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The accurate and reliable simulation of subsurface processes is fundamental to sup-

port engineering activities in energy resources field. Subsurface activities can have sig-

nificant environmental effects, e.g., earthquakes, land subsidence, fault (re)activation

or landslides. These impacts should be predicted and controlled by developing accu-

rate and reliable numerical models.

An accurate modeling activity generally requires large domains with high resolu-

tion representations of geological structures and their heterogeneous properties. This

is especially true in fractured domains, where the simulation of flow and deforma-

tion mechanisms is a tightly coupled process. In addition, the solution of the hydro-

mechanical coupling in fractured domains usually requires the solution of a sequence

of large-size, non-symmetric and ill-conditioned systems of equations. In this context,

to improve the efficiency and robustness of linear solvers, it becomes fundamental the

design of ad-hoc preconditioners tailored on the specific problem to solve.

In this thesis, a preconditioning framework is developed and adapted for three

models describing the flow and deformation processes in fractured domains. The

framework basically consists in: (i) a symbolic permutation of the coefficient matrix

blocks in order to avoid singular leading blocks, if any, and to project the Schur com-

plement onto different spaces; (ii) a block-factorization of the coefficient matrix, which

allows to isolate the subsystems from the original coupled problem and (iii) an approx-

imation of the single blocks. According to the reordering of the unknowns and the
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techniques used for the approximations, different preconditioners can originate. For

each analyzed model formulation, two or more alternative preconditioners are devel-

oped and tested against a set of numerical cases.

Uncertainties and approximations unavoidably affect any kind of mathematical

model of real-world problems. In subsurface applications, uncertainties can be related

for instance to the geometry and the mechanical behavior of the porous medium, the

variability ranges of the main mechanical parameters, the imposition of the external

forces and the boundary conditions. Thus, deterministic model outcomes may induce

an excessive confidence in the solution, and stochastic approaches should be preferred.

In this thesis, the focus is on the numerical prediction of land subsidence caused by

fluid withdrawal. A methodological approach is proposed to take into account uncer-

tainties into the numerical model, and then train it with the available measurements by

the aid of three data assimilation steps. Data assimilation techniques allow to evaluate

the model outcomes and update them according to the observations. The expectation

is to progressively reduce uncertainties as new measurements become available and

the knowledge of the phenomenon increases.

The validation of the methodological approach is performed against a synthetic but

realistic test case. Then, it is applied to the development of an Italian off-shore reservoir.
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L’accurata e affidabile simulazione dei processi del sottosuolo è fondamentale per

supportare le attività di ingegneria nel campo delle risorse energetiche. Le attività del

sottosuolo possono avere effetti ambientali significativi, come ad esempio sismi indotti,

subsidenza, (ri)attivazione di faglie o smottamenti. Questi impatti dovrebbero essere

predetti e controllati attraverso lo sviluppo di modelli numerici accurati e affidabili.

Un’accurata attività di modellazione generalmente richiede grandi domini e la rap-

presentazione ad alta risoluzione delle strutture geologiche e delle loro proprietà. Que-

sto è particolarmente vero nel caso di domini fratturati, dove la simulazione dei mec-

canismi di flusso e deformazione è un processo fortemente accoppiato. Inoltre, la solu-

zione dell’accoppiamento idro-meccanico in domini fratturati solitamente richiede la

soluzione di una sequenza di sistemi di equazioni di grande dimensione, non simme-

trici e mal condizionati. In questo contesto, per migliorare l’efficienza e la robustezza

dei solutori lineari, diventa fondamentale definire precondizionatori ad-hoc su misura

per lo specifico problema da risolvere.

In questa tesi, un framework di precondizionamento è stato sviluppato e adattato

a tre modelli che descrivono i processi di flusso e deformazione in mezzi fratturati. Il

framework consiste fondamentalmente in: (i) una permutazione simbolica dei blocchi

della matrice del sistema per evitare blocchi singolari e per proiettare il complemento

di Schur in spazi diversi; (ii) una fattorizzazione a blocchi della matrice, che permet-

te di isolare i sottosistemi del sistema a blocchi originale e (iii) una approssimazione
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dei singoli blocchi. Diversi precondizionatori possono avere origine a dipendere dal

riordinamento delle incognite e dalle tecniche usate per le approssimazioni. Per ognu-

na delle formulazioni analizzate, due o più alternative di precondizionatori sono state

sviluppate e testate su un gruppo di casi test.

Incertezze e approssimazioni affliggono inevitabilmente qualunque tipologia di mo-

dello matematico di problemi reali. Nelle applicazioni del sottosuolo, le incertezze

possono essere connesse, ad esempio, alla geometria e al comportamente geomeccani-

co del mezzo poroso, agli intervalli di variabilità dei principali parametri meccanici,

all’imposizione delle forzanti esterne e delle condizioni al contorno. Pertanto, risultati

del modello deterministici possono portare a un’eccessiva confidenza nella soluzione,

mentre approcci stocastici dovrebbero essere prediletti.

In questa tesi, il focus è sulla previsione numerica della subsidenza causata dalla

estrazione di fluidi. Viene proposto un approccio metodologico per tenere in consi-

derazione le incertezze del modello numerico, e poi allenarlo con le misure disponi-

bili attraverso tre livelli di data assimilation. Le tecniche di data assimilation permet-

tono di valutare i risultati del modello e aggiornarli in accordo con le osservazioni.

L’aspettativa è di ridurre progressivamente le incertezze man mano che nuove misure

diventano disponibili e la conoscenza del fenomeno migliora.

L’approccio metodologico è validato in un caso test sintetico, ma realistico, e poi

applicato per lo sviluppo di un giacimento italiano off-shore.

vi



Contents

Abstract iii

Sommario v

List of Acronyms xii

1 Introduction 1
1.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Governing equations and mathematical model 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Flow model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Geomechanical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Modified Cam-Clay model . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Visco-elasto-plastic model . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Faults and fractures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Problem solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Preconditioners for coupled hydro-poromechanics in fractured domains 19
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 DFN stabilized Lagrangian formulation . . . . . . . . . . . . . . . . . . . 24

3.2.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.2 Discrete formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.3 Preconditioning framework . . . . . . . . . . . . . . . . . . . . . . 32

First method: traction-pressure-displacement approach . . . . . . 32
Second method: traction-displacement-pressure approach . . . . 35

3.2.4 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Test 1: Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Test 2: Mesh independence . . . . . . . . . . . . . . . . . . . . . . 43
Test 3: Realistic application . . . . . . . . . . . . . . . . . . . . . . 47

3.2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.6 Extension to fluid flow in the 3D porous domain . . . . . . . . . . 50

3.3 DFN penalized formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3.2 Discrete formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3.3 3×3 preconditioning framework . . . . . . . . . . . . . . . . . . . 54

3×3 block Jacobian: pressure - gap - displacement approach . . . 54
3×3 block Jacobian: gap - pressure - displacement approach . . . 55
Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.4 2×2 preconditioning framework . . . . . . . . . . . . . . . . . . . 61
2×2 block Jacobian: mechanic - pressure approach . . . . . . . . . 61

vii



2×2 block Jacobian: pressure - mechanic approach . . . . . . . . . 62
Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.4 DFN as a PDE-constrained optimization . . . . . . . . . . . . . . . . . . . 66

3.4.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.4.2 Discrete formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.4.3 Preconditioning framework . . . . . . . . . . . . . . . . . . . . . . 71
3.4.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4 A methodological approach for DA in geomechanics 79
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2 Overview of the methodological approach . . . . . . . . . . . . . . . . . 82
4.3 Identification of the sources of uncertainties . . . . . . . . . . . . . . . . . 84
4.4 Forward model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4.1 Geomechanical FEM simulator . . . . . . . . . . . . . . . . . . . . 87
4.4.2 Surrogate model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.5 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.6 Data Assimilation techniques . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.6.1 Diagnostic stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
χ2-test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Red Flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.6.2 Model update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Ensemble Smoother . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Multiple Data Assimilation . . . . . . . . . . . . . . . . . . . . . . 97

5 Application to producing hydrocarbon reservoir 99
5.1 Synthetic test case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.1.1 Model set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.1.2 Sources of uncertainty and generation of the ensembles . . . . . . 101
5.1.3 Field monitoring program . . . . . . . . . . . . . . . . . . . . . . . 103
5.1.4 Workflow validation . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Surrogate model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
χ2-test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Red Flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Ensemble Smoother . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Multiple Data Assimilation . . . . . . . . . . . . . . . . . . . . . . 119

5.1.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.2 real-world producing reservoir application . . . . . . . . . . . . . . . . . 125

5.2.1 Model set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.2.2 Sources of uncertainty and generation of the ensembles . . . . . . 129
5.2.3 Field monitoring program . . . . . . . . . . . . . . . . . . . . . . . 131
5.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Initial forecast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Update no. 1: year 7 . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Update no. 2: year 10 . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Update no. 3: year 13 . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.2.5 Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . 153

viii



6 Conclusions 157

Bibliography 163

ix





List of Acronyms

AE Average absolute Error

AES Average Ensemble Spread

AMG Algebraic MultiGrid

BiCGStab BiConjugate Gradient Stabilized method

CGPS Continuous Global Positioning System

DA Data Assimilation

DARTS Delft Advanced Research Terra Simulator

DFN Discrete Fracture Network

EnKF Ensemble Kalman Filter

ES Ensemble Smoother

FDM Finite Difference Method

FEM Finite Element Method

FSAI Factorized Sparse Approximate Inverse

FVM Finite Volume Method

GMRES Generalized Minimal Residual Method

gPCE Generalized Polynomial Chaos Expansion

KKT Karush–Kuhn–Tucker

LOO leave-one-out

MC Monte Carlo

xi



MCC modified Cam Clay

MDA Multiple Data Assimilation

PDEs Partial Differential Equations

PDF Probability Density Function

RF Red Flag

SPD symmetric positive definite

SPSD symmetric positive semidefinite

TPFA two-point flux approximation

VEP visco-elasto-plastic

xii



Chapter 1

Introduction

Many engineering activities rely on the accurate and reliable simulation of subsurface

processes, especially in the field of energy resources. The underground modeling is

used to predict the impacts of human activities and support the decisions of policymak-

ers and stakeholders. An accurate modeling activity is essential especially nowadays,

in order to mitigate the climate and energy crisis on a scientific basis.

Subsurface applications are related to, e.g., geothermal energy production [Pan

et al., 2019; Wei et al., 2019], groundwater extraction [Galloway and Burbey, 2011; Zhu

et al., 2015], CO2 sequestration [Fan et al., 2019; Liu et al., 2019] and injection [Vasco

et al., 2010], hydraulic fracturing [Williams and Sovacool, 2019; Tan et al., 2019], steam

injection [Khakim et al., 2012], underground gas extraction [Nagel, 2001; Settari et al.,

2008] and storage [Karev, 2019; Firme et al., 2019].

The environmental impacts of these activities are manifold, spanning from induced

seismicity [González et al., 2012; Rutqvist et al., 2016] to landslides [Awasthi et al.,

2022], possibly causing well damage or breakage. One of the most known and studied

effects of the subsurface resources exploitation is land subsidence. The word subsi-

dence denotes the loss of land elevation due to natural or anthropogenic events. Ac-

cording to the literature, anthropogenic drivers are responsible for 76.92% of land sub-

sidence around the world [Bagheri-Gavkosh et al., 2021]. Anthropogenic subsidence

operates over hundreds to tens of years and refers to short-term movements [Eid et al.,

2022]. It has been recognized on a global scale [Herrera-García et al., 2021], with poten-

tial dangerous consequences that are well known within the scientific community, see,

e.g., Dinar et al. [2021] and Candela and Koster [2022]. One of the main anthropogenic

causes of land subsidence is fluid withdrawal from underground [Gambolati et al.,
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2 Chapter 1. Introduction

2006]. Indeed, the fluid extraction from aquifer systems or hydrocarbon reservoirs, in-

duces pore-pressure to decrease, which may lead to deep compaction processes and

consequent shallow subsidence.

Another significant impact of subsurface activities regards the possible (re)activation

of preexisting faults and fractures. Fracture deformation can be deliberately induced in

some applications, e.g., to enhance permeability through the injection of fluid at high

pressure [Rutqvist and Stephansson, 2003; Evans et al., 2005]. On the contrary, the in-

terest can be in avoiding activation of pre-existing faults and fractures, e.g., to prevent

induced seismicity of unacceptable magnitude caused by the disposal of waste water

[Keranen et al., 2014; Improta et al., 2015; Keranen and Weingarten, 2018].

Thus, it becomes clear that the development of accurate and reliable prediction tools

for the modeling of energy-related processes is a fundamental requirement for both the

energy companies and the control agencies. In this context, large domains are usually

required to achieve the desired accuracy, along with high resolution representations of

geological structures and their heterogeneous properties [Ferronato et al., 2010; Castel-

letto et al., 2013]. This is especially true in the simulation of faults and fracture net-

works, where flow and deformation mechanisms represent a tightly coupled process.

Indeed, fractures are preferred flow pathways with respect to the surrounding matrix,

especially when they are in slip or open conditions. In turn, the pressure variation in

the fracture networks perturbs the stress state in the surrounding medium and influ-

ences the contact mechanics itself.

The coupled simulation of flow and deformation processes in fractured domains re-

quires the solution of a sequence of large-size, often non-symmetric and ill-conditioned

systems of equations [Ferronato et al., 2001, 2009]. In a typical simulation, most of the

computational burden is committed to solve these systems. Thus, efficient and robust

linear solvers are required, meaning that an appropriate design of scalable and robust

preconditioning techniques is crucial. Roughly speaking, a preconditioner is an oper-

ator that transforms the original system improving its properties and accelerating, or

even allowing for, the convergence. Basically, it is an approximate application of the

system matrix inverse.

Different preconditioning techniques have been developed in the literature. From
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an algebraic point of view, they can be classified into three main categories: (i) incom-

plete factorizations [Saad, 1994; Lin and Moré, 1999], (ii) approximate inverses [Benzi

et al., 1996; Tang, 1999] and (iii) multilevel methods, which include domain decomposi-

tion [Toselli and Widlund, 2005; Janna et al., 2013; Dolean et al., 2015] and multigrid-like

techniques [McCormick and Ruge, 1982; Stüben, 2001]. In the solution of the coupled

hydro-mechanical problem in fractured domains and depending on the specific dis-

cretization technique, none of the preconditioners already available in the literature

can be straightforwardly applied. Thus, ad-hoc preconditioning frameworks need to

be designed tailored on the specific problem to solve, exploiting the block structure

and taking advantage from the knowledge of the nature and the structure of the vari-

ous blocks.

Here, three variants of the coupled model described above have been considered.

The first model simulates the mechanics of the 3D medium and the flow through the

fracture networks. It uses a blended finite element / finite volume approach to dis-

cretize the continuous problem and applies the contact constraints with the aid of La-

grange multipliers. Differently, a unified finite volume method and a penalty approach

characterize the second model, where the fluid flow occurs both in the fracture net-

works and in the surrounding 3D domain. On the contrary, the third model neglects

the 3D domain and focuses only on the fracture networks, solving the flow equation

stated as an optimization problem. Even if these three models are designed to solve

the same physical processes, the arising numerical systems present different properties

and characteristics. Thus, the preconditioning framework has to be adapted for each of

them.

The underlying frameworks can be summarized in three common steps: (i) a sym-

bolic permutation of the blocks of the coefficient matrix in order to avoid singular lead-

ing blocks, if any, and to project the Schur complement onto different spaces; (ii) a

block-factorization of the coefficient matrix, which allows to isolate the subsystems

from the original coupled problem and (iii) an approximation of the single blocks,

and in particular the arising Schur-complements. According to the reordering of the

unknowns and the techniques used for the approximations, different preconditioners

can originate. For each model two or more alternative preconditioners are developed.



4 Chapter 1. Introduction

Then, a set of numerical applications are tested to compare the techniques and investi-

gate their efficiency and robustness.

Every model describing real-world phenomena is built over a number of hypothe-

ses and approximations, thus the outcomes should be considered within a confidence

interval, despite the level of accuracy the model can reach. Indeed, the reliability of the

model predictions depends both on the accuracy of the numerical models and on the

correct accounting of the sources of uncertainty.

In this work, the focus is on the simulation of land subsidence caused by the ex-

ploitation of hydrocarbon reservoirs. The capability to predict the absolute value of

the subsidence and its spatial variability is crucial to identify the areas that are most

affected by subsidence and to propose measures to counteract the adverse effects of

subsidence [Fokker et al., 2019].

A traditional procedure to study land subsidence consists on the definition of a

number of deterministic scenarios as input for a numerical model, whose outcomes are

combined to determine confidence intervals. This approach has two main drawbacks:

(i) it does not allow to properly account for the uncertainties that unavoidably affect the

modeling of real-world phenomena, and (ii) it does not take full advantages from the

increasing availability of monitoring data during the life span of the reservoir. Indeed,

using all the available measurements takes on a central role in the monitoring phase

and for accurate forecasts [Fokker et al., 2019; Bernardi et al., 2021].

Thus, the second goal of this thesis work is to contribute at the development of

a comprehensive methodological approach that dynamically accounts for and reduces

the uncertainties, training the numerical model with the available measurements. Specif-

ically, the integration of measurements in the numerical model is performed with the

aid of Data Assimilation (DA) techniques. In recent years, DA techniques have been

successfully used for a number of underground applications, like hydrology and ge-

omechanical engineering. Among the others, Ensemble Smoother (ES) demonstrates

to be the preferred choice for geomechanical models [Evensen and Eikrem, 2018].

Recently, another approach combining a geomechanical model and DA has been

proposed [Candela et al., 2022]. It considers the ensemble-based approach ESIP [Can-

dela et al., 2017] and a 3D geological subsurface model of the Netherlands, combined



Chapter 1. Introduction 5

to discriminate the compaction model mainly driving the Dutch subsidence. To the

author knowledge, there are no other works providing a sequential DA procedure to

improve the prediction of land subsidence.

The methodological approach presented herein has been developed as a tool to sup-

port the modeling activities throughout the reservoir life cycle. The numerical model is

trained in time according to the availability of new measurements with the expectation

of progressively reducing the uncertainties as the knowledge of the specific reservoir

improves.

The first step of the workflow consists in the identification of the sources of un-

certainties for the specific case study and their propagation from the model input to

the output by the generation of a set of ensembles of Monte Carlo (MC) realizations.

Then, three successive DA steps are repeatedly performed in time, namely the χ2-test

[Tarantola, 2005], the Red Flag (RF) technique [Nepveu et al., 2010] and ES method

[van Leeuwen and Evensen, 1996]. This allows to progressively train the model and

improve its overall reliability as the reservoir development proceeds.

The workflow has been first validated against a synthetic, but realistic, test-case and

then applied to the Arlua reservoir, which is an off-shore hydrocarbon reservoir buried

in the Northern Adriatic basin, Italy. Capabilities and limits of the proposed approach

are investigated and discussed.

1.1 Summary

The thesis is organized in Chapters as follows.

• Chapter 1 introduced the objectives and the relevance of this thesis.

• Chapter 2 describes the equations that govern the hydro-mechanical behavior of

a fractured porous medium and presents the possible strategies for their numeri-

cal treatment.

• Chapter 3 introduces some general concepts about preconditioners, then ad-hoc

preconditioning frameworks for the hydro-mechanical coupling in fractured porous

media are developed. In particular, analyses are carried out on two formulations
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for the full problem and on a model which takes care only of the fracture network,

neglecting the 3D domain.

• Chapter 4 presents a comprehensive methodological approach to reduce uncer-

tainty on land subsidence prediction integrating the available observations through

DA techniques.

• Chapter 5 discusses the numerical results obtained with the DA workflow. The

performance of the methodology are investigated on a synthetic application, then

a real reservoir is tested to evaluate the robustness and efficiency of the approach

in challenging configurations.

• Chapter 6 concludes the thesis summarizing the most significant outcomes and

reporting possible future developments.



Chapter 2

Governing equations and

mathematical model

2.1 Introduction

Soil and rocks can be considered as a porous medium [Biot, 1941], made by a solid

matrix and an interconnected network of void filled with one or more fluids (gas or

liquid). Variations of sources of strength, such as a load or an injection/extraction of

fluid, reflect on pore fluid movement and consequently on stress and displacement

field of solid skeleton. The distribution of the stresses between the solid matrix (effec-

tive stress) and the fluid (pressure) is described by Terzaghi’s principle [Terzaghi, 1925;

Bishop, 1959; Verruijt, 2013]:

σ̂ = σ − αBpi (2.1)

where, following the classical Voigt notation [Voigt, 1887], σ̂ = [σ̂x, σ̂y, σ̂z, τ̂xy, τ̂yz, τ̂xz]
T

and σ = [σx, σy, σz, τxy, τyz, τxz]
T are the total and effective stress vector, respectively,

αB is the Biot coefficient [Biot, 1941], p is the average fluid pressure and i is the vec-

torial form of the Kronecker delta, i.e., i = [1, 1, 1, 0, 0, 0]T . The stress vectors have 6

components, instead of 9, because we assume to work with a non-polar continuum

[Hadjesfandiari and Dargush, 2011], i.e., the balance of angular momentum yields to a

symmetric stress tensor:

τ̂xy = τ̂yx, τ̂yz = τ̂zy, τ̂xz = τ̂zx,

τxy = τyx, τyz = τzy, τxz = τzx

7
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The Biot coefficient is defined as:

αB = 1− Cr
Cb

(2.2)

where Cr and Cb are the grain and bulk compressibility, respectively. The average fluid

pressure is computed as a weighted sum over the number of phases np:

p =

np∑
j=1

Sjpj (2.3)

where Sj and pj are the saturation and pressure of phase j.

As a result, it is clear that to fully describe the behavior of a porous medium, both a

flow and a mechanical model are needed to compute the pressure and stress distribu-

tions, respectively.

The presence of natural or induced discontinuities, like faults and fractures, highly

influences the fluid pressure distribution and the coupled hydro-mechanical behavior.

On the other hand, fluid pressure variations and fluid flux exchange between the dis-

continuities and the matrix entail a complex behavior of the discontinuity itself, which

can open, close, slip or even propagate. Hence, the presence of faults and fractures

requires a special treatment in the model.

In the next paragraphs, the governing equations for the hydro-mechanical problem

in fractured media are described; the chapter ends with an overview of the methods

mostly used for their numerical treatment.

2.2 Flow model

A thermal multiphase multi-component flow in porous media is described through

tha mass and energy conservation equations. The mass conservation equations can be

written as:

∂

∂t

ϕ np∑
j=1

xijρjSj

+∇ ·

 np∑
j=1

xijρjvj

+

np∑
j=1

xijρjqj = 0, i = 1, ..., nc (2.4)
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where i and j refer to the component and the phase, respectively, with nc and np their

total number, t is the time, ϕ is the porosity and is a function of the displacement u,

Sj , xij and ρj are the phase saturation, composition and density, respectively, and qj is

the sink/source term. The phase velocity vj is described by Darcy’s law rearranged by

Muskat and Meres [1936]:

vj = −K krj
µj

(∇pj − ρjg) (2.5)

where K is the absolute permeability tensor, krj , µj and pj are the phase relative per-

meability, viscosity and pressure, respectively, and g is the gravity acceleration vector.

In the previous equations, ∇· is the divergence operator, while ∇ is the gradient oper-

ator.

We assume thermal equilibrium between the fluids and the solid skeleton, thus, the

overall energy balance can be written as:

∂

∂t

ϕ np∑
j=1

UjρjSj + (1− ϕ)Ur

+∇·

 np∑
j=1

hjρjvj

−∇· (κ∇T )+
np∑
j=1

hjρjqj = 0 (2.6)

where Uj and Ur are the phase and rock internal energies, respectively, hj is the phase

enthalpy, κ is the thermal conduction coefficient and T is the temperature.

To close the system, it is generally assumed instantaneous thermodynamic equilib-

rium of the fluid mixtures by imposing the equality of the fugacities for each compo-

nent [Chen et al., 2006; Cusini et al., 2018]:

fij (p, T, xij)− fik (p, T, xik) = 0, ∀j ̸= k = 1, ..., np, i = 1, ..., nc (2.7)

where the fugacity fij of the component i and the phase j can be defined as the product:

fij = xijψijpj (2.8)

between the mole fractions xij , the fugacity coefficient ψij and the pressure pj . More-

over, let us assume the impact of the capillary pressure on the phase behavior to be

negligible and all components be able to dissolve in all fluid phases. Finally, the system
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is supplemented with linear constraints for the phase compositions and saturations:

nc∑
i=1

xij = 1, j = 1, ..., np (2.9)

np∑
j=1

Sj = 1 (2.10)

The problem is well-posed with the imposition of appropriate initial and boundary

conditions.

2.3 Geomechanical model

The geomechanical model solves the equilibrium equations, i.e., Cauchy’s balance of

linear momentum. Inside the continuous domain, the equations read:

−∇ · σ̂ = F V (2.11)

where F V is the vector of the body forces. On the boundary of the continuum, the

surface stress equilibrium reads:

σ̂ · n = F S (2.12)

where n is the normal to the boundary and F S is the vector of the surface forces.

The effective stress tensor σ depends on the strain ε according to the constitutive

relationship:

σ = D̂ : ε (2.13)

where D̂ is the rank-four constitutive tensor. The strain tensor ε depends on the dis-

placement field u according to the small strain hypothesis:

ε = ∇su (2.14)

with ∇s the symmetric gradient operator.
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The operator D̂ is in general non-linear. The simplest case is the isotropic linear-

elastic constitutive model, for which D̂ is defined as:

D̂ =
E(1− ν)

(1 + ν)(1− 2ν)



1 ν
1−ν

ν
1−ν 0 0 0

ν
1−ν 1 ν

1−ν 0 0 0

ν
1−ν

ν
1−ν 1 0 0 0

0 0 0 1−2ν
2(1−ν) 0 0

0 0 0 0 1−2ν
2(1−ν) 0

0 0 0 0 0 1−2ν
2(1−ν)


(2.15)

where E is the Young modulus and ν is the Poisson coefficient.

Two non-linear constitutive laws frequently used to describe the behavior of the

subsurface are the modified Cam Clay (MCC) [De Souza Neto et al., 2008] and the

visco-elasto-plastic (VEP) [Vermeer and Neher, 1999] models. Both of them are elasto-

plastic models, i.e., they allow for both elastic and plastic (non-reversible) deforma-

tions. Moreover, both MCC and VEP are comprised within the class of the rate-independent

models, meaning that the deformation is independent from the load application rate

and/or from the time of the loading process.

2.3.1 Modified Cam-Clay model

The MCC model is largely used to model geomaterials because it is able to describe

many of their characteristics, such as the softening with increase of volume, the hard-

ening with compaction and the volumetric-deviatoric coupling. The original Cam Clay

formulation has been updated and improved, and its applicability field has been ex-

tended [Roscoe and Burland, 1968], obtaining the so called MCC. This constitutive law

is accurate in describing the behavior of clay in normal-consolidation or weakly over-

consolidation state, with monotonic quasi-static loading condition [Wood, 1991].

MCC considers the existence of an elastic domain, i.e., a range of stresses for which

the behavior of the material can be considered purely elastic without permanent defor-

mation, delimited by a yield surface. If the loading conditions overcome the yielding,

plastic non-reversible deformations arise and the yield stress develops, i.e., the hard-

ening phenomenon starts. Considering the small strain hypothesis, the increment of
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the total deformation can be defined as the sum of the elastic and the plastic compo-

nents. Dividing this sum for the infinitesimal time dt, the total deformation rate ε̇ can

be defined as the sum:

ε̇ = ε̇e + ε̇p (2.16)

The elastic component ε̇e can be written as:

ε̇e = D̂−1σ̇ (2.17)

where D̂ is the elasticity matrix and σ̇ is the rate of the stress vector. In the context of

the MCC law, matrix D̂ is defined by a constant Poisson ratio ν and a stress-dependent

Young modulus E, according to:

E = − (1− 2ν)
σx + σy + σz

k∗
(2.18)

where k∗ is the modified swelling index. The yielding surface is explicitly defined as:

F = pc − pc,y = 0 (2.19)

with pc a representation of the stress state in the plane of the stress invariant (p, q),

also denoted as equivalent pressure, and pc,y the reference stress which describes the

behavior in hardening conditions. The term pc is defined as:

pc = p +
c

tan θ
+

q2

M2
(
p+ c

tan θ

) (2.20)

where p = −σx+σy+σz/3 is the volumetric stress, c is the cohesion, θ is the friction angle,

q =
√
σx (σx − σy) + σy (σy − σz) + σz (σz − σx) + 3

(
τ2xy + τ2yz + τ2zx

)
is the deviatoric stress, M is the slope of the critical state line in the (p, q) plane, i.e.,

M = 3

√√√√ (
1−KNC

0

)2(
1 + 2KNC

0

)2 +

(
1−KNC

0

)
(1− 2ν) (λ∗/k∗ − 1)(

1 + 2KNC
0

)
(1− 2ν) λ∗/k∗ −

(
1−KNC

0

)
(1 + ν)
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with KNC
0 the ratio between the horizontal and vertical stress in normal-consolidation-

state and λ∗ the modified compression index.

The second term in Eq. (2.19) is defined as:

pc,y = pc,y,0 exp

[
−ε

p
x + εpy + εpz
λ∗ − k∗

]
(2.21)

where pc,y,0 is a function of the maximum volumetric stress ever experienced by the

material before loading. When the yielding condition (2.19) is satisfied, the plastic

deformation rate ε̇p is governed by the flow rule:

ε̇p = γ̇
∂pc
∂σ

(2.22)

where γ̇ is the plastic multiplier rate.

2.3.2 Visco-elasto-plastic model

Differently from MCC, VEP considers also viscous effects, which can explain delayed

displacements in response to variations of the strength sources. In the VEP model

there is not a classical explicit yield function, and the plastic strain is non-zero at every

stress level [Belytschko et al., 2013], being dependent on the stress state and the plastic

deformation aged by the material.

As for MCC, the deformation rate can be considered as the sum of the elastic and

the plastic components as in Eq. (2.16). The elastic and plastic components can be

described as in Eq. (2.17) and Eq. (2.22), respectively. For the VEP case, the plastic

multiplier rate is computed as:

γ̇ =
µ∗

τ∗ ∂pc∂p

(
pc
pc,y

)λ∗−k∗
µ∗

(2.23)

where µ∗ is the creep index, τ∗ is a reference time related to the normal consolidation

state in a standard oedometer test and pc and pc,y are defined as in Eq. (2.20) and Eq.

(2.21), respectively. According to this model, the stress state lies on an ellipse, which

evolves during the loading/unloading path.
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2.4 Faults and fractures

Over the fracture surfaces, the traction balance has to be guaranteed:

tN − p = 0 (2.24)

where tN is the normal component (with respect to the fracture-local reference frame)

of the traction vector t and p is the pressure.

Moreover, the following contact constraints have to be enforced:

tN = t · ni ≤ 0 (2.25)

gN = JuK · ni ≥ 0 (2.26)

tNgN = 0 (2.27)

where ni is a unitary vector orthogonal to the fracture plane i, JuK is the relative dis-

placement, which is also called jump, and gN is its normal component. These equations

are also referred as the Karush–Kuhn–Tucker (KKT) complementary conditions for nor-

mal contact [Karush, 1939; Kuhn and Tucker, 1951; Simo and Hughes, 2006]. Eq. (2.25)

means that there can be only compression or null stress on the faults. Eq. (2.26) pre-

vents the compenetration of the fault surfaces and Eq. (2.27) allows a non-zero traction

only when the fracture is closed.

Finally, a friction law completes the system. The most used is the Mohr - Coulomb

friction law:

∥tT ∥2 − τmax(tN ) ≤ 0 (2.28)

ġT · tT − τmax(tN ) ∥ġT ∥2 = 0 (2.29)

where tT is the tangential component (with respect to the fracture-local reference frame)

of the traction vector, ġT is the tangential velocity and τmax = c− tN tan(θ) is the limit

value provided by the static Coulomb criterion, with c and θ the cohesion and friction

angle, respectively. Eqs. (2.28) and (2.29) are also referred as the KKT conditions for
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frictional contact; the first one defines an upper bound for the magnitude of the tan-

gential traction vector tT based on the Mohr – Coulomb criterion, while the second

one imposes that tT is collinear to the tangential relative displacement gT , which is

possible only when ∥tT ∥2 = τmax. Since a static Coulomb criterion is employed, in Eq.

(2.29) the quantity ġT is replaced with the increment ∆gT with respect to the previously

converged time-step [Wohlmuth, 2011].

