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Abstract
We study the singular set in the thin obstacle problem for degenerate parabolic equations
with weight |y|a for a ∈ (−1, 1). Such problem arises as the local extension of the obstacle
problem for the fractional heat operator (∂t −�x )

s for s ∈ (0, 1). Our main result establishes
the complete structure and regularity of the singular set of the free boundary. To achieve it,
we prove Almgren-Poon,Weiss, andMonneau type monotonicity formulas which generalize
those for the case of the heat equation (a = 0).
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1 Introduction

The last decade has seen a resurgence of interest in the study of lower-dimensional, or thin
obstacle problems, largely motivated on the one hand by the applications, and on the other
hand by the development of new mathematical tools and techniques. The primary objective
of the present paper is the study of the so-called singular set of the free boundary in the
following degenerate parabolic thin obstacle problem. Given a parameter a ∈ (−1, 1), and
a function ψ (the thin obstacle) on Q1, we consider the problem of finding a function U in
Q+

1 such that
⎧
⎨

⎩

ya∂tU = divX (ya∇XU ) in Q+
1 ,

min
{
U (x, 0, t) − ψ(x, t),− lim

y→0+y
a∂yU (x, y, t)

}
= 0, for (x, t) ∈ Q1.

(1.1)

For a detailed explanation of (1.1) and the relevant notation we refer the reader to Sect. 2. We
say that (1.1) is a thin obstacle problem since the function ψ is supported in the codimension
one manifold {y = 0} × (−1, 0) in the space-time variables (X , t), with X = (x, y) ∈
Rn × (0,∞). An important motivation for (1.1) is provided by its connection to the obstacle
problem for the nonlocal heat operator

min
{
u − ψ, (∂t − �x )

su
} = 0, (1.2)

with the fractional parameter s ∈ (0, 1) related to a ∈ (−1, 1) by the equation a = 1 − 2s.
The passage from (1.2) to (1.1) rests on the extension procedure for the operator (∂t − �x )

s ,
developed independently byNyströmandSande in [24] and byStinga andTorrea in [27]. Such
result represents the parabolic counterpart of the famous Caffarelli and Silvestre’s extension
work [9].

When s = 1/2 the problem (1.2) arises in the modeling of semipermeable membranes in
the process of osmosis (for this and related problems see the classical monograph [14]). In
such case, by taking a = 0 in (1.1), we see that (1.2) is equivalent to a lower-dimensional
obstacle problem of Signorini type for the standard heat equation. We recall that in the paper
[13] three of us and T. To developed an extensive analysis for this problem. The optimal
regularity of the solution was established, together with the H1+α,(1+α)/2-regularity of the
so-called regular free boundary, and a structure theorem for the singular part of the free
boundary. We also refer to [2] for quasiconvexity results for certain generalized versions of
the Signorini problem studied in [13].

In the present paper, and in the work [6], we develop an analysis similar to the one in
[13], but for the general case −1 < a < 1 in (1.1). In the first part of this program, which is
the content of this paper, we provide a systematic classification of free boundary points. The
main tool is a monotonicity formula of Almgren-Poon type, which we utilize in the analysis
of the blowup limits of appropriate rescalings. We also establish monotonicity formulas of
Weiss- andMonneau-type, which we employ to establish a structure theorem for the singular
set.

Although the work in [13] has served as a road map for our analysis, in the setting of the
present paper one faces novel complications deriving from: (a) the presence of the degenerate
weight ya in (1.1); (b) the lower regularity of the solution in the time variable; and (c) the fact
that, because of the nature of the Almgren-Poon frequency, in the relevant W 2,2 estimates
one must work with the Gaussian, instead of Lebesgue measure.

In connection with our results we recall that in their recent work [1], Athanasopoulos,
Caffarelli, and Milakis show that, at a local level, the fractional obstacle problem (1.2) is
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equivalent to one of type (1.1) under appropriate initial and boundary conditions. Based
on such correspondence, the authors focus their attention on (1.1), establishing the optimal
interior regularity of the solution, as well as the C1,α regularity of the free boundary near
certain non-singular points (which we call hyperbolic regular points, see Remark 7.4 for
more details). In their study the authors use global assumptions on the initial data to infer
quasi-convexity properties of the solutions, leading to their optimal regularity result.

The present work is completely different from [1] and it is developed in total independence
from it. First of all, our main objective is the novel treatment of the singular part of the free
boundary. A further difference is that our approach is purely local. By this we mean that we
establish localized versions of the regularity estimates in [1], both for the solution and for
the free boundary. This is of critical importance in the further analysis of the problem as it
allows to consider the blowups at free boundary points, leading to their fine classification,
see also our work [6], which complements and provides a foundation for this work.

To provide the reader with some further perspectives on the objectives of the present paper,
we mention that our results are inspired by those in the time-independent case in [18]. In
that paper, two of us first analyzed the structure of the singular set in the case a = 0 using
some monotonicity formulas of Weiss and Monneau type. More recently, their results have
been extended to the whole range a ∈ (−1, 1) in [21]. We also mention the recent interesting
paper [11], where for the time-independent Signorini problem (a = 0) a finer stratification
of the singular set is obtained using a variant of Weiss’ epiperimetric inequality in [19], and
the work [15] for a further refined analysis of the structure of the singular set under certain
geometric assumption on the obstacle. A parabolic version of such epiperimetric inequality
(again, when a = 0) has been very recently established in [26], where it has also been shown
that such an inequality, combined with the results in [13], provides a finer structure theorem
of the singular set in the parabolic thin obstacle problem. Finally, we mention the work [4] on
unique continuation for degenerate parabolic equations such as that in (1.1), where Almgren-
Poon monotonicity formulas were established, and the recent work [3] for related results on
the nodal sets of solution.

In closing, we say something about the organization of the present paper. In Sect. 2 we
introduce some basic notations and gather some known results which are relevant to ourwork.
In Sect. 3 we introduce the class of global solutions SF (S+

1 ) of the thin obstacle problem
(1.1). In particular, we show how to effectively “subtract” the obstacle by maximally using
its regularity, thus converting the original problem into one with zero thin obstacle, but with a
non-homogeneous right hand side. In Sect. 4 we establish a generalized Almgren-Poon type
monotonicity formula for solutions to (1.1). Section 5 contains W 2,2-type estimates in the
Gaussian space. Such estimates are instrumental to the studyof blowups inSect. 6,which is the
most technical part of the paper. There, we prove the existence and homogeneity of blowups at
free boundary pointswhere the separation rate of the solution from the thin obstacle dominates
the “truncation” terms in the generalizedmonotonicity formula. In Sect. 7we establish a basic
Liouville type theorem, which is used in Sect. 8 to classify the free boundary points according
to the homogeneity of the blowup. In Sect. 9 we give a characterization of the so-called
singular points (i.e., points where the free boundary is asymptotically negligible). Section 10
contains new Weiss- and Monneau-type monotonicity formulas which generalize those in
[18,21] and [13]. Finally, following the circle of ideas in [13] for the case a = 0, in Sect. 11
we briefly outline how to combine theWeiss- andMonneau-typemonotonicity formulas with
the results established in the previous sections. The objective is to conclude uniqueness of
blowups and obtain a structure theorem for the singular set (see Theorem 11.2). The paper
ends with an appendix where we prove some of the auxiliary results stated in Sect. 4, that
are crucial in the proof of our Almgren-Poon type monotonicity formula.
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2 Notations and preliminaries

In this section we introduce the basic notation and collect some background material which
will be used throughout our work. We indicate with x = (x1, . . . , xn) a generic point in Rn ,
by (x, t) a point in the space-time Rn × R, whereas the letter y will denote the “extension
variable” on the half-line (0,∞). The generic point in Rn+1+ = Rn × (0,∞) will be denoted
by X = (x, y). At times, we will tacitly use the same notation to indicate the generic point
in Rn+1, i.e., without the restriction that y be > 0. For instance, given r > 0 we respectively
denote by Br and Br the Euclidean balls centered at the origin with radius r in the variables
x ∈ Rn and X = (x, y) ∈ Rn+1. We also let B±

r = {X = (x, y) ∈ Br | ±y > 0}. We denote
by

Qr = Br × (−r2, 0], Qr = Br × (−r2, 0], r > 0,

respectively the parabolic cylinders in the thin space (x, t) ∈ Rn × R and thick space
(X , t) ∈ Rn+1 × R. We will indicate by

Q±
r = B±

r × (−r2, 0]
the parabolic half-cylinder in the thick space.

Given an open set E ⊂ Rn+1+ ×R and m ∈ N, byW 2m,m
q (E, yadXdt) we will denote the

parabolic Sobolev space of functions u in Lq(E, yadXdt) whose distributional derivatives
∂α
t ∂

β
Xu belong to Lq(E, yadXdt) for 2|α| + |β| ≤ 2m. Such a space is endowed with the

natural norm. Further, for given k ∈ N∪{0} and 0 < α ≤ 1 by Hk+α,(k+α)/2 we will indicate
the classical parabolic Hölder spaces, see e.g. [13] for detailed definition.

Given a number a ∈ (−1, 1), we consider in Rn+1 ×R the degenerate parabolic operator
defined by

LaU
def= ∂t (|y|aU ) − divX (|y|a∇XU ). (2.1)

This is the so-called extension operator for the fractional powers (∂t − �x )
s , 0 < s < 1, of

the heat operator. It was recently introduced independently by Nyström-Sande in [24], and
Stinga-Torrea in [27]. These authors proved that, if for a given u ∈ S (Rn+1), the function
U solves the problem

{
LaU = 0 in Rn+1+ × (0,∞),

U (x, 0, t) = u(x, t), (x, t) ∈ Rn × (0,∞),

(such problem can be solved by means of an explicit Poisson kernel) then, with s ∈ (0, 1)
determined by the equation a = 1 − 2s, one has (both in L∞ and L2)

−2−a�
( 1−a

2

)

�
( 1+a

2

) ∂ayU (x, 0, t) = (∂t − �x )
su(x, t),

where ∂ayU denotes the weighted normal derivative

∂ayU (x, 0, t)
def= lim

y→0+ ya∂yU (x, y, t).

The proof is based on the representation

La = ya(∂t − �x − B(a)
y ), for y > 0, (2.2)
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where B
(a)
y = ∂2y + (a/y)∂y is the generator of the Bessel semigroup on (R+, yady).

Moreover, it was shown in [1] that, at a local level, problem (1.2) is equivalent to the following
thin obstacle problem for the local degenerate parabolic equation

{
LaU = 0 in Q+

1 ,

min{U (x, 0, t) − ψ(x, t),−∂ayU (x, 0, t)} = 0 on Q1,
(2.3)

which is the same as (1.1). Although such denomination is commonly used for the case a = 0
(s = 1/2), throughout the paper we will routinely refer to (2.3) as the parabolic Signorini
problem. We will also assume that the solution of has the following minimal regularity:

• ∇xU , yaUy ∈ Hα,α/2(Q+
1 ) for some α > 0;

• Ut ∈ L∞(Q+
1 );

• ya |∇Uxi |2, y−a(yaUy)
2
y ∈ L1(Q+

1 ).

This regularity follows for instance fromglobal semiconvexity assumptions in [1],with norms
depending on the initial data. But, for solutions of (2.3), it can also be obtained directly in
the form of interior estimates independent of initial data, see the forthcoming paper [6].

Wenext consider, for anya > −1, theCauchyproblemwithNeumannboundary condition
⎧
⎪⎨

⎪⎩

∂t u − B
(a)
y u = 0 in (0,∞) × (0,∞),

u(y, 0) = ϕ(y), y ∈ (0,∞),

∂ay u(0, t) = 0, t ∈ (0,∞).

(2.4)

This corresponds to one-dimensional Brownian motion reflected at y = 0. Consider the
following classes of functions

C(a)(0,∞) =
{

ϕ ∈ C(0,∞)

∣
∣
∣
∣

∫ R

0
|ϕ(y)|yady < ∞,

∫ ∞

R
|ϕ(y)|y a

2 dy < ∞,∀R > 0

}

,

and

C 1
(a)(0,∞) = {

ϕ ∈ C1(0,∞) | ϕ, y−1ϕ′ ∈ C(a)(0,∞)
}
.

As it was observed in (22.8) of [16] membership in C 1
(a)(0,∞) imposes, in particular, the

weak Neumann condition

lim inf
y→0+ ya |ϕ′(y)| = 0. (2.5)

For an analytic proof of the next result we refer the reader to Proposition 22.3 in [16].

Proposition 2.1 Given ϕ ∈ C 1
(a)(0,∞), the Cauchy problem (2.4) admits the following solu-

tion

u(y, t) = P(a)
t ϕ(y)

def=
∫ ∞

0
ϕ(η)p(a)(y, η, t)ηadη, (2.6)

where for y, η, t > 0 we have denoted by

p(a)(y, η, t) = (2t)−
a+1
2

( yη

2t

) 1−a
2

I a−1
2

( yη

2t

)
e− y2+η2

4t . (2.7)

For t ≤ 0 we set p(a)(y, η, t) ≡ 0.
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In (2.7) we have denoted by Iν(z) the modified Bessel function of the first kind and order
ν ∈ C defined, in the complex plane cut along the negative real axis, by the series

Iν(z) =
∞∑

k=0

(z/2)ν+2k

�(k + 1)�(k + ν + 1)
, |z| < ∞, | arg z| < π. (2.8)

When restricted to the positive real axis�z > 0, as in (2.7) above, the function Iν takes strictly
positive values for every ν > −1. As a consequence of this observation, I a−1

2

( yη
2t

)
> 0 for

every a > −1, and every y, η, t > 0. We note the following elementary properties of the
Bessel heat kernel p(a):

(i) p(a)(y, η, t) > 0 for every y, η > 0 and t > 0;
(ii) p(a)(y, η, t) = p(a)(η, y, t);
(iii) p(a)(λy, λη, λ2t) = λ−(a+1) p(a)(y, η, t).

By Remark 22.4 in [16], for every y > 0, t > 0 one has

p(a)(y, t)
def= p(a)(y, 0, t) = 1

2a�( a+1
2 )

t−
a+1
2 e− y2

4t . (2.9)

Thenext two results show that (2.6) defines a stochastically complete semigroup {P(a)
t }t>0.

For their proofs we refer to [17, Propositions 2.3, 2.4].

Proposition 2.2 Let a > −1. For every (y, t) ∈ (0,∞) × (0,∞) one has
∫ ∞

0
p(a)(y, η, t)ηadη = 1.

Proposition 2.3 Let a > −1. For every y, η > 0 and every 0 < s, t < ∞ one has

p(a)(y, η, s + t) =
∫ ∞

0
p(a)(y, ζ, t)p(a)(ζ, η, s)ζ adζ.

We further note that in view of representation (2.2), the fundamental solution for La in
Rn+1+ × (0,∞), with Neumann condition on the thin manifold (Rn × {0}) × (0,∞), and
singularity at (Y , 0) = (ξ, η, 0), is given by

Ga(X , Y , t) = p(x, ξ, t)p(a)(y, η, t), (2.10)

where p(x, ξ, t) = (4π t)−n/2 exp(−|x−ξ |2
4t ) is the standard heat kernel in Rn × (0,∞) and

p(a)(y, η, t) is given by (2.7) above. This means that, given a function ϕ ∈ C∞
0 (Rn+1+ ), the

Cauchy problem with Neumann condition
⎧
⎪⎨

⎪⎩

LaU = 0 in Rn+1+ × (0,∞)

U (X , 0) = ϕ(X), X ∈ Rn+1+ ,

∂ayU (x, 0, t) = 0, t ∈ (0,∞),

(2.11)

is represented by the formula

U (X , t) =
∫

R
n+1+

ϕ(Y )Ga(X , Y , t)ηadY . (2.12)

Using Proposition 2.2, and the well-known fact that
∫

Rn p(x, ξ, t)dξ = 1 for every x ∈ Rn

and t > 0, it is trivial to verify that for every X ∈ Rn+1+ and t > 0 one has
∫

R
n+1+

Ga(X , Y , t)ηadY = 1. (2.13)
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We also note that (ii) and (iii) above give for every X , Y ∈ Rn+1+ , and t > 0,

(ii)′ Ga(X , Y , t) = Ga(Y , X , t),
(iii)′ Ga(λX , λY , λ2t) = λ−(n+a+1)Ga(X , Y , t).

Henceforth, we take Y = 0 in (2.10), and with a slight abuse of the notation, we write

Ga(X , t) = Ga(X , 0, t).

By (2.10) and (2.9) above, we obtain

Ga(X , t) = (4π)− n
2

2a�( a+1
2 )

t−
n+a+1

2 e− |X |2
4t . (2.14)

From (2.13) and (ii)′ we have for every t > 0
∫

R
n+1+

Ga(X , t)yadX = 1. (2.15)

We denote by

G a(X , t) = Ga(X , |t |), t < 0, (2.16)

the Neumann fundamental solution of the backward operator L �
a = ya ∂

∂t + divX (ya∇X ).

