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Abstract: The ability to estimate human motion without requiring any external on-body sensor or
marker is of paramount importance in a variety of fields, ranging from human–robot interaction,
Industry 4.0, surveillance, and telerehabilitation. The recent development of portable, low-cost RGB-D
cameras pushed forward the accuracy of markerless motion capture systems. However, despite
the widespread use of such sensors, a dataset including complex scenes with multiple interacting
people, recorded with a calibrated network of RGB-D cameras and an external system for assessing
the pose estimation accuracy, is still missing. This paper presents the University of Padova Body
Pose Estimation dataset (UNIPD-BPE), an extensive dataset for multi-sensor body pose estimation
containing both single-person and multi-person sequences with up to 4 interacting people. A network
with 5 Microsoft Azure Kinect RGB-D cameras is exploited to record synchronized high-definition
RGB and depth data of the scene from multiple viewpoints, as well as to estimate the subjects’ poses
using the Azure Kinect Body Tracking SDK. Simultaneously, full-body Xsens MVN Awinda inertial
suits allow obtaining accurate poses and anatomical joint angles, while also providing raw data from
the 17 IMUs required by each suit. This dataset aims to push forward the development and validation
of multi-camera markerless body pose estimation and tracking algorithms, as well as multimodal
approaches focused on merging visual and inertial data.

Dataset: https://doi.org/10.17605/OSF.IO/YJ9Q4

Dataset License: CC0

Keywords: markerless motion capture; inertial motion capture; body pose estimation; RGB-D; IMU

1. Summary

Human motion analysis commonly relies on optoelectronic systems that track small
retroreflective markers attached to the subject’s body. These systems, although extremely
accurate, are characterized by high costs and complex setups. Such characteristics constrain
their use to specific applications that are confined in a dedicated laboratory (e.g., clinical
analyses or animation industry motion capture). However, real-time human pose estimation
could benefit a variety of fields, ranging from human–robot interaction, Industry 4.0,
autonomous driving, surveillance, and telerehabilitation. In such contexts, the deployment
of optoelectronic systems is usually not feasible, and markerless analyses are a promising
tool to address this issue.

Markerless body pose estimation (BPE) has been a topic of intensive research for
decades in the computer vision community. Despite the improvements achieved in the
latest years thanks to the advances enabled by data-driven approaches [1–4], the accurate
assessment of human motion without relying on any sensor or marker attached to the body
is still an open challenge. Limited fields of view of the cameras and occlusions due to the
environment, but also self-occlusions of the human body, limit the accuracy of such systems.
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One possible solution to reduce the impact of the aforementioned limitations consists of
exploiting a distributed camera network to acquire data of the same scene from multiple
viewpoints. By fusing the partial information obtained from each camera, it is possible to
reduce the effect of occlusions and, at the same time, increase the overall system’s accuracy.

In recent years, the development of portable and easy-to-use low-cost 3D cameras (e.g.,
the Microsoft Kinect, Microsoft Corp., Redmond, WA, USA) has further pushed the interest
in markerless BPE [5–8]. The main advantage of these devices is the possibility to retrieve
real-time synchronized RGB and depth data of the scene, up to 30 Hz. However, despite
the widespread use of such sensors and the variety of available human motion datasets,
only a small number of public datasets include RGB-D data and even less offer multiple
calibrated RGB-D views. In fact, to the best of the authors’ knowledge, a comprehensive
dataset including complex scenes with multiple people, RGB, and depth data from a
significant calibrated RGB-D camera network, together with ground truth body poses
for all the recorded sequences, is still missing. All the most used markerless motion
capture datasets (either focused on BPE or on action recognition) lack at least one of the
aforementioned features.

HumanEva [9] is one of the first and most used datasets recorded for benchmarking
markerless human pose estimation algorithms. The dataset includes 6 actions of daily
living (ADLs) recorded by 4 different actors using 4 grayscale cameras, 3 RGB cameras,
and a marker-based optoelectronic system as a ground truth. No information on the depth
of the scene is available, and each sequence only involves a single person.

Human3.6M [10], on the other hand, offers depth data of the scene using a single Time-
of-Flight (ToF) sensor. Also in this case, ground truth poses are acquired via marker-based
motion capture, while visual data are recorded using 4 RGB cameras. The dataset includes
a predefined set of 16 ADLs performed by 11 actors. Even in this case, no interactions
among subjects are available.

Our previous work, the IAS-Lab Action Dataset [11], was one of the first to include
RGB-D sensors in the acquisition setup. This dataset consists of 15 ADLs performed by
12 people. RGB and depth data are provided, as well as the persons’ body poses estimated
by exploiting a markerless BPE algorithm. However, data are recorded using a single
Kinect v1 camera. Additionally, no ground truth poses are available, nor are sequences
with multiple people.

