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Abstract: Omnidirectional, or 360°, cameras are able to capture the surrounding space, thus providing
an immersive experience when the acquired data is viewed using head mounted displays.
Such an immersive experience inherently generates an illusion of being in a virtual environment.
The popularity of 360◦ media has been growing in recent years. However, due to the large amount
of data, processing and transmission pose several challenges. To this aim, efforts are being devoted
to the identification of regions that can be used for compressing 360◦ images while guaranteeing
the immersive feeling. In this contribution, we present a saliency estimation model that considers
the spherical properties of the images. The proposed approach first divides the 360◦ image into multiple
patches that replicate the positions (viewports) looked at by a subject while viewing a 360◦ image
using a head mounted display. Next, a set of low-level features able to depict various properties of
an image scene is extracted from each patch. The extracted features are combined to estimate the 360◦

saliency map. Finally, bias induced during image exploration and illumination variation is fine-tuned
for estimating the final saliency map. The proposed method is evaluated using a benchmark 360◦ image
dataset and is compared with two baselines and eight state-of-the-art approaches for saliency estimation.
The obtained results show that the proposed model outperforms existing saliency estimation models.

Keywords: saliency estimation; 360◦ images; low-level features; head mounted display; immersive media

1. Introduction

In the last decade we have witnessed significant development in multimedia technologies.
This includes media acquisition devices, rendering systems, compression techniques, and application
scenarios. Omnidirectional or 360◦ imaging allows to record a complete scene from a specific point
of view. The acquired information can be rendered through a Head Mounted Display (HMD)
thus providing an immersive experience to the user. To allow the adoption of this technology,
many challenges need to be solved: Understanding the degree of appreciation of users, evaluating
the impact of transmission noise or processing artifacts, or even the most suitable way for rendering
360◦ media.

The focus of our research is to study the exploring behavior of a 360◦ content by a user using
HMDs. As known in psycho-physiology, humans browse a scene according to its saliency. At each
glance, the human vision system analyzes the input and fixates the attention on prominent aspects
of a scene. The study of saliency can be exploited for several applications such as compression [1],
health monitoring systems [2–4], or marketing [5].

The models developed for saliency estimation try to emulate the HVS mechanisms by exploiting
cognition, machine learning, statistical analysis, neuroscience, and computer vision. The first
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approaches towards the saliency estimation rely on the detection of image components attracting
human attention, i.e., color, intensity, and texture [6,7].

Other approaches exploit Gestalt’s psychological studies [8,9], according to which human
perception focuses on figures more than on background elements. In [10] a Boolean map based
saliency model (BMS) for 2D images is presented and an extended version of this approach,
the extended Boolean map saliency approach (EBMS), is proposed in [11].

Both BMS and EBMS do not consider the geometry-related features of an image and cannot
directly be used for omnidirectional content since they do not address the problem of spherical
projection of 360◦ images that may cause artifacts. Fang et al. [12] adapt the traditional 2D saliency
approach to 360◦ images. Other methods adopt low-level features [12,13] or a combination of low
and high-level features [14–16] for 360◦ image saliency estimation.

Recently, methods have been proposed to take into account the artifacts caused by the spherical
projections. In [17], performances of three saliency estimation methods: Graph-based visual saliency,
ensemble of deep networks (eDN), and the saliency attentive model (SAM) are compared. eDN exploits
a six-multilayer structure to identify the salient regions through hyper-parameter optimisation.
The ResNet architecture combined with pre-trained VGG-16 is used in the SAM model. Each model
is tested using three types of 360◦ image projection formats: Continuity, cube, and combined
equirectangular image projection.