This means that G a satisfies the equation in Rn+1+ × (−∞, 0),

L �
a G a = ya∂tG a + divX (ya∇XG a) = 0, (2.17)

plus the Neumann condition

∂ayG a(x, 0, t) = 0. (2.18)

From (2.14), for X ∈ Rn+1+ and t < 0 we have the reproducing property

∇G a = X

2t
G a . (2.19)

We now consider the parabolic dilations in Rn+1 × R defined by

δλ(X , t) = (λX , λ2t). (2.20)

A function f : Rn+1 × R → R is said to be homogeneous of degree κ ∈ R with respect to
(2.20) if f ◦ δλ = λκ f . The infinitesimal generator of the group {δλ}λ>0 is

Z f = 〈X ,∇ f 〉 + 2t ft . (2.21)

A C1 function is κ-homogeneous with respect to (2.20) if and only if one has Z f = κ f . For
instance, since from (iii)′ above we see that

G a ◦ δλ = λ−(n+a+1)G a, (2.22)

and therefore

ZG a = −(n + a + 1)G a . (2.23)

For later use we notice that for every (X , t) such that t �= 0, (2.21) can be rewritten

Z f

2t
= ft + 〈∇ f ,

X

2t
〉. (2.24)
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Further, we indicate with

|(X , t)| =
√

|X |2 + |t |,
the standard parabolic pseudo-distance from the origin in the variables (X , t) ∈ Rn+1 × R.
Notice that such function is positively homogeneous of degree onewith respect to the dilations
(2.20).

In closing, for every r > 0 we introduce the sets

Sr = Rn+1 × (−r2, 0],
S+
r = Rn+1+ × (−r2, 0],
Sr = Rn × (−r2, 0].

(2.25)

We emphasize that the + sign in the notation S+
r refers to the variable y > 0 and not to the

time variable t , which is instead negative for points in such set. The following simple lemma
will be used in the subsequent sections.

Lemma 2.4 For every r > 0 we have

1

r2

∫

S
+
r

G a y
adXdt = 1.

Proof By (2.22) we have
∫

S
+
r

G a y
adXdt = r−(n+a+1)

∫

S
+
r

G a(X/r , t/r2)yadXdt

= r2
∫ 0

−1

∫

R
n+1+

G a(Y , τ )ηadYdτ = r2,

where in the second equality we have made a change of variables Y = X/r , τ = t/r2, for
which yadXdt = rn+a+3ηadYdτ , and in the last equality we have used (2.15). ��

3 Classes of solutions

In this section we make some critical reductions on the problem (2.3). As a first step, we
reduce the problem (2.3) to one with zero obstacle at the expense of introducing a nonzero
right-hand side in the governing equation. The most straightforward way to do so is by
considering the difference

W (X , t) = U (X , t) − ψ(x, t). (3.1)

Later on, in order to take advantage of a possible higher regularity ofψ , we will make a more
refined construction. Since U solves (2.3), we have in Q+

1

LaW = LaU − Laψ = ya F̃,

where we have let

F̃(X , t) = F̃(x, t)
def= −(∂t − �x )ψ(x, t).

For later purposes it is important that we note here that the function F̃ , being independent
of the variable y, is automatically even in such variable. If we now assume that ψ ∈ C1,1

x
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and ψ ∈ C0,1
t , then we clearly have F̃ ∈ L∞(Rn+1 × R). We thus see that the function W

satisfies
{
LaW = ya F̃ in Q+

1 ,

min{W (x, 0, t),−∂ay W (x, 0, t)} = 0 on Q1.
(3.2)

We next want to extend (3.2) to a problem in a strip S+
1 . Pick a cut-off function ζ ∈ C∞

0 (B1×
(−1, 1)) of the type ζ(X) = ζ1(x)ζ2(y) with 0 ≤ ζ1, ζ2 ≤ 1, and such that ζ1 ≡ 1 in B3/4,
ζ2 ≡ 1 in (−3/4, 3/4). Moreover we can choose ζ1, ζ2 such that ζ1 is a function of |x | and
ζ2 is symmetric in y. We now let

V (X , t) = ζ(X)W (X , t) = ζ(X)(U (X , t) − ψ(x, t)). (3.3)

Clearly, V is supported in Q+
1 . Since ζ is smooth and symmetric in y, the function V

will satisfy on the thin set S1 the same Neumann condition as W . Furthermore, we have
ζy = O(|y|) near the thin set {y = 0}, which implies that y−a div(ya∇ζ ) = O(1) and
ζyVy = O(1) up to the thin set. Therefore, if we let

F
def= ζ F̃ − V y−a div(ya∇ζ ) − 2〈∇V ,∇ζ 〉,

then F ∈ L∞(S+
1 ) and V solves the problem

{
LaV = ya F in S+

1 ,

min{V (x, 0, t),−∂ay V (x, 0, t)} = 0 on S1.
(3.4)

Recalling now the minimal regularity assumptions imposed on the solutions of (2.3), we are
ready to introduce a central class of solutions in this paper.

Definition 3.1 (Solutions in strips) Given a function for F ∈ L∞(S+
1 ), we say that U ∈

SF (S+
1 ) if:

1) U has bounded support;
2) ∇xU , yaUy ∈ Hα,α/2(S+

1 ) for some α > 0;
3) Ut ∈ L∞(S+

1 );
4) ya |∇Uxi |2, y−a(yaUy)

2
y ∈ L1(S+

1 );
5) U solves (3.4);

6) (0, 0) ∈ �∗(U )
def= ∂{(x, t) ∈ S1 | U (x, 0, t) = 0, ∂ayU (x, 0, t) = 0}.

Suppose now the obstacle ψ in (2.3) is of class H �,�/2(Q1) with � = k + γ ≥ 2, k ∈ N,
0 < γ ≤ 1. We then make the following more refined construction that takes advantage of
the higher regularity of ψ . Let qk(x, t) be the parabolic Taylor polynomial of ψ at the origin
of parabolic degree k. Then, we have

|ψ(x, t) − qk(x, t)| ≤ C |(x, t)|�,
and more generally

|∂α
x ∂

j
t (ψ − qk)| ≤ M |(x, t)|�−|α|−2 j , (3.5)

for any multi-index α and j ≥ 0 with |α| + 2 j ≤ k. We then extend the polynomial qk into
Rn+1 × R as an a-caloric polynomial, even in y, with the help of the following lemma.
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Lemma 3.2 (a-Caloric extension of polynomials) For a given polynomial q(x, t) in Rn ×R,
there exists a unique polynomial q̃(x, y, t) in Rn+1 × R, which satisfies

⎧
⎪⎨

⎪⎩

q̃(x, 0, t) = q(x, t), (x, t) ∈ Rn × R

q̃(x,−y, t) = q̃(x, y, t), (x, y, t) ∈ Rn+1 × R

Laq̃ = 0, in Rn+1 × R.

(3.6)

Moreover, if q(x, t) is parabolically homogeneous of degree κ , then q̃ has the same homo-
geneity.

Proof The proof is similar to that of Lemma 4.3 in [13] for the case a = 0 and Lemma 5.2
in [21] for the stationary case. For a given polynomial q(x, t), let

q̃(x, y, t) =
∑

k≥0

(−1)kck(�x − ∂t )
kq(x, t)y2k, with ck =

k∏

i=1

1

2i(2i − 2s)
, c0 = 1.

Note that the sum above runs over a finite range of k, with 2k not exceeding the parabolic
degree of q(x, t). It is clear that

q̃(x, 0, t) = q(x, t)

and that q̃ is even in y. Further, using that
(

∂2y + a

y
∂y

)

(ck y
2k) = ck−1y

2(k−1),

(with the agreement that c−1 = 0) it is straightforward to check that

Laq̃(X , t) = ya(∂t − �x − B(a)
y )q̃(X , t) = 0.

Hence, q̃ is the required a-caloric extension of q , even in y. We next show the uniqueness
of such extension. By linearity of La , it suffices to show that the only extension of q = 0 is
q̃ = 0. Note that for any such extension, both q̃ and ∂ay q̃ vanish on {y = 0}. Now, from the
strong unique continuation property (which follows by applying the arguments in Lemma 7.7
in [4]), we conclude that q̃ ≡ 0. ��

Let now qk be the parabolic Taylor polynomial of ψ of parabolic degree k, and q̃k be the
corresponding a-caloric extension as in Lemma 3.2. Consider

Uk = U − q̃k(X , t), ψk = ψ − qk(x, t),

whereU is as in (2.3). It is easy to see thatUk solves the thin obstacle problem with the thin
obstacle ψk . With ζ a cut-off function as in (3.3), we now consider

Vk = ζ(X)(Uk − ψk). (3.7)

Then, Vk is a global solution to the Signorini problem (3.4), corresponding to a right-hand
side Fk given by

Fk = ζ(�xψk − ∂tψk) − Vk |y|−a div(ya∇ζ ) − 2〈∇Vk,∇ζ 〉.
Since ζ ≡ 1 in a neighborhood of 0, from (3.5) we obtain that Fk satisfies when � ≥ 2,

|Fk(X , t)| ≤ M |X , t)|�−2 for (X , t) ∈ S+
1 . (3.8)
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If � ≥ 3 we will also have

|∇X Fk(X , t)| ≤ M |X , t |�−3 for (X , t) ∈ Q+
1/2. (3.9)

For � ≥ 4 we will gain

|∂t Fk(X , t)| ≤ M |X , t |�−4 for (X , t) ∈ Q+
1/2. (3.10)

Moreover, since Vk(x, 0, t) = U (x, 0, t) − ψ(x, t) and ∂ay Vk(x, 0, t) = ∂ayU (x, 0, t) in
Q1/2, it follows that �∗(Vk) = �∗(U ) in Q1/2.

With the help of the monotonicity formulas that we prove in the next section, the growth
estimates (3.8)–(3.10) will allow a finer classification of free boundary points.

4 Almgren-Poon typemonotonicity formula

In this section we establish a monotonicity formula which plays an essential role in our
classification of free boundary points. We consider a function U ∈ SF (S+

1 ). In view of
(3.4), this means in particular that U solves the equation

ya∂tU − divX (ya∇XU ) = ya F in S+
1 . (4.1)

We assume henceforth that the function F satisfies for some � ≥ 2 and a constant C�,

|F(X , t)| ≤ C�|(X , t)|�−2 for every (X , t) ∈ S+
1 . (4.2)

Recall that, when the obstacle is of class H �,�/2, such assumption can be ensured by the
reduction argument in Sect. 3, see (3.8). We also note that, because of the technical nature
of the results in this section, some of the proofs are deferred to the appendix in Sect. 12.

For t < 0 we introduce the quantities

h(U , t) =
∫

R
n+1+

U (X , t)2 G a(X , t) yadX , (4.3)

d(U , t) = −t
∫

R
n+1+

|∇U (X , t)|2 G a(X , t)yadX , (4.4)

and

i(U , t) = 1

2

∫

R
n+1+

U (X , t)ZU (X , t) G a(X , t)yadX , (4.5)

where Z is the vector field in (2.21) above. Henceforth, we will routinely drop the indication
of the variables (X , t) and of the (n + 1)-dimensional Lebesgue measure dX in all integrals
involved. We will need the following result connecting d(U , t) and i(U , t). For the proof,
see Sect. 12.

Lemma 4.1 For t ∈ (−1, 0) we have

i(U , t) = d(U , t) −
∫

R
n+1+

|t |UFG a y
a +

∫

Rn×{0}
|t |U∂ayUG a . (4.6)
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Next, we introduce the following Steklov-type averaged versions of the quantities h(U , t),
d(U , t), and i(U , t):

H(U , r) = 1

r2

∫ 0

−r2
h(U , t)dt = 1

r2

∫

S
+
r

U 2 G a y
adXdt, (4.7)

D(U , r) = 1

r2

∫ 0

−r2
d(U , t)dt = 1

r2

∫

S
+
r

|t ||∇U |2 G a y
adXdt, (4.8)

and

I (U , r) = 1

r2

∫ 0

−r2
i(U , t)dt = 1

2r2

∫

S
+
r

U ZU G a y
a . (4.9)

We now define two initial frequencies of U that will each prove useful in the computations.

N (U , r) = 2
I (U , r)

H(U , r)
, Ñ (U , r) = 2

D(U , r)

H(U , r)
. (4.10)

Remark 4.2 We remark that if U ∈ S0(S
+
1 ) is homogeneous of degree κ with respect to the

dilations (2.20), then we have

N (U , r) = Ñ (U , r) ≡ κ.

In fact, since F ≡ 0 we have I (U , r) = D(U , r) from Lemma 4.3. But then, keeping in
mind that ZU = κU , we find from (4.9)

I (U , r) = κ

2
H(U , r).

This proves the claim.

Using Lemma 4.1 we immediately obtain the following alternative expression for I (U , r).

Lemma 4.3 One has for every r ∈ (0, 1)

I (U , r) = D(U , r) − 1

r2

∫

S
+
r

|t |UF G a y
adXdt .

We now list two key results: the first-variation formulas for H(U , r) and I (U , r). Their
proofs are given in Sect. 12.

Lemma 4.4 (First variation of the height) For a.e. r ∈ (0, 1) we have

H ′(U , r) = 4

r
I (U , r).

We observe that combining Lemma 4.4 with the former identity in (4.10), for every
r ∈ (0, 1) such that H(U , r) > 0 we can write

N (U , r) = r H ′(U , r)

2H(U , r)
. (4.11)

We will need the following result.

Lemma 4.5 For every r ∈ (0, 1) such that H(U , r) > 0, one has

1 + N (U , r) ≥ 0.
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Proof From (4.7) we have

d

dr

(
r2H(U , r)

) = d

dr

∫ 0

−r2

∫

R
n+1+

U 2 G a y
adXdt = 2r

∫

R
n+1+ ×{−r2}

U 2 G a y
adX ≥ 0.

If H(U , r) > 0, this gives

0 ≤ 2r H(U , r) + r2H ′(U , r) = 2r H(U , r)

(

1 + r H ′(U , r)

2H(U , r)

)

= 2r H(U , r) (1 + N (U , r)) ,

which implies the statement of the lemma. ��
For later use in the proof of Theorem 4.8we also record the following notable consequence

of the above computation
∫

R
n+1+ ×{−r2}

U 2 G a y
adX = H(U , r) (1 + N (U , r)) . (4.12)

��
Lemma 4.6 (First variation of the energy) For a.e. r ∈ (0, 1) we have

D′(U , r) = 1

r3

∫

S
+
r

(ZU )2 G a y
a + 2

r3

∫

S
+
r

|t |(ZU )F G a y
a .

Combining Lemma 4.3 with Lemma 4.6 we immediately obtain the following result, see also
Sect. 12.

Lemma 4.7 (First variation of the total energy) For a.e. r ∈ (0, 1) we have

I ′(U , r) = 1

r3

∫

S
+
r

(ZU )2 G a y
a + 2

r3

∫

S
+
r

|t |(ZU )F G a y
a

+ 2

r3

∫

S
+
r

|t |UF G a y
a + 2r

∫

R
n+1+ ×{−r2}

UF G a y
a .

With the statement of Lemmas 4.4 and 4.7 in place we now establish a basic monotonicity
formula that plays a central role in our classification of free boundary points.

Theorem 4.8 (Monotonicity formula of Almgren-Poon type) Let U ∈ SF (S+
1 ) with F

satisfying (4.2). Then, for every σ ∈ (0, 1) there exist a constant C > 0, depending on
n, a,C� and σ , such that the function

r �→ ��,σ (U , r)
def= 1

2
reCr

1−σ d

dr
logmax

{
H(U , r), r2�−2+2σ

}
+ 2(eCr

1−σ − 1),

(4.13)

is monotone nondecreasing on (0, 1). In particular, the following limit exists

��,σ (U , 0+)
def= lim

r→0+ ��,σ (U , r).

Proof We begin by introducing the set

E�,σ = {r ∈ (0, 1) | H(U , r) > r2�−2+2σ }.
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As it is well known by now, in order to prove the theorem it suffices to verify themonotonicity
of the function r → �σ (U , r) in the set E�,σ . In such set we have

��,σ (U , r) = 1

2
reCr

1−σ d

dr
log H(U , r) + 2(eCr

1−σ − 1) = 1

2
reCr

1−σ H ′(U , r)

H(U , r)
+ 2(eCr

1−σ − 1)

= eCr
1−σ

(N (U , r) + 2) − 2,

where in the last equality we have used (4.11). We now make the crucial observation that,
thanks to Lemma 4.5, we can say that r → N (U , r)+2 > 0 in E�,σ . Therefore, to complete
the proof it suffices to show that we have in E�,σ

d

dr
log��,σ (U , r) ≥ 0.