Berkeley MHAD [12] is one of the first datasets to include accelerometers in the acquisi-
tion setup. Eleven ADLs performed by 12 actors are recorded using marker-based motion
capture, 12 RGB cameras, 2 Kinect v1 cameras, and 6 accelerometers. However, similarly to
the previous works, the focus is on estimating single persons’ actions, and no interactions
are taken into account.

TUM Shelf [13] is among the most used datasets for benchmarking markerless BPE
algorithms. It includes 5 RGB cameras to record a group of 4 people disassembling a shelf.
Severe occlusions and unbounded motion of the persons are the main challenges of this
dataset. However, since no other sensing devices are involved, the dataset offers only
sparse manually annotated poses as a ground truth. The same authors also released the
TUM Campus dataset [13]. The particularity of this dataset is that it is captured outdoors.
The recorded scenes depict 3 people interacting on campus grounds. Similar to TUM Shelf,
only 3 RGB cameras are used. Thus, the same limitations apply.

CMU Panoptic [14] is a large-scale dataset that includes 480 VGA cameras, 31 HD
cameras, and 10 Kinect v2 cameras. A variety of actions (including both single-person and
multi-person activities) are recorded inside a custom-built dome accommodating all the
hardware. However, since vision is the only modality used to retrieve data, the recorded
poses are only computed via triangulation based on a 2D BPE algorithm that runs on each
camera, without any external ground truth.

Another public dataset including multiple depth views is the NTU RGB+D dataset [15].
Forty subjects were recorded performing a set of 60 actions that include ADLs, mutual
activities, and health-related movements. The sensors used to extract the persons’ poses
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were 3 Kinect v2 cameras. However, since the focus is on the validation of action recognition
algorithms, no ground truth poses are provided, but only labels indicating the type of
actions being performed.

All the aforementioned datasets mainly focused on vision, including markerless and
marker-based motion capture. UTD-MHAD [16], on the other hand, introduced the use
of one inertial measurement unit (IMU), in conjunction with a Kinect v1 camera. Eight
subjects were individually recorded while performing a set of 27 predefined actions ranging
from sports, hand gestures, ADLs, and training exercises. Similarly to the previous work,
however, the focus is on action recognition. Thus, the available ground truth is limited to
manually annotated labels describing the actions being performed.

Total Capture [17] is a widely used dataset and one of the first to introduce the usage of
a full-body inertial suit consisting of 13 IMUs, alongside 8 RGB cameras and marker-based
motion capture. Five subjects are recorded performing a set of 5 actions selected from
range of motion activities, walking, acting, running, and freestyle. Ground truth poses
are computed via marker-based motion capture. However, the dataset does not include
interactions between subjects, and no information on the depth of the scene is available.

AndyData-lab [18], similarly to the previous work, includes data from marker-based
motion capture, a full-body inertial suit, 2 RGB cameras, while also adding finger pressure
sensors. Since this work focuses on human motion analysis in industrial settings, 13 subjects
are recorded while performing 6 industrial tasks, including screwing at different heights
and manipulating loads. As in the previous work, neither interactions among subjects nor
information on the depth of the scene are available.

Finally, Human4D [19] includes data from an optoelectronic system and 4 Intel Re-
alSense RGB-D cameras (Intel Corp., Santa Clara, CA, USA). Four actors are recorded,
both individually and in pairs, while performing a set of 14 single-person ADLs and
5 two-person activities in a professional motion capture studio. Ground truth poses are
collected via marker-based motion capture, and both RGB and depth recordings of the
scene are available. However, during the recordings, all actors needed to wear a full-body
black suit to accommodate the body markers required by the optoelectronic system during
the entire trial. These artificial clothes can hinder the performance of RGB-based marker-
less BPE algorithms, potentially decreasing their accuracy, since they do not constitute a
realistic scenario.

This paper presents the University of Padova Body Pose Estimation dataset (UNIPD-
BPE), an extensive dataset for multi-sensor BPE containing a large number of single-person
and multi-person sequences with up to 4 people interacting. Full-body poses, as well
as raw data from each sensor, are recorded both by means of a calibrated network with
5 RGB-D cameras (i.e., Microsoft Azure Kinect, Microsoft Corp., Redmond, WA, USA) and
by exploiting up to 2 highly accurate full-body inertial suits (i.e., Xsens MVN Awinda,
Xsens Technologies, Enschede, Netherlands). All recorded data are publicly available under
the Creative Commons CC0 license at https://doi.org/10.17605/OSF.IO/YJ9Q4.