The fault surfaces can be subdivided into three regions:

• stick: the fracture is closed and any relative displacements between the two sur-

faces of the fracture is allowed; a compression acts on the fault, but its compo-

nents have to be determined;

• slip: the fracture is compressed and closed in the normal direction (gN = 0 and

tN unknown), but the inequality (2.28) becomes an equality (∥tT ∥2 = τmax) and a

tangential displacement occurs;

• open: the fracture is fully open and free to move, with the relative displacement

JuK ̸= 0 and the traction vector t = 0.

Even if in general fractures can propagate, in this thesis their trace is considered

fixed and well defined in the time domain of interest.

2.5 Problem solution

The flow and the geomechanical models used to describe the subsurface processes are

theoretically coupled. Thus, the two models should be solved at the same time using a

fully coupled approach. The simultaneous solution of the equations provides accurate

results and it must be used when the coupling is non-negligible, such as when dealing

with local models or with highly fractured porous media. As a matter of fact, the frac-

tures are preferred flow pathways with respect to the surrounding matrix, especially

when they are in slip or open conditions. In turn, the pressure variation perturbs the

stress state in the surrounding medium and influences the contact mechanics itself.

However, the algebraic system that arises from the coupled model can be quite dif-

ficult to solve, with the number of unknowns easily growing [Ferronato et al., 2001].



16 Chapter 2. Governing equations and mathematical model

From a numerical point of view, the coefficient matrix resulting from the discretiza-

tion can be severely ill-conditioned [Ferronato et al., 2009], requiring advanced solvers

and preconditioners. Thus, whenever coupling is deemed to be less important, e.g., in

large scale models in long time simulation periods, it can be adopted a one-way cou-

pled approach, meaning that the flow problem is first solved and the resulting pressure

distribution is used as input for the geomechanical model. Consequently, in the ge-

omechanical model only the external strength changes with time according to the time

stepping of the flow model. This sequential approach is easier to implement and gen-

erally more efficient to apply, and the experience shows that the solution obtained in

this way does not differ significantly from the one obtained with a fully coupled model

at large time and space scales [Gambolati et al., 2000; Ye et al., 2018]. The one-way cou-

pled approach has proven to provide accurate results with respect to a fully-coupled

approach when the changes of the pore volume (i.e. porosity and rock compressibility),

due to the stress path within the reservoir, are properly accounted for by the fluid flow

simulator in reservoir simulations [Segura et al., 2011].

It is clear that the solution strategy has to be properly chosen each time, according to

the characteristics of the specific application. Whatever the approach, a discretization

method is needed to numerically solve the model equations. In the context of faulted

poroelastic system, the most used techniques are the Finite Difference Method (FDM)

[Gaspar et al., 2003, 2006], the Finite Element Method (FEM) [Salimzadeh et al., 2018]

and the Finite Volume Method (FVM) [Droniou, 2014; Ucar et al., 2018]. The choice

of the most suitable approach for the specific application is not trivial, given that each

one can offer specific advantages. FDM is the oldest discretization scheme, and it is still

attractive thanks to its simplicity and convenience for structured grids. However, it be-

comes unsuitable for complex geometries, especially in multiple dimensions [Peiró and

Sherwin, 2005]. FEM overcomes these deficiencies, being versatile in handling highly

heterogeneous, geometrically intricate domains with irregular boundaries [Stein, 2014]

and efficient with material and geometric non-linearities. Differently from FEM, FVM

is also locally conservative at the discrete level [Hughes, 2012]. This guarantees that

the mass/energy balance is enforced locally and the velocity field is conservative, the

latter being a key requirement for accurate transport computations.
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Within the continuous domain, faults and fractures behave as internal discontinu-

ities, where the contact constraint equations need ad-hoc methods to be numerically

imposed. From a mathematical point of view, two methods are mainly used to handle

discontinuities: the penalty and the Lagrangian approach.

The penalty approach [Zienkiewicz et al., 2000; Mergheim et al., 2004; Bathe, 2006]

imposes the non-penetration condition introducing stiff springs between the faces of

the fractures. When the stress on the faces is such that the failure criterion is exceeded,

the springs break and the contact surfaces are free to move. However, the elastic

springs deform for any non-zero stress value, thus the method is not mathematically

exact. Moreover, this approach may cause severe ill-conditioning of the stiffness matrix

because of the introduction of the penalty coefficient [Ferronato et al., 2012]. However,

thanks to its ease of implementation, this method is widely used. Some recent appli-

cations can be found in Settgast et al. [2017], Camargo et al. [2022] and Shovkun and

Tchelepi [2022].

On the other hand, the contact conditions can be prescribed using the Lagrange

multipliers [Wriggers and Zavarise, 2004; Simo and Hughes, 2006; Hild and Renard,

2010; Jha and Juanes, 2014], namely in an analytically exact way. The multipliers rep-

resent additional unknowns with the physical meaning of the contact stresses. The

inconvenience is the additional cost of solving an augmented algebraic system with

the so-called saddle-point structure. However, the increase of the computational cost

is generally compensated by a more robust non-linear convergence and a more stable

numerical behavior. Some recent applications can be found in Franceschini et al. [2016],

Köppel et al. [2019] and Berge et al. [2020].

Other methods have been developed in the literature, such as the augmented La-

grangian approach [Simo and Laursen, 1992; Zienkiewicz et al., 2000], Nitsche’s method

[Hansbo and Hansbo, 2002; Hansbo, 2005] and the mortar method [Farah et al., 2015;

Seitz et al., 2016]. These techniques place in between the penalty and the Lagrangian

approach.





Chapter 3

Preconditioners for coupled

hydro-poromechanics in fractured

domains

3.1 Introduction

To numerically solve the hydro-poromechanical problem, the system of Partial Dif-

ferential Equations (PDEs) presented in Chapter 2 is first discretized using a suitable

scheme tailored for the purpose of the simulation, such as the FEM or the FVM. The

system of non-linear algebraic equations arising from the discretization is addressed by

a Newton-Krylov method, leading to a sequence of linear systems that can be written

in compact form as:

Ax = b (3.1)

where A is, in general, a sparse non-symmetric matrix, x is the vector of the unknowns

and b is the right-hand side, usually representing a residual vector. In real-world ap-

plications, the size of system (3.1) can grow up to several millions of unknowns. Thus,

the solution of the system simply inverting A, i.e., x = A−1b, is not affordable and the

system is numerically solved by a linear solver. Traditionally, linear solvers can be clas-

sified as direct and iterative solvers, the latter being in practice mandatory for the size

of the system and the features of modern computational architectures, thanks to their

much smaller memory footprint and better degree of algorithmic parallelism [Benzi,

2002; Davis, 2006].

19
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Iterative methods based on projections/orthogonalizations onto Krylov subspaces

[Saad, 2003], such as the Generalized Minimal Residual Method (GMRES) [Saad and

Schultz, 1986] and the BiConjugate Gradient Stabilized method (BiCGStab) [van der

Vorst, 1992], are the preferred choices. However, robustness, scalability and compu-

tational efficiency of this class of methods are tightly connected with the choice of a

proper preconditioning technique. The robustness regards the capability of the algo-

rithm to converge to the solution independently of the specific problem at hand. The

scalability is the ability to solve an increasingly refined problem with an approximately

constant number of iterations. The efficiency is a measure of the computational bur-

den and memory storage required to solve a system of equations at a given precision.

In particular, the algorithmic scalability is a key feature for a modern preconditioning

framework, in view of the development of problems of increasing size by exploiting

the availability of massively parallel computational platforms.

Generally speaking, a preconditioner M−1 is an operator that transforms a linear

system into an equivalent one, which properties are such that the solver convergence

is accelerated. The system can be either left-preconditioned:

M−1Ax = M−1b

or right-preconditioned:

AM−1y = b, x = M−1y

or split-preconditioned:

M−1
1 AM−1

2 y = M−1
1 b, x = M−1

2 y

if the preconditioner is available in a factorized form M−1 = M−1
1 M−1

2 . Right precon-

ditioning is often preferred in residual minimizing algorithms because it preserves the

norm of the residual vector r = b − AM−1Mx = b − Ax. It has to be noted that the

preconditioned matrix is never explicitly computed, since iterative solver algorithms

require only the application of the preconditioner to vectors at each iteration.
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Generally speaking, the aim of a preconditioner is to improve the spectral prop-

erties of the coefficient matrix A by clustering the eigenspectrum around a non-zero

value [Benzi, 2002]. This means that the preconditioner M−1 should approximate in

some sense the matrix inverse A−1. In addition, a preconditioner should be as cheap

to compute as possible and its application to a vector should be cost-effective. Thus,

using the words by Saad [2003], finding a good preconditioner can be viewed rather as

a combination of art and science than a rigorous mathematical exercise.

Traditionally, preconditioners have been classified into two groups: physically-

based and algebraic [Wathen, 2015]. In the former group, the methods are specifically

designed for the problem at hand, trying to exploit as much as possible the knowledge

of the PDEs and the discretization scheme. In general, physically-based precondition-

ers exhibit a great efficiency, but they can be barely applied to problems different from

the ones they are designed for. On the other side, purely algebraic preconditioners are

built upon the coefficient matrix only, with no (or little) knowledge of the underlying

physical problem and its properties. These preconditioners are usually more robust

and more appropriate for a broad use, even if they can perform poorer than physically-

based ones.

The algebraic category includes three main classes: (i) incomplete factorizations

[Saad, 1994; Lin and Moré, 1999], (ii) approximate inverses [Benzi et al., 1996; Tang,

1999] and (iii) multilevel methods, which include domain decomposition [Toselli and

Widlund, 2005; Janna et al., 2013; Dolean et al., 2015] and multigrid-like techniques

[McCormick and Ruge, 1982; Stüben, 2001]. The basic idea behind the incomplete fac-

torization methods is to somehow approximate the factorization A = LU of the coef-

ficient matrix in a cost-effective way. A simple approximation of the triangular factors

L and U can be obtained by discarding a number of fill-in entries according to some

rules, e.g., Saad [1994]. This kind of preconditioners is intrinsically highly sequential in

both its computation and application stages. However, some degree of parallelism can

be achieved through level-scheduling and other approaches, e.g., Anderson and Saad

[1989], Hysom and Pothen [1999] and Gupta [2017]. Incomplete factorizations can be

very effective; however their robustness may be jeopardized by issues concerning their
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existence and numerical stability. Other methods have been developed inspired by in-

complete factorizations, e.g., multilevel ILU preconditioners [Bollhöfer and Saad, 2006]

and recursive multilevel approaches, like ARMS [Saad and Suchomel, 2002].

Approximate inverses have been developed to overcome some of the deficiencies of

incomplete factorizations. This kind of preconditioners is basically built as an explicit

approximation of the matrix inverse with a given sparse pattern. Several techniques are

available, e.g., minimizing the Frobenius norm over a set of matrices with a prescribed

sparsity pattern [Frederickson, 1975; Grote and Huckle, 1997] or approximating the

inverse of the triangular factors, e.g., through the two-sided Gram-Schmidt algorithm

as in Benzi et al. [1996]. Even if A is symmetric positive definite (SPD), there is no

guarantee that M−1 is SPD as well. Thus, other methods have been developed, such as

the Factorized Sparse Approximate Inverse (FSAI) [Kolotilina and Yeremin, 1993; Janna

and Ferronato, 2011] which maintains the symmetry by computing an approximation

of the lower Cholesky factor of the inverse.

Both incomplete factorizations and approximate inverses lack on scalability. On the

opposite, multilevel methods are optimal with respect to scalability issues, hence they

are usually more attractive for parallel computations. Domain decomposition tech-

niques belong to the class of the divide-and-conquer methods. These techniques are

based on a spatial decomposition of the problem domain into several subdomains,

which can be disjoint or overlapped, thus allowing the exploitation of the parallel com-

putational resources. Two main variants have been developed: the Additive Schwarz

algorithm, which updates the solution at the end of the process, and the Multiplicative

Schwarz algorithm, which performs the update each time a local solution is obtained,

see e.g., Nabben [2003] for a comparison.

Finally, multigrid methods rely on the idea of projecting the error obtained after ap-

plying a few iterations of local relaxation methods onto a coarser grid. In this way, part

of the low frequency error on a finer grid can be more easily corrected on the coarse

grid, since the smooth components turn into oscillatory modes. Moreover, the resulting

system has a smaller size. Thus, multigrid-like techniques consist of the complemen-

tary use of: (i) a smoother that reduces high frequency errors, (ii) a coarse grid correc-

tion that reduces low frequency errors, and (iii) restriction and interpolation operators
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to move from one grid to another. Starting from the original work by Brandt [1977],

a wide range of multigrid approaches has been developed in the literature, extending

the applicability of this method, originally designed for elliptic PDEs. One of the most

effective methods for a generic linear system is the Algebraic MultiGrid (AMG), where

the restriction and prolongation operators are defined in a purely algebraic way. AMG

gathers indirectly information on the grid from the system matrix. Since it does not re-

quire the grid topology, AMG can handle complex domain geometries and properties

anisotropy. Even if many variants have been developed over the years, e.g., Brezina

et al. [2012]; Franceschini et al. [2019b] and Paludetto Magri et al. [2019], robustness

and efficiency can be an issue for AMG whenever used as a black-box tool in prob-

lems with a non-symmetric block structure. The reader is referred to Xu and Zikatanov

[2017] for a review on these methods.

Summarizing, it is clear that, in complex problems, such as the coupled hydro-

poromechanics in fractured porous media, ad-hoc preconditioners need to be designed.

The coefficient matrix arising from this kind of coupling has, in general, a non-symmetric

block structure, which characteristics can significantly change according to the numer-

ical strategy used to discretize the continuous equations. Few studies can be found

in the literature, e.g., Franceschini et al. [2019a] and Camargo et al. [2021], about pre-

conditioners for this kind of problems, but none of them can be straightforwardly and

effectively applied to the problems described in the following sections. Thus, original

ad-hoc preconditioners have to be designed, exploiting the block structure of the prob-

lem and taking advantage from the knowledge of the nature and the structure of the

various blocks. The underlying preconditioning framework consists of (i) a symbolic

permutation of the blocks of the coefficient matrix in order to avoid singular leading

blocks, if any, and to project the Schur complement onto different spaces; (ii) a block-

factorization of the coefficient matrix, which allows to isolate the subsystems from the

original coupled problem and (iii) an approximation of the single blocks, and in partic-

ular the arising Schur complement. According to the reordering of the unknowns and

the techniques used for the approximations, different preconditioners can originate.

In the following, three models have been investigated. The first two address the

hydro-poromechanical coupling in fractured porous media, the main difference being



24 Chapter 3. Preconditioners for coupled hydro-poromechanics in fractured domains

the discretization technique and the approach used to impose the contact constraints on

the fractures. The third model neglects the 3D domain and focuses only on the fracture

network, solving the flow equation stated as a PDE-constrained optimization problem.

For each model ad-hoc preconditioners are developed and tested.

3.2 DFN stabilized Lagrangian formulation

In this section, the pure mechanic problem originally presented in Franceschini et al.

[2020] is extended to the flow in fractures, as described in Franceschini et al. [2022], and

a scalable and efficient preconditioning framework is developed.

Section 3.2.1 recalls the strong form of the physical problem, already described in

Chapter 2, while Section 3.2.2 introduces the weak formulation, in order to understand

the meaning and features of each block of the Jacobian system. Two options for the

preconditioning framework are presented in Section 3.2.3 and some numerical results

are reported in Section 3.2.4, with the aim of comparing the proposed approaches. Sec-

tion 3.2.5 discusses the outcomes, while Section 3.2.6 introduces one possible future

development.

3.2.1 Problem statement

Let us consider an open elastic domain Ω ⊂ R3, with ∂Ω its boundary and nΩ the outer

normal vector to ∂Ω, such that Ω = Ω ∪ ∂Ω. As commonly done in geological simu-

lations, quasi-static conditions and infinitesimal strains within the open time interval

T = (0, tmax] are assumed. The set of internal boundaries Γ = ∪nfi=1Γi represents a frac-

ture network consisting of nf surfaces. The external boundary is subdivided into two

non-overlapping subsets, ∂Ωu and ∂Ωσ, where Dirichlet and Neumann boundary con-

ditions are prescribed, respectively. Each fracture Γi consists of two overlapping sur-

faces, Γ−
i and Γ+

i , with the orientation defined by a unitary vector ni orthogonal to the

fracture plane, which is ni = n−
i = −n+

i by convention. The pressure field is defined

on the union Γ of the two-dimensional (2D) domains Γi, with ∂Γi a one-dimensional

(1D) curve defining the boundary of each fracture and Γi = Γi ∪ ∂Γi. The curve ∂Γi

is subdivided into two non-overlapping subsets, ∂Γi,p and ∂Γi,q, where Dirichlet and
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Neumann boundary conditions for the pressure field are imposed, respectively. The

vectormi denotes the outer normal direction to ∂Γi. The fluid is assumed to be incom-

pressible, and body forces and buoyancy effects are neglected. The projection of the

stress tensor σ along ni, t = σ ·n−
i = −σ ·n+

i = (tNni+ tT ), is the traction vector over

Γi, with tN and tT its normal and tangential component, respectively, with respect to

the fracture-local reference frame. The traction t on Γi controls the possible slipping

and aperture of the fracture according to the Coulomb frictional law. A schematic rep-

resentation of the considered conceptual framework is shown in the left panel of Fig.

3.1.

displacement
traction and pressure

FIGURE 3.1: Conceptual scheme of the elastic domain and embedded
fracture network (left) and example of low-order discretization (right).

The strong form of the initial boundary value problem includes the mass balance,

Eq. (2.4), on the fractures, the linear momentum balance, Eq. (2.11), on the 3D domain

and the traction balance, Eq. (2.24), on the fractures. These equations are here re-

called for the sake of clarity, conveniently rearranged considering the aforementioned

hypotheses. The system to be solved is:

−∇ · σ(u) = 0 in Ω× T (3.2)

ġN (u) +∇ · q(u, p) = qs in ∪nfi=1 Γi × T (3.3)

tN − p = 0 on ∪nfi=1 Γi × T (3.4)
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The system is subject to the following boundary conditions:

u = ū on ∂Ωu × T (3.5)

σ(u) · nΩ = t̄ on ∂Ωσ × T (3.6)

p = p̄ on ∪nfi=1 ∂Γi,p × T (3.7)

q(u, p) ·mi = q̄ on ∪nfi=1 ∂Γi,q × T (3.8)

and initial conditions:

u|t=0 = u0 in Ω (3.9)

p|t=0 = p0 in ∪nfi=1 Γi (3.10)

Finally, the contact constraints, Eqs. (2.25)-(2.29), over each fracture surface Γi and for

every time in T are imposed:

tN = t · ni ≤ 0, gN = JuK · ni ≥ 0, tNgN = 0 (3.11)

∥tT ∥2 − τmax(tN ) ≤ 0, ġT · tT − τmax(tN ) ∥ġT ∥2 = 0 (3.12)

Assuming laminar flow, the fluid volumetric flux in the fracture domain can be

computed according to Darcy’s law [Witherspoon et al., 1980]:

q(u, p) = −
Cf (u)

µ
∇p (3.13)

where ∇p is the fluid pressure gradient, µ the fluid viscosity (constant), and Cf the

isotropic fracture hydraulic conductivity modeled as in Garipov et al. [2016]:

Cf = Cf,0 +
g3N
12

(3.14)

with Cf,0 the conductivity related to two irregular surfaces that are in contact [Zhang

et al., 2013]; JuK = (u|Γ+
i
− u|Γ−

i
) = (gNni + gT ) the relative displacement (jump)

across Γi, where gN and gT are the normal and tangential components, respectively,

and u|Γ+
i

and u|Γ−
i

are the restrictions of u on Γ+
i and Γ−

i . A static Coulomb criterion is
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employed, with τmax = c− tN tan(θ), thus the tangential velocity ġT in Eq. (3.12) is re-

placed with the tangential displacement increment ∆gT with respect to the previously

converged time step [Wohlmuth, 2011].

The fracture domain Γ is assumed to be fixed with no propagation. It can be par-

titioned into three portions: (i) stick; (ii) slip and (iii) open, which properties are de-

scribed in Section 2.4.

For additional details regarding the governing formulation, the reader is referred

to Kikuchi and Oden [1988]; Laursen [2003]; Wriggers [2006] and Franceschini et al.

[2020].

3.2.2 Discrete formulation

To numerically solve the problem presented in Section 3.2.1, a blended finite element /

finite volume discretization is used, with low-order finite elements for the mechanics

and a cell-centered finite volume scheme for the fluid flow, as common in geological

and reservoir simulations. The contact constraints are imposed with the aid of La-

grange multipliers [Hild and Renard, 2010; Jha and Juanes, 2014; Franceschini et al.,

2016; Berge et al., 2020; Köppel et al., 2019], which represent the contact forces acting

on the fracture surfaces. This field is discretized as a cell-centered variable. As a con-

sequence, the traction appears as primary variable, sharing the same representation as

the fluid pressure field, thus no interpolation is needed. An example of this discretiza-

tion is shown in the rightmost panel of Fig. 3.1.

The discrete approximations {uh, th, ph} of the unknowns {u, t, p} can be defined

as:

uh =

nu∑
i=1

ηiui ∈ Vh, th =

nt∑
j=1

µjtj ∈ Mh(thN ), ph =

np∑
k=1

χkpk ∈ Ph, (3.15)
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where the finite-dimensional subspaces Vh, Mh(thN ) and Ph are:

Vh ⊂ V ={η ∈ [H1(Ω)]3 : η = u on ∂Ωu} (3.16)

Mh(thN ) ⊂ M(tN ) ={µ ∈ [L2(Γ)]3 : µN ≤ 0, (µ,v)Γ ≤ (τmax(tN ), ||vT ||2)Γ ,

v ∈ [H1/2(Γ)]3 with vN ≥ 0}
(3.17)

Ph ⊂ P ={χ ∈ L2(Γ), χ|Ωe ∈ P0(Ωe) ∀ Ωe ∈ Ωh} (3.18)

As before, the subscripts N and T denote the normal and tangential components of

a vector with respect to a fracture-local reference frame. In Eq. (3.15), nu, nt, and np

denote the number of discrete displacement, traction and pressure unknowns, respec-

tively. In Eq. (3.18), Ωe refers to a single finite element.

The weak form of the set of equations in Section 3.2.1 reads [Franceschini et al.,

2020]: find {uh, th, ph} ∈ Vh ×Mh(thN )× Ph such that

Ru = (∇sη,σ)Ω +

nf∑
i=1

(JηK, th − phni)Γi − (η, t̄)∂Ωσ = 0 ∀η ∈ Vh
0 , (3.19)

Rt,i = (thN − µN , gN )Γi + (thT − µT ,∆gT )Γi ≥ 0 ∀µ ∈ Mh(thN ),

(3.20)

Rp,i =

(
χ,

∆gN
∆t

)
Γi

+ [χ, ph]Fi − FFi(χ) +GFi(χ)− (χ, qs)Γi = 0 ∀χ ∈ Ph, (3.21)

where Vh
0 is Vh with homogeneous conditions along ∂Ωu and ∆t is the time step size.

Eq. (3.20) and Eq. (3.21) hold for any fracture i. In Eq. (3.21), [χ, ph]F is a weighted

inner product representing the classical two-point flux approximation (TPFA) scheme,

which is introduced to allow a unified presentation of the coupled finite element /

finite volume model [Eymard et al., 2000, 2007; Agélas et al., 2010]. Finally, FF and

GF collect the boundary conditions to be prescribed on ∂Γp and ∂Γq, respectively. For

further details, the reader is referred to Franceschini et al. [2020].

To solve the problem in Eqs. (3.19)-(3.21), the variational inequality in Eq. (3.20) is

transformed into a variational equality by applying an active-set algorithm [Nocedal

and Wright, 2006; Antil et al., 2006; Franceschini et al., 2020], which allows to iden-

tify the subdivision into stick/slip/open regions for every Γi. At a given step of the
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active-set algorithm, the stick/slip/open regions of each fracture Γi are fixed and the

inequality (3.20) becomes:

Rt,i = (µ, g)Γstick
i

+ (µN , gN )Γslip
i

+
1

k

(
µT , t

h
T − t∗T

)
Γ

slip
i

+
1

k

(
µ, th

)
Γ

open
i

= 0 (3.22)

where k is a coefficient that ensures the dimensional consistency of the equation. Intro-

ducing in Eqs. (3.19), (3.22) and (3.21) the finite-dimensional bases of Vh
0 , Mh(thN ) and

Ph yields the following system of nonlinear discrete residual equations:

r(uℓ, tℓ,pℓ) =


ru(u

ℓ, tℓ,pℓ)

rt(u
ℓ, tℓ,pℓ)

rp(u
ℓ, tℓ,pℓ)

 = 0, (3.23)

which is solved by a Newton-Krylov method. In Eq. (3.23), the algebraic vectors

uℓ ∈ Rnu , tℓ ∈ Rnt and pℓ ∈ Rnp collect the coefficients ui, tj and pk of the discrete

displacement, traction and pressure fields of Eq. (3.15) and ℓ is the active-set counter.

After convergence of the Newton-Krylov method at the ℓ-th step of the active-set al-

gorithm, a consistency check is carried out in order to verify whether the obtained

stick/slip/open region subdivision meets the assumed original configuration. If not,

the region subdivision is updated and a new step is performed. The algorithm stops

when the consistency check does not require to modify the stick/slip/open region sub-

division. At this point, convergence is achieved and the simulation advances to the next

time step.

The discretization approach presented herein is intrinsically unstable, as it does not

fulfill the inf-sup condition [Wohlmuth, 2011]. Thus, a global algebraic stabilization is

needed, which relaxes the zero jump and the impenetrability conditions between the

two fracture surfaces in the traction balance equation, and the fluid incompressibility

constraint in the mass balance equation [Franceschini et al., 2020].

At a given active-set iteration ℓ, the Newton linearization of system (3.23) generates

a sequence of linear systems and vector updates. To advance by one Newton iteration
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k, the steps are:

solve J ℓ,(k)δx = −rℓ,(k) ⇒


A C1 Q1

C2 −H 0

Q2 0 T


ℓ,(k) 

δu

δt

δp

 = −


ru

rt

rp


ℓ,(k)

,

update xℓ,(k+1) = xℓ,(k) + δx ⇒


u

t

p


ℓ,(k+1)

=


u

t

p


ℓ,(k)

+


δu

δt

δp

 .
(3.24)

A detailed definition of the Jacobian sub-blocks can be found in Franceschini et al.

[2022]. The global matrix J is in general large, sparse, and non-symmetric, with prop-

erties that change with the evolution of the stick/slip/open regions in the fracture net-

work, as shown in Fig. 3.2. The features that follow are worth summarizing.

1. The first block row of J includes the contributions arising from the linear mo-

mentum balance of the 3D domain Ω. None of the submatrices depends on the

fracture state and can be assembled once at the beginning of the whole simulation

if an elastic constitutive law is used. In particular, A is the classical SPD elastic

stiffness matrix, while C1 and Q1 are tall rectangular blocks collecting a surface

measure of the fracture elements and transferring tractions and pressures to the

3D body as applied forces.

2. In the second block row of J , C2 varies as the stick/slip/open fracture regions

evolve through the active-set algorithm, in both the entry values and the non-zero

pattern (Fig. 3.2). If all the fracture elements are in stick mode, then C2 = CT
1 ,

otherwise the frictional law derivatives appear and C2 ̸= CT
1 .

3. When all fractures belong to the stick region,H is the symmetric positive semidef-

inite (SPSD) stabilization matrix. In case of sliding, non-symmetric diagonal 2×2

blocks arise, one for each traction component along the local tangential direc-

tion to the fracture surface. For an open element, the corresponding row of H

has a single non-zero entry in the main diagonal, with no contribution from the

stabilization term (Fig. 3.2). In any case, H is singular and cannot be regularly

inverted.
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4. The third block row of J includes the contributions arising from the fluid mass

balance on the fracture network. The coupling between fluid flow and fracture

mechanics is controlled by Q2. In particular, when all fracture elements are in

stick mode, Q2 = 0 and J is reducible with a 2 × 2 symmetric saddle-point ma-

trix as leading block. Otherwise, contributions from the flux derivative with re-

spect to the displacements appear, i.e.,Q2 entries depend on the current pressure

solution (Fig. 3.2). Differently from CT
1 and C2, there is no simple relationship

linkingQT
1 andQ2.

5. T is the sum of the standard transmissibility matrix arising from the TPFA dis-

cretization in the 2D domain Γ and the stabilization contribution. As such, it is

SPD with the 5-point stencil of a 2D discrete Laplacian. Moreover, T has a block

diagonal structure for all non-intersecting fractures. Observe also that traction

and pressure fields are always decoupled.

From the considerations above, it is clear that matrix J changes nature with the evo-

lution of the fracture conditions, moving from a reducible matrix with a symmetric

saddle-point leading block to a general non-symmetric and indefinite matrix. These

characteristics require the definition of a unique preconditioning framework which en-

sures robustness, scalability and computational efficiency.

FIGURE 3.2: Non-zero pattern of J with the evolution of the
stick/slip/open fracture regions.
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3.2.3 Preconditioning framework

A preconditioner M−1 of J is an operator which approximates in some sense J −1. The

exact application of J −1 to some vector w ∈ Rnu+nt+np provides the vector v ∈ Rnu+nt+np

such that: 
Avu + C1vt + Q1vp = wu

C2vu − Hvt = wt

Q2vu + Tvp = wp

, (3.25)

with vu,wu ∈ Rnu , vt,wt ∈ Rnt , and vp,wp ∈ Rnp natural subvectors of v and w,

respectively. The aim is to approximate the solution of the multi-physics system (3.25)

by exploiting the physics-based variable partitioning. The idea is to first reduce the

system to a single-physics problem, and then prolong it back to the full multi-physics

space. According to the selected sequence of reductions, different algorithms may arise.

Here, two options are presented and compared.

First method: traction-pressure-displacement approach

Traction and pressure variables live on the fractures and are mutually decoupled inde-

pendently of the stick/slip/open region partitioning. Therefore, it is natural to exploit

this condition and perform a simultaneous reduction of both these variable sets, pro-

jecting them onto the displacement space. This corresponds to compute vt and vp from

the second and third equation of system (3.25), respectively, and introduce them in the

first equation, thus eliminating both physics from the equilibrium equation. Since H

is singular, a regular surrogate is needed. Here, a block diagonal approximation H̃ is

used, where each block is the 3×3 local stabilization matrix computed for each fracture

element. From the system (3.25), vt and vp are:

vt ≃ −H̃
−1

(wt −C2vu) (3.26)

vp = T
−1 (wp −Q2vu) (3.27)

Substituting Eq. (3.26) and Eq. (3.27) into the first equation of system (3.25), it becomes:

(
A+C1H̃

−1
C2 −Q1T

−1Q2

)
vu ≃ wu +C1H̃

−1
wt −Q1T

−1wp, (3.28)
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FIGURE 3.3: Schematic representation of the multi-physics reduction
preconditioning framework: t-p-u (left) and t-u-p (right) approach.

which represents a single-physics equilibrium equation on the 3D domain where the

elimination of fracture tractions and pressures introduces fictitious stiffness contribu-

tions. The matrix at the left-hand side of Eq. (3.28) is the Schur complement S:

S = A+C1H̃
−1
C2 −Q1T

−1Q2 (3.29)

Solution to Eq. (3.28) provides vu, which, introduced into Eq. (3.26) and Eq. (3.27),

yields the final vector v. The multi-physics reduction order performed in this case is

traction-pressure-displacement (t-p-u) and is schematically summarized in the leftmost

panel of Fig. 3.3.

The computation and inversion of S in Eq. (3.29) cannot be performed exactly.

An explicit approximation S̃ is computed replacing T in Eq. (3.29) by its diagonal.

The inverse S̃
−1

is applied inexactly by means of an AMG operator, which can be

efficiently used in mechanical problems preserving a linear complexity with respect

to the problem size. This is a key property to guarantee the solver scalability. Recent

examples of effective AMG preconditioners can be found, for instance, in Brandt et al.

[2015], D’Ambra et al. [2018] and Paludetto Magri et al. [2019]. In particular, here, the

application of S̃
−1

is approximated by GAMG [May et al., 2016], which is the state-

of-the-art aggregation based multigrid provided by the PETSc package [Balay et al.,

2020].