Low-level and high-level features are combined in [14]. Low-level features include hue, saturation,
texture and graph-based visual saliency (GBVS) [7] on the hue component. Number of persons,
skin color, and faces are considered as high-level features. A superpixel-based saliency estimation
model, exploiting contrast and boundary connectivity, is proposed in [12]. Biswas et al. [13] pre-process
the 360◦ images before applying the Itti [6] and GBVS [7] models for saliency estimation. Pre-processing
includes illumination normalization. This step is important since, due to the spherical aspect of the scene,
the lighting is not uniformly distributed. Therefore, if the gaze of the observer falls between bright
and dark areas, the bright areas will be more attractive than the dark ones. However, if the user gazes
towards comparatively dark regions, objects in those regions will be of higher importance due to
the lightness adaptation. In addition to the high and low-level image features, it has been observed
that the content of an image drives visual attention. In this direction, in [15] the importance of objects
present in an image for saliency estimation is addressed. Zhu et al. [16] perform saliency estimation of
360◦ images using head movement data of subjects wearing HMD. Projection of 360◦ images usually
generates artifacts near the periphery. To reduce this artifact, in [16] a pseudo-cylindrical projection [18]
is performed instead of the popular equirectangular projection.

In this paper, a Feature Integrated 360◦ image Saliency Estimation Model (FISEM) is proposed.
The novelties introduced with respect to the state-of-the-art are:

• We primarily focus on the geometry-based features of an image. It has been observed in many
studies that the geometry of the physical world helps in visual perception of a scene [19,20].
Taking this into consideration, we extract a set of image features that depicts the geometry of
an image stimuli. In addition, artifacts caused by spherical projections of a 360◦ image are taken
into account;

• the illumination effects are normalized before extracting the geometry-based features [13].
The human retina can adjust to various levels of light [21] and non-uniform luminance has
a large impact on human visual perception [22], and consequently on saliency estimation [13,23];

• the image foreground is considered as a feature. Human perception is highly influenced by
objects located in the foreground regions [9]. Therefore, we perform a foreground/background
separation. To the best of our knowledge this is the first approach that exploits image foreground
as a feature for saliency estimation of omnidirectional images.

The rest of the paper is organized as follows: In Section 2 the proposed saliency model is described.
Section 3 reports the results of performed tests and finally Section 4 draws the conclusions.
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2. Proposed Methodology

The proposed approach consists of pre-processing, image features extraction and integration,
and post-processing (as shown in Figure 1).

Figure 1. The feature integrated 360◦ image saliency estimation model (FISEM).

2.1. Viewport Extraction

HMDs are currently mostly used to display 360◦ media. They provide a fixed field-of-view
(FOV) thus showing a windowed view of the image content and not the entire image as a whole.
Thus, while using a HMD, users need to move their head for exploring the image content. Each 360◦

image is therefore explored by means of small windows which are known as ‘viewports’. As the target
of saliency estimation is to understand where a user looks within the image, it is necessary to
simulate the viewing windows or viewports. To this aim, multiple projection techniques are available,
such as equirectangular, cube-map, truncated square-pyramid, craster parabolic, or equal area
projection [24,25]. Since the equirectangular projection results in a less noisy and geometrically
distorted representation, it has been widely adopted [16]. In this work we apply the equirectangular
projection [14], briefly reported in the following for sake of clarity.

A non-uniform angular sampling is performed over the omnidirectional image. The sampled
points are represented as Xi, where i refers to the number of points. It can be noted that the number
of sampled coordinates Xi corresponds to the number of viewports extracted from one single 360◦

image. Moreover, the centre of viewport is fixed at the sampled point Xi with a fixed width and height.
Therefore, the set of viewports V is (1, 2, ..., Xi). Each pixel in the considered viewport is further
projected to the rectilinear plane (gnomonic projection). In this regard, a 3D Cartesian coordinate
system is used, having its origin surrounded by a spherical frame of fixed radius. Let MVi be any
point with co-ordinates (x, y) in the viewport Vi in V. Each point is placed on the plane tangent
to the sampled point Xi. This process is depicted in Figure 2. The 3D Cartesian coordinate system
position of MVi in the rectilinear plane is computed as