The Azure Kinect is the latest RGB-D camera developed by Microsoft, with improved
performance compared to the previous model (Kinect v2). As demonstrated in [20],
the Azure Kinect standard deviation is reduced by more than 50 % with respect to the
Kinect v2, while also achieving a depth estimation error lower than 11 mm. For these
reasons, the Azure Kinect is a promising device with a wide range of uses including ob-
ject recognition, people tracking and detection, and human–computer interaction. This
dataset is the first to include high-definition RGB, depth, and BPE data from 5 calibrated
Azure Kinect cameras. Videos and point clouds are recorded both at a resolution of
1920 × 1080 pixels @ 30 Hz and 640 × 576 pixels @ 30 Hz (native resolution of the depth
sensor). Moreover, all subjects’ body poses are estimated via markerless motion capture by
exploiting the Azure Kinect Body Tracking SDK [21], offering baseline data to develop and
benchmark different BPE and tracking algorithms. The high number of cameras allows us
to assess the impact of different camera network configurations on the accuracy achieved
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by markerless BPE algorithms, while the high-resolution recordings allow us to quantify
how different image resolutions can impact a specific algorithm.

The UNIPD-BPE dataset also contains full-body inertial motion capture data, collected
by up to 2 Xsens MVN Awinda suits. Each suit consists of 17 MTw Awinda trackers,
including a 3-axis gyroscope, a 3-axis accelerometer, and a 3-axis magnetometer. As
demonstrated in [22], these sensors are extremely accurate for inertial BPE. Each tracker
has a dynamic accuracy of 0.75 °RMS for roll and pitch, and 1.5 ° RMS for the heading
estimation, constituting a flexible and reliable tool for capturing human motion [23]. The
proposed dataset includes both the raw data from each tracker, and detailed data describing
each subject’s body kinematics, computed by exploiting the MVN Analyze software. Such
software combines the data of all motion trackers with a biomechanical model of the
human, allowing to obtain an accurate and drift-free estimate of the body pose [24]. The
hardware/software combination used on this work allowed to record raw IMU data
(estimated orientations, angular velocities, linear accelerations, magnetic fields) for all the
trackers required by each suit @ 60 Hz, as well as 3D positions, orientations, velocities,
accelerations of the 23 segments defining the Xsens biomechanical model, anatomical joint
angles of 22 joints plus 6 additional joint angles targeted to ergonomic analyses, and the
body center of mass location throughout all the sequences.

No optoelectronic data are included in this dataset because the required markers
attached to the body are highly reflective, resulting in a strong distortion in the Kinects’
depth and, consequently, in a poor estimation of the body pose. While it is possible to
properly synchronize the two systems to avoid interference, this solution still degrades
the Azure Kinect’s performance. Therefore, to ensure maximum accuracy of the recorded
markerless data, we chose to employ an inertial motion capture system in place of the
optoelectronic one. The software used for the estimation of the body poses (Xsens MVN
Analyze), coupled with the chosen hardware (Xsens MVN Awinda), allows us to obtain an
accuracy comparable to state-of-the-art optoelectronic systems, as demonstrated in [24].

All the cameras and inertial suits used in this work are hardware synchronized, while
the relative poses of each camera with respect to the inertial reference frame are calibrated
before each sequence to ensure maximum overlap of the two sensing systems outputs.
The proposed setup allowed to record synchronized 3D poses of the persons on the scene
both via Xsens’ inverse kinematics algorithm (inertial motion capture) and by exploiting
the Azure Kinect Body tracking SDK (markerless motion capture), simultaneously. The
additional raw data (RGB, depth, camera network configuration) allow the user to assess
the performance of any custom markerless motion capture algorithm (based on RGB,
depth, or both). Further analyses can be progressed by varying the number of cameras
being used and/or their resolution and frame rate. Moreover, raw angular velocities,
linear accelerations, magnetic fields, and orientations from each IMU allow to develop
and test multimodal BPE approaches focused on merging visual and inertial data. Finally,
the precise body dimensions of each subject are provided. They include body height,
weight, and segment lengths measured before the beginning of a recording session. They
were used to scale the Xsens biomechanical model, and also constitute a ground truth for
assessing the markerless BPE accuracy on estimating each subject’s body dimensions.

The recorded sequences include 15 participants performing a set of 12 ADLs (e.g., walk-
ing, sitting, and jogging). The actions were chosen to present different challenges to BPE
algorithms, including different movement speeds, self-occlusions, and complex body poses.
Moreover, multi-person sequences, with up to 4 people performing a set of 7 different
actions, are provided. Such sequences offer challenging scenarios where multiple self-
occluded persons move and interact in a restricted space. They allow assessing the accuracy
of multi-person tracking algorithms, focused on maintaining frame-by-frame consistent
IDs of each detected person. To this end, the proposed dataset has already been used
to validate our previous work, describing a real-time open-source framework for multi-
camera multi-person tracking [25]. A total of 13.3 h (over 1,400,000 frames) of RGB, depth,
and markerless BPE data from 5 RGB-D cameras are present in the dataset, while the
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inertial motion capture system allowed to record 3 h (over 600,000 frames) of human poses,
corresponding to 51.2 h of raw IMU data from all the sensors used in each suit.

