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Abstract

We study the singular set in the thin obstacle problem for degenerate parabolic equations
with weight |y|* for a € (—1, 1). Such problem arises as the local extension of the obstacle
problem for the fractional heat operator (3; — A, )* fors € (0, 1). Our main result establishes
the complete structure and regularity of the singular set of the free boundary. To achieve it,
we prove Almgren-Poon, Weiss, and Monneau type monotonicity formulas which generalize
those for the case of the heat equation (a = 0).
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1 Introduction

The last decade has seen a resurgence of interest in the study of lower-dimensional, or thin
obstacle problems, largely motivated on the one hand by the applications, and on the other
hand by the development of new mathematical tools and techniques. The primary objective
of the present paper is the study of the so-called singular set of the free boundary in the
following degenerate parabolic thin obstacle problem. Given a parameter a € (—1, 1), and
a function ¥ (the thin obstacle) on Q1, we consider the problem of finding a function U in
QT such that

y4o,U = divy (y*VxU) inQf,
mmkMLQo—waJx—h%J%ﬂML%o}:Q for v, 1) € 0. D
y—

For a detailed explanation of (1.1) and the relevant notation we refer the reader to Sect. 2. We
say that (1.1) is a thin obstacle problem since the function ¥ is supported in the codimension
one manifold {y = 0} x (—1,0) in the space-time variables (X, t), with X = (x,y) €
R" x (0, 00). An important motivation for (1.1) is provided by its connection to the obstacle
problem for the nonlocal heat operator

min{u — ¥, (& — Ax)*u} =0, (1.2)

with the fractional parameter s € (0, 1) related to a € (—1, 1) by the equationa = 1 — 2s.
The passage from (1.2) to (1.1) rests on the extension procedure for the operator (3; — Ay)*,
developed independently by Nystrom and Sande in [24] and by Stinga and Torrea in [27]. Such
result represents the parabolic counterpart of the famous Caffarelli and Silvestre’s extension
work [9].

When s = 1/2 the problem (1.2) arises in the modeling of semipermeable membranes in
the process of osmosis (for this and related problems see the classical monograph [14]). In
such case, by taking @ = 0 in (1.1), we see that (1.2) is equivalent to a lower-dimensional
obstacle problem of Signorini type for the standard heat equation. We recall that in the paper
[13] three of us and T. To developed an extensive analysis for this problem. The optimal
regularity of the solution was established, together with the H't®(+®)/2_regularity of the
so-called regular free boundary, and a structure theorem for the singular part of the free
boundary. We also refer to [2] for quasiconvexity results for certain generalized versions of
the Signorini problem studied in [13].

In the present paper, and in the work [6], we develop an analysis similar to the one in
[13], but for the general case —1 < a < 11in (1.1). In the first part of this program, which is
the content of this paper, we provide a systematic classification of free boundary points. The
main tool is a monotonicity formula of Almgren-Poon type, which we utilize in the analysis
of the blowup limits of appropriate rescalings. We also establish monotonicity formulas of
Weiss- and Monneau-type, which we employ to establish a structure theorem for the singular
set.

Although the work in [13] has served as a road map for our analysis, in the setting of the
present paper one faces novel complications deriving from: (a) the presence of the degenerate
weight y¢ in (1.1); (b) the lower regularity of the solution in the time variable; and (c) the fact
that, because of the nature of the Almgren-Poon frequency, in the relevant W>?2 estimates
one must work with the Gaussian, instead of Lebesgue measure.

In connection with our results we recall that in their recent work [1], Athanasopoulos,
Caffarelli, and Milakis show that, at a local level, the fractional obstacle problem (1.2) is
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equivalent to one of type (1.1) under appropriate initial and boundary conditions. Based
on such correspondence, the authors focus their attention on (1.1), establishing the optimal
interior regularity of the solution, as well as the C regularity of the free boundary near
certain non-singular points (which we call hyperbolic regular points, see Remark 7.4 for
more details). In their study the authors use global assumptions on the initial data to infer
quasi-convexity properties of the solutions, leading to their optimal regularity result.

The present work is completely different from [1] and it is developed in total independence
from it. First of all, our main objective is the novel treatment of the singular part of the free
boundary. A further difference is that our approach is purely local. By this we mean that we
establish localized versions of the regularity estimates in [1], both for the solution and for
the free boundary. This is of critical importance in the further analysis of the problem as it
allows to consider the blowups at free boundary points, leading to their fine classification,
see also our work [6], which complements and provides a foundation for this work.

To provide the reader with some further perspectives on the objectives of the present paper,
we mention that our results are inspired by those in the time-independent case in [18]. In
that paper, two of us first analyzed the structure of the singular set in the case ¢ = 0 using
some monotonicity formulas of Weiss and Monneau type. More recently, their results have
been extended to the whole range a € (—1, 1) in [21]. We also mention the recent interesting
paper [11], where for the time-independent Signorini problem (a = 0) a finer stratification
of the singular set is obtained using a variant of Weiss’ epiperimetric inequality in [19], and
the work [15] for a further refined analysis of the structure of the singular set under certain
geometric assumption on the obstacle. A parabolic version of such epiperimetric inequality
(again, when a = 0) has been very recently established in [26], where it has also been shown
that such an inequality, combined with the results in [13], provides a finer structure theorem
of the singular set in the parabolic thin obstacle problem. Finally, we mention the work [4] on
unique continuation for degenerate parabolic equations such as that in (1.1), where Almgren-
Poon monotonicity formulas were established, and the recent work [3] for related results on
the nodal sets of solution.

In closing, we say something about the organization of the present paper. In Sect. 2 we
introduce some basic notations and gather some known results which are relevant to our work.
In Sect. 3 we introduce the class of global solutions GF(ST) of the thin obstacle problem
(1.1). In particular, we show how to effectively “subtract” the obstacle by maximally using
its regularity, thus converting the original problem into one with zero thin obstacle, but with a
non-homogeneous right hand side. In Sect. 4 we establish a generalized Almgren-Poon type
monotonicity formula for solutions to (1.1). Section 5 contains W2 2-type estimates in the
Gaussian space. Such estimates are instrumental to the study of blowups in Sect. 6, which is the
most technical part of the paper. There, we prove the existence and homogeneity of blowups at
free boundary points where the separation rate of the solution from the thin obstacle dominates
the “truncation” terms in the generalized monotonicity formula. In Sect. 7 we establish a basic
Liouville type theorem, which is used in Sect. 8 to classify the free boundary points according
to the homogeneity of the blowup. In Sect. 9 we give a characterization of the so-called
singular points (i.e., points where the free boundary is asymptotically negligible). Section 10
contains new Weiss- and Monneau-type monotonicity formulas which generalize those in
[18,21] and [13]. Finally, following the circle of ideas in [13] for the case a = 0, in Sect. 11
we briefly outline how to combine the Weiss- and Monneau-type monotonicity formulas with
the results established in the previous sections. The objective is to conclude uniqueness of
blowups and obtain a structure theorem for the singular set (see Theorem 11.2). The paper
ends with an appendix where we prove some of the auxiliary results stated in Sect. 4, that
are crucial in the proof of our Almgren-Poon type monotonicity formula.
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2 Notations and preliminaries

In this section we introduce the basic notation and collect some background material which
will be used throughout our work. We indicate with x = (x, ..., x,) a generic point in R",
by (x, #) a point in the space-time R” x R, whereas the letter y will denote the “extension
variable” on the half-line (0, co). The generic point in Ri“ = R" x (0, oo) will be denoted
by X = (x, y). At times, we will tacitly use the same notation to indicate the generic point
in R"*1 i.e., without the restriction that y be > 0. For instance, given r > 0 we respectively
denote by B, and B, the Euclidean balls centered at the origin with radius r in the variables
x eR"and X = (x, y) € R""1. We also letIB%rjE ={X =(x,y) € B, | £y > 0}. We denote
by

Or =B, x (—r7,01, Q =B, x (—r*,0], r>0,

respectively the parabolic cylinders in the thin space (x,7) € R" x R and thick space
(X, 1) e R"! x R. We will indicate by

Qf =BF x (—r2,0]

the parabolic half-cylinder in the thick space.

Given an openset E C R%' x Rand m € N, by qum’m (E, y*dXdt) we will denote the
parabolic Sobolev space of functions u in L(E, y*d Xdt) whose distributional derivatives
8,‘"8§u belong to LY(E, y*d Xdt) for 2|a| + |B| < 2m. Such a space is endowed with the
natural norm. Further, for given k € NU{0} and0 < o < 1 by Hktok+e)/2 e will indicate
the classical parabolic Holder spaces, see e.g. [13] for detailed definition.

Given a number a € (—1, 1), we consider in R"*! x R the degenerate parabolic operator
defined by

def a . a
LU = 3(|y|*U) — divx (|y|“Vx V). 2.1)

This is the so-called extension operator for the fractional powers (3; — A;)%,0 <s < 1, of
the heat operator. It was recently introduced independently by Nystrom-Sande in [24], and
Stinga-Torrea in [27]. These authors proved that, if for a given u € .%/ (R"*1Y, the function
U solves the problem

LU =0 in R x (0, 00),
Ux,0,1) =u(x,1), (x,1) € R" x (0, 00),

(such problem can be solved by means of an explicit Poisson kernel) then, with s € (0, 1)
determined by the equation @ = 1 — 2s, one has (both in L> and L?)

e (), S
(%) U 0,0 =@ — Ax)ulx, 1),

where 97U denotes the weighted normal derivative
a def .. a
ByU(x, 0,t) = lim y“0,U(x, y,1).
y—0t

The proof is based on the representation

Ly =y — Ay — B, fory >0, (2.2)
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where %ﬁ”) = ayz, + (a/y)dy is the generator of the Bessel semigroup on (R, y?dy).
Moreover, it was shown in [1] that, at alocal level, problem (1.2) is equivalent to the following
thin obstacle problem for the local degenerate parabolic equation

2,U =0 inQF,

. (2.3)
min{U (x,0,1) — ¥ (x, 1), —B;U(x, 0,6)} =0 onQy,

which is the same as (1.1). Although such denomination is commonly used for the casea = 0
(s = 1/2), throughout the paper we will routinely refer to (2.3) as the parabolic Signorini
problem. We will also assume that the solution of has the following minimal regularity:

o V,U,y'U, € H"""‘/Q(Qf) for some a > 0;
o U € L¥Q)
o YVULI% y (y*Uy); € LNQY).

This regularity follows for instance from global semiconvexity assumptions in [1], with norms
depending on the initial data. But, for solutions of (2.3), it can also be obtained directly in
the form of interior estimates independent of initial data, see the forthcoming paper [6].

We next consider, forany a > —1, the Cauchy problem with Neumann boundary condition

du—Au=0 in(0,00) x (0, 0),
u(y,0) =9, ye(,00), (2.4)
3u(0,0) =0, 1€ (0,00).

This corresponds to one-dimensional Brownian motion reflected at y = 0. Consider the
following classes of functions

R 00
Ca)(0,00) = {cp € C(0, o0) ‘/ lp(»)|y*dy < oo, / lp(Wly2dy < 00, VR > 0} ,
0 R
and
%1, (0,00) = {9 € C'(0,00) | 9.y '¢/ € €(0) (0, 00)} .

As it was observed in (22.8) of [16] membership in C6’&1)(0, 00) imposes, in particular, the
weak Neumann condition

liminf y*|¢’(y)| = 0. 2.5
y—>0t
For an analytic proof of the next result we refer the reader to Proposition 22.3 in [16].

Proposition 2.1 Given ¢ € %”(la) (0, 00), the Cauchy problem (2.4) admits the following solu-
tion

def [
u(y, 1) = P(y) £ [0 o p@ (y, n, Hndn, (2.6)

where for y, n,t > 0 we have denoted by

1—a

o =07 () T na (3)
p (y7 n, t) - (2[) 2 2[ I“;l 2[ e 4 . (27)

Fort < 0 we set p(“)(y, n,t) =0.
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In (2.7) we have denoted by /,,(z) the modified Bessel function of the first kind and order
v € C defined, in the complex plane cut along the negative real axis, by the series

PRETS SR 28)
v _kgor(k+1)r(k+v+1)’ 2 < oo, Jargz| <. @.

When restricted to the positive real axis iz > 0, asin (2.7) above, the function /, takes strictly

positive values for every v > —1. As a consequence of this observation, Ia—1 (%) > 0 for
2

every a > —1, and every y, n,t > 0. We note the following elementary properties of the
Bessel heat kernel p'@:

i) p@(y,n,t) > 0forevery y,n > Oand > 0;

() p9y,n 1) =p@P®m, y, 1)
(i) p @y, an, 2%t) = A=@FDp@(y n. 1),

By Remark 22.4 in [16], for every y > 0, t > 0 one has

@y g %@ b e 2
PPy, =p (y,O,t)—zaF(%)t T e W, (2.9)

The next two results show that (2.6) defines a stochastically complete semigroup {P,(a) }i>0-
For their proofs we refer to [17, Propositions 2.3, 2.4].

