition of unity methods on graphs.

A. Geometric Wavelets Based on Wedge Splits

Instead of storing the mean values {f̄
V

(M)
q1

, . . . , f̄
V

(M)
qM

} of

the wedgelet approximation WMf , we can alternatively en-
code WMf using the geometric wavelets introduced in (4).
This alternative representation is particularly suited if a further
compression of the signal is desired, for instance by using an
m-term approximation of the signal with m < M .

For a BWP tree TQ and 2 ≤ m ≤M , we define the index

j = j(m) < m such that V (m)
qj is the sibling of V (m)

qm in the
BWP tree TQ. Then, the geometric wavelets with respect to the
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Algorithm 3: Wedgelet Encoding With BWP Wavelets.

BWP tree TQ are defined as the signals

ψ+
(qj ,qm)(f) =

(
f̄
V

(m)
qj

− f̄
V

(m−1)
qj

)
ω(m)
qj

=: c+(qj ,qm)(f)ω
(m)
qj

,

ψ−
(qj ,qm)(f) =

(
f̄
V

(m)
qm

− f̄
V

(m−1)
qj

)
ω(m)
qm

=: c−(qj ,qm)(f)ω
(m)
qm

.

Further, in the particular case m = 1, we set

ψq1
(f) = f̄V ω

(1)
q1

=: cq1
(f)ω(1)

q1
.

In this way, we obtain 2M − 1 geometric wavelets for TQ.
Beside the altered notation, this definition corresponds to the
general definition of geometric wavelets for BGP trees given in
(4). For ψ+

(qj ,qm)(f) and ψ−
(qj ,qm)(f), we have the relation

∑
v∈V

(
ψ+
(qj ,qm)(f)(v) + ψ−

(qj ,qm)(f)(v)
)

= f̄
V

(m)
qm

|V (m)
qm

|+ f̄
V

(m)
qj

|V (m)
qj

| − f̄
V

(m−1)
qj

|V (m−1)
qj

|

=
∑

v∈V (m)
qm

f(v) +
∑

v∈V (m)
qj

f(v)−
∑

v∈V (m−1)
qj

f(v) = 0.

This implies that 〈ψ+
(qj ,qm)(f), 1〉 = −〈ψ−

(qj ,qm)(f), 1〉 and that

c+(qj ,qm)(f) and c−(qj ,qm)(f) are related by

c+(qj ,qm)(f) = −|V (m)
qm |

|V (m)
qj

|
c−(qj ,qm)(f).

In particular, when computing the coefficients of the geometric
wavelets, it suffices to store one of the two, either c+(qj ,qm)(f)

or c−(qj ,qm)(f). The encoding and decoding of a graph signal
f in terms of wedge-based geometric wavelets is compactly
described in Algorithms 3 and 4.

VI. MEMORY REQUIREMENTS FOR WEDGELET ENCODING

To encode a graph signal in terms of M wedgelets, we need
to store the mean values {f̄

V
(M)
q1

, . . . , f̄
V

(M)
qM

} on the leaves

of the BWP tree as well as the geometric information of the
wedge splits provided by the set Q = {q1, . . . , qM}. Using a
quantization ofK different values, every mean value f̄

V
(M)
qi

can

be stored with log2(K) bits. The same holds true if the BWP
wavelet coefficients c+(qj ,qm) replace the mean values. As we
have n nodes, we can further store any node vj using its index
1 ≤ j ≤ n. This requires at most log2(n)M bits to store the

Algorithm 4: Wedgelet Decoding With BWP Wavelets

node setQ. Consequently, we get the following upper bound for
the memory requirements of wedgelet encoding.

Theorem VI.1: Assume that the mean values f̄
V

(M)
qi

(or the

coefficients cq1
and c+(qj ,qi)

) are given in a quantized form with
at most K different values. Then, the wedgelet encodings in
Algorithms 1 and 3 require a memory of at most

�log2(n) + log2(K)�M
n

bits per node.

In the particular case of an image with 512× 512 = 218

pixels and an image depth of K = 28 = 256 colors we get by
Theorem VI.1 that a representation with M = 1000 wedgelets
requires a memory of less than 0.1 bits per pixel.