Mpos
Vi

(x, y, z) =


x : 1

y : px ·
(

x− Vwidth
2

)
z : px ·

(
y− Vheight

2

)
 (1)

where px is the pixel intensity, and Vwidth, Vheight are the fixed width and height of the generated
viewports. The point MVi is projected to the rectilinear plane as

Mproj
Vi

=
Mpos

Vi
(x, y, z)∥∥∥Mpos

Vi
(x, y, z)

∥∥∥ (2)

where ‖·‖ denotes the L2-norm of Mpos
Vi

. The projected viewports for each 360◦ image are processed
individually, as explained in the following subsections.
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Figure 2. Viewport Vi extraction technique for any sampling point Xi. Here φ and θ are the azimuth
and elevation angles.

2.2. Illumination Normalization

In order to perform illumination normalization, we first analyse how the pixel intensities vary in
each viewport Vi. To this aim, each viewport is processed to extract its average pixel weight (vAPW).
Then, the global average pixel weight (gAPW) of the entire omnidirectional image is determined
as the mean of vAPWs values computed for all the viewports V

gAPW =
n

∑
i=1

vAPWi
n

(3)

where n is the number of viewports and vAPWi is the average pixel weight for the viewport i.
Here, we distinguish the viewports into three categories: Over illuminated (vAPW > gAPW),

nearly uniform illuminated ( gAPW
2 < vAPW < gAPW) and under illuminated (Figure 3). In order to

normalize the illumination within the viewport we process the over and under illuminated viewports.

Figure 3. Illumination normalization range for over, nearly uniform, and under illuminated viewports.

The contrast of an image can be controlled by using histogram equalization (HE) [26]. To cope
with over illuminated regions, the histogram equalized viewport Vi is further processed with a DWT
based normalization technique. In particular, a second level DWT is performed and the LL subband
is processed by subtracting 2/3 of the mean pixel weight of 2D viewport image. The algorithm for
illumination normalization of both over and under illuminated images is provided in (Algorithm 1).
The illumination normalized image obtained from the HDWT algorithm and low light image
enhancement algorithm is shown in Figure 4.
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Figure 4. Sample images after illumination normalization. An over illuminated image (a) is normalized
using HDWT (b). Similarly, an under illuminated image patch (c) is enhanced using a low light
enhancement algorithm as shown in (d).

Algorithm 1: HDWT: Illumination Normalization
Input: I: viewport of any 360◦ image

gAPW: Average pixel intensity over all 360◦ images
Result: I′: Illumination normalized viewport

1 vAPW = average pixel intensity of I
2 if vAPW > gAPW then
3 I1 = histogram equalization on I using 256 bins ;
4 I2 = 2nd level decomposition of I1 using DWT ;
5 I3 = adjust pixel weight in LL band of I2 ;
6 I4 = 2nd level inverse DWT ;
7 I′ = adjust image contrast of I4 ;
8 else if vAPW < gAPW/2 then
9 I1 = reduce haze by contrast enhancement on I;

10 I′ = denoise image I1 ;
11 return I′

2.3. Feature Extraction

A set of independent low-level features are extracted from viewports: Color, contrast, orientation,
intensity, edge, ridge, shape, and corner. The extracted features are described in the following

• Color (VC
i ), Intensity (V Int

i ) and Contrast (VCnt
i ): first we convert the RGB viewport (Vi) into

the CIELab color space to find the three components: Lightness (L), color weight between green
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and red channels (a) and color weight between blue and yellow channels (b). We compute VC
i

as the average value of the L, a and b components

VC
i =

L + a + b
3

.

The viewport image intensity map V Int
i is generated in two steps. First, the highest pixel value

along the three components L, a and b is considered for generating a preliminary intensity map Vpim
i .

Second, Prewitt gradient operator is used to generate the gradient map of the intensity image

V Int
i = Prewitt(Vpim

i ).

