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Abstract

Muscular force generation in response to external stimuli is the result of thermally fluctuating, cyclical interactions between
myosin and actin, which together form the actomyosin complex. Normally, these fluctuations are modelled using transition
rate functions that are based on muscle fiber behaviour, in a phenomenological fashion. However, such a basis reduces the
predictive power of these models. As an alternative, we propose a model which uses direct single molecule observations of
actomyosin fluctuations reported in the literature. We precisely estimate the actomyosin potential bias and use diffusion
theory to obtain a Brownian ratchet model that reproduces the complete cross-bridge cycle. The model is validated by
simulating several macroscopic experimental conditions, while its interpretation is compatible with two different force-
generating scenarios.
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Introduction

Forty years ago, A.F. Huxley and R.M. Simmons [1] reported

the behaviour of skeletal muscle fiber by observing near

instantaneous force changes following fast and small length

perturbations. Accordingly, Huxley and Simmons proposed that

the force is generated from an actomyosin complex that exists in

(at least) two stable but different force-generating conformations,

or states, that oscillate between one another in response to external

perturbations. This theory has since been analysed by several

studies examining muscle structure [2–4], macroscopic muscle

fiber behaviour [5–9], and single molecule experiments (SME)

[10–13] including recent SME studies that have directly observed

the oscillations [14,15]. In their same seminal paper, Huxley and

Simmons proposed a mathematical model that described an

explicit relationship between the probability of the actomyosin

state and the external perturbation applied. That model has since

been refined by several works and extended to the entire cross-

bridge cycle [5,16–20].

As informative as these contemporary models are, they are

limited due to the lack of direct information on the state transition

dynamics. While they introduce an explicit definition of the energy

in each state, they define the transition between states as rate

functions with ad-hoc dependencies on the chemical reaction

coordinate or base the transitions on hidden assumptions of the

actomyosin potential energy. In other words, actomyosin proper-

ties are deduced by fitting the macroscopic behaviour of the

muscle fiber even though the goal of the model is to interpret the

muscle behaviour from the actomyosin properties. We believe that

this approach reduces the predictive power of such models because

the oscillatory behaviour of the actomyosin complex is a

fundamental property of muscle function such that its description

cannot be restricted to phenomenological rate functions. There-

fore, we here describe an alternate model based on diffusion that

considers the entire Lymn-Taylor cycle (Fig. 1). Although a

diffusional approach for the attachment-detachment process is not

feasible because of insufficient experimental data for skeletal

myosin, configuration changes in the actomyosin complex can be

described by thermal diffusion if the periodic potential is properly

designed for there to be a clear relationship between the chemical

configurations and the external force applied. Thus, we approach

the problem by defining a diffusional model using SME data

[14,15] and validate our hypotheses by simulating experimental

macroscopic muscle fiber data. This new approach (see also [21–

23]), and its future application to the attachment-detachment

process, aims to reduce the degree of freedom in the parameters to

more accurately explain muscle behaviour by using SME data.

Materials and Methods

Cross-bridge Cycle and Model Description
In its most basic form, the cross-bridge cycle can be described as

a four-state model with two detached and two attached states

(upper and lower parts of Fig. 1, respectively). The left side of

figure 1 shows a detached myosin head that initially has a low

affinity for the actin filament (M-ATP). The myosin next

hydrolyses ATP to generate a high energetic state (M-ADP-Pi).

Brownian fluctuations then allow the myosin to bind to the

preferred actin-binding position to form the actomyosin complex

AM-ADP-Pi. This attachment is probably driven by the

‘‘Brownian search-and-catch mechanism’’, which assumes that

the affinity for actin increases when the myosin elastic element is
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stretched forward [24,25]. Force generation stretches the elastic

element even more so that the complex takes the AM-ADP state.

Detachment occurs when a new ATP molecule substitutes for the

exhausted ADP molecule (M-ATP) to relax the elastic element and

begin a new cycle.