VII. EXAMPLES ON GRAPHS AND IMAGES

A. Examples of BWPs on Graphs

We will consider two test graphs, the Minnesota road network
G1 and an Erdős–Rényi graph G2. The dataset for G1 has been
retrieved from [33] and consists of n = 2642 vertices and 3304
edges. The graph G2 with n = 100 vertices and 236 edges was
generated according to the G(n, p) Erdős–Rényi random graph
model with probability p = 0.05. The distance metric on both
graphs is the shortest-path distance. As test signals on G1 we
consider the two binary functions

f1 = 2χV1
− 1, f2 = 2χV2

− 1,

based on the characteristic functions of the node sets

V1 = {v ∈ V | xv < −94},

V2 = {v ∈ V | 0.75(xv + 93.3)2 + (yv − 44.95)2 < 0.35},
where (xv, yv) denote the Cartesian coordinates of the node
v ∈ V . The test signal f3 on G2 describes a clustering of G2

based on three integer values from 1 to 3. The functions f1, f2
and f3 are illustrated in Fig. 2.

Starting from a random node q1 we use Algorithm 1 to
generate the BWP tree as well as a piecewise constant approxi-
mation of the functions. The initial part of the BWP tree for the
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Fig. 1. A BWP tree for the adaptive approximation of the test function f2 in
Fig. 2 (middle) on the Minnesota graph.

Fig. 2. Test signals f1 (left), f2 (middle) and f3 (right) to generate BWPs.

Fig. 3. Approximation of f1 with 1,4,9 and 39 wedge splits (from left to right).
The red rings indicate the center nodes Q. The number of wrongly classified
nodes equals 356, 286, 110, and 12, respectively.

Fig. 4. L2-approximation errors for the BWP approximation Wmf of f1
(left) and f2 (right) using FA-greedy, MD-greedy and R-greedy with R = 50.

approximation of f2 (using FA-greedy) is shown in Fig. 1. In
Fig. 3, approximations Wmf1 of f1 are illustrated for different
partitioning stagesm (the number of wedge splits equalsm− 1,
we used FA-greedy to generate the BWP tree).

The three variants MD-greedy, R-greedy and FA-greedy for
the test functions f1 andf2 are compared in Fig. 4. In these exam-
ples, FA-greedy performs best for most partitioning stages m,

Fig. 5. Comparison between bestm-term approximation using BWP wavelets
(FA-greedy, R-greedy with R = 50 and MD-greedy) and non-adaptive Haar-
type wavelet dictionaries for the test functions f2 (left) and f3 (right).

followed by R-greedy and MD-greedy. The FA-greedy variant
is also the most cost-intensive of the three. Our tests showed that
withR = 100 randomly chosen nodes, the outcome of R-greedy
is already very similar to FA-greedy.

In a second test, we compare the best m-term approximation
of the adaptive BWP wavelets with four non-adaptive basis
systems from the literature: a non-adaptive Haar basis, a Lapla-
cian eigenbasis, a hierarchical graph Laplacian eigensystem
(HGLET, [21]) and a generalized Haar-Walsh basis system
(GHWT, [22], [23]). The latter two are Haar-type dictionaries
that contain, beside Haar functions, also Laplacian eigenfunc-
tions on subgraphs (HGLETs) and generalized Walsh basis
functions (GHWTs). For the comparison with the four non-
adaptive basis systems we used the MTSG toolbox developed
for the works [21], [22], [23]. We can see that the data-adaptive
FA-greedy and R-greedy schemes are able to generate sparser
representations of the test functions in which a considerably
smaller amount of the wavelet coefficients is required compared
to the non-adaptive basis systems. While this higher sparseness
is an aimed-at desirable property for data compression, adaptive
basis systems require additional memory to store the respective
geometric information. Therefore, when using adaptive BWPs
for the compression of graph data also the additional storage
costs of the BWPs as estimated in Section VI have to be taken
into account.