Proposition 2.2 Leta > —1. For every (y, t) € (0, 00) x (0, 00) one has

o0
/0 Py, n, Hndn = 1.

Proposition 2.3 Leta > —1. For every y,n > 0 and every 0 < s,t < 00 one has

o0
POy s 4 1) = fo POy, 2. DD (&, . )5 e

We further note that in view of representation (2.2), the fundamental solution for .Z, in
RTI x (0, o0), with Neumann condition on the thin manifold (R” x {0}) x (0, o0), and
singularity at (Y, 0) = (€, n, 0), is given by

Gu(X, Y, 1) = p(x, £,)p (v, n, 1), (2.10)

where p(x,&,t) = (4srr)="/2 exp(—%) is the standard heat kernel in R" x (0, o0) and

p@(y,n, 1) is given by (2.7) above. This means that, given a function ¢ € C§° (R’jfl ), the
Cauchy problem with Neumann condition

Z,U =0 in R % (0, 00)

1
UX,0)=p(X), XeR, (2.11)
94U (x,0,1) =0, € (0,00),

is represented by the formula
UX,t) = / » w(Y)4%,(X,Y,t)n*dY. (2.12)
RY

Using Proposition 2.2, and the well-known fact that fR" p(x, &, 1)dé =1 forevery x € R”
and ¢ > 0, it is trivial to verify that for every X € ]R’fl and ¢ > 0 one has

/ 4,(X, Y, HndY = 1. (2.13)
Rz:H
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We also note that (ii) and (iii) above give for every X, Y € R'jfl ,and t > 0,

(i) %(X,Y,0)=9,(Y,X,1),
(i) 40X, Y, 2\21) = A~ (et (x ¥ 1),

Henceforth, we take Y = 0 in (2.10), and with a slight abuse of the notation, we write
Ga(X, 1) = 9(X,0,1).
By (2.10) and (2.9) above, we obtain

Gu(X. 1) = %t”ﬁ“eﬂz. (2.14)
From (2.13) and (ii)’ we have for every r > 0
/ G, (X, )ydX = 1. (2.15)
RIH
We denote by
G, (X, 1) =9,(X,|t]), t <0, (2.16)

the Neumann fundamental solution of the backward operator .Z; = y¢ 5—’, + divyx (y*Vx).
This means that ¢, satisfies the equation in RTI X (—00, 0),

LrGa =y 0,94 + divy (3 VxTa) =0, 2.17)
plus the Neumann condition
3G a(x,0,1) =0. (2.18)

From (2.14), for X € RT] and ¢ < 0 we have the reproducing property
_ X
V¥4, = Z%a. (2.19)

We now consider the parabolic dilations in R"*! x R defined by
8.(X, 1) = (A X, A%1). (2.20)

A function f : R x R — R is said to be homogeneous of degree ¥ € R with respect to
(2.20) if f o 8, = A* f. The infinitesimal generator of the group {8, },~0 is

Zf = (X, Vf)+2tf;. 221

A C! function is k-homogeneous with respect to (2.20) if and only if one has Zf = « f. For
instance, since from (iii)’ above we see that

Gyo08, =2ty (2.22)
and therefore

29, =—(n+a+D9,. (2.23)
For later use we notice that for every (X, ¢) such that ¢ # 0, (2.21) can be rewritten

Zf _ v X 224
Z_ft—i_( f’g)- (2.24)

@ Springer



91 Page8of52 A.Banerjee et al.

Further, we indicate with

(X, 0] =VIXI2+ 1],

the standard parabolic pseudo-distance from the origin in the variables (X, 7) € R"T! x R.
Notice that such function is positively homogeneous of degree one with respect to the dilations
(2.20).

In closing, for every r > 0 we introduce the sets

S, = R"! x (=2, 0],
S =R x (=2, 0], (2.25)
S, = R" x (—r?,0].

We emphasize that the + sign in the notation S refers to the variable y > 0 and not to the
time variable #, which is instead negative for points in such set. The following simple lemma
will be used in the subsequent sections.

Lemma 2.4 For everyr > 0 we have
l Y77 a
) N gay dXdt =1.
r= Js
Proof By (2.22) we have

/ Gy dXdt = p= et / Go(X/r,t/r)y dXd1
st SF

r r

0
:rz/ / G,(Y, T)ndYdr =r?,
—1 RVIH

where in the second equality we have made a change of variables ¥ = X /r, T = t/r2, for
which y?d Xdt = r"*t33%dY dz, and in the last equality we have used (2.15). |

3 Classes of solutions

In this section we make some critical reductions on the problem (2.3). As a first step, we
reduce the problem (2.3) to one with zero obstacle at the expense of introducing a nonzero
right-hand side in the governing equation. The most straightforward way to do so is by
considering the difference

W(X,t) = U(X,t) — ¥ (x,1). 3.1)

Later on, in order to take advantage of a possible higher regularity of v, we will make a more
refined construction. Since U solves (2.3), we have in QT

LW = L,U — Ly = y°F,
where we have let
FX.t)=Fx.n) & —@ — A)v(x. 1)
For later purposes it is important that we note here that the function F, being independent

of the variable y, is automatically even in such variable. If we now assume that ¥ € Cy’
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and Y € Cto’l, then we clearly have Fe L®(R"! x R). We thus see that the function W
satisfies

faW=y“I7“ in Q},

. (3.2)
min{W(x, 0, 1), —8;’W(x, 0,6)} =0 on Q.

We next want to extend (3.2) to a problem in a strip ST. Pick a cut-off function ¢ € C3°(B; x
(=1, D)) of the type £(X) = ¢1(x)¢2(y) with 0 < ¢y, 2 < 1, and such that {; = 1 in B34,
¢ = 1in (—3/4,3/4). Moreover we can choose {1, {> such that {1 is a function of |x| and
> is symmetric in y. We now let

VIX,t) =t(X)W(X, 1) =¢(X)(UX,t) — ¥(x,1)). (3.3)

Clearly, V is supported in QT. Since ¢ is smooth and symmetric in y, the function V
will satisfy on the thin set S; the same Neumann condition as W. Furthermore, we have
¢y = O(]y|) near the thin set {y = 0}, which implies that y~“ div(y*V¢) = O(1) and
¢yVy = O(1) up to the thin set. Therefore, if we let

FY vy div(y?Ve) — 2(VV, V),

then F € L°°(ST) and V solves the problem

LV = ap : +’
{.f y in S} (3.4)

min{V(x, 0, 1), —8§V(x, 0,)} =0 onSj.

Recalling now the minimal regularity assumptions imposed on the solutions of (2.3), we are
ready to introduce a central class of solutions in this paper.

Definition 3.1 (Solutions in strips) Given a function for F € L°°(ST), we say that U €
Sr(S)if:

1) U has bounded support;

2) VU, yUy € H“’“/z(ST) for some a > 0;

3) U € LS

4) YIVULIP. y (U2 € L'}

5) U solves (3.4);

6) (0,0) e T'w(U) def {(x,1) € S | U(x,0,1) =0, 8)‘fU(x,0, t) = 0}.

Suppose now the obstacle ¥ in (2.3) is of class H-4/2(Q) with =k +y > 2,k € N,
0 < y < 1. We then make the following more refined construction that takes advantage of
the higher regularity of ¥ . Let g (x, t) be the parabolic Taylor polynomial of ¥ at the origin
of parabolic degree k. Then, we have

Y (x, 1) — q(x, )] < Clx, D,

and more generally
10997 (Y — qi) < M| (x, )12, (3.5)

for any multi-index « and j > 0 with |a| + 2j < k. We then extend the polynomial g into
R**! x R as an a-caloric polynomial, even in y, with the help of the following lemma.
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Lemma 3.2 (a-Caloric extension of polynomials) For a given polynomial g(x, t) in R* x R,
there exists a unique polynomial §(x, y, t) in R x R, which satisfies

G(x,0,1) =q(x,1), (x,1) e R”" xR
G, =y, ) =4, y,0), (x,y,0) e R xR (3.6)
Z1G =0, in R x R.

Moreover, if g(x, t) is parabolically homogeneous of degree k, then § has the same homo-
geneity.

Proof The proof is similar to that of Lemma 4.3 in [13] for the case a = 0 and Lemma 5.2
in [21] for the stationary case. For a given polynomial ¢ (x, t), let

k
1
g(x,y, 1) = —“Dfer(A, — 3)F 1 2k, ith ¢, = e — =1.
q(x,y,t) k§>0( Yeek(Ax —0) q(x, 1)y with ¢y Z.|:|1 22— 2) o

Note that the sum above runs over a finite range of k, with 2k not exceeding the parabolic
degree of ¢ (x, t). It is clear that

G(x,0,t) =q(x,1)

and that g is even in y. Further, using that

a _
<3y2 + ;ay> (cry*) = cpyy?*=D,
(with the agreement that c_; = 0) it is straightforward to check that
Zag(X, 1) = Y0 — Ay — BY)G(X. 1) = 0.

Hence, g is the required a-caloric extension of ¢, even in y. We next show the uniqueness
of such extension. By linearity of ., it suffices to show that the only extension of ¢ = 0 is
g = 0. Note that for any such extension, both g and 97¢ vanish on {y = 0}. Now, from the
strong unique continuation property (which follows by applying the arguments in Lemma 7.7
in [4]), we conclude that g = 0. O

Let now gy be the parabolic Taylor polynomial of i of parabolic degree &, and g be the
corresponding a-caloric extension as in Lemma 3.2. Consider

U =U—-q(X,t), Yx=v —aqrx, 1),

where U is as in (2.3). It is easy to see that Uy solves the thin obstacle problem with the thin
obstacle ;. With ¢ a cut-off function as in (3.3), we now consider

Vie = E(X) Uk = ¥)- (3.7

Then, Vj is a global solution to the Signorini problem (3.4), corresponding to a right-hand
side Fy given by

Fie = £(Axyi — 0rn) — Viely|* div(y*V¢) — 2(V Vi, VE).
Since ¢ = 1 in a neighborhood of 0, from (3.5) we obtain that Fj satisfies when ¢ > 2,

|Fu(X, 0] < MIX, 1) for (X, 1) € SY. (3.8)
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If ¢ > 3 we will also have

IVxFe(X. 0] < MIX. 1] for (X, 1) € Qf),. (3.9)
For ¢ > 4 we will gain

|0y Fi(X. )] < M|X,1]* for (X, 1) € Q5. (3.10)

Moreover, since Vi(x,0,t) = U(x,0,t) — ¥(x,t) and 8; Vi(x,0,1) = 8§U(x, 0,1) in
012, it follows that Iy (Vy) = '« (U) in Q2.

With the help of the monotonicity formulas that we prove in the next section, the growth
estimates (3.8)—(3.10) will allow a finer classification of free boundary points.

4 Almgren-Poon type monotonicity formula

In this section we establish a monotonicity formula which plays an essential role in our
classification of free boundary points. We consider a function U € & F(Sf). In view of
(3.4), this means in particular that U solves the equation

¥ U —divy(y*VxU) = y*F inSj. 4.1
We assume henceforth that the function F' satisfies for some £ > 2 and a constant Cy,
[F(X, )] < Cel(X, [)|e—2 for every (X, 1) € ST. 4.2)

Recall that, when the obstacle is of class H%*/2, such assumption can be ensured by the

reduction argument in Sect. 3, see (3.8). We also note that, because of the technical nature

of the results in this section, some of the proofs are deferred to the appendix in Sect. 12.
For t < 0 we introduce the quantities

h(U, 1) :/uw UX, 0> G, (X, 1) y*dX, (4.3)
y
dU, 1) =—t /RM IVU(X,0)]> Z.(X, 1)y*dX, (4.4)
y
and
iU, 1) = ;/RTI UX,HZU(X, 1) Go(X, 1)y"dX, (4.5)

where Z is the vector field in (2.21) above. Henceforth, we will routinely drop the indication
of the variables (X, t) and of the (n 4 1)-dimensional Lebesgue measure d X in all integrals
involved. We will need the following result connecting d (U, t) and i (U, t). For the proof,
see Sect. 12.