Oscillating sub-steps during the force generating (AM-ADP)

state have been observed experimentally by attaching a single

myosin II molecule to a large micro-needle and associating it with

an actin bundle [14,15]. This results in several 5:5 nm steps per

ATP cycle that are biased in one direction, as predicted in [1]. The

steps are conventionally explained by the lever arm theory: the

long portion of the myosin head rotates to slide the actin and

myosin filaments past each other while the globular portion

remains firmly attached to the actin monomer (Scenario 1 in Fig. 1)

[1,17,26,27]. Despite that, the constant size and frequency of the

steps observed experimentally may be generated by a different

mechanism where the helical shape of the actin filament drives the

sliding of the myosin head on different actin monomers to pull the

thick filament (Scenario 2 in Fig. 1) [14,15] and the rotation of the

lever arm takes place only at the end of sliding during Pi release.

This scenario has been recently supported by MD simulations of

skeletal actomyosin in the rigor configuration [28]. In that work,

the preferential direction of thermal fluctuations in the actomyosin

complex was shown to arise without ATP consumption.

In both scenarios, the steps are generated by stable actomyosin

states which mathematically correspond to several minima in the

potential energy, Ea(x), which describes the actomyosin interac-

tion (Fig. 1, right). Thus, our model does not discriminate between

the two scenarios and defines the energy potential using only SME

data. Force is generated when the actomyosin complex fluctuates

between stable states in a manner that allows the complex to adapt

efficiently to different external stimuli. The key feature of the

model is that mathematically these fluctuations are described as

diffusional motions inside Ea(x). Therefore, we do not need AM-

ADP-Pi to AM-ADP transition rate functions, nor do we need to

consider the dependence of these functions on the head position

when fitting the macroscopic behaviour of a contracting muscle.

On the contrary, having Ea(x) defined by SME data alone means

we can use macroscopic behaviour to test the goodness of the

shape of the potential.

To model the macroscopic response (see Text S1 for method),

we assume N myosin heads are in parallel in a one-half sarcomere,

and that several sarcomeres are in series and behave uniformly.

The myosin heads are attached through an asymmetric elastic

element [29] to a rigid backbone (thick filament, right side of Fig. 1)

at uniformly spaced locations due to the incommensurability of the

periodicity of the two filaments [30]. In order to maintain a clear

chemo-mechanical relationship, we define a minimalistic model

where the myosin can exist in only two different states, one force

generating and one non-force generating (zero on average), which

roughly relates to the attached and detached states, respectively.

Transitions between these states are regulated by the stochastic

variable v (pure number), which fluctuates between the values 0
and 1.

In the detached state (v~0), the myosin head is subjected to

unbiased thermal fluctuations and to the force generated by the

elastic element. The transition from M-ATP to M-ADP-Pi is a

diffusion driven process that does not require a rate function.

When myosin interacts with the actin filament (v~1), however, it

is also subjected to the force generated by Ea(x). Each myosin

molecule is considered an over-damped particle whose geometry is

completely defined by its drag coefficient, gx~70 pNns=nm [31].

The environment in which the myosin moves is defined by the

Boltzmann constant, kB, and the absolute temperature, h~297K .

The motion of the i-th myosin head leads to a flashing ratchet

system with its dynamics described by the Langevin equation:

gx _xxi~{vi(t)E
0
a(xi){E

0
e(xi,li)z

ffiffiffiffiffiffiffiffiffiffiffiffi
gxkBh

p
C(t): ð1Þ

Figure 1. Cross-bridge cycle (left) and half-sarcomere model (right). Left side: Four states, two detached (upper) and two attached (lower),
are considered. In the force generating step, the actomyosin complex oscillates between stable states either by rotating the lever arm domain
(scenario 1) or by sliding the myosin head along the actin filament (scenario 2). Right side: Mechanical representation of the half-sarcomere as many
parallel myosin heads. In the detached state, thermal fluctuations by a myosin head are constrained only by an asymmetric elastic element [29]; the
absence of other interactions is represented by the flat energy landscape. In the attached state, the head also experiences an actomyosin complex
energy landscape, Ea(x), which has a periodicity of 36 nm and four minima or stable states (see text). The jump process between attached and
detached states is driven by the rate functions kz and k{ (s{1) to generate a flashing Brownian ratchet.
doi:10.1371/journal.pone.0040042.g001
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where Ee~
1