In a further test, we compare the same basis systems on the
Minnesota graph for the approximation of piecewise smooth test
functions. For this, we modify the piecewise constant signal f1
by adding a gradient term, i.e., we consider the signal

f4(v) = f1(v) + α(xv − x̄V ), α ∈ R,

where x̄V denotes the mean value ofxv overV . As the parameter
α increases, the function f4 gets dominated by the gradient
term and a dictionary of piecewise constant signals will struggle
to approximate f4 in a sparse way. This is confirmed by our
simulation shown in Fig. 6. As α gets larger, the best m-term
approximation errors using a pure Haar basis system (adaptive
or non-adaptive) deteriorate. The difference between adaptive
and non-adaptive basis systems is however still significant. It
is also visible that basis systems that are better adapted to
piecewise smooth functions as the HGLETs display an improved
performance.
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Fig. 6. Comparison of best m-term approximations using Haar-type wavelet
dictionaries for the piecewise smooth test function f4 and gradient parameter
α = 0.1 (left) and α = 0.5 (right).

Fig. 7. Role of the metric in BWP (a) original image with 500× 451 pixels;
(b)(c)(d) R-greedy compression with M = 1000 nodes, R = 500 as well as (b)
the 1-norm, (c) the 2-norm and (d) the infimum norm for the pixel distance.

Fig. 8. BWP image compression. (a) original 481× 321-image; (b)(c) FA-
greedy BWP compression for M = 2000, M = 1000; (d) wavelet details
between (b) and (c); (e) Computational times of the BWP variants; (f)(g)
MD-greedy BWP compression for M = 2000, M = 1000; (h) wavelet details
between (f) and (g).

B. BWPs for the Compression of 2D Images

As adaptive partitioning tools for discrete domains, BWPs can
also be used for the piecewise approximation and compression
of images. An image can be naturally thought of as a finite
rectangular grid of pixels and interpreted as a graph. Pixels
close to each other are therein linked by a weighted edge. The
structure and the weights of the single edges determine the local
dependencies in the image and have therefore a strong influence
on the outcome of the greedy algorithms.

A simple qualitative comparison of the role of the used
metric is given in Fig. 7. The 1-norm and the infimum norm
for the distance of the pixels lead to partitions with a rather
rectangular or rhomboid wedge structure. On the other hand,
wedges generated by the 2-norm seem to be more anisotropic
and slightly better adapted to the edges of the image.

We next compare the performance of the FA-greedy and
the MD-greedy method for the compression of images. In the
example given in Fig. 8, we see that, as expected, the FA-greedy
performs considerably better. In particular, the wavelet details in
the FA-greedy scheme are smaller and more distinguished than

Fig. 9. BWP image encoding. (a) original with 481× 321 pixels; (b)(c)(d)
R-greedy compression with 1000, 500 and 100 nodes,R = 500; (e)(f)(g) respec-
tive node distributions for the approximations in (b)(c)(d). The corresponding
PSNR values are (b) 40.762 dB, (c) 37.935 dB, and (d) 31.827 dB.

Fig. 10. Comparison of 4 image compression techniques based on piecewise
approximation: (a) original 481× 321 image; (b) graph wedgelet compres-
sion using 500 most relevant BWP wavelet coefficients (PSNR: 38.297 dB)
(c)(d) continuous wedgelet compression using 506 wedges (PSNR: 36.828 dB)
(e) Haar wavelet compression using 500 most relevant coefficients (PSNR:
34.764 dB) (f)(g) quadtree compression with 505 blocks (PSNR: 31.662 dB).

for MD-greedy when using the same number of wedge splits.
Regarding the distribution of the center nodesQ, we see further
in Fig. 9 that the adaptive BWP scheme (in this case a R-greedy
scheme) selects the new nodes increasingly closer to the edges
of the image such that most refinements of the partitions are
performed in those regions where the gradients are large.