The remainder of the paper is organized as follows. Section 2 describes the content and
organization of the dataset. Section 3 presents the methods applied for data collection and
describes how to replicate the setup used for the acquisitions. Finally, Section 4 concludes
the article, addressing possible uses of the dataset in different research fields.

2. Data Description

The UNIPD-BPE dataset contains: (1) high definition videos and point clouds from
each RGB-D camera, (2) positions, orientations, and confidences of the body joints estimated
via markerless motion capture, (3) raw IMU data from each tracker used in the inertial
suits, (4) full-body kinematics and anatomical joint angles obtained via inertial motion
capture. Table 1 summarizes all available data, while Sections 2.1 and 2.2 describe in detail
the recordings obtained by each RGB-D camera and by the inertial suits, respectively.

Table 1. Content of the UNIPD-BPE dataset.

Source Typology Details

Calibration Transforms Relative poses among cameras

Camera network

Video 1920 × 1080 pixels @ 30 Hz (native resolution)
Video 640 × 576 pixels @ 30 Hz (reprojection on the depth)
Depth 640 × 576 pixels @ 30 Hz (native resolution)
Depth 1920 × 1080 pixels @ 30 Hz (reprojection on the RGB)
BPE 3D positions, orientations, confidences of 32 joints

Inertial suit

IMU data Orientations and raw IMU data @ 60 Hz
BPE 3D positions, orientations, velocities, accelerations of 23 segments
Joint angles Anatomical joint angles of 22 joints
Center of mass 3D position of the person’s center of mass

2.1. Microsoft Azure Kinect

The camera network used in this work consists of 5 Azure Kinect cameras (labeled
k01, k02, k03, k04, k05). Details on the spatial configuration of the sensors can be found
in Section 3.1. Each camera includes a 1 MP Time-of-Flight depth sensor, a 12 MP CMOS
rolling shutter RGB sensor, a 6-DoF IMU, and a 7-microphone circular array. A factory
calibration process provides intrinsic and extrinsic calibrations of the sensors.

The UNIPD-BPE dataset contains the following data, captured from each of the
5 cameras:

• video recordings (1920 × 1080 pixels @ 30 Hz (native resolution) and 640 × 576 pixels
@ 30 Hz (reprojected on the depth));

• depth recordings (1920 × 1080 pixels @ 30 Hz (reprojected on the RGB) and 640 ×
576 pixels @ 30 Hz (native resolution));

• 3D positions, orientations, confidences of 32 body joints defined in the Azure Kinect
Body Tracking SDK model (Appendix A.1).

Data are recorded at the maximum frame rate allowed by the system. The video
resolution was chosen to provide high-definition captures, while also maintaining the
dataset size as manageable.

2.2. Xsens MVN Awinda

The Xsens MVN Awinda suit used in this work consists of 17 MTw Awinda trackers
placed on the head, chest, shoulders, upper arms, forearms, hands, pelvis, thighs, shanks,
and feet. Each tracker includes a 3-axis gyroscope, a 3-axis accelerometer, a 3-axis magne-
tometer, and has a dynamic accuracy of 0.75 ° RMS for roll and pitch, and 1.5 ° RMS for the
heading estimation [23].
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Before each sequence, the body model used to estimate the motion was specifically
scaled to each participant’s characteristics. All subjects’ body dimensions and general infor-
mation (sex, age, weight, height) are annotated in dedicated files included in the dataset.

The UNIPD-BPE dataset contains the following data, captured for up to 2 subjects si-
multaneously:

• orientations, angular velocities, linear accelerations, magnetic fields of 17 MTw Awinda
trackers @ 60 Hz;

• 3D positions, orientations, linear and angular velocities, linear and angular accelera-
tions of 23 body segments defined in the Xsens MVN Analyze model (Appendix A.2);

• anatomical joint angles (flexion/extension, abduction/adduction, internal/external rota-
tion) of 22 body joints, plus 6 additional joint angles calculated for ergonomic analyses;

• 3D position of the body center of mass.

Data are recorded at 60 Hz (maximum frame rate allowed by the system) using the
Xsens MVN Analyze software (version 2021.0.1).

2.3. Dataset Structure

A total of 13.3 h of RGB, depth, and markerless BPE data are present in the dataset,
corresponding to over 1,400,000 frames obtained from a calibrated network with 5 RGB-D
cameras. The inertial suits, on the other hand, allowed to record 3 h of inertial motion
capture data, corresponding to a total of over 600,000 frames recorded by each of the
17 IMUs used by every suit. Figure 1 shows an example frame of the available data
recorded during a walking sequence.

(a) (b)

(c) (d)
Figure 1. Sample data during a walking sequence: (a) RGB frame from k01, (b) RGB frame from k02,
(c) depth and markerless pose estimation from k02, (d) inertial pose estimation from MVN Analyze.