Variation in image contrast affects human visual perception [27]. We accounted for this aspect
by using as feature a gray level map obtained from a contrast enhanced version of the viewport
Vi. The contrast enhancement is performed by saturating the bottom 20% and the top 30% of all
pixel values:

VCnt
i = Outlow + (Outlow −Outhigh) ∗

Vi −Vi(low)

Vi(high)−Vi(low)

where Vi(low) and Vi(high) are the smallest and the largest pixel values in Vi, and Outlow

and Outhigh are, respectively, the 20% of Vi(low) and the 30% of Vi(high).

• Edge (V Edg
i ): The Canny edge detector [28] is adopted for identifying the horizontal and vertical

edges in an image
VEdg

i = Canny(Vi).

• Corner (VCor
i ): Corners are regions in which we observe a very high variation in intensity in all

directions. Therefore we apply the Harris corner detector [29] which is robust to illumination,
rotation, and translation.

• Ridge (V Rid
i ): As multiple objects reside in an image scene, ridge ending and bifurcations (Figure 5)

can be a significant feature source for saliency estimation since they allow to detect points in
the image when a change happens. In this work we adopt the ridge extraction technique proposed
in [30]. The viewport image is first binarized and subsequently, a morphology-based thinning
operation is performed.

Figure 5. Illustration of ridge ending and bifurcation [31].

• Shape (V Hou
i ): The Hough transform [32] is used for detecting regular shapes such as lines,

circles and centroid points [33] of connected objects.
• Orientation (VOri

i ): In order to extract information on orientation we follow the approaches based
on Gabor filtering as suggested in [34,35].
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2.4. Foreground Extraction

As stated in the Introduction, human perception is highly influenced by the objects located in
the foreground regions [9]. Based on this evidence, we extract the foreground of an image and use it
as feature. The graph-based foreground/background extraction approach proposed in [36] is adopted.

A region is classified as foreground according to two factors: Distance from image boundary
and distance from local neighbourhood. A superpixel-based SLIC segmentation [37] is performed
on the viewport image. An optimization framework [38] is used for combining the foreground
and background connectivity maps by considering three constraints:

1. Superpixels with large values in the foreground map are salient;
2. superpixels with large values in the background map are non-salient;
3. superpixels that are similar and adjacent should have the same saliency values.

We extract the pixels marked as foreground and assign to them the highest pixel intensity.
Pixels considered as belonging to the background, are set at the lowest intensity. All pixel intensities
are then normalized between 0 and 1 to obtain the final foreground map VFore

i . Figure 6 depicts
the steps described above.

(a) Sample image (b) Boundary contrast map (c) Boundary superpixels

(d) Background connectivity map (e) Foreground connectivity map (f) Foreground region identified

Figure 6. The steps involved for foreground extraction (a–f) are depicted using a sample image from
MIT1003 Dataset [39].

2.5. Feature Integration

Low-level image features are combined for generating the saliency maps for each viewport.
In more details: A linear combination of color, intensity, contrast, edge, corner, ridge, shape,

and orientation is performed to generate the low-level feature map VLFM
i

VLFM
i = VC

i + V Int
i + VCnt

i + VEdg
i + VCor

i + VRid
i + VHou

i + VOri
i . (4)

Then, the maximum pixel value between VLFM
i and the foreground map VFore

i is selected as weight
of the final viewport saliency map SalVi

SalVi = maximum(VLFM
i , VFore

i ). (5)
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Following the approach adopted in [14], the saliency maps of each viewport are re-projected to
a single equirectangular saliency map for further processing and comparison with the ground truth.
Coordinates for the equirectangular saliency map are computed as

Salequirect(x, y) =


x : Iwidth ·

( ang
2π

)
y : Iheight ·

arcsin(Mproj
Vi

(z))

π + 0.5


 (6)

where, Iwidth, Iheight are the input 360◦ image width and height, respectively, and ang is computed from

the four-quadrant tangent function as tan−1(Mproj
Vi

(x), M
proj

Vi
(y)).

