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Abstract 

Elderly people perform more slowly movements of everyday life as rising from a chair, walking, 

and climbing stairs. This is in the first place due to the loss of muscle contractile force which is 

even more pronounced than the loss of muscle mass. In addition, a secondary, but not negligible, 

component is the rigidity or increased stiffness which requires greater effort to produce the same 

movement and limits the range of motion of the joints. In this short review, we discuss the 

possible determinants of the limitations of joint mobility in healthy elderly, starting with the age-

dependent alterations of the articular structure and focusing on the increased stiffness of the 

skeletal muscles. Thereafter, the possible mechanisms of the increased stiffness of the muscle-

tendon complex are considered, among them changes in the muscle fibers, alterations of the 

connective tissue components, i.e., extracellular matrix (ECM), aponeurosis, tendon and fascia, 

and remodeling of the neural pattern of muscle activation that increases antagonist co-activation. 
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 The decrease of mass and strength are the hallmarks of 

the skeletal muscle aging. The decrease in muscle 

contractile performance has an impact on mobility of the 

elderly people, sets limitations to independent life and 

increases the risk of falls, but further limitations to the 

mobility of elderly people come also from other factors 

as the reduction of range of motion of the joints (see 

Figure 1). Joint mobility declines as age increases, with a 

more rapid reduction during the ninth decade. The range 

of motion is reduced and more force is required for 

movement.1 Not all joints and not all movements are 

equally impaired. For example, only a limited decline is 

reported for knee flexion-extension, while a greater 

reduction (up to 20%) is reported for hip extension,2 and 

for calf dorsiflexion.3,4 In the upper part of the body 

pronounced reduction of mobility of shoulders occurs in 

elderly,5,6 and reduced flexibility of the neck is very 

common, particularly in elderly males (see for review 

and meta-analysis Pan et al.7). Several factors contribute 

to the decrease in joint mobility, among them changes in 

mechanical properties of the joints,8 of the fascia,9 and of 

the muscle-tendon complex.10,11 Alterations of the 

nervous commands can also contribute to reduce joint 

flexibility, e.g., with increased antagonist co-activation.12 

Age-dependent changes in mechanical properties 

of the joints 

The age-related limitation of joint mobility (LJM) 

recognizes several determinants (see for a review Abate 

et al.8), among them:  

i) Thickening and structural alterations of the joint 

capsule. Parts of the capsule become 

fibrocartilaginous and pressure resistant, with 

accumulation of glycosaminoglycans and, in some 

cases, type II collagen, typical of cartilage (see e.g. 

Ralphs and Benjamin).13 Age related alterations 

involve also the fibro-cartilages associated with the 

capsule, as the knee menisci (see for a review, Tsujii 

et al.14); 

ii) Stiffening of the ligaments, which can nowadays be 

evaluated with shear wave elastography. A recent 

study has shown the stiffening of coraco-humeral 

ligament in elderly and demonstrated a strong 

correlation with the reduction of shoulder range of 

motion (ROM) in abduction and extra-rotation.15 

Reduction of blood flow to the capsule and the 

ligaments seems to be an important pathogenic factor 

in determining the age-related alterations.16,17 At 

molecular level, the main biochemical abnormality, 
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common to aging and diabetes, is the non-enzymatic 

glycosylation of collagen, with advanced glycation 

end product (AGE) formation, which in turn leads to 

an increase of collagen cross-links; 

iii) Beside the involvement of articular connective 

structures, the age-related changes affect both the 

structural and matrix composition of articular 

cartilage (see for a review Toh et al.18) and the 

properties and functions of chondrocytes which loose 

proliferation rate and matrix biosynthetic activity 

(aggrecan and type-II collagen). Proteoglycan 

production, glycosaminoglycan (GAG) content, 

matrix metalloproteinase (MMP)-2 activity are 

significantly reduced while AGE accumulation is 

increased in articular cartilage of healthy elderly.  