Finally, this is equivalent to proving that for every r ∈ E�,σ we have

(N (U , r) + 2)′

N (U , r) + 2
≥ −C̄r−σ , (4.14)

for some constant C̄ > 0 depending on n, a,C�, σ . Then, the thesis of the theorem will
follow with C = C̄/(1 − σ) > 0. We thus turn to proving (4.14).

Using the first equation in (4.10) we find

r5

2
H(U , r)2N ′(U , r) = r5H(U , r)2

I ′(U , r)H(U , r) − I (U , r)H ′(U , r)

H(U , r)2

= r5
(
I ′(U , r)H(U , r) − I (U , r)H ′(U , r)

)

= r5H(U , r)

(

I ′(U , r) − I (U , r)H ′(U , r)

H(U , r)

)

= r5H(U , r)

{
1

r3

∫

S
+
r

(ZU )2 G a y
a + 2

r3

∫

S
+
r

|t |(ZU )F G a y
a

+ 2

r3

∫

S
+
r

|t |UF G a y
a + 2r

∫

R
n+1+ ×{−r2}

UF G a y
a

− 4

r H(U , r)
I (U , r)2

}

= r2H(U , r)
∫

S
+
r

(ZU + |t |F)2 G a y
a − r2H(U , r)

∫

S
+
r

|t |2F2 G a y
a

− 2r2H(U , r)
∫

S
+
r

|t |ZUF G a y
a + 2r2H(U , r)

∫

S
+
r

|t |ZUF G a y
a

+ 2r2H(U , r)
∫

S
+
r

|t |UF G a y
a + 2r6H(U , r)

∫

R
n+1+ ×{−r2}

UF G a y
a

−
(∫

S
+
r

U ZU G a y
a
)2

,

123



The structure of the singular set in the thin obstacle... Page 15 of 52 91

where in the last equality we have used (4.9). We thus obtain

r5

2
H(U , r)2N ′(U , r) =

∫

S
+
r

U 2 G a y
a
∫

S
+
r

(ZU + |t |F)2 G a y
a

−
∫

S
+
r

U 2 G a y
a
∫

S
+
r

|t |2F2 G a y
a + 2

∫

S
+
r

U 2 G a y
a
∫

S
+
r

|t |UF G a y
a

+ 2r4
∫

S
+
r

U 2 G a y
a
∫

R
n+1+ ×{−r2}

UF G a y
a

−
(∫

S
+
r

U ZU G a y
a
)2

.

Cauchy-Schwarz inequality now gives

(∫

S
+
r

U
(
ZU + |t |F) G a y

a
)2

≤
∫

S
+
r

U 2 G a y
a
∫

S
+
r

(
ZU + |t |F) G a y

a .

Substituting in the above we find

r5

2
H(U , r)2N ′(U , r) ≥

(∫

S
+
r

U
(
ZU + |t |F) G a y

a
)2

−
(∫

S
+
r

U ZU G a y
a
)2

−
∫

S
+
r

U 2 G a y
a
∫

S
+
r

|t |2F2 G a y
a + 2

∫

S
+
r

U 2 G a y
a
∫

S
+
r

|t |UF G a y
a

+ 2r4
∫

S
+
r

U 2 G a y
a
∫

R
n+1+ ×{−r2}

UF G a y
a .

Expanding the first integral in the right-hand side of the latter inequality, and returning to the
definitions of H(U , r) and I (U , r), we find

r5

2
H(U , r)2N ′(U , r) ≥

(∫

S
+
r

|t |UF G a y
a
)2

+ 4r2 I (U , r)
∫

S
+
r

|t |UF G a y
a

− r2H(U , r)
∫

S
+
r

|t |2F2 G a y
a + 2r2H(U , r)

∫

S
+
r

|t |UF G a y
a

+ 2r6H(U , r)
∫

R
n+1+ ×{−r2}

UF G a y
a .

This gives

N ′(U , r) ≥ 4

r3
N (U , r)

∫

S
+
r

|t |UF G a ya

H(U , r)
− 2

r3

∫

S
+
r

|t |2F2 G a ya

H(U , r)

+ 4

r3

∫

S
+
r

|t |UF G a ya

H(U , r)
+ 4r

∫

R
n+1+ ×{−r2} UF G a ya

H(U , r)

= 4

r3
(N (U , r) + 1)

∫

S
+
r

|t |UF G a ya

H(U , r)
− 2

r3

∫

S
+
r

|t |2F2 G a ya

H(U , r)

+ 4r

∫

R
n+1+ ×{−r2} UF G a ya

H(U , r)
.
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Using the Cauchy-Schwarz inequality, we find

N ′(U , r) ≥ − 4

r2
(N (U , r) + 1)

(∫

S
+
r

|t |2F2 G a ya
)1/2

H(U , r)1/2
− 2

r3

∫

S
+
r

|t |2F2 G a ya

H(U , r)

− 4r

(∫

R
n+1+ ×{−r2} U

2 G a ya
)1/2 (∫

R
n+1+ ×{−r2} F

2 G a ya
)1/2

H(U , r)
. (4.15)

To proceed, we note that for r ∈ E�,σ we have in particular H(U , r) > 0, and thus we are
in the conditions of Lemma 4.5. In particular, we trivially infer from (4.12)

(∫

R
n+1+ ×{−r2}

U 2 G a y
a

)1/2

= (H(U , r) (1 + N (U , r)))1/2

≤ H(U , r)1/2
(

1 + 1

2
N (U , r)

)

.

Using this bound in (4.15) gives

N ′(U , r) ≥ − 4

r2
(N (U , r) + 1)

(∫

S
+
r

|t |2F2 G a ya
)1/2

H(U , r)1/2
− 2

r3

∫

S
+
r

|t |2F2 G a ya

H(U , r)

− 2r
(2 + N (U , r))

(∫

R
n+1+ ×{−r2} F

2 G a ya
)1/2

H(U , r)1/2
.

This estimate implies

(2 + N (U , r))′ ≥ −(2 + N (U , r))

×
⎡

⎢
⎣

4

r2

(∫

S
+
r

|t |2F2 G a ya
)1/2

H(U , r)1/2
+ 2r

(∫

R
n+1+ ×{−r2} F

2 G a ya
)1/2

H(U , r)1/2

⎤

⎥
⎦

− 2

r3

∫

S
+
r

|t |2F2 G a ya

H(U , r)
.

At this point we observe that (4.2), (2.22) and a simple rescaling argument imply

(∫

R
n+1+ ×{−r2}

F2 G a y
adX

)1/2

≤ Cr�−2, (4.16)

where C = √
C� Cn,a,�, with

Cn,a,� =
∫

R
n+1+

|(X ,−1)|2(�−2)G a(X ,−1)yadX .

Similarly, we obtain

(∫

S
+
r

|t |2F2 G a y
a
)1/2

≤ Cr1+�. (4.17)
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Now, if r ∈ E�,σ we have H(U , r) > r2�−2+2σ and thus from (4.16), (4.17), and the above
estimate for (2 + N (U , r))′, we find

(2 + N (U , r))′ ≥ −C ′(2 + N (U , r))r−σ − C ′′r1−2σ ≥ −C̄(2 + N (U , r))r−σ .

Since by Lemma 4.5 we know that 2+ N (U , r) > 0, this proves (4.14), thus completing the
proof. ��

5 Gaussian estimates

In this section we establish some uniform second derivative estimates in Gaussian spaces
that play a crucial role in the blowup analysis in Sect. 6.

Lemma 5.1 Let U ∈ SF (S+
1 ), with F, Ft ∈ L∞(S+

1 ). Then, for any 0 < ρ < 1, there exists
a constant C(n, ρ) > 0 such that the following estimates hold:

∫

S
+
ρ

|t ||∇U |2G a y
a ≤ C(n, a, ρ)

∫

S
+
1

(U 2 + |t |2F2)G a y
a, (5.1)

and
∫

S
+
ρ

|t |2(|∇Uxi |2 +U 2
t )G a y

a ≤ C(n, a, ρ)

∫

S
+
1

(U 2 + |t |2F2)G a y
a . (5.2)

Proof We closely follow the ideas in Appendix A in [13] and in [4]. In the rest of the proof,
whenever we refer to the weak formulation of (4.1) we mean that, given η ∈ W 1,2(Rn+1+ ×
(−1, 0), yadXdt) with η(·, t) compactly supported in B+

R , for some R > 0 independent of
t ∈ (−1, 0), we have for all 0 < δ < r < 1,

∫

S
+
r −S

+
δ

(〈∇U ,∇η〉 +Utη + FUη)G a y
a = −

∫

Sr−Sδ

U∂ayU η G a . (5.3)

Having clarified this, we divide the proof into four steps.
Step 1: Let 0 < ρ < 1 be fixed. We first establish (5.1), which represents a Caccioppoli

type energy estimate in Gaussian space.We begin by noting that, sinceU is inSF (S+
1 ), there

exists R > 0 such that U (·, t) is supported in BR for every t ∈ (−1, 0). Let ρ̃ be such that
ρ < ρ̃ < 1, and fix r ∈ [ρ, ρ̃]. We fix a cut-off function τ̂0 ∈ C∞

0 (Rn+1) such that τ̂0 ≡ 0
outside BR . Corresponding to such τ̂0, for every k ∈ N we define a homogeneous function
of degree k in S1 by letting

τk = |t |k/2τ̂0(X/
√|t |). (5.4)

Using the test function

η = Uτ 21 G a

in (5.3), for 0 < δ < r sufficiently small we obtain
∫

S
+
r −S

+
δ

(

|∇U |2τ 21 +U

(

〈∇U ,
X

2t
〉 +Ut

)

τ 21

+2Uτ1〈∇U ,∇τ1〉 + FUτ 21

)

G a y
a = −

∫

Sr−Sδ

U∂ayUτ 21 G a = 0. (5.5)
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In (5.5) we have used the hypothesis that U∂ayU = 0 on the thin set {y = 0}, see (3.4), and
the reproducing property (2.19). Since

Z(U 2) = 2UZU = 2U (〈X ,∇U 〉 + 2tUt ) = 4tU

(

〈∇U ,
X

2t
〉 +Ut

)

,

from (5.5) we have
∫

S
+
r −S

+
δ

(

|∇U |2τ 21 + 1

4t
Z(U 2)τ 21 + 2Uτ1〈∇U ,∇τ1〉 + FUτ 21

)

G a y
a = 0. (5.6)

Handling the term Z(U 2) in (5.6) requires some care. For this, we argue as on p.92 in the
Appendix of [13], making the change of variables t = −λ2, X = λY , and exploiting the
homogeneity of G a and of τ1. After some work, we find

∫

S
+
r −S

+
δ

1

4t
Z(U 2)τ 21 G a y

a ≥ −r2
∫

R
n+1+

U (·,−r2)2τ̂ 20 G a(·,−r2)ya . (5.7)

From (5.6), (5.7) and Young’s inequality, we obtain
∫

S
+
r −S

+
δ

|∇U |2τ 21G a y
a

≤ C

(∫

R
n+1+

U (·, −r2)2 τ̂ 20G a(·, −r2)ya +
∫

S
+
r −S

+
δ

[U 2(τ 40 + |∇τ1|2) + F2|t |2]G a y
a

)

. (5.8)

Integrating (5.8) with respect to r ∈ [ρ, ρ̃], then letting the support of τ̂0 sweep Rn+1, and
δ → 0, we conclude that the estimate (5.1) holds.

Step 2: We turn our attention to the proof of (5.2). We begin with the following second
derivative estimate for tangential derivatives

∫

S
+
ρ

|t |2|∇Uxi |2G a y
a ≤ C(n, a, ρ)

∫

S
+
1

(U 2 + |t |2F2)G a y
a . (5.9)

With ρ, ρ̃, r , δ as in Step 1, for a given i ∈ {1, . . . , n} and ε > 0, we also let

η = (|Uxi | − ε)+τ 22 G a, (5.10)

where τ2 corresponds to the choice k = 2 in (5.4). Noting that the set Aε = {|Uxi | > ε}∩{y =
0} is compactly contained in the interior of the set {∂ayU = 0}, a standard difference quotient
argument as in [4, Sect. 5] allows us to assert that ∇Uxi , ∂tUxi ∈ L2

loc(·, yadXdt) up to
{y = 0} in Aε (we stress that here we crucially use the fact that Ft ∈ L∞(S+

1 )). Once we
know this, with η as in (5.10), we use ηxi as a test function in the weak formulation (5.3).
Integrating by parts with respect to xi and by a limiting type argument (i.e., by first integrating
in the region {y > β}, and then letting β → 0), we obtain

∫

(S+
r −S

+
δ )∩Bε

(

|∇Uxi |2τ 22 + Vε〈∇Uxi ,
X

2t
〉τ 22

+ ∂tUxi Vετ
2
2 + 2Vετ2〈∇Uxi ,∇τ2〉

)

G a y
a

+
∫

(S+
r −S

+
δ )∩Bε

ya
(
F(Vε)xi τ

2
2 G a + 2FVετ2(τ2)xiG a + FVετ

2
2 (G a)xi

)

−
∫

(Sr−Sδ)∩Aε

(∂ayU )xi (|Uxi | − ε)+τ 22 G a = 0, (5.11)

123



The structure of the singular set in the thin obstacle... Page 19 of 52 91

where Vε = (|Uxi | − ε)+ and Bε = {(X , t) | |Uxi | > ε}, and in the second term in the first
integral in the left-hand side we have used (2.19). We stress that ηxi is not a legitimate test
function. Nevertheless, the computation in (5.11) can be justified by using as a test function
difference quotients of the form

ηh,i = η(X + hei ) − η(X)

h
,

instead of ηxi , and then finally let h → 0. We also note that for the difference quotients the
integration by parts with respect to xi is equivalently replaced by an identity of the following
type

∫

R
n+1+

fh,i gy
adX = −

∫

R
n+1+

f g−h,i y
adX ,

which holds for arbitrary compactly supported functions f , g and is a consequence of a
standard change of variable formula. In (5.11), we have also used that, since ∂ayU = 0 on the
set Aε , we have (∂ayU )xi = 0 on Aε. Letting ε → 0 in (5.11), we find

∫

S
+
r −S

+
δ

(

|∇Uxi |2τ 22 + 1

4t
Z(U 2

xi )τ
2
2 + 2Uxi 〈∇Uxi ,∇τ2〉τ2

)

G a y
a

≤
∫

S
+
r −S

+
δ

(

|F ||Uxi xi |τ 22 + 2F |Uxi |τ2|∇τ2| + F |Uxi |τ 22
∣
∣
∣
∣
X

2t

∣
∣
∣
∣

)

G a y
a . (5.12)

To handle the termwith Z(U 2
xi )we argue again as in the opening of page 92 in [13], obtaining

∫

S
+
r −S

+
δ

1

4t
Z(U 2

xi )τ
2
2 G a y

a ≥ −r2
∫

R
n+1+

Uxi (·,−r2)2τ 21 G a(·,−r2)ya . (5.13)

The integral
∫

S
+
r −S

+
δ

F |Uxi |τ 22
∣
∣
∣
∣
X

2t

∣
∣
∣
∣G a y

a

in the right-hand side of (5.12) can be estimated by Young’s inequality as follows:
∫

S
+
r −S

+
δ

F |Uxi |τ 22
∣
∣
∣
∣
X

2t

∣
∣
∣
∣G a y

a

≤ C1

∫

S
+
r −S

+
δ

|F |2τ 22 G a y
a + C2

∫

S
+
r −S

+
δ

|Uxi |2
|X |2
2|t | τ 21 G a y

a

≤ C3

∫

S
+
r −S

+
δ

|F |2τ 22 G a y
a + C4

∫

S
+
r −S

+
δ

(|∇U |2(|∇τ2|2 + |τ1|2) + |∇Uxi |2τ 22
)
G a y

a .

(5.14)

In the last step we have used the fact that the following inequality holds at every time level:
for any v ∈ W 1,2(Rn+1,G a yadX) one has

∫

R
n+1+

v2
|X |2
|t | G a y

a ≤ C
∫

R
n+1+

(v2 + |t ||∇v|2)G a y
a . (5.15)

We mention that (5.15) corresponds to the inequality (8.17) in [4].
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The remaining integrals in the right-hand side of (5.12) can be estimated in a similar way.
Using Young’s inequality we find

∫

S
+
r −S

+
δ

(|F ||Uxi xi |τ 22 + 2F |Uxi |τ2|∇τ2|
)
G a y

a

≤
∫

S
+
r −S

+
δ

(
1

4
|∇Uxi |2τ 22 + C |F |2τ 22 + |∇U |2|∇τ2|2

)

G a y
a . (5.16)

Combining the estimates (5.14)–(5.16), and subtracting from the left-hand side the integral

1

4

∫

S
+
r −S

+
δ

|∇Uxi |2τ 22 G a y
a,

we obtain
∫

S
+
r −S

+
δ

|∇Uxi |2τ 22 G a y
a ≤ C

(∫

R
n+1+

Uxi (·,−r2)2τ 21 G a(·,−r2)ya

+
∫

S
+
r −S

+
δ

(|F |2τ 22 + |∇U |2(|∇τ2|2 + τ 21 )
)
G a y

a
)

. (5.17)

As before, we now integrate over r ∈ [ρ, ρ̃], let the support of τ̂0 exhaust the whole ofRn+1,
then let δ → 0, and also using the previously established estimate (5.1), we finally deduce
that (5.9) holds.