Lemma4.1 Fort € (—1,0) we have

i(U,t):d(U,t)—/ |t|UF?ay“+/ U UZ . (4.6)
R R" {0}
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Next, we introduce the following Steklov-type averaged versions of the quantities 2 (U, t),
dU,t),andi(U,t):

1[0 1 _
HWU,r) = 7[ h(U, t)ydt = 7/ U*9G,y*dXdt, 4.7)
re J_ 2 re Jst
10 1 =
DWU,r)=— dlU,ndt = — [t|IVU|" 9, y"dXdt, (4.8)
re J_ 2 re Jst
and
1o 1 _
I(U,r)=— iU,ndt = — UZU 9 ,y°. 4.9)
A 2r? Jsr
We now define two initial frequencies of U that will each prove useful in the computations.
(U, ~ DU,
Nw. =229 j, =2 280 (4.10)
HU,r) HWU,r)

Remark 4.2 We remark that if U € GO(ST) is homogeneous of degree « with respect to the
dilations (2.20), then we have

NWU,r)=NU,r) = «.

In fact, since F = 0 we have I(U,r) = D(U, r) from Lemma 4.3. But then, keeping in
mind that ZU = « U, we find from (4.9)

1.1 = SHW.".
This proves the claim.
Using Lemma 4.1 we immediately obtain the following alternative expression for I (U, r).

Lemma 4.3 One has for every r € (0, 1)

1 _
IU,r)=DU,r) — —2/ [tIUF @,y°dXdt.
r Sr+

We now list two key results: the first-variation formulas for H(U, r) and I (U, r). Their
proofs are given in Sect. 12.

Lemma 4.4 (First variation of the height) For a.e. r € (0, 1) we have
, 4
HU,r)y=-1U,r).
r

We observe that combining Lemma 4.4 with the former identity in (4.10), for every
r € (0, 1) such that H(U, r) > 0 we can write

rH' (U, r)

NWU,r) = SHU.T)

“.11)
We will need the following result.

Lemma 4.5 Foreveryr € (0, 1) such that H(U,r) > 0, one has
1+NWU,r)=>0.
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Proof From (4.7) we have

d d [° _
— (FPPHWU,r) = 7/ / U?G,y*dXdt = er U?>%,y"dX > 0.
dr dr —r2 R"_ﬁl errlx{_rZ}

If H(U, r) > 0, this gives

H'(U,
0<2rHU, r)+r2H'(U,r) = 2r H(U, ) (1 MLACALY) r)>

2H(U,r)
=2rH(U,r)(1+NU,r)),

which implies the statement of the lemma. O

For later use in the proof of Theorem 4.8 we also record the following notable consequence
of the above computation

/ U>9G,y*dX = HWU,r)(1+ NU,r)). (4.12)
R < (—r2)
O

Lemma 4.6 (First variation of the energy) For a.e. r € (0, 1) we have

1 — 2 —

D'(U.r)=— / (ZUP Gy + = [ (1(ZU)F Gy°.

r S r S
Combining Lemma 4.3 with Lemma 4.6 we immediately obtain the following result, see also
Sect. 12.

Lemma 4.7 (First variation of the total energy) For a.e. r € (0, 1) we have

1 — 2 _
I'U.r)= —3/ (ZU)? %y“+—3/ 1(ZU)F Gay"
r S,-+ r S:r

2 _
+—3/ |t|UF€4ay“—|—2r/ UF 4,y°.
re Jst R {—r2)

With the statement of Lemmas 4.4 and 4.7 in place we now establish a basic monotonicity
formula that plays a central role in our classification of free boundary points.

Theorem 4.8 (Monotonicity formula of Almgren-Poon type) Let U € & F(Sf) with F
satisfying (4.2). Then, for every o € (0, 1) there exist a constant C > 0, depending on
n,a, Cy and o, such that the function

1 ciod B
ri—> @,U,r) o Erecrl o log max {H(U, r), r2€_2+2”] +2(C77 — ),
r

(4.13)

is monotone nondecreasing on (0, 1). In particular, the following limit exists

Do (U, 0N E lim @ (U, r).
r—0t

Proof We begin by introducing the set
Epo=1{re )| HU,r) > r¥22),
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As itis well known by now, in order to prove the theorem it suffices to verify the monotonicity
of the function r — @, (U, r) in the set E¢ . In such set we have

1 - d -0 1 -« H'(U,r) -0
oo (U, r) = 5reC’ S log H(U, 1) +2(TTT =) = 5reC’ S T) +27 =

=eTINWUL Y +2) - 2,

where in the last equality we have used (4.11). We now make the crucial observation that,
thanks to Lemma 4.5, we can say thatr — N(U,r)+2 > 0in Ey . Therefore, to complete
the proof it suffices to show that we have in E¢

d
—log @ (U, r) = 0.
dr

Finally, this is equivalent to proving that for every r € E; , we have

w > _@,ﬁa’ (4.14)
NWU,r)+2

for some constant_C_‘ > 0 depending on n, a, Cy, 0. Then, the thesis of the theorem will
follow with C = C/(1 — o) > 0. We thus turn to proving (4.14).
Using the first equation in (4.10) we find

2I'W,rHWU,r)—IWU,r)H'(U,r)
H(U,r)?
=r>(I'(U,r)HU,r) — I(U,r)H'(U, 1))
I1(U,rnH'(U,r)
HU,r) )

rS 2 a7/ _ .5
EH(U,r) N'U,r)=r"HWU,r)

=rHU,r) <I/(U, r) —

5 1 2 \a 2 g +a
=rPPHU. Ny = | (ZUP¥Guy* + 5 | [tI(ZU)F Gay
reJst roJs;

2 _
+ = [t{UF 4,y" + 2r UF 4,y°
r3 Sh

R+ x{—r2)
4

T 2
rHU. Y }

=r’HU,r) /+(ZU +|t|F)? Goy® —r?H(U, r) /+ 1P F? Gyy”
S/ S}
—2r2H U, r) ﬁ [t|ZUF Guy* + 2r*H(U, r) /+ [t|ZUF G 4y°
S/ s

+2r2HU, r) ﬁ [tlUF G,y* +2r°H(U, r) UF G,y°
S

R < {—r2)
2
- (fS+ UzZU ?ay“> ,

r
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where in the last equality we have used (4.9). We thus obtain

5
" HW. PPN (U ) = f 027,y / (ZU + 11|F)? Dy
2 S S

—/S+ U? G, y° /S+ |t|2F2?ay”+2/S+ U? G, y" fy [t|lUF G, y°

+2r4/ UZ?ay“f UF 9,y°
St R e (—r2)

2
- (/S+ UZU?ay“> .

Cauchy-Schwarz inequality now gives

2
(/ u(zu+|t|p)?aya> < [ 02T [ (zu+F) T,
Sha Sh SH

Substituting in the above we find

2 2
r5 2 a7/ o a o .a
—HU,r)*N'(U,r) > U(ZU +1tIF) 9ay" ) — UZU %G,y
2 st St

r r

_/S+ U2 @,y° fs+ |t|21¢2?ay“+2/S+ U2 T, y" /S+ IUF G,y

r r

—|—2r4/S~+ Uzgay”/l; UF 9,y°.

1
r 1+ X{_r2}

Expanding the first integral in the right-hand side of the latter inequality, and returning to the
definitions of H(U, r) and I (U, r), we find

5 2
%H(U,r)zN’(U,r) > </+ [t|UF %y”) +4r°1(U, 1) /+ [tlUF Gqy"
5/ s

—r?HWU,r) /+ [1|>F? ?ay“+2r2H(U,r)/+ [t|{UF G 4y°
S/ s;

+2r°H U, r) UF G4y°.

R < (—r2)
This gives

Jsi MUF Gay® 2 [or 1PF> Gy
HU.n r’ HU.r

4 fS:r |[|UF ?aya fR/:rlX{_rz} UF ?ay(l

3 r

r3 HU,r) HU,r)

Jsr MUF Gay® 2 [or 111PF? Gy
HWU,r) 3 HU,r)

Jrrt ) UF Gay*

.

HU,r)

4
N'(U,r) > er(U,r)

4
== (NWU.n+1)
p

+4
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Using the Cauchy-Schwarz inequality, we find

22 \a 12 2127
(fg:r |t|"F %y) 2 Jor 1P F? Gay*

H(U, )2 3 HU,r
12

N'U,r) > —% (NU,r)+1)

I 1/2 27 a
(7)o o)
HWU,r)

4 4.15)

To proceed, we note that for r € E; , we have in particular H (U, r) > 0, and thus we are
in the conditions of Lemma 4.5. In particular, we trivially infer from (4.12)

1/2
/ U@.y" | =HU,»A+NU, )
R%H x {—r2)
1/2 1
<HWU,r) 1+§N(U,r) .
Using this bound in (4.15) gives

27 wa)? —
(fsr 1P F2Z0y) ™ o [ uPF2 oy
HU,r)l/2 r3 HU,r)

N'(U,r) > —;12 (NWU,r)+1)

_ 1/2
Q+ N ) (faret oy F T

-2
g H(U, "2

This estimate implies
Q+NU,r) = -2+ NU,r)

_ 12 _ 12
(PP 5)” (P
2 mu.nr 7 HU, )2

2 fgf |t|2F2 gaya
r3 HU,r)

At this point we observe that (4.2), (2.22) and a simple rescaling argument imply

1/2
f F2Z,y%dXx | <crt?, (4.16)
R e (—r2)
where C = ,/Cy Cp 4,0, With

Cnat = /R X =D (X - ytdX.

+

Similarly, we obtain
- 1/2
(L 1> F? %y“> < critt, 4.17)
S
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Now, if 7 € E¢, we have H(U, r) > r**=2+29 and thus from (4.16), (4.17), and the above
estimate for (2 + N (U, r))’, we find

Q+NWU,r) >-C'Q+NU,rNr°—=C"r'"2° > _CQ+NU,r)r°.

Since by Lemma 4.5 we know that 2+ N (U, r) > 0, this proves (4.14), thus completing the
proof. O

5 Gaussian estimates

In this section we establish some uniform second derivative estimates in Gaussian spaces
that play a crucial role in the blowup analysis in Sect. 6.

Lemma5.1 Let U € GF(ST), with F, Fy € Lw(Sfr). Then, for any 0 < p < 1, there exists
a constant C(n, p) > 0 such that the following estimates hold:

[ vUPgLy < conap [ WP PRy 5.1)
0 1

and

[ uPavu, P+ 0370 < conan [ @ PP G2
0 1

Proof We closely follow the ideas in Appendix A in [13] and in [4]. In the rest of the proof,
whenever we refer to the weak formulation of (4.1) we mean that, given n € Wl*z(]R'j:rl X
(—1,0), y*d Xdt) with n(-, t) compactly supported in ]B%;, for some R > 0 independent of
t € (—1,0),wehaveforall0 <8 <r <1,

/ VU, V) +Un+ FUN G,y = —/ UoyUn%,. (5.3)
St-sy . —Ss

Having clarified this, we divide the proof into four steps.

Step 1: Let 0 < p < 1 be fixed. We first establish (5.1), which represents a Caccioppoli
type energy estimate in Gaussian space. We begin by noting that, since U isin G f (ST), there
exists R > 0 such that U(, t) is supported in Bg for every r € (—1, 0). Let p be such that
p < p<l,and fix r € [p, p]. We fix a cut-off function 7y € C(‘J’O(R”“) such that 7p = 0
outside Br. Corresponding to such 7y, for every k € N we define a homogeneous function
of degree k in Sy by letting

e = (12X /V/lt)). (5:4)
Using the test function
n= Urlz?a

in (5.3), for 0 < § < r sufficiently small we obtain

2.2 X 2
f <|VU| i +U((VU,—)+U,> 7
SH-sy 2t

+2UT (VU, V1)) + FUz%)?ay” = —/ Ud'Uti%, = 0. (5.5)
r—Ss i
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In (5.5) we have used the hypothesis that UB;IU = 0 on the thin set {y = 0}, see (3.4), and
the reproducing property (2.19). Since

X
Z(U?) =2UZU =2U (X, VU) + 2tU,) = 4tU <(VU, E> + U,) ,
from (5.5) we have

1 _
/ <|VU|21'12 + —Z(UHT} +2Ut(VU, V1) + FUr12> G.y*=0. (5.6
Sj_g; 4t

Handling the term Z(U?) in (5.6) requires some care. For this, we argue as on p.92 in the
Appendix of [13], making the change of variables 1 = —A2, X = AY, and exploiting the
homogeneity of ¢, and of t;. After some work, we find

1 2 207 ..a 2 2I\2 A5 b p
\/S\:rS; EZ(U )Tl gay = —r Rrrrl U(-, —r%) 1'054“(., —r )y . (57)
From (5.6), (5.7) and Young’s inequality, we obtain

/ NMURRA
St-s¢

=c ( L v 8Fue e [ e vnp + F2|z|21%y“> . (58)
Ry §F-8f
Integrating (5.8) with respect to r € [p, /], then letting the support of 7y sweep R"*!, and
6 — 0, we conclude that the estimate (5.1) holds.
Step 2: We turn our attention to the proof of (5.2). We begin with the following second
derivative estimate for tangential derivatives