2.6. Post-Processing

To cope with the fact that users tend to concentrate more on the equator region of a 360◦ image,
the proposed approach gives highest weight to equator pixels, to obtain Iequibias. To this aim, a Laplacian
fitting approach based on probability density function [40] is used to compute pixel weight of the input
360◦ image. Then, the equator biased saliency map Salequibias is computed as

Salequibias = Salequirect + Iequibias. (7)

To control the impact of illumination on Salequibias, we utilise the anisotropic diffusion
technique [41]. It is applied to the luminance component of the input 360◦ image to generate
a binarized image Ibin. The zero pixels in Ibin represent the low illuminated regions. They are modified
by performing the average of [3× 3] neighbourhood in Ibin and the resultant binary image is Ibin’.
After this operation, there will still be 0-valued pixels in Ibin’ and they need to be normalized. Therefore,
the pixels in Salequibias that correspond to the 0 pixel locations in Ibin’ are selected for illumination
normalization as

Sal f inal(x, y) =

{
Salequibias(x, y) i f I

′
bin(x, y) = 1

0.6 ∗ Salequibias(x, y) i f I
′
bin(x, y) = 0

}
(8)

Sal f inal is the final estimated 360◦ saliency map for the proposed model FISEM.

3. Experimental Results

The proposed FISEM model is evaluated by using the Salient360! [42] head only dataset.
The dataset consists of 85 omnidirectional images and their corresponding ground truth saliency maps.
For performance evaluation we select the Correlation Coefficient (CC) and Kullback–Leibler Divergence
(KLD) metrics. CC evaluates the statistical relationship between two saliency maps (estimated and ground
truth). A higher correlation depicts better estimation of saliency. The KLD measures the deviation of
probability distribution of the estimated image and the available ground truth. A lower KLD indicates
better saliency estimation. As per the saliency benchmarks [43], these two metrics (CC and KLD)
are the standard metrics used for evaluating head movement based saliency models. The proposed
FISEM is compared with two baseline saliency estimation models: Boolean map saliency (BMS) [10]
and extended Boolean map saliency (EBMS) [11]. Furthermore, we compare our approach with eight
existing state-of-the-art 360◦ image saliency estimation approaches: SJTU [16], COSE [15], RM3 [14],
JU [12], LCSP [13], and TU1, TU2, and TU3 [17].

FISEM is implemented in a 3.3 GHz quad-core 64-bit Windows 10 desktop machine with 8 GB
memory. Matlab platform is used for programming the FISEM saliency model. The dimension of
the 360° images in Salient360! dataset ranges from 910× 450 pixels to 18264× 9132 pixels. All the images
in Salient360! were resized to 1920× 1080 pixels and used in the FISEM model. The proposed model
takes a total of 22 minutes to estimate saliency map of a 1920× 1080 pixels 360° image.
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The HMD used for generating the dataset in [42] had field-of-view (FOV) of 100◦ and resolution
of 960× 1080 pixels. Therefore, for generating viewports for each 360◦ image we set resolution of
1920 × 1080 pixels (see Section 2.1). The Laplacian curve fitting used for incorporating equator bias
needs two parameters. The scale parameter that depicts diversity is set at 15 and the location parameter
defined as a latitude while viewing image in head mounted displays is set at 90. For the Salient360!
dataset, the global average pixel weight (gAPW) is obtained at 106.

Experimental Results and Analysis

The experimental results are depicted in Table 1. In Table 1a the average value of CC and KLD
over all the 85 omnidirectional images are presented for our approach and the compared approaches.
Table 1b,c showcases the best and worst performing images in the Salient360! dataset for the proposed
model FISEM.

Table 1. (a) Performance comparison averaged on the images in the dataset [42]. (b) and (c) are the best
and worst performing images with the feature integrated 360◦ image saliency estimation model (FISEM)
approach, respectively.

(a) Results on the test dataset.