Step 3: Our next objective is to establish the following second derivative estimate in the
normal direction:

∫

S
+
ρ

|t |2((yaUy)y)
2G a y

−a ≤ C(n, a, ρ)

∫

S
+
1

(U 2 + |t |2F2)G a y
a . (5.18)

For this wemake use of the following conjugate equation which is satisfied inRn+1+ ×(−1, 0)
by w = yaUy

div(y−a∇w) − y−awt = Fy . (5.19)

For a given ε > 0, we consider the test function

η = (yaUy − ε)+τ 22 G a,

in the weak formulation of (5.19).We note that since ∂ayU ≤ 0 on the thin set {y = 0}, thanks
to the Hölder continuity of yaUy up to {y = 0}, the function η is compactly supported in the
region {y > 0}, and therefore it is a legitimate test function. With w = yaUy , we thus have

∫

S
+
r −S

+
δ

(
|∇(w − ε)+|2τ 22 G a y

−a + τ 22 (w − ε)+〈∇w,∇G a〉y−a

+(w − ε)+wtτ
2
2 G a y

−a + 2τ2(w − ε)+〈∇w,∇τ2〉G a y
−a

+F∂y(w − ε)+τ 22 G a + 2F(w − ε)+τ2∂yτ2G a + F(w − ε)+τ 22
y

2t
G a

)
= 0.

(5.20)
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Similarly to (5.13), we now obtain
∫

S
+
r −S

+
δ

[τ 22 (w − ε)+〈∇w,∇G a〉y−a + (w − ε)+wtτ
2
2 G a]

=
∫

S
+
r −S

+
δ

1

4t
Z(((w − ε)+)2)τ 22 G a y

−a

≥ −r2
∫

R
n+1+

(w − ε)2+(·,−r2)τ 21 G a(·,−r2)y−a . (5.21)

Using Young’s inequality, we estimate
∫

S
+
r −S

+
δ

y−a2τ2(w − ε)+〈∇w,∇τ2〉G a + F∂y(w − ε)+τ 22 G a + 2F(w − ε)+τ2∂yτ2G a

≤
∫

S
+
r −S

+
δ

1

4
τ 22 |∇(w − ε)+|2G a y

−a + C(((w − ε)+)2|∇τ2|2G a y
−a + F2τ 22 G a y

−a).

Finally, the last term in the left-hand side of (5.20) is estimated in the following way. First,
Young’s inequality (and the trivial observation that |y| ≤ |X |) gives

∫

S
+
r −S

+
δ

F(w − ε)+τ 22
y

2t
G a

≤ c−1
0

∫

S
+
r −S

+
δ

t F2τ 22 G a y
a + c0

∫

S
+
r −S

+
δ

((w − ε)+)2τ 21
|X |2
2t

G a y
−a), (5.22)

where c0 can be chosen arbitrarily small. To control the second integral in the right-hand
side of (5.22) we argue similarly to (5.15), but with a replaced by −a. Inserting the ensuing
estimate in (5.22), the resulting inequality becomes

∫

S
+
r −S

+
δ

F(w − ε)+τ 22
y

2t
G a

≤ C1

∫

S
+
r −S

+
δ

F2τ 22 G a y
a + C1c0

∫

S
+
r −S

+
δ

(

|∇(w − ε)+|2τ 22 G a y
−a

+((w − ε)+)2|∇τ1|2|t |G a y
−a + ((w − ε)+)2τ 21 G a y

−a
)

, (5.23)

for some constant C1 > 0. At this point we choose c0 small enough such that C1c0 < 1
4 .

Combining the estimates (5.21) and (5.23), and then subtracting the integral

1

2

∫

S
+
r −S

+
δ

|∇(w − ε)+|2τ 22 G a y
−a

from the left hand side of (5.20), we finally obtain
∫

S
+
r −S

+
δ

|t |2|∇(w − ε)+|2G a y
−a

≤ C

{∫

S
+
r −S

+
δ

[

((w − ε)+)2(τ 21 + |t ||∇τ1|2 + |∇τ2|2)G a y
−a
]

+ |t |2F2G a y
a

+r2
∫

R
n+1+

(w − ε)2+(·,−r2)τ 21 G a(·,−r2)y−a
}

.
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Integrating again in r ∈ [ρ, ρ̃], by a limiting argument and finally letting ε → 0, we deduce
the following estimate

∫

S
+
ρ

|t |2|∇w+|2G a y
−a ≤ C(n, ρ)

∫

S
+
ρ̃

|t |w2G a y
−a + |t |2F2G a y

a, (5.24)

where ρ < ρ̃ < 1.
As a next step, we obtain an estimate similar to (5.24) for ∇w− in L2(·,G a y−adXdt).

Given ε > 0, we consider the function vε = (w + ε)−, where w = yaUy as before. Let
Cε = supp vε, and denote by C̃ε the reflected portion ofCε across {y = 0}. SinceU∂ayU = 0
on {y = 0}, by the continuity of yaUy up to {y = 0}, we see that Cε ∩ {y = 0} is contained
in the interior of {(x, 0) | U (x, 0) = 0}. Therefore nearCε ∩{y = 0}, ifU is oddly reflected,
then the extended U solves the following equation in Dε = Cε ∪ C̃ε

div(|y|a∇U ) − |y|aUt = |y|a F̃,

where F̃ is the odd extension of F across {y = 0}. Therefore, in the set Dε the function
v = |y|aUy is an even extension of w across {y = 0}, and it solves the following conjugate
equation in Dε

div(|y|−a∇v) − |y|−avt = F̃y . (5.25)

Using the test function

η = (w + ε)−τ 22 G a

in the weak formulation of (5.25), arguing as in (5.20)–(5.24), and finally letting ε → 0, we
obtain the following estimate

∫

S
+
ρ

|t |2|∇w−|2G a y
−a ≤ C(n, ρ)

∫

S
+
1

|t |w2G a y
−a + |t |2F2G a y

a . (5.26)

By combining (5.24) and (5.26), and using the previously established estimate (5.1), we
finally have
∫

S
+
ρ

|t |2((yaUy)y)
2G a y

−a ≤
∫

S
+
ρ

|t |2|∇w|2G a y
−a ≤ C(n, ρ)

∫

S
+
1

(U 2 + |t |2F2)G a y
a,

which completes the proof of (5.18).
Step 4: At this point, using the equation satisfied byU , the corresponding estimate forUt

claimed in (5.2) follows from (5.9) and (5.18). This finishes the proof of the lemma. ��

Remark 5.2 We note that assumption that ‖Ft‖L∞(S+
1 ) be finite in Lemma 5.1 is not restrictive

since it can always be achieved if the obstacle is sufficiently regular.

We also need the following estimate in our blowup analysis in Sect. 6.

Lemma 5.3 For i = 1, 2, let Ui ∈ SFi (S
+
1 ) with Fi ∈ L∞(S+

1 ). Then, for any 0 < ρ < 1,
one has

∫

S
+
ρ

|t ||∇(U1 −U2)|2G a y
a ≤ C(n, a, ρ)

∫

S
+
1

(U 2 + |t |2(F1 − F2)
2)G a y

a (5.27)
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Proof First, we even reflectU1, F1,U2, F2 across {y = 0}. Consider nowU = U1 −U2. We
claim that the following holds in S1,

LaU
+ ≤ |y|a(F1 − F2)

+, LaU
− ≤ |y|a(F1 − F2)

−. (5.28)

We note that it is clear that the differential inequalities (5.28) are respectively satisfied in
S+
1 and S−

1 . Therefore, we only need to show the inequality near a point (x0, 0, t0) ∈ Q3/4.
Suppose U (x0, 0, t0) > 0. Since it must necessarily be U1(x0, 0, t0) > 0, we infer the
existence of a sufficiently small δ > 0, such that ∂ayU1 ≡ 0 in Qδ(x0, 0, t0). This implies
that

LaU1 = |y|a F1
in Qδ(x0, 0, t0). On the other hand,

LaU2 ≥ |y|a F2
Therefore we obtain

LaU ≤ |y|a(F1 − F2)

in Qδ(x0, 0, t0). Thus

LaU ≤ |y|a(F1 − F2)
+

inQ3/4 ∩ {U > 0}. Now by using a standard argument as in the proof of Lemma 2.1 in [25],
we can deduce that

LaU
+ ≤ |y|a(F1 − F2)

+

in Q3/4 and hence in S1. The argument for U− is similar and thus we can assert that (5.28)
holds. Now given the validity of (5.28), we can argue as in Step 1 in the proof of Lemma 5.1
(using η = U±τ 21 G a as a test function in the weak formulation for U±) to conclude that the
weighted Caccioppoli type estimate (5.27) holds. ��

6 Existence and homogeneity of blowups

Throughout this section, we assume that U ∈ SF (S+
1 ), where F satisfies (4.2) for some

� ≥ 2. Towards the end of the section, we will need � ≥ 4 and require the following
additional bounds to hold for and some positive constant C�

|∇X F(X , t)| ≤ C�|(X , t)|�−3, for (X , t) ∈ Q+
1/2 (6.1)

|∂t F(X , t)| ≤ C�|(X , t)|�−4 for (X , t) ∈ Q+
1/2. (6.2)

We note that (6.1), (6.2) are fulfilled by assuming that the obstacle be of class H �,�/2, see
(3.9), (3.10) at the end of Sect. 3. We now state our first result.

Lemma 6.1 Under assumptions of Theorem 4.8, fix σ ∈ (0, 1). Then, one has

��,σ (U , 0+) = κ ≤ � − 1 + σ. (6.3)

Furthermore, if κ < � − 1 + σ , then there exists r0 = r0(U ) > 0 such that for every
r ∈ (0, r0) one has

H(U , r) ≥ r2�−2+2σ . (6.4)
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In particular, we have in such case

��,σ (U , 0+) = 1

2
lim

r→0+
r H ′(U , r)

H(U , r)
= lim

r→0+N (U , r) = lim
r→0+ Ñ (U , r). (6.5)

Proof The proof of (6.3) and (6.4) follows the lines of that of Lemma 7.1 in [13] in the case
a = 0, and we thus refer the reader to that source for details. In order to establish (6.5) we
note explicitly that from (4.8), (4.10) and Lemma 4.3, we have

N (U , r) = Ñ (U , r) −
2
r2
∫

S
+
r

|t |UF G a ya

H(U , r)
.

Keeping in mind that the hypothesis (4.2) implies (4.17), Cauchy-Schwarz’s inequality gives
∣
∣
∣ 1r2
∫

S
+
r

|t |UF G a ya
∣
∣
∣

H(U , r)
≤ 1

r

(∫

S
+
r

|t |2F2 G a ya
)1/2

H(U , r)1/2

≤ C
r�

H(U , r)1/2
≤ C

r�

r�−1+σ
= Cr1−σ → 0,

as r → 0+. This shows that

lim
r→0+N (U , r) = lim

r→0+ Ñ (U , r).

��
Later in the paper we will need to work with two different families of rescalings, which

we now introduce.

Definition 6.2 With δλ as in (2.20) we define the parabolic Almgren rescalings of U as

Ur = U ◦ δr

H(U , r)1/2
. (6.6)

For κ > 0 we define the κ-homogeneous rescalings of U as

Ũr = U ◦ δr

rκ
. (6.7)

We note that the rescaled functions Ur solve
⎧
⎪⎨

⎪⎩

LaUr = |y|a Fr in S+
1 ∪ S−

1 ,

min{Ur (x, 0, t),−∂ayU (x, 0, t)} = 0 on S1,

Ur (x,−y, t) = Ur (x, y, t), in S1,

(6.8)

where

Fr = r2F(r X , r2t)

H(U , r)1/2
. (6.9)

We have the following key result, whose elementary verification we leave to the reader.

Proposition 6.3 For every r , ρ > 0 one has

H(U , rρ) = H(U ◦ δr , ρ), D(U , rρ) = D(U ◦ δr , ρ), N (U , rρ) = N (U ◦ δr , ρ).

(6.10)

In particular, we have for the parabolic Almgren rescalings

N (Ur , ρ) = N (U , rρ). (6.11)
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The Almgren rescalings are tailor-made for Theorem 4.8, whereas the homogeneous
rescalings are the appropriate ones for the applications of the Weiss and Monneau type
monotonicity formulas in Theorems 10.1 and 10.5 below. Proposition 6.3 implies in particular
that

H(Ur , 1) = 1,

and, more generally,

H(Ur , ρ) = H(U , ρr)

H(U , r)
.

The following lemma plays a key role in our blowup analysis. It will ensure that the blow up
limit U0 is bounded on sets of the type B

+
A × (−1, 0] for any A > 0.

Lemma 6.4 Let U ∈ SF (S+
1 ), where F satisfies (4.2) for some � ≥ 2. Given A > 0 and

0 < r < 1, we have

‖U‖L∞(B+
Ar×(−r2/4,0)) ≤ CH(U , r)1/2 + Cr�, (6.12)

for some universal C > 0 depending also on �, A.

Proof It suffices to prove the claim for U+ and U− since, after even reflection in y, both of
them satisfy for any r > 0,

LaV ≤ |y|a‖F‖L∞(Qr ) in Qr .

Let then V denote either U+ or U−. Since F satisfies (4.2) with some constant C�, we let

Ṽ =
{
V + C0(|X |2 − t)�/2, when � > 2,

V − C0 t, when � = 2,

where C0 = C0(n, γ, a, �) is so chosen that La Ṽ ≤ 0. A simple calculation shows that this
can be ensured. We then note that the following holds

H(Ṽ , r)1/2 ≤ H(U , r)1/2 + C0

(
1

r2

∫

S
+
r

(|X |2 + |t |)� G a y
a
)1/2

≤ H(U , r)1/2 + Cr�,

where in the last inequality we have used a change of variable and the homogeneity property
of G a . Now, given (X0, t0) = (x0, y0, t0) ∈ B+

Ar × (−r2/4, 0), and using that Ṽ has a
polynomial growth at infinity, we can adapt a variational argument in [12] to deduce the
following sub-mean value estimate

Ṽ (X0, t0) ≤
∫

R
n+1+

V (x, y, t0 + s0)G a(X , X0, s0)y
adX , (6.13)

where G a(X , X0, s0) = Ga(X , X0,−s0), see (2.10) and (2.16), and s0 < t0 < 0.
Indeed, (6.13) can be justified as follows. Let τR be a cut-off of the type τR(X) =

τ 1R(x)τ 2R(y), with τ 1R ≡ 1 in BR and vanishing outside B2R , and τ 2R ≡ 1 in (−R, R) and
vanishing outside (−2R, 2R). Then, for t < 0 the function w = Ṽ τR solves

Law ≤ Cya(|∇ Ṽ ||∇τR | + |Ṽ |(|∇2τR | + |∇τR |)), (6.14)
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for some universal C independent of R, provided R > 1. Note that it is not restrictive to
assume R large, since we eventually want to let R → ∞. Fix t0 < 0, and for a given s0 < 0,
define for s ≤ √−s0,

φ(s) =
∫

R
n+1+

w(X , t0 + s0 + s2)Ga(X , X0,−s0 − s2)yadX .

Since w is Lipschitz in s, φ(s) is absolutely continuous. Therefore, differentiating under the
integral sign, one has for a.e. s,

φ′(s) = 2s
∫

R
n+1+

(
∂tw(X , t0 + s0 + s2)Ga(X , X0,−s0 − s2) − w∂tGa(X , X0,−s0 − s2)

)
ya .