2
K(xi,li)(xi{li)

2 is the asymmetric [29] elastic

energy of the myosin globular portion, lever domain, and long

tail in series. Stiffness is defined as

K(x,l)~
K , xi§li

0:2K , xivli

�

where K~2 pN=nm [17] and li is the reference position on the

backbone of the i-th head. By setting li(t)~z(t)ziL=N , where

z(t) is the position of the backbone, continuous behaviour of the

myofibril is ensured by having l uniformly distributed over ½0{L�
(L~36 nm). vC(t)w is a random term constrained by

vC(t)w~0 and vC(t1)C(t2)w~2d(t1{t2) (white noise). Total

force generated by the myosin heads is given by

F (t)~
PN

i~1 K(xi,li)½xi(t){li�.
Ea is modeled as a piecewise linear, multi-stable potential with

minima equally spaced by a distance that is compatible with the

actin monomer diameter, d , and a directional bias defined by DG.

Although the potential is locally biased, it is flat on average,

repeating itself every L, with each period containing six actin

monomers (d~6 nm).

Experimentally, the number of steps ranged from one to five at

low micro-needle stiffness (Kn~0:01{0:03 pN=nm [14]) and one

to four at high micro-needle stiffness (Kn~0:1{0:6 pN=nm [15]).

We impose that the myosin can interact with only four actin

monomers, and attachment cannot occur in the region

nLz½0{3d�|½5:5d{6d�, where n is an integer, a constraint

that mimics steric effects in the actin double helix.

Since the potential is globally flat, net movement in the

backbone will only occur by breaking the global equilibrium [23].

We introduce a jump process that constrains vi(x) to follow the rate

functions kz(x) and k{(x) (described in Fig. 1) out of balanced

equilibrium by setting k{=kzexp½Ea(x)=kBh�. Referring to the

Brownian search-and-catch mechanism originally proposed by

A.F. Huxley in 1957 [25] and seen in Myosin VI [24], we

introduce an attachment process where a detached myosin head

searches for its preferred actin-binding site in the forward direction

by thermal fluctuations. The detachment rate function k{(x) we

use is a slightly modified version from the one proposed in [25] in

order to consider the more detailed geometry of the energy

potential.

SME Simulations
To quantitatively define the energy bias for muscle in vivo, we

simulated in vitro data from [14] and [15] (Fig. S1). Previously, a

bias of DG~2{3 kBh is obtained in [15] assuming the micro-

needle applies a constant force, F , to the molecular motor during a

jump and Nf =Nb~ exp½(DG{Fd)=kBh� (Nf and Nb are the

number of forward and backward jumps, respectively). Neverthe-

less, the drag coefficient, gn, of the micro-needle was three orders

of magnitude higher than that of the molecule, meaning the

external system applies a force that varies with the instantaneous

position of the myosin during a jump. Therefore, the previous

estimation may underestimate the real DG. Consequently, we

numerically explore the effect of DG on Nf =Nb by simulating the

micro-needle displacement for several DG and by comparing the

resulting Nf =Nb with the experimental data (Fig. 2). Because in

those experiments only the S-1 portion of the myosin head was

used, we imposed a symmetric molecular stiffness K~2 pN=nm

[17]. The micro-needle is also represented as an over-damped

particle whose drag coefficient is gy~103 gx [32] and is

maintained near its original position by stiffness Kn [15].