Finally, in Fig. 10, we compare the approximation qual-
ity of our adaptive BWP algorithm with three well-known
segmentation based compression schemes from the literature.
The first is a classical bivariate Haar wavelet transform in which
the image is decomposed in uniform dyadic blocks and 6 hierar-
chical levels. The most relevant wavelet coefficients of the image
are then selected according to the Birgé-Massart strategy [1].
In Fig. 10(e) the respective compression for 500 coefficients is
illustrated. We compare this with a compression using the most
relevant geometric wavelets in a R-greedy BWP tree (R = 500).
Generating the BWP tree for M = 4000 and selecting the 500
most relevant coefficient pairs c±(qj ,qi)

provided by Algorithm
3, we obtain the compressed image in Fig. 10(b). Qualitatively,
the contours of the image are more pronounced for the adapted
BWP wavelets, while in the classical Haar wavelet approach
block artifacts are visible. A further indication for the higher
image quality of BWP compression is the larger peak signal to
noise ratio (PSNR).

The two other compression methods are a continuous
wedgelet decomposition (we use the implementation of [16])
and a quadtree decomposition [35] into adaptively generated
dyadic blocks. The resulting image approximations shown
in Fig. 10(c)(d)(f)(g) (using 506 and 505 segments, respec-
tively) are compared with the graph wedgelet approximation in
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Fig. 9(c)(f) (using 500 wedgelets). It is visible that the number
of quadtree blocks and continuous wedges is still quite low for
a good resolution of the original image. This is also indicated
by the lower PSNR of the resulting approximations. The graph
wedgelets on the other hand display a higher adaptivity to the
original image with a larger PSNR value. Our numerical tests
also indicate that for smaller values of M the generation of
the wedgelet approximation alone, without thresholding the
small geometric wavelet components, provides already good
compression results. This is visible in the comparison between
Fig. 9(c) and 10(b), where almost no difference between the two
approximations is visible.

VIII. CONCLUSION

We introduced graph wedgelets: a novel type of geometric
Haar-type basis functions on graphs that are able to efficiently
capture the geometric information of signals using adaptive bi-
nary wedge splits that minimize a local L2-error. These discrete
wedgelets are organized in terms of a binary wedge partitioning
tree that can be encoded compactly in terms of a finite ordered
sequence of graph nodes. We illustrated that these BWP trees
provide promising dictionaries for the sparse representation of
graph signals and can be applied to the compression of signals
and images. From a theoretical point of view we showed that
the geometric wavelets based on a near-best wedgelet parti-
tioning tree provide quickly converging m-term approximants
if the approximated signal is in a properly defined Besov-type
smoothness class.

APPENDIX

A. Proof of Theorem II.3

i) As T is complete and binary, it contains n leaves, and at
least two of them are siblings (assuming that n > 1, for
n = 1 the tree contains just a single root). Pruning the tree
T by removing this pair of siblings, we obtain a reduced
tree with n− 1 leaves. An induction argument over the
number n of leaves therefore tells us that |T | = 2n− 1.

ii) The completeness of T implies that we can decompose
any signal f in terms of the n leaves of T as

f =

n∑
i=1

f(vi)χ{vi} =
∑

W∈P(n)

〈f, χW 〉
|W | χW .

Now, by the definition of the wavelets ψW (f) in (4), we
recursively obtain

f =
∑

W∈P(n)\P(n−1)

ψW (f) +
∑

W∈P(n−1)

〈f, χW 〉
|W | χW

=

n∑
k=2

∑
W∈P(k)\P(k−1)

ψW (f) + ψV (f) =
∑
W∈T

ψW (f).

Thus, using the ordered elements Wi ∈ T , i ∈
{1, . . . , 2n− 1} (according to the L2-norm of the
wavelets), we obtain the representation in (ii).

iii) In the proof of Theorem III.3, we will show that for every
BGP(ρ) tree T the inequality

‖f − Sm(f)‖L2(V ) ≤ Cm−αNr(f, T )

holds true with a constant C > 0 that depends only
on ρ (Theorem III.3 is actually formulated in terms of
near-best BGP(ρ) trees, the first part of the proof works
however for all BGP(ρ) trees). This implies that

‖f‖L2(V ) ≤ ‖f − S1(f)‖L2(V ) + ‖S1(f)‖L2(V )

≤ (C + 1)Nr(f, T ),

and, thus, the statement of the theorem.