(6.15)

We now integrate by parts in the second integral in (6.15). Using the properties
{
ya∂tGa = div(ya∇Ga),

∂ayGa = 0 on y = 0,
(6.16)

and (6.14), we deduce

φ′(s) ≤ 2s
∫

R
n+1+

GR Ga(X , X0,−s0 − s2)ya,

where we have letGR = 2(|∇ Ṽ ||∇τR |+|Ṽ ||∇2τR |). Note thatGR is supported in the region
where |X | ≥ R. We next integrate the latter inequality on the interval (0, t), finding

∫

R
n+1+

w(X , t0 + s0 + t2)Ga(X , X0,−s0 − t2)ya

≤
∫

R
n+1+

w(X , t0 + s0)Ga(X , X0,−s0)y
a

+
∫ t2

0

∫

R
n+1+

GR(X , t0 + s0 + s)Ga(X , X0,−s0 − s)yads. (6.17)

At this point we let t → √−s0 in (6.17). Using the Dirac property of Ga and changing the
time variable from t0 + s0 + s to s, we obtain

w(X0, t0) ≤
∫

R
n+1+

w(X , t0 + s0)Ga(X , X0,−s0)y
a

+
∫ t0

t0+s0

∫

R
n+1+

GR(X , s)Ga(X , X0, t0 − s)yadXds. (6.18)

��
To proceed further, with t0, s0 as in (6.18) above, we now fix b > 0 small enough such

that −1/2 < t0 < −b and s0 < −b. Given A > 0, let X0 be such that |X0| ≤ A. Since
we eventually want to let R → ∞ in (6.18), we assume that R be sufficiently large, say
R ≥ 100A + 1. We make the following:

Claim 6.5 For −1/2 < t0 < −b < 0 and |X0| ≤ A, there is C = C(n, b, A) > 0 such that
for R ≥ 100A + 1 we have

Ga(X , X0, t0 − s) ≤
{

C G a(X , s), if s < t0, t0 − s < −s/8, |X | ≥ R, (a)
C G a(X , s)eC |X |, if s < t0, t0 − s > −s/8. (b)
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To establish the claim, we recall that Ga(X , X0, t0 − s) = p(x, x0, t0 − s)p(a)(y, y0, t0 − s).
Keeping in mind the representation (2.7) of p(a), and the asymptotic behavior of the modified
Bessel function I a−1

2
(see e.g. (5.11.10) and (5.16.14) in [22]), we note that for any a ∈

(−1, 1), there exist universal constants C(a), c(a) > 0, such that
{
I a−1

2
(z) ≤ C(a)z−1/2ez, z > c(a),

I a−1
2

(z) ≤ C(a)z
a−1
2 , 0 < z < c(a).

(6.19)

Moreover, it is easy to check that for |X | ≥ 100A + 1 and |X0| ≤ A one has

|X − X0|2 ≥ 1

2
+ 2yy0 + |X |2

8
. (6.20)

We also note from (2.7) that

p(a)(y, y0, t0 − s) = e
− yy0

2(t0−s) (2(t0 − s))−
a+1
2

(
yy0

2(t0 − s)

)− a−1
2

×I a−1
2

(
yy0

2(t0 − s)

)

e
− (y−y0)2

4(t0−s) . (6.21)

We now subdivide the proof of both (a) and (b) in Claim 6.5 into two cases: 1) yy0
2(t0−s) <

c(a); and, 2) yy0
2(t0−s) ≥ c(a). In case 1) we have from the second inequality in (6.19):

(
yy0

2(t0−s)

)− a−1
2

I a−1
2

≤ C(a). Substituting this information in (6.21), using (6.20) and the fact

that s < −b, we find

Ga(X , X0, t0 − s) ≤ C

(t0 − s)
n+1+a

2

e
− |X−X0 |2

4(t0−s)

≤ C(n, b, A)

(−s)
n+1+a

2 (t0 − s)
n+1+a

2

e
− 1

8(t0−s) e
− |X |2

32(t0−s) .

Note that in the second inequality above, we have also used the fact that e
− yy0

2(t0−s) ≤ 1. From
the latter estimate the desired bound in case (a) of Claim 6.5 follows using that t0−s < −s/8,

and that r �→ r− n+1+a
2 e−1/r is uniformly bounded on [0,∞). In case 2), using (6.21) and the

first inequality in (6.19), we obtain

Ga(X , X0, t0 − s) ≤ C(n, b, A)

(−s)
n+a+1

2 (t0 − s)
n+1+a

2

e
− 1

8(t0−s) e
− |X |2

32(t0−s)

(
yy0

2(t0 − s)

)−a/2

e
− yy0

2(t0−s) ,

and the desired bound (a) follows again by additionally using that r �→ r−a/2e−r is uniformly
bounded in the interval [c(a),∞).

To prove the estimate for (b) we argue similarly to (a), see also the proof of the second
part of [13, Claim 7.8]. At this point, since Ṽ , ∇ Ṽ have at most polynomial growth at
infinity, by letting R → ∞ and using the bounds in case (a) of Claim 6.5, we deduce that
the second integral in (6.18) goes to 0. Also, using the bounds in case (b) of Claim 6.5
and Cauchy-Schwarz inequality, we can assert that the first integral in (6.18) converges to
the corresponding integral in the right-hand side of (6.13) as R → ∞. Consequently, the
sub-mean value estimate claimed in (6.13) holds.

Now let (X0, t0) ∈ B+
Ar × (−r2/4, 0). Let also s0 ∈ (−r2/2,−r2/4]. Then by using the

fact that |y0|, |x0| ≤ Ar , |s0|, |t0 + s0| ∼ r2 and also that |s0| < |t0 + s0| < 4|s0|, we can use
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the representation as in (6.21) and by using the asymptotics in (6.19) ( and also by dividing
the considerations into two cases as in the proof of Claim 6.5) we can assert that the following
estimate holds

p(x, x0,−s0)p
(a)(y, y0,−s0) ≤ C0G a(X , t0 + s0)e

〈x,x0〉
2|t0+s0 | e

C4 yy0
2|t0+s0 | (6.22)

where C4 is universal and depends also on a.
Therefore by using the estimate (6.22) in the submean value inequality (6.13), we obtain

by letting t0 + s0 = s, that the following inequality holds,

Ṽ (X0, t0) ≤ C5

∫

R
n+1+

Ṽ (X , s)G a(X , s)e
〈x,x0〉
2|s| e

C4 yy0
2|s| ya .

Then by using Cauchy-Schwartz, we obtain

Ṽ (X0, t0) ≤ C5

(∫

R
n+1+

Ṽ 2(x, y, s)G a(X , s)ya
)1/2 (∫

R
n+1+

G ae
〈x,x0〉

|s| e
C4 yy0|s| ya

)1/2

≤ C7

(∫

R
n+1+

Ṽ 2(X , s)G a(X , s)ya
)1/2

e
C8 |X0 |2

|s| . (6.23)

The last inequality above follows by multiplying and dividing the following integral
(∫

R
n+1+

G ae
〈x,x0〉

|s| e
C4 yy0|s| ya

)1/2

with e− |x0 |2
s e− C2

4 |y0 |2
s and completing squares in the exponent, then by using Fubini and

change of variables.
Now by using |X0| ≤ Ar and |s| ∼ r2, we can deduce from (6.23) that the following

estimate holds for some universal C10,

Ṽ (X0, t0) ≤ C10

(∫

R
n+1+

Ṽ 2(x, y, s)G a(X , s)ya
)1/2

.

Subsequently, by integrating from s ∈ (−r2,−r2/2) and applying the Cauchy-Schwartz
inequality as in the proof of Lemma 9.3 in [13], we obtain

Ṽ (X0, t0) ≤ C

(
1

r2

∫ −r2/2

−r2

∫

R
n+1+

Ṽ 2G a y
a

)1/2

≤ CH(Ṽ , r)1/2 ≤ CH(U , r)1/2 + Cr�. (6.24)

Since (X0, t0) ∈ B+
Ar × (−r2/4, 0) is arbitrary, the conclusion of the lemma now follows

from (6.24) and the expression of Ṽ in terms of V . ��
Wealso need the following two lemmas in our blowup analysis in the proof of Theorem6.8.

Lemma 6.6 With κ as in Lemma 6.1, let κ ′ be such that κ < κ ′ < � − 1+ σ and H(U , r) ≥
r2�−2+2σ . Then there exists rU > 0 depending on κ ′, σ such that

{
H(Ur , ρ) ≥ ρ2κ ′

for 0 < ρ ≤ 1, 0 < r < rU
H(Ur , R) ≤ R2κ ′

for any R ≥ 1, 0 < r <
rU
R

(6.25)
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Proof Since

2κ = lim
r→0

r H ′(U , r)

H(U , r)
,

there exists r0 > 0 depending on U , κ ′ such that for 0 < r < rU < r0 we have

H ′(U , r)

H(U , r)
≤ 2

κ ′

r
.

Then, by integrating from ρr to r and subsequently by exponentiating the corresponding
inequality we obtain

H(U , r)

H(U , ρr)
≤ ρ−2κ ′

,

which implies

H(Ur , ρ) = H(U , rρ)

H(U , r)
≥ ρ2κ ′

.

The second estimate in (6.25) follows similarly by integrating from r to r R and by noting
that r R < rU . ��
Lemma 6.7 Under the hypothesis of Lemma 6.6 above, with Fr as in (6.9), we have that for
any R ≥ 1 such that 0 < Rr ≤ r0, the following estimate holds for some universal constant
C and where κ ′ is as in Lemma 6.6.

∫

S
+
R

t2F2
r G a y

a ≤ CR4+2κ ′
r2−2σ

Proof We have that
∫

S
+
R

t2F2
r G a y

a = r4

H(U , r)

∫

S
+
R

t2F(r X , r2t)2G a y
a

= 1

r2H(U , r)

∫

S
+
Rr

t2F2G a y
a ≤ 1

r2H(U , Rr)
(Rr)2+2� H(U , Rr)

H(U , r)

≤ CF R
4+2κ ′

r2−2σ , (6.26)

where we used the fact since Rr ≤ rU < r0, implying that H(U , Rr) ≥ (Rr)2�−2+2σ . ��
From this point on, we need to assume � ≥ 4 as well as that F satisfies the bounds (4.2),

(6.1), (6.2), unless stated otherwise. We then have the following theorem concerning the
existence and homogeneity of blowups.

Theorem 6.8 (Existence and homogeneity of blowups) Let U ∈ SF (S+
1 ) with F satisfying

(4.2), (6.1), (6.2) for some � ≥ 4. Fix σ ∈ (0, 1). Suppose

κ = ��,σ (U , 0+) < � − 1 + σ.

For r > 0, let Ur denote the Almgren rescalings as in Definition 6.2. Then

(i) For every R > 0, there exists rR,U > 0 such that
∫

S
+
R

(U 2
r + |t ||∇Ur |2 + |t |2(|∇(Ur )xi |2 + |t |2(Ur )

2
t )G a y

a ≤ C(R), 0 < r < rR,U
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and
∫

Q
+
R

(U 2
r + |t ||∇Ur |2 + |t |2(|∇(Ur )xi |2 + |t |2(Ur )

2
t )y

a ≤ C(R), 0 < r < rR,U ;

(ii) There exists a sequence r j → 0 and a function U0 ∈ S+∞ such that
∫

S
+
R

((Ur j −U0)
2 + |t ||∇Ur j − ∇U0|2)G a y

a → 0;

(iii) U0 is parabolically homogeneous of degree κ and is a global solution of the homogeneous
thin obstacle problem, i.e.,

{
LaU0 = 0 in S+∞
min{U0,−∂ayU0} = 0 on S∞.

(6.27)

(iv) U0,∇xU0, ∂
a
yU0 are continuously defined up to {t = 0} and ∂tU0 is bounded up to

{t = 0}.
Proof We first note thatUr solves (6.8). Therefore by taking rR,U = rU

R , the first estimate in
(i) in Theorem 6.8 follows from the Gaussian estimates in Lemma 5.1, the second estimate
in Lemma 6.6, and Lemma 6.7.

To show the second estimate in (i), we observe that arguing as Lemma 5.1 one can also
establish the following “unweighted” version of second derivative estimates

∫

Q
+
R

(|∇Ur |2 + |∇(Ur )xi |2 + (Ur )
2
t )|y|a ≤ C(n, a, R)

∫

Q
+
2R

(U 2
r + F2

r )|y|a, (6.28)

for any R > 0. We next note that Lemma 6.4 coupled with the fact that

H(U , r) ≥ r2�−2+2σ (6.29)

for small enough r implies that Ur is bounded up to {t = 0}. Moreover, since F satisfies
(4.2), then again by (6.29) we can deduce that Fr are uniformly bounded for small enough r .
Consequently we can assert that bothUr and Fr are uniformly bounded in L2(Q+

2R, yadXdt)
independent of r for any R > 0, provided r ≤ r0 for some r0 sufficiently small. This implies
the second estimate in (i).

In view of Lemma 5.3 and Lemma 6.7, in order to establish (ii), it suffices to show the
existence of U0 and the convergence

∫

S
+
R

|Ur j −U0|2G a y
a → 0 (6.30)

for a subsequence r j → 0. Since κ ≥ 0, for all small enough r , say r ≤ r1, we have

r H ′(U , r)

H(U , r)
≥ −1.

Integrating the above inequality from rδ to r we obtain

H(Ur , δ) = H(U , rδ)

H(U , r)
≤ δ−1

and consequently
∫

S
+
δ

U 2
r G a y

a ≤ δ, 0 < r < r1.
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At this point, we need the following inequalities from [13] which are corollaries of L. Gross’
log-Sobolev inequality (see Lemma 7.7 in [13]). We first write

G a(X , t) = (4π)1/2

2a�( a+1
2 )

t−a/2 pn(x, t)p1(y, t), (6.31)

where pn(x, t) = (4π |t |)−n/2e
|x |2
4t and p1(y, t) = (4π |t |)−1/2e

y2

4t respectively indicate the
backward heat kernels in Rn and in R.

As in [4], we also let

G(X , t) = pn(x, t)p1(y, t).

The following inequalities hold:

log

(
1

∫

| f |>0 G(·, s)

)∫

Rn+1
f 2G(·, s) ≤ 2|s|

∫

Rn+1
|∇ f |2G(·, s),

for f ∈ W 1,2(Rn+1,G(·, s)), (6.32)

and

log

(
1

∫

| f |>0 pn(·, s)

)∫

Rn
f 2 pn(·, s) ≤ 2|s|

∫

Rn
|∇ f |2 pn(·, s),

for f ∈ W 1,2(Rn,G(·, s)). (6.33)

We now choose A > 2 large enough such that for all −1 < t < 0,
∫

Rn+1\BA/2

G(X , t)dX ≤ e−1/δ,

∫

Rn\BA/2

pn(x, t)dx ≤ e−1/δ. (6.34)

Using the uniform gradient estimates from (i), i.e.,
∫

S
+
R

|t ||∇Ur |2G a y
a < CR

and the inequalities (6.32) and (6.33), we can argue as in (7.17)–(7.26) in [4], which crucially
uses the estimate (6.34), to conclude that the following holds,

∫

[(Rn+1+ \BA)×(−R2,0)]∪S+
δ

U 2
r (X , t)G a(X , t)ya ≤ Cδ (6.35)

for some universal C , which also depends on R. Now in the set E = B+
A × [−R2,−δ2],

which is the complement of [(Rn+1+ \ BA) × (−R2, 0)] ∪ S+
δ , we have that G a is bounded

from above and below. Therefore from the uniform Gaussian estimates as in (i), we have
that {Ur } is uniformly bounded in W 2,1

2 (E, yadXdt). As a consequence, we can extract
a subsequence which converges strongly to some U0 in L2(E, yadXdt) and consequently
in L2(E, yaG adXdt). Hence the claim in (ii) now follows in a standard way by a Cantor
diagonalization argument by letting δ → 0 and A → ∞.