The set-up is described by the following system of stochastic

differential equations:

gx _xx~{E
0
a(x){K(x{y)z

ffiffiffiffiffiffiffiffiffiffiffiffi
gxkBh

p
Cx(t)

gy _yy~K(x{y){Knyz
ffiffiffiffiffiffiffiffiffiffiffiffi
gykBh

p
Cy(t)

(
ð2Þ

where Ea is the actomyosin potential shown in Fig. 1. Since the

ratio of forward and backward jumps were analysed in [15], we

impose the mean value of needle stiffness used in that experiment

Kn~0:3 pN=nm. Three parameters are needed to define the

potential: the energetic barrier, DGB, between two minima; the

asymmetry of the potential, l, which is the ratio of the distance

between an adjacent maximum and minimum and d; and the bias

or energy difference, DG, between two minima. We impose an

energy barrier of DGB~16kBh, which is compatible with myosin

II conformational changes that occur in less than one millisecond

in the unloaded condition [33], as obtained by the exact solution

of the first passage time, tf , of a particle against a constant force

Fa~(DGB{DG)=ld [31].

During a change of state in a multi-stable energy potential, the

particle spends most of its time surmounting the energy barrier

[34]. We suppose that the maximum of the barrier between two

minima is displaced toward the forward minimum (lv0:5), as in

[1] where this distance (d2 in Fig. S1) is zero. Numerically we

cannot impose a zero distance, thus we do the following reasoning.

The distance between the steps observed in [14,15] was 5:5 nm.

This should equal the distance between two stable states, or

minima in the energy potential. Assuming d~6 nm, we set l~0:1
so that the distance between a minimum and the subsequent

Figure 2. Bias of actomyosin energy. The diffusion of a particle
linked to an external micro-needle in a periodic potential tilted by a
constant bias, DG=d , is simulated, and the ratio of forward, Nf , and
backward, Nb , jumps for different DG is reproduced and compared to
the experimental data. Red squares, DG~3kh; green triangles,
DG~5kh; and blue rumble, DG~7kh. Black dots, experimental data
from [15]. Continuous lines are the corresponding exponential fits.
Simulations show that a bias higher than DG~3kh corresponds to the
observed ratio. A value of DG~5kh is chosen as most probable due to
the boundary conditions (see text). Insert: Experimental oscillating sub-
steps as expected from [1] during the attached state (see fig. S2). Figure
adapted from [15].
doi:10.1371/journal.pone.0040042.g002
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maximum (d1 in Fig. S1), the portion of the potential that

influences the step, is (1{l) � d~5:4 nm. Then we simulated eq.

(2) for different external forces based on the micro-needle position

and different values of DG. A typical simulated trace is seen in Fig.

S2. This is comparable with the experimental trace shown in the

inset of Fig. 2. The analysis shows that DG~3 kBh (red line)

results in a Nf =Nb ratio that always underestimates the

experimental value (grey line). On the other hand, if one assumes

DG~5 kBh and F~0:1 pN , then the relation used in [15] should

lead to Nf =Nb~ exp½(DG{Fd)=kBh�~128, whereas our numer-

ical results give a ratio one order of magnitude smaller, showing

that the previous relation strongly underestimates the effect of the

micro-needle size.

In order to minimize the number of parameters, we imposed

some simplifications on our SME simulations. In particular, the

myosin head is considered to be attached in the active state such

that we ignore the rigor state. In other words, myosin always

oscillates between attached stable states. This situation creates a

boundary effect such that when the head reaches the last

minimum it can only jump backward. Due to the bias of the

potential, this means the longer the simulation, the lower the

Nf =Nb ratio. To overcome this problem, we simulated the

trajectory of each particle until the lowest minimum is reached and

then interrupted the computation. In the experimental protocol of

[15], jumps were measured until the rigor state occurred, which

likely resulted in underestimating the ratio with respect to our

method. We therefore concluded DG~5 kBh as the best estimate

for the data and use this value to define the bias for the remainder

of our analysis.

Summarizing the known and unknown parameters, the myosin

stiffness, K , the drag coefficient, gx, and the energetic barrier,

DGB, are known or accepted values from the literature, while the

temperature, which defines kh, the needle stiffness, Kn, and the

drag coefficient, gy, are known experimental values. The energy

bias, DG, is the variable under analysis and is varied over a range

of realistic values. Then, the unknown or free parameters that

remain are the potential asymmetry l and the distance between

minima d. The product of these two values is chosen to satisfy the

observed step length in the computational limit of our method

(d=0).