The dataset is divided into 2 folders: single_person, containing all the sequences where
a single subject is recorded, and multi_person, containing all the sequences with multiple
subjects. Sections 2.3.1 and 2.3.2 explain the organization of the dataset for single-person
and multi-person sequences, respectively.

2.3.1. Single-Person Sequences

To make the data easily accessible, the single-person sequences are organized as
follows. The single_person folder contains the data recorded from 15 subjects performing
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the 12 actions described in Table 2, with 4 repetitions each. Thus, it contains 15 folders,
named sbj<xx>, where <xx> indicates the subject’s ID. Each sbj<xx> folder contains the
data recorded by the cameras, the inertial motion capture data, and a yaml file (named
sbj<xx>_info.yaml) including the subject’s ID, sex, age, weight, and the body dimensions
used for inertial BPE.

The recorded data are stored in 6 subfolders: 5 folders containing the camera network
data, named after the convention k<yy>, where <yy> indicates the camera’s ID, and an
additional folder containing the inertial suit data, named xsens. Each k<yy> folder contains
4 repetitions for each of the 12 actions, resulting in 48 files (one per sequence), named fol-
lowing the convention sbj<xx>_<action_name><zz>.bag, where <zz> indicates the recorded
repetition. For each recorded sequence, the xsens folder contains 3 sets of files, named
sbj<xx>_<action_name><zz>.(mvnx|bvh|c3d). Each single-person action has an average
duration of approximately 13 s. The complete list of recorded actions is reported in Table 2.

Table 2. List of actions performed during single-person sequences.

Index Action Name Description

0 t_pose T-pose to be used for calibration purposes
1 n_pose N-pose to be used for calibration purposes
2 walk Walking at self-selected speed
3 squat Squatting
4 bend Bending down
5 sit Sitting on a chair
6 jog Jogging in place
7 jump Jumping in place
8 cross_arms Crossing arms
9 point Pointing to different directions
10 wave Waving hands
11 throw Pretending to throw an object

The bag file format indicates a bag file, commonly used in ROS [26] (Robot Operating
System) to store ROS message data. This format was chosen since it allows to store and
distribute heterogeneous streams of synchronized data. By using bag files, it is also possible
to play the recorded data simulating a real-time acquisition. Additionally, the content of a
bag file can be exported in different formats by exploiting one of the many open-source tools
developed by the ROS community. ROS bags, in fact, play an important role in ROS, and a
variety of tools have been written to allow storage, processing, analysis, and visualization
of the stored data.

All the bag files in this dataset contain RGB captures and depth point clouds from each
camera, information on the camera network calibration, positions, orientations, and confi-
dences of each participant’s joints estimated via markerless motion capture.

The mvnx extension (MVN Open XML format) refers to Xsens’ proprietary format. It
is a human-readable XML format that can be imported into various software programs,
including MATLAB and Microsoft Excel. This format contains information on sensor data,
segment kinematics, and joint angles, as well as the subject’s body dimensions. The bvh
format (BioVision Hierarchical data) embeds captured motion data in ASCII format and
is typically used in animation applications. It requires a hierarchical structure, such that
only relative joint angles can be exported into this file format. Finally, c3d (Coordinate
3D) is a format used in optical systems and only contains 3D point coordinates. Therefore,
the stored data are limited to the bony landmarks calculated from the estimated virtual
marker set.

2.3.2. Multi-Person Sequences

Multi-person sequences include the 7 actions described in Table 3, repeated with 2, 3,
and 4 people simultaneously on the scene. The only exception is the action labeled eight,
where the persons are walking forming an eight, which required the presence of 4 people.
The actions were selected to challenge different aspects typical of markerless BPE. As a
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result, there are different actions where multiple people are in close proximity, with partial
and/or full occlusions, and with people exiting and reentering the scene.

The multi_person folder contains data recorded from all the sequences that include
multiple subjects. It contains 3 folders, named <xx>people, where xx indicates the number
of subjects present in each sequence. Similarly to the single_person sequences, each folder
contains a yaml file (named <xx>people_info.yaml), the data recorded by the cameras, and the
inertial motion capture data. In this case, however, the yaml file stores the IDs of all the
subjects on the scene. At the beginning of each sequence, in fact, all participants stand
in front of the master camera (k01). To allow for the correct assignment of each subject’s
body dimensions, the yaml file contains the IDs of all the participants ordered from left to
right, as seen by the master camera. The body dimensions can be retrieved by accessing
the corresponding sbj<zz>_info.yaml file, where <zz> indicates the ID assigned for the
single-person sequences.