We now prove the claim in (iii). Given any compact subset K of S∞ = Rn+1+ × (−∞, 0],
the second estimate in i) yields that {Ur } is uniformly bounded in W 2,1

2 (K , yadXdt). Then
we can apply the local regularity estimates in [6] to assert that for some γ = γ (a, n),
∇xUr , ya∂yUr ∈ Hγ,γ /2(K ), ∂tUr ∈ L∞(K ) uniformly in r . This follows from the fact
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that the conditions (4.2), (6.1), (6.2) imply that Fr , ∇X Fr , and ∂t Fr are locally uniformly
bounded in S∞. Thus, for ∂t Fr we have

|∂t Fr (X , t)| = r4|∂t F(r X , r2t)|
H(U , r)1/2

≤ C�r�|(X , t)|�−4

rκ ′ ≤ C�r
1−σ |(X , t)|�−4,

for small r > 0, which gives the uniform bound on compact subsets of S∞. The above
uniform regularity ofUr is enough to pass to the limit in the Signorini problem and infer that
U0 solves the Signorini problem in (6.27). Moreover, by lower semicontinuity, the following
estimate for U0 holds

∫

S
+
R

(U 2
0 + |t ||∇U0|2 + |t |2(|∇(U0)xi |2 + |t |2(U0)

2
t )G a y

a ≤ C(R), (6.36)

for any R > 0. With (6.36) at our disposal, we can justify the Poon type computations
for U0 by using truncations as in the appendix of [4]. Here, we note that the intermediate
calculations for the corresponding truncated functionals can be justified using the fact that

∇xU0, ya∂yU0 ∈ Hγ,γ /2(K ), ∂tU0 ∈ L∞(K ) for any compact subset K ofRn+1+ ×(−∞, 0].
Therefore, we can infer

N ′(U0, r) = 1

r3H(U0, r)

(∫

S
+
r

U 2
0G a y

a
∫

S
+
r

(ZU0)
2G a y

a −
(∫

S
+
r

U0ZU0G a y
a
)2
)

(6.37)

for any r > 0. Keeping (ii) in mind, we conclude
{

I (Ur , ρ) → I (U0, ρ)

H(Ur , ρ) → H(U0, ρ).
(6.38)

Since

H(Ur , ρ) ≥ ρ2κ ′

for any κ ′ > κ by Lemma 6.6, we have H(U0, ρ) �= 0 for any ρ > 0. Now we can infer
from (6.38) that

N (U0, ρ) = lim
r→0+ N (Ur , ρ) = lim

r→0+ N (U , rρ) = κ,

i.e.,

.N (U0, ·) ≡ κ (6.39)

It follows that N ′(U0, ·) ≡ 0 and hence the right hand side in (6.37) vanishes. In turn, from
the equality in the Cauchy-Schwartz inequality, we have that

∫

S
+
r

U 2
0G a y

a
∫

S
+
r

(ZU0)
2G a y

a =
(∫

S
+
r

U0ZU0G a y
a
)2

implies

ZU0 = κ0U0. (6.40)

From the representation

I (U0, r) = 1

2r2

∫

S
+
r

U0ZU0G a y
a,
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coupled with (6.39) and (6.40), we obtain that

κ0 = κ

and therefore U0 is parabolically homogeneous of degree κ . This finishes the proof of (iii).
To conclude, we note that (iv) follows from the second estimate in (i), which is uniform in

r . Hence, the local regularity estimates developed in [6] imply that, for any compact subset K

of Rn+1+ × (−∞, 0], ∇xUr , ya∂yUr ∈ Hγ,γ /2(K ) (for some γ = γ (a, n)), ∂tUr ∈ L∞(K )

uniformly in r . By Ascoli-Arzelà’s theorem, we have that for a subsequence of {r j } as in (ii),
Ur j , ∇xUr j and ya∂yUr j converge uniformly in K to U0, ∇xU0 and ya∂yU0 respectively.
Thus, (iv) holds. Note also that ∂tU0 ∈ L∞(K ) follows from the uniform convergence of
Ur j to U0 and the uniform time Lipschitz bounds for Ur j ’s. ��

7 Homogeneous global solutions and regular points

In this section, we show that the frequency limit at a free boundary point is either κ = 1+s or
κ ≥ 2. Furthermore, we show that the free boundary is regular near points where κ = 1+ s.

Theorem 7.1 Let � ≥ 4 and σ > 0. Then with κ as in Theorem 6.8, we have that

κ ≥ 1 + s.

Proof Since (0, 0) ∈ �∗(U ), we have

U (0, 0, 0) = ∇xU (0, 0, 0) = ∂ayU (0, 0, 0) = 0 (7.1)

Using the boundedness ofUt , we have thatU (·, 0) solves the elliptic thin obstacle problem
with bounded right hand side. Consequently, from the regularity results in the elliptic case
in [7] and (7.1) we infer that for some universal C

|U (X , t)| ≤ C(|X |1+s + |t |) ≤ C(|X |2 + |t |)(1+s)/2.

Hence,

H(U , r) ≤ C

r2

∫

S
+
r

(|X |2 + |t |)1+sG a y
a

≤ Cr2+2s, (7.2)

where the second inequality in (7.2) follows from a change of variable and the homogeneity
property ofG a . Nowwith κ as inTheorem6.8,weobtain from the non-degeneracyLemma6.6
that

H(U , r) ≥ r2κ
′

(7.3)

for any κ ′ > κ . Then (7.2) and (7.3) together imply

κ ′ ≥ 1 + s.

The conclusion follows letting κ ′ → κ . ��
Next, we state our gap lemma.

Lemma 7.2 Let � ≥ 4 and κ be as in Theorem 6.8. Then either κ = 1 + s or κ ≥ 2.
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Proof Assume on the contrary that κ < 2. This also implies κ < � − 1+ σ . Then it follows
that for any κ ′ such that κ < κ ′ < 2, we have that

H(U , r) ≥
(
r

r0

)2κ ′

H(U , r0),

for small enough 0 < r < r0, i.e.,

H(U , r) ≥ c0r
2κ ′

, with c0 = H(U , r0)

r2κ
′

0

. (7.4)

As before, note that Ur solves the Signorini problem corresponding to Fr as in (6.9). Using
(4.2) and (7.4), it follows that Fr → 0 as r → 0. In addition,

∂tUr = r2Ut (r X , r2t)√
H(U , r)

→ 0 as r → 0, (7.5)

since Ut is bounded and

r2√
H(U , r)

→ 0 as r → 0,

because of (7.4) with κ ′ < 2. This implies that U0 is a time independent global solution of
the Signorini problem and is homogeneous of degree κ , which is less than 2. Then it follows
from the classification result in Theorem 5.7 in [8] that κ = 1 + s. ��

We now show that near points with frequency κ = 1 + s, the free boundary is H1+α, 1+α
2

regular for some α > 0 by invoking the elliptic theory. More precisely, we recall once more
than U (·, 0) solves the elliptic Signorini problem with bounded right hand side because of
the boundedness of Ut . We show that when the parabolic frequency limit κ at (0, 0) equals
1 + s, also the elliptic Almgren frequency at 0 ∈ �(U (·, 0)) (say κ0) equals 1 + s. From
this, it follows that the free boundary is H1+α,(1+α)/2 regular near (0, 0) ∈ Rn × (−∞, 0]
in x, t for some α > 0. We refer to [6] for a rigorous justification of H1+α,(1+α)/2-regularity
of the free boundary in space and time near such an elliptic regular point forU (·, 0). We just
mention here that this result crucially uses the elliptic epiperimetric inequality developed in
[20], coupled with the boundedness ofUt . The corresponding result can be stated as follows.

Theorem 7.3 Let U ∈ SF (S+
1 ) with F satisfying (4.2), (6.1), (6.2) for some � ≥ 4. Assume

that (0, 0) ∈ �∗(U ) and let κ be as in Theorem 6.8. If κ = 1+s, then�∗(U ) is H1+α,(1+α)/2-
regular near (0, 0) for some α > 0.

Proof Let κ < κ ′ < 2. For 0 < δ < 1, rewrite the integral in the definition of H(U , r) as
follows

H(U , r) = 1

r2

∫

S
+
r ∩{(X ,t)||X |≤|t |δ/2}

U 2G a y
a + 1

r2

∫

S
+
r ∩{(X ,t)||X |≥|t |δ/2}

U 2G a y
a (7.6)

with the idea of estimating the second integral in the right hand side of (7.6). By writing
1

t
n+a+1

2
e

|X |2
4t as

1

t
n+a+1

2

e
|X |2
4t = e

|X |2
8t

1

t
n+a+1

2

e
|X |2
8t
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we note that in the region {(X , t) | t < 0, |X | ≥ |t |δ/2, |t | ≤ r2}, we have the bound

e
|X |2
8t ≤ e− 1

8r2−2δ . (7.7)

Therefore, using (7.7) and the boundedness of U , the second integral on the right hand side
of (7.6) can be estimated as follows

1

r2

∫

S
+
r ∩{(X ,t)||X |≥|t |δ/2}

U 2G a y
a ≤ Ce− 1

8r2−2δ . (7.8)

Consequently, we obtain

H(U , r) ≤ ‖U‖2
L∞(B+

rδ
(0)×(−r2,0))

+ C exp

( −1

8r2(1−δ)

)

, (7.9)

where C also depends on the global bounds of U . Next note that for 0 < r < r1, where
r1 = r1(δ) is small enough, we have

C exp

( −1

8r2(1−δ)

)

≤ 1

2
c0r

2κ ′
(7.10)

and therefore we can deduce from (7.4), combined with (7.9) and (7.10), that

Cr2κ
′ ≤ ‖U‖2

L∞(B+
rδ

(0)×(−r2,0))
.

Since κ ′ < 2 and Ut is bounded, we obtain by letting r δ as our new r that, for small enough
r̃ = r̃(δ) and all r ≤ r̃ , the following inequality holds

‖U (, 0)‖L∞(Br ) ≥ Cr
κ′
δ .

Since δ can be chosen arbitrarily close to 1 and κ ′ can be chosen arbitrarily close to κ , by
letting κ ′

δ
as our new κ ′, we deduce that there exists r2 small enough, depending also on κ ′,

such that for r ≤ r2

‖U (, 0)‖L∞(Br ) ≥ Crκ ′
. (7.11)

We now claim that (7.11) implies that 0 ∈ �∗(U (·, 0)) is a regular free boundary point for
the corresponding elliptic problem. If not, then it follows from [8] that the elliptic Almgren
frequency limit κ0 for U (·, 0) as in [8] or [7] is bigger than or equal to 2. This follows from
the classification result for global time independent solutions in [8, Theorem 5.7]. Then from
the estimate in [8, Lemma 6.5], we obtain that U (·, 0) separates from the free boundary at
a rate which is at least quadratic, and this is a contradiction to (7.11) above since κ ′ < 2.
Therefore the elliptic frequency limit κ0 necessarily equals 1 + s. The regularity result for
the free boundary in [6] implies that �∗(U ) is H1+α,(1+α)/2-regular near (0, 0) in space and
time for some α > 0. ��

Remark 7.4 The proof of Theorem 7.3 can be viewed as the consolidation of “parabolic” and
“elliptic” approaches to the definition of regular points. Namely, we say that (x0, t0) ∈ �∗(U )

is a parabolic regular point if the parabolic frequency κU (x0, t0) = ��,σ (U , 0+) = 1 + s.
We say that (x0, t0) is an elliptic regular point if x0 ∈ �(U (·, t0)) with elliptic frequency
κU (·,t0) = 1+s. The proof of Theorem 7.3 shows that these two notions are in fact equivalent.
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These points can also be defined as free boundary points where the quantities

Lell = lim sup
r→0

‖u‖L∞(Br (x0)×{t0})
r1+s

,

Lpar = lim sup
r→0

‖u‖L∞(Qr (x0,t0))

r1+s

are bounded away from zero and infinity, i.e., 0 < Lell < ∞, 0 < Lpar < ∞, for elliptic and
parabolic regular points, respectively.

There is also a third approach, taken by the authors of [1], which we call “hyperbolic”.
Namely, we say that (x0, t0) ∈ �∗(U ) is a hyperbolic regular point if the quantity

Lhyp = lim sup
r→0

‖u‖L∞(B∗
r (x0,t0))

r1+s
,

with B∗
r (x0, t0) = {(x, t) | (x − x0)2 + (t − t0)2 ≤ r2}, is bounded away from zero and

infinity, i.e., 0 < Lhyp < ∞. It is proved in [1] that near such points the free boundary is
C1,α-regular in space and time. Because of this regularity, it is possible to see that hyperbolic
regular points are also elliptic (and equivalently) parabolic regular. The converse statement
that elliptic (or parabolic) regular points are hyperbolic is not immediately obvious. However,
we should point out that in the case when s = 1/2 (or equivalently a = 0), the converse
statement does hold because of the higher regularity of the free boundary near (parabolic)
regular points, see [5].

We close this section with a Liouville type result for the operator La which will be used
subsequently in the classification of singular points.

Lemma 7.5 (Liouville type theorem) Let v be a solution to

Lav = 0 in S∞ = Rn+1 × (−∞, 0]
such that v(x, y, t) = v(x,−y, t) and |v(X , t)| ≤ C

(|X |2 + |t |)k/2. Then v is a polynomial.

Proof The proof is similar to that of the elliptic case as in [8] and is based on induction in
the degree k. The following elementary fact will be used:
Fact: If ∇xv,∇tv are polynomials and v(0, y) is a polynomial, then v is a polynomial.

Suppose k ≤ 1. We first note that the estimate

sup
Qr/2(0,0)

(|D2
xv| + |vt |) ≤ C

r2
‖v‖L∞(Qr ) (7.12)

follows from the Hölder regularity result of [10], coupled with the translation invariance of
the equation in (x, t). Now, since Lav = 0, (7.12) implies

sup
Qr/2(0,0)

(

vyy + a

y
vy

)

≤ C

r2
‖v‖L∞(Qr ). (7.13)

Letting r → ∞ (when k = 1), we obtain from (7.13)

vyy + a

y
vy ≡ 0,

and from (7.12) that v is time independent. By repeating the arguments in the proof of
Lemma 2.7 in [8], which only uses the symmetry of v in y, we can assert that v = bx + c
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in this case. Now for general k (assuming the assertion of the lemma holds up to k − 1), it
follows from the following rescaled estimate

sup
Qr/2(0,0)

(r |∇xv| + |vt |) ≤ C

r2
‖v‖L∞(Qr ), (7.14)

the induction hypothesis, and the fact that ∇xv and vt solve the same equation, that ∇xv is a
polynomial of order k − 1 and vt is a polynomial of order k − 2. Also from (7.13) we obtain

∣
∣
∣
∣vyy + a

y
vy

∣
∣
∣
∣ ≤ C(|X |2 + |t |) k

2−1.

Now, similarly to the elliptic case, we infer from the observation

vyy + a

y
vy = |y|−a∂y(|y|avy) (7.15)

that vyy + a
y vy solves the same equation as v. Observe here that w = |y|avy solves the

conjugate equation L−aw = 0 (see for instance [4]), and therefore vyy + a
y vy , being the

twice conjugate of v, solves the same PDE as v. From the estimate in (7.13), the fact that
w = vyy + a

y vy solvesLaw = 0, and the induction hypothesis, we deduce that vyy + a
y vy is a

polynomial of order atmost k−2. In particular, for (x, t) = (0, 0), vyy(0, y, 0)+ a
y vy(0, y, 0)

is an even polynomial p(y) = a0 +a2y2 +· · ·+a2d y2d . Using the expression for vyy + a
y vy

in (7.15) and integrating twice, we obtain

v(0, y) = c + by|y|−a + a0
2(1 + a)

y2 + a2
2(3 + a)

y4 + · · · + a2d
(2d + 2)(2d + 1 + a)

y2d+2.

Next, keeping inmind the evenness of v, we infer thatb = 0 andhence v(0, y) is a polynomial.
Finally, since ∇xv, vt are polynomials, we conclude that v is a polynomial. ��

8 Classification of free boundary points

Let the obstacleψ be of class H �,�/2 and let Vk be as in (3.7). Now given σ < 1, by repeating
the arguments in the proof of Lemma 10.1 in [13] we can show that the limit

κ = ��,σ (Vk, 0
+) (8.1)

is independent of the cut-off τ in the definition of Vk . Therefore, if we denote κ in (8.1) by
κ

�,σ
U (since this quantity is independent of the cut-off τ and consequently independent of
Uk), we have the following consistency result for the truncated frequencies whose proof is
exactly the same as in the case a = 0 in [13, Proposition 10.3]:

κ
�,σ
U (0, 0) = min{κ�̃,σ̃

U (0, 0), � − 1 + σ } (8.2)

whenever � ≤ �̃ and � − 1 + σ ≤ �̃ − 1 + σ̃ . It follows from (8.2) that if ψ ∈ H �̃, �̃
2 , then

sup
{(�,σ )|�−1+σ<�̃}

κ
�,σ
U (0, 0) (8.3)

is well defined and we can define the quantity in (8.3) above to be κ
(�̃)
U (0, 0). In an analogous

way, κ(�̃)
U (x, t) can be defined for any (x, t) ∈ �∗(U ). Then, ifψ ∈ H �,�/2, for κ ∈ [1+ s, �)
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we define

�(�)
κ (U ) = {(x, t) ∈ �∗(U ) | κ

(�)
U (x, t) = κ} (8.4)

In view of (8.2), we have the following result on the classification of free boundary points
analogous to in [13, Proposition 10.7].

Proposition 8.1 If ψ ∈ H �̃, �̃
2 , with �̃ ≥ � ≥ 4, then
⎧
⎪⎨

⎪⎩

�
(�)
κ (U ) = �

(�̃)
κ (U ), if κ < �

�
(�)
� (U ) = ⋃

�≤κ≤�̃

�
(�̃)
κ (U )

(8.5)

Similarly, we also have the following characterization of points which are on the extended
free boundary �∗(U ) but not on the free boundary �(U ).

Proposition 8.2 If ψ ∈ H �,�/2 for � ≥ 4. Let (x0, t0) ∈ �∗(U ). Then either κ
(�)
U (x0, t0) =

1 + s, or 2 ≤ κ
(�)
U (x0, t0) ≤ �. Moreover we have that

�∗(U ) \ �(U ) ⊂ �
(�)
� (U ) ∪

⋃

m∈N
�

(�)
2m+1−a(U ).