In this regard, it is important to note that osteoarthritis is 

not an inevitable consequence of aging and cannot be 

considered only a simple “wearing out” of the joints. The 

aging-related changes in the joints can be distinguished 

from those due to disease, see for a review Loeser.19 

Age-related alterations of muscle-tendon complex 

The stiffness of the muscle-tendon complex determined 

in situ increases with aging and this is mainly attributed 

to an increased stiffness of the muscles, as tendons 

undergo to an increase of compliance (see also below). 
20,21 Studies on ex vivo isolated muscles of rodents have 

shown that the length-passive tension curves are more 

steep in old than in young animals, thus confirming an 

age-dependent increase of stiffness.22,23 Accordingly, 

determination of passive stiffness with sinusoidal 

oscillations confirmed that resting soleus is stiffer in 23 

mo old rats than in young 3 mo rats (Figure 2).24 There 

are, however, contrasting reports of unchanged passive 

stiffness in hind limb muscles of old (33 mo) rat 

compared to young adult (7 mo).25 The stiffness of 

human muscle in situ has been determined with different 

approaches. Stiffness at rest has been evaluated by 

measuring the resistance to stretch and found to be 

increased in elderly in several studies (see e.g. Blanpied 

and Smidt)26 comparing plantar flexors of young and old 

women. Palmer and Thompson27 comparing hamstrings 

in young and old men, or with quick release movements 

(see e.g. Ochala et al.28 comparing plantar flexors in old 

and young men, Valour an Pousson29 comparing elbow 

flexors at different ages). Sobolewski and co-workers 

have measured not only stiffness during a 10° passive 

dorsal flexion of the ankle,30 but also stress relaxation and 

found that the stiffness was higher while stress relaxation 

was lower in elderly men (67 y) compared to young (24 

y). In contrast, recent determinations based on shear 

wave elastography have found a decreased stiffness of 

leg muscles in shortened position and a preserved, but not 

increased, stiffness in stretched position in older (77-94 

y) compared to young (20-35y) subjects.31 Importantly, 

the age-related increase in stiffness of the muscle-tendon 

complex has been considered relevant to the preservation 

of eccentric force in the elderly. The earlier observations 

that, in the elderly, the force generated in eccentric 

contraction of leg extensor muscles is reduced less than 

force developed during isometric and concentric 

contractions date back to ‘90s.32,33 As summarized in the 

review by Roig and coworkers,34 the preservation of 

eccentric force and/or torque was confirmed by several 

subsequent studies in different age groups, different 

joints and different joint angular rotation velocities. The 

 
Fig 1. Schematic outline of the factors playing a role in determining the limitation of the joint mobility in the elderly. 

Changes in resting muscle mechanical properties play an essential role. 
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search for a mechanistic explanation has considered 

multiple alternatives from increased antagonist co-

activation,35,36 to increased whole muscle stiffness with a 

possible relevant contribution of ECM and connective 

tissue to an intrinsic alterations of the contractile 

mechanism at cross bridge level.37-39 It is worth to recall 

that the preservation of eccentric strength in the elderly 

has been considered of interest for training and 

rehabilitation. Eccentric contractions have a better 

efficiency than concentric contraction (i.e. muscle force 

is achieved at a lower metabolic cost) and thus eccentric 

contractions might offer a possibility to increase the 

intensity of resistance training (greater loads) in elderly 

with limited muscle capacity.40,41 Beside the possible 

specific contribution to the preservation of eccentric 

force, the increase of muscle stiffness with aging is 

relevant for the motor performance of elderly people and 

enjoys a strong experimental support. It is, therefore, 

worth to discuss analytically the possible determinants. 