From an algebraic viewpoint, the preconditioning operator M−1
1 arising from the

t-p-u approach can be written as an inexact block LDU factorization of J . Using the
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permutation matrix Q1:

Q1 =


0 It 0

0 0 Ip

Iu 0 0

 , (3.30)

where In is the identity matrix in Rnn×nn and 0 the zero matrix of proper size, the block

LDU factorization reads:

Q1JQT
1 ≃ L1D1U1, (3.31)

with:

L1 =


It 0 0

0 Ip 0

−C1H̃
−1

Q1T
−1 Iu

 , D1 =


−H̃ 0 0

0 T 0

0 0 S̃

 , U1 =


It 0 −H̃

−1
C2

0 Ip T−1Q2

0 0 Iu

 (3.32)

Hence, the final expression of M−1
1 is:

M−1
1 =


It 0 H̃

−1
C2

0 Ip −T−1Q2

0 0 Iu



−H̃

−1
0 0

0 T−1 0

0 0 S̃
−1




It 0 0

0 Ip 0

C1H̃
−1

−Q1T
−1 Iu

 (3.33)

The multi-physics reduction approach proposed herein can be equivalently recast

in other ways as well. Since a twofold approximation for T−1 is used, i.e., exact in L1,

U1 and inexact in S̃, M−1
1 can be regarded as a member of the mixed constraint precon-

ditioner class [Bergamaschi et al., 2008; Ferronato et al., 2010]. Similarly, the upper and

lower block triangular factors in Eq. (3.33) play the role of decoupling operators for the

original multi-physics problem and are the outcome of the general-purpose algebraic

procedure defined in Ferronato et al. [2019]. Finally, M−1
1 can be also regarded as an

example of application in a 3× 3 block non-symmetric context of the multigrid reduc-

tion framework [Bui et al., 2018, 2020], where fracture and body variables play the role

of fine and coarse nodes, respectively, and H̃ replacesH in matrix J .

A matrix measure of the quality of the approximations H̃ and S̃ introduced in M−1
1

can be defined as:
EH = It − H̃−1H

ES = Iu − S̃−1S

(3.34)
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It can be proven [Franceschini et al., 2022] that the eigenvalues λ1 ∈ C of the precondi-

tioned matrix with the t-p-u approach are either 1, with multiplicity np, or such that:

|λ1 − 1| ≤ (1 + ζ)max{εH , εS}, (3.35)

with εH = ∥EH∥, εS = ∥ES∥, ζ = ∥Z∥ and

Z =

 H̃
−1
C2S̃

−1
C1 −H̃−1C2

S̃
−1
C1 0

 (3.36)

for any compatible matrix norm.

This shows that the distance of H̃
−1
H from the identity and the approximation

quality of S̃
−1

are key factors for the overall performance of M−1
1 . While H̃ is fixed,

notice, however, that S̃ has algebraic properties variable with the fracture state and the

evolution of the stick/slip/open regions throughout the active-set algorithm. In stick

mode, the contribution C1H̃
−1
C2 is SPSD and Q2 = 0. Hence, S̃ is SPD. Also in slip

mode the contributionC1H̃
−1
C2 is positive definite andQ2 = 0, so S̃ remains positive

definite, though mildly non-symmetric. With open elements, however,Q2 depends on

the current pressure solution and no theoretical considerations can be made in general.

In these conditions, S̃ is an indefinite non-symmetric matrix, thus it is not suited to be

effectively approximated by any AMG.

Second method: traction-displacement-pressure approach

An alternative multi-physics reduction sequence relies on the scheme sketched in the

rightmost panel of Fig. 3.3, i.e., following the order traction-displacement-pressure (t-

u-p). Introducing the traction variables, Eq. (3.26), into the first equation of system

(3.25) yields: (
A+C1H̃

−1
C2

)
vu +Q1vp ≃ wu +C1H̃

−1
wt, (3.37)

where the matrix at the left-hand side is the first-level Schur complement:

S1 = A+C1H̃
−1
C2 (3.38)
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From a physical viewpoint, S1 is an elasticity matrix with fictitious stiffness contribu-

tions arising from the traction elimination along the fractures. Then, a second reduction

is performed by computing vu from Eq. (3.37) and introducing it in the third equation

of the system (3.25):

(
T −Q2S

−1
1 Q1

)
vp ≃ wp −Q2S

−1
1

(
wu +C1H̃

−1
wt

)
. (3.39)

The matrix at the left-hand side of Eq. (3.39) is the second-level Schur complement:

S2 = T −Q2S
−1
1 Q1, (3.40)

which, from a physical standpoint, represents a modified transmissibility matrix in-

cluding the effect of the stiffness of the 3D medium surrounding the fractures.

The computation of S1 can be performed exactly, but its inverse has to be approxi-

mated. Since its nature is the same as that of S of Eq. (3.29), an AMG operator can be

effectively used, such as GAMG. In the following, S̃
−1

1 refers to the operator that ap-

proximately applies S−1
1 . By distinction, S2 cannot be computed exactly. Recalling the

physical interpretation of T and S1, the contribution Q2S
−1
1 Q1 can be approximated

by the diagonal fixed-stress matrix introduced as a preconditioner in White et al. [2016]

and Castelletto et al. [2016]. Denoting by SK such a matrix, S2 is approximated as:

S2 ≃ S̃2 = T − SK , (3.41)

where the diagonal entries of SK are:

[SK ]k =
|Ωk|
Kk

, k = 1, . . . , np, (3.42)

with |Ωk| a measure of the volume of the cells surrounding the k-th fracture element

and Kk an estimate of the associated bulk modulus.

The computation of |Ωk| and Kk in Eq. (3.42) can be carried out using the informa-

tion arising from the discretization grid and the material properties or considering a

general algebraic approach, as sketched in Castelletto et al. [2016].

Similarly to the t-p-u approach, the preconditioning operator M−1
2 can be written
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as an inexact block LDU factorization of the Jacobian matrix J , after an appropriate

permutation with the permutation matrix Q2:

Q2 =


0 It 0

Iu 0 0

0 0 Ip

 (3.43)

The block LDU factorization reads:

Q2JQT
2 ≃ L2D2U2, (3.44)

with:

L2 =


It 0 0

−C1H̃
−1

Iu 0

0 Q2S̃
−1

1 Ip

 , D2 =


−H̃ 0 0

0 S1 0

0 0 S̃2

 , U2 =


It −H̃

−1
C2 0

0 Iu S̃
−1

1 Q1

0 0 Ip


(3.45)

The final expression of M−1
2 is therefore:

M−1
2 =


It H̃

−1
C2 −H̃

−1
C2S̃

−1

1 Q1

0 Iu −S̃
−1

1 Q1

0 0 Ip




−H̃
−1

0 0

0 S̃
−1

1 0

0 0 S̃
−1

2

 ·

·


It 0 0

C1H̃
−1

Iu 0

−Q2S̃
−1

1 C1H̃
−1

−Q2S̃
−1

1 Ip


(3.46)

Like the t-p-u approach, also M−1
2 can be equivalently recast in other ways. For in-

stance, it can be viewed as a mixed constraint preconditioner [Bergamaschi et al., 2007;

Janna et al., 2012b] or as a double application of the multigrid reduction framework.

Similar to Eq. (3.34), a matrix measure of the quality of the approximations S̃1 and

S̃2 introduced in M−1
2 can be defined as:

ES1 = Iu − S̃
−1

1 S1

ES2 = Ip − S̃
−1

2 Ŝ2

(3.47)

where Ŝ2 = T −Q2S̃
−1

1 Q1. Notice that the error term ES2 impacting on the quality of

M−1
2 does not depend on S2, but on Ŝ2. Hence, the proposed approximation S̃2 of Eq.
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(3.41) should better resemble Ŝ2 thanS2. The eigenvalues λ2 ∈ C of the preconditioned

matrix with the t-u-p approach are such that:

|λ2 − 1| ≤ (1 + γ)max{εH , εS1 , εS2} (3.48)

with εH = ∥EH∥, εS1 = ∥ES1∥, εS2 = ∥ES2∥, γ = ∥G∥ and

G =


C2H ÎQC1S −C2H ÎQ C2HQ1S

ÎQC1S −Q1SQ2S Q1S

−Q2SC1S Q2S 0

 ,

C1S = S̃
−1

1 C1, C2H = H̃−1C2, Q1S = S̃
−1

1 Q1,Q2S = S̃
−1

2 Q2, ÎQ = Iu +Q1SQ2S

for any compatible matrix norm. The complete proof can be found in Franceschini et al.

[2022].

Since the eigenvalue bound is similar for the two approaches, they are expected

to behave similarly. However, with M−1
2 an additional contribution to the error arises,

εS2 , and there is no guarantee that a cluster of eigenvalues is exactly 1. It has to be noted

also that the cost for the M−1
2 application is approximately twice that of M−1

1 . The cost

of M−1
2 can be possibly decreased by applying an incomplete block factorization, i.e.,

only D−1
2 L−1

2 , but some loss in accuracy might be expected.

As with the t-p-u approach, the Schur complements S1, Eq. (3.38), and S̃2, Eq.

(3.41), have algebraic properties that change with the fracture state and the evolution

of the stick/slip/open partitioning. S1 is symmetric in stick mode and non-symmetric

otherwise, but in any case it is positive definite. By distinction, S̃2 is symmetric any-

way, but can be indefinite with open fracture elements, because Q2 depends on the

current pressure solution and no a-priori considerations can be done.

3.2.4 Application

Three sets of numerical experiments are used to investigate the robustness, scalabil-

ity and computational performance of the proposed preconditioning framework. The

first set (Test 1) consists of a small size single-fracture problem and is used to analyze

and compare the robustness of the t-p-u and t-u-p approaches. The second set (Test
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FIGURE 3.4: Flow rate in time for all the test cases.

2) simulates the behavior of a number of uniformly discretized fractures with the aim

at investigating the weak scalability and mesh independence. Finally, a realistic appli-

cation (Test 3), representing a tilted well in a hydraulic fracturing stimulation process,

helps in verifying the computational efficiency in a meaningful context. For the sake of

simplicity, the test cases considered herein are characterized by distinct discontinuities

without crossing fractures. However, the possible presence of networks of crossing

fractures does not impact on the preconditioning algorithm. In fact, the only difference

relies on the inner block structure of all matrices in J , with the exception of A. Such a

structure is no longer fracture-based but fracture-network-based, i.e., crossing fractures

contribute to the same inner block.

In all test cases, a linearly increasing flow discharge qs is first injected in the frac-

tures, with a maximum value of 5 · 10−4 m3s−1, and then extracted, as shown in Fig.

3.4. The overall process lasts for 6 s and is discretized into 12 uniform time steps

(∆t = 0.5 s). The homogeneous rock material has Young’s modulus and Poisson’s ra-

tio equal to 3 · 103 MPa and 0.25, respectively. The friction coefficient for the frac-

tures is 0.577, i.e., the friction angle θ is 30◦, with the cohesion c set to zero. Accord-

ing to Zhang et al. [2013], the initial conductivity value Cf,0 of Eq. (3.14) is equal to

10 mD · m = 9.87 · 10−15m2 · m. On the corners of the fracture boundary ∂Γi embed-

ded in the 3D body Ω, a constant zero pressure (p0 = 0 MPa) is imposed.

For each time step, an outer loop (active-set strategy) is coupled with an inner loop

(Newton’s method). Starting from the last converged stick/slip/open region parti-

tioning, the exit criterion for Newton’s method is that the 2-norm of the non-linear
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residual in Eq. (3.23) is reduced by a factor 106. At convergence, a consistency check

is carried out to verify the active/inactive status of each fracture element. If the ini-

tial stick/slip/open region partitioning has to be updated, another inner Newton’s

loop is performed. At each Newton’s iteration, the system (3.24) is solved by a right-

preconditioned full GMRES algorithm [Saad and Schultz, 1986], initialized by the zero

vector and stopped when the linear residual is reduced by a factor 108. Hence, for each

entire simulation there are three iteration counters: (i) the outer active-set strategy, Nℓ;

(ii) the inner Newton’s loop, NN , and (iii) the preconditioned GMRES method, NG.

The average GMRES iteration count for a single linear system is denoted by NG, with

NG,min and NG,max the minimum and maximum value, respectively, required during

the entire simulation.

Test 1: Robustness

The purpose of this test case is to verify the robustness of the proposed t-p-u and t-u-p

approaches and highlight the main differences. The 10 m×10 m×0.15 m domain with

a single 2-m long vertical fracture is shown in Fig. 3.5. The top and bottom surfaces

are fixed along the z-direction, while the vertical sides approximately parallel to the

fracture are compressed by a uniform normal load σ0 = 100 MPa. The out-of-plane

displacement of the two remaining external surfaces of the 3D body is prevented. The

computational grid consists of 2,944 nodes, 2,046 elements and 120 fracture elements,

thus the number of unknowns is: nu = 8, 832, nt = 360, and np = 120.

FIGURE 3.5: Test 1: Domain configuration, computational grid and in-
jection location. The vertical exaggeration factor is 2.

Initially, nested direct methods are used to apply S̃
−1

in the t-p-u approach and

S̃
−1

1 in the t-u-p approach. The results, which are reported in the upper rows of Table
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TABLE 3.1: Test 1: Average number of linear iterations NG for the t-p-u
and t-u-p approach with nested direct solvers (upper rows) and AMG

algorithms (lower rows) applied to approximate either S̃
−1

or S̃
−1

1 for
each time step. The total number of active-set Nℓ and Newton iterations
NN are reported in the rightmost columns. * means thatNℓ andNN refer

to the first six steps only.

S̃
−1

or S̃
−1

1

NG Nℓ NNt [s] 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
direct t-p-u 2.0 5.0 4.0 4.6 7.8 9.3 5.9 5.4 4.9 4.6 4.5 2.0 58 253

method t-u-p 2.0 5.0 4.0 4.0 6.5 7.4 7.2 5.0 2.0 2.0 2.0 2.0 33 153

AMG
t-p-u 80.0 72.0 72.0 62.2 57.3 43.0 – – – – – – 22∗ 79∗

t-u-p 80.0 72.0 72.0 61.8 56.1 30.9 16.0 27.7 46.2 67.6 81.0 81.0 43 199

3.1, can be considered as the best potential outcome with regard to the average number

of linear iterations NG. The two approaches behave quite similarly as far as NG is

concerned. The very small average number of GMRES iterations to converge confirms

that the approximations introduced in the construction of H̃ , S̃ and S̃2 are pretty much

acceptable.

This result can significantly change when AMG strategies are introduced instead

of inner direct methods, as it is in practice mandatory for large-size real-world simu-

lations. The values of NG for each time step, Nℓ and NN are provided in the lower

rows of Table 3.1. As before, the values are almost the same for the two approaches in

the first six simulation steps, with a significant increase of NG with respect to the use

of nested direct solvers mainly due to the bad elemental aspect ratio
(
∼10−2

)
used to

create this test case. The main difference between the t-p-u and the t-u-p approach is

met at the seventh time step, where GMRES convergence cannot be achieved with the

t-p-u framework. Although the t-p-u reduction method is generally more efficient than

t-u-p, it appears to be less robust in some configurations of the stick/slip/open fracture

regions. Similar behaviors have also been observed with other numerical experiments

as well.

The reason for such an outcome stems from the algebraic properties of the (approx-

imate) Schur complement matrices, S̃ in the t-p-u approach and S1 and S̃2 in the t-u-p

approach, arising at the seventh time step of the simulation. To this aim, the eigenvalue

distributions of such matrices is plotted in Fig. 3.6. With the current stick/slip/open

region configuration, S̃ turns out to be non-symmetric and one eigenvalue with a neg-

ative real part arises. Notice also the large ratio between the maximum and minimum
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FIGURE 3.6: Test 1: Eigenvalue distribution in the complex plane for
S̃, S1 and S̃2 at the seventh time step. For S̃ a zoom around zero in

arithmetic scale is also reported.

eigenvalue modulus (Table 3.2). In this condition, the AMG method used to approx-

imate the application of S̃
−1

loses its theoretical properties and is no longer effective.

Replacing AMG with another indefinite inner preconditioner for S̃, such as an incom-

plete LU factorization with partial fill-in, can fix this issue, at the cost of losing the

method scalability. By distinction, in the t-u-p approach the first-level Schur comple-

ment S1 is theoretically guaranteed positive definite independently of the fracture con-

dition. As it can be seen from Fig. 3.6 and Table 3.2, here AMG appears to work quite

effectively despite the conditioning ofS1 is the same as S̃. The second-level Schur com-

plement S̃2 is symmetric by construction, but can be indefinite. In this case, S̃2 turns

out to be still positive definite, but in any case its inversion by a nested direct solver

would ensure an effective preconditioner behavior.

On summary, the t-p-u approach can be computationally more efficient than t-u-p.

However, it may lack of robustness in large problems whenever the stick/slip/open

TABLE 3.2: Test 1: Maximum and minimum eigenvalue modulus for S̃,
S1 and S̃2 at the seventh time step.

|λmax| |λmin| |λmax|/|λmin|
S̃ 2.52 · 105 2.56 · 10−1 9.88 · 105
S1 2.52 · 105 2.56 · 10−1 9.88 · 105

S̃2 7.74 · 10−1 1.01 · 10−4 7.66 · 103
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region partitioning in a full simulation gives rise to an indefinite matrix S̃. Even if

more expensive, the t-u-p approach proves to be more robust, because it concentrates

the source of possible numerical issues into S̃2, which is a symmetric matrix with a

2D graph connection that can be effectively addressed by a nested direct solver. For

this reason, the t-u-p approach is preferred in a full simulation, where unpredictable

fracture configurations may arise. Therefore, in the following numerical experiments

only the t-u-p approach is used.

Test 2: Mesh independence

In this Section, the algorithmic weak scalability, i.e., the mesh independence, of the

proposed t-u-p algorithm is investigated. First, the test case shown in Fig. 3.7 (Test

2a) is considered, consisting of a unitary cube with four vertical fractures, where a

fluid injection and extraction is prescribed at the center of each fracture, simulating the

action of a horizontal well. The external faces parallel to the fractures are subjected to a

compressive constant load (σ0 = 10 MPa), while displacements on the other boundary

faces are prevented. The pressure solution on the fracture surfaces at time t = 3 s,

which is the moment of maximum fluid injection rate, is shown in the rightmost panel

of Fig. 3.7.

FIGURE 3.7: Test 2a: Domain configuration (left) and pressure solution
at time t = 3 s (right).

Two uniform grid refinements are considered, with the linear elemental size vary-

ing from h = 0.04 m to h = 0.02 m. The number of unknowns for the coarse and fine

discretization is listed in Table 3.3. The overall performance of the non-linear solution

algorithm is reported in Table 3.4, where the number of: (i) steps ℓ of the active-set

algorithm, and (ii) iterations NN of the inner Newton’s loop, are reported for every
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TABLE 3.3: Test 2a: Problem size for the coarse and fine mesh.

coarse fine
nu 55,080 408,045
nt 2,700 10,800
np 900 3,600

total 58,680 422,445

simulation time for both the coarse and fine discretization. The same pieces of infor-

mation are graphically summarized in the top panel of Fig. 3.8, where red dots refer to

the beginning of a new time step and the non-linear residual decreases quadratically

during each Newton’s loop. If the stick/slip/open configuration obtained at conver-

gence is not consistent with the initial one, the region subdivision is updated. At this

occurrence, the non-linear relative residual increases back to 1 and a new Newton’s

loop is carried out.

TABLE 3.4: Test 2a: Newton’s iterations NN for each simulation time
and active-set step ℓ for the coarse (top rows) and the fine mesh (bottom
rows). * means that Newton’s scheme does not converge and starting
from a completely closed configuration is required. Fig. 3.8 reports the
corresponding non-linear convergence profiles for each combination of

time and active-set iterations.

time [s]
ℓ 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
1 2 2 2 2 5 6 6 6 4 2 2 2

coarse 2 5 4 5 5 5 2
3 3 5
1 2 2 2 6 6 5 7* 6* 6 3 2 2
2 5 5 5 6 7 6 5 2

fine 3 4 4 4 5 5 5 5
4 4 3 4 5 4 4
5 4 4

The simulation is built so that all the status (stick/slip/open) are experimented

along the fracture surfaces. At the beginning, all elements are in stick conditions, then

the slip and open regions progressively increase until t = 3 s, where almost all fractures

are open. Starting from t = 3.5 s, the elements start to close again until they return to

the initial condition at t = 6 s. When a large number of fracture elements belongs to

either the slip or the open region, the non-linear problem is more difficult and requires

more active-set steps and inner Newton’s iterations to converge. Quite intuitively, a

larger number of fracture elements should require more non-linear iterations, as it can
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FIGURE 3.8: Test 2a: Non-linear convergence profiles (top panel) and
number of linear iterations NG for each Jacobian system solution (bot-

tom panel). Red dots denote the beginning of the time step.

be appreciated in Table 3.4. The coarse mesh totalsNℓ = 20 andNN = 75, while the fine

mesh requires Nℓ = 35 and NN = 154. By distinction, the linear solver performance is

practically unaffected by the mesh refinement, as shown in the bottom panel of Fig. 3.8

where the GMRES iterations number NG at every Jacobian system solution is plotted

and in Table 3.5 where the average value NG for each time step is reported. The linear

iteration count tends to increase when the non-linear problem is more difficult, i.e.,

around t = 3 s. This can be motivated by the different dynamics occurring at this point,

with a modification in the relative weight of each block in the overall Jacobian matrix.

However, the proposed solution method appears to be fully scalable with respect to the

grid size.

TABLE 3.5: Test 2a: Average number of linear iterations NG for the
coarse and fine mesh.

t [s] 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
coarse 17.0 17.0 17.0 16.8 21.2 21.3 28.8 18.3 18.0 17.0 17.0 17.0

fine 18.0 17.0 15.5 16.9 18.2 25.1 32.5 20.4 15.4 18.0 17.0 17.0

The investigated problem couples embedded 2D structures, i.e., the fractures, with

the variables living in 3D domain. Therefore, a progressive grid refinement changes

also the relative size of the blocks appearing in the Jacobian matrix J , thus potentially

modifying the overall problem conditioning. To analyze the behavior of the proposed

algorithm with different 2D-to-3D ratios, i.e., the value of (nt + np) with respect to nu,

a second test case is introduced (Test 2b) consisting of a unitary cube with 7 vertical
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fractures (Fig. 3.9). The model has been regularly refined six times, with the mesh size

varying from h = 0.1 m to h = 0.0167 m. The number of unknowns for each refinement

level, along with the percentage of 3D and 2D variables with respect to the total, is

listed in Table 3.6. As with Test 2a, fluid injection and extraction are prescribed at the

center of each fracture simulating the action of a horizontal well. The external faces

parallel to the fractures are subjected to a compressive constant load (σ0 = 10 MPa),

while displacements on the other boundary faces are prevented. Fig. 3.9 shows the

pressure solution at t = 3 s.

TABLE 3.6: Test 2b: Mesh size and percentage of 3D (nu) and 2D (nt+np)
variables with respect to the total for different refinement levels.

level 1 2 3 4 5 6
cells 10× 10× 10 20× 20× 20 30× 30× 30 40× 40× 40 50× 50× 50 60× 60× 60

nu 4,668 31,050 97,176 221,046 420,600 714,018
nt 972 3,888 8,749 15,552 24,300 34,992
np 324 1,296 2,916 5,184 8,100 11,664

total 5,964 36,234 108,840 241,782 453,060 760,674
3D 78.3% 85.7% 89.3% 91.4% 92.8% 93.9%
2D 21.7% 14.3% 10.7% 8.6% 7.2% 6.1%

FIGURE 3.9: Test 2b: Domain configuration (left) and pressure solution
at time t = 3 s (right).

Observe that after six refinements the size of the 2D blocks decreases from 21.7%

to only 6.1% of the overall size of J . Moreover, even with the last refinement level,

which totals more than 750,000 unknowns, the size of S̃2 is around 11,500, thus fully

justifying the use of a nested direct solver. As already observed in Test 2a, it is expected

that the overall number of non-linear iterations, i.e., Nℓ and NN , increases as the grid

is progressively refined. This is observed in the left panel of Fig. 3.10, which provides
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the variation of Nℓ and NN relative to Nℓ,0 and NN,0, respectively, i.e., the total number

of active-set steps and Newton iterations obtained with the coarsest grid. The purpose

is to show how the non-linear iteration counts vary with increasing refinement level.

The right panel of Fig. 3.10 provides the average, maximum and minimum number

of GMRES iterations required by the linear solver. The average value is practically

constant around 17 iterations and the extreme values vary between 13 and 22. Hence,

the t-u-p algorithm shows a very stable behavior also when the relative size of the

matrix blocks in J changes.
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FIGURE 3.10: Test 2b: active-set and Newton’s iterations relative to those
for the coarsest grid (left) and average, maximum and minimum GMRES

iterations (right) for each refinement level.

Test 3: Realistic application

Finally, the performance of the t-u-p preconditioner is verified in a realistic application,

which simulates a tilted well intersecting 9 fractures. The domain is comprised within

a 5.0 m×1.6 m×2.3 m box. The well inclination is -15◦ with respect to the horizontal

plane. The fractures have the same size, but different relative positions with respect to

the well, i.e., the well does not intersect all of them at the same location. The domain

undergoes a compressive load parallel to the fractures (σ0 = 10 MPa), while displace-

ments are prevented on the other boundary faces. The pressure at the four corners of

every fracture is set to 0. The model totals 342,642 nodes and 5,184 fracture elements,

corresponding to nu = 1, 027, 926, nt = 15, 552, np = 5, 184, and an overall system size

of 1,048,662 unknowns. An example of the pressure solution obtained at t = 3.5 s is

reported in the leftmost panel of Fig. 3.11.
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FIGURE 3.11: Test 3: Pressure solution at t = 3.5 s (left) and GMRES con-
vergence profiles for all the Newton iterations at the same time (right).

The problem turns out to be particularly challenging because of the grid distor-

tion and the different stick/slip/open region partitioning simultaneously obtained in

each fracture. Thus, the overall non-linear simulation requires several active-set steps

and restarts for the inner Newton’s loop. The performance of the non-linear solution

algorithm is summarized in Table 3.7, where the active-set steps and Newton’s loop

iterations at every simulation time are reported.

TABLE 3.7: Test 3: Newton’s iterations for each simulation time and
active-set step ℓ. The average number of GMRES iterations NG per time

step is also reported.

time [s]
ℓ 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
1 2 2 6 8 8 16 2 5 5 4 3 2
2 5 6 6 6 6 6 6 6 4 2
3 4 5 5 5 6 5 5 4 2
4 5 5 5 5 5 5 5 4 3
5 4 5 5 4 4 4 5
6 4 4
NG 25.0 22.3 23.3 25.9 29.2 26.8 22.9 21.2 20.5 22.1 21.3 21.0

Despite the challenging configuration, the linear solver proves to be stable and ef-

ficient, as pointed out by the average GMRES iterations number reported in Table 3.7.

Over the entire simulation, the average number of iterations is NG = 24.2, with a

minimum NG,min = 16 and a maximum NG,max = 185. The latter corresponds to a

Newton step where a large number of fracture elements move from one configuration

to another. As an example, Fig. 3.11 shows all the convergence profiles obtained by a

right-preconditioned GMRES accelerated by the t-u-p approach for the Newton loop

at t = 3.5 s, proving the great stability of the solver behavior, even if the fracture state
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changes significantly.

3.2.5 Discussion

In this section, the frictional contact mechanics with fluid flow in fracture networks has

been numerically solved with the aid of a blended finite element/finite volume formu-

lation. The strongly non-linear problem that arises is addressed by an active-set strat-

egy paired with an inner Newton scheme. From the linearization a non-symmetric in-

definite 3×3 block Jacobian matrix is obtained, which algebraic properties change dur-

ing the simulation according to the evolution of the fractures state. For this problem,

standard global approaches cannot be effectively used. Thus, a robust, scalable and

efficient preconditioning framework has been proposed, which exploits the physics-

based variable partitioning and the use of multigrid techniques for the sake of algo-

rithmic scalability. The basic idea relies on (i) restricting the system to a single-physics

problem, (ii) approximately solve it by an inner AMG, and (iii) prolong the solution

back to the full multi-physics problem. According to the reduction sequences, two ap-

proaches have been developed, denoted as t-p-u (traction-pressure-displacement) and

t-u-p (traction-displacement-pressure), and compared in a set of numerical examples.

Theoretical analyses show that the proposed approaches are expected to have a sim-

ilar convergence rate, with a slight advantage for the t-p-u approach because of a more

clustered eigenvalue distribution for the preconditioned matrix and a smaller applica-

tion cost. Indeed, this is confirmed by the numerical experiments when nested direct

solvers are used in the preconditioner application, but t-p-u approach may soon lose

robustness when AMG methods are introduced. The reason stems from the possible

indefiniteness of the arising Schur complement, which is avoided in the t-u-p approach.

The t-u-p approach proves to be algorithmically scalable with respect to the com-

putational grid size and the relative size of the Discrete Fracture Network (DFN) to

the full 3D domain. Although the non-linear problem can become harder to solve, the

iteration count for the inner linear solver is independent of the discretization size.

The application in a realistic configuration shows the computational efficiency of

the proposed approach. Despite the difficulty met by the non-linear algorithm, due
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to the combination of variable stick/slip/open operating modes for the different frac-

tures, the linear solver exhibits a very stable behavior throughout the full simulation

and a remarkable efficiency also in a sequential implementation.

Future developments regard the implementation of the proposed preconditioning

framework in high performance computing infrastructures, in order to fully exploit the

algorithmic scalability and test the actual parallel efficiency. A natural extension of the

work presented in this section regards the consideration of the (multi-phase) fluid flow

not only through the fracture network, but in the porous medium matrix as well. An

overview of the changes in the model formulation to tackle this new physical problem

is presented in the following paragraph.

3.2.6 Extension to fluid flow in the 3D porous domain

The natural evolution of the model presented in the previous paragraphs is the exten-

sion of the fluid flow in the porous matrix. Thus, the mass balance holds not only in

the fracture network, as in Eq. (3.3), but also in the 3D domain:

∂

∂t
(ρϕ) +∇ · (ρv) = qs (3.49)

where v is the mass flux described by Darcy’s law, Eq. (2.5), and qs is the source term.

The discretization of Eq. (3.49) follows exactly the procedure reported in Section

3.2.2 for the mass balance, i.e., the FVM is used and the pressure unknown lies now in

the center of both fracture and 3D elements. At the end, the system has a 4×4 block

structure where the additional block, i.e., the one related to the pressure in the 3D

domain, has the same properties as the block T in Eq. (3.24). Thus, the preconditioning

strategy can be built similarly to the one in Section 3.2.3.

3.3 DFN penalized formulation

In this section, a different approach for solving the hydro-poromechanical problem is

considered, specifically using the FVM in a unified approach to discretize both the

mass and the momentum balance equations. This model is described in Novikov et al.

[2022] and implemented in the open-source Delft Advanced Research Terra Simulator
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(DARTS). DARTS has already been used for hydrocarbon [Khait and Voskov, 2018a;

Lyu et al., 2021a], geothermal [Khait and Voskov, 2018b; Wang et al., 2020; de Hoop

et al., 2022] and CO2 sequestration [Kala and Voskov, 2019; Lyu et al., 2021b] applica-

tions. Here, an ad-hoc preconditioning framework for the fully hydro-poromechanical

coupled problem in fractured domains is developed and tested.

Section 3.3.1 briefly presents the strong form of the physical problem, while in Sec-

tion 3.3.2 the weak form is derived. A first preconditioning framework is developed

and tested in Section 3.3.3. The testing phase draws attention to some limits of the

proposed approach, which are deeply analyzed in Section 3.3.4, where a different con-

figuration of the proposed preconditioning approach is described and tested. Finally,

Section 3.3.5 gathers the main findings and defines the steps for future developments.

3.3.1 Problem statement

Considering a poroelastic fractured domain, the single-flow is governed by the mo-

mentum and fluid mass balance equations, as in Eq. (2.11) and Eq. (3.49), respectively:

−∇ · σ̂(u, p) = F V (3.50)

∂

∂t
(ρ ϕ(u, p)) +∇ · (ρ v(p)) = qs (3.51)

The porosity ϕ is, in general, a function of pressure and displacement:

ϕ = ϕ0 +
αB/3 − ϕ0

Kr
(p− p0) + αB∇s (u− u0) (3.52)

where the subscript 0 denotes the reference state of a variable andKr is the bulk modu-

lus of the solid phase. Darcy’s velocity v(p) is computed according to Eq. (2.5). Contact

constraints, i.e., Eq. (3.11) and Eq. (3.12), are imposed along the fractures.