Model Simulations
One limit of the diffusional approach is the time required to

perform a real-time (up to hundreds of milliseconds for the force

velocity curve) simulation of the muscle system. The reason is that

for equation (1) to have any statistical meaning, the time step of the

simulation must be at least two orders of magnitude less than the

characteristic time scale of the system. We therefore introduced

the following constraints. We set l~0:5 to increase the time step

and DGB~11 kBh to reduce the energetic barrier maximum in

the periodic potential. To evaluate the effects of these constraints,

we compared the dwell times of a free particle to the two DGB

values, 11 kBh and 16 kBh, finding the lower energy barrier made

the dwell time approximatively 150 times shorter. Consequently,

we also increased the attachment and detachment rates in a way

that maintains the relative velocity to approximate those seen in

experiments.

Numerically, we imposed az~3000 s{1nm{1, a{~az=12,

xz~10 nm, x{~{3 nm, and k{
T ~15000 s{1 (see Fig. 1).

Thus, when considering a distance ld, the maximum attachment

rate is about 150 times faster than the realistic value of 67 s{1

[20]. These values result in a simulated behaviour that is faster

than that seen experimentally. For example, the simulated

maximum velocity (vs
max) is 80 mm=s, which is 30 to 50 times

faster than the experimental value (ve
max) for frog muscle [33,35].

Thus, we must slow the simulated processes by vs
max=ve

max to obtain

a corresponding quantity in real-time. To prove the feasibility of

this approach, we simulated the rising phase curve assuming that

all heads are initially detached in the isometric (z(t)~0) state,

slowed the simulated curve by a factor of 40 (an average of the two

vs
max=ve

max values), and compared it to that seen experimentally

(Fig. S3), finding the two superimposed almost perfectly. There-

fore, the attachment and detachment rates in our model are

proportional to the velocity of contraction in a way compatible

with the experimental results.

Summarizing, the protein drag coefficient, gx, its stiffness in the

stretched configuration, K , and the temperature (or kh) are known

or accepted values. The potential periodicity, L, the uniform

random distribution of proteins, the number of monomers (six,

d~6 nm), and the constraints for the four attachment sites, which

relate to the helical shape of the actin filament, are either known

values in the second scenario or are new experimental constraints

for the first scenario. A potential bias, DG, is also imposed by the

experimental data (see previous sub-section). The number of

proteins, N, and the myosin filament drag coefficient, gz, are scale

parameters that do not affect the normalized results below. Protein

stiffness in the compressed configuration, even if qualitatively

imposed in accordance with recent experimental observations, is

used to fit the data and must be considered a free parameter. The

potential asymmetry, l, and maxima DGB in the model simulation

are also free parameters used to modify the time scale to make the

calculation possible. Finally, the parameters needed to describe the

attachment and detachment rates (kz and k{, in s{1), az, a{,

xz, x{, and k{
T , are free parameters whose values are chosen in

accordance with l and DGB to satisfy a coherent rising phase and

maximum velocity (see above).

A comparison with other macroscopic models is difficult to

make due to differences in fundamental conditions and to the wide

range of simulated data. Despite that, the number of free

parameters is relatively low and mostly attributed to the

attachment-detachment process.

Results

We quantitatively tested our model for two classical skeletal

muscle experiments: fast tension recovery after a small increment

in isometric length (length clamp), and velocity of contraction

against a constant load (load clamp). For the first case, a fast

(microsecond) and small (few nanometers per half sarcomere)

change in muscle length, d, during isometric contraction resulted

in typical tension transient behaviour (Fig. 3, inset). Initially, an

almost instantaneous change from the isometric tension T0 to

tension T1(d) is seen. This is followed by a slower (milliseconds)

tension recovery that plateaus at T2(d). Over a longer time scale, a

new population of myosins attach such that tension recovers to T0.