The whole muscle stiffness depends on the mechanical 

properties of muscle fibers and ECM, which includes 

endomysium in direct contact with individual fibers, 

perimysium, which surrounds fiber bundles or fascicles 

and epimysium which covers the whole muscle belly. In 

addition, the mechanical properties of the tendon and of 

the aponeurosis give a significant contribution to the 

elasticity of the muscle-tendon complex. Finally, if the 

muscle-tendon complex is investigated in situ, the motor 

neuron discharge needs to be taken into account even at 

rest.  

Changes in resting mechanical properties of muscle 

single fibers with age 

While a large body of experimental evidence is available 

regarding the age-dependent alterations of the contractile 

properties of single muscle fibers (see for example 

Trappe et al.42 or D’Antona et al.43), much less data are 

available on their mechanical properties at rest. The few 

data available are conflicting as a recent paper by Lim et 

al.44 has shown an increase of passive stiffness in single 

fibers from elderly humans (average 79 y) compared to 

those of young subjects (25 y), while Wood et al.23 have 

not found any difference in single muscle fibers from 

adult (8-10 mo) and old (28-30 mo) mice.  These 

contrasting findings propose alternative explanations for 

the age-dependent increase of muscle stiffness. The 

results of Lim and coworkers suggest a major 

contribution given by the change in mechanical 

properties of muscle fibers,44 while the results of Wood 

et al.23 identify ECM and connective tissues as the only 

responsible. A comparison is possible with the increase 

of stiffness of skeletal muscles of patients with spasticity 

due to lesions of the upper motor neuron. The patients 

with spasticity display an increased muscle rigidity, 

which is partly caused by an exaggerated stretch reflex 

and partly by altered mechanical properties of the muscle 

at rest. In particular, the isolated muscle fibers of the 

patients are characterized by shorter slack length and 

increased resting tension.45,46 It is widely accepted that 

mechanical properties of individual muscle fibers at rest 

are determined by titin,47 with minor contribution of other 

extra-myofibrillar proteins as desmin (see also the review 

of Schiaffino and Reggiani).48 Thus, a change in passive 

tension might be attributed to the presence of specific 

titin isoforms. Experimental evidences show a link 

between long titin isoforms and low passive tension in 

slow fibers and shorter isoforms and higher passive 

tension in fast fibers of rabbit,47,49,50 and rat.51 In contrast, 

 

Fig 2. Determination of mechanical stiffness of isolated Soleus muscle of the rat at rest. A: length changes of soleus 

muscle lengthened and shortened ±15% of optimal fiber length (Lf) at 1 Hz with smaller (±0.5%Lf) oscillation 

at 75 Hz superimposed. B: corresponding force changes of soleus muscle during changes in muscle length. 

C: passive stiffness (N/cm2) of rat soleus at 111% optimal length from young (3 mo) control (YC), young (3 

mo) trained (YT), old  (23 mo) control (OC), and old (23 mo) trained (OT) groups. D: the same at 115% 

optimal length. Means ± SE. (Reproduced with permission from Gosselin et al 1998,24 modified. License 

numbers 4800981198132 and 4803160486433) 
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no difference in resting mechanical properties has been 