3.3.2 Discrete formulation

The main unknowns of this formulation are the displacement u in Ω, the gap g in Γ and

the pressure p in Ω∪Γ. Differently from the previous model, here the FVM is used also

for the momentum balance. The discrete approximations {uh, gh, ph} of the unknowns
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{u, g, p} can be defined as:

uh =

nu∑
i=1

ηiui ∈ Vh, gh =

ng∑
j=1

µjgj ∈ Mh(thN ,∆gT ), ph =

np∑
k=1

χkpk ∈ Ph,

(3.53)

where the finite-dimensional subspaces Vh, Mh(thN ,∆gT ) and Ph are:

Vh ⊂ V = {η ∈ [L2(Ω)]3,η|Ωe ∈ P1(Ωe) ∀Ωe ∈ Ωh : η = u on ∂Ωu} (3.54)

Mh(thN ,∆gT ) ⊂M(tN ,∆gT ) = {µ ∈ [L2(Γ)]3,µ|Ωe ∈ P1(Ωe) ∀Ωe ∈ Ωh :

µN ≥ 0, (v,µ)Γ ≤ (τmax(tN ), ||µT ||2)Γ ,v ∈ [L2(Γ)]3 with

vN ≥ 0, ||vT ||2 ≤ τmax, ||µT ||2 ≤ ||∆gT ||2}

(3.55)

Ph ⊂ P = {χ ∈ L2(Γ), χ|Ωe ∈ P1(Ωe) ∀Ωe ∈ Ωh} (3.56)

with the notation already described in Section 3.2.2.

The discrete weak form of the problem may be derived as:

find {uh, gh, ph} ∈ Vh ×Mh(thN ,∆gT )× Ph such that

Ru =
∑

δ∈F(Ωe)

|δ|
(
σ − αBp

hi
) ∣∣∣
xδ
nδ − |V |F V

∣∣∣
xV

= 0 (3.57)

Rg,i = (tN , g
h
N − µN )Γi + (tT ,∆g

h
T − µT )Γi ≥ 0 i = 1, . . . , nf (3.58)

Rp = |V | ∂
∂t

(ρϕ)
∣∣∣
xV

+
∑

δ∈F(Ωe)

|δ|ρv
∣∣∣
xδ
nδ − |V |qs

∣∣∣
xV

= 0 (3.59)

where F represents the set of faces of a cell Ωe with |V | and xV its volume and cen-

ter, respectively. Considering a single face δ, |δ| is its area, xδ refers to its center and

nδ to the outward normal unit vector. This formulation introduces an additional com-

plexity, which is the gradient approximation of the displacementu and pressure p, both

assumed to be piecewise-linear. This issue is treated with a gradient splitting and a gra-

dient reconstruction, following the work by Terekhov [2020]. The variational inequality

in Eq. (3.58) is solved using a penalty regularization [Garipov et al., 2016; Gallyamov

et al., 2018], which leads to the following return-mapping algorithm [Novikov et al.,
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2022]:

gk+1
N − gkN = 0 (3.60)

f̃
′

T = f
′k
T + εT

(
gk+1
T − gkT

)
(3.61)

f
′k+1
T − f̃

′

T +
〈
Φ̃
〉 f̃

′

T

|f̃
′

T |
= 0 with Φ̃ = |f̃

′

T | − f
′k+1
N tan(θ) (3.62)

where index k refers to the time step, while subscripts N and T refer to the normal and

tangential components, respectively. The trial traction f̃
′

T is the effective tangential

traction f
′
T conveniently penalized with the penalty coefficient εT [Simo and Laursen,

1992]. The result of the Macaulay brackets ⟨·⟩ is 0 if the argument is negative, otherwise

it is equal to the argument itself.

The final system of nonlinear discrete residual equations reads:

r(u, g,p) =


ru(u, g,p)

rg(u, g,p)

rp(u, g,p)

 = 0, (3.63)

which is solved by a Newton-Krylov method. In Eq. (3.63), the algebraic vectors u, g

and p collect the coefficients ui, gj and pk of the discrete displacement, gap and pressure

fields of Eq. (3.53). To advance by one Newton iteration k, the steps are:

solve J kδx = −rk ⇒


Juu Jup Jug

Jpu Jpp Jpg

Jgu Jgp Jgg


k 

δu

δg

δp

 = −


ru

rg

rp


k

,

update xk+1 = xk + δx ⇒


u

g

p


k+1

=


u

g

p


k

+


δu

δg

δp

 .
(3.64)

For additional details on this formulation, the reader is pointed to Novikov et al. [2022].
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3.3.3 3×3 preconditioning framework

To develop the preconditioning framework, the same concepts presented in Section

3.2.3 have been considered. In particular, the aim is to exploit the physics-based vari-

able partitioning by first reducing the problem to a single-physics problem, and then

prolonging it back to the full multi-physics space. Different algorithms may arise de-

pending on the sequence of reductions. Here, two options for a 3×3 block precondi-

tioner are presented and then compared through four test cases.

3×3 block Jacobian: pressure - gap - displacement approach

Considering the 3×3 structure of the Jacobian, the following permutation has been

considered:

QJQT =


0 Ip 0

0 0 Ig

Iu 0 0



Juu Jup Jug

Jpu Jpp Jpg

Jgu Jgp Jgg



0 0 Iu

Ip 0 0

0 Ig 0

 =


Jpp Jpg Jpu

Jgp Jgg Jgu

Jup Jug Juu

 (3.65)

Similarly to the framework presented in Section 3.2.3, the preconditioning operator

M−1 can be written from an algebraic point of view as an inexact block LDU factoriza-

tion of the Jacobian J . The exact LDU factorization of the permuted Jacobian reads:
Jpp Jpg Jpu

Jgp Jgg Jgu

Jup Jug Juu

 =


Ip 0 0

JgpJ
−1
pp Ig 0

JupJ
−1
pp

(
Jug − JupJ−1

pp Jpg
)
S−1

1 Iu



Jpp 0 0

0 S1 0

0 0 S2

 ·

·


Ip J−1

pp Jpg J−1
pp Jpu

0 Ig S−1
1

(
Jgu − JgpJ−1

pp Jpu
)

0 0 Iu


(3.66)

where the first- and second-level Schur complements are:

S1 = Jgg − JgpJ−1
pp Jpg (3.67)

S2 = Juu − JupJ−1
pp Jpu −

(
Jug − JupJ−1

pp Jpg
)
S−1

1

(
Jgu − JgpJ−1

pp Jpu
)

(3.68)
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Assuming that Jgp = 0, Eq. (3.66) becomes:
Jpp Jpg Jpu

0 Jgg Jgu

Jup Jug Juu

 =


Ip 0 0

0 Ig 0

JupJ
−1
pp

(
Jug − JupJ−1

pp Jpg
)
J−1
gg Iu



Jpp 0 0

0 Jgg 0

0 0 S

 ·

·


Ip J−1

pp Jpg J−1
pp Jpu

0 Ig J−1
gg Jgu

0 0 Iu


(3.69)

Now, only one Schur complement arises:

S = Juu − JupJ−1
pp Jpu −

(
Jug − JupJ−1

pp Jpg
)
J−1
gg Jgu (3.70)

The final algebraic expression of the preconditioner M−1 is therefore:

M−1 =


Ip −J−1

pp Jpg −J−1
pp

(
Jpu − JpgJ−1

gg Jgu
)

0 Ig −J−1
gg Jgu

0 0 Iu



J−1
pp 0 0

0 J−1
gg 0

0 0 S̃
−1

 ·

·


Ip 0 0

0 Ig 0

−JupJ−1
pp −

(
Jug − JupJ−1

pp Jpg
)
J−1
gg Iu


(3.71)

where the approximation S̃ of the Schur complement is computed considering the di-

agonal of Jpp and a 3× 3 block-diagonal of Jgg.

3×3 block Jacobian: gap - pressure - displacement approach

The second preconditioning approach considers again the projection onto the displace-

ment space, but following the order gap - pressure - displacement. The symbolic per-

mutation of the matrix leads to:

QJQT =


0 0 Ig

0 Ip 0

Iu 0 0



Juu Jup Jug

Jpu Jpp Jpg

Jgu Jgp Jgg



0 0 Iu

0 Ip 0

Ig 0 0

 =


Jgg Jgp Jgu

Jpg Jpp Jpu

Jug Jup Juu

 (3.72)
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which can be factorized as:
Jgg Jgp Jgu

Jpg Jpp Jpu

Jug Jup Juu

 =


Ig 0 0

JpgJ
−1
gg Ip 0

JugJ
−1
gg

(
Jup − JugJ−1

gg Jgp
)
S−1

1 Iu



Jgg 0 0

0 S1 0

0 0 S2

 ·

·


Ig J−1

gg Jgp J−1
gg Jgu

0 Ip S−1
1

(
Jpu − JpgJ−1

gg Jgu
)

0 0 Iu


(3.73)

The first- and second-level Schur complements are defined as:

S1 = Jpp − JpgJ−1
gg Jgp (3.74)

S2 = Juu − JugJ−1
gg Jgu −

(
Jup − JugJ−1

gg Jgp
)
S−1

1

(
Jpu − JpgJ−1

gg Jgu
)

(3.75)

Under the hypothesis Jgp = 0, Eq. (3.73) is simplified as:
Jgg 0 Jgu

Jpg Jpp Jpu

Jug Jup Juu

 =


Ig 0 0

JpgJ
−1
gg Ip 0

JugJ
−1
gg JupJ

−1
pp Iu



Jgg 0 0

0 Jpp 0

0 0 S

 ·

·


Ig 0 J−1

gg Jgu

0 Ip J−1
pp

(
Jpu − JpgJ−1

gg Jgu
)

0 0 Iu


(3.76)

where the Schur complement is defined as:

S = Juu − JugJ−1
gg Jgu − JupJ

−1
pp

(
Jpu − JpgJ−1

gg Jgu
)

(3.77)

The preconditioner M−1 has the final algebraic expression:

M−1 =


Ig 0 −J−1

gg Jgu

0 Ip −J−1
pp

(
Jpu − JpgJ−1

gg Jgu
)

0 0 Iu



J−1
gg 0 0

0 J−1
pp 0

0 0 S̃
−1

 ·

·


Ig 0 0

−JpgJ−1
gg Ip 0

−
(
Jug − JupJ−1

pp Jpg
)
J−1
gg −JupJ−1

pp Iu


(3.78)

In Eq. (3.78), the approximate Schur complement S̃ is computed using the diagonal of

Jpp and a 3× 3 block diagonal of Jgg.
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The preconditioning frameworks have been implemented on a prototype MATLAB

code [MATLAB, 2021b]. Four test cases have been considered in order to test the effec-

tiveness of the proposed approaches and compare them in terms of number of GMRES

iterations required to solve the problems.

Numerical results

The domain of the first two tests is a 1 m×1 m×1 m cube with a single vertical fracture

(Fig. 3.12). The bottom and lateral surfaces are fixed, while a constant load σ0 = 10 MPa

is applied on the top surface. The homogeneous rock material has Young’s modulus

and Poisson’s ratio equal to 103 MPa and 0.25, respectively. The simulation lasts for

30 days. The first and second test case differ for the computational mesh, which is

hexahedral in the first test case and tetrahedral in the second one. The number of 3D

and 2D elements and the sizes of the Jacobian sub-blocks are reported in Table 3.8.

FIGURE 3.12: Domain configuration for test case 1 and 2.

TABLE 3.8: Number of elements and sizes of the Jacobian blocks for each
test case.

Test case 1 2 3 4

3D elem 1,024 3,050 8,194 1,836
2D elem 16 50 91 25
nu 3,072 9,150 24,582 5,520
np 1,040 3,100 8,285 1,865
ng 48 150 273 75

The third test case considers a single-fracture problem with a displaced reservoir,

as shown in Fig. 3.13. A constant pressure load equal to 35 MPa is prescribed on the
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reservoir layer. The material rock is homogeneous with Young’s modulus and Pois-

son’s ratio equal to 14,950 MPa and 0.15, respectively. The tetrahedral mesh with an

indication of the reservoir and the fracture location is shown in Fig. 3.13, while Table

3.8 reports the size of the problem.

FIGURE 3.13: Test case 3: domain configuration with the reservoir layer
in red.

The last test case refers again to a homogeneous domain with a single fracture, but

in this case an injection and an extraction sources are located on the two opposite cor-

ners (Fig. 3.14). Young’s modulus is set equal to 103 MPa, while Poisson’s ratio is 0.25.

The injector and the producer are characterized through their bottom hole pressure,

which is set equal to 28 MPa. The size of the problem is reported in Table 3.8.

FIGURE 3.14: Domain configuration of the test case 4, with the fracture
in blue and the indication of the injection and extraction location. The

vertical exaggeration factor is 5.

First, the non-zeros number and the Frobenius norm have been computed for each

sub-block of the Jacobian, then the preconditioning approaches have been applied to
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the test cases and compared in term of number of GMRES iterations required to solve

the system.

The non-zeros number and the Frobenius norm, reported in Table 3.9 and Table

3.10, respectively, give an indication about the relative importance of each Jacobian sub-

block. Such values clearly show that the block Jgp is basically empty, thus justifying

the hypothesis of neglecting it in the definition of the 3×3 block preconditioners.

TABLE 3.9: Number of non-zeros of each Jacobian sub-block. An * indi-
cates that the number changed during the simulation, thus the average

is reported.

Test case 1 2 3 4

Juu 63,694 150,322 412,297 89,600
Jup 10,708 59,660 164,437 35,704
Jug 1,240 3,515 8,270 1,755
Jpu 11,191* 60,108* 0 35,369*
Jpp 12,726 30,075 8,285 17,641*
Jpg 292 1,688 0 832*
Jgu 640 1,500 2,278* 734*
Jgp 0 0 170* 0
Jgg 230 740 1,201* 359*

TABLE 3.10: Average Frobenius norm in time of each Jacobian sub-block.
The values related to block Jpp are normalized dividing by the time step
size. The ∼ is used when the value of the norm slightly varies during

the simulation time.

Test case 1 2 3 4

Juu 1.78e+07 3.01e+06 3.79e+10 1.33e+07
Jup 1.02e+00 1.35e+00 2.73e+06 1.35e+02
Jug 8.20e+05 1.74e+05 1.70e+09 1.30e+05
Jpu ∼8.03e+03 ∼1.06e+03 0.00e+00 ∼1.08e+05
Jpp 1.08e+04 2.55e+03 2.81e+08 ∼5.97e+07
Jpg ∼1.00e+03 ∼5.70e+01 0.00e+00 ∼8.27e+03
Jgu 2.43e+01 1.24e+01 ∼1.45e+03 ∼8.85e+00
Jgp 0.00e+00 0.00e+00 ∼2.27e-13 0.00e+00
Jgg 1.49e+05 1.25e+05 ∼1.46e+07 ∼7.81e+04

The preconditioners have been applied in the solution of the four test cases in two

ways: (i) by using nested direct solvers and (ii) by approximating the block inverses.

The aim of the former test is to evaluate the overall effectiveness of the proposed ap-

proaches, while with the latter case the influence of the approximations is evaluated.
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Indeed, approximations are mandatory in complex real cases where the sizes of the ma-

trices do not allow for the use of nested direct methods. Results of the first and second

preconditioning approach are reported in Fig. 3.15 and Fig. 3.16, respectively.
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FIGURE 3.15: Linear iterations required to solve the four test cases with
the 3×3 preconditioner, that follows the order pressure - gap - displace-

ment.

Results in terms of convergence profiles are promising. The application of the pre-

conditioners with nested direct solvers for the inner block inverses demonstrates the

effectiveness of the proposed approaches, with the iterations number required to solve

the linear system lower than 10 for all the test cases. However, when the precondition-

ers make use of inner approximations, the convergence profiles show a non negligible

increase in the iterations number. In order to investigate which block approximation

has the main impact on the system solution, the mechanical sub-blocks, i.e., the ones

referred to the displacement and the gap unknowns, have been joined together and the

2×2 hydro-poromechanical problem has been analyzed.

Two preconditioning frameworks, based on the two possible reordering of the un-

knowns are presented and compared in Section 3.3.4.
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FIGURE 3.16: Linear iterations required to solve the four test cases with
the 3×3 preconditioner, that follows the order gap - pressure - displace-

ment.

3.3.4 2×2 preconditioning framework

The analyses consider the hydro-poromechanical coupling without the distinction be-

tween the 3D domain and the fractures, i.e., keeping together the displacements u and

the gaps g, and working with a 2×2 block Jacobian. The aim is to identify which of the

two main physics mainly influences the solution of the problem.

2×2 block Jacobian: mechanic - pressure approach

First, the mechanic - flow ordering is considered:


Juu Jug Jup

Jgu Jgg Jgp

Jpu Jpg Jpp

 −→

Jkk Jkp

Jpk Jpp

 (3.79)
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Similarly to the framework presented in Section 3.3.3, the preconditioning operator

M−1
1 can be written as an inexact block LDU factorization of the Jacobian J :

Q1JQT
1 ≃ L1D1U1, (3.80)

where in this case the permutation matrix Q1 is the block-diagonal identity matrix. The

LDU factorization reads:Jkk Jkp

Jpk Jpp

 =

 Ik 0

JpkJ
−1
kk Ip


Jkk 0

0 Sp


Ik J−1

kk Jkp

0 Ip

 (3.81)

where Sp is the Schur complement:

Sp = Jpp − JpkJ−1
kk Jkp (3.82)

The final expression of the preconditioner M−1
1 is therefore:

M−1
1 =

Ik −J−1
kk Jkp

0 Ip


J−1

kk 0

0 S̃
−1

p


 Ik 0

−JpkJ−1
kk Ip

 (3.83)

where S̃p is an approximation of the Schur complement computed considering a diag-

onal approximation of J−1
kk .

2×2 block Jacobian: pressure - mechanic approach

A similar preconditioner is built considering the alternative multi-physics reduction,

thus projecting the problem onto the pressure space:


Jpp Jpu Jpg

Jup Juu Jug

Jgp Jgu Jgg

 −→

Jpp Jpk

Jkp Jkk

 (3.84)
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In this formulation, the LDU factorization of the system matrix reads:

Jpp Jpk

Jkp Jkk

 =

 Ip 0

JkpJ
−1
pp Ik


Jpp 0

0 Sk


Ip J−1

pp Jpk

0 Ik

 (3.85)

where the Schur complement is:

Sk = Jkk − JkpJ−1
pp Jpk (3.86)

The final algebraic expression of the preconditioner M−1
2 reads:

M−1
2 =

Ip −J−1
pp Jpk

0 Ik


J−1

pp 0

0 S̃
−1

k


 Ip 0

−JkpJ−1
pp Ik

 (3.87)

where S̃
−1

k is the approximate Schur complement computed using the diagonal of Jpp

in Eq. (3.86).

Numerical results

The two preconditioning frameworks presented in the previous paragraphs have been

tested on the four test cases described in Section 3.3.3. The preconditioners have been

applied with the aid of nested direct solvers, in order to evaluate the framework effec-

tiveness. Then, they have been applied considering the approximation of (i) the Schur

complement and (ii) the mechanic/flow block, with the aim to identify which approx-

imation has the main impact on the solution of the coupled problem.

The results in terms of iterations number required to solve the linear systems are

reported in Fig. 3.17 and Fig. 3.18 for the preconditioner with ordering mechanics -

flow, and in Fig. 3.19 and Fig. 3.20 for the flow - mechanics one.

The application of the preconditioners with nested direct solvers demonstrates the

effectiveness of the approaches, with the number of iterations required to solve the

systems lower than 10 for all the test cases. This confirms the results already obtained in

Section 3.3.3. The approximation of the Schur complement (Fig. 3.17 and Fig. 3.18), i.e.,

of the pressure block of the Jacobian (Fig. 3.19 and Fig. 3.20), preserves the accuracy of
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FIGURE 3.17: Linear iterations required to solve the test case 1 (left) and
2 (right) with the 2x2 approach that follows the order mechanic - flow.

0 1 2 3 4
linear system id

0

10

20

30

40

50

60

70

80

ite
r

test 3 - direct
test 3 - S app
test 3 - K app
test 3 - S, K app

0 10 20 30 40
linear system id

0

5

10

15

20

25

30

35

40

ite
r

test 4 - direct
test 4 - S app
test 4 - K app
test 4 - S, K app

FIGURE 3.18: Linear iterations required to solve the test case 3 (left) and
4 (right) with the 2x2 approach that follows the order mechanic - flow.
When the preconditioner is directly applied or if onlyS is approximated,

just 1 iteration is needed for the test case 3.
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FIGURE 3.19: Linear iterations required to solve the test case 1 (left) and
2 (right) with the 2x2 approach that follows the order flow - mechanic.
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FIGURE 3.20: Linear iterations required to solve the test case 3 (left) and
4 (right) with the 2x2 approach that follows the order flow - mechanic. If
the preconditioner is directly applied or if only S is approximated, only

1 iteration is needed for the test case 3.

the preconditioner approaches, with a slight increase in the iterations number. On the

contrary, an approximate application of the mechanical block involves a non negligible

deterioration of the convergence profiles.

3.3.5 Discussion

In this section, the coupled hydro-mechanical problem in fractured domain, solved

with a finite volume formulation and a penalty approach, has been considered. Accord-

ing to the framework developed for the blended FEM - FVM Lagrangian formulation in

Section 3.2, different preconditioners have been proposed exploiting the physics-based

block partitioning of the problem. First, two preconditioning approaches have been

developed considering the 3×3 structure of the Jacobian, and compared through four

test cases. The numerical results show the effectiveness of the proposed frameworks,

but also point out some limits in the approximation of the mechanical block. This can

be easily overcome moving from the MATLAB prototype code to an ad-hoc implemen-

tation that allows to take advantage from different kinds of approximate application of

the preconditioner sub-blocks, such as multigrid techniques.

Future developments will regard a more advanced implementation of the precon-

ditioning framework and an extensive testing phase, to prove its scalability and robust-

ness.
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3.4 DFN as a PDE-constrained optimization

In Section 3.2 and Section 3.3, two formulations for the simulation of the coupled

hydro-poromechanical problem in porous media have been presented. These mod-

els consider an explicit discrete representation of the fractures in a conforming domain.

The conformity requirement can be particularly demanding for intricate fracture net-

works where there is a multi-scale geometry with many fracture intersections. When

the presence of faults and fractures has a dominant impact on the fluid flow dynam-

ics, e.g., when the fracture hydraulic transmissivity is much higher than rock trans-

missivity, the influence of the porous rock matrix can be neglected with minor impact

on the flow prediction. In addition, modeling only the fracture network reduces the

computational cost. However, other issues arise, such as the imposition of the interface

conditions, especially at the fracture intersections. This problem has been effectively re-

stated as a PDE-constrained optimization problem in Berrone et al. [2013, 2016, 2017].

The main advantage of this formulation is that it allows for the use of independent,

and possibly non nonconforming, meshes for each fracture. From an algebraic point of

view, a symmetric saddle-point matrix with a rank-deficient leading block arises. The

properties of this system have been investigated herein and a proper block precondi-

tioning strategy has been designed and tested.

Section 3.4.1 recalls the problem definition for the flow in fracture networks. The

algebraic problem arising from the PDE optimization is described in Section 3.4.2. The

preconditioning framework is derived in Section 3.4.3 and the results of the numerical

tests are reported in Section 3.4.4. Finally, Section 3.4.5 summarizes the outcomes and

suggests possible future perspectives.

3.4.1 Problem statement

In this model, the fractures are explicitly represented as intersecting planar polygons

in a 3D structure, neglecting the surrounding underground rock formation. Let Ω be a

connected three-dimensional fracture network consisting of the union of nf intersect-

ing planar polygons ωi, i = 1, . . . , nf , where ωi = ωi ∪ Γi is the closure of the open

planar domain ωi with its linear boundary Γi. The fluid flow through ωi is assumed
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laminar and described by the mass balance coupled with Darcy’s law. Dirichlet and

Neumann boundary conditions are imposed on Γi. The problem is supplemented with

the constraint conditions, corresponding to the physical requirement of continuity of

the hydraulic head and conservation of hydraulic fluxes across the linear intersections

between fractures. These intersections are also called traces. The system to be solved

is:

−∇ · (K∇h) = q, in ωi ∈ Ω, (3.88)

h|ΓDi
= hDi , on ΓDi , (3.89)

K∇h · ni = gi, on ΓNi , (3.90)

where ΓDi ∪ ΓNi = Γi, ΓDi ∩ ΓNi = ∅, and ΓDi ̸= ∅. In the previous equations, h is

the hydraulic head, K is the fracture transmissibility tensor, which is assumed to be

symmetric and uniformly positive definite, ni is the outward normal to Γi, q is the

known discharge within the fracture, and hDi and gi are the given hydraulic head and

flux prescribed along the fracture boundary, respectively. Since the fracture network is

connected, there is a flux exchange through the linear traces between the intersecting

polygons. Let σi,jk denote the intersection between ωi and ωj , which is assumed to be a

single close segment, with Σ the union of the ns traces, Σ = ∪nsk=1σ
i,j
k . Indicating by hi

the restriction of h to ωi, the continuity of the hydraulic head and the conservation of

fluxes across the traces requires that:

h
i|σi,jk

− h
j|σi,jk

= 0, ∀ σi,jk ∈ Σ, (3.91)

JK∇hi · nikKσi,jk + JK∇hj · njkKσi,jk = 0, ∀ σi,jk ∈ Σ, (3.92)

with nik the outer normal to the trace σi,jk lying on the fracture ωi and the symbol J·K
σi,jk

denoting the jump of the quantity within brackets through σi,jk . The DFN flow model

consists of finding the hydraulic head h : Ω → R satisfying the governing PDEs (3.88)-

(3.90) under the constraints (3.91)-(3.92).
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3.4.2 Discrete formulation

The number of the fractures and their different sizes, which can change of orders of

magnitude, entail a complex and multi-scale geometry that is not trivial to address. Tra-

ditionally, a numerical solution to the problem presented in Section 3.4.1, Eqs. (3.88)-

(3.92), requires some form of (at least partial) conformity in the meshes introduced

on the fractures. This issue is circumvented in the approach originally proposed by

Berrone et al. [2013], where the solution is obtained by a PDE-constrained optimal con-

trol problem. This method allows for the use of nonconforming meshes, i.e., meshes

in which elements are free to arbitrarily cross fracture intersections, thus simplifying

the mesh generation process. The coupling conditions at traces are enforced through

the minimization of a properly designed cost functional. The functional expresses the

error in the fulfillment of the interface conditions, and the solution is obtained as the

minimum of this functional constrained by the equations describing the flow on each

fracture [Berrone et al., 2014, 2017].

Let us introduce an appropriate measurable function space H for the representation

of h, such as:

H =
{
η ∈ H1(ωi) : η|ΓDi

= hDi ,∀i = 1, . . . , nf

}
, (3.93)

with H0 the corresponding counterpart with homogeneous conditions along Γi. A

mixed formulation is used, where the jump JK∇hi · nikKσi,jk , living along every trace

σi,jk for all i and j, is described by the unknown function ui : σ
i,j
k → R belonging to

the proper measurable function space Ui, which is defined according to the selection

of H. For example, considering H as in Eq. (3.93), Ui can be selected as a subspace of

L2(σi,jk ), with the global space U including all Ui. The set of constraints (3.91)-(3.92) can

be prescribed by minimizing the functional ψ(h, u) : H× U → R:

ψ(h, u) =
∑
σi,jk ∈Σ

(
∥hi − hj∥2H + ∥ui + uj + α (hi − hj)∥2U

)
(3.94)

where α ∈ R is a regularization parameter. The minimization of ψ(h, u) under the

conditions provided by Eqs. (3.88)-(3.90) is enforced by using Lagrange multipliers.
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The weak form reads:

(∇η,K∇h)ωi − (η, u)
σi,jk

= − (η, q)ωi + (η, gi)γNi
, ∀ η ∈ H0, i = 1, . . . , nf (3.95)

Denoting by p ∈ P the Lagrange multipliers living in the appropriate space P , the DFN

flow solution is obtained by finding (h, u, p) ∈ H × U × P that minimizes:

Ψ(h, u, p) = ψ(h, u) + p
∑
i

[ai(η, h)− ci(η, u)− qi(η)] , ∀ η ∈ H0 (3.96)

with ai(η, h) = (∇η,K∇h), ci = (η, u)
σi,jk

, and qi = −(η, q)ωi + (η, gi)γNi
.

The minimization of Ψ(h, u, p) in Eq. (3.96) is carried out approximately by replac-

ing the function spaces H, U and P with their discrete counterparts Hh, Uh and Ph with

finite size nh, nu, and np, respectively. One of the advantage of this method is that the

minimization process requires iteratively solving local and almost independent linear

systems, each defined on one fracture of the network, and these fracture-local problems

only need to share information at the interfaces. Thus, allowing for a natural parallel

implementation with a high scalability potential.

The discrete counterpart, Ψ(hh, uh, ph), with (hh, uh, ph) ∈ Hh,Uh,Ph, is obtained

by writing the three variables as linear combinations of the respective basis functions.

Denoting with h = [h1, ..., hnh ]
T , u = [u1, ..., unu ]

T and p = [p1, ..., pnp ]
T the vectors col-

lecting the components of these linear combinations, the final expression of the discrete

function to be minimized reads:

Ψ(h,u,p) =

[
h u

]T  Gh −αB

−αBT Gu


h
u

+ pT (Ah−Cu− q) (3.97)

The reader is referred to Berrone et al. [2013] for a detailed description of this approach.

Here, the focus is on the linearized algebraic problem that derives from such a formula-

tion, which is a large size symmetric saddle-point matrix with a rank-deficient leading

block. The algebraic problem resulting from the first order optimality conditions can



70 Chapter 3. Preconditioners for coupled hydro-poromechanics in fractured domains

be stated as [Berrone et al., 2019]:

Ghh− αBu+ATp = 0, (energy minimization)

−αBTh+Guu−CTp = 0, (energy minimization)

Ah−Cu = q, (mass balance)

(3.98)

where h ∈ Rnh is the hydraulic head on the fractures, u ∈ Rnu is the flux on the

traces, p ∈ Rnp is the Lagrange multiplier and q ∈ Rnp derives from the boundary

conditions and the forcing terms. Usually, np = nh, while according to the problem

nu can be either larger or smaller than nh. The coefficient α ∈ R is a user-specified

positive parameter, usually on the order of 1. The matrices Gh ∈ Rnh×nh , A ∈ Rnh×nh

and C ∈ Rnh×nu are fracture-local, whereas B ∈ Rnh×nu and Gu ∈ Rnu×nu operate on

degrees of freedom related to different fractures. Their properties can be summarized

as follows:

• Gh andGu are SPSD, usually rank-deficient;

• B andC are rectangular coupling blocks, whose entries are given by inner prod-

ucts between the basis functions of the main unknowns along the fracture traces;

• A is SPD with a block diagonal structure. Each diagonal block arises from the

discretization of a −∇· (K̂∇) operator over a fracture, where K̂ is a proper diffu-

sion tensor, hence inherits the usual structure of a 2-D discrete Laplacian. Block

size depends on each fracture dimension and can significantly differ one from the

other.

The system of Eqs. (3.98) can be written in a compact form as:


Gh −αB AT

−αBT Gu −CT

A −C 0



h

u

p

 =


0

0

q

 ⇒ Zx = f (3.99)

where Z is a symmetric saddle-point matrix with a rank-deficient leading block. The

solution to such problems is required in several applications and is the object of a sig-

nificant number of works. For a review on methods and ideas, see for instance Benzi
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et al. [2005]. With an SPD leading block, as it often arises in Navier-Stokes equations,

mixed finite element formulations of flow in porous media, poroelasticity, etc., an opti-

mal preconditioner exists based on the approximation of the Schur complement matrix

[Elman et al., 2005]. However, if the leading block is singular the problem is generally

more difficult and the only available result is for the case of maximal rank deficiency

[Estrin and Greif, 2015]. In the next paragraph, an ad-hoc preconditioner is presented.

3.4.3 Preconditioning framework

Matrix Z in Eq. (3.99) is a classical example of the discretization of a coupled multi-

physics problem. Following the procedure presented in Section 3.2.3, a preconditioner

M−1 can be defined from an algebraic viewpoint as an inexact block LDU factorization

of the matrix Z conveniently permuted through the matrices Qr and Qc. The per-

mutation matrices are defined so that the leading blocks of Z are non singular, thus

satisfying Theorem 1 of Ferronato et al. [2019]. The application of a row and column

block permutation leads to the equivalent system:

Z̃x̃ = f̃ , with Z̃ = QrZQc, x̃ = QT
c x, f̃ = Qrf , (3.100)

A possible choice for the permutation matrices is:

Qr =


0 0 Ih

Ih 0 0

0 Iu 0

 Qc =


Ih 0 0

0 0 Ih

0 Iu 0

 (3.101)

where In is the identity matrix in Rnn×nn and 0 the zero matrix of proper size, and such

that the permuted system reads:

Z̃ =


A 0 −C

Gh A −αB

−αBT −CT Gu

 x̃ =


h

p

u

 f̃ =


q

0

0

 (3.102)
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The block LDU factorization of the matrix Z̃ in Eq. (3.100) reads:

Z̃ = QrZQc = LDU (3.103)

with:

L =


Ih 0 0

GhA−1 Ih 0

−αBTA−1 −CTA−1 Iu

 , D =


A 0 0

0 A 0

0 0 S

 ,

U =


Ih 0 −A−1C

0 Ih A−1
(
−αB +GhA−1C

)
0 0 Iu


(3.104)

The matrix S is the Schur complement of Z̃ computed with respect to the third block

row:

S = Gu − αBTA−1C −CTA−1
(
αB −GhA−1C

)
(3.105)

Introducing the matrices E = B − C and F = A−1C, the Schur complement in Eq.