Proof The first part is nothing but Lemma 7.2.
Suppose now (x0, t0) ∈ �∗(U )\�(U ) and that the frequency limit κ(�)

U < �. By translation
we may assume that (x0, t0) = (0, 0). Then there exists a small δ > 0 such that U = ψ

on Qδ(0, 0). Let V = Vk be as in (3.7). Since κ < �, by Theorem 6.8 there exists a blow
up U0 of V over a sequence r j → 0. From the fact that V = 0 on Qδ we obtain that U0

vanishes on {y = 0}. Then we have that the odd extension Ũ0 isLa caloric and homogeneous
of degree κ . As a consequence, |y|a(Ũ0)y is L−acaloric, symmetric and homogeneous of
degree κ − 1 + a. From the Liouville theorem Lemma 7.5, it follows that κ − 1 + a is an
integer and moreover, since U0 satisfies the Signorini condition, we have that −∂ayU0 is a
non-negative polynomial on {y = 0}. Therefore there are two possibilities, either ∂ayU0 is
identically zero on {y = 0} or κ −1+a is an even integer. The former is not possible because
U0 and ∂ayU0 vanishing identically on {y = 0} would imply U0 ≡ 0, because of the strong
unique continuation property. This follows from the proof of Lemma 7.7 in [4]. Hence, we
have κ − 1+ a is even and consequently κ is of the form 2m + 1− a for some m ∈ N. This
finishes the proof of the proposition. ��

9 Singular points

In this section we define the singular free boundary points as the points of zero Lebesgue
density of the coincidence set �(U ).

Definition 9.1 (Singular points) Let U ∈ SF (S+
1 ) with F satisfying (4.2), (6.1), (6.2) for

� ≥ 4. We say that (x0, t0) ∈ �∗(U ) is singular if

lim
r→0+

Hn+1(�(U ) ∩ Qr (x0, t0))

Hn+1(Qr )
= 0.

We will denote the set of singular points by �(U ) and call it the singular set. We can further
classify singular points according to the homogeneity of their blowup, by defining

�κ(U )
def= �(U ) ∩ �(�)

κ (U ), κ < � − 1 + σ.
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The following proposition gives a complete characterization of the singular points in terms
of the blowups and the generalized frequency. In particular, it establishes that

�κ(U ) = �(�)
κ (U ) for κ = 2m < � − 1 + σ, m ∈ N.

Proposition 9.2 (Characterization of singular points) Let u ∈ SF (S+
1 ) with F satisfying

(4.2), (6.1), (6.2) for some � ≥ 4 and 0 ∈ �
(�)
κ (u), with κ < � − 1 + σ for some σ ∈ (0, 1).

Then, the following statements are equivalent:

(i) 0 ∈ �κ(U ).
(ii) any blowup of U at the origin is a nonzero parabolically κ-homogeneous polynomial pκ

in S∞ satisfying

La pκ = 0, pκ (x, 0, t) ≥ 0, pκ (x,−y, t) = pκ (x, y, t).

(We denote this class by P+
κ , see Definition 10.4.)

(iii) κ = 2m, m ∈ N.

Proof (i) ⇒ (ii) Note that the rescalings Ur satisfy

LaUr = |y|a Fr − 2(∂ayU )Hn+1
∣
∣
�(Ur )

in S1/r ,

in the sense of distributions, after an even reflection in the y variable. SinceUr are uniformly
bounded inW 2,1

2 (Q+
2R, |y|adXdt) for small r by Theorem 6.8, ∂ayUr are uniformly bounded

in L2(QR). On the other hand, if 0 ∈ �(U ), then

Hn+1(�(Ur ) ∩ QR)

Rn+2 = Hn+1(�(u) ∩ QRr )

(Rr)n+2 → 0 as r → 0,

and therefore

(∂ayUr )Hn+1
∣
∣
�(Ur )

→ 0 in QR

in the sense of distributions. Further, the bound |F(x, t)| ≤ C�|(X , t)|�−2 implies that

|Fr (X , t)| = r2|F(r X , r2t)|
HU (r)1/2

≤ C�r�

HU (r)1/2
|(X , t)|�−2

≤ Cr�−�0 R�−2 → 0 in QR,

where �0 = � − (1 − σ)/2 ∈ (κ, �) and we have used the fact that HU (r) ≥ r2�0 for
0 < r < rU , by Lemma 6.6. Hence, any blowup U0 is caloric in QR for any R > 0,
meaning that it is caloric in the entire strip S∞ = Rn+1× (−∞, 0]. On the other hand, by the
characterization of blowups in Theorem 6.8 (iii),U0 is homogeneous in S∞ and therefore has
a polynomial growth at infinity. Then, by the Liouville-type Lemma 7.5, we can conclude that
U0 must be a parabolically homogeneous polynomial pκ of a certain integer degree κ . Note
that pκ = U0 �≡ 0 by construction. The properties of U also imply that that pκ (x, 0, t) ≥ 0
for all (x, t) ∈ S∞ and and pκ (x,−y, t) = pκ (x, y, t) for all (x, y, t) ∈ S∞. In other words,
U0 = pκ ∈ P+

κ .
(ii) ⇒ (iii) Let pκ be a blowup of U at the origin. Since pκ is a polynomial, clearly κ ∈ N.
Assume now, towards the contradiction, that κ is odd. Then, the nonnegativity of pκ on
Rn × {0} × {−1} implies that pκ vanishes there identically, implying that pκ ≡ 0 on S∞.
Now, using the even symmetry in y and the fact that La pκ = 0, we are going to infer
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that pκ ≡ 0, contrary to the assumption that pκ is nonzero. From even symmetry in y, we
represent

pκ (x, y, t) =
∑

(α,k, j)∈Zn+×Z+×Z+
|α|+2k+2 j=κ

cα,k, j x
α y2k t j ,

Now, for (α, k, j) such that |α|+2k+2 j = κ , consider the partial derivative ∂α
x ∂

j
t pκ . Since

∂xi and ∂t are derivatives in directions tangential to the thin space, we conclude that

La(∂
α
x ∂

j
t pκ ) = 0 in S∞, ∂α

x ∂
j
t pκ = 0 on S∞.

We now prove by induction in k, that cα,k, j = 0 for k = 0, 1, . . . , �κ/2�. When k = 0, we
have |α| + 2 j = κ and therefore

∂α
x ∂

j
t pκ ≡ α! j !cα,0, j

and from the vanishing of ∂α
x ∂

j
t pκ on S∞, we conclude that cα,0, j = 0. Suppose now we

know that cα,k′, j = 0 for 0 ≤ k′ < k ≤ �κ/2� and show that it holds also for k. Indeed, one
consequence from the inductive assumption is that

∂α
x ∂

j
t pκ (x, y, t) = α! j !cα,k, j y

2k,

which is a-caloric if and only if cα,k, j = 0. Hence, we can conclude that pκ ≡ 0, contrary
to our assumption. Thus, we must have κ ∈ {2m | m ∈ N}.
(iii) ⇒ (ii) The proof of this implication is stated as a separate Liouville-type result in
Lemma 9.3 below.
(ii) ⇒ (i) Suppose that 0 is not a singular point and that over some sequence r = r j → 0+
we have Hn+1(�(Ur ) ∩ Q1) ≥ δ > 0. From the second estimate in (i) in Theorem 6.8, the
local regularity estimates developed in [6] and Ascoli-Arzelà, by taking a subsequence if
necessary, we may assume that Ur j converges locally uniformly to a blowup U0. We claim
that

Hn+1(�(U0) ∩ Q1) ≥ δ > 0.

Indeed, otherwise there exists an open setO in S∞ withHn+1(O) < δ such that�(U0)∩Q1 ⊂
O . Then for large j we must have �(Ur j ) ∩ Q1 ⊂ O , which is a contradiction, since

Hn+1(�(Ur j ) ∩ Q1) ≥ δ > Hn+1(O). Since U0 = pκ is a polynomial, vanishing on a
set of positive Hn+1-measure on S∞, it follows that U0 vanishes identically on S∞. But
then, repeating the argument at the end of the step (ii) ⇒ (iii), we conclude that U0 ≡ 0, a
contradiction. Thus, 0 is a singular point.

The implication (iii)⇒ (ii) in Proposition 9.2 is a consequence of the Liouville-type result
Lemma 7.5 which is the parabolic counterpart of Lemma 1.3.3 in [18]. ��

This, in turn, is a particular case of the following lemma, analogous to Lemma 1.3.4 in
[18] in the elliptic case, which stems from Lemma 7.6 in [23].

Lemma 9.3 Let v ∈ W 1,1
2,loc(S∞, |y|adXdt) be such that Lav ≥ 0 in S∞ and Lav = 0 in

S∞ \ S∞. If v is parabolically 2m-homogeneous, m ∈ N, and has a polynomial growth at
infinity, then Lav = 0 in S∞.

Proof Let μ
def= Lav in Rn+1 × (−∞, 0). By the assumptions, μ is a nonnegative measure,

supported on {y = 0} × (−∞, 0). We are going to show that in fact μ = 0. To this end,
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let P(x, t) be a parabolically 2m-homogeneous a-caloric polynomial, which is positive on
{y = 0} × (−∞, 0). For instance, one can take the polynomial

p(x, t) =
n−1∑

j=1

x2mj + (−t)m,

and let P = p̃ be the a-caloric extension constructed in Lemma 3.2. Further, let η ∈
C∞
0 ((0,∞)), with η ≥ 0, and define

�(x, t) = η(t)G a(X , t).

Note that we have the following identity (similar to that of G a)

∇X� = X

2t
�.

We have

〈div(|y|a∇v),�P〉 = −
∫ 0

−∞

∫

Rn+1
〈∇v,∇(�P)〉|y|adX dt

= −
∫ 0

−∞

∫

Rn+1
[�〈∇v,∇P〉 + P〈∇v,∇�〉]|y|a dX dt

=
∫ 0

−∞

∫

Rn+1
(�v div(|y|a∇P) + |y|a[v〈∇�,∇P〉 − P〈∇v,∇�〉]) dX dt

=
∫ 0

−∞

∫

Rn+1

(

v div(|y|a∇P) + |y|a
2t

[v〈X ,∇P〉 − P〈X ,∇v〉]
)

� dX dt .

Wenow use the identities div(|y|a∇P)−|y|a∂t P = 0, 〈X ,∇P〉+2t∂t P = 2mP , 〈X ,∇v〉+
2t∂tv = 2mv to arrive at

〈div(|y|a∇v),�P〉 =
∫ 0

−∞

∫

Rn+1
[2mPv − P〈X ,∇v〉] |y|a

2t
� dX dt

=
∫ 0

−∞

∫

Rn
∂tv�P|y|adX dt

= 〈|y|a∂tv,�P〉.
Therefore, 〈μ,�P〉 = 〈|y|a∂tv −div(|y|a∇v),�P〉 = 0. Sinceμ is a nonpositive measure,
this implies that actually μ = 0 and the proof is complete. ��

10 Weiss andMonneau typemonotonicity formulas

In this section we establish two families of monotonicity formulas that play a crucial role in
our analysis of singular points. The elliptic ancestors of these formulas were first obtained
in [18] in the study of the Signorini problem corresponding to a = 0 (or s = 1/2), and were
subsequently generalized to all a ∈ (−1, 1) (all s ∈ (0, 1)) in [21]. In the parabolic setting
and still for the case a = 0 such formulas were first proved in [13]. Theorems 10.1 and 10.5
below respectively extend to all values a ∈ (−1, 1) Theorems 13.1 and 13.4 in [13].

In the following statement the quantities H(U , r) and D(U , r) are those defined in (4.7)
and (4.8) respectively.
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Theorem 10.1 (Weiss type monotonicity formula in Gaussian space) Let U ∈ SF (S+
1 ) with

F satisfying (4.2) for some � ≥ 2 and a constant C�.
For κ ∈ (0, �) we define the parabolic κ-Weiss type functional

Wκ (U , r)
def= r−2κ{D(U , r) − κ

2
H(U , r)

}
. (10.1)

Then, for any σ ∈ (0, 1) such that κ ≤ �−1+σ there exists C ′ > 0 depending on n, a, �,C�

such that

W ′
κ (U , r) ≥ 1

r2κ+3

∫

S
+
r

(
ZU − κU + |t |F)2G a y

a − C ′r1−2σ . (10.2)

In particular, with C = C ′
2−2σ the function

r �→ Wκ (U , r) + Cr2−2σ ,

is monotonically nondecreasing in (0, 1), and therefore the limit exists

Wκ (U , 0+)
def= lim

r→0+Wκ (U , r).

Proof Using Lemmas 4.4 and 4.7 we find

r2κ+3W ′
κ (U , r) = r3(D′(U , r) − κ

2
H ′(U , r)) − 2κr2(D(U , r) − κ

2
H(U , r))

=
∫

S
+
r

(
ZU − κU + |t |F)2G a y

a −
∫

S
+
r

|t |2F2 G a y
a .

Next, we note that (4.17) gives
∫

S
+
r

|t |2F2 G a y
a ≤ Cr2(1+�),

for some C > 0 depending only on n, a, �,C�. This gives

W ′
κ (U , r) ≥ 1

r2κ+3

∫

S
+
r

(
ZU − κU + |t |F)2G a y

a − Cr−1+2(�−κ).

If now 1 − � + κ ≤ σ < 1, we conclude that

W ′
κ (U , r) ≥ −Cr1−2σ ,

and therefore the function

r �→ Wκ (U , r) + Cr2−2σ ,

is monotonically nondecreasing. ��
In the sequel we will need the following results.

Lemma 10.2 Under the assumptions of Theorem 10.1, suppose in addition that 0 ∈ �
(�)
κ (U )

for κ < � − 1 + σ . Then

H(U , r) ≤ C
(
‖U‖2

L2(S+
1 ,|y|a) + C2

�

)
r2κ ,

with C = C(κ, σ, n) > 0.
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Proof We begin by observing that the following alternative holds: either (i) H(U , r) ≤
r2�−2+2σ , or (ii) H(U , r) > r2�−2+2σ . Since the conclusion follows immediately in case
(i), we assume that (ii) holds. Let (r0, r1) be a maximal interval in the open set {r ∈ (0, 1) |
H(U , r) > r2�−2+2σ }. For r ∈ (r0, r1), from Theorem 4.8 we infer

��,σ (U , r)=1

2
reCr

1−σ H ′(U , r)

H(U , r)
+ 2(eCr

1−σ − 1) ≥ ��,σ (U , 0+) = κ,

which in turn yields

H ′(U , r)

H(U , r)
≥ 2

r

[
(κ + 2)e−Cr1−σ − 2

]
≥ 2κ

r

(
1 − C1r

1−σ
)
,

with C1 = (
1 + 2

κ

)
C . Integrating we obtain

ln
H(U , r1)

H(U , r)
≥ ln

r2κ1
r2κ

− C2r
σ
1 ,

and therefore

H(U , r) ≤ C3r
2κ H(U , r1)

r2κ1
.

We now observe that either r1 = 1, or H(U , r1) = r2�−2+2σ
1 . In the former case we have

H(U , 1) ≤ C

(

‖U‖2
L2(S+

1 ,|y|a) + C2
�

)

by the L∞ bound onU , whereas in the latter we recall

that, by assumption, κ < � − 1 + σ . Either ways,

H(U , r1) ≤ C
(
‖U‖2

L2(S+
1 ,|y|a) + C2

�

)
r2κ1 ,

which gives the desired conclusion. ��

Lemma 10.3 If 0 ∈ �
(�)
κ (U ) for κ < � − 1 + σ , then

Wκ (U , 0+) = 0.

Proof By Lemma 6.1, we know that

κ = ��,σ (U , 0+) = lim
r→0+ Ñ (U , r) = 2 lim

r→0+
D(U , r)

H(U , r)
.

Moreover, we infer from Lemma 10.2 that H(U , r) ≤ Cr2κ . Hence,

lim
r→0+ Wκ (U , r)= lim

r→0+
H(U , r)

r2κ

(
D(U , r)

H(U , r)
− κ

2

)

= 0.

��
Definition 10.4 For κ > 0 we denote by P+

κ the class of all parabolically κ-homogeneous
polynomials pκ in Rn+1 × (−∞, 0) such that

(i) La pκ = 0;
(ii) pκ (x, 0, t) ≥ 0;
(iii) pκ (x,−y, t) = pκ (x, y, t);
(iv) κ = 2m, m ∈ N.
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Theorem 10.5 (Monneau type monotonicity formula) Let U ∈ SF (S+
1 ) with F satisfying

(4.2), (6.1), (6.2) for some � ≥ 4andaconstantC�. Assume that0 ∈ �κ(U )withκ = 2m < �,
for m ∈ N. For any pκ we define the Monneau type functional

Mκ (U , pκ , r)
def= 1

r2κ+2

∫

S
+
r

(U − pκ )2 G a y
a, r ∈ (0, 1). (10.3)

Then, for any 1−�−κ ≤ σ < 1 there exists a constant C ′′ > 0, depending on n, a, �,C�, σ ,
such that

d

dr
Mκ (U , pκ , r) ≥ −C ′′ (1 + ‖U‖L2(S+

1 ,G a ya)
+ ‖pκ‖L2(S+

1 ,G a ya)

)
r−σ . (10.4)

In particular, with C = C ′′
1−σ

the function r → Mκ (U , pκ , r) + Cr1−σ is monotonically
nondecreasing on (0, 1).