found comparing slow and fast single fibers of healthy 

human muscles.46,50 An explanation for the possible 

difference observed in relation with aging,44 or 

spasticity,45,46 can be found in post-translational 

modifications of titin (phosphorylation and oxidative 

modifications)52 or in calcium dependent changes of the 

titin properties.53 Alternatively, the possibility that 

remnants of extracellular collagen molecules are still 

present in dissected single fibers and thus contribute to 

their mechanical properties has been considered.44,46 

Changes of muscle extracellular matrix with age 

Muscle fibers are embedded in a connective tissue 

network which consists of three layers: the endomysium 

surrounding muscle fibers, the perimysium surrounding 

fascicles, and the epimysium surrounding the entire 

muscle (for a comprehensive review, see Kjaer).54 The 

collagen fiber network of the ECM is a major contributor 

to the passive force,55 in addition to its role in force 

transmission during contraction.56,57 Due to its structural 

arrangement in close relation with muscle fibers, the 

determination of the mechanical properties of ECM is 

extremely difficult. An approach based on comparison of 

mechanical properties of bundles (fibers and ECM) and 

single fibers has been developed by Meyer and 

Lieber,58,59 and applied to age-dependent alterations of 

murine muscle by Wood et al.23 and to human skeletal 

muscles by Marcucci et al.60 Both the results of Wood et 

al.23 and Marcucci et al.60 have shown that ECM is 

responsible for a substantial proportion of resting 

stiffness and passive tension. In aged mice muscle, at 

sarcomere length around 3 μm, passive tension and 

stiffness are double in fiber bundles compared to single 

fibers dissected from old but not from young mice.23 The 

biomechanical difference was tentatively related to a 

change in ECM composition (accumulation of AGE, 

increase of hydroxiproline content) as the histologically 

determined amount of ECM was unchanged.23 The 

accumulation of AGE and the increase of collagen 

content has been reported also by Kragstrup et al.61 

A similar analysis of resting stiffness and tension in 

muscle fiber bundles from elderly humans,60 yields 

values of tangent stiffness modulus of ECM higher than 

those of single fibers (Figure 3). This further 

demonstrates the major role played by ECM in 

determining the biomechanical properties of skeletal 

muscles of elderly at rest. Uniaxial stretching tests have 

been carried out on epimysium dissected from tibialis 

anterior of rats of different ages and have shown that, the 

epimysium from old rats is much stiffer than that of the 

young rats with no detectable differences in the 

ultrastructure and thickness of the epimysium or size of 

the collagen fibrils.62 

Age-related changes in mechanical properties of 

tendons and aponeuroses 

In contrast with the increase in stiffness of the tendon-

muscle complex, there is evidence that tendons undergo 

to reduction of stiffness with aging. This was first shown 

by Onambele et al.21 who compared Achilles Tendon in 

three groups of age 24 y, 46 y and 60 y (see figure 4) and 

recently confirmed by Delabastita et al.63 who published 

a systematic literature review. Similar reductions have 

been reported in very old people (comparing 65 y to 83 

y) for the patellar tendon by Eriksen et al.64 and by Hsiao 

 

Fig 3. Contributions of fibers and Extracellular Matrix elasticity to the elasticity of a muscle fiber bundle. Left panel: 

Resting tension vs sarcomere length of fiber bundles (blue dot experimental data, means and SD, brown curve 

mathematical interpolation) is shown with the component due to muscle fibers (yellow curve) and the 

component due to ECM (red curve). Right panel: tangent stiffness vs. sarcomere length for fibers (yellow 

curve) and for ECM (red curve). The latter is obtained from the analytic calculation of the specific 

contribution of ECM to passive tension (see left panel) (from Marcucci et al 2019).60 
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et al.65 who compared, using shear wave elastography, a 

group of elderly (60-70 y) with two groups of younger 

subjects. In the upper limb similar age-related 

biochemical and mechanical alterations have been 

reported for the tendons of biceps, supraspinatus and 

subscapularis involved in the structure and function of 

the rotator cuff.66 In vitro studies confirm that tendons 

become weaker or more compliant with aging (see for 

example Vogel,67 Nakagava et al.68, Dressler et al.69). 