The recorded data are stored in 6 subfolders: 5 folders containing the camera net-
work data, named after the convention k<yy>, where <yy> indicates the camera’s ID,
and an additional folder containing the inertial suit data, named xsens. Each k<yy> folder
can contain 6 or 7 files (depending on the number of people interacting), named fol-
lowing the convention <xx>people_<action_name>.bag. Each bag file includes the same
typology of data recorded for single-person sequences. In this case, however, no repe-
titions are available, since the focus is on providing relevant data for the assessment of
multi-person skeletal tracking, and being each sequence the summation of the actions
performed by multiple people simultaneously. For each recorded sequence, the xsens
folder contains 6 sets of files, named <xx>people_<action_name>_sbj<yy>.(mvnx|bvh|c3d),
and <xx>people_<action_name>_sbj<zz>.(mvnx|bvh|c3d), being inertial data available for
up to two subjects simultaneously. Each multi-person sequence has an average duration of
approximately 27.5 s. The complete list of recorded actions is reported in Table 3.

Table 3. List of actions performed during multi-person sequences.

Index Action Name Description

0 static Static poses to be used for calibration purposes
1 free_static Free movements while remaining in the same place
2 free_dynamic Free movements while changing positions
3 circle Walk in a circle
4 cross Switch positions while walking in a circle
5 in_out Enter and exit from the cameras field of view
6 eight Walk forming an eight

3. Methods

This section describes the experimental setup, the methodology used, and the charac-
teristics of the participants. All data were recorded in a laboratory environment, to allow
accurate calibration of the RGB-D camera network and proper alignment of markerless and
inertial motion capture.

3.1. Experimental Setup

The experimental setup (Figure 2) includes 5 RGB-D cameras and up to 2 full-body
inertial suits. Each camera is connected to a dedicated desktop PC, while the IMUs com-
municate wirelessly to a receiver (Awinda station) connected to a PC that acts as a master.
All PCs are connected to the same local network. Software time synchronization among
PCs is obtained using the NTP protocol, whereas sensors synchronization is performed
by exploiting the onboard hardware offered by the two sensing systems. More details on
hardware synchronization are reported in Section 3.4.
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Figure 2. Experimental setup used for the acquisition of the UNIPD-BPE dataset. The 5 RGB-D
cameras are highlighted in red, while the inertial suits’ master receiver is highlighted in green.

The cameras are placed at a height of 2 m, in the configuration shown in Figure 3. They
are approximately placed in a circle with a radius of 3 m. This allows to cover an area of
approximately 4 × 4 m2 where most cameras have full visibility of the persons in the scene.
The pose of each camera with respect to a common global reference frame was estimated
prior to the recordings using an internally developed calibration algorithm.

x

y z

1 m

Kinect 01

Kinect 04 Kinect 0
5

Awinda Station

Kinect 03 Ki
ne

ct
 0

2

Figure 3. Spatial organization of the sensors used during the acquisitions. The axes define the global
reference frame of both the camera network and the inertial suits, while the arrow lines indicate the
cabled connections required for the hardware synchronization.

The recorded data were acquired using the Microsoft Azure Kinect ROS Driver [27]
under ROS Noetic (Ubuntu 20.04 LTS). The driver allows to publish each person’s detected
poses as standard ROS messages. However, it does not include information on the detection
confidence. For this reason, the driver has been customized to also include information
on the estimated joints’ confidence in the messages. The mapping between the confidence
levels assigned by the markerless BPE algorithm and the corresponding values stored in
the messages is reported in Table 4.
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Table 4. Azure Kinect Body Tracking SDK confidence mapping.

Confidence Value Description

0 The joint is out of range (too far from depth camera)
1 The joint is not observed (likely due to occlusion), predicted joint pose
2 Medium confidence in joint pose
3 High confidence in joint pose

3.2. Participants

A total of 15 participants were recruited for data collection (11 men, 4 women).
The average age was 23.7 ± 2.7 years (min: 21 years, max: 29 years), the average weight
65.8 ± 12.7 kg (min: 48 kg, max: 92 kg), and the average height 1.75 ± 0.11 m (min: 1.57 m,
max: 1.98 m). All participants gave written informed consent before data collection. Table 5
shows in detail each participant’s characteristics. The ID assigned to each subject is the
same for all experiments. Additionally, in the sequences where multiple people interact, a
person’s IDs corresponds to the one used in their individual sequence.

Table 5. Characteristics of the participants.

ID Sex Age [Years] Weight [kg] Height [m]

01 m 22 72 1.75
02 m 22 55 1.70
03 m 21 60 1.65
04 m 22 92 1.90
05 m 21 84 1.81
06 m 22 63 1.72
07 m 22 75 1.98
08 m 22 78 1.88
09 f 23 48 1.65
10 m 28 68 1.75
11 f 23 52 1.57
12 m 27 72 1.75
13 f 29 56 1.70
14 f 24 48 1.58
15 m 27 64 1.79

3.3. Acquisition Protocol

Before each session, the 17 IMU trackers were placed on the participants’ head, chest,
shoulders, upper arms, forearms, hands, pelvis, thighs, shanks, and feet, following the
Xsens protocol. The body model used for the motion estimation was then specifically
scaled to each participant’s characteristics. MVN Analyze was configured in the Single
level scenario, since all tasks were executed on a fixed-level ground, without elevation
changes. The system was then calibrated with the N-pose and walk procedure, and the world
frame aligned with the camera network’s global reference frame. To maximize the overlap
between markerless and inertial BPE, the suit’s world frame was realigned to the cameras’
global frame before each sequence recording.