(3.105) can be rewritten as:

S = Gu + F T
(
Gh − 2αA

)
F − α

(
ETF + F TE

)
(3.106)

The preconditioner M−1 can be expressed as:

M−1 =


Ih 0 A−1C

0 Ih −A−1
(
−αB +GhA−1C

)
0 0 Iu



A−1 0 0

0 A−1 0

0 0 S̃
−1

 ·

·


Ih 0 0

−GhA−1 Ih 0(
αBT −CTA−1Gh

)
A−1 CTA−1 Iu


(3.107)

where S̃
−1

is a proper approximation of the inverse of the Schur complement. Indeed,

as already stated before, the preconditioner cannot be computed explicitly in large-size

applications. Thus, the LDU factorization is used to build an inexact application of

the preconditioner. In this case, since A is an SPD matrix with the classic Laplacian

structure, it is possible to efficiently apply its inverse. The crucial point for an efficient

and robust preconditioner is the approximation of the Schur complement S̃.
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In order to evaluate the effectiveness of the Schur complement approximation, sys-

tem (3.102) has been projected onto the flux space:

Su = b with b =
(
αBT − F TGh

)
A−1q (3.108)

Applications of increasing size are tested in the next paragraph to investigate different

Schur complement approximations.

3.4.4 Numerical results

Four problems of increasing size and complexity have been analyzed (Table 3.11). The

smallest problem, PA, is a simple domain with 4 fractures, whereas the biggest case,

PD, includes almost 400 fractures of different sizes. Fig. 3.21 shows the mesh domain

for the case PC.

FIGURE 3.21: 3D mesh do-
main for the case PC.

TABLE 3.11: Prob-
lem size.

PA PB PC PD
nh 787 13,732 39,288 93,768
nu 206 5,085 8,219 18,276
N 1,780 32,549 86,795 205,812

The non-zero pattern of the matrices of the smallest problem is shown in Fig. 3.22.

Matrices A, C and Gh are block diagonal. Being each block related to a fracture, these

matrices are fracture-local. Instead, matricesB andGu connect degrees of freedom re-

lated to different fractures. In particular, matrixB is made by the same diagonal blocks

asC with additional extra-diagonal terms corresponding to intersections between frac-

tures. Thus, the matrixE = B−C is zero on the diagonal blocks and contains the same

terms as B outside. Matrix F , being defined as A−1C, is also block diagonal, with the

same size and structure of C.
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FIGURE 3.22: Structure and number of non-zeros (nz) of the sub-block
matrices for case PA.

On the basis of these considerations, the Schur complement in Eq. (3.106) can be

written as:

S = SD − SE (3.109)

where SD = Gu+F T
(
Gh − 2αA

)
F and SE = α

(
ETF + F TE

)
. Matrix SD contains

the diagonal blocks of S and SE the off-diagonal part. Therefore, SD is SPD, whereas

SE is indefinite.

A key property for S is being SPD. It is therefore natural to consider Ŝ = SD,

that is the block diagonal and positive definite part. The results in terms of number of

iterations (iter), ratio between the non-zeros of the approximate Schur complement and

the exact one (µ) and the conditioning number (κ) are reported in Table 3.12. Despite

the preconditioning, the number of iterations required to solve the system is still high

and the conditioning number of the preconditioned matrix is not very different from

the original one.

TABLE 3.12: Results considering the approximation Ŝ = SD. The ∗ in-
dicates that the problem does not converge, with the residual stagnating

around 10−5.

Case iter µ κ
(
Ŝ−1
3 S3

)
κ (S3)

PA 125 0.3921 3.10e+04 1.67e+04
PB 300 0.3958 2.08e+06 4.90e+05
PC ∗ 0.3619 1.40e+08 1.72e+09
PD 957 0.3594 7.39e+06 1.15e+09

Approximating S with its diagonal blocks appears to be not enough for an effi-

cient solution of the system. Thus, from here on also the off-diagonal part is taken into
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account. Aiming at understanding the importance of the single blocks of S as a pre-

conditioner, the two contributions SD and SE are filtered separately, naming ŜD and

ŜE their approximation. First, only the extra-diagonal part of S is approximated:

Ŝ = SD − ŜE (3.110)

where ŜE is obtained by filtering each column j of the product ETF neglecting the

entries such that: ∣∣∣(ETF
)
ij

∣∣∣ < τ
∥∥∥(ETF

)
j

∥∥∥
2

(3.111)

Results for different values of τ are reported in Table 3.13.

TABLE 3.13: Results computingSwith the sparsifiedSE . The * indicates
the case when Ŝ becomes indefinite.

τ
case PA case PB

iter µ κ
(
Ŝ−1
3 S3

)
iter µ κ

(
Ŝ−1
3 S3

)
5× 10−2 * 0.8306 5.47e+03 * 0.4747 6.41e+08
10−2 8 0.9398 1.79e+02 26 0.6171 5.07e+06

case PC case PD
10−2 * 0.9577 3.26e+09 * 0.8056 4.68e+07
10−3 7 0.9950 2.28e+04 * 0.9742 3.44e+10

Finally, we consider the preconditioner Ŝ:

Ŝ = ŜD − SE (3.112)

where the extra-diagonal blocks are computed exactly, while the diagonal ones are ap-

proximated neglecting the entries sij of the product F T
(
Gh − 2αA

)
F such that:

|sij | < τ
√
|sii sjj | (3.113)

Results for the four matrices are reported in Table 3.14.

In both cases, i.e., when approximating only SE or SD, the level of fill-in of Ŝ re-

quired to reach convergence is close to one, i.e., Ŝ tends to be the exact Schur comple-

ment (µ = 1). This is because Ŝ can easily become indefinite after the filtering. As an

example, in Fig. 3.23, the ten smallest eigenvalues of the exact and the approximated
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TABLE 3.14: Results computing S after the sparsification of SD. The *
indicates the case when Ŝ becomes indefinite.

τ
case PA case PB

iter µ κ
(
Ŝ−1
3 S3

)
iter µ κ

(
Ŝ−1
3 S3

)
5× 10−1 * 0.6604 1.47e+04 * 0.6114 3.51e+08
10−1 10 0.9217 1.99e+03 * 0.6351 4.62e+07
10−2 3 0.9910 2.99e+00 * 0.8902 1.84e+05
10−3 2 0.9987 1.06e+00 * 0.9925 2.33e+04

case PC case PD
10−2 * 0.9928 2.34e+04 * 0.9851 4.39e+05
10−3 2 0.9993 2.47e+01 2 0.9987 6.88e+01
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FIGURE 3.23: Case PA: ten smallest eigenvalues of S and Ŝ computed
through Eq. (3.112) with τ = 5× 10−1.

(with τ equal to 5 × 10−1) Schur complement for the case PA are shown. While S is

positive definite, the eigenvalues of Ŝ are both positive and negative.

In the last test, the preconditioner is computed approximating both SD and SE :

Ŝ = ŜD − ŜE (3.114)

To this aim, a sparsified F is computed by filtering the smallest entries. Since F is

block diagonal, it can be efficiently computed in a parallel computational environment

exploiting a Cholesky factorization of the blocks ofA. A relative drop tolerance is used,

removing the entries such that:

|Fij | < τ ∥Fj∥2 (3.115)
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The numerical results are reported in Table 3.15. The iterations count decreases sig-

nificantly with respect to Table 3.12, with densities that are even smaller than those

obtained keeping SD only. However, in difficult problems, such as PC, quite a large

fill-in is required and the performance can become very sensitive to the τ selection.

TABLE 3.15: Results computing Ŝ with the approximation of F as in Eq.
(3.115).

τ
case PA case PB

iter µ κ
(
Ŝ−1
3 S3

)
iter µ κ

(
Ŝ−1
3 S3

)
10−1 28 0.2697 3.75e+04 136 0.1226 1.88e+07

5× 10−2 19 0.8595 5.85e+04 57 0.2508 1.45e+07
10−2 1 1.0000 1 17 0.6072 1.48e+06

case PC case PD
5× 10−2 1483 0.5400 1.08e+11 445 0.3196 1.06e+09
2.5× 10−2 8 0.9952 1.64e+06 128 0.5663 8.89e+07

10−2 4 0.9990 3.38e+04 41 0.8100 1.57e+07
10−3 1 1.0000 1 5 0.9912 1.10e+05

Considering as a preconditioner an approximation Ŝ obtained by filtering S or its

entries can be efficient (as results in Table 3.15 demonstrate), but also quite fragile be-

cause of the possible indefiniteness of the approximation (see Table 3.13 and Table 3.14).

3.4.5 Discussion

A symmetric saddle-point matrix with a rank-deficient leading block arises from the

combination of DFN models with an appropriate optimization formulation. Here,

the focus is on the acceleration of the iterative solution of this linear system with a

block preconditioning technique. First, an appropriate permutation of the matrix is

performed and then a projection onto the flux space is computed obtaining a Schur

complement. Since this proves to be the key factor for an effective preconditioner, dif-

ferent approaches for its approximation have been investigated. Both the diagonal and

off-diagonal blocks of the Schur complement are fundamental for an efficient solution

of the system. Independent filterings of such components reveal the fragility of the ap-

proximated Schur complement, that can easily become indefinite. When the filter step

regards the matrix F , before the computation of the Schur complement, results are

more promising. This suggests to investigate new filtering approaches for F , aiming at

finding a more robust and less τ -dependent solution.
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Comparing the investigated approaches, it can be noted that the iterations number

does not vary according to the conditioning number, as one can expect. This can be

related to the distribution of the eigenvalues, which means that the eigenspectrum is

mainly clustered, but there are few outliers. In order to fix this problem, a deflation

approach can be used to remove the eigenvectors related to the extreme eigenvalues.

This technique requires an a-priori knowledge of these eigenvalues, that can be quite

computationally expensive, but reasonable in an iterative framework.



Chapter 4

A methodological approach for DA

in geomechanics

4.1 Introduction

Surface movements can be induced by many energy-related human activities, such as

the production of natural gas, geothermal heat extraction, ground water exploitation

or hydrocarbon storage [Zoback, 2007]. Here, the focus is on land subsidence induced

by hydrocarbon extraction, which is one of the main anthropogenic causes of land sub-

sidence [Gambolati et al., 2006]. Fluid withdrawal from the subsurface produces a

decrease in the reservoir pressure, thus leading to the compaction of the reservoir rock

which can propagate from the underground up to the land surface inducing land sub-

sidence. The consequences of this phenomenon for the environment and for human

activities may be non-negligible, see e.g. van Thienen Visser et al. [2015], Simeoni et al.

[2017] and Dinar et al. [2021]. Consequently, a proper modeling of the deep reservoir

geomechanics is of fundamental importance for both the energy companies and the

control agencies. In this context, the use of all the available measurements takes on a

central role in the monitoring and forecasting phases [Bernardi et al., 2021].

A traditional procedure to study land subsidence consists on the definition of a

number of deterministic scenarios as input for a numerical model whose outcomes are

combined to determine confidence intervals. One of the principal drawbacks of this de-

terministic approach is that it does not allow to properly account for the uncertainties

that unavoidably affect the modeling of real-world phenomena. Indeed, the numeri-

cal model itself is by definition built on top of number of approximations, despite its

79
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accuracy and reliability. Moreover, other sources of errors and uncertainties may arise,

for example from the imposition of initial and boundary conditions, the definition of

the external forces and the parameter characterization. Instead of deterministic anal-

yses, which can induce an excessive confidence in the solution, stochastic approaches

should be preferred since they allow to maintain a certain range of uncertainty on the

outcomes. A second drawback of the traditional methodology is that it does not take

full advantages from the increasing availability of monitoring data during the life span

of the reservoir.

Given these issues, it becomes natural to consider Data Assimilation (DA) methods

to improve the quality of the prediction. DA combines prior information from numer-

ical model simulations with observed data to obtain the best possible description of a

dynamical system and its uncertainty. The purpose of using DA is often to compute

the best possible estimate of the model state or of the model parameters, so as to infer

the best characterization of the model [Evensen et al., 2022]. DA was originally used

in the field of weather prediction and operational oceanography, and later broaden to

many other fields, such as geosciences, medicine, economy and physics. Over the last

30 years, several techniques have been developed, ranging from simple approaches

to advanced methodologies. However, a common mathematical basis can be derived

from Bayesian inference, control theory, and variational calculus. In the literature there

are many books and review papers that derive e compare the main DA techniques; the

reader can refer for example to Evensen [2009], Carrassi et al. [2018], Jung et al. [2018]

and Evensen et al. [2022]. Ensemble-based methodologies are generally preferred by

the Earth science community (e.g. in Zoccarato et al. [2016] and Jha et al. [2015]) since

these techniques allow to consider a wide parameter space at reasonable computational

cost [Emerick, 2016]. These approaches belong to the general class of so-called particle

methods which use a Monte Carlo (MC) or ensemble representation for the Probability

Density Function (PDF), an ensemble integration using stochastic models to simulate

the time evolution of the PDFs, and different schemes for conditioning the predicted

PDFs given the observations [Evensen, 2009]. Here, ensemble implies that multiple sub-

sidence realizations are built based on the possible choices of processes and subsurface

parameters.
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A comprehensive methodological approach is presented herein with the aim at

combining advanced numerical models with different measurements. It uses DA to

integrate the available observations into the numerical model, so as to improve the

subsidence prediction over deep reservoirs. This original methodology has been pub-

lished in Gazzola et al. [2021]. In brief, after the identification of the sources of uncer-

tainties and the creation of the forecast ensembles, the χ2-test, the Red Flag (RF) and

the Ensemble Smoother (ES) techniques are performed in time to progressively update

the overall geomechanical reservoir model. The first two methods are used for a pre-

liminary qualitative evaluation of the forecast ensembles, while ES provides an update

of both the model states and parameters, as will be extensively discussed later on in

this Chapter. These techniques have been already separately used for a number of un-

derground applications, like hydrology and geomechanics engineering. The reader can

refer to Fokker et al. [2016], Kang and Choe [2017] and Oliver and Alfonzo [2018], just

to cite a few.

Several DA methods have been developed for the update of the model and the so-

lution of the inverse problem. Among the others, Ensemble Kalman Filter (EnKF) and

ES are the most used in the reservoir-engineering community. EnKF has been firstly

proposed by Evensen [1994] based on the Kalman filter [Kalman, 1960]. Skjervheim

et al. [2011] introduced ES as an alternative to EnKF for history-matching reservoir

models. The main difference is that ES computes a global update in the space-time

domain rather than using recursive updates in time as EnKF does. ES demonstrated to

be the preferred choice in the petroleum community [Evensen and Eikrem, 2018]. The

main disadvantages of EnKF are: (i) the computational time required for the sequen-

tial updates; (ii) the possible nonphysical update of the parameters in case of nonlinear

relations, and (iii) the need to assume that the observations are independent in time.

ES has been also used in a few specific applications in the field of land subsidence

prediction, e.g., Baù et al. [2015], Jha et al. [2015] and Zoccarato et al. [2020]. The work-

flow presented herein is not a mere application of DA techniques which were already

available in the literature, rather the definition of a step-by-step procedure which can

support the decision making process and the management of the field by training the

reservoir model in time using all the available measurements.



82 Chapter 4. A methodological approach for DA in geomechanics

Only recently, Candela et al. [2022] propose another integrated approach targeted to

optimize the Dutch subsidence forecasting caused by gas production. Their framework

combines ES and a 3D geological subsurface model of the Netherlands to discriminate

which reservoir rock compaction model is activated at depth and to reduce uncertainty

on subsidence prediction.

First, this Chapter provides a global overview of the workflow and its possible uses,

then each of the steps included in the methodology are described in detail.

4.2 Overview of the methodological approach

A sketch of the methodological approach is graphically depicted in Fig. 4.1.
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FIGURE 4.1: Flowchart of the methodological approach.

The first crucial step of the workflow is the identification of the uncertain factors.

Several sources of uncertainty can affect the modelling process, especially at the begin-

ning of a study when only few pieces of information are available. In a land subsidence

analysis, uncertainties can be related for instance to the geometry and the lithology of
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the porous medium, the variation and distribution of the pore pressure, the mechanical

behavior of the deforming rock and the variability ranges of the main mechanical pa-

rameters. Among all the uncertainties, it is essential to recognize the most influential

ones. Moreover, only the factors that can be explicitly included as input of the simu-

lation model can be taken into account. An exaggerated number of uncertain factors

or considering parameters with a weak impact on the model solution can in both cases

limit the measurements constraint of the model. A preliminary sensitivity analysis can

help in defining the main sources of uncertainty.

Once the uncertain factors are identified, a forward model is used to propagate the

input uncertainties to the output, by the generation of a group of forecast ensembles

by means of MC realizations. The outcomes of the model are generally called states

and are the quantities that can be directly compared with the available measurements.

Here, the geomechanical model described in Section 4.4 is used. However, the overall

methodological approach investigated herein is independent of the specific forward

model and can be easily adapted to others.

Once the ensembles are created, the measurements are integrated into the model and

used to reduce the uncertainties thanks to DA. All the available measurements on the

field can be used, avoiding a redundancy of information that can be detrimental for

the DA update. In land subsidence applications, measurements of shallow and deep

movements are generally available. The measurements are integrated periodically in

time according to their availability, in order to dynamically improve the model pre-

diction by a progressive reduction of the uncertainties and an increase of the model

reliability.

First, the measurements are used for the diagnostic step, i.e. for a preliminary eval-

uation of the ensembles by means of the χ2-test and the RF. These techniques are based

on the mismatch between the measurements and the model (more details are provided

in Section 4.6.1) and can help in identifying the suitability of the ensembles for the suc-

cessive update of the model. According to the outcomes of the diagnostic steps, the

forecast ensembles can proceed to the final update of the model, or can be discarded,

meaning that the initial hypotheses on the uncertain factors are revised and new fore-

cast ensembles are created and evaluated.
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The final step consists in the ES application that provides a simultaneous update of

both the states and the parameters ensembles. The update of the states represents the

improved model prediction, that has been constrained with the available observations.

The update of the parameters is used as input for the forward model to create the new

ensembles when new measurements become available and the DA procedure can be

repeated. Mathematical details on ES are provided in Section 4.6.2.

4.3 Identification of the sources of uncertainties

Several sources of uncertainties can affect the analyses of land subsidence over a hy-

drocarbon reservoir. Uncertainties are commonly linked to the knowledge of the con-

stitutive rock behavior, the geometry of the depleted formations and the diffusion of

the pressure perturbation. The identification of the most significant sources of uncer-

tainty is tightly related to the specific field object of analysis. A major role is performed

by the experience and expertise of the operators, who can establish the most critical

factors. In geomechanical problems, the main uncertainties are generally related to

the nature and value of the governing parameters for the constitutive behavior of the

reservoir rock, i.e. to the definition of the operator D̂ of Eq. (2.13). As a matter of fact,

the mechanics-to-flow coupling is usually weak in the context of real-world oil and gas

reservoir engineering applications [Gambolati et al., 2000; Wang, 2000b; Pearse et al.,

2014], since the gas compressibility is orders of magnitude higher than the rock com-

pressibility. Considering also the large amount of pressure data generally available

from in-situ wells, which usually allows a well-developed history-matching process,

the uncertainties linked to the pressure field can be assumed to be negligible as com-

pared with those related to the reservoir geomechanics.

The operator D̂, that is generally non-linear, is chosen according to the character-

istics of the porous medium, but this selection is usually a source of uncertainty since

it depends on the availability of tests, the geological nature of the basin, and previous

experiences, that can be limited. Moreover, while the behavior of the overburden and

underburden does not significantly affect the surface movements, the constitutive law

chosen for the active layers, i.e., aquifer and reservoir, highly impacts on the model
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outcome [Ferronato et al., 2010; Teatini et al., 2011]. In the following applications, two

different non-linear constitutive laws have been considered: (i) the modified Cam Clay

(MCC) [De Souza Neto et al., 2008] and (ii) the visco-elasto-plastic (VEP) model [Ver-

meer and Neher, 1999]. These laws have proven to be suitable for land subsidence

analyses [Gemelli et al., 2020]. More details on their characteristics are given in Section

2.3.

Laboratory and field experiments can help defining the importance of the geome-

chanical parameters and their range of variability. A sensitivity analysis can be per-

formed in order to establish the influence of the input parameters on the model out-

comes, thus it can help in identifying which parameters should be treated as uncertain

variables. Sobol’ indices can be computed to carry out a global sensitivity analysis.

In the following, the basic idea behind Sobol’ indices is provided. For completeness,

the reader is referred to the work of Sobol’ [1990] or to the application developed in

Zoccarato et al. [2019].

For the sake of simplicity, let us consider the model outcome ψ, i.e., the quantity

of interest, as a one-dimensional variable function f of the n-variate random vector

Z = (Z1, Z2, . . . , Zn) of mutually independent components defined over an n - dimen-

sional hypercube Σn. Assuming f to be a square-integrable function, the functional

decomposition of ψ = f(Z) reads

f = f0 +

n∑
i=1

fi +

n∑
i=1

n∑
j>i

fi,j + · · ·+ f1,2,...,n (4.1)

where f0 is a constant representing the mean value of f , and fi, fi,j , . . . , f1,2,...,n are the

uncorrelated random effects associated to the factors in their indices, e.g., fi = fi(Zi)

are the main effects due to the factors Zi and fi,j = fi,j(Zi, Zj) are the effects related

to interactions between the factors Zi and Zj with j > i. It has been proved in Sobol’

[1990] that a unique expansion of Eq. (4.1) exists for any function f(Z) integrable in Σn

under the hypothesis of zero mean of all expansion terms with respect to each variable.

The expansion (4.1) for the quantity of interest ψ is used to derive the associated vari-

ance V (ψ). In fact, squaring Eq. (4.1) and using the orthogonality condition holding
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for the expansion terms [Sobol’, 1990], it can be demonstrated that V (ψ) reads:

V (ψ) =
n∑
i=1

Vi +
n∑
i=1

n∑
j>i

Vi,j + · · ·+ V1,2,...,n (4.2)

where Vi, Vj , . . . , V1,2,...,n are the partial variances of fi, fj , . . . , f1,2,...,n, respectively. Gen-

erally, the partial variance Vi1,...,is in Eq. (4.2) reads:

Vi1,...,is =

∫
Σs
f2i1,...,is(Zi1 , . . . , Zis)d(Zi1 , . . . , Zis) (4.3)

which can be written in terms of conditional expectations as:

Vi = V (E(ψ|Zi))

Vi,j = V (E(ψ|Zi, Zj))− Vi − Vj

Vi,j,k = V (E(ψ|Zi, Zj , Zk))− Vi − Vj − Vk − Vi,j − Vi,k − Vj,k (4.4)

...

V1,...,n = V (ψ)−
n∑
i=1

Vi −
n∑
i=1

n∑
j>i

Vi,j − . . .−
n∑

1≤i1<···<in−1≤n
Vi1,...,in−1

Eqs. (4.4) provide practical relationships for the computation of partial variances for

any indices combination. The Sobol’ first and higher-order indices are defined as:

Si =
Vi(ψ)

V (ψ)
(4.5)

S1,...,s =
V1,...,s(ψ)

V (ψ)
(4.6)

where Si measures the relative importance of a single factor Zi on the total model vari-

ance and the higher-order indices S1,...,s represent a measure of the combined model

sensitivity to the group of factors Z1, . . . , Zs. The total effects ST,i are also computed to

quantify the contribution of the i-th factor to the total output variation as [Saltelli et al.,

2007]:

ST,i = 1− V (E(ψ|Z∼i))

V (ψ)
(4.7)
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where V (E(ψ|Z∼i))/V (ψ) includes first and higher-order interactions of all factors except

Zi.

4.4 Forward model

The forward model is used to propagate the input uncertainties to the output and create

a set of ensembles of MC realizations. Herein, for the simulation of land subsidence,

a model based on a one-way coupled approach is considered. As discussed in Section

2.5, this means that the outcomes of a flow model in terms of pressure distribution

in time and space are used as input for a geomechanical model at each time step. This

approach is fully justified for the time and space scale of interest [Gambolati et al., 2000;

Pearse et al., 2014] and has been widely used in the past to study land subsidence, e.g.,

Baú et al. [2001] and Teatini et al. [2006], without an appreciable detrimental effect for

the model accuracy.

The overall workflow is independent from the forward model, the choice of the

solution approach and the discretization methods. In the following, the specific models

that will be used for the applications of Chapter 5 are presented.

4.4.1 Geomechanical FEM simulator

The geomechanical model solves the balance of linear momentum, i.e., Eq. (2.11), here

recalled for the sake of clarity:

−∇ · σ̂ = F V (4.8)

As common in reservoir problems, the following hypotheses are considered: (i) quasi-

static conditions; (ii) infinitesimal strains and (iii) negligible variation of body forces.

Thus, Eq. (4.8) becomes:

−∇ · σ̂ = 0 (4.9)

Considering Terzaghi’s principle (2.1), Eq. (4.9) can be rewritten as:

−∇ · (σ − αBpi) = 0 (4.10)
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where the effective stress tensor σ can be written as function of the displacements u,

which are now the only unknown:

−∇ ·
(
D̂ : ∇su

)
− αB∇p = 0 (4.11)

A classical way to address the solution of Eq. (4.11) uses the Virtual Work Principle

[Zienkiewicz et al., 2000], which means equaling the internal δWint and the external

δWext virtual work:

∫
Ω
δεT

(
D̂ : ∇su

)
dV = −αB

∫
Ω
δuT∇pdV +

∫
∂Ω
δuTF SdS (4.12)

where Ω is the continuum domain and ∂Ω its boundary, F S is the vector of the surface

forces as defined in Eq. (2.12), and ε the strain tensor, which can be written according

to the small strain hypothesis as in Eq. (2.14). Thus, Eq. (4.12) becomes:

∫
Ω
δ∇suT

(
D̂ : ∇su

)
dV = −αB

∫
Ω
δuT∇pdV +

∫
∂Ω
δuTF SdS (4.13)

Eq. (4.13) can be solved in the framework of the FEM [Zienkiewicz et al., 2000]. The

displacement u is approximated by the function uh:

uh ∈ Sh = span{ξ1, ξ2, ...ξn, } (4.14)

where Sh is the finite Hilbert function space generated by the piece-wise polynomials

ξi, i = 1, ..., nΩ, with nΩ the number of FE nodes in Ω. The polynomials ξi can be

written as:

ξi = ξi

∣∣∣∣∣∣∣∣∣∣
1 0 0

0 1 0

0 0 1

∣∣∣∣∣∣∣∣∣∣
≡ N i (4.15)

Thus, the approximate solution uh is:

uh =Nu (4.16)
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where u is the array of the displacement nodal values. Introducing the matrix B =

LN , where L is the differential operator in Voigt notation

L =



∂
∂x 0 0

0 ∂
∂y 0

0 0 ∂
∂z

∂
∂y

∂
∂x 0

0 ∂
∂z

∂
∂y

∂
∂z 0 ∂

∂x


Eq. (4.13) can be written in a compact form as:

∫
Ω
δuTBT

(
D̂Bu

)
dV = −αB

∫
Ω
δuTNT∇p dV +

∫
∂Ω
δuTNTF SdS (4.17)

which must hold for any virtual displacement compatible with the constraints. Thus,

the final governing equation which is solved by the geomechanical simulator is:

∫
Ω
BT

(
D̂Bu

)
dV = −αB

∫
Ω
NT∇p dV +

∫
∂Ω
NTF SdS (4.18)

The geomechanical simulator which solves the system (4.18) used in the applica-

tions described in Chapter 5 is the one implemented as in Janna et al. [2012a], Spiezia

et al. [2017] and Isotton et al. [2019].

4.4.2 Surrogate model

When dealing with large-scale real-world problems, running a FEM code multiple

times to create many MC ensembles can become unaffordable, both in terms of CPU

and memory requirements. In this context, surrogate models can help.

Here, the Generalized Polynomial Chaos Expansion (gPCE) approach [Wiener, 1938;

Ghanem and Spanos, 1991; Xiu and Karniadakis, 2002; Najm, 2009] is used to approx-

imate the model presented in Section 4.4.1. The basic idea behind gPCE is the use

of orthogonal polynomial approximations of the random input to project the stochas-

tic model output. In the following, the general mathematical framework is reported,
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however more details can be found in Xiu [2007].

The model outcome ψ can be written as a function ψ = ψ (Z,FZ(z1, . . . , zn)) of the

random vector of mutually independent components Z = (Z1, Z2, . . . , Zn) and distri-

bution function FZ(z1, . . . , zn) = P(Z1 ≤ z1, . . . , Zn ≤ zn), where FZi(zi) is the marginal

distribution function FZi(zi) = P(Zi ≤ zi). The independence assumption implies that

FZ(z) =
∏n
i=1 FZi(zi). Any random variable may be represented as a series of poly-

nomials in uncorrelated and independent Gaussian variables [Wiener, 1938] and, in its

generalized extension, in non-Gaussian measures, gPCE basis functions of a univariate

random variable Zi are defined as the polynomials {ϕk(Zi)}Nk=0 of N th-degree satisfy-

ing the orthogonality conditions:

E[ϕs(Zi)ϕr(Zi)] =
∫
Σi

ϕs(zi)ϕr(zi)dFZi(zi) = ζsδs,r 0 ≤ s, r ≤ N (4.19)

where ζs = E[ϕ2s(Zi)] is the normalization factors, δs,r the Kronecker delta function and

Σi is the support of Zi. In the multivariate case, the gPCE basis functions Φα(Z) of

degree up to N are products of the univariate orthogonal polynomials:

Φα(Z) = ϕα1(Z1) . . . ϕαn(Zn) with 0 ≤ |α| ≤ N (4.20)

where α = (α1, ..., αn) ∈ Nn0 is a multi-index with |α| = α1 + · · · + αn. The multivari-

ate basis functions are orthogonal polynomials in the space L2
dFz

of all mean-square

integrable functions of Z with respect to the inner product based on the measure dFZ :

E[Φα(Z)Φβ(Z)] =

∫
Σ
Φα(z)Φβ(z)dFZ(z) = γαδαβ (4.21)

where Σ is defined by Σ = Σ1 ×Σ2 · · · ×Σn. As a consequence, the class of orthogonal

polynomials is selected according to the measure FZi . The polynomials orthogonal for

the standard normal distribution are the Hermite polynomials, which form an ideal

basis for the output stochastic domain [Xiu, 2010].
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Here, the aim is to find an approximation ψ̃N (Z) of the random function ψ(Z) in

the N -th degree polynomial space generated by the basis functions Φα(Z):

ψ(Z) ≈ ψ̃N (Z) =
∑

|α|≤N

cαΦα(Z) (4.22)

where cα are the coefficients of the expansion. For ψ(Z), the coefficients cα can be

computed by defining ψ̃N as the orthogonal projection of ψ onto the polynomial space

Z = span{Φα}. By prescribing the orthogonality condition
(
ψ − ψ̃N

)
⊥ span{Φα}:

∫
Σ

[
ψ(Z)− ψ̃N (Z)

]
ΦαdFZ = 0 (4.23)

the coefficients cα simply read

cα =
1

γα
E[ψ(Z)Φα(Z)] =

1

γα

∫
Σ
ψ(z)Φα(z)dFZ(z) |α| ≤ N (4.24)

i.e., they can be numerically computed as an integral of the product of Φα and ψ. The

expansion term of Eq. (4.24) guarantees the optimal approximation of ψ in the sense of

the norm defined in L2
dFZ

.

The coefficients cα are numerically computed by a non-intrusive approach, where

the forward model providing ψ(Z) is used in a black-box fashion. We use a pseudo-

spectral projection, with the integral term approximated by a high-dimensional quadra-

ture rule:

cα ≈ c̃α =

nq∑
j=1

ψ(zj)Φα(z
j)w(zj) (4.25)

where zj and w(zj) are the nq integration nodes and weights, respectively. Since Φα is

at most of degree N , the integrand function has at most degree 2N . In the univariate

case, this requires the use of nq,1 = N + 1 points for the Gaussian quadrature rule,

while in the multivariate case with n random variables the number of points grows up

to nq = (N + 1)n. Using this approximation, the surrogate model needs the evaluation

of ψ through the numerical solver of the forward model at the nq integration points zj .