In the second case, a muscle fiber bears a constant load which

generates a tension TvT0 and contracts at a constant velocity

that depends on the load in an hyperbolic manner (Fig. 4) [36].

The model can simulate the length clamp behaviour by using

equation (1) and assuming:

z(t)~
0 tƒtj

d twtj

�

which experimentally describes a length change at time tj . The

force clamp behaviour is simulated by applying equation (1) and

assuming

Thermal Fluctuations in Muscle Modeling
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gz _zz(t)~

0 tƒtjPN
i~1

K(xi)(xi{li(z(t))){T

z
ffiffiffiffiffiffiffiffiffiffiffiffi
gzkBh

p
C(t) twtj

8>>><
>>>:

where the drag coefficient of the thick filament, gz~Ngx,

considers the total number of motors and T~aT0 is the external

tension, with a ranging from 0 to 2.5.

Simulations for both T1(d) and T2(d) curves (Fig. 3) and the

V=Vmax vs. T=T0 curve (Fig. 4) show very good fitting. The latter

also shows qualitative fitting for the TwT0 region.

To further investigate the model predictions, we simulated the

number of attached myosins during isokinetic contraction under

different external loads and compared the results with experimen-

tal data obtained from [8], where the molecular basis of the force

velocity relationship was determined by X-ray interference and

mechanical measurements on intact single cells. Assuming

asymmetric stiffness, that study could only determine the number

of stretched myosins, not all attached myosins. We simulated the

average number of stretched myosins during the steady phase of

an isotonic contraction at various T , finding the data could be fit

excellently without any supplemental hypothesis (Fig. 5, lower).

Also, the predicted mean strain per motor is in very good

agreement with the experimental data at high and medium forces

(Fig. 5, upper). The different behaviour at low loads can be

attributed to the low number of attached motors, which may have

compromised the experimental analysis.

Finally, we can conclude our model results are not due to

inefficient cycling (only a small fraction of ATP energy being

converted to work). Noting that each detachment process

consumes one ATP molecule, we measured the efficiency of the

flashing Brownian ratchet as the product of the force and the

velocity of contraction divided by the total energy consumed [37].

Defining r as the number of detaching cross-bridges per unit time,

we can write geff ~{fextv=rDGATP. In Fig. 6, blue triangles show

efficiency versus the velocity of contraction assuming

Figure 3. Fast tension recovery. Simulations and experimental data
for a small and fast length step, d, applied to a muscle fiber in isometric
contraction. The simulated tensions after the imposed step, T1(d) (red
triangles), and after actomyosin re-equilibration, T2(d) (blue triangles),
are shown and compared to the experimental results (circles; data from
[33]). All tensions are normalized with respect to isometric tension T0 .
Simulated Tension vs. Time traces are shown in the insert at different d,
T2(d) is estimated by the tangent method [41]. Mean values+standard
deviation over 11 trials are shown. Where error bars are not visible,
errors are smaller than the symbol width.
doi:10.1371/journal.pone.0040042.g003

Figure 4. Velocity of contraction at different external loads.
Applied tension is reduced or increased with respect to isometric
tension at a given time. Simulated Tension vs. Time traces are shown in
the insert. Tensions are normalized to the isometric tension, T0. For
different tensions, velocities are calculated from the linear portion of
the shortening traces and normalized to the maximum velocity. The
simulated velocities vs. tensions (blue triangles) are compared with
experimental data (black dots) from [35]. In the concentric region
(TvT0), the simulations fit the experimental data well even if the
velocity is underestimated in the central part (see text). Experimental
data for the eccentric region (TwT0) are not shown, but a qualitative
correspondence can be observed with a plateau region at high
tensions. Mean values+standard deviation over 11 trials are shown.
Where error bars are not visible, errors are smaller than the symbol
width.
doi:10.1371/journal.pone.0040042.g004