For single-person sequences, the participants were asked to perform one of the actions
described in Table 2 while facing a different cardinal direction in each repetition. Except
for walking, where the start and end positions were fixed, the participants had maximum
freedom regarding how to perform the actions.

Multi-person sequences include the actions reported in Table 3, each performed with
a varying number of subjects ranging from 2 to 4. Inertial data are recorded for up to
2 subjects per sequence simultaneously. Sensors placement and software configuration are
the same as for single-person sequences.
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3.4. Time Synchronization

This section describes the synchronization procedure followed for the acquisition of
the dataset. In fact, since the dataset includes information from heterogeneous sources and
a distributed camera network, all sensors must be time-synchronized.

Each Azure Kinect camera includes two synchronization ports (Sync in and Sync out).
In this work, all cameras are synchronized through a daisy-chain configuration (Figure 3).
To avoid interference among infrared projectors, the captures were offset from each other
by 160 µs, as suggested in Microsoft’s documentation. Therefore, the maximum delay
between two cameras in the network is equal to 640 µs, which is negligible with respect to
the maximum frame rate of 30 Hz (<2% of the δt between two consecutive frames).

The Xsens MTw Awinda station includes 4 synchronization ports (2 Sync in and
2 Sync out). In this work, the Awinda station was used as a master device to synchronize
inertial and markerless motion capture. A custom cable was built to allow the Awinda
station to send synchronization pulses to the master Kinect (k01 in Figure 3). The chosen
configuration allowed Xsens to properly synchronize the Kinect cameras by sending a
triggering signal when a recording session was started. Thus, the Start recording command
in MVN Analyze also triggered the streaming of the camera network data (RGB frames,
depth frames, and markerless body tracking).

4. Conclusions

This paper presented UNIPD-BPE, an extensive dataset for single- and multi-person
body pose estimation. Single-person sequences include 15 participants performing a set
of 12 activities of daily living, while multi-person sequences include 7 actions with 2 to
4 persons interacting in a confined area.

The dataset includes 13.3 h of high definition RGB and depth data (corresponding to
over 1,400,000 frames) recorded by a calibrated RGB-D camera network of 5 synchronized
Azure Kinect cameras, as well as each subject’s full-body poses estimated using the Azure
Kinect Body Tracking SDK. This allows to assess the impact of exploiting different numbers
and/or configurations of cameras on the accuracy achieved by markerless BPE algorithms.
The provided markerless body poses can be used as a baseline, while the raw recorded
data (RGB, depth, and camera network configuration) allow the dataset user to assess the
performance and accuracy of any custom markerless BPE algorithm (based on RGB, depth,
or both).

Furthermore, 3 h of inertial motion capture poses were obtained by exploiting highly
accurate Xsens MVN Awinda full-body suits, corresponding to a total of over 600,000 frames
recorded by each of the 17 IMUs used by every suit. All sensors are hardware-synchronized,
with the Xsens MVN Awinda system acting as a master to trigger the acquisitions. The
relative poses of each camera with respect to the inertial reference frame are accurately
calibrated before each sequence to ensure the best overlap of the two systems’ outputs. This
allows inertial motion capture estimates to be used to further investigate the accuracy of
different markerless BPE algorithms. Since the raw IMU data are also available, the dataset
can also be used to develop novel sensor fusion algorithms, aiming at improving the
performance of both markerless motion capture, by increasing the achievable accuracy,
and inertial motion capture, by limiting possible drifting phenomena.

The multi-person sequences offer challenging scenarios where multiple partially
occluded persons move and interact in a restricted space. This allows us to investigate the
performance of multi-person tracking algorithms, both regarding the accuracy of the pose
estimation in cluttered environments, and the ability to maintain frame-by-frame consistent
IDs of each detected person in the scene.

The proposed dataset also presents some limitations. Due to the hardware used in
the RGB-D camera network, no optoelectronic data could be included. This would offer
an additional source of information, also allowing us to assess the accuracy of inertial
motion capture. Moreover, the main focus of the dataset is on the validation of different
BPE algorithms. As a result, all recordings were acquired in a laboratory environment,
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with a limited amount of background clutter, to ensure the best overlap between markerless
and inertial body poses.