B. Proof of Theorem III.2.

We adapt the proof of [10, Theorem 3.5], in which a similar
equivalence has been shown for binary space partitions in a
continuous setting. To obtain the result of Theorem III.2 for near
best BGP(ρ) trees, it suffices to show that for every BGP(ρ) tree
T the following equivalence holds:

C1Nr(f, T ) ≤ Mr(f, T ) ≤ C2Nr(f, T ), (7)

where

Mr(f, T ) =

(∑
W∈T

|W |−αr sup
w∈W

∑
v∈W

|f(v)− f(w)|r
) 1

r

,

and C1, C2 > 0 are constants that depend only on ρ and r. We
start with the first inequality in (7). If W ′ is a child of W in T ,
we can estimate the r-norm ‖ψW ′(f)‖Lr(V ) as

‖ψW ′(f)‖Lr(V ) =
∥∥∥( 〈f,χW ′ 〉

|W ′| − 〈f,χW 〉
|W |

)
χW ′(v)

∥∥∥
Lr(V )

≤ C
(∥∥(f̄W ′ − f)χW ′

∥∥
Lr(V )

+
∥∥(f̄W − f)χW ′

∥∥
Lr(V )

)
= C

(∥∥f̄W ′ − f
∥∥
Lr(W ′)

+
∥∥f̄W − f

∥∥
Lr(W ′)

)
, (8)

where f̄W ′ and f̄W denote the means of f over the sets W ′ and
W , respectively. The constant C in this estimate depends only
on r. The estimate (8) allows us to proceed as follows and to
obtain the first of the two inequalities in (7):

Nr(f, T ) =

(∑
W∈T

‖ψW (f)‖rL2(V )

) 1
r

≤
(∑

W∈T
|W |r/2−1‖ψW (f)‖rLr(V )

) 1
r

≤ C ′

(∑
W∈T

|W |r/2−1‖f̄W − f‖rLr(W )

) 1
r

≤ C ′′

(∑
W∈T

|W |r/2−2
∑
v∈W

‖f(v)− f‖rLr(W )

) 1
r

≤ C ′′

(∑
W∈T

|W |−αr sup
w∈W

∑
v∈W

|f(v)− f(w)|r
) 1

r

= C ′′Mr(f, T ).
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Here, for the first inequality we used a general form of Hölder’s
inequality. For the second inequality, we combined the bound
in (8) with the fact that a BGP(ρ) tree is balanced resulting in
a constant C ′ that depends on 0 < ρ < 1 and on r. Also the
subsequent constant C ′′ depends only on ρ and r. In the last
inequality, the relation 1/r = α+ 1/2 was included.

We consider now the second inequality in (7). Based on the
expansion f =

∑
W∈T ψW (f), we get

sup
w∈W

∑
v∈W

|f(v)− f(w)|r

= sup
w∈W

∑
v∈W

|
∑

W ′∈T ,W ′⊂W

ψW ′(f)(v)− ψW ′(f)(w)|r

≤ C
∑
v∈W

∑
W ′∈T ,W ′⊂W

|ψW ′(f)(v)|r

= C
∑

W ′∈T ,W ′⊂W

‖ψW ′(f)‖rLr(W ′),

with a constant C that depends only on r. This provides for
Mr(f, T ) the bound

Mr(f, T )r ≤ C
∑
W∈T

|W |−αr
∑

W ′∈T ,W ′⊂W

‖ψW ′(f)‖rLr(W ′)

= C
∑
W∈T

∑
W ′⊂W

(
|W ′|
|W |

)αr

|W ′|−αr‖ψW ′(f)‖rLr(W ′)

= C
∑
W ′∈T

|W ′|−αr‖ψW ′(f)‖rLr(W ′)

∑
W⊃W ′

(
|W ′|
|W |

)αr

.

The balancedness of T implies that |W ′| ≤ ρ|W | for every
parent W of W ′, and thus |W ′| ≤ ρk|W (k)| for every parent
W (k) in the k-th generation before W ′. Thus,

∑
W⊃W ′

(
|W ′|
|W |

)αr

≤
∞∑

k=1

ρkαr ≤ ραr

1− ραr
, (9)

and we can conclude that

Mr(f, T )r ≤ Cραr

1− ραr

∑
W ′∈T

|W ′|−αr‖ψW ′(f)‖rLr(W ′)

≤ C ′
∑
W ′∈T

‖ψW ′(f)‖rL2(W ′) = C ′Nr(f, T )r,

with a constant C ′ that depends only on ρ and r. This gives the
second inequality in (7).