Proof Letting V = U − pκ . Notice that from (i) in Definition 10.4 we have in S+
1

LaV = LaU − La pκ = F .

From Remark 4.2 we know that

Wκ (pκ , r) = H(pκ , r)

2r2κ

(
Ñ (pκ , r) − κ

)
≡ 0.

We now use this information to show that

Wκ (U , r) = Wκ (V , r). (10.5)

In fact, we find from (10.1)

Wκ (U , r) = Wκ (U , r) − Wκ (pκ , r) = Wκ (V + pκ , r) − Wκ (pκ , r)

= 1

r2κ+2

∫

S
+
r

|t | (|∇V |2 + 2〈∇V ,∇ pκ 〉) G a y
a

− κ

2

1

r2κ+2

∫

S
+
r

(
V 2 + 2V pκ

)
G a y

a

= Wκ (V , r) + 2

r2κ+2

∫

S
+
r

|t |〈∇V ,∇ pκ 〉G a y
a − κ

r2κ+2

∫

S
+
r

V pκ G a y
a

= Wκ (V , r) + 1

r2κ+2

∫

S
+
r

V (Zpκ − κ pκ ) G a y
a

= Wκ (V , r),

in view of the fact that Zpκ = κ pκ . Since (10.3) and (4.7) give

Mκ (U , pκ , r) = H(V , r)

r2κ
,

we obtain

d

dr
Mκ (U , pκ , r) = H ′(V , r)

r2κ
− 2κ

r2κ+1 H(V , r). (10.6)
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Using computations similar to the ones carried out in the proof of Lemmas 4.1 and 4.3, and
applying Lemma 4.4, we infer that

H ′(V , r) = 4

r
I (V , r)

= 4

r

{

D(V , r) − 1

r2

∫

S
+
r

|t |V F G a y
a + 1

r2

∫

Sr
|t |V (x, 0, t)∂ay V (x, 0, t)G a(x, 0, t)

}

.

Inserting this information in (10.6) yields

d

dr
Mκ (U , pκ , r) = 4

r2κ+1

{

D(V , r) − 1

r2

∫

S
+
r

|t |V F G a y
a

+ 1

r2

∫

Sr
|t |V (x, 0, t)∂ay V (x, 0, t)G a(x, 0, t)

}

− 2κ

r2κ+1 H(V , r)

= 4

r
Wκ (V , r) − 4

r2κ+3

∫

S
+
r

|t |V F G a y
a

+ 4

r2κ+3

∫

Sr
|t |pκ (x, 0, t)∂ayU (x, 0, t)G a(x, 0, t).

We proceed to estimate each term in the last line. Using (10.5), and applying Theorem 10.1
and Lemma 10.3, we infer that for a suitable choice of a constant C

Wκ (V , r) = Wκ (U , r) ≥ Wκ (U , 0+) − Cr2−2σ = −Cr2−2σ .

For the second term, we apply Cauchy-Schwarz’s inequality, (4.17), and Lemma 10.2 to
obtain

1

r2κ+3

∫

S
+
r

|t |V F G a y
a ≤ 1

r2κ+3

(∫

S
+
r

V 2 G a y
a
)1/2 (∫

S
+
r

t2F2 G a y
a
)1/2

≤ Cr

r2κ+3

(
H(U , r)1/2 + H(pκ , r)1/2

)
r1+�

≤ C
(
‖U‖L2(S+

1 ,|y|a) + ‖pκ‖L2(S+
1 ,|y|a) + 1

)
r�−κ−1

≤ C
(
‖U‖L2(S+

1 ,|y|a) + ‖pκ‖L2(S+
1 ,|y|a) + 1

)
r−σ .

Finally, to conclude, we observe that

pκ (x, 0, t) ≥ 0 and pκ (x, 0, t) ≥ 0,

so that
∫

Sr
|t |pκ (x, 0, t)∂ayU (x, 0, t)G a(x, 0, t) ≥ 0.

We thus conclude

d

dr
Mκ (U , pκ , r) ≥ −Cr1−2σ − C

(
‖U‖L2(S+

1 ,|y|a) + ‖pκ‖L2(S+
1 ,|y|a) + 1

)
r−σ

≥ −C
(
‖U‖L2(S+

1 ,|y|a) + ‖pκ‖L2(S+
1 ,|y|a) + 1

)
r−σ ,

as desired. ��
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11 Structure of the singular set

As before, we assume that the obstacle ψ ∈ H �,�/2 for some � ≥ 4. Similarly to [13],
we define the spatial dimension of the singular set based on the polynomial p(x0,t0)

κ as in
Proposition 9.2. For a singular point (x0, t0) ∈ �κ(U ), we define

d(x0,t0)
κ

def= dim{ξ ∈ Rn | 〈ξ,∇x∂
α
x ∂

j
t p

(x0,t0)
κ 〉 = 0

for any α = (α1, . . . , αn) and j ≥ 0 such that |α| + 2 j = κ − 1}, (11.1)

which we call as the spatial dimension of �κ(U ) at (x0, t0). Likewise, for any d = 0, . . . , n,
we define

�d
κ (U ) = {(x0, t0) ∈ �κ(U ) | d(x0,t0)

κ = d}.
In the case when d = n, i.e., (x0, t0) ∈ �n

κ (U ), the blow up limit p(x0,t0)
κ depends only on

y, t when κ = 2m < �. In such a case, (x0, t0) is referred to as time-like singular point. The
proof of this fact is analogous to that of Lemma 12.10 in [13] (for the case a = 0) and can
be seen as follows. Since in this case it holds

∇x∂
α
x ∂

j
t pκ = 0

for all |α| + 2 j = κ − 1, we have vanishing of ∂xi pκ on {y = 0}. Moreover, using the fact
that ∂ay ∂xi pκ also vanishes identically on {y = 0} and ∂xi pκ is La caloric, by the strong
unique continuation property we obtain ∂xi pκ ≡ 0 and hence pκ depends only on y, t .

Now we recall the definition of space-like and time-like manifolds as in Definition 12.11
in [13].

Definition 11.1 Wesay that a (d+1) dimensionalmanifoldS ⊂ Rn×R for d = 0, . . . , n−1
is space-like of class C1,0 if locally, after a rotation of coordinates, one can represent it as a
graph

(xd+1, . . . , xn) = g(x1, . . . , xd , t),

where g,∇x g are continuous.
Likewise, a n-dimensional manifold S ⊂ Rn × R is time-like of class C1 if it can be

locally represented as

t = g(x1, . . . , xn),

where g is C1.

With the Monneau-type monotonicity formula as in Theorem 10.5 in hand, we can repeat
the arguments as in [13] using the L∞ − L2 type estimates as in Lemma 6.4 to assert non-
degeneracy of Almgren-Poon blowup at singular points and also uniqueness and continuous
dependence of κ-homogeneous blowups at singular points. Then by again arguing as in [13],
usingWhitney extension and the implicit function theorem, we obtain the following structure
theorem of the singular set based on spatial dimension of the singular point as defined in
(11.1).

Theorem 11.2 (Structure of the singular set) Let U be a solution to (2.3), where ψ ∈ H �,�/2

for some � ≥ 4. Then for any κ = 2m < �, we have �(k)(U ) = �κ(U ). Moreover, for every
d = 0, . . . , n − 1, the set �d

κ (U ) is contained in a countable union of (d + 1)-dimensional
space-like C1,0 manifolds and �n

κ (U ) is contained in a countable union of time-like n-
dimensional C1 manifolds.
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12 Appendix

In this appendix we collect the proofs of some of the auxiliary results in Sect. 4

Proof of Lemma 4.1 To prove (4.6) we observe that by the equation (3.4) satisfied by U in
S+
1 , we have that in Rn+1+

La(U
2) = 2ULaU − 2|∇U |2ya = 2UFya − 2|∇U |2ya .

This gives
∫

R
n+1+

|∇U |2G a y
a =

∫

R
n+1+

UFG a y
a − 1

2

∫

R
n+1+

La(U
2)G a . (12.1)

The following computation can be justified rigorously considering the region

Rε = {X ∈ Rn+1+ | y > ε},
and then let ε → 0+. One should keep in mind that the outer normal on ∂Rε is ν = −en+1.
Integrating by parts we find
∫

R
n+1+

La(U
2)G a = 2

∫

R
n+1+

UUtG a y
a −

∫

R
n+1+

div(ya∇(U 2))G a

= 2
∫

R
n+1+

UUtG a y
a + 2

∫

Rn×{0}
U∂ayUG a +

∫

R
n+1+

〈∇(U 2),∇G a〉ya

= 2
∫

R
n+1+

UUtG a y
a + 2

∫

R
n+1+

U 〈∇U ,
X

2t
〉G a y

a,

where in the last equality we have used (2.19) and the fact that
∫

Rn×{0}
U∂ayUG a = 0.

The vanishing of this integral is proved as follows. We write
∫

Rn×{0}
U∂ayUG a =

∫

(Rn×{0})∩{U>0}
U∂ayUG a +

∫

(Rn×{0})∩{U=0}
U∂ayUG a .

Thefirst integral in the right-hand side vanishes since ∂ayU = 0on the set (Rn×{0})∩{U > 0}.
The integral on the set (Rn × {0}) ∩ {U = 0} vanishes since ∂ayU ∈ C

0, 1−a
2

loc up to thin set
{y = 0}.
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We conclude that

1

2

∫

R
n+1+

La(U
2)G a =

∫

R
n+1+

U

(

Ut + 〈∇U ,
X

2t
〉
)

G a y
a .

From this formula, (2.24) and (4.5) we conclude that

1

2

∫

R
n+1+

La(U
2)G a = 1

2t

∫

R
n+1+

UZU G a y
a = 1

t
i(U , t).

Combining this equation with (12.1), we conclude that (4.6) holds. ��
In order to prove Lemmas 4.4 and 4.7 for every δ ∈ (0, 1) we consider the following

truncated quantities

Hδ(U , r) = 1

r2

∫ −δr2

−r2
h(U , t)dt = 1

r2

∫

S
+
r \S+

δr

U 2 G a y
adXdt, (12.2)

and

Dδ(U , r) = 1

r2

∫ −δr2

−r2
d(U , t)dt = 1

r2

∫

S
+
r \S+

δr

|t ||∇U |2 G a y
adXdt . (12.3)

Consideration of these integrals is justified by the fact that for every δ ∈ (0, 1) we have

G a ∈ L∞(Rn+1+ × (−1,−δ)). (12.4)

Proof of Lemma 4.4 Using our assumptions onU we can proceed as in the proof of Lemma6.5
in [4]. We thus skip most details and only refer to the relevant changes. The first step is to
recognize that for t ∈ (−1,−δ) one has

h′(U , t) = 1

t

∫

R
n+1+

UZU G a y
a = 2

t
i(U , t). (12.5)

Again the proof of (12.5) can be rigorously justified by integrating on the regionRε, wherewe
know that (12.4) holds, and then let ε → 0+ using (2.19), (2.17), (2.18) and the assumptions
on U on the thin set {y = 0}.

Substituting (12.1) in (12.5) we have

th′(U , t) = 2d(U , t) + 2t
∫

R
n+1+

UFG a y
a . (12.6)

Using (12.2) we obtain from (12.6)

H ′
δ(U , r) = 2r

∫ −δ

−1
th′(U , r2t)dt = 4

r
Dδ(U , r) − 4

r3

∫

S
+
r \S+

δr

U F |t |G a y
a . (12.7)

At this point we can argue as in the proof of Lemma 6.5 in [4] to pass to the limit as δ → 0+
in (12.7) and reach the desired conclusion for H ′(U , r). ��
Proof of Lemma 4.7 For every δ ∈ (0, 1) we have

Dδ(U , r) =
∫ −δ

−1
d(U , r2t)dt .
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This gives

D′
δ(U , r) = 2r

∫ −δ

−1
td ′(U , r2t)dt = 2

r3

∫ −δr2

−r2
td ′(U , t)dt . (12.8)

We next compute d ′(U , t) for −1 < t < −δ. We are going to use the scalings (2.20) and
(2.22).

Again, to make rigorous the following computation we should first consider integrals on
the region Rε , and then pass to the limit as ε → 0+. For t ∈ (−1,−δ) and 0 < λ < 1/t we
have from (4.4)

d(U , λ2t) = −λ2t
∫

R
n+1+

|∇U (X ′, λ2t)|2G a(X
′, λ2t)(y′)adX ′.

The change of variable X ′ = λX and (2.22) give

d(U , λ2t) = −λn+a+1λ2t
∫

R
n+1+

|∇U (λX , λ2t)|2G a(λX , λ2t)yadX

= −λ2t
∫

R
n+1+

(|∇U |2 ◦ δλ

)
(X , t) G a(X , t)yadX .

Recalling that

d

dλ
( f ◦ δλ)(X , t)

∣
∣
λ=1 = Z f (X , t),

if we differentiate with respect to λ and set λ = 1 in the previous identity we find

2td ′(U , t) = −2t
∫

R
n+1+

|∇U |2 G a y
a − t

∫

R
n+1+

Z(|∇U |2) G a y
a

= −t
∫

R
n+1+

[
Z(|∇U |2) + 2|∇U |2] G a y

a

Consider the vector fields Xi = ∂
∂xi

, i = 1, . . . , n, Xn+1 = ∂
∂ y . One easily verifies that the

commutator [Xi , Z ] = Xi , i = 1, . . . , n + 1. This gives (using summation convention)

Z(|∇U |2) = 2Z XiuXiU = 2Xi ZuXiU − 2XiU XiU = 2〈∇(ZU ),∇U 〉 − 2|∇U |2.
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Substituting in the latter equation and integrating by parts and recalling that the outer unit
normal on ∂Rn+1+ is −en+1, we find

2td ′(U , t) = −2t
∫

R
n+1+

〈∇(ZU ),∇U 〉G a y
a

= 2t
∫

Rn×{0}
∂ayU ZU G a + 2t

∫

R
n+1+

ZU div(yaG a∇U )

= 2t
∫

Rn×{0}
∂ayU ZU G a + 2t

∫

R
n+1+

ZU div(ya∇U ) G a

+ 2t
∫

R
n+1+

ZU 〈∇U ,∇G a〉ya

= 2t
∫

Rn×{0}
∂ayU ZU G a − 2t

∫

R
n+1+

ZUF G a y
a

+ 2t
∫

R
n+1+

ZU 〈∇U ,
X

2t
〉G a y

a + 2t
∫

R
n+1+

ZUUt G a y
a

= 2t
∫

Rn×{0}
∂ayU ZU G a − 2t

∫

R
n+1+

ZUF G a y
a

+
∫

R
n+1+

(ZU )2 G a y
a .

We have thus proved the following formula for t ∈ (−1,−δ)

d ′(U , t) = 1

2t

∫

R
n+1+

(ZU )2 G a y
a −

∫

R
n+1+

ZUF G a y
a +

∫

Rn×{0}
∂ayU ZU G a . (12.9)

Substituting now (12.9) in (12.8) we obtain

D′
δ(U , r) = 1

r3

∫

S
+
r \S+

δr

(ZU )2G a y
a − 2

r3

∫

S
+
r \S+

δr

t(ZU )FG a y
a

+ 2

r3

∫

Sr \Sδr

t∂ayU ZU G a . (12.10)

We claim that on the thin set {y = 0} we have
∂ayU ZU = 0 a.e. with respect yadXdt . (12.11)

We first note that U restricted to {y = 0} is locally Lipschitz continuous in x, t . We also
have that for a.e t , since ∇Ut (·, t) ∈ L2

loc(R
n+1+ , yadX), therefore Ut has a L2

loc trace at
{y = 0}. Moreover by a standard weak type argument using test functions, we can show that
such a trace is in fact bounded because of the Lipschitz continuity of U in t and coincides
with the weak time derivative of U at {y = 0}. Now on the set {U > 0}, we have that
limy→0 yaUy = 0, hence a.e. we have

lim
y→0

yaUy ZU = 0 on {U > 0}.

Then on the set {U = 0} ∩ {y = 0}, we note that
ZU = 0 a.e.
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which again implies limy→0 yaUy ZU = 0 a.e. Therefore the claim (12.11) follows. Com-
bined with (12.10), it gives

D′
δ(U , r) = 1

r3

∫

S
+
r \S+

δr

(ZU )2G a y
a − 2

r3

∫

S
+
r \S+

δr

t(ZU )FG a y
a . (12.12)

At this point, we can argue as in the proof of Lemma 6.10 in [4] to reach the desired conclusion
by letting δ → 0+. ��
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