To conclude, the UNIPD-BPE dataset aims to push forward the development of mark-
erless BPE and tracking algorithms, enabling a variety of applications where unobtrusive
accurate knowledge of human motion is of paramount importance. The dataset in fact
includes data both for single-person RGB- and depth-based human motion estimation,
for multi-person BPE and tracking, and for visual and inertial sensor fusion. The high-
definition videos and point clouds, recorded by 5 calibrated and synchronized RGB-D
cameras, allow simulating a variety of different scenarios (e.g., a pure RGB camera network,
a pure depth camera network, an uncalibrated camera network, etc.). Finally, the included
markerless and inertial body poses are useful for the development and testing of different
multimodal sensor fusion and people tracking algorithms, without the necessity of expen-
sive hardware and bulky acquisition setups.
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Appendix A. Body Joint Definitions and Hierarchy

Appendix A.1. Microsoft Azure Kinect Body Tracking

The Microsoft Body Tracking SDK allows to process Azure Kinect captures to generate
body tracking results. A skeleton includes 32 joints. Each connection (bone) links the parent
joint with a child joint. As demonstrated in [28], the mean joint estimation error has an
average value of 8 mm and a standard deviation of 6 mm in static conditions. Table A1 lists
the joint connections. Additional information can be found in [29].

Table A1. Azure Kinect Body Tracking joint definitions and hierarchy.

ID Joint Name Parent Joint ID Joint Name Parent Joint

0 PELVIS - 16 HANDTIP_RIGHT HAND_RIGHT
1 SPINE_NAVAL PELVIS 17 THUMB_RIGHT WRIST_RIGHT
2 SPINE_CHEST SPINE_NAVAL 18 HIP_LEFT PELVIS
3 NECK SPINE_CHEST 19 KNEE_LEFT HIP_LEFT
4 CLAVICLE_LEFT SPINE_CHEST 20 ANKLE_LEFT KNEE_LEFT
5 SHOULDER_LEFT CLAVICLE_LEFT 21 FOOT_LEFT ANKLE_LEFT
6 ELBOW_LEFT SHOULDER_LEFT 22 HIP_RIGHT PELVIS
7 WRIST_LEFT ELBOW_LEFT 23 KNEE_RIGHT HIP_RIGHT
8 HAND_LEFT WRIST_LEFT 24 ANKLE_RIGHT KNEE_RIGHT
9 HANDTIP_LEFT HAND_LEFT 25 FOOT_RIGHT ANKLE_RIGHT
10 THUMB_LEFT WRIST_LEFT 26 HEAD NECK
11 CLAVICLE_RIGHT SPINE_CHEST 27 NOSE HEAD
12 SHOULDER_RIGHT CLAVICLE_RIGHT 28 EYE_LEFT HEAD
13 ELBOW_RIGHT SHOULDER_RIGHT 29 EAR_LEFT HEAD
14 WRIST_RIGHT ELBOW_RIGHT 30 EYE_RIGHT HEAD
15 HAND_RIGHT WRIST_RIGHT 31 EAR_RIGHT HEAD

https://doi.org/10.17605/OSF.IO/YJ9Q4
https://doi.org/10.17605/OSF.IO/YJ9Q4
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Appendix A.2. Xsens MVN Analyze

The Xsens MVN Analyze software features a scalable biomechanical model and offers
real-time 3D animation, graphs, and data streaming. A skeleton includes 23 segments
connected by 22 joints. As demonstrated in [24], the inertial body poses show a RMSE
lower than 5° for the estimation of the anatomical joint angles in the sagittal plane. Table A2
contains the list of the body segments defining a skeleton, its joints, and the trackers used
to estimate human motion. Additional information can be found in [30].

Table A2. Xsens MVN joint definitions and hierarchy.

ID Segment Label Tracker Joint

0 Pelvis Pelvis jL5S1
1 L5 T8 jL4L3
2 L3 Head jL1T12
3 T12 RightShoulder jT9T8
4 T8 RightUpperArm jT1C7
5 Neck RightForeArm jC1Head
6 Head RightHand jRightC7Shoulder
7 Right Shoulder LeftShoulder jRightShoulder
8 Right Upper Arm LeftUpperArm jRightElbow
9 Right Forearm LeftForeArm jRightWrist
10 Right Hand LeftHand jLeftC7Shoulder
11 Left Shoulder RightUpperLeg jLeftShoulder
12 Left Upper Arm RightLowerLeg jLeftElbow
13 Left Forearm RightFoot jLeftWrist
14 Left Hand LeftUpperLeg jRightHip
15 Right Upper Leg LeftLowerLeg jRightKnee
16 Right Lower Leg LeftFoot jRightAnkle
17 Right Foot - jRightBallFoot
18 Right Toe - jLeftHip
19 Left Upper Leg - jLeftKnee
20 Left Lower Leg - jLeftAnkle
21 Left Foot - jLeftBallFoot
22 Left Toe - -
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