Figure 5. Microscopic behaviour of the model Upper: Simulated
mean strain per motor during the steady state phase of isotonic
contraction at different external tensions compared with experimental
data from [8]. Mean strain is well fitted at high T , but overestimated at
low T , where the low number of attached motors may have
compromised the experimental analysis, as observed in [8]. Lower:
Relative number of attached motors at different loads during the steady
state phase of isotonic contraction. Simulation, triangles; experimental
data, circles. Mean values+standard deviation over 11 trials are shown.
Where error bars are not visible, errors are smaller than the symbol
width.
doi:10.1371/journal.pone.0040042.g005

Thermal Fluctuations in Muscle Modeling
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DGATP~20kh. The maximum efficiency was more than 30%,

which is comparable with experimental values [38]. We observe

that the model prediction is rather good even though it somewhat

underestimates the efficiency. This is likely because we only

consider two states to simplify the model. In other words, we

ignore the condition where myosin heads attach and detach to the

actin filament without generating force or consuming energy

(weakly attached state). Incorporating this state should increase the

efficiency. To estimate how much of an increase, we computed the

physical upper bound of the efficiency produced by the ratchet

according to the formula proposed in [39]:

rs~
X

i

Et(ji(t
z
i )){Et(ji(t

{
i ))

� �
: ð3Þ

Et~viEazEe is the total energy computed before (t{i ) and

after (tzi ) the i-th jump, ji. The summation is done for every jump

that occurs per unit time in the region of steady shortening. The

efficiency limit is thus given by geff ~{fextv=rs shown in Fig. 6

(squares). The experimental efficiency is between the two model

efficiencies, indicating a more detailed description of the states can

improve the fitting.

Discussion

In this work, we have used diffusion theory to model muscle

mechanics, defining some parameters using SME data and

quantitatively simulating several macroscopic behaviours. The

model satisfies two different hypotheses regarding the origin of the

actomyosin stable states, which are often viewed as stable states of

the lever arm (scenario 1). This interpretation gives a clear picture

of the role of the lever arm structure in muscle contraction and is

compatible with X-ray reflections during isotonic contractions that

describe the regular arrangement of myosin motors on the

backbone [7,8]. However, if we assume scenario 2, where each

minimum of the actomyosin potential energy corresponds to a

given actin monomer on the thin filament, the role of the lever

arm structure is more equivocal. That the actin diameter is about

5:5 nm means the vertical distance between the backbone and

different attachment sites in one half-pitch varies considerably due

to the three-dimensional structure of the actin filament. Thus, we

can assume that the orientation of the lever arm plays an

important role for myosin reaching the binding sites. In our model,

we assumed one-dimensional geometry for simplification. Never-

theless, we can still infer some aspects of the lever arm orientation

at different minima. In the insets of fig. S4, we describe the

distribution of the attached heads in the four subsequent minima

in one half-pitch shown in Fig. 1 from the highest (d) to lowest (4d)

minimum at different times of an unloaded force-clamp simula-

tion. We can see that at time t1 during an isometric contraction, all

four minima are populated, but the central ones are more

populated. As expected, at the end of phase 2 in the load-clamp

simulation (time t2), the lowest minimum (4d) is the most

populated, while the first two minima populations are near zero.

By associating each minimum a different lever arm orientation, the

periodic distribution of the myosin head mass along the thin

filament becomes very different such that the distribution can

justify the different experimental X-ray reflection observations

produced at times t1 and t2 [7,8]. Also, during isokinetic

contraction (time t3), the population re-equilibrates toward a

more homogeneous distribution, which is consistent with exper-

imental observations.

It is worth noting that scenario 1 allows for more flexibility than

scenario 2 when defining parameters such as the distance between

minima. Nevertheless, the good fitting obtained shows that either

scenario is consistent with the experimental data. Moreover, high

speed AFM showed that a myosin V head undergoes brief

translocation along actin by repeatedly detaching and attaching

after Pi release, i.e., at the force generating state [40], giving

creedance to scenario 2. To determine which of the two scenarios

is the true source of force generation, more experimental evidence

is needed.