Another advantage of using the gPCE approximation regards the computation of
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the Sobol’ indices. Indeed, the Sobol’ indices can be evaluated directly from the coeffi-

cients of the gPCE [Sudret, 2008; Crestaux et al., 2009; Formaggia et al., 2013]. The idea

is to replace the functional decomposition of Eq. (4.1) with the N th-degree polynomial

expansion of Eq. (4.22) by defining [Crestaux et al., 2009]:

fi1,...,is(Zi1 , . . . , Zis) ≃
∑

|γ|≤N

cγΦγ(Zi1 , . . . , Zis) (4.26)

where the multi-index γ = (γ1, ..., γs) satisfies |γ| = γ1 + · · · + γs and Φγ(Zi1 , . . . , Zis)

are the s-variate N th-degree gPCE basis functions.

4.5 Measurements

Several kinds of measurements may be available over the field object of study, and the

workflow presented herein can include all of them. However, in land subsidence analy-

ses the most useful sources of information arise from surface and deep displacements.

These data can be derived from Continuous Global Positioning System (CGPS) sta-

tions, bathymetric surveys or radioactive markers. CGPS stations provide continuous

position information, i.e. they measure the displacements of a point (the station) on the

land surface over time. Bathymetric surveys map the depths and shapes of underwater

terrain, thus making it possible to obtain a representative image of the seabed motion

with the identification, for example, of the shape and the extension of the subsidence

bowl. Compaction measurements at the reservoir depth can be collected by radioactive

markers. This technique consists of monitoring the relative position of a set of weakly

radioactive bullets regularly shot in the formation along a vertical unproductive well

prior to the casing operations [De Loos, 1973; Mobach and Gussinklo, 1994].

4.6 Data Assimilation techniques

Generally, the vector of the true state variables in both space and time ψt ∈ Rnψ can be

defined as a function of the vector of the true model parameters θt ∈ Rnθ through the

forward operator G:

ψt = G
(
θt
)
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with nψ and nθ the number of states and parameters, respectively. Focusing on the

land subsidence problem, the operator G is the geomechanical simulator that relates

the true state variables, such as land settlements, to the true model parameters, for

example the geomechanical parameters that control the rock behavior. The vector ψt is

related to the vector of noisy empirical measurements d ∈ Rnd , with nd the number of

measurements, through the generally non-linear relationship:

d = dt + εd = H
[
ψt

]
+ εd (4.27)

where H is the measurement operator mapping from ψt to the true observable vector

dt ∈ Rnd and εd ∼ N (0,Cd) ∈ Rnd is the measurement error, with Cd ∈ Rnd×nd

the covariance matrix of measurement error. The matrix Cd depends on the kind and

accuracy of the available measurements.

The vector of the model state ψ ∈ Rnψ is related to ψt by the relation:

ψ = ψt + εψ (4.28)

where εψ ∼ N (0,Cψ) ∈ Rnψ is the unknown error in the model states with Cψ ∈

Rnψ×nψ the covariance matrix of the model state.

In the following, φ ∈ Rnφ×nMC denotes the matrix of augmented ensemble of states

ψ ∈ Rnψ and parameters θ ∈ Rnθ and Cf ∈ Rnφ×nφ the related covariance matrix,

with nφ the sum of nψ and nθ, and nMC the size of the Monte Carlo ensemble. The

superscripts for and upd designate the forecast and update ensembles, respectively.

4.6.1 Diagnostic stage

The diagnostic step allows for a preliminary evaluation of the forecast ensembles, pro-

viding an indication as to their suitability for the successive update based upon the

mismatch between the available measurements and the model outcomes. Herein, two

methods have been considered: (i) χ2-test and (ii) RF. These methods provide qualita-

tive outcomes in an easy and computationally inexpensive fashion.
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χ2-test

The main objectives of the χ2-test are to verify if the assumptions are violated, if the un-

certainties are underestimated and if too much confidence is given to the a priori model

[Tarantola, 2005]. This approach is based on the mismatch between model results and

observations, that is:

J (θ) =
1

2

(
θ − θfor

)T
Cθ

−1
(
θ − θfor

)
+

1

2
[ψ (θ)− d]T Cd

−1 [ψ (θ)− d] (4.29)

For linear problems, the minimum of J (θ) allows for a χ2 distribution with degrees of

freedom equal to the number of measurements nd [Tarantola, 2005]. Consequently, it is

well recognized that an ensemble ensures better results in DA applications when

χ2 =
J (θ)

nd
≃ 1 (4.30)

This could be used as a general guideline to define a range for the acceptable size

of J (θ) in non-linear inverse problems [Chen and Oliver, 2013; Oliver and Alfonzo,

2018]. Generally, the data mismatch part of the cost function in Eq. (4.29) dominates

the magnitude of the total function J (θ) [Chen and Oliver, 2013], so the first contri-

bution of Eq. (4.29) can be neglected [Oliver et al., 2008]. The χ2-test has been already

used for geomechanical applications, for example in Fokker et al. [2016] to validate the

forecast ensemble before the update of the model and in Fokker et al. [2019] to estimate

the assimilation results.

Red Flag

RF, as introduced in Nepveu et al. [2010], is a statistical technique that computes the

probability of an event (a MC realizations in this case) by combining prior information

with the likelihood of the measurements. Evaluating the probability distribution of

the MC realizations allows for an inexpensive qualitative assessment of the ensemble,

since the inverse problem is not solved. Moreover, a guess on the more suitable values

of the combination of uncertain factors can be drawn.
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The Bayesian probability P (ψk|d) of a particular realization k of the ensemble is:

P (ψk|d) =
P (ψk)P (d|ψk)∑nMC

j=1 P
(
ψj

)
P
(
d|ψj

) (4.31)

where P (ψk) is the prior probability of the realization, P (d|ψk) is the associated likeli-

hood of the measurements, and the denominator is a normalizing factor [Nepveu et al.,

2010]. To define the likelihood, the measurements must be compared with the model

outcome calculated at each time and space location for the realization k. Consider-

ing a Gaussian distribution for the likelihood and introducing a cost function Ik, the

likelihood reads [Nepveu et al., 2010]:

P (d|ψk) = e(−Ik) (4.32)

with

Ik =
1

2
qTCdq (4.33)

where q is the vector of the differences between measurements and model results in

both space and time.

4.6.2 Model update

The workflow presented in Section 4.2 uses ES to update the model by solving the

ensemble-based inverse problem. The use of ES with Multiple Data Assimilation (MDA)

has been suggested in several works, e.g., Fokker et al. [2016] and Emerick [2018], to

improve the performance of ES when the relation between model solution and param-

eters is non-linear. MDA has proven its efficiency in many history-matching problems,

however there is a lack of its use for land subsidence applications. For these reasons,

MDA is presented herein and applied in Chapter 5 to evaluate its advantages for the

specific application of land subsidence.
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Ensemble Smoother

ES is a non-sequential DA algorithm originally proposed by van Leeuwen and Evensen

[1996]. It is a variance-minimizing estimator that combines prior information, measure-

ments, and the solution of the forward model to update model states and parameters.

With ES, the solution of the inverse problem can be written in a matrix form as:

φupd = φfor +K
(
D−H

[
φfor

])
(4.34)

where D ∈ Rnd×nMC is the matrix of measurements and K ∈ Rnφ×nd the Kalman gain,

calculated as:

K = (H [Cf ])
T
(
H

[
(H [Cf ])

T
]
+Cd

)−1
(4.35)

With a slight notation abuse, here H denotes the same mapping operator from model

to the observational space as defined in Eq. (4.27), but extended to the vector of state

variables augmented by the parameters.

The analyses that follow are carried out with the ES implementation according to

the approach introduced in Evensen [2003]. Results are optimal when the probability

distribution of uncertain parameters is Gaussian [van Leeuwen and Evensen, 1996].

The quality of the outcome of the ES application can be evaluated by comparing the

prior and update ensemble through two performance indices, the Average absolute Er-

ror (AE) and the Average Ensemble Spread (AES) [Hendricks Franssen and Kinzelbach,

2008]:

AE =
1

nMCnd

nMC∑
k=1

nd∑
i=1

|φi,k − φtruei | (4.36)

AES =
1

nMCnd

nMC∑
k=1

nd∑
i=1

|φi,k − φmeani | (4.37)

where φi,k is either the prior or the posterior value of the kth realization for the ith

observation, φtruei is the true reference value and φmeani is the ensemble mean for the

observations. These metrics were already used in other works as well, e.g., Baù et al.

[2015] and Zoccarato et al. [2016]. The AE index is a measure of the algorithm capa-

bility to approach the truth, as it compares the model outcome with the true reference

value for each observation. This index can be computed only in a synthetic case where
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the true reference is known. In real applications, AE can be computed only for the state

variables using the observations as true reference. The AES index accounts for the de-

viation of the model results from the ensemble mean. Hence, it provides an indication

of the spread of the distribution, i.e., it is a measure of the confidence in the predicted

value. Generally, results of the assimilation are satisfactory when AE and AES of the

update ensemble decrease with respect to the corresponding indices of the forecast en-

semble. For this reason, the relative variation J of these indices from forecast to update

is also computed:

J =
ζfor − ζupd

ζfor
(4.38)

where ζ is either the AE or AES index.

Multiple Data Assimilation

MDA was originally introduced by Emerick and Reynolds [2012] to improve the results

of history-matching problems using seismic data, and was later combined with ES ap-

proach [Emerick and Reynolds, 2013]. MDA is basically an iterative application of ES,

which means that Eq. (4.34) is repetitively applied for a predefined number of iterations

nMDA using an inflated covariance matrix of the measurement error to avoid an over-

confidence in the available measurements. The covariance matrix Cd is multiplied by

an inflation coefficient αk ≥ 1 for every iteration k, such that:

nMDA∑
k=1

1

αk
= 1 (4.39)

This condition makes MDA equivalent to ES for Gaussian-linear problems [Emerick,

2018]. The selection of αk is still a matter of debate, with several different proposals

currently advanced by some researches. Several works use the simplest option, i.e.,

constant αk equal to the number of iterations nMDA, e.g. Emerick and Reynolds [2012]

and Emerick [2018]. However, some recent works show that using decreasing αk can

improve the final outcome, e.g., Le et al. [2016] and Rafiee and Reynolds [2017].

One issue with the standard implementation of MDA is that the number nMDA

must be selected in advance, but there are no rigorous proofs about its convergence

[Evensen, 2018]. Thus, conceptually, if after nMDA iterations the data matches are not
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satisfactory, it is not possible to iterate more because condition (4.39) would be violated,

instead the process should be started from the beginning considering a larger nMDA.

To avoid such problem, adaptive algorithms for the choice of αk have been developed,

e.g., Emerick [2016].

As for ES, the indices AE and AES and their improvement J can be computed to

assess the performance of MDA, as defined in Eqs. (4.36), (4.37) and (4.38).



Chapter 5

Application to producing

hydrocarbon reservoir

The capabilities and possible drawbacks of the methodological approach described in

Chapter 4 have been first investigated in a synthetic test case. In order to mimic a

realistic configuration, the test case is built on the basis of the structural and mechanical

properties of a real-world hydrocarbon reservoir.

Then, the workflow has been applied on a real case with the aim to develop a com-

prehensive geomechanical reservoir model integrating all the available measurements

in an automatic and dynamic manner. This allows to better identify the possible limi-

tations, thus suggesting also remediation and improvements.

5.1 Synthetic test case

The test case is based on the typical geometries and properties of the off-shore hydro-

carbon reservoirs buried in the Northern Adriatic sedimentary basin, Italy. A possible

hydrocarbon production program is assumed along with realistic measurements over

the field. The model characteristics are first presented, then different DA analyses are

performed, in order to test the feasibility of the steps proposed for the workflow.

5.1.1 Model set-up

The reservoir is located in a central position within the domain of interest, at a depth

interval between 1,038 m and 1,075 m.

99
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The model domain covers an area of 50 km × 50 km and extends down to 5 km

depth (Fig. 5.1). It is discretized into a 3D mesh, which consists of 71,734 nodes and

410,030 tetrahedrons. A part of the mesh showing the aquifer and reservoir is presented

in the leftmost panel of Fig. 5.1.

FIGURE 5.1: Views of the discretized domain with the distinction of dif-
ferent layers. 3D view of the partial mesh of the aquifer and reservoir
where axis Z is scaled by a factor 30 (left) and vertical section A-A’ with

vertical coordinates multiplied by a factor 10 (right).

Poisson and Biot coefficients are assumed homogeneous and equal to 0.30 and 1.00,

respectively. The vertical compressibility cm is assumed to follow the hysteretic law vs

the effective vertical stress σz developed by Baú et al. [2002] and Ferronato et al. [2013]

for the Northern Adriatic basin, Italy:

cIcyclem = 1.0044 · 10−2 · σ−1.1347
z (5.1)

cIIcyclem = 2.9087 · 10−4 · σ−0.4315
z (5.2)

where cm and σz are in [MPa−1] and [MPa], respectively. Homogeneous null boundary

conditions are prescribed for displacements, on the lateral and bottom boundaries, and

for stress, on the top surface.

The pore pressure variation due to reservoir exploitation (Fig. 5.2) is prescribed in

the active layers (aquifer and reservoir) to simulate a possible program of hydrocarbon

production. In order to take into consideration a scenario as realistic and general as

possible, two production phases (the first three years and from year 5 to year 7) are

simulated with a halfway temporary stop of extraction. After the second production
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FIGURE 5.2: Prescribed pore pressure variation in time on reservoir ele-
ments (top left) and its propagation from reservoir to the hydraulically

connected aquifer after three, five, seven and ten years.

phase, a natural pressure recovery is experienced. The pressure variation propagates

from the reservoir to the hydraulically connected aquifer, as shown in Fig. 5.2 for some

instants. As is common in reservoir simulations, the availability of a well-developed

history-matched pressure behavior in time is assumed, so that the pressure-related un-

certainties can be neglected (as already mentioned in Section 4.3).

Surface displacements and deep compaction values are supposed to be measured

by a CGPS station and a radioactive marker borehole installed over the field.

5.1.2 Sources of uncertainty and generation of the ensembles

The most significant sources of uncertainty in a land subsidence analysis are often re-

lated to the characterization of the constitutive behavior of the reservoir rock (see Sec-

tion 4.3), i.e., to the definition of the operator D̂ of Eq. (2.13).

In particular, here two different non-linear constitutive laws have been considered

for the active layers: (i) MCC [De Souza Neto et al., 2008] and (ii) VEP [Vermeer and

Neher, 1999]. In addition to the choice of the most suitable constitutive behavior, also
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the ranges of the most influential parameters that govern these laws are uncertain.

The material parameters required by both the MCC and VEP models are the modified

compression index λ∗ and the modified swelling index k∗, while the modified creep

index µ∗ and the geotechnical initial overconsolidation ratio R = pc,y,0/pc,0 are needed

only by the VEP model. Their physical meaning is here recalled:

• λ∗ is the slope of the normal consolidation profile in the plot of volumetric strain

vs axial stress in natural logarithmic scale, i.e., it is a parameter that mainly con-

trols the rock behavior in I-cycle (virgin loading) conditions;

• k∗ is the slope of the unloading profile in the same plot as λ∗, thus it mainly

impacts on II-cycle (unloading-reloading) conditions;

• µ∗ represents the slope of the volumetric strain profile vs time in natural logarith-

mic scale, so its value is a measure of the delay between the pressure variation

and the related reservoir and land deformation;

• R is the ratio pc,y,0/pc,0, where pc,y,0 is a function of the maximum volumetric stress

ever experienced by the material before loading and pc,0 depends on the volu-

metric stress state at initial conditions. Hence, R is related to the initial overcon-

solidation coefficient.

All material parameters listed above are dimensionless. For more details on the model

properties and implementations, the reader is referred to Nguyen et al. [2016]; Spiezia

et al. [2017] and Isotton et al. [2019]. The variability range for the first two parameters

is chosen according to the confidence interval at the average depth of the producing

reservoir of the vertical compressibility cm, which is defined in Eq. (5.1) and Eq. (5.2),

as described in Baú et al. [2002]. The variability of µ∗ and R is chosen according to

the typical values reported in the literature, e.g., Vermeer and Neher [1999] and Isotton

et al. [2019]. The following statistical distributions arise:

ln(λ∗) ∼ N (−4.9363; 0.33295)

ln(k∗) ∼ N (−6.7271; 0.50975)
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µ∗ ∼ U(0.0001; 0.0002)

R ∼ U(1.4; 1.8)

i.e., λ∗ and k∗ are Gaussian parameters in a log-scale, while µ∗ and R have a uniform

distribution. These parameters are assumed to be constant over the portion of the do-

main where a pressure variation takes place. The reason for this assumption is twofold:

1. the variability in space of the geomechanical parameters is usually much lower

than that of the hydraulic parameters. In particular, in sedimentary basins such

a variability is expected to take place more along the vertical direction than in a

horizontal plain. However, in this application the reservoir and aquifer thickness

is relatively small to present a significant geomechanical heterogeneity in λ∗, k∗

and µ∗. Nonetheless, the compressibility cm is not constant and is varying with

depth as a function of the vertical effective stress σz .

2. The available measurements over off-shore reservoirs usually reduce to displace-

ment time series over a small (1 or 2) number of points, and this is not sufficient

to effectively characterize the spatial heterogeneity of the uncertain parameters

[Zoccarato et al., 2018].

5.1.3 Field monitoring program

Since a synthetic test case is taken into account, no real measurements are available.

Thus, a run of the forward model with a predefined set of parameters values is used

to build hypothetical measurements. This realization is not included in the forecast

ensembles. The true parameter configuration is selected as follows:

λ∗ = 0.004992, k∗ = 0.000700, µ∗ = 0.00015, R = 1.50

Fig. 5.3 shows the vertical displacements in time for the true configuration, where the

maximum vertical motion is recorded. As it can be easily seen, the difference between

the MCC and VEP behavior is not only related to the displacement values, but also to

their evolution in time. The VEP model is typically characterized by a delay between
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FIGURE 5.3: On the left, 2D view of the model top with the green point
indicating the location where the CGPS station is supposed to be. On
the right, maximum vertical displacements in time resulting from the ge-
omechanical model run with the true parameter configuration. Squares
and circles are an example of such outcomes perturbed to get the syn-

thetic measurements, respectively for the MCC and the VEP model.

the variations of fluid production rates and the resulting land settlement, which is not

accounted for with a traditional VEP law.

To mimic a real off-shore application, a CGPS station and a marker borehole are

supposed to be located over the reservoir and to collect surface displacements and com-

paction measurements in time, respectively. Specifically, a single CGPS is supposed to

be located at the reservoir center, collecting measurements of the vertical displacements

in time. A marker borehole is supposed to be placed near the CGPS location, where the

reservoir is approximately 30 m-thick. Since the initial space between two adjacent

radioactive markers is approximately 10 m, three compaction measurements are avail-

able for the assimilation. Surface displacements are assimilated every three months,

while compaction measurements every three years.

In order to simulate real recordings and avoid a trivial application, the outcome of

the geomechanical model at the ‘measurement’ location is properly perturbed to get

the synthetic assimilation data, that are for example the dots in Fig. 5.3.

According to NAM [2017], the covariance matrix of measurement error Cd can be

defined considering that the uncertainties related to the observations can be computed

as the sum of a measurement and an idealisation noise. The first contribution depends

on the accuracy of the tool used for the measurements and the representativeness of the

mathematical model for reproducing the observations, and affects only the diagonal
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entries of Cd. The idealisation noise affects both the diagonal and the extra-diagonal

entries according to the spatial and temporal correlation among measurements. In sub-

sidence modeling, any deformation caused by sources other than the deep compacting

layers should be considered as noise. Therefore, all signal components in geodetic

observations that are not related to the signal of interest are treated as a noise and

included in the idealisation part of Cd. Following the fractional Brownian motion ap-

proach [NAM, 2017], the idealisation noise terms are computed as:

(Cd)ii = ς2tphi (5.3a)

(Cd)ij =
1

2
ς2

(
tphi + tphj − |ti − tj |ph

)
(5.3b)

where ti is the time of the measurement i, ς the standard deviation and ph the Hurst

index. In real-world studies, parameters ς and ph derive from specific studies on the

measurement quality. Here, for the vertical displacements recorded by the CGPS sta-

tion, they have been computed through a fitting process of the variogram of the model

outcome run with the true parameters (Fig. 5.3), as described in NAM [2017]. For the

selected constitutive laws, such parameters read:

pMCC = 1.672, ς2MCC = 1.112 · 10−3 m2/yrph

pV EP = 1.895, ς2V EP = 4.158 · 10−4 m2/yrph

The measurement noise is defined from a normal distribution with zero mean and stan-

dard deviation equal to 1.5 mm [NAM, 2017]. On the contrary, motivated by their large

time interval, compaction measurements are considered uncorrelated. To define Cd,

the measurement noise is computed from a normal distribution with zero mean and

standard deviation equal to 1.0 cm.

5.1.4 Workflow validation

Initially, the FEM geomechanical simulator and its approximation through the gPCE

surrogate are compared. Then, the role of each parameter is investigated by a sensi-

tivity analysis performed through the Sobol’ indices. The three DA steps are tested
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for different combinations of the uncertain parameters. First, each parameter alone is

considered uncertain and then some combinations are analyzed. Table 5.1 lists the an-

alyzed configurations: a total number of 12 sets is considered, 3 referring to VEP and 9

to VEP. Initially, the model stateψ of Eq. (4.29) includes only the surface displacements

from CGPS. Compaction measurements are added in the analysis later on, to evaluate

separately their contribution.

TABLE 5.1: Analyzed configuration sets with their associated uncertain
parameters and constitutive law, and χ2 values.

Set Parameters Law χ2

1 λ∗ MCC 1.22
2 k∗ MCC 0.95
3 λ∗ k∗ MCC 1.32
4 λ∗ VEP 1.47
5 k∗ VEP 1.41
6 µ∗ VEP 0.93
7 R VEP 1.03
8 λ∗ k∗ VEP 4.35
9 λ∗ R VEP 1.91
10 λ∗ k∗ µ∗ VEP 1.85
11 λ∗ k∗ R VEP 1.79
12 λ∗ k∗ µ∗ R VEP 1.65

Surrogate model

The first objective of the analysis is to test the quality of gPCE as a surrogate of the

outcome of the FEM simulator. The validation is performed under the most challeng-

ing configuration as to the number of uncertain parameters, i.e., considering the VEP

behavior in scenario 12 of Table 5.1 (four uncertain parameters).

Different degrees of the gPCE polynomial truncation, N = 1, 2, 3, have been taken

into account. A full tensor approach is used for N = 1 and N = 2, leading to a total

number nq of forward model runs equal to 16 and 81, respectively. Since with N = 3

there would be the need of nq = 256 full model runs, a sparse grid approach based

on Smolyak’s coarse tensorization [Smolyak, 1963] is used, thus reducing nq to 137. It

should be noticed that the use of such sparse grid numerical integration might lead to
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unacceptable errors in the expansion coefficients with higher order polynomials [Con-

stantine et al., 2012]. This issue is not encountered in the present application, how-

ever alternative accurate approaches can be also employed if needed, such as those

advanced in Constantine et al. [2012] and Conrad and Marzouk [2013].

A quantitative evaluation of the fitting quality of the gPCE surrogate is provided by

employing the leave-one-out (LOO) cross-validation [Sudret, 2014], where an estimate

of the mean-square error of the residuals between the full model and surrogate solution

is given by the value SSELOO defined as:

SSELOO =
1

nq

nq∑
i=1

(ψi − ψ̂
∼i
i )2 (5.4)

where ψi is the full model result at a certain time t and parameter combination i and

ψ̂
∼i
i is the surrogate solution at the same t and parameter combination i with the gPCE

built without the point denoted by i. In practice, the nq residuals can be obtained with-

out building nq different gPCE but using the original gPCE constructed with the whole

set of collocation points. The coefficient Q2, similar to the coefficient of determination

R2, can be defined as:

Q2 = 1− SSELOO

SST
, (5.5)

where SST is the sum of the squared deviations of ψi from their mean values µψ at

the instant t. Values of Q2 close to 1.0 indicates a good match between the model out-

come and the gPCE surrogate approximation. Table 5.2 reports the mean and variance

of vertical displacements at the times t =1, 5, and 10 years, along with the Q2 value.

Q2 progressively increases to the upper limit of 1 for increasing N , proving the conver-

gence of both the polynomial expansion and the high-dimensional quadrature formula.

This holds true for t > 5 years with a gPCE surrogate solution less accurate at the onset

of the simulation.

Sensitivity analysis

The influence of the uncertain parameters on the model outputs can be evaluated

through the estimation of the Sobol’ indices. Here, the Sobol’ indices are computed
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TABLE 5.2: Mean µψ , variance σ2
ψ and coefficient Q2 with the gPCE ap-

proximation up to degree N = 1, N = 2 and N = 3 (sparse grid).

N = 1 (nq = 16) N = 2 (nq = 81)

t [yr] µψ [m] σ2
ψ [m2] Q2 µψ [m] σ2

ψ [m2] Q2

1 −2.1× 10−3 2.0× 10−6 0.820 −2.3× 10−3 3.1× 10−6 0.931
5 −1.7× 10−1 1.4× 10−2 0.860 −1.7× 10−1 1.5× 10−2 0.995
10 −3.6× 10−1 2.6× 10−2 0.904 −3.7× 10−1 2.8× 10−2 0.999

N = 3 (nq = 137)

t [yr] µψ [m] σ2
ψ [m2] Q2

1 −2.3× 10−3 3.0× 10−6 0.823
5 −1.7× 10−1 1.5× 10−2 0.999
10 −3.7× 10−1 2.8× 10−2 1.000

considering the gPCE surrogate solution of the VEP model with four uncertain param-

eters (scenario 12 of Table 5.1). The results are presented in Fig. 5.4. First-order indices

clearly show the higher impact on the total variance with a negligible influence of the

factors interactions. In particular, parameters λ∗ and R appear to have the major impact

on the solution at several times, except for the first two years where k∗ and µ∗ have a

non-negligible effect. However, the significance of the quantity of interest, that is, ver-

tical displacements, is quite limited at the beginning of the production period, because

both the pressure variation and the geomechanical answer of the system are still very

small and possibly influenced by the measurement errors. Thus, the sensitivity analy-

sis can be limited to the time interval between 3 and 10 years. In this temporal window,

based on the total Sobol’ indices ST,i (bottom panels of Fig. 5.4) if a threshold equal to

0.1 is set, it is possible to remove from the parameter space the parameters k∗ and µ∗.

χ2-test

To investigate the role of the χ2-test, all the twelve combinations of uncertain param-

eters reported in Table 5.1 are considered, using the distributions described in Section

5.1.2. The resulting χ2 values are shown in Table 5.1. The χ2-test provides only a qual-

itative analysis of the ensemble and it is not possible to identify a clear trend. Most

of the values are close to one. Nonetheless, when the number of uncertain parameters

grows, the χ2 value is higher, as in set #3 for MCC and in the last five sets of Table

5.1 for VEP. Higher values of χ2 denote a probable increasing difficulty in constraining

the model with ES. Vice versa, if χ2 is smaller than one, the variance associated to the
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FIGURE 5.4: Sobol’ indices versus simulated time. Profiles with markers
are used for the single parameters, while continuous profiles are used
for the combinations of parameters. On the left the gPCE is created up
to degree N = 2, on the right the gPCE degree is N = 3 and a sparse

grid is used. The bottom panels show the total effects.

ensemble is lower than the variance associated to the measurements, meaning that ES

cannot provide improvements in the update of the ensemble and is therefore likely that

DA processes are ineffective.

Generally, the constitutive law that describes the behavior of the porous medium

is unknown a priori. However, a guess could be obtained from available information,

e.g., laboratory tests, in-situ measurements or data provided by other reservoirs in the

same basin. The χ2-test can be also used as a preliminary tool to select the most appro-

priate constitutive law for the geomechanical model, as the relationship that appears

to be more representative from the available measurements. As an example, we con-

sider cases with the uncertain modified compression index λ∗ and modified swelling

index k∗, with the related forecast ensembles. Results are shown in Table 5.3. We com-

pute the χ2 value when the observations are obtained with the same constitutive law of

the ensemble and when they are computed with a constitutive law different from the

one used to generate the ensemble. The latter test allows to mimic the case where the
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choice of the constitutive law in the modeling workflow is not consistent with the ac-

tual physical governing process. As expected, the χ2 value associated to the ensemble

created with the same constitutive law of the measurements is always closer to 1 than

the inconsistent one. Consequently, χ2-test can provide a useful and cheap preliminary

screening of the generated forecast ensembles.

TABLE 5.3: Outcome of χ2-test used for the choice of the most appropri-
ate constitutive law for the forecast ensemble.

Estimate Measurements Ensemble χ2

parameters constitutive law constitutive law

λ∗ MCC MCC 1.22
λ∗ MCC VEP 1.38
λ∗ VEP VEP 1.47
λ∗ VEP MCC 6.53
k∗ MCC MCC 0.95
k∗ MCC VEP 1.49
k∗ VEP VEP 1.41
k∗ VEP MCC 5.29
λ∗ k∗ MCC MCC 1.32
λ∗ k∗ MCC VEP 1.73
λ∗ k∗ VEP VEP 4.35
λ∗ k∗ VEP MCC 9.51

Red Flag

As for the χ2-test, the RF approach is carried out for every configuration shown in Table

5.1. Every realization of the forecast ensembles is characterized by its own probability

using Eq. (4.31), where P (ψk) is derived from the joint probability of the parameter

set used to define the realization. Table 5.4 provides for each case listed in Table 5.1

the realization characterized by the largest probability of occurrence, along with the

corresponding parameter values. The configuration with the largest probability is not

always the one closest to the true parameter set. The reason can be that RF compares

the state ensemble with the vertical displacements, which are the ‘effect’ through the

geomechanical model of the parameter selection and not directly parameters them-

selves. In other words, the image of the parameters θk for the k-realization through

the forward model G is considered, and the RF approach computes a ‘score’ for each

of such images. In some cases, more than one set provides displacements close to the
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observations and consequently has a high probability. This could suggest a possible

over-parameterization of the problem, i.e., different combinations of the parameters

values can be able to reproduce similarly the available measurements. This is usually

an unfortunate situation, where ES is expected to have a low effectiveness on the pa-

rameter characterization. Despite this, in most cases, there is an important difference

between the largest and the smallest probability. Therefore, RF can help to preliminary

reduce the uncertainties by neglecting the realizations characterized by the smallest

probability of occurrence.

TABLE 5.4: RF approach: combination of parameters with maximum
probability of occurrence.

Set max (P (ψk|D)) [%] λ∗ k∗ µ∗ R

1 7.11 0.005591
2 2.84 0.001189
3 8.27 0.004990 0.000958
4 20.33 0.005113
5 5.95 0.000843
6 2.58 0.000151
7 3.90 1.5032
8 27.52 0.004990 0.000958
9 22.65 0.005410 1.4655
10 13.82 0.005520 0.001004 0.000165
11 41.83 0.005365 0.000930 1.5278
12 25.29 0.005437 0.001142 0.000150 1.5157

Ensemble Smoother

In this section, the effectiveness of ES has been evaluated for different purposes. The

quality of the outcome is evaluated through the indices AE and AES computed as in

Eq. (4.36) and Eq. (4.37), respectively, and their variation J , defined as in Eq. (4.38). A

positive value of J indicates a restriction around the true configuration of the updated

ensemble with respect to the prior. Note that in the computation of such indices, the

matrix of updated state variables refers to the solution of the forward model by using

the updated parameter vector.
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Parameter constraints

For the test cases of Table 5.1, the outcome of the ES approach is provided in Table 5.5.

The assimilation effectiveness strongly depends on the uncertain parameter set.

The choice of the set of uncertain parameters has a significant impact on the model

in relation to the geometry of the domain, the constitutive law, the observed data, the

boundary conditions and the imposed external load. For example, the uncertainty as-

sociated to the modified compression index λ∗ and the modified swelling index k∗ has

a similar range of variability, as defined in paragraph 5.1.2. Nevertheless, the corre-

sponding state ensembles for the MCC constitutive law (set # 1 and # 2) have very dif-

ferent forecast AES. A variation of k∗ in the model does not provide significant changes

in the resulting state in term of land vertical motion, uz . As a matter of fact, k∗ is a pa-

rameter mainly controlling the rock behavior in II-cycle conditions, so it appears to

play a secondary role for the selected production program (Fig. 5.2). Consequently, in

this case ES cannot help constrain k∗ because variations related to the state ensemble

are lower than the errors associated to measurements. By distinction, variations in λ∗

produce a significant change in the forecast state ensemble that provide enough infor-

mation to constrain the model outcome close to the observations, with a reduction of

the a priori parameter uncertainties.