Model CC↑ KLD↓
FISEM 0.69 0.47
SJTU [16] 0.67 0.65
COSE [15] 0.65 0.72
TU1 [17] 0.62 0.75
TU2 [17] 0.56 0.64
EBMS [11] 0.57 0.8
RM3 [14] 0.52 0.81
JU [12] 0.57 1.14
BMS [10] 0.51 0.94
LCSP [13] 0.43 0.78
TU3 [17] 0.44 1.09

(b) Best performing images.

Metric P28 P76 P95 P85

CC 0.87 0.83 0.83 0.82
KLD 0.26 0.37 0.47 0.32

Metric P27 P28 P17 P35

KLD 0.23 0.26 0.27 0.28
CC 0.66 0.87 0.67 0.77

(c) Worst performing images.

Metric P15 P10 P23 P31

CC 0.11 0.42 0.46 0.49
KLD 0.96 0.64 0.75 0.34

Metric P33 P4 P64 P43

KLD 2.22 1.84 1.40 1.19
CC 0.67 0.62 0.6 0.68

BMS and EBMS are the two baseline models for estimating saliency in 2D images; therefore, their
approaches do not consider the peculiarities of a 360◦ image, such as projection artifacts, attention
bias, etc. However, for performance comparison with these baselines on the 360◦ images, we adapted
the BMS and EBMS algorithms to work for 360◦ images. We perform equirectangular projection for
extracting viewports and subsequently, apply the standard BMS/EBMS on the viewports. It can be
noted that FISEM uses equirectangular projection; therefore, for the sake of comparison we choose this
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projection technique for implementing BMS and EBMS on the Salient360! dataset. The BMS approach
obtained CC and KLD of 0.51 and 0.94, respectively, whereas, the EBMS produced much improved
results of 0.57 (CC) and 0.8 (KLD) for the Salient360! dataset. However, both BMS and EBMS approach
underperform for 360° images when compared with our proposed approach.

Next we analyse performance of state-of-the-art algorithms in 360◦ saliency estimation with
respect to the proposed FISEM and we have analysed the best and worst performing images. Table 1b
shows the best performing images in Salient360! using our proposed FISEM approach. We selected
the top four images with the highest CC and the top four images showing the lowest KLD. Similarly,
Table 1c shows the worst performing images both in terms of CC and KLD values. The original images,
ground truth saliency maps, and the estimated saliency maps using FISEM for all the best and worst
performing images are shown in Figures 7 and 8, respectively.

It can be observed that the uniform distribution of luminance and presence of identical image
texture affects the performances of the proposed method. For example, images 27 and 28 are uniformly
illuminated. Generally an omnidirectional image is affected by a series of distortions, starting from
image capture to rendering in the head mounted displays [44]. Our analysis on the performance of
FISEM reveals that the least geometrically distorted images performed better with FISEM. For example,
images such as 4, 10, and 64 are very distorted and such geometric distortions near to the periphery
affect overall saliency estimation. Along with the distortion artefacts we also observed that saliency is
driven by the content depicted in the image. For reference, in images 15, 33, and 43 the subjects mostly
focus their attention towards a particular region of the image, even though they had the possibility of
free exploration of the entire content.

Interestingly, in these three images (15, 33, and 43) it can be noticed that the most salient regions
(with respect to ground truths) do not have any particular interesting or unique object that could
attract attention. Therefore, the possibility of performing an object detection and using it for saliency
estimation might not always produce better results. Similarly, presence of human faces predominantly
attract human attention, and this has been proven in several research works [15,16]. While FISEM does
not directly utilise face detection or object detection, it however performs foreground extraction that
can depict nearly similar features.

Currently there is an ongoing effort towards understanding the characteristics that drive
the human exploration of 360◦ images but the task of saliency estimation is still very challenging.
As an example, image 23 (Figure 8g) can be used as an excellent reference image. It has 19 persons
standing with prominent frontal faces. However, the ground truth image (Figure 8h) depicts that
subjects mostly looked at two wall paintings having distorted images of human faces instead of
focusing on faces of real persons standing with clear frontal faces.