One limit of our model is that the contraction velocity is slightly

underestimated for mean values of applied force. Consequently

there is an enhanced underestimation of the maximum power

output (T|v)=(T0|vmax) (Fig. S5). This limit is common to other

macroscopic models [20,35], and can be due to a low number of

simulated attached heads in the central part of the force-velocity

curve. The number of attached cross bridges can be increased by a

higher attachment rate, but that would create an unrealistically

fast rising phase during isometric contraction [35]. A way to

resolve the problem is to hypothesize an attachment rate that

depends on the velocity of the contraction in addition to the

dependency on the position of the head [20]. Despite using a

different physical description of force generation in the attached

state (diffusion), our model shares with the above models the same

chemical description of the attachment-detachment process (rate

functions) because of a lack of experimental data. Thus, it is not

surprising that our model suffers from underestimating the

maximum power output. Resolving this problem would benefit

from a description of the attachment-detachment process by

incorporating diffusion into the energy landscape.

Conclusions
Although the mechanics of muscle contraction have been well

studied, a comprehensive model that reproduces at the same time

all macroscopic behaviour is still lacking. Furthermore, one

weakness in muscle modelling is that the same behaviour can be

reproduced starting from different working models. We believe

that this is in part because the description of the oscillatory

behaviour of the actomyosin complex, which is generally accepted

Figure 6. Predicted efficiency at different velocities Simulation of
the efficiency of contraction, as predicted by the model compared to
experimental data (circles from [38], green line). Efficiency is computed
as tension times velocity divided by the chemical energy consumed [37]
(triangles) and following the method described in [39] (squares). Mean
values+standard deviation over 11 trials are shown. Where error bars
are not visible, errors are smaller than the symbol width.
doi:10.1371/journal.pone.0040042.g006
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as a fundamental property of muscle function [1] and whose

properties are becoming more accessible from SME, is often

restricted to rate functions based on the macroscopic behaviour of

muscle fibers.

To emphasize the importance of this oscillatory behaviour, we

have applied a new approach to muscle modelling, where

actomyosin complex dynamics are described by the diffusion of

particles constrained within a defined energetic landscape that is

described by SME data. Having inferred the bias of actomyosin

energy, we showed the feasibility of this approach for quantita-

tively describing several macroscopic behaviours. Furthermore,

the new approach reduces the number of free parameters and

makes them constant rather than empirical functions that are

based on chemical reaction coordinates. This model can

potentially be a basis for future developments where parameters

that describe the behaviour of single molecules can be built upon

to understand all contraction mechanism details, such as how

molecular cooperation leads to macroscopic behavior.

Supporting Information

Figure S1 SME set-up from [32]. An external system
(microneedle) with a very high drag coefficient is linked
to a multistable particle (attached skeletal myosin). The

motion of the particle is analysed through the position of the

microneedle. A linear spring with symmetric stiffness links the two

bodies.

(EPS)

Figure S2 Example of a simulated microneedle trace
based on Figure S1. The myosin head is always in the attached

configuration. The trace is comparable with the experimental

results obtained in [15].

(EPS)

Figure S3 Simulation of the isometric contraction. The

simulated rising phase is slowed by a factor of vs
r=ve

r~40 (blue

trace). Simulations for vs
r=ve

r~30 (green trace) and vs
r=ve

r~50

(yellow trace) are also shown. The slowed rising phase is in

agreement with the experimental data (red trace from [42], the

initial difference is due to the latency of force development and

stretching of the tendons, which are not considered in the model).

(EPS)

Figure S4 Distribution of the attached myosin heads
(insets) in the four minima of actomyosin energy Ea

during different phases of the unloaded force-clamp
simulation (continuous line). Scale in the insets is normalized

to the number of attached heads.

(EPS)

Figure S5 Power output predicted by the model (blue
triangles) and comparison with experimental data
(black circles). The lower velocity of contraction at intermedi-

ate tensions leads to an underestimation of the maximum power

output. This drawback is common with other models and is related

to the attachment-detachment process (see main text). Mean

values+standard deviation over 11 trials are shown. Where error

bars are not visible, errors are smaller than the symbol widths.

(EPS)

Text S1

(PDF)
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