ES has been applied considering uncertainty related to each parameter individually

and some of their combinations to evaluate ES capability of conditioning the model in

different situations with the same available observations. The results of Table 5.5 point

out that an over-parameterized problem can prevent from constraining the model to

the measurements, as in the last four parameter sets. For the VEP model, this can be

seen when the set of uncertain parameters includes both λ∗ and the ratio R (set # 9).

In this case measurements are not enough to constrain the model, while results of set

# 4 and # 7, in which these parameters are separately considered into the ES approach,

provide a satisfactory reduction of the ensembles spread around the true configuration.
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TABLE 5.5: ES approach: AE and AES for the forecast ensembles and
the relative variation J of AE and AES from the update ensembles. The
larger J , the more effective is the assimilation approach on the parameter

or state (vertical displacements, uz) that is indicated in column 2.

Set Ensemble AEforecast J [%] AESforecast J [%]

1 λ∗ 4.159 · 10−1 51 2.429 · 10−1 16
uz 1.432 · 10−1 62 9.260 · 10−2 42

2 k∗ 6.488 · 10−1 -29 3.706 · 10−1 -125
uz 6.331 · 10−3 -37 3.348 · 10−3 -150

3 λ∗ 3.996 · 10−1 49 2.563 · 10−1 30
k∗ 6.488 · 10−1 -20 3.706 · 10−1 -109
uz 1.454 · 10−1 64 1.000 · 10−1 53

4 λ∗ 4.159 · 10−1 71 2.429 · 10−1 51
uz 3.530 · 10−2 69 2.001 · 10−2 45

5 k∗ 6.488 · 10−1 46 3.706 · 10−1 6
uz 5.440 · 10−2 65 3.772 · 10−2 49

6 µ∗ 2.503 · 10−5 43 2.485 · 10−5 42
uz 2.513 · 10−2 42 2.504 · 10−2 42

7 R 1.193 · 10−1 47 9.400 · 10−2 34
uz 4.026 · 10−2 38 3.092 · 10−2 19

8 λ∗ 3.996 · 10−1 54 2.563 · 10−1 31
k∗ 6.488 · 10−1 53 3.706 · 10−1 24
uz 4.650 · 10−2 44 4.519 · 10−2 42

9 λ∗ 3.900 · 10−1 -87 2.483 · 10−1 -190
R 1.348 · 10−1 21 9.623 · 10−2 -10
uz 6.137 · 10−2 15 3.444 · 10−2 -57

10 λ∗ 4.333 · 10−1 38 2.851 · 10−1 7
k∗ 6.089 · 10−1 43 3.501 · 10−1 5
µ∗ 1.325 · 10−5 -165 8.957 · 10−6 -292
uz 4.879 · 10−2 8 4.490 · 10−2 -2

11 λ∗ 4.083 · 10−1 -34 2.351 · 10−1 -117
k∗ 6.351 · 10−1 43 3.380 · 10−1 -3
R 1.276 · 10−1 6 9.295 · 10−2 -28
uz 5.208 · 10−2 -23 4.976 · 10−2 -32

12 λ∗ 3.992 · 10−1 -87 2.308 · 10−1 -206
k∗ 6.144 · 10−1 24 3.927 · 10−1 -12
µ∗ 1.323 · 10−5 -9 9.152 · 10−6 -35
R 5.423 · 10−2 -145 5.373 · 10−2 -145
uz 5.621 · 10−2 -90 4.716 · 10−2 -140
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Prediction of land subsidence

Table 5.5 suggests that the most satisfactory results can be obtained in the configura-

tions with uncertain λ∗, sets # 1 and # 4 for MCC and VEP, respectively. For these

cases, the ES capabilities are evaluated also in a predictive sense by assimilating 3, 5

and 7 years of displacement measurements only, with respect to the assimilation of

observation data during the entire simulation period, i.e., 10 years. This is to investi-

gate the use of ES during the productive life of the reservoir, introducing into the DA

framework the up-to-date set of measurements. The resulting forecast and update state

ensembles are shown in Fig. 5.5 together with the improvement index J .

As the number of assimilated measurements increases, the effectiveness of the ES

algorithm grows. Using a MCC model, the assimilation of few observation data en-

ables ES to reduce significantly the model uncertainties. In the case of VEP behavior,

the assimilation of three years of measurements (top right panel of Fig. 5.5) is not

enough for constraining the model. Since the spread of the VEP forecast state ensem-

ble (AES = 0.020) is already smaller than the one for MCC (AES = 0.092), the model

characterization is intrinsically more difficult. Nevertheless, seven years of measure-

ments appear to be enough to reduce uncertainties and improve the model predictive

capabilities. In other words, the continuous assimilation of new land displacement ob-

servations in time appears to be effective for automatically training the model, thus

increasing its reliability in the prediction capability.

Influence of measurement covariance matrix

The results presented in Table 5.5 and Fig. 5.5 are obtained with the covariance matrix

of the measurement error Cd described in section 5.1.3. Reduction in observation er-

rors, i.e., increase in measurement reliability, usually implies a better performance of

DA algorithms [Baù et al., 2015]. To evaluate the importance of the measurement er-

rors, the standard deviation ς in the computation of Cd has been reduced, i.e. ς2 equal

to 1.112 · 10−5 m2/yrph for MCC and to 4.158 · 10−6 m2/yrph for VEP. Results provided

in Fig. 5.6 show the outcome of ES for the estimate of the modified compression index

λ∗ by assimilating displacement measurements for the first five years of the simulation
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FIGURE 5.5: State ensembles resulting from ES application: maximum
land subsidence in time for MCC (left) and VEP (right) by assimilating 3,
5, and 7 years of displacement measurements. The forecast and update
ensembles are gray and red, respectively, while green stars denote the
exact outcome of the geomechanical model used to get the perturbed
observations that are shown in Fig. 5.3. Variations J of AE and AES

with respect to the forecast state ensemble are reported.
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process. These results, compared to those obtained with the original Cd (state ensem-

bles in the central panels of Fig. 5.5 and parameter ensembles in the left panels of Fig.

5.6), point out a clear improvement in the solution of inverse problem with an increase

of J by over 61%.

FIGURE 5.6: Ensembles resulting from ES application: parameter en-
sembles with the original covariance matrix Cd (left) and the reduced
one (center) considering the MCC and the VEP model, respectively; state
ensembles (right) with the reduced Cd for the MCC (top) and the VEP
(bottom) model. Forecast and update ensembles are gray and red, re-
spectively. The AE and AES improvements J with respect to the forecast

ensembles are reported.

Assimilation of compaction measurements

In this section, synthetic measurements of the formation compaction have been added

to the assimilation. To evaluate the influence of these additional measurements, four
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significant configuration sets of uncertain parameters (set # 1, # 4, # 6 and # 12) have

been considered. Fig. 5.7 shows the variation J of AE and AES indices from the forecast

to the update ensemble when both displacement and compaction measurements are

assimilated. Comparing Fig. 5.7 with the results in Table 5.5 allows to understand

when adding more accurate measurements with a different nature could be useful.

(16)
(62)

(42)
(71)

(51)

(45)
(69)
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(42)

(42)
(42)
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(-145)
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FIGURE 5.7: Variation J of AE and AES with respect to the forecast en-
sembles reported in Table 5.5 when both displacement and compaction
measurements are assimilated for parameter sets # 1, # 4, # 6 and # 12.
In brackets, values of J when only the displacement measurements are

assimilated (the same as in Table 5.5) are recalled.

First, set # 1 and # 4 are considered, where λ∗ is uncertain in the MCC and VEP

model, respectively. In these cases, the assimilation of only CGPS measurements al-

lows to constrain the model. Adding other observations does not provide a relevant

improvement in the ES application. Then, set # 6 is considered, i.e., the modified creep

index µ∗ with the VEP model is kept uncertain. This parameter has a low range of

variability. In this case, the assimilation of both displacement and compaction mea-

surements with the covariance matrix as described in paragraph 5.1.3 proves a signifi-

cant variation in the ES results, with an improvement of J of about 107% with respect

to the assimilation of vertical displacements only. Finally, the case of a probable over-

parameterized problem is evaluated, i.e., set # 12 of Table 5.1. Results obtained with the
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assimilation of both CGPS and marker measurements cannot be considered thoroughly

satisfactory, because of the small, or even negative, values of J . Nevertheless, they are

better than results in Table 5.5 for the assimilation of surface vertical displacements

only, at least for parameter λ∗, ratio R and displacement uz .

Ensemble size

The influence of the ensemble size, i.e., the number of MC realizations, have been ana-

lyzed. Results in terms of index AE are reported in Fig. 5.8 and Fig. 5.9, where the VEP

law is assumed and the parameters λ∗ and R have been considered uncertain (set # 9).

Two sets of parameters have been used to build the CGPS synthetic measurements: the

one already defined in Section 5.1.3 and one with λ∗ = 0.011 and R = 1.25. Even if these

two configurations provide very different observation data, the convergence behavior

is similar. Ensembles of size up to 20.000 realizations are analyzed. The parameter in-

dex AE (Fig. 5.8) generally decreases with nMC for both cases and stabilizes after ∼ 100

nMC . Fig. 5.9 shows that ensemble size greater than 2.000 realizations do not provide

any significant improvement in the update of the state variable.

FIGURE 5.8: Convergence of ES for increasing ensemble size. On the
top of the panels, the two sets of true parameters that have been used to

compute the synthetic measurements are reported.
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FIGURE 5.9: Mean and standard deviation for the updated displace-
ments on the observation point varying the size of the ensembles. On
the top of the panels, the two sets of true parameters that have been used

to compute the synthetic measurements are reported.

Multiple Data Assimilation

MDA is recognized to improve the effectiveness of the ES when there is a strongly non-

linear relationship between the uncertain parameters and the state variables [Emerick

and Reynolds, 2012]. The multiple applications of ES implies an increase in the com-

putational cost, which makes the use of MDA unworkable for complex real cases. This

is probably the reason why in the literature there is a lack of study regarding MDA in

the context of land subsidence analyses.

Here, we compare the results of ES and MDA for some significant set of uncertain

parameters. The influence of the measurement covariance matrix is also investigated.

Influence of measurement covariance matrix

Two groups of simulations are carried out to point out the influence of the measure-

ment error in the MDA approach: (i) using the measurement covariance matrix is as

described in Section 5.1.3, and (ii) considering a reduced one. To build the reduced Cd,

the entries of the measurement noise are sampled from a normal distribution with zero

mean and standard deviation equal to 1 mm, while the terms of the idealisation noise

have been calculated considering Eq. (5.3) with Hurst index ph = 1.67 and variance

ς2 = 2 · 10−5 m2/yrph . For MDA three iterations have been considered.
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Fig. 5.10 shows a comparison between ES and MDA for the estimation of param-

eter set # 1 considering both the measurement covariance matrices. The final update

ensembles of ES and MDA appear quite similar when the original Cd is used, with

the exception for a few outliers (top panels of Fig. 5.10). Conversely, considering the

reduced covariance matrix (bottom panels of Fig. 5.10), progressive improvements at

every successive assimilation are registered with MDA and the final ensemble is more

clustered and centered around the true value than the one derived from a single ES

assimilation.

FIGURE 5.10: Parameter ensembles resulting from ES (left) and MDA
(right) for set # 1, i.e., uncertain λ∗ and MCC model. The top and bottom
panels are the outcomes using the original and the reduced measure-
ment covariance matrix, respectively. Dashed lines correspond to the

true value of the parameter.
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Comparison between ES and MDA for parameter constraint

In this section, the reduced measurement covariance matrix is used. ES and MDA are

compared in constraining case # 9 (λ∗ and R uncertain, Fig. 5.11) and set # 13 (λ∗ and

µ∗ uncertain, Fig. 5.12).

FIGURE 5.11: Parameter ensembles resulting from ES (left) and MDA
(right) for set # 9, i.e. λ∗ (top) and R (bottom) uncertain, with the reduced

Cd. Dashed lines correspond to the true value of the parameters.

Similarly to the outcomes shown in the bottom panels of Fig. 5.10, Fig. 5.11 shows

that in the MDA process progressive improvements are achieved and the final result is

better than the one of a single ES assimilation to constrain λ∗. By distinction, if the set of

parameters is formed by λ∗ and µ∗ (Fig. 5.12), MDA does not provide any improvement

with respect to ES. This can be motivated by the difficulty in the µ∗ estimation using
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vertical land displacements only, as already observed in Table 5.5.

FIGURE 5.12: Parameter ensembles resulting from ES (left) and MDA
(right) for set # 13, i.e. λ∗ (top) and µ∗ (bottom) uncertain, with the re-
duced Cd. Dashed lines correspond to the true value of the parameters.

5.1.5 Discussion

In Section 5.1, the effectiveness of the integration of DA techniques into numerical mod-

els for land subsidence prediction above producing hydrocarbon reservoirs has been

analyzed. The aim is to define a modern methodological approach able to take into

consideration, quantify and reduce uncertainties in land subsidence prediction by a

progressive ‘training’ of the forward numerical model through the assimilation of the
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available pieces of information. The potential and drawbacks of the different DA ap-

proaches have been investigated in a synthetic test case, representative of a real-world

hydrocarbon producing reservoir buried in a sedimentary basin. Selected mechanical

behaviors and parameter ranges are typical of the Northern Adriatic basin, Italy. On

the basis of the numerical experimentation carried out in the previous sections, the

following main considerations are worth summarizing.

1. Preliminaries. Land subsidence models, as any other numerical model of real-

world processes, are affected by a number of different sources of uncertainties.

The first preliminary step consists of recognizing the most influential uncertain

factors and, among these, the ones that can be explicitly included as stochastic

variables in the construction of the model ensembles. For instance, uncertainties

in the subsurface geometry or in the mathematical description of the governing

processes cannot be easily quantified, while it is often convenient, and more sup-

ported by available information, to treat some material parameters as stochastic

variables. Uncertainties in the geometry or the mathematical modeling can be im-

plicitly accounted for by artificially inflating the errors associated to assimilated

measurements. Then, the appropriate selection of the set of uncertain material pa-

rameters is a fundamental aspect for the application success. A necessary condi-

tion for an effective DA is that the uncertain material parameter has a significant

impact on the monitored model outcome, i.e. ground motion in this case, while

including parameters with a low relevance is often detrimental for the quality of

the overall assimilation process. For this reason, a preliminary sensitivity anal-

ysis on the relative influence of each material parameter on the model outcome,

along with the identification of feasible variation ranges, is of paramount impor-

tance. Here, it has been quantitatively performed by means of Sobol’s indices,

allowing to identify the most influential geomechanical parameters.

2. Model diagnostic. Once the most significant governing parameters are defined, a

model diagnostic analysis is useful to preliminarily evaluate the quality of the

forecast ensemble. This step is important especially to help identify the most
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appropriate constitutive behavior of deep rocks and recognize the actual repre-

sentativeness of the selected ranges for the uncertain parameter set. To this aim,

here the χ2-test and RF are used. The numerical experiments show that χ2-test

can be helpful for choosing the most appropriate constitutive law as the one bet-

ter fitting the observation data. It should be recalled, however, that the χ2-test has

mainly a qualitative meaning. In case the outcome of the χ2-test is not definitely

clear, as it can often happen when the quantity and/or quality of the available

measurements is limited, it is useful to keep more than one ensemble and se-

lect the most appropriate one as new pieces of information come in. In the RF

outcomes, there is usually an important difference between the highest and the

lowest probability, with a relatively small number of realizations with a relevant

probability of occurrence. Some exceptions to this outcome has been found for

the cases in which χ2 is lower than one, i.e. when the ensemble should have been

rejected a priori in the diagnostic stage. RF provides a preliminary idea of the

most likely parameter combination and allows to exclude some realizations that

can be considered too unrealistic. In this way, a refinement of the feasible ranges

for the uncertain parameter set can be performed, with the possibility of building

more representative model ensembles. Of course, the most likely parameter com-

bination along with the expected ranges can change as new observations become

available, hence such a refinement should be done with some caution, especially

when the amount and quality of such data is limited.

3. Assimilation. The assimilation stage allows to incorporate the available measure-

ments and progressively train the geomechanical model as the monitoring of the

ongoing process proceeds. The outcome of this stage is a new updated ensemble

with a progressively smaller uncertainty in the model prediction. To this aim, ES

and MDA have been employed. ES proves to depend on three different aspects:

(i) the set of uncertain parameters, (ii) the measurements, and (iii) the error associ-

ated to the observations, i.e., ultimately the definition of the measurement covari-

ance matrix. First, the uncertain parameter set has to be actually relevant for the

observed process without leading to over-parametrization, i.e., multiple combi-

nations can provide similar results with respect to the measurements. Generally,
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if the choice of the uncertain parameter set is consistent with the available ob-

servations, ES appears to be especially suitable for subsidence predictions, with

a progressive model improvement as the quantity of assimilated measurements

increases. The effectiveness of ES application improves with the decrease of the

error associated to the observations. Hence, the definition of the covariance ma-

trix of the measurement error, which might be also artificially inflated to account

for other sources of uncertainty, plays a fundamental role in the application of

the DA algorithm. In principle, MDA can be used to improve ES outcomes, es-

pecially in case of a strongly non-linear relationship between state variables and

uncertain parameters. In our numerical experiments, it does not always provide

better results than ES, despite the higher computational cost, and appears to be

strongly influenced by the selection of the uncertain parameter set and the co-

variance matrix of the measurement error.

The validation of the single steps on a synthetic test case allows to delineate the

methodology as it has been presented in Chapter 4.

5.2 real-world producing reservoir application

After the analysis carried out on the synthetic test case, the methodological approach is

applied on a real producing hydrocarbon reservoir in Italy, namely the Arlua reservoir.

The aim is to test its effectiveness in a complex case study with a real-world data set of

deformation measurements in space, time and depth.

In this section, the model is first described along with its uncertainties and the avail-

able data on the field, then the outcomes of the DA steps are presented and discussed.

Due to confidentiality reasons, all the displacement and pressure data in the follow-

ing paragraphs have been normalized with respect to a reference value that is positive

and constant for the successive assimilations.

5.2.1 Model set-up

The reservoir structure of the Arlua field is made up by an anticline with two cul-

minations (Fig. 5.13), surrounded by several minor hydrocarbon accumulations that
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FIGURE 5.13: Location of the Arlua reservoir in the Northern Adriatic
Sea (a) and perspective view of the Arlua field with paths of the wells
targeting the two culminations (b). Neighboring hydrocarbon accumu-

lations are also shown.

FIGURE 5.14: Stratigraphic profile with the identification of the reservoir
location.

have also been included in the fluid-flow and geomechanical simulation models. The

proximal turbiditic sand lobes of the Pleistocene Carola Formation represent the shal-

lowest and most recent reservoir layers. The trap is a structural four-way dip closure

resulting from the compaction processes related to the draping of the faulted carbonate

basement on the structural highs. The deepest reservoir layers of the Pliocene Porto

Garibaldi Formation are composed of distal turbidite sand lobes and fringes that have

a different trap caused by the pinching out of the sandy layers on the Santerno Forma-

tion shales toward NE (Fig. 5.14). The origin of these turbiditic deposits is related to the

Po river depositional environment. They come from the dismantling of the Alps chain

and are widely distributed into the Periadriatic Foredeep Basin. The deeper deposits
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FIGURE 5.15: Seismic section through the Arlua field with interpreted
horizons for the main reservoir layers.

of the Porto Garibaldi Formation are represented by distal turbidite sand lobes and

fringes while the upper deposits of the Carola Formation are considered more proxi-

mal turbiditic sand lobes. In the very upper portion of the turbiditic series of the field,

the sandy levels of the turbiditic deposits are interrupted by the presence of channel-

like features, probably relevant to a turbiditic system with localized sediments entry

points from the Balkan and superimposed on the regional sediments source coming

from North. Nonetheless, this does not affect the lateral continuity of the turbiditic

sandy levels that can be mapped for tens of kilometers from 3D seismic acquisitions

(Fig. 5.15). This results in a multi-pay system in which every layer may have its own

gas-water contact and a thickness variable from centimeters to meters. The portion we

refer to consists of more than one hundred active layers lying from 900 m to 1800 m

below mean sea level.

Gas is withdrawn by 28 producing wells, connected to two platforms, about 5 km

apart. The two platforms are equipped with CGPS stations that have been acquiring

data since the start-up of the production. The production program varies with the

specific layer, according to the geometry, local pressure conditions and gas volume in

place. Fig. 5.16 reports the pressure evolution in time for three representative points,
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highlighting the high pressure variation between different layers. Fig. 5.16 also points

out the complex reservoir layering, which can be appreciated in the section reported in

the right panels.

FIGURE 5.16: Pressure change evolution in the Arlua field. The bottom-
left panel shows the maximum punctual values over time in a shallow,
middle and deep layer of the reservoir. The markers indicate the time
when the pressure data are available. The plain location of the point is
shown in the sketch on the top left along with the indication of the trace
of section A-A. The full view of section A-A and a zoom centered on the
active layers are reported on the right, showing the normalized pressure

at year 15. The vertical axis is exaggerated by a factor 10.

A dedicated well continuously acquires pressure data in six different layers, along

with the measurements routinely acquired in the other producing wells. The large

amount of available pressure data allowed for the development of an accurate history-

matching process within a dynamic multi-phase flow model of the reservoir. For this

reason, uncertainties related to the pressure field can be considered much smaller than

those depending on other factors, hence the history-matched pressure behavior in time

and space is used as input for the geomechanical model. This is also supported by the

fact that the the mechanics-to-flow coupling is weak, since the gas compressibility is

orders of magnitude higher than the rock compressibility and the space-time scale of

interest is pretty large [Gambolati et al., 2000; Wang, 2000a; Pearse et al., 2014]. As a

consequence, the update of the fluid-dynamic model with the updated geomechanics



Chapter 5. Application to producing hydrocarbon reservoir 129

parameters is needed only for specific detailed analyses.

The geomechanics of the multi-pay reservoir is investigated with the aid of a FEM

simulator. The model domain covers an area of about 88 km × 73 km and extends down

to 5 km depth (Fig. 5.17). It includes also the rocks surrounding the reservoir and the

active aquifers, namely the overburden, underburden and sideburden. In the model,

the behavior of the porous medium is described by appropriate constitutive laws, that

are generally nonlinear. The choice of the most appropriate law represents a significant

source of uncertainty, as described in the next section. The volume of interest has been

discretized into a 3D FE mesh composed of 572,934 nodes and 550,800 hexahedrons

(Fig. 5.17). This model has been used to train a gPCE surrogate that generates the

ensemble realizations. The numerical simulations covers 55 years, according to the

availability of the pressure data (bottom-left panel of Fig. 5.16).

x

z

y

88 km

73 km

5 km

FIGURE 5.17: Discretized 3D domain with the active layers (reservoir
and aquifer) in red. The vertical axis is exaggerated by a factor 10.

5.2.2 Sources of uncertainty and generation of the ensembles

The first step of the workflow consists in identifying the uncertain factors that have the

main influence on the model outcomes and that can be explicitly treated as stochastic

input variables in the simulations.

As already highlighted before, the main uncertainties are related to the nature and gov-

erning parameters for the constitutive behavior of the reservoir rock. Since the behavior

of underburden and overburden does not significantly affect surface movements [Fer-

ronato et al., 2010; Teatini et al., 2011], a deterministic linear elastic law may suffice,

while different non-linear models can be selected for the active layers. The choice of
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the most appropriate constitutive law depends on the availability of laboratory tests,

the geological nature of the basin, and previous experiences. Uncertainties can be sig-

nificant, especially at the beginning of the reservoir development, when the knowledge

on the field behavior is generally quite limited. For this case, we select the constitutive

laws already considered in the remainder of this thesis and generally used for real-

world land subsidence analyses carried out in similar basins [Cassiani and Zoccatelli,

2000; Capasso and Mantica, 2006; Gemelli et al., 2020]: the MCC [Roscoe and Burland,

1968] and the VEP [Vermeer and Neher, 1999] model (see Section 2.3).

Among the governing parameters, the focus is on the ones that (i) are more uncer-

tain and (ii) have a major impact on the outcomes. In particular, following the analyses

reported in the previous section and in Zoccarato et al. [2020] and Gazzola et al. [2021],

uncertainties have been associated to the modified compression index λ∗ and the ratio

R (R ≥ 1), with the latter required only by the VEP model. A range of feasible values for

those parameters can be identified thanks to the results of laboratory tests on samples

cored from the reservoir. In particular, values of λ∗ can be extrapolated from standard

oedometer tests, while the values of R can be derived from the expression for the vol-

umetric visco-plastic strain. The reader can refer to Musso et al. [2021] for additional

details. According to the nature of the variables, a log-normal and a uniform distribu-

tion are assumed, as reported in Table 5.6. These values are assumed to be constant in

space within the active layers. Indeed, as already stated before, the variability in space

of the geomechanical parameters is much lower than that of the hydraulic parame-

ters, and especially so along horizontal planes. Variations along the vertical direction

are expected, but usually in a smooth way at the scale of the reservoir thickness. For

this reason, we assume a geomechanically homogeneous rock formation in the reser-

voir layers, while in the overburden and underburden a simple linear elastic behavior

is postulated with the geomechanical parameters varying with depth as a function of

the vertical effective stress according to the law developed by Baú et al. [2002] for the

Northern Adriatic basin, Italy. The Poisson coefficient is set homogeneous and equal to

0.30 everywhere, while the Biot coefficient is unitary. The modified swelling index k∗

and the modified creep index µ∗ are computed as 1/10λ∗ and 1/60λ∗, respectively.

Two forecast ensembles including 200 MC realizations each have been generated
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[Zoccarato et al., 2020]. Their features are reported in Table 5.6. They are used to gener-

ate the initial guess of the expected field geomechanical behavior for the programmed

development history.

TABLE 5.6: Characterization of the forecast ensembles. Constitutive law
and prior distribution (with mean and variance) of the parameters.

Ensemble Law Uncertain parameter distribution

M01 MCC ln (λ∗) ∼ N (−2.58; 0.44)
V01 VEP ln (λ∗) ∼ N (−2.58; 0.44) R ∼ U (1.1; 1.5)

5.2.3 Field monitoring program

The monitoring program on the field includes land surface movement and deep com-

paction measurements. The instrumentation has been installed at different dates, so

that different pieces of information are available in different monitoring periods.

Measurements of sea bottom displacements over time are available since the early

production phases by two CGPS permanent stations located on the two off-shore pro-

duction platforms. The first station has been installed 4 years after the beginning of the

modelling, while the second one started to operate 6 months later. Both stations have

been recording data for about 8 years. Fig. 5.18 shows such data, normalized with

respect to a constant positive value. Bathymetric and compaction measurements (Fig.

5.19 and Fig. 5.20, respectively) are normalized as well by the same value. We notice

that the behavior over time of the measured displacements in Fig. 5.18 appears to be

consistent with the pressure change in the reservoir (Fig. 5.16).

Two full coverage multibeam bathymetric surveys have been carried out before

starting the production (at year 3) and after 7 years (at year 10). The difference between

the two bathymetries allows for a spatially distributed measurement of the displace-

ment of the seabed and the identification of the shape and the extension of the subsi-

dence bowl (Fig. 5.19). The measurements along two orthogonal lines passing through

the reservoir center have been considered for the assimilation.

Finally, compaction measurements at the reservoir depth are collected by radioac-

tive markers. This technique consists of monitoring the relative position of a set of
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FIGURE 5.18: Surface displacements over time measured by the two
CGPS stations. Continuous lines connect the recorded data, while dots

are the assimilated values.
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FIGURE 5.19: On the left, top of the discretized domain with the indi-
cation of the two bathymetric lines and the interpolation area. On the
right, interpolated difference between the two bathymetric surveys per-
formed 3 and 10 years after the model start, with the indication of the

points used in the assimilation process.
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FIGURE 5.20: Values of compaction recorded by the radioactive marker
techniques. The depth of the cumulative spacings is reported on the
right. Notice that compaction generally decreases over time in agree-
ment with the decrease of the yearly pressure depletion after year 8 (Fig.

5.16).

weakly radioactive bullets regularly shot in the formation along a vertical unproduc-

tive well prior to the casing operations [De Loos, 1973; Mobach and Gussinklo, 1994].

Four years after the beginning of the production (at year 7), 100 radioactive markers

have been shot at a depth between 970 m and 1775 m, collecting data for about 6 years.

Fig. 5.21 summarizes the availability of different kinds of measurements with re-

spect to the pressure information, i.e. to the output times of the production simulator.

FIGURE 5.21: Timeline of pressure and measurement data. 55 years of
pressure data are available from a reservoir simulator properly history-
matched. Purple stars indicate the years of the bathymetric surveys (B),
while the red and green arrows point out the availability of CGPS (G)

and radioactive markers (M) measurements, respectively.

A number of significant observations have been used for the following DA process.

In particular, the CGPS measurements at the times of the pressure known values (that

are the markers in the bottom left panel of Fig. 5.16) have been selected, thus a total

of 19 and 18 measurements for the first and second CGPS station, respectively (Fig.

5.18). To capture the spatial distribution of the subsidence bowl 13 points (dots and

squares in Fig. 5.19) of the bathymetric surveys are used, corresponding to the original
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points used to draw the subsidence map. Finally, since the recording of a single spac-

ing (10.5 m) between two adjacent radioactive bullets can be often characterized by a

high signal-to-noise ratio, compaction measurements have been cumulated in sets of

adjacent spacings according to the geology of the active layers in order to reduce the

errors. Thus, 4 cumulative compaction intervals for 5 time steps have been used (Fig.

5.20). Considering the number of measurements progressively available, the update of

the overall field model through the DA steps is performed every 3 years starting from

the beginning of the monitoring program. The total number of measurements used in

each update step is reported in Table 5.7.

TABLE 5.7: Amount of available measurements for each assimilation
date, respectively recorded from the CGPS stations (G), radioactive

markers (M) and the bathymetry (B).

Year
Measurements

G M B Tot

7 13 - - 13
10 25 12 - 37
13 37 20 13 70

The error associated to each measurement accounts for both the accuracy of the

measurement itself and the potential contribution of other simultaneous processes (e.g.,

tectonics, sediment deposition on the sea bottom), which are not modeled and could

affect anyway the data. The error is drawn from a normal probability distribution with

zero mean and standard deviation equal to 3 cm, 10 cm and 2 cm respectively for CGPS

[van Leijen et al., 2016; Cenni et al., 2021], bathymetric surveys [Ernstsen et al., 2006]

and radioactive markers [Macini and Mesini, 2002; Zoccatelli et al., 2010].

5.2.4 Results

The procedure presented in Chapter 4 is applied to develop an integrated geomechani-

cal model for the reservoir management. As previously mentioned, an initial uncertain

model is built prior to the reservoir development and then updated every 3 years from

the beginning of the monitoring program. At every update, the correctness of the initial

hypotheses is checked and the improvement of the prediction reliability is evaluated. If

the update is not satisfactory, the initial hypotheses are re-discussed and the procedure
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starts from the beginning. The amount of available measurements for each assimilation

is reported in Table 5.7. As new observations are integrated in the process, uncertainties

are expected to decrease both in the parameter and in the state ensembles.

Initial forecast

The environmental monitoring program of the field activities starts at year 4 (Fig. 5.21).

At this point of the reservoir life, all the input uncertainties simply propagate to the

output because no information is available to constrain the model. The resulting en-

sembles, denoted as initial forecast ensembles, are built considering the ranges of the

parameters in Table 5.6. Fig. 5.22 shows the range of the predicted normalized dis-

placements in time at the location of the two CGPS stations considering the MCC and

the VEP constitutive behavior.

M01 M01

V01V01

FIGURE 5.22: Forecast of the M01 (top) and V01 (bottom) ensembles
modeling the displacements over time at the two CGPS locations. Left

and right columns refer to CGPS 1 and CGPS 2, respectively.

Notice the large output uncertainty associated to the initial ranges of the governing

parameters. The initial forecast ensembles predict a maximum displacement as large
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as 20 times the minimum profile. Also, the two ensembles show quite a different un-

certainty propagation, with the output range for M01 that is approximately twice V01.

This is due to the different role played by the uncertain parameters in the constitutive

models, as already observed in Section 5.1.4 and shown in Gazzola et al. [2021].

Since the prediction for the two CGPS locations is very similar, in the sequel only

the first one is shown.

Update no. 1: year 7

The first model update is performed 3 years after the beginning of CGPS measure-

ments, i.e. at year 7 of the simulation.

At this stage we can incorporate in the model 13 CGPS measurements (Table 5.7).

The χ2 values for the two forecast ensembles are reported in Table 5.8. This first result

suggests the greater representativeness of the VEP compared to the MCC. The large

difference between the values of the two ensembles can be explained considering (i) the

greater spread of the ensembles M01 with respect to V01 and that (ii) the measurements

are not even comprised within the forecast ensembles M01, as will be better highlighted

later on.