In order to better explain the obtained result, we analyzed the different approaches that have
been compared.

The LCSP [13] approach uses single-scale retinex with adaptive smoothing for illumination
normalization. This normalization approach is applied on all viewport images without discriminating
them on basis of pixel intensities. FISEM instead discriminates the viewports based on their illumination
condition as over, nearly and under illuminated. Based on this analysis it adopts different strategies
for handling the over and under illuminated viewports instead of applying the same normalization on
all viewports.
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(a) Image #28 (b) Ground truth (c) Estimated saliency

(d) Image #76 (e) Ground truth (f) Estimated saliency

(g) Image #95 (h) Ground truth (i) Estimated saliency

(j) Image #85 (k) Ground truth (l) Estimated saliency

(m) Image #27 (n) Ground truth (o) Estimated saliency

(p) Image #17 (q) Ground truth (r) Estimated saliency

(s) Image #35 (t) Ground truth (u) Estimated saliency

Figure 7. The first column shows the best performing images from Salient360! dataset. The second
column shows the corresponding ground truth saliency maps. The third column shows the estimated
saliency map using the proposed FISEM approach.
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(a) Image #15 (b) Ground truth (c) Estimated saliency

(d) Image #10 (e) Ground truth (f) Estimated saliency

(g) Image #23 (h) Ground truth (i) Estimated saliency

(j) Image #31 (k) Ground truth (l) Estimated saliency

(m) Image #33 (n) Ground truth (o) Estimated saliency

(p) Image #4 (q) Ground truth (r) Estimated saliency

(s) Image #64 (t) Ground truth (u) Estimated saliency

Figure 8. Cont.
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(v) Image #43 (w) Ground truth (x) Estimated saliency

Figure 8. The first column shows the worst performing images from the Salient360! dataset. Th second
column shows the corresponding ground truth saliency maps. The third column shows the estimated
saliency map using the proposed FISEM approach.

The JU approach in [12] combines the luminance and color features at superpixel level. It also
introduces boundary connectivity maps for saliency estimation. However, basic image features
such as color, luminance contrast, and GBVS used in the state-of-the-art [12,17] are not the only
features that are significant for saliency estimation. This has been investigated in the saliency
estimation approach in SJTU [16] in which image symmetry, Torralba saliency, and image contrast
are considered for extracting low-level image features. The feature-based approach in [14] performs
a Gabor filter based texture detection and considers it as an image feature along with the standard
color features. Image edge and entropy are combined with color and luminance in [15] for detecting
the low-level features. Different from the approaches in [14–16], FISEM utilises a set of new features.
Among the adopted features FISEM utilises various geometry-based ones such as image corners, ridge,
shape, and orientation. Since geometrical shape of physical world objects help in visual perception
of a scene [20], the adoption of these features improve the performances of FISEM with respect to
the benchmarks.

State-of-the-art approaches in the literature do not predominantly utilise the foreground
information of an image as a feature channel for saliency estimation. However, as stated in [8,9]
human perception is more influenced by objects in the foreground than the background objects in
an image. In this regard, we exploit the image background connectivity maps. The results presented
in Table 1 highlight the importance of image foreground for saliency estimation of omnidirectional
images.

4. Conclusions

A feature integrated 360◦ image saliency estimation model is proposed in this work. The proposed
model FISEM, combines multiple low-level image features together with foreground extraction for
saliency estimation. Along with the commonly used features such as color, intensity, and edge,
our model focuses on the image features that are more inclined towards the image geometry.
Image geometrical features such as orientation, shape, ridge, and corner are extracted from the image
before fusing them together for estimation. Further, the estimated saliency map is post-processed
for addressing the equator bias and illumination normalization. Performance of the proposed model
is evaluated on a benchmark 360◦ image dataset. Obtained results show that FISEM outperforms
the existing saliency estimation approaches.
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