C. Proof of Theorem III.3

The subsequent proof is an adaption of the techniques de-
veloped for the derivation of [25, Theorem 3.4] in which a
Jackson estimate for piecewise polynomial approximation on
nested triangulations in R2 is formulated. The same techniques
have been used in [10, Theorem 3.6] to derive a respective
Jackson estimate for geometric wavelets with respect to binary
space partitionings of convex domains.

To subdivide the geometric wavelets of the tree Tr(f) into
dyadic blocks, we define for μ ∈ Z the index sets

Iμ :=
{
i
∣∣∣ Nr(f,Tr(f))

2μ ≤ ‖ψWi
(f)‖L2(V ) <

Nr(f,Tr(f))
2μ−1

}
.

For the union of these index sets, we get⋃
ν≤μ

Iν =
{
i | ‖ψWi

(f)‖L2(V ) ≥ 2−μNr(f, Tr(f))
}
.

Thus, by Definition II.2 of the r-energy Nr(f, Tr(f)), we have

|Iμ| ≤
∑
ν≤μ

|Iν | =
∣∣ ⋃
ν≤μ

Iν
∣∣ ≤ 2μr.

Now, setting m :=
∑

ν≤μ |Iν |, we obtain the estimate

‖f − Sm(f)‖L2(V ) ≤
∥∥∥∥∥
∑
ν>μ

∑
i∈Iν

|ψWi
(f)|

∥∥∥∥∥
L2(V )

≤
∑
ν>μ

∥∥∥∥∥
∑
i∈Iν

|ψWi
(f)|

∥∥∥∥∥
L2(V )

.

The wavelets ψWi
(f) are constant on the sets Wi, thus

‖ψWi
(f)‖L2(V ) = ‖ψWi

(f)‖L∞(V )|Wi|1/2. This together with
the definition of the index sets Iν gives the bound

‖f − Sm(f)‖L2(V ) ≤
∑
ν>μ

∥∥∥∥∥
∑
i∈Iν

‖ψWi
(f)‖L∞(V )χWi

∥∥∥∥∥
L2(V )

=
∑
ν>μ

∥∥∥∥∥
∑
i∈Iν

‖ψWi
(f)‖L2(V )

|Wi|1/2
χWi

∥∥∥∥∥
L2(V )

≤
∑
ν>μ

2−ν+1Nr(f, Tr(f))
∥∥∥∥∥
∑
i∈Iν

χWi

|Wi|1/2

∥∥∥∥∥
L2(V )

.

The balancedness of the BGP(ρ) tree implies that the L2-norm
in the last inequality can be bounded by

∥∥∥∥∥
∑
i∈Iν

χWi

|Wi|1/2

∥∥∥∥∥
L2(V )

≤

⎛
⎝∑

i∈Iν

∑
v∈Wi

1

|Wi|

( ∑
W⊇Wi

|Wi|1/2
|W |1/2

)2⎞⎠
1
2

≤
(∑

i∈Iν

∑
v∈Wi

1

|Wi|
1

1− ρ1/2

) 1
2

=
(
1− ρ1/2

)− 1
2 |Iν |1/2,

where, in the second inequality, we bounded the interior sum
similarly as in (9). Combining the last two estimates and the
previous bound on the complexity |Iν |, we can conclude that

‖f − Sm(f)‖L2(V ) ≤ C
∑
ν>μ

2−νNr(f, Tr(f))|Iν |1/2

≤ CNr(f, Tr(f))
∑
ν>μ

2−ν(1−r/2)

= CNr(f, Tr(f))2−μ(1−r/2)

≤ Cm−1/r+1/2Nr(f, Tr(f))
= Cm−αNr(f, Tr(f)),

with C = 2(1− ρ1/2)−1/2. Now, the bound of Theorem III.3
follows from the first inequality in Theorem III.2.
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