Aponeuroses undergo to age-dependent changes similar 

to those observed in the tendons. Aponeuroses are 

connective tissue sheets, continuous with tendons, and 

providing a broad insertion point for muscle fibers. The 

collagen organization is similar to that of the tendons, and 

the few stiffness measurements indicate values and trend 

of changes not far from those measured in the tendon. For 

example, measurements of calf muscle aponeuroses and 

Achilles tendon by shear wave elastography have shown 

a reduced stiffness (lower shear wave speed) in adult and 

old men compared to young.70 At cellular and molecular 

level, the main aging-related changes of the tendons are 

the decreased cellular density, the reduced turnover of the 

matrix protein, the increase of AGE and possible 

reduction in size and density of collagen I fibrils (see for 

reviews Reeves et al.10 and Svensson et al.71). Although 

the changes of tendon properties might be attributed to a 

reduced mechanical loading, it is still debated whether 

resistance training is able to reverse the change.64,71 

Changes of structural and mechanical properties of 

the fascia with aging 

Fascia is a web of connective tissue that wraps around all 

muscles, contributes to transmitting the muscular forces 

at a distance and connects the different segments of the 

limbs, thus affecting joint mobility.72,73. The mechanical 

properties of deep fasciae strongly affect muscular 

actions. Determinations of the mechanical properties of 

temporal fascia samples have shown an increased 

stiffness in older compared to younger subjects.74 

Correlations between lumbar and hamstring flexibility 

with thickness of the fascia have demonstrated that 

increased thickness of the fascia is associated with 

reduced flexibility in older (69 y) compared to young (22 

y) women.9 

Increased antagonist coactivation in the elderly 

Antagonist co-activation is a factor which should not be 

overlooked when considering the reduction of joint range 

of motion and the increased stiffness in the elderly. There 

is a marked difference in the strategy adopted by central 

nervous system to generate a given torque in an elderly 

compared to a young person. While in a young person, 

the torque at a joint is obtained by optimal scaling of the 

activation of the agonist and the concurrent activity of the 

antagonist muscles, in an elderly the same torque is 

obtained with virtually complete activation of the 

agonists counteracted by a disproportionate co-activation 

of the antagonist muscles. This strategy is likely adopted 

by the elderly in order to stiffen and stabilize the joints 

and compensate for loss of muscle force and for ligament 

laxity (see Hortobagyi and Devita for a review and a 

discussion of possible mechanisms).36 The antagonist co-

activation is typically present during voluntary 

movement and automatic movement as locomotion but 

can possibly be present at rest and contribute to limitation 

of passive joint mobility. Available data show how the 

increase coactivation of knee flexors can impair the 

action of the quadriceps to produce knee extension in 

elderly (69 y) women.35 In contrast, there are data 

showing that antagonist (triceps) coactivation does not 

contribute to the increased stiffness of the elbow flexors 

(biceps brachii) in elderly (67 y) subjects.29 

 

Fig. 4. Human Gastrocnemius tendon force-elongation curves (left) and stress-strain curves (right) in three distinct 

age groups : young (24 y), middle age 46 y) and old (68 y). Data are means and SE. The reduction in elasticity 

in the elderly is easily detectable. (Reproduced with permission from Onambele et al. 2006,21 license number 

4802321103155.) 
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Multiscale modelling of muscle structure 

The assessment of the relative influence of all the age-

related modifications reported above, on the limitation of 

joint mobility, is a complex problem. In this task, the 

multiscale modelling of the muscle structure could be an 

extremely helpful tool. Here we shortly report some of 

the results obtained in this growing field and our view of 

its future development. For a quantitative estimation of 

the tension distribution, a three-dimensional macroscopic 

model of muscle, which includes fibers and connective 

tissue, is required. The main active and passive properties 

in the single fibers are sufficiently well reproduced by the 

Hill’s three-elements model.75 Leaving apart more 

mechanistic models based on the Huxley 1957 original 

framework,76 needed to explain new experimental data at 

the fiber level (see for instance our previous works).77–79 

Hill’s model, which contains a passive elastic element to 

represents the along-fiber passive component due to 

intra-sarcomeric proteins, has dominated the field for 

several decades and is still today a widely used tool to 

model muscle macroscopically. The Hill’s model is very 

flexible, and several implementations have been made to 

match more detailed behaviors.80 However, it is not based 

on the microstructure of the muscle. Beside fibers, 

muscle can be considered as a fiber-reinforced composite 

material,81 and the simplest way to bridge the single fiber 

model up to the macroscopic,82,83 or lower scales,84–86 is 

imposing some anisotropy, such as of transversally 

isotropic hyper elastic materials. However, as noted in 

Blemker et al.87, this approach makes virtually 

impossible to define a strain energy able to explicitly 

describe the physical properties of the intramuscular 

connective tissue. Since a model is reliable as long as its 

parameters definition is reliable, to analyze the effect of 

material modification with aging, more detailed 

microstructural models are required.  