/+ tPIVUy *Fay” < C(n,a, p) /+(U2 + 1P F)Tay". (59)
S S
With p, p,r,§ asin Step I, fora giveni € {1,...,n} and ¢ > 0, we also let

n= Uyl — &) 13%,, (5.10)

where 1, corresponds to the choice k = 2in (5.4). Noting thatthe set A* = {|Uy,| > e}N{y =
0} is compactly contained in the interior of the set {B;f U = 0}, a standard difference quotient

argument as in [4, Sect. 5] allows us to assert that VU,,, 0;U,, € L? (-, y*dXdt) up to

loc
{y = 0} in A, (we stress that here we crucially use the fact that F; € LOO(ST)). Once we

know this, with 7 as in (5.10), we use 7, as a test function in the weak formulation (5.3).
Integrating by parts with respect to x; and by a limiting type argument (i.e., by first integrating
in the region {y > B}, and then letting 8 — 0), we obtain

X
/ <|VUX,. 1223 + Ve(VUy,, —)73
(SF-sfHnBe 2t

+ 0, Uy, stzz +2Vera(VUy;, VTZ))?aya
+/ ye (F(Vs)x,-fzzga + 2FV8T2(T2))C,'?G + Fvsfzz(ga)x,-)
(SF-sHnBe

- / @20, (U — ) 3%, =0, (.11
(S, —Ss)NAE
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where V; = (|Uy;| — &)t and B = {(X,1) | |Uy;| > ¢}, and in the second term in the first
integral in the left-hand side we have used (2.19). We stress that 7,, is not a legitimate test
function. Nevertheless, the computation in (5.11) can be justified by using as a test function
difference quotients of the form

n(X + he;) — n(X)
Nh,i = p ,

instead of 7ny;, and then finally let 2~ — 0. We also note that for the difference quotients the
integration by parts with respect to x; is equivalently replaced by an identity of the following

type

/ Sni gy'dX = —/ fg-niy'dX,
R'jjl Ri+l

which holds for arbitrary compactly supported functions f, g and is a consequence of a
standard change of variable formula. In (5.11), we have also used that, since 39U = 0 on the
set A, we have (8;’U)xi = 0on A,. Letting ¢ — 0 in (5.11), we find

1 _
/ (WUX,. 1’15 + = Z(UZ)T3 + 22Uy (VUy, vfzm) oy’
gj_g; 4t

< / <|F||Ux,.x,. |13 + 2F|Uy, || V| + F|Uy, |73
S-sf

X @ A
2t’>%y. (5.12)

To handle the term with Z (sz[) we argue again as in the opening of page 92 in [13], obtaining

1 _
/ —Z(WU) T390y = —r2/
S

Uy, (-, =208 G 4 (-, —r?)y°. (5.13)
+_gt 4t R
r 5 +

The integral

F|Uy |13 X G y°
St-st RAEE VY2

in the right-hand side of (5.12) can be estimated by Young’s inequality as follows:

F|Uy |13 X G,y
St-st RAEEPYI

501/ |F|Zr§?ay“+cz/ 124
St-sy SH-sf

r

EC{/
SF-s

In the last step we have used the fact that the following inequality holds at every time level:

for any v € WH2(R"*!, &,y*dX) one has

21XP

=12 v
20 1Y

FPRTy 4 Ca [ (VURGVER + ) + VU, Pe) Ty

8 r 8

(5.14)

X2 _ _
/ 2207 e < c/ W + [([VO )Ty, 5.15)
reH 1] R

We mention that (5.15) corresponds to the inequality (8.17) in [4].
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The remaining integrals in the right-hand side of (5.12) can be estimated in a similar way.
Using Young’s inequality we find

fy  (FlUss |53 + 2F Uy 2] V2l) D0 y"

8

1 _
< / <f|VUx,. *13 + C|F|*t; + |VU|2|Vrz|2) Gay". (5.16)
sf-si \4
Combining the estimates (5.14)—(5.16), and subtracting from the left-hand side the integral

1 _
- \v4 _2 2 a
4/8,1'8;’| Ui I"559 0y,

we obtain

/ |vux,-|2r§?ay“sc< f Uy, C, =122 0G4 (-, —r)y*
ST-sf R

“f
st-§

As before, we now integrate over r € [p, o], let the support of 7y exhaust the whole of R+l
then let § — 0, and also using the previously established estimate (5.1), we finally deduce
that (5.9) holds.

Step 3: Our next objective is to establish the following second derivative estimate in the
normal direction:

. (IFP3 + |VU|2(|Vr2|2+rf))?ay“>. (5.17)

)

[ WP, Ty < o) [ WP P Ga8)
p 1
For this we make use of the following conjugate equation which is satisfied in R’fl x(—1,0)
by w = yU,
div(y “Vw) — y “w; = F,. (5.19)
For a given ¢ > 0, we consider the test function
n=0"Uy - 559,

in the weak formulation of (5.19). We note that since 3;‘ U < Oonthethinset {y = 0}, thanks
to the Holder continuity of y“Uy up to {y = 0}, the function 7 is compactly supported in the
region {y > 0}, and therefore it is a legitimate test function. With w = y“U,, we thus have

[, (V= e P 4w - o) (Vw, v,y
St—s

8

+w =) w G,y + 20w — )T (Vw, Vi), y
+F oy (w — £)+r22?a +2F(w — &)t 120,129, + F(w — 8)+‘L'22 %?a) =0.
(5.20)
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Similarly to (5.13), we now obtain
/ (55w — &) (Vw, VZ,)y ™ + (w — &) Tw, 139,
ST—sf

1 _
= f —Z((w— &) G,y
S;r_ggr 4t

A%

—r2/ (W —8)2 C, =TG-, —r?)y ™. (5.21)
errl
Using Young’s inequality, we estimate

/s+ . Y 20w — &) (Vw, Vi) G, + Fiy(w — )T 139, + 2F (w — &) T10, 129,
r s

1 — _ _
< /S L L BV = PEy T + C(w = ) I VRl Tay ™ + Fr5%ay ™).

)

Finally, the last term in the left-hand side of (5.20) is estimated in the following way. First,
Young’s inequality (and the trivial observation that |y| < |X|) gives

yi
Fw—-eti?lyg
/Sis; (=o' 27,

IXP_
Ty, (522)

<c! / tF213G,y" + co/ (w—e)h)
SF-sy SH—sy

r

where ¢o can be chosen arbitrarily small. To control the second integral in the right-hand
side of (5.22) we argue similarly to (5.15), but with a replaced by —a. Inserting the ensuing
estimate in (5.22), the resulting inequality becomes

Fw—e)t227
/sr_s; (w=e)Tty 5 G

ST—sf

r 8

<C / P19,y + C]CO/ (lV(w — &) PG,y
SH-sf

+((w — &)V H11Zay ™ + (w — s)+)2rf?ay—“), (5.23)

for some constant C; > 0. At this point we choose ¢y small enough such that Cicp < %.
Combining the estimates (5.21) and (5.23), and then subtracting the integral

1 _
= IV(w — &) P 55Gay™
2 Jsf-st

from the left hand side of (5.20), we finally obtain

/S+ NPV =) ay

r ]

=< C{ /;_ . |:((w - 8)+)2(112 + |f||V‘L'1|2 + |V72|2)?ay_“} " |t|2F2?ay“

S

+r? /R =L =) TG =ty }
"
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Integrating again in r € [p, p], by a limiting argument and finally letting ¢ — 0, we deduce
the following estimate

| O N A T S CE T
( p

where p < p < 1.

As a next step, we obtain an estimate similar to (5.24) for Vw™ in L2, G,y dXdt).
Given ¢ > 0, we consider the function ve = (w + &), where w = y“U,, as before. Let
C¢ = supp v,, and denote by C* the reflected portion of C¢ across {y = 0}. Since UasU =0
on {y = 0}, by the continuity of y*U, up to {y = 0}, we see that C* N {y = 0} is contained
in the interior of {(x, 0) | U (x, 0) = 0}. Therefore near C* N{y = 0}, if U is oddly reflected,
then the extended U solves the following equation in D¢ = C*¢ U C¢

div(ly|*VU) = |yU; = Iy|°F,

where F is the odd extension of F across {y = 0}. Therefore, in the set D? the function
v = |y|*Uy is an even extension of w across {y = 0}, and it solves the following conjugate
equation in D®

div(|y|7Vv) = Iy] v = Fy. (5.25)
Using the test function
n=w+e 139,

in the weak formulation of (5.25), arguing as in (5.20)—(5.24), and finally letting ¢ — 0, we
obtain the following estimate

| e O N e T RS CE )
0 1

By combining (5.24) and (5.26), and using the previously established estimate (5.1), we
finally have

/ [t (" Uy)y) Gy ™ < f [t} IVw*T,y~* < C(n, p) / (U + tPFHG .y,
SF i SF 7

which completes the proof of (5.18).
Step 4: At this point, using the equation satisfied by U, the corresponding estimate for U;
claimed in (5.2) follows from (5.9) and (5.18). This finishes the proof of the lemma. ]

Remark 5.2 We note that assumption that || F; ||, « h be finite in Lemma 5.1 is not restrictive
since it can always be achieved if the obstacle is sufficiently regular.

We also need the following estimate in our blowup analysis in Sect. 6.

Lemma5.3 Fori = 1,2, let U; € G, (S]) with F; € L®(SY). Then, for any 0 < p < 1,
one has

/y IV = U2)PFay” < C(n,a, p) /s+(U2 + PP = F))day* (5.27)
0 1
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Proof First, we even reflect Uy, Fy, Uy, F across {y = 0}. Consider now U = U; — U,. We
claim that the following holds in Sy,

LUT < yl"(Fi = F)T, ZU™ < y|"(F1 — F2)™. (5.28)

We note that it is clear that the differential inequalities (5.28) are respectively satisfied in
ST and S| . Therefore, we only need to show the inequality near a point (xo, 0, fp) € Q3/4.
Suppose U (xo, 0, 7o) > 0. Since it must necessarily be U;(xg, 0, #p) > 0, we infer the
existence of a sufficiently small § > 0, such that 8;’ Ui = 0in Qs(xo, 0, 7p). This implies
that

ZUr = y|*Fy
in Qs (xo, 0, 1p). On the other hand,
LUy = [y|“F2
Therefore we obtain
ZU < |y|“(F1 — F2)
in Qs(x0, 0, 1p). Thus
ZyU < |y|*(F1 — F)*

in Q3,4 N{U > 0}. Now by using a standard argument as in the proof of Lemma 2.1 in [25],
we can deduce that

ZUT < IR = F)T

in Q3,4 and hence in S;. The argument for U~ is similar and thus we can assert that (5.28)
holds. Now given the validity of (5.28), we can argue as in Step 1 in the proof of Lemma 5.1
(usingn = U itlz?a as a test function in the weak formulation for U¥) to conclude that the
weighted Caccioppoli type estimate (5.27) holds. O

6 Existence and homogeneity of blowups

Throughout this section, we assume that U GF(ST), where F satisfies (4.2) for some
£ > 2. Towards the end of the section, we will need £ > 4 and require the following
additional bounds to hold for and some positive constant Cy

IVxF(X, 0] < Cl(X, 0], for (X, 1) € Qf 6.1)
19 F(X, )] < Cel(X, )] for (X, 1) € Q5. (6.2)

We note that (6.1), (6.2) are fulfilled by assuming that the obstacle be of class H L2 gee
(3.9), (3.10) at the end of Sect. 3. We now state our first result.

Lemma 6.1 Under assumptions of Theorem 4.8, fix o € (0, 1). Then, one has
Oy, (U, 0N =k <l—1+o0. (6.3)

Furthermore, if Kk < € — 1 4 o, then there exists ro = ro(U) > 0 such that for every
r € (0, ro) one has

H(U,r) > r¥=212, (6.4)
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In particular, we have in such case

1 rH (U, r) -
Gy, (U, 0N == lim ———~ = lim N(U,r) = lim NU,r). 6.5
to )=, im, HU. 7 o0 W.r) = lm NU.r) (6.5)

Proof The proof of (6.3) and (6.4) follows the lines of that of Lemma 7.1 in [13] in the case
a = 0, and we thus refer the reader to that source for details. In order to establish (6.5) we
note explicitly that from (4.8), (4.10) and Lemma 4.3, we have
3 Jor IUF Gy y°

HU,r)
Keeping in mind that the hypothesis (4.2) implies (4.17), Cauchy-Schwarz’s inequality gives

_ 172
(fss 11PF2 F0y?)

HU,n'/?

ré rl

HU, r)l/2 = C,.Z—l+a

NWU,r)=NU,r) —

& Jor IUF G y°
HU,r)

1
< —
r

<C =Cr'=7 -,

as r — 0T. This shows that
lim N(U,r) = lim N(U,r).
r—0+t r—>0t
O

Later in the paper we will need to work with two different families of rescalings, which
we now introduce.

Definition 6.2 With §; as in (2.20) we define the parabolic Almgren rescalings of U as

Uoé,
U =———. 6.6
r H(U, r)1/2 ( )
For k > 0 we define the k-homogeneous rescalings of U as
- Uo$
0, = = 6.7)
rl(
We note that the rescaled functions U, solve
Z,U, = |y|*F, inSFuUSsy,
min{U,(x, 0, 1), 95U (x,0,1)} =0 on i, (6.8)
Ur(x, =y, 1) = Ur(x, y, 1), in Sy,
where
2 2
F(rX,rt
F, = E0X. 1) (6.9)

HU,r)'/2 "
We have the following key result, whose elementary verification we leave to the reader.
Proposition 6.3 For everyr, p > 0 one has

HWU,rp)=HWU 04, p), DWU,rp)=DUocé,p), NU,rp)=NU oS4, p).
(6.10)

In particular, we have for the parabolic Almgren rescalings

NU,, p) = NU,rp). (6.11)

@ Springer



The structure of the singular set in the thin obstacle... Page250f52 91

The Almgren rescalings are tailor-made for Theorem 4.8, whereas the homogeneous
rescalings are the appropriate ones for the applications of the Weiss and Monneau type
monotonicity formulas in Theorems 10.1 and 10.5 below. Proposition 6.3 implies in particular
that

HU,, 1) =1,
and, more generally,
H(U, pr)
HWU,, p) = ———.
Uy, p) HU. r)

The following lemma plays a key role in our blowup analysis. It will ensure that the blow up
limit Uy is bounded on sets of the type IB%:Xr x (—1,0] forany A > 0.

Lemma 6.4 Let U € GF(ST), where F satisfies (4.2) for some £ > 2. Given A > 0 and
0 <r < 1, we have

NN oe st (—r2ja0n < CHWU. N2+ Crt, (6.12)
for some universal C > 0 depending also on £, A.

Proof 1t suffices to prove the claim for U' and U~ since, after even reflection in y, both of
them satisfy for any r > 0,

ZaV =N FlL>@,) inQr.

Let then V denote either UT or U . Since F satisfies (4.2) with some constant Cy, we let

7o V 4+ Co(1X)?> — %2, whent > 2,
V-Cot, when £ = 2,

where Coy = Co(n, y, a, £) is so chosen that .Z, V<0A simple calculation shows that this
can be ensured. We then note that the following holds

B 1 . 172
HV.n'"? <HWU.N'"?+Co (72 fy(m2 +1e)* ﬁy) <HWU.N'2+Crt,

where in the last inequality we have used a change of variable and the homogeneity property
of 4,. Now, given (Xo,7) = (x0, Yo, %) € B} x (—r?/4,0), and using that V has a
polynomial growth at infinity, we can adapt a variational argument in [12] to deduce the
following sub-mean value estimate

Vo) = [V 0y 07X, Koo s0)ydX. (6.13)
e

where 9,(X, Xo, 50) = %.(X, X0, —s0), see (2.10) and (2.16), and s9 < 9 < 0.

Indeed, (6.13) can be justified as follows. Let tg be a cut-off of the type tr(X) =
‘L'Il{(x)rl%(y), with 'L'Ile = 1 in Bg and vanishing outside B,g, and ‘CI% = lin (=R, R) and
vanishing outside (—2R, 2R). Then, for ¢ < O the function w = \77:R solves

Zyw < CY*(IVV||IVTg| + IVI(IV21R| + |VTR]), (6.14)
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for some universal C independent of R, provided R > 1. Note that it is not restrictive to
assume R large, since we eventually want to let R — oo. Fix 9 < 0, and for a given sg < 0,
define for s < \/—sp,

o(s) = / » w(X, to + 50 + 5% (X, Xo, —s0 — s2)y*dX.
RY

Since w is Lipschitz in s, ¢ (s) is absolutely continuous. Therefore, differentiating under the
integral sign, one has for a.e. s,

¢'(s) =2 /R o @w(X 10+ 50+ 5% (X, Xo., —s0 = 5%) = wdh Fa(X, Xo, —s0 = 57)) y°.
+

(6.15)
We now integrate by parts in the second integral in (6.15). Using the properties
40:9, = div(y*V¥,),
ya tYa wv(y ) (6.16)
By% =0ony=0,

and (6.14), we deduce

@'(s) < 2S/ . Or Gu(X, Xo, =50 — sy,
R}

where we have let Gg = 2(|VV||Vtr|+|V||V2g|). Note that G g is supported in the region
where | X| > R. We next integrate the latter inequality on the interval (0, ¢), finding

/ L WX 1o +50 + %, (X, Xo, —s0 — 12)y*
RY

< [, w0+ 09, (X Xo. =500y
]Rn

"
l2

+f / » GRr(X, 10+ 5o + )9 (X, Xo, —so — s)y“ds. (6.17)
0 JRY

At this point we let 1 — 4/—sp in (6.17). Using the Dirac property of ¢, and changing the
time variable from 79 + sg + s to s, we obtain

w(Xo, fo) S/ » w(X, 10+ 50)% (X, X0, —s0)y*
RYI

+
fo
+/ / Gr(X,$)9,(X, Xo, to — s)y*dXds. (6.18)
10+s0 ]R'rr]

[}

To proceed further, with #g, sg as in (6.18) above, we now fix b > 0 small enough such
that —1/2 < t9 < —b and 59 < —b. Given A > 0, let X¢ be such that [Xp| < A. Since
we eventually want to let R — oo in (6.18), we assume that R be sufficiently large, say
R > 100A + 1. We make the following:

Claim 6.5 For —1/2 < tg < —b < 0 and |Xo| < A, there is C = C(n, b, A) > 0 such that
for R > 100A + 1 we have
CY.(X,s), ifs <tg,t0—s < —s/8,|X| > R, (a)
X, Xo, to — 2
(X, Xo. 1o =) < { CTy(X, )X, ifs <to.10—5 > —s5/8. (b)
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To establish the claim, we recall that 4, (X, Xo, to —s) = p(x, xo, fo — ) p“9 (v, yo, g — 5).
Keeping in mind the representation (2.7) of p*), and the asymptotic behavior of the modified
Bessel function I% (see e.g. (5.11.10) and (5.16.14) in [22]), we note that for any a €

(—1, 1), there exist universal constants C(a), c(a) > 0, such that

loa (@) < C(a)z™1%e?, 7> c(a),

a1 (6.19)
I%(Z)EC(G)Z T, 0 <z <cla).
Moreover, it is easy to check that for | X| > 100A 4 1 and | X(| < A one has
21 X ?
X = Xol” = 5 +2yyo + —— (6.20)
We also note from (2.7) that
a—1
__wo a -9
Py, yo,t0—5) =e 09 (2(1g — 1) Sl AL
2(t0 — s)
_ =32
slot [ =220 ) e 30 . 6.21)
2 \2(to — s)
We now subdivide the proof of both (a) and (b) in Claim 6.5 into two cases: 1) Z(i)yfs)

c(a); and, 2) % > c(a). In case 1) we have from the second inequality in (6.19):

_a—1

(%) : 1112;1 < C(a). Substituting this information in (6.21), using (6.20) and the fact

that s < —b, we find

_1x—Xg?
e 4(19—s)

ga(Xs XOa fo — S) =<

(tO o s)n+é+a
C(n,b, A)

— 1 1
(—s) n+2+u (to . s) n+2+u

L _x2
e S(I()fs)e 32(t07s).

_ ¥y
Note that in the second inequality above, we have also used the fact thate 20~ < 1. From
the latter estimate the desired bound in case (a) of Claim 6.5 follows using thattg —s < —s/8,

and thatr — r~ e e/ s uniformly bounded on [0, 00). In case 2), using (6.21) and the

first inequality in (6.19), we obtain

C(n,b, A 1 x? —a/2  yy
Y,(X, X0, 10— 5) < n+aJEI ) ——e 09 20 (%) e T
(=s) 2 (o—s) 2 0=

and the desired bound (a) follows again by additionally using that r — r~%/2¢~" is uniformly
bounded in the interval [c(a), 00).

To prove the estimate for (b) we argue similarly to (a), see also the proof of the second
part of [13, Claim 7.8]. At this point, since V, VV have at most polynomial growth at
infinity, by letting R — oo and using the bounds in case (a) of Claim 6.5, we deduce that
the second integral in (6.18) goes to 0. Also, using the bounds in case (b) of Claim 6.5
and Cauchy-Schwarz inequality, we can assert that the first integral in (6.18) converges to
the corresponding integral in the right-hand side of (6.13) as R — oo. Consequently, the
sub-mean value estimate claimed in (6.13) holds.

Now let (Xo, to) € B} x (=r%/4,0). Let also 5o € (—r%/2, —r?/4]. Then by using the
fact that |yg|, |xo| < Ar, |sol, [to +so| ~ r2 and also that |so| < |to + so| < 4|so|, we can use

@ Springer



91 Page 28 of52 A.Banerjee et al.

the representation as in (6.21) and by using the asymptotics in (6.19) ( and also by dividing
the considerations into two cases as in the proof of Claim 6.5) we can assert that the following
estimate holds

_ (x,x0) Cayy0
p(x, %0, —50) P (v, Y0, —50) < Co%a(X, 10 + s0)e 207501 ¢ Mo+s0] (6.22)

where Cy is universal and depends also on a.
Therefore by using the estimate (6.22) in the submean value inequality (6.13), we obtain
by letting #o + so = s, that the following inequality holds,

(x.xg)  Cayy

V (X0, 10) < Cs / VX Fa (X, 5)e B e BTy
RY

Then by using Cauchy-Schwartz, we obtain
1/2 1/2
- -5 _ “ _ wx) Camo
V(Xo, 1) < Cs VE(x, y,8)9,(X, s)y Gae B e By
R1+I Rrrrl

1/2 )
~9 _ a CglXpl
=Gl VX 9Fa(X )y e B, (6.23)
R

The last inequality above follows by multiplying and dividing the following integral

12
—  xx) Cayyo
Gae B e I ya
+1
R
Ixgl2 _CZ\,VoI2

with e” s e~ s  and completing squares in the exponent, then by using Fubini and
change of variables.

Now by using |Xo| < Ar and |s| ~ r2, we can deduce from (6.23) that the following
estimate holds for some universal Cyg,

1/2
V(Xo.10) < Cio ( /R LV »s)%(x,s)y“) :
+

Subsequently, by integrating from s € (—r2, —r?/2) and applying the Cauchy-Schwartz
inequality as in the proof of Lemma 9.3 in [13], we obtain

} | —r2/2 o 1/2
V(X0 10) < C [~ / / 727,y
r —r2 Rr:rl
<CHWV,n'"? <cHW,n'"* + crt. (6.24)

Since (Xo, fp) € IBE X (—r2 /4, 0) is arbitrary, the conclusion of the lemma now follows

from (6.24) and the expression of V in terms of V. ]
We also need the following two lemmas in our blowup analysis in the proof of Theorem 6.8.

Lemma 6.6 With « as in Lemma 6.1, let k' be such thatk <k’ <€ —1+0o and HU,r) >
r2t=2420 Then there exists ry > 0 depending on k', o such that

{H(Ur,mzx)” for0<p<1,0<r<ry 625)

HU,,R) < R* foranyR>1,0<r < =
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Proof Since
. rH'(U,r)
2k = lim ——,
r—0 H(U,r)
there exists ro > 0 depending on U, «’ such that for 0 < r < ry < rop we have

H'(U,r) - K’
HU,r) — r’
Then, by integrating from pr to r and subsequently by exponentiating the corresponding
inequality we obtain
H(U,r) < piZK/,
HU, pr) —
which implies
HU,rp) 2!
H U N = > K .
Uy, p) HU.r — P

The second estimate in (6.25) follows similarly by integrating from r to r R and by noting
that rR < ry. O

Lemma 6.7 Under the hypothesis of Lemma 6.6 above, with F, as in (6.9), we have that for
any R > 1 such that 0 < Rr < rg, the following estimate holds for some universal constant
C and where ' is as in Lemma 6.6.

/ ZZ FrZ?aya < CR4+2K’r2720
Sk

Proof We have that
f 1PFXG,y"
S+

R

r4 2 —
e P2F(rX, r2t)2G "
il PROX. T
B 1
- rPHWU,r) Jsi
< CFR4+2K/I,2720’ (626)

(Rr)2+% H(U, Rr)

R I S
" = y2H(U, Rr) HWU,r)

where we used the fact since Rr < ry < ro, implying that H(U, Rr) > (Rr)*~2t2 o

From this point on, we need to assume £ > 4 as well as that F' satisfies the bounds (4.2),
(6.1), (6.2), unless stated otherwise. We then have the following theorem concerning the
existence and homogeneity of blowups.

Theorem 6.8 (Existence and homogeneity of blowups) Ler U € & F(Sf) with F satisfying
(4.2), (6.1), (6.2) for some £ > 4. Fix o € (0, 1). Suppose

K=o ,U,0") <t —1+0.
Forr > 0, let U, denote the Almgren rescalings as in Definition 6.2. Then

(i) Forevery R > O, there exists rg,y > 0 such that

/S+(U3 + VU + VU 1* + 1P U)DTay* < C(R), 0<r <rpy
R
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and

/+<U,2 VU + 1P (VU5 P + 1P WU < CR), 0 <1 <rrys
Qx
(ii) There exists a sequence rj — 0 and a function Uy € S;ro such that
[, = v+ 11vU, — YUy 0
SR

(iii) Uy is parabolically homogeneous of degree k and is a global solution of the homogeneous
thin obstacle problem, i.e.,

LUy =0 in ST
{ a0 i Sog (6.27)

min{Up, —B;Uo} =0 on Se.

(iv) Uy, VU, 8; Uy are continuously defined up to {t = 0} and 0,Uy is bounded up to
{r =0}

Proof We first note that U, solves (6.8). Therefore by taking rg yy = %’, the first estimate in
(i) in Theorem 6.8 follows from the Gaussian estimates in Lemma 5.1, the second estimate
in Lemma 6.6, and Lemma 6.7.

To show the second estimate in (i), we observe that arguing as Lemma 5.1 one can also
establish the following “unweighted” version of second derivative estimates

[ QYU+ 19 WP+ Wbt = Coa B [ w24 FRI 628
R 2R

for any R > 0. We next note that Lemma 6.4 coupled with the fact that
HU,r) > r¥-22 (6.29)

for small enough r implies that U, is bounded up to {t = 0}. Moreover, since F satisfies
(4.2), then again by (6.29) we can deduce that F; are uniformly bounded for small enough r.
Consequently we can assert that both U, and F, are uniformly bounded in LZ(QZr R yidXdt)
independent of r for any R > 0, provided r < r( for some ry sufficiently small. This implies
the second estimate in (i).

In view of Lemma 5.3 and Lemma 6.7, in order to establish (ii), it suffices to show the
existence of Uy and the convergence

/S+ Uy, — Uol*@ay* — 0 (6.30)
R

for a subsequence r; — 0. Since « > 0, for all small enough r, say r < ry, we have
’
rH' (U,r) -
HU,r)
Integrating the above inequality from r§ to r we obtain
HU,ré) I

H(U,, ) = HU.7) =

and consequently

/S+Urzgay”§5, 0<r<r.

8
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At this point, we need the following inequalities from [13] which are corollaries of L. Gross’
log-Sobolev inequality (see Lemma 7.7 in [13]). We first write

(4m)!/? —a/2

ga(X, t) == W%l)t

Pn(x, ) p1(y, 1), (6.31)

o2 2
where p,(x,t) = (4n|t|)_"/2e% and pi(y,t) = (471|t|)_1/2e¥7 respectively indicate the
backward heat kernels in R” and in R.

As in [4], we also let

E(Xv t) = pn(xv t)pl(yv t)'

The following inequalities hold:

! (. G(.s) ? Bl <2 / \V4 2G s,
" <ff|>0 G(, S)) R+l f7G(9) = 2sl Rn+1 IVIGC,s)

for f € WH2R'™, G(, 5)), (6.32)
and
1
log| ———— f F2paCs) < 2|S|f IVF12puss),
f|f\>() pn(ss) | Jre R"
for f € WH2(R", G(-, 5)). (6.33)

We now choose A > 2 large enough such that for all -1 <t < 0,
f G(X,ndX <e /3, / pulx, ydx < e /3, (6.34)
R”+1\BA/2 R"™\Ba,2
Using the uniform gradient estimates from (i), i.e.,

[ wivup7.y <

S+

R

and the inequalities (6.32) and (6.33), we can argue as in (7.17)—(7.26) in [4], which crucially
uses the estimate (6.34), to conclude that the following holds,

/ UZ(X.)G(X,1)y" < C§ (6.35)
[(REFN\BA)x (—R2,0)]US]

for some universal C, which also depends on R. Now in the set £ = IB%I X [—Rz, —82],

which is the complement of [(R%F! \ B4) x (—R2,0)] U], we have that &, is bounded
from above and below. Therefore from the uniform Gaussian estimates as in (i), we have
that {U,} is uniformly bounded in W22 o1 (E, y“dXdt). As a consequence, we can extract
a subsequence which converges strongly to some Uy in L>(E, y*dXdt) and consequently
in L2(E, %4 ,dXdt). Hence the claim in (ii) now follows in a standard way by a Cantor
diagonalization argument by letting 6 — O and A — oo.

We now prove the claim in (iii). Given any compact subset K of So, = R’fl x (—o0, 0],
the second estimate in i) yields that {U,} is uniformly bounded in W22’1(K, y?dXdt). Then
we can apply the local regularity estimates in [6] to assert that for some y = y(a,n),

ViU, y*0,U, € H"/2(K), U, € L°®(K) uniformly in r. This follows from the fact
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that the conditions (4.2), (6.1), (6.2) imply that F,, Vx Fy, and 9, F; are locally uniformly
bounded in Sy.. Thus, for 9; F, we have

Ao X, ol Cor'|(X 0|

8 F (X, Ol = —p—Sir < e < Cor' o I(X, 0],

for small » > 0, which gives the uniform bound on compact subsets of So.. The above
uniform regularity of U, is enough to pass to the limit in the Signorini problem and infer that
Uy solves the Signorini problem in (6.27). Moreover, by lower semicontinuity, the following
estimate for Uy holds

/S+<U3 + VU + [t PV WUy, > + 112 (U0))%ay” < C(R).  (636)
R

for any R > 0. With (6.36) at our disposal, we can justify the Poon type computations
for Uy by using truncations as in the appendix of [4]. Here, we note that the intermediate
calculations for the corresponding truncated functionals can be justified using the fact that
V, Uy, y*9,Uy € HYY/2(K), 3;Up € L®(K) for any compact subset K ofRf’ﬁl x (—o0, 0].
Therefore, we can infer

2
N'(Ug,r) = _ UGy | (ZUo)*@uy — UoZUoG 4 y*
’ r3H(U0, r) S:r 07a Sf a Sf a

6.37)
for any r > 0. Keeping (ii) in mind, we conclude
(U, p) = 1(Uy,
W, p) (o, p) 638)
H(U,, p) — H(Uy, p)-

Since
H(U,, p) = p*

for any ¥ > «x by Lemma 6.6, we have H(Up, p) # 0 for any p > 0. Now we can infer
from (6.38) that

N (o, p) = lim N(U,, p) = lim N(U,rp) =,
r—0t r—0+
ie.,
Ny, ) =« (6.39)

It follows that N’(Up, -) = 0 and hence the right hand side in (6.37) vanishes. In turn, from
the equality in the Cauchy-Schwartz inequality, we have that

2
/S L UgDay /S (ZU0)*Fay" = ( fS N Uozuo%y“>

ZUy = koUy. (6.40)

implies

From the representation

1 _
I(Up, 1) = 22 /S+ UoZUop%ay”,
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coupled with (6.39) and (6.40), we obtain that
Ko = K

and therefore U is parabolically homogeneous of degree «. This finishes the proof of (iii).
To conclude, we note that (iv) follows from the second estimate in (i), which is uniform in
r. Hence, the local regularity estimates developed in [6] imply that, for any compact subset K
of RMT % (—00,01, V Uy, y*8,U, € H""V/*(K) (for some y = y(a, n)), U, € L®(K)
uniformly in r. By Ascoli-Arzela’s theorem, we have that for a subsequence of {r;} as in (ii),
U,j, Vi U,j and y“ 8yU,j converge uniformly in K to Up, V,Up and y“d, Uy respectively.
Thus, (iv) holds. Note also that 3,Uy € L°°(K) follows from the uniform convergence of
U, ;o Uy and the uniform time Lipschitz bounds for U, ; ’S. ]

7 Homogeneous global solutions and regular points

In this section, we show that the frequency limit at a free boundary point is either x = 1+ or
k > 2. Furthermore, we show that the free boundary is regular near points where x = 1+ .

Theorem 7.1 Let £ > 4 and o > 0. Then with «k as in Theorem 6.8, we have that
k>1+s.
Proof Since (0,0) € I',(U), we have
U(O,O,O):VXU(O,O,O):E);'U(O,O,O):0 (7.1)

Using the boundedness of U;, we have that U (-, 0) solves the elliptic thin obstacle problem
with bounded right hand side. Consequently, from the regularity results in the elliptic case
in [7] and (7.1) we infer that for some universal C

IUX, 0] < CAX|"™ + [t]) < CUX > + [e)T/2,
Hence,
C 2 1+s77 .a
HU.r <= | (XP+1)"™ G,y
r S'fr
< O, (7.2)

where the second inequality in (7.2) follows from a change of variable and the homogeneity
property of 4,. Now with « as in Theorem 6.8, we obtain from the non-degeneracy Lemma 6.6
that

HU,r) =™ (7.3)
for any k’ > «. Then (7.2) and (7.3) together imply
K'=1+s.
The conclusion follows letting k" — k. O

Next, we state our gap lemma.

Lemma7.2 Let £ > 4 and k be as in Theorem 6.8. Then either k = 1 + 5 ork > 2.
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Proof Assume on the contrary that k < 2. This also implies k < £ — 1 + . Then it follows
that for any «’ such that k < «’ < 2, we have that

2k’
HU,r) > (i> HU., ro),
ro

for small enough 0 < r < ry, i.e.,

H(U, rg)

2k’
To

HU,r) > cor®™, withco = (7.4)

As before, note that U, solves the Signorini problem corresponding to F; as in (6.9). Using
(4.2) and (7.4), it follows that F,, — 0 as r — 0. In addition,

r2U,(rX, r’t)

K N TD)

— 0 asr — 0, (7.5)

since U; is bounded and

2

VHWU,r)

because of (7.4) with " < 2. This implies that Uy is a time independent global solution of
the Signorini problem and is homogeneous of degree «, which is less than 2. Then it follows
from the classification result in Theorem 5.7 in [8] that k = 1 + 5. ]

— 0 asr - 0,

We now show that near points with frequency « = 1 + s, the free boundary is H I, 152
regular for some o > 0 by invoking the elliptic theory. More precisely, we recall once more
than U (-, 0) solves the elliptic Signorini problem with bounded right hand side because of
the boundedness of U,. We show that when the parabolic frequency limit « at (0, 0) equals
1 + s, also the elliptic Almgren frequency at 0 € I'(U (-, 0)) (say ko) equals 1 + s. From
this, it follows that the free boundary is H!te.(+a)/2 regular near (0,0) € R" x (—o0, 0]
in x, f for some a > 0. We refer to [6] for a rigorous justification of H '+ (+®)/2_regularity
of the free boundary in space and time near such an elliptic regular point for U (-, 0). We just
mention here that this result crucially uses the elliptic epiperimetric inequality developed in
[20], coupled with the boundedness of U,. The corresponding result can be stated as follows.

Theorem7.3 Let U € SF(ST) with F satisfying (4.2), (6.1), (6.2) for some £ > 4. Assume
that (0, 0) € T (U) and let k be as in Theorem 6.8. Ifk = 1+, then T (U) is H it (/2.
regular near (0, 0) for some o > 0.

Proof Letk < k' < 2.For0 < § < 1, rewrite the integral in the definition of H(U, r) as
follows

1 _ 1 _
HU,r) = —2/ UGay" + — U’y (1.6)
= JsEnix . nlX|<1e%/2} = JSEnix.nlIX =112}

with the idea of estimating the second integral in the right hand side of (7.6). By writing
1x|2

—aTe ¥ as

t 2

1 |§\2 x2 o1 vg\z
1 frd !
n+a+1 e e n+a+1 e
t 2 t 2
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we note that in the region {(X, 1) | t <0, |X| > |¢|*/?, |t| < r?}, we have the bound

[P (A
e s <e¢ 8, 7.7)

Therefore, using (7.7) and the boundedness of U, the second integral on the right hand side
of (7.6) can be estimated as follows

1 — 1
7/ UG,y < Ce 975, (7.8)
sl olX = 10°2)
Consequently, we obtain
H <|IU|? C i 7.9
(Uv r) = ||U||LOC(B:S(0)X(7I'2,O)) + exp m ) ( . )

where C also depends on the global bounds of U. Next note that for 0 < r < ry, where
r1 = r1(8) is small enough, we have

c LI I i 2 7.10
exp W = 56‘0}’ ( . )
and therefore we can deduce from (7.4), combined with (7.9) and (7.10), that

2k’ 2
Cr = ”U”LDO(B:;(O)X(—rZ,O))'

Since «’ < 2 and U, is bounded, we obtain by letting r® as our new r that, for small enough
7 =7 (8) and all r < 7, the following inequality holds

1UGO)poees,) = Cr's.

Since 8§ can be chosen arbitrarily close to 1 and «” can be chosen arbitrarily close to «, by
letting 5 as our new «’, we deduce that there exists r, small enough, depending also on «’,
such that forr < rp

IU( 0)ll LB,y = Cr*. (7.11)

We now claim that (7.11) implies that 0 € ', (U(-, 0)) is a regular free boundary point for
the corresponding elliptic problem. If not, then it follows from [8] that the elliptic Almgren
frequency limit «o for U (-, 0) as in [8] or [7] is bigger than or equal to 2. This follows from
the classification result for global time independent solutions in [8, Theorem 5.7]. Then from
the estimate in [8, Lemma 6.5], we obtain that U (-, 0) separates from the free boundary at
a rate which is at least quadratic, and this is a contradiction to (7.11) above since k" < 2.
Therefore the elliptic frequency limit o necessarily equals 1 + 5. The regularity result for
the free boundary in [6] implies that ', (U) is H”""(”“)/z-regular near (0, 0) in space and
time for some o > 0. O

Remark 7.4 The proof of Theorem 7.3 can be viewed as the consolidation of “parabolic” and
“elliptic” approaches to the definition of regular points. Namely, we say that (xo, 7o) € I'sx(U)
is a parabolic regular point if the parabolic frequency «y (xo, t9) = o (U,01) =1 + 5.
We say that (xo, #p) is an elliptic regular point if xo € T'(U(-, tp)) with elliptic frequency
Ky(.1p) = 1-s. The proof of Theorem 7.3 shows that these two notions are in fact equivalent.
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These points can also be defined as free boundary points where the quantities

Len = lim sup Tts ,

r—0

el Lo (0, (xo,10))

Lpyr = lim sup T

r—0
are bounded away from zero and infinity, i.e.,0 < Ley < 00,0 < Lpyr < 00, for elliptic and
parabolic regular points, respectively.

There is also a third approach, taken by the authors of [1], which we call “hyperbolic”.
Namely, we say that (xo, 79) € ['x(U) is a hyperbolic regular point if the quantity

Lpyp = lim sup s )

r—0
with B (xo, t0) = {(x,1) | (x — x0)2+ @ —1)? < r2}, is bounded away from zero and
infinity, i.e., 0 < Lpy, < oo. It is proved in [1] that near such points the free boundary is
C1-%_regular in space and time. Because of this regularity, it is possible to see that hyperbolic
regular points are also elliptic (and equivalently) parabolic regular. The converse statement
that elliptic (or parabolic) regular points are hyperbolic is not immediately obvious. However,
we should point out that in the case when s = 1/2 (or equivalently a = 0), the converse
statement does hold because of the higher regularity of the free boundary near (parabolic)
regular points, see [5].

We close this section with a Liouville type result for the operator .#, which will be used
subsequently in the classification of singular points.

Lemma 7.5 (Liouville type theorem) Let v be a solution to

L =0inSe = R x (=00, 0]

k2

suchthatv(x, y,t) = v(x,—y,t)and |[v(X,t)| < C (|X|2 + |t|) . Then v is a polynomial.

Proof The proof is similar to that of the elliptic case as in [8] and is based on induction in

the degree k. The following elementary fact will be used:

Fact: If Vv, Vv are polynomials and v(0, y) is a polynomial, then v is a polynomial.
Suppose k < 1. We first note that the estimate

C
sup (ID7v] + [vi]) < < llvllz=(o, (7.12)
0,/2(0,0) r

follows from the Holder regularity result of [10], coupled with the translation invariance of
the equation in (x, #). Now, since .Z,v = 0, (7.12) implies

a C
sup (vyy + fvy> < lelvlle(Q,). (7.13)
0,/2(0,0) y r

Letting r — oo (when k = 1), we obtain from (7.13)
a
vyy + ;vy =0,

and from (7.12) that v is time independent. By repeating the arguments in the proof of
Lemma 2.7 in [8], which only uses the symmetry of v in y, we can assert that v = bx + ¢
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in this case. Now for general k (assuming the assertion of the lemma holds up to k — 1), it
follows from the following rescaled estimate

C
sup  (r|Viv| +vi]) = = llvliz=(o,). (7.14)
0,/2(0,0) r
the induction hypothesis, and the fact that V, v and v, solve the same equation, that Vv is a
polynomial of order k — 1 and v, is a polynomial of order k — 2. Also from (7.13) we obtain

2 [
<CUXI"+ D2

+ a
v —v
vy y y
Now, similarly to the elliptic case, we infer from the observation

a —
Uyy + Bcn Iy~ 9y (Iy|“vy) (7.15)

that vy, + %vy solves the same equation as v. Observe here that w = |y|vy solves the
conjugate equation £L_,w = 0 (see for instance [4]), and therefore vy, + £v,, being the
twice conjugate of v, solves the same PDE as v. From the estimate in (7.13), the fact that
W= Vyy+ %v y solves .2, w = 0, and the induction hypothesis, we deduce that v, + %vy isa
polynomial of order at most k —2. In particular, for (x, 1) = (0, 0), vy, (0, y, 0)+ % vy (0, y,0)
is an even polynomial p(y) = ag+ary?+ - - - +asqy*?. Using the expression for vyy + %vy
in (7.15) and integrating twice, we obtain

a0 2 a2 44, a2 2d+2

0, — b —a ..
v(0, y) = c+bylyl +2(1+a)y +2(3+a)y +(2d+2)(2d+1+a)y

Next, keeping in mind the evenness of v, we infer thatb) = 0 and hence v(0, y) is a polynomial.
Finally, since Vv, v; are polynomials, we conclude that v is a polynomial. O

8 Classification of free boundary points

Let the obstacle v be of class H%*/? and let V; be as in (3.7). Now given o < 1, by repeating
the arguments in the proof of Lemma 10.1 in [13] we can show that the limit

Kk =®,(Vi,0") 8.1)

is independent of the cut-off 7 in the definition of V. Therefore, if we denote « in (8.1) by
lo . . [ ;

Ky (since this quantity is independent of the cut-off T and consequently independent of

Ui), we have the following consistency result for the truncated frequencies whose proof is

exactly the same as in the case a = 0 in [13, Proposition 10.3]:

€570, 0) = min{k;% (0,0), £ — 1 + 0} (82)

whenever £ < fand € — 1 + 0 < € — 1 + &. It follows from (8.2) that if ¥ € HZ'%, then

sup k7 (0,0) (8.3)
{(L,0)|l—140 <0}

is well defined and we can define the quantity in (8.3) above to be «\\’ (0, 0). In an analogous
way, K[(]Z)(x, t) can be defined for any (x, t) € ' (U). Then, if ¢ € HYY2 fork e [1+s,0)
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we define
FOW) = {(x, 1) € Tu(U) | k) (x, 1) = ) (8.4)

In view of (8.2), we have the following result on the classification of free boundary points
analogous to in [13, Proposition 10.7].

Proposition 8.1 Ify € H?, with { > € > 4, then

rOwy =rPwW), ifc < ¢
= U rnfw

L<k<l

(8.5)

Similarly, we also have the following characterization of points which are on the extended
free boundary I',(U) but not on the free boundary I'(U).

Proposition 8.2 If € H%!/2 for £ > 4. Let (xo, t9) € Tx(U). Then either i\ (xo, fo) =
1+5s,0r2< Kl(je) (x0, t9) < L. Moreover we have that
T\ TW) c T2 W) u | T, (U).
meN
Proof The first part is nothing but Lemma 7.2.

Suppose now (xg, fp) € I'x(U)\I'(U) and that the frequency limit /c[(]‘Z ) <. By translation
we may assume that (xg, 7o) = (0, 0). Then there exists a small § > 0 such that U = ¢
on Q5(0,0). Let V = Vi be as in (3.7). Since k < £, by Theorem 6.8 there exists a blow
up Up of V over a sequence r; — 0. From the fact that V = 0 on Q5 we obtain that Uy
vanishes on {y = 0}. Then we have that the odd extension Uy is %, caloric and homogeneous
of degree k. As a consequence, | y|“(00)y is Z_,caloric, symmetric and homogeneous of
degree k — 1 + a. From the Liouville theorem Lemma 7.5, it follows that « — 1 + a is an
integer and moreover, since Uy satisfies the Signorini condition, we have that —97 Uy is a
non-negative polynomial on {y = 0}. Therefore there are two possibilities, either 8;? Uy is
identically zero on {y = 0} or k — 1 +a is an even integer. The former is not possible because
Up and 97Uy vanishing identically on {y = 0} would imply Uy = 0, because of the strong
unique continuation property. This follows from the proof of Lemma 7.7 in [4]. Hence, we
have x — 1 4 a is even and consequently « is of the form 2m + 1 — a for some m € N. This
finishes the proof of the proposition. O

9 Singular points

In this section we define the singular free boundary points as the points of zero Lebesgue
density of the coincidence set A (U).

Definition 9.1 (Singular points) Let U € GF(ST) with F satisfying (4.2), (6.1), (6.2) for
£ > 4. We say that (xq, t9) € ['x(U) is singular if
_ H"THAWU) N O, (x0, 1))
lim =
r—0+ HHLH(Q,)

We will denote the set of singular points by X (U) and call it the singular set. We can further
classify singular points according to the homogeneity of their blowup, by defining

0.

def

W) EWO)NTOW), k<t—1+o0.
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The following proposition gives a complete characterization of the singular points in terms
of the blowups and the generalized frequency. In particular, it establishes that

2 (U)=TYW) fork =2m <€ —1+0, meN.

Proposition 9.2 (Characterization of singular points) Let u € & F(Sf) with F satisfying

(4.2), (6.1), (6.2) for some £ > 4 and 0 € T (), with k < £ — 1 + o for some o € (0, 1).
Then, the following statements are equivalent:

(i) 0 € 2 (U).
(ii) any blowup of U at the origin is a nonzero parabolically k-homogeneous polynomial p,
in Seo satisfying

D%pkzo’ PK(X,O,t)ZO, pK(xv _yst):pl((-xayvt)'

(We denote this class by 2F, see Definition 10.4.)
(iii) k =2m, m € N,

Proof (i) = (ii) Note that the rescalings U, satisfy
LaUr = [YI"Fr = 2050)H™ ] ) Sy,

in the sense of distributions, after an even reflection in the y variable. Since U, are uniformly
bounded in W22 o1 (Q;R, |y|*d X dt) for small r by Theorem 6.8, 8;{ U, are uniformly bounded
in L(Qpg). On the other hand, if 0 € X (U), then

H' N (AU NQr)  H" (A ) N Qgy)

Rt = Ry 2 — 0 asr —> 0,

and therefore
@LUIH"™ ]\, = 0 inQr

in the sense of distributions. Further, the bound |F (x, t)| < C¢|(X, t)|¢72 implies that
2 2 ¢
ro|F(rX,rot)| Cyr
|Fr (X, )] = < .
Hy (r)/ Hy (r)/
< Cr'7R"2 - 0 inQg,

(X,

where {9 = £ — (1 — 0)/2 € (k,£) and we have used the fact that Hy (r) > r2to for
0 < r < ry, by Lemma 6.6. Hence, any blowup Uy is caloric in Qg for any R > 0,
meaning that it is caloric in the entire strip Soo = R"T! x (=00, 0]. On the other hand, by the
characterization of blowups in Theorem 6.8 (iii), Ug is homogeneous in S, and therefore has
apolynomial growth at infinity. Then, by the Liouville-type Lemma 7.5, we can conclude that
Up must be a parabolically homogeneous polynomial p, of a certain integer degree «. Note
that p, = Up £ 0 by construction. The properties of U also imply that that p,(x,0,7) >0
forall (x, t) € Se and and p, (x, —y, t) = pe(x, y,t) forall (x, y,t) € Seo. In other words,
Uy = pc € :@:' .

(ii) = (iii) Let p, be a blowup of U at the origin. Since p, is a polynomial, clearly x € N.
Assume now, towards the contradiction, that « is odd. Then, the nonnegativity of p, on
R" x {0} x {—1} implies that p, vanishes there identically, implying that p, = 0 on Sx.
Now, using the even symmetry in y and the fact that .%, p, = 0, we are going to infer
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that p, = 0, contrary to the assumption that p, is nonzero. From even symmetry in y, we
represent

2k, j
Pe(x,y,1) = E Cak, jX*y= 1/,
(ot,k, J)ELY XLy X Loy
loe|4+2k+2 j=k

Now, for («, k, j) such that || +2k +2j = «, consider the partial derivative 0 B,j P Since
dy; and 0; are derivatives in directions tangential to the thin space, we conclude that

L399 pe) =0 inSeo. 399/ pc =0 on Se.

We now prove by induction in k, that cq ¢, ; = Ofork =0, 1, ..., [x/2]. When k = 0, we
have |¢| + 2j = k and therefore

J _ .
829/ pe = aljlca,

and from the vanishing of 9Y 8,j P On Sso, we conclude that ¢y 0,; = 0. Suppose now we
know that ¢y 4 j = 0 for 0 < k' < k < |k /2] and show that it holds also for k. Indeed, one
consequence from the inductive assumption is that

030} pex, y, 1) = @l jleq k, ;3

which is a-caloric if and only if ¢y ¢, ; = 0. Hence, we can conclude that p, = 0, contrary
to our assumption. Thus, we must have k € {2m | m € N}.

(iii)) = (ii) The proof of this implication is stated as a separate Liouville-type result in
Lemma 9.3 below.

(ii) = (i) Suppose that 0 is not a singular point and that over some sequence r = r; — 0%
we have H"H! (A(U,) N Q1) = § > 0. From the second estimate in (i) in Theorem 6.8, the
local regularity estimates developed in [6] and Ascoli-Arzela, by taking a subsequence if
necessary, we may assume that Uy; converges locally uniformly to a blowup Ug. We claim
that

H'TH (AU N Q1) = 8 > 0.

Indeed, otherwise there exists an open set & in Sy, with HH (6) < 8suchthat A(Up)NQ; C
O. Then for large j we must have A(U,j) N Q1 C O, which is a contradiction, since
H"‘H(A(Urj) NQoy) >8> H"1 (). Since Uy = Pr 1s a polynomial, vanishing on a
set of positive H"* ! _measure on Sw, it follows that Uy vanishes identically on S. But
then, repeating the argument at the end of the step (ii) = (iii), we conclude that Uy = 0, a
contradiction. Thus, 0 is a singular point.

The implication (iii) = (ii) in Proposition 9.2 is a consequence of the Liouville-type result
Lemma 7.5 which is the parabolic counterpart of Lemma 1.3.3 in [18]. O

This, in turn, is a particular case of the following lemma, analogous to Lemma 1.3.4 in
[18] in the elliptic case, which stems from Lemma 7.6 in [23].

Lemma9.3 Let v € W, (Soo. [y[?dXd1) be such that Z,v > 0 in Sec and Lyv = 0 in
Soo \ Seo. If v is parabolically 2m-homogeneous, m € N, and has a polynomial growth at
infinity, then £,v = 0 in Sx.

Proof Let u o Zywin R x (—o0, 0). By the assumptions, j is a nonnegative measure,
supported on {y = 0} x (—oo, 0). We are going to show that in fact u = 0. To this end,
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let P(x,t) be a parabolically 2m-homogeneous a-caloric polynomial, which is positive on
{y = 0} x (—o0, 0). For instance, one can take the polynomial

n—1
P, )= X"+ (=",
j=1
and let P = p be the a-caloric extension constructed in Lemma 3.2. Further, let n €
C5°((0, 00)), with n > 0, and define

W(x, 1) =n)9.(X,1).

Note that we have the following identity (similar to that of ¢,,)

V\IJ—X\IJ
S

We have

0
(div(|y|“Vv), U P) f (Vv, V(WU P))|y|*dX dt
00 J R+
0
// [W(Vv, VP) + P(Vv, VU)]|y|* dX dt
Rn+1
0

o0

/ / (Yo div(|y|*VP) + |y|“[v(VW¥, VP) — P(Vv, VI ]) d X dt

=/ / <v div(]y|*V P) + 'ﬁ', [v(X,VP) — P(X, wn) W dXdt.
—o00 JRt1

We now use the identities div(|y|*VP) —|y|?0; P = 0,(X, VP)+2t0; P =2mP, (X, Vv)+
2t0;v = 2mv to arrive at

0 a
(div(]y|“Vv), U P) = / / [2mPv — P(X, Vv)] bl
Rn+l1 2[

/ /a,v\yp|y| dX dt

= ([y[“0rv, ¥ P).

vdXdt

Therefore, (i, ¥ P) = (|y|*9;v —div(]y|*Vv), ¥ P) = 0. Since u is a nonpositive measure,
this implies that actually © = 0 and the proof is complete. O

10 Weiss and Monneau type monotonicity formulas

In this section we establish two families of monotonicity formulas that play a crucial role in
our analysis of singular points. The elliptic ancestors of these formulas were first obtained
in [18] in the study of the Signorini problem corresponding to @ = 0 (or s = 1/2), and were
subsequently generalized to alla € (—1, 1) (all s € (0, 1)) in [21]. In the parabolic setting
and still for the case a = 0 such formulas were first proved in [13]. Theorems 10.1 and 10.5
below respectively extend to all values a € (—1, 1) Theorems 13.1 and 13.4 in [13].

In the following statement the quantities H(U, r) and D(U, r) are those defined in (4.7)
and (4.8) respectively.
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Theorem 10.1 (Weiss type monotonicity formula in Gaussian space) Let U € & F(Sf’) with
F satisfying (4.2) for some £ > 2 and a constant Cy.
For k € (0, £) we define the parabolic k-Weiss type functional

Ve, 1) L 2D, r) - %H(U,r)}. (10.1)

Then, forany o € (0, 1) such thatk < £ — 1+ o0 there exists C' > 0 depending onn, a, £, Cy
such that

W (U,r) > /+ (ZU = kU + 11|F)* @,y — C'r'=2. (10.2)
s

y2K+3

, . e .
In particular, with C = 5= the function

re> WU, r)+ Cr¥=%,

is monotonically nondecreasing in (0, 1), and therefore the limit exists

def

Ve (U,07) = lim #,(U,r).
r—0t

Proof Using Lemmas 4.4 and 4.7 we find

P2y UL ) = P U, r) — gH’(U, ) — 2kr3(DU, r) — gH(U, ")

= | (ZU = «U +11IF)*Tuy® — | 1PF2G,y°.
S st

r

Next, we note that (4.17) gives

[ P Ty < 2,
.

r

for some C > 0 depending only on n, a, £, C,. This gives

WU, r) > / (ZU = kU + |t|F)* G,y — Cr= 1420,

T Jos
Ifnow 1 — ¢ + « < o < 1, we conclude that
WU, r)>—Cr'72,
and therefore the function
rs WU, r)+Cr¥=2,
is monotonically nondecreasing. O
In the sequel we will need the following results.

Lemma 10.2 Under the assumptions of Theorem 10.1, suppose in addition that 0 € F,(f) )
fork <€ —1+ 0. Then
2 2\ 2
HW.1) = C (10 R 0+ CF) P

with C = C(k,o,n) > 0.
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Proof We begin by observing that the following alternative holds: either (i) H(U,r) <
p2-2420 o @) HWU,r) > r26=2+29 Gince the conclusion follows immediately in case
(i), we assume that (ii) holds. Let (7o, r1) be a maximal interval in the open set {r € (0, 1) |
HWU,r) > r”‘z”"}. For r € (rg, r1), from Theorem 4.8 we infer

l—o H/(U r)

1 N l—o
®y 0 (U, r)zirecf O +2 7 — 1) > Dy, (U,0) =k,

which in turn yields

2K

HWU.D [(K +2e7" 7 —2] 2 = (-,

HWU,r) —
with C; = (1 4 2) C. Integrating we obtain

HU 2/{
In Q_l s
HWU,r)

and therefore
HU,r)

2K
T

HU,r) < Cyr*

We now observe that either ri = 1, or H(U,r;) = )"12‘Z 2420 In the former case we have

HW, 1) =C (||U||L2 S 1yt
that, by assumption, k < £ — 1 4 o. Either ways,

+C g) by the L bound on U, whereas in the latter we recall

HWU, 1) = € 1Vt o+ CF) 1

which gives the desired conclusion. O
Lemma 103 If0 e I\ (U) fork < £ — 1 + o, then
e (U,0%) =0.

Proof By Lemma 6.1, we know that

o (U,07) = lim NW.r) =2 tim 2U-1)
K = = r) =
to oo+ HWU, 1)’

Moreover, we infer from Lemma 10.2 that H(U,r) < C r2¢_ Hence,

HWU,r) (D(U,r) I()_O

r2 H(U,r)_E

lim #,(U,r)= lim
r—0*t r—0t
O

Definition 10.4 For x > 0 we denote by 22 the class of all parabolically x-homogeneous
polynomials p, in R"*! x (—o0, 0) such that

(i) Zupe =0;
(ii) pe(x,0,1) > 0;

(i) pe(x, =y, 1) = pelx, y,1);
@iv) «k =2m,m € N.
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Theorem 10.5 (Monneau type monotonicity formula) Let U € & F(Sf’) with F satisfying
(4.2),(6.1),(6.2) for some £ > 4 and a constant Cy. Assume thatQ € X, (U) withk = 2m < ¢,
for m € N. For any p, we define the Monneau type functional

(U def 1 U 27 ¢ 0,1 10.3
B K( 7pK7r)_m S;*'( _pK) ay re(s ) ( )

Then, forany 1 —{ —k < o < 1 there exists a constant C"" > 0, depending onn, a, t, Cy, o,
such that

d _
o (U per) = =C" (11Ul 2y 7,0 + 1Pl 251 7090) 77 (10:4)

In particular, with C = % the function r — M(U, py,r) + Cr'= is monotonically
nondecreasing on (0, 1).

Proof Letting V = U — p,. Notice that from (i) in Definition 10.4 we have in ST
£V =2,U—ZL,p. =F.

From Remark 4.2 we know that

H(pic,r)

Wi(per) = =5

(N(p,(, r) — K) =0.
We now use this information to show that
We(U,r) =W (V,r). (10.5)
In fact, we find from (10.1)
WeU,r)=WeWU,r) = We(pe,r) =WV + pie; 1) = Wic(Pic, 1)

1 _
= /S 1 (IVVIE +2(VV, Vi) Gay*

ko1 5 —
_TQHZ/S (V2 +2Vpe) Gay”

+
2 _ K _
= //K(V,r)‘f‘m/é:_ [t(VV, V)G ay® — m/&i;" Ve Gay”
1 _
:%((V,V)+m/§;rv(ZPk_ka) Gay?
=We(V,r),

in view of the fact that Zp, = « p,. Since (10.3) and (4.7) give

HV,r)
MU, pie, 1) = 2
we obtain
d H'(V,r) 2k
MU, per) = 3 = S HV. ), (10.6)
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Using computations similar to the ones carried out in the proof of Lemmas 4.1 and 4.3, and
applying Lemma 4.4, we infer that

, 4
H(V,r) ;I(V,r)

4 1 _ 1 _
ADW,ry == | HIVF Gy + = | 11IV(x,0,00%V(x,0,0)Z(x,0,1)} .
’ 2 Jsr 2 Js y

Inserting this information in (10.6) yields

d 4 1 — .
E%K(prkyr)=m D(V,r)—r—2 " |t|lVF 94,y

2Kk

pre LAY

1 _
+ 7[ [tV (x,0, t)aifV(x,O, 19,(x,0, t)}
r S,
4 4 — .
Z;%(V,r)—m S:r|f|VFgay
4 p —
+m g [7lpe(x,0,)05U (x,0,1)%4(x, 0, 1).

We proceed to estimate each term in the last line. Using (10.5), and applying Theorem 10.1
and Lemma 10.3, we infer that for a suitable choice of a constant C

We(V,r) = We(U,r) = #e(U,01) — Cr¥=2 = —cr¥=2%.

For the second term, we apply Cauchy-Schwarz’s inequality, (4.17), and Lemma 10.2 to

obtain
1 a a 1 2z .a 12 22 .a 12
oy . [t|lVF 4,y < 725\ Jo Veq,y S+t F~ 9,y

Cr
Ty (H(U, r)l/2 + H(pe, r)l/Z)r1+[

IA

¢ (”U”LZ(ST,D,W) TPl 2t jyja) + 1) plmrel
< € (102t oy + 1Pellizgst ey +1) 7
Finally, to conclude, we observe that
Pi(x,0,1