TABLE 5.8: Update no.1, year 7: χ2 values. The subscript points out
the state, in this case G1 for CGPS 1, G2 for CGPS 2 and A for all the

measurements.

Ensemble χ2
G1 χ2

G2 χ2
A

M01 1075.47 1395.90 1223.36
V01 12.30 19.53 15.63

The RF method assesses the probability of occurrence of each realization, as shown

in Fig. 5.23. The probabilities of the realizations of the ensemble M01 are all close to

zero, with the exception of a single realization close to probability 1 (left boxplot of

Fig. 5.23). Conversely, the distribution of the probabilities for the ensemble V01 (right

boxplot of Fig. 5.23) exhibits a larger spread. However, about half values are close

to zero (third and fourth quartiles of the boxplot) and there are no realizations with

probability larger than 3%. These results are in agreement with the outcomes of the

χ2-test, confirming that the ensemble V01 appears more appropriate to describe the
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FIGURE 5.23: Update no. 1, year 7: RF analysis on the normalized dis-
placements at CGPS 1 location for the M01 and the V01 ensembles. On
the left the boxplots show the distribution of the probability for the two
ensembles. The vertical axis has been truncated, so that one outlier close

to 1 for the ensemble M01 is not visible.

measurements compared with the ensemble M01. However, due to the limited amount

of data assimilated at this stage, we decided to cautiously update both the ensembles

through the ES application. This allows also to verify a posteriori the reliability of the

diagnostic tools in a challenging real application with few available measurements.

The outcomes of the assimilation step through the ES algorithm are shown in Fig.

5.24 and 5.25, and in Table 5.9. Fig. 5.24 shows the variation of the vertical displace-

ments at the CGPS 1 location before (gray) and after (red) the ES application. Green

squares denote the assimilated measurements. As noticed before, the forecast ensem-

ble M01 (gray stack in the upper panels of Fig. 5.24) does not even include the ob-

servations (green squares), thus explaining the poor results obtained in the diagnostic

stage (χ2 and RF analysis). Therefore, we can conclude that the forecast ensemble V01

appears to be more suitable to describe the measurements.

TABLE 5.9: Update no. 1, year 7: AE and AES values for the forecast
ensembles and improvement J .

Ensemble
M01 V01

AE J [%] AES J [%] AE J [%] AES J [%]

GPS 1 6.36e-01 98.52 1.36e+00 98.39 5.61e-02 85.58 4.30e-01 68.46
GPS 2 7.61e-01 98.14 1.45e+00 98.54 6.75e-02 86.22 4.70e-01 71.04
ln(λ∗) - - 5.28e-01 60.27 - - 5.28e-01 50.46

R - - - - - - 9.47e-02 16.40

Nevertheless, the conditioning of the model appears more effective in case M01, i.e.
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FIGURE 5.24: Update no. 1, year 7: displacements over time at CGPS 1
location for the ensemble M01 (top) and V01 (bottom). On the left, the
total displacements from the beginning of the simulation are plotted. In
the first 4 years, the mean of the forecast parameters is assumed to run
the model, since no measurements are available. On the right, a zoom
around the CGPS measurements (corresponding to the blue box on the

left) is shown.
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FIGURE 5.25: Update no. 1, year 7: CDF of ln(λ∗) for M01 (left) and V01
(center), and CDF of the parameter R for V01 (right).
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the update (red) ensemble of Fig. 5.24 is less spread than the update of V01, whose be-

havior appears sometimes unrealistic. Moreover, the J values provided in Table 5.9 are

higher for M01, though the motivation is partially due to the higher values of the fore-

cast indices (AE and AES) because the ensembles are farther from the measurements

with respect to the case V01. It is worth mentioning that the update ensembles used for

the red plots and to compute the improvements J are those resulting directly from the

ES update of the state variables.

Also the improvement J for the parameter λ∗ is slightly better in the case M01, that

is the update parameter ensemble is slightly narrower than in the V01 update. This is

shown graphically in Fig. 5.25, where the forecast and update distributions of the pa-

rameters for the ensemble M01 and V01 are plotted. By distinction, the distribution of

the parameter R appears to be almost unaffected by the integration of the displacement

observations.

The red profiles in Fig. 5.25 are converted into the Gaussian distributions in Table

5.10. These distributions are used to create the new forecast ensembles for the succes-

sive model update.

TABLE 5.10: Update no. 2, year 10: probability distributions for the un-
certain parameters. The parameter R is now characterized by a Gaussian
distribution (and not uniform as in the forecast, Table 5.6), due to the ES

update.

Ensemble Law Uncertain parameter

M02 MCC ln (λ∗) ∼ N (−3.32; 0.08)
V02 VEP ln (λ∗) ∼ N (−3.05; 0.11) R ∼ N (1.28; 0.01)

Update no. 2: year 10

The second update of the integrated model is carried out at year 10 using 37 observa-

tions. In this case, marker measurements are available in addition to CGPS (Table 5.7).

The new forecast ensembles, M02 and V02, have been created with the distributions

reported in Table 5.10.

The first evaluation of the ensembles is made by the χ2-test, which results are in

Table 5.11. Despite χ2
M02 is significantly smaller that χ2

M01, it remains χ2
M02 ≫ χ2

V 02.

The difference between the two models is mainly due to the χ2 values related to the
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TABLE 5.11: Update no.2, year 13: χ2 values. The subscript M stands
for marker only.

Ensemble χ2
G1 χ2

G2 χ2
M χ2

A

M02 159.11 172.14 7.51 114.17
V02 7.89 19.64 11.06 12.73
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FIGURE 5.26: Update no. 2, year 13: the same as Fig. 5.23 for the M02
and the V02 ensembles. The vertical axis of the boxplot on the left has
been truncated, thus it is not visible one outlier close to 1 for the ensem-

ble M02.

CGPS observations. On the contrary, the value χ2
M associated to the compaction mea-

surements is quite similar for the two ensembles, with the M02 model slightly better

than V02.

The outcomes of the RF algorithm are shown in Fig. 5.26. First, it can be noticed

that the ensembles of the update no. 2 are considerably narrower (about 10 times for

the MCC constitutive law) with respect to those of the previous assimilation. More-

over, they appear closer to the CGPS measurements, thus proving the effectiveness of

the ES at year 7. The current RF results show higher probabilities of occurence for the

realizations of both the constitutive laws with respect the previous assimilation (box-

plots of Fig. 5.23). However, most of the realizations have an almost null probability of

occurrence. Again, the VEP constitutive model appears more appropriate to describe

the available measurements in the field. This is particularly clear in the right panels of

Fig. 5.26 where the forecast ensembles related to CGPS 1 state, colored according to the

RF probabilities, are plotted along with the observations. The MCC model is not able

to capture the behavior in time of the measurements, i.e. the plot of the displacements

has a totally different curvature than the observations with the latter falling out of the

expected forecast.
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Based on the diagnostic outcome, we elect to discard the MCC and focus only on

the VEP constitutive law for the following updates.

The results of the application of the ES algorithm are reported in Fig. 5.27, 5.28

and 5.29, and in Table 5.12. Fig. 5.27 shows the evolution of the vertical displacements

over time at the location of CGPS 1 station. The measurements are centered inside

the ensemble and the update from ES (red stack) allows to reduce the uncertainty and

match the available observations. By distinction, the compaction measurements are not

always comprised within the model forecast (Fig. 5.28), especially for the shallowest

spacing (M1). In general, more difficulties can be noticed in constraining the model

with respect to the CGPS states.
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FIGURE 5.27: Update no. 2, year 10: displacements over time in corre-
spondence of CGPS 1 station. Forecast (gray) and update (red) ensemble
for the case V02. A zoom around the CGPS measurements (correspond-

ing to the blue box on the left) is shown on the right.

TABLE 5.12: Update no. 2, year 10: AE and AES values for the forecast
ensembles and improvement J .

Ensemble
V02

AE J [%] AES J [%]

GPS 1 5.03e-02 69.86 1.37e-01 85.09
GPS 2 8.70e-02 82.56 1.44e-01 83.20

marker 5.87e-02 21.04 9.56e-03 71.06
ln(λ∗) - - 2.61e-01 31.43

R - - 7.20e-02 49.67

The improvements J in Table 5.12 are all positive, pointing to both a reduction of

the prediction spread and a forecast closer to the observations. However, the update

of the parameters is not fully satisfactory, because the probability distribution for the
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FIGURE 5.28: Update no. 2, year 10: compaction over time for the four
spacings. Forecast (gray) and update (red) ensemble for the case V02.
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FIGURE 5.29: Update no. 2, year 10: CDF for ln(λ∗) and R for the en-
semble V02.

ratio R (right panel of Fig. 5.29) includes also non-physical values, i.e. values of R lower

than 1. These outcomes probably reflect the difficulties in constraining the compaction

states.

At this point, two scenarios have been taken into account to generate the new fore-

cast ensembles for the next update:

1. The previous results could be a symptom of the inability of the ES algorithm to

constrain both the uncertain parameters with the available measurements. A pos-

sible explanation is that the problem might be over-parameterized, in the sense

that different pairs of values can provide similar outcomes. A possible choice for
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building the VEP ensemble for the next update is to consider only λ∗ uncertain,

whose distribution is obtained from the updated probability distribution of Fig.

5.29:

ln (λ∗) ∼ N (−3.13; 0.05)

while the parameter R is kept constant and equal to the update mean, i.e. R =

1.08. Even if neglecting the remaining uncertainty on R is a strong assumption,

it can be useful in the context of this paper to test the robustness of the proposed

approach.

2. Since the non-physical values are the final tail of the R distribution, it is possible

to remove only the few values of R that are lower than 1. Hence, both λ∗ and

R are kept uncertain for the next assimilation in the attempt that the increase in

the assimilated measurements improves that condition. Table 5.13 reports the

distributions that summarize the red curves in Fig. 5.29 and are used to create

the new forecast ensemble in this case.

TABLE 5.13: Update no. 3, year 13: probability distribution of the uncer-
tain parameters.

Ensemble Law Uncertain parameter

V03 VEP
ln (λ∗) ∼ N (−3.13; 0.05)
R ∼ N (1.08; 0.002)

Update no. 3: year 13

The third update of the integrated model is carried out at year 13 and includes also the

bathymetric surveys. Details on the number of available measurements are in Table

5.7. In the following the results obtained assuming uncertain only λ∗ or both λ∗ and R

are presented.
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Uncertainty on λ∗

As before, a preliminary evaluation is made by the χ2-test. The outcomes are:

χ2
V 03,G1 = 91.06 χ2

V 03,G2 = 64.58 χ2
V 03,M = 7.33 χ2

V 03,B = 5.47

χ2
V 03,A = 44.43

where the subscript B refers to the bathymetric data. With respect to the previous

assimilation (V02, Table 5.11), the average χ2 value for the ensemble V03 is higher due

to the increase in the χ2 values of the CGPS states.

The results of the RF are shown in Fig. 5.30. Fixing the R value seems to worsen the

forecast ensembles capability to reproduce the CGPS observations (top of Fig. 5.30),

with the measurements that are not completely comprised within the stacks.
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FIGURE 5.30: Update no. 3, year 13 (λ∗ uncertain): RF outcomes for
the V03 ensemble, using all the available measurements. The top panels
provide the ensembles of the CGPS measurements, and the bottom pan-
els the ensembles of the bathymetric observations along the two profiles
A-A and B-B shown in Fig. 5.19. On the top left the boxplot representa-

tion.

The ES outcomes are shown in Fig. 5.31 for the CGPS states, in Fig. 5.32 for the
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FIGURE 5.31: Update no. 3, year 13 (λ∗ uncertain): displacements over
time in correspondence of the two CGPS stations. Forecast (gray) and
update (red) ensemble for the case V03. Zoom around the CGPS mea-
surements (corresponding to the blue box on the left) are provided on

the right.

marker measurements and in Fig. 5.33 for the bathymetric surveys, while Fig. 5.34

refers to the parameter λ∗, and Table 5.14 summarizes the indices AE and AES and

their improvements. As noticed before, the CGPS measurements are now partially

out of the ensembles and the behavior in time is not perfectly matched (Fig. 5.31).

The compaction measurements still remain difficult to constrain (Fig. 5.32), while the

bathymetric ensembles approximate quite accurately the data (Fig. 5.33). Looking at

Table 5.14, it can be noted that the indices AE related to the CGPS forecast ensembles,

i.e. the measure on average of the distance between the ensemble and the measure-

ments, are higher than those of the previous update (Table 5.12). This means that the

choice of the parameter distributions used to create the updated forecast ensemble and

the addition of new observations penalize the match with the CGPS measurements. In

any case, ES tends to effectively constrain the model to the available observations, with
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FIGURE 5.32: Update no. 3, year 13 (λ∗ uncertain): compaction over
time for the four spacings. Forecast (gray) and update (red) ensembles
for the case V03. Due to visualization reason, few values between -0.20

and -0.28 have been left out for the spacing M2 at time 7.5 yr.
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FIGURE 5.33: Update no. 3, year 13 (λ∗ uncertain): model displace-
ments and bathymetric measurements. Forecast (gray) and update (red)

ensembles for the case V03.
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FIGURE 5.34: Update no. 3, year 13 (λ∗ uncertain): CDF for ln(λ∗) for
the ensemble V03.
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TABLE 5.14: Update no. 3, year 13 (λ∗ uncertain): AE and AES values
for the forecast ensembles and improvement J .

Ensemble
V03

AE J [%] AES J [%]

GPS 1 2.17e-01 74.14 1.51e-01 96.58
GPS 2 1.77e-01 68.66 1.59e-01 96.57

marker 4.07e-02 -6.54 8.25e-03 96.31
bathymetry 1.72e-01 57.71 9.89e-02 96.53
ln(λ∗) - - 1.81e-01 85.57

the exception of the compaction measurements that present a negative J (Table 5.12).

Observe, however, that the cumulative AE value for the compaction measurement is

already much smaller than the AE values for the other observations. The final update

of the parameter distribution is:

ln (λ∗) ∼ N (−3.51; 0.001)

This updated parameter distribution is used as input for the final geomechanical model

used for the prediction of the future reservoir behavior. The resulting state ensembles

in terms of variation of the vertical displacements over time at the two CGPS locations

are shown in Fig. 5.35.

GPS 1 GPS 2

FIGURE 5.35: Update no. 3, year 13 (λ∗ uncertain): ensembles of the
CGPS states obtained running the geomechanical model with the final

update of the parameters.
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Uncertainty on λ∗ and R

Finally, the forecast ensembles are created with the updated distribution of both λ∗ and

R from the previous assimilation (Table 5.13), neglecting the few values of R lower than

1. Thus, the distribution of R has been restricted to the condition R ≥ 1 to consider only

physical values.

The results of the χ2-test are:

χ2
V 03,G1 = 110.33 χ2

V 03,G2 = 85.57 χ2
V 03,M = 7.61 χ2

V 03,B = 7.41

χ2
V 03,A = 55.50

These values are higher than the ones of the V02 ensembles, especially for the CGPS

states, just as those of V03 with only λ∗ uncertain.

The results of the RF are shown in Fig. 5.36. The spread of the stacks is comparable

with the previous scenario where only λ∗ is kept uncertain (Fig. 5.30), but now the

behavior in time is better reproduced and the measurements are completely comprised

within the forecast ensembles.
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FIGURE 5.36: Update no. 3, year 13 (λ∗ and R uncertain): RF outcomes
as in Fig. 5.30
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The outcomes of ES are shown in Fig. 5.37 for the CGPS states, in Fig. 5.38 for

the radioactive marker measurements and in Fig. 5.39 for the bathymetric surveys.

Fig. 5.40 refers to the parameter λ∗ and R. Finally, Table 5.15 summarizes the indices

AE and AES and their improvements. As before, the best results from ES regard the

forecast of the vertical displacements in time. The CGPS measurements (Fig. 5.37) are

quite accurately approximated as well as the bathymetric surveys (Fig. 5.39), while the

compaction observations (Fig. 5.38) are still difficult to model.
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FIGURE 5.37: Update no. 3, year 13 (λ∗ and R uncertain): displacements
over time at the two CGPS locations. Forecast (gray) and update (red)
ensemble for the case V03. Zoom around the CGPS measurements (cor-

responding to the blue box on the left) are provided on the right.

The red curves in Fig. 5.40 are converted in the final update of the parameter distri-

bution, that is:

ln (λ∗) ∼ N (−2.82; 0.005)

R ∼ N (1.21; 0.0002)

with the update of R returning inside physical values (R ≥ 1). This updated parameter
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observation M2
observation M3
observation M4

M1 M2

M3 M4

FIGURE 5.38: Update no. 3, year 13 (λ∗ and R uncertain): compaction
over time for the four spacings. Forecast (gray) and update (red) ensem-
bles for the case V03. Due to visualization reason, few values between

-0.20 and -0.28 have been left out for the spacing M2 at time 7.5 yr.
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FIGURE 5.39: Update no. 3, year 13 (λ∗ and R uncertain): model dis-
placements and bathymetric measurements. Forecast (gray) and update

(red) ensembles for the case V03.

FIGURE 5.40: Update no. 3, year 13 (λ∗ and R uncertain): CDF for ln(λ∗)
and R for the ensemble V03.
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TABLE 5.15: Update no. 3, year 13 (λ∗ and R uncertain): AE and AES
values for the forecast ensembles and improvement J .

Ensemble
V03

AE J [%] AES J [%]

GPS 1 2.20e-01 86.51 2.11e-01 95.17
GPS 2 1.94e-01 88.31 2.11e-01 94.89

marker 4.17e-02 -4.96 1.12e-02 87.25
bathymetry 1.95e-01 68.50 1.43e-01 93.68
ln(λ∗) - - 1.79e-01 70.84

R - - 3.78e-02 70.57

distribution is used as input for the geomechanical model. The resulting CGPS state

ensembles are shown in Fig. 5.41, where an important reduction in the uncertainty

with the model constrained around the measurements is evident. The overall obser-

vations are better reproduced by this update, with the final prediction more uncertain

with respect to the previous ensemble (only λ∗ uncertain). It can be expected, how-

ever, that the following model update will adjust the prediction and further reduce the

uncertainty.

GPS 1 GPS 2

FIGURE 5.41: Update no. 3, year 13 (λ∗ and R uncertain): ensembles
of the CGPS states obtained running the geomechanical model with the

final update of the parameters.

Importance of different measurements

Finally, the relative importance of different types of measurements on the assimilation

results is investigated considering the ensemble with both λ∗ and R uncertain. Each

measurement type (CGPS, marker or bathymetry) is excluded from the ES assimilation
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one at a time, in order to evaluate its influence on the overall update at year 13. Results

are shown in Fig. 5.42 and Fig. 5.43.
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FIGURE 5.42: Update no. 3, year 13 (λ∗ and R uncertain): improvement
J of the indices AES (left) and AE (right) considering different kind of
assimilated data. For comparison, the blue bars (all measure) report the
results obtained in the previous paragraph. Since the AE value considers
the available measurements, JAE cannot be computed for the excluded

measurement type.
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FIGURE 5.43: Update no. 3, year 13 (λ∗ and R uncertain): updated states
and parameters considering different types of assimilated data. On the
left the displacements in time at CGPS 1 location are shown. The fore-
cast ensemble is in grey, measurements are the green squares, while the
colored solid lines are the updated mean. On the right the mean of the
updated parameter ensembles is reported with the same colour coding.

Fig. 5.42 shows the improvement J for the indices AE and AES. The blue bars refer

to the results presented in the previous paragraph, i.e., when all the measurements

were used to update the model. The graphs clearly show that the absence of CGPS

measurements from the assimilation process (orange bars in Fig. 5.42) worsens the

prediction for both the states and the parameters.
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In the leftmost panel of Fig. 5.43 a zoom around the CGPS measurements is re-

ported, along with the forecast ensemble (grey stack) and the mean of the updates ob-

tained with different combinations of the available measurements, i.e., excluding either

CGPS (orange line), or markers (yellow line), or bathymetry (purple line). All mean

update displacements are close to the measurements and in practice overlap, with the

exception of the update that neglects the CGPS observations. The right panel of Fig.

5.43 shows the mean of the forecast and update parameters. Again, the exclusion of the

marker or the bathymetry from the assimilation process does not significantly change

the updated values. On the contrary, removing CGPS from the data-set leads to very

different outcomes.

5.2.5 Discussion and conclusions

The main goal of Section 5.2 was to develop a comprehensive geomechanical reservoir

model that automatically and dynamically integrates the available measurements in

order to reduce uncertainties on land subsidence prediction in a real case study. The

model learns from previous experience and evolves with the field, increasing its reli-

ability as new pieces of information become available. The methodological approach

described in Chapter 4 has been used on the Arlua reservoir, Italy. Uncertainties have

been linked both to the constitutive law that describes the behavior of the active lay-

ers and the associated geomechanical parameters. Prior to the reservoir development

and until few years after the beginning of the exploitation program, the information is

usually poor and consequently the prediction uncertainty is large. However, the pro-

gressive integration of new observations allows to greatly reduce such uncertainties.

Here, different kinds of data have been used, like CGPS measurements, bathymetric

surveys, and compaction from radioactive markers.

Considering the available measurements, the modeling prediction has been up-

dated every few years. Since the first update, uncertainties on the predictions are re-

duced and the most suitable constitutive law becomes clear. In particular, surface dis-

placements monitored for a few years (3 or 4) at a very few (1 or 2) points, for instance

collected by CGPS stations, allow to identify easily the most appropriate rock defor-

mation behavior. The assimilation of new data can modify the previous prediction and
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new concerns can arise, e.g., keeping parameters uncertain or fixing them. However,

the approach has proven to generally improve the prediction and keep a consistent be-

havior in consecutive updates. Finally, the mechanical characterization of the model,

i.e., the prediction of the geomechanical parameters, can be non unique, but the relia-

bility of the state prediction always increases. This ensures a remarkable robustness of

the proposed workflow, which proves able to reduce the prediction uncertainty even if

the parameter characterization is not fully satisfactory.

The application on a real-world reservoir allows to shed light on the effectiveness of

each step of the proposed workflow. Even if mainly qualitative, the preliminary diag-

nostic stage carried out at each model update, consisting of the χ2 and RF tests, proves

to be useful in assessing the suitability of the ensembles, hence of the initial model-

ing hypotheses. For the specific application considered herein, the χ2 value is always

lower for the VEP model, thus suggesting a better geomechanical representativeness

than the MCC constitutive law. This is a significant result for recognizing the impor-

tance of accounting for viscous effects also in deep geomechanical applications, which

confirms the recent results by Musso et al. [2021]. Similarly, the RF approach gives

a preliminary low-cost best guess and helps identifying possible flaws in the forecast

ensembles, hence in the initial modeling hypotheses.

The application of ES to the Arlua case with a significant dataset composed of

CGPS, deep compaction and bathymetric measurements proves able to effectively re-

duce the uncertainties both in the parameters and in the state ensembles, also when

few measurements only are available. For land subsidence prediction, different obser-

vations are not equally important. The most effective piece of information appears to

be the CGPS measurements, while bathymetry and deep compaction do not appear

to be as important for the increase of the prediction reliability. Particular care must

be paid on the total number of acquired observations, which should be well-balanced

among the different sources in order to avoid a fictitious over-confidence on some data.

Here, the methodological approach has been applied for a reservoir geomechanical

model in order to improve the prediction of the maximum expected land subsidence.

However, the same approach can be easily extended to satisfy different requests by

changing the numerical model. For example, it can be used to improve the predictions
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in the field of gas storage or aquifer exploitation, or it can integrate a coupled flow-

deformation model for an overall management of the underground resources.





Chapter 6

Conclusions

In the context of the simulation of flow and deformation processes in energy resources

engineering, this thesis focused on (i) improving the solution of the set of linear systems

arising from the hydro-poromechanical coupled problem in fractured domain and (ii)

defining a comprehensive methodological approach for a stochastic analysis of land

subsidence. The main findings for these two lines of development are worth summa-

rized in the following paragraphs.

Preconditioning framework for flow and deformation coupling in fractured porous

media

The modeling of flow and deformation processes in fractured porous media is particu-

larly demanding from a computational standpoint because of the high level of coupling

and non-linearity of the systems to solve. In a typical simulation, most of the compu-

tational burden is required for the solution of the linear systems. Thus, efficient linear

solvers are required, implying the design of appropriate preconditioners. The precon-

ditioners already available in the literature cannot be straightforwardly applied to the

aforementioned problems because of the block structure of the systems and their prop-

erties. Thus, the development of ad-hoc preconditioners is required tailored on the

specific problem to solve.

In this thesis, three formulations for the flow-deformation coupling have been con-

sidered. The preconditioning framework that has been developed aims at exploiting

the block structure of the problem and taking advantage from the knowledge of the

nature and the structure of the various blocks. It can be generalized in the following

three steps:

157
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1. a symbolic permutation of the coefficient matrix blocks in order to avoid singular

leading blocks, if any, and to project the Schur complement onto different spaces;

2. an LDU block-factorization of the coefficient matrix, which allows to isolate the

subsystems from the original coupled problem;

3. an approximation of the single blocks, and in particular the arising Schur com-

plement.

According to the reordering of the unknowns and the techniques used for the approxi-

mations, different preconditioners can originate.

The first model analyzed in this thesis simulates the mechanics in the 3D medium

and the flow through the fracture network. The discretization is performed with a

blended finite element / finite volume approach where the contact constraints are en-

forced with the aid of Lagrange multipliers. At the end, a 3×3 block system arises. Two

preconditioners have been derived following the aforementioned framework: the first

one with the traction-pressure-displacement (t-p-u) order of the unknowns and the

second one considering the traction-displacement-pressure (t-u-p) order. Theoretical

analyses show that the proposed approaches are expected to have a similar conver-

gence rate, with a slight advantage for the t-p-u approach thanks to a more clustered

eigenvalue distribution for the preconditioned matrix and a smaller application cost.

Indeed, this is confirmed by the numerical experiments when nested direct solvers are

used in the preconditioner application. However, the t-p-u approach may soon lose

robustness when AMG methods are introduced, because of the possible indefiniteness

of the arising Schur complement, which is avoided in the t-u-p approach.

The t-u-p approach proves to be algorithmically scalable with respect to the com-

putational grid size and the relative size of the discrete fracture network to the full 3D

domain. Also, the proposed preconditioner demonstrates computational efficiency in a

realistic application, with a very stable behavior of the linear solver throughout the full

simulation despite the challenging combination of variable stick/slip/open operating

modes for the different fractures.

The second model addresses the flow and deformation coupling in fractured do-

main with a unified finite volume discretization, imposing the contact constraints with
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a penalty approach. A set of 3×3 block linear systems arises from the application of

the Newton-Krylov method. Considering the properties and the nature of the sub-

blocks, two preconditioners have been proposed: the first one following the order

pressure-gap-displacement of the unknowns and the second one considering the or-

der gap-pressure-displacement. The numerical testing phase shows the effectiveness of

the approaches, albeit some limits in the approximation of the sub-blocks arise. Thus,

further investigations on the importance of the approximations of the modeled pro-

cesses have been carried out. Specifically, two additional preconditioners have been

developed considering a 2×2 structure of the problem, where the mechanics of the 3D

domain and the fractures have been joined together. Numerical experiments show the

significant influence of the mechanical block approximation on the solution. In future

works, this behavior could be improved moving from the MATLAB prototype code

that has been used to validate the formulation, to a more sophisticated code which al-

lows to use more suitable techniques for the approximation of the mechanics-related

blocks, such as AMG.

Finally, the preconditioning framework has been adapted to the system arising from

the PDE-constrained optimization reformulation of the flow problem in fracture net-

works. In this case, the problem has been projected onto the flow space. The key

factor to build an effective preconditioner proves to be the approximation of the Schur

complement, thus different approaches have been investigated. The numerical tests

demonstrate that both the diagonal and off-diagonal blocks of the Schur complement

are fundamental to efficiently solve the system. Independent filterings of such com-

ponents reveal the fragility of the approximated Schur complement, that can easily

become indefinite. Instead, a preliminary filtering of one of the block matrices used

to compute the Schur complement appears more promising. This suggests to further

investigate and test this filtering approach, in order to ensure the robustness of the

formulation.

A comprehensive methodological approach to improve land subsidence prediction

Any modeling activity of real-world phenomena is affected by a number of approxi-

mations and hypotheses. In order to reliably investigate possible effects of subsurface



160 Chapter 6. Conclusions

resources exploitation, it is fundamental to take into account the uncertainties in the

numerical modeling. This thesis focused at designing a comprehensive methodolog-

ical approach for a stochastic study of land subsidence. The workflow arises from

several analyses on a synthetic test case, aiming at dynamically improving land subsi-

dence predictions using the available measurements to progressively train the numer-

ical model through DA techniques.

Specifically, the workflow starts with the identification of the most influential pa-

rameters, and among them, the ones that can be explicitly included as input in the

numerical model. Generally, the main uncertainties in land subsidence analyses regard

the geomechanical characterization of the reservoir rock. Then, the forward model

propagates the uncertainties from the input to the output, generating a set of forecast

ensembles of MC realizations. Any numerical model can be used within the work-

flow, here both a FEM simulator and a gPCE surrogate approach have been applied

and compared. The outcomes of the numerical model are compared with the avail-

able measurements, which can be shallow or deep displacements, e.g., from CGPS or

radioactive markers. The integration of the observations and the outcomes from the

numerical model is performed using DA techniques. Specifically, the suitability of the

forecast ensembles is first evaluated in the diagnostic step, using the χ2-test and RF. If

the outcomes from the diagnostic stage are not fully satisfactory, the initial assumptions

on the uncertain factors should be revised. Otherwise, the model is updated through

ES. The states update represents the most reliable land subsidence forecast according

to the available measurements. The parameters update can be used to create new fore-

cast ensembles, which are used to repeat the DA framework when new measurements

become available, in order to keep the model updated in time.

The workflow has been validated on a synthetic test case, and then tested consider-

ing a real off-shore reservoir in Italy. The following results are worth summarizing.

• The DA effectiveness is strongly dependent on the choice of the uncertain factors,

which should have a significant impact on the monitored model outcomes. Thus,

a preliminary sensitivity analysis through, e.g., Sobol’s indices helps in identify-

ing the most influential factors and their range of variability. In addition to the

definition of the constitutive law for the reservoir rock, the analyses reported in
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this thesis show that the most important geomechanical parameters are the mod-

ified compression index λ∗ and initial geotechnical initial overconsolidation ratio

R.

• The diagnostic step proves particularly useful for a preliminary qualitative eval-

uation of the forecast ensembles. Specifically, it can be used to compare two or

more ensembles, thus helping the selection of the most appropriate constitutive

behavior of deep rocks and recognizing the actual representativeness of the se-

lected ranges for the uncertain parameter set.

• ES provides an update of both state and parameter ensembles. The outcomes

mainly depend on three different aspects: (i) the set of uncertain parameters,

(ii) the measurements, and (iii) the error associated to the observations, i.e., the

definition of the measurement covariance matrix. First, the uncertain parameter

set has to be actually relevant for the observed process without leading to over-

parametrization, i.e., multiple combinations can provide similar results with re-

spect to the measurements. The effectiveness of ES improves with the decrease of

the error associated to the observations. Hence, the definition of the covariance

matrix of the measurement error, which might be also artificially inflated to ac-

count for other sources of uncertainty, plays a fundamental role in the application

of the DA algorithm. Both in the synthetic and in the real application, ES appears

able to quantify and reduce the uncertainties in land subsidence predictions.

• An iterative application of ES, MDA, has been tested in a synthetic application.

In principle, it can be used to improve the ES outcome, especially in case of a

strongly non-linear relationship between state variables and uncertain parame-

ters. However, in the applications investigated herein, MDA does not always

provide better results than ES, despite the higher computational cost, and ap-

pears to be strongly influenced by the selection of the uncertain parameter set

and the covariance matrix of the measurement error.

• Overall, the workflow proves to be robust and effective, generally providing a

progressive decrease in the model prediction uncertainty as the quantity of assim-

ilated measurements increases. The methodological approach has proven able to



162 Chapter 6. Conclusions

improve the prediction while keeping a consistent behavior in consecutive up-

dates.

• Different sources of assimilated data have been considered, i.e., punctual mea-

surements in time, areal measurements at some instant and deep compaction es-

timates. Analyses show that different types of data are not equally important.

In fact, the most effective piece of information appears to be the CGPS measure-

ments, while bathymetry and deep compaction do not appear to be as important

for the increase of land subsidence prediction reliability.

• Finally, analyses on a real reservoir also allow to recognize the importance of

accounting for viscous effects in deep geomechanical applications.

In this thesis, a methodological approach has been designed and tested with the aim

of improving land subsidence prediction. However, it has to be noted that the same

approach can be easily extended to satisfy different requests by changing, e.g., the nu-

merical model or the sources of uncertainty.
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