We, and others, share the view that not only a detailed 

description of the fiber component (see Marcucci et al.)88, 

but also a precise description of the connective tissue, 

with an explicitly different material characterization and 

mesh in the finite element model,60 is required to 

numerically quantify the aging effects on the muscle 

stiffness (Figure 5). Several models with different 

degrees of complexity have been proposed in the last two 

decades. A single fiber surrounded by connective tissue 

in a simple 2D model to approach the issue of the lateral 

force transmission mechanism has been presented by 

Zhang and Gao.89 Bleiler et al.90 has proposed a 

microstructurally based bundle-level model where the 

helical arrangement of the collagen reinforcement is 

taken into consideration to estimate the effects of the age-

related modifications in the connective tissue. Recently, 

in Teklemariam et al. an analysis of the effect of different 

spatial redistribution patterns of activated fibers in young 

and old subjects has been made,91 where fibers and 

endomysium are modeled with different meshes and with 

two different hyper elastic constitutive models, showing 

that the different pattern distribution of force may affect 

the injury process in aged muscle activation. Separated 

meshes for the fibers and connective tissue have been 

used also in Sharafi and Blemker,92 showing that higher 

fiber volume fraction (i.e. smaller relative amount of the 

connective tissue) transmits higher amounts of force 

transversely. Preservation in eccentric force in aged 

muscle, as described in previous sections, has been 

addressed in the model proposed by Zhang et al.93, where 

a cellular-scale honeycomb-like microstructural muscle 

model is proposed. Here, differences in age are related to 

experimental data on rat and mice. Muscles with the 

 

Fig 5. Schematic description of a finite element model based on the Hill’s three-element model for a bundle of seven 

muscle fibers surrounded by the endomysium. The two materials can then be defined with two different meshes for a 

micromechanical characterization of the connective tissue. The model components are CE or Contractile Element, 

SE or Series Elastic Element, PE or Parallel Elastic Element and PECM or Parallel Element related to ECM 

properties. From Marcucci et al. 2019. 60 
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higher passive stiffness, observed in old mice, generate 

smaller force in concentric contraction, but an enhanced 

force in eccentric contraction. Similarly, higher amount 

of connective tissue in old subjects generates a higher 

tension in eccentric contraction, but only at high 

stretches. Beside the characterization of endomysium, 

similar works are present for epimysium such as in Gao 

et al.94 These kinds of studies, and their future 

implementations to a macroscopic model, are crucial for 

our understanding of the problem addressed in this 

review.  

Conclusions 

In conclusion, the available evidences point to an 

increase of muscle stiffness with aging. The muscle-

tendon complex becomes more rigid and, since tendon 

stiffness is reduced in elderly, muscle stiffness is 

expected to increase. Such increase is likely due to 

change in ECM and connective tissue, although some 

data on single fibers also suggest a contribution due to 

increased stiffness of single fibers. The change of muscle 

stiffness has been considered beneficial as it might 

contribute to the preservation of eccentric force which 

has been reported in elderly people. However, the change 

in muscle stiffness can have a significant impact on the 

reduction of joint motility. This implies not only reduced 

range of motion but also the need of greater force to 

produce the same change of joint angle and this can be a 

problem in view of the concomitant loss of muscle force 

of elderly people. In this regard the control of muscle 

stiffness can be an important target for rehabilitation and 

physiotherapy, although available evidence suggest that 

the real impact of stretch training or physiotherapeutic 

interventions is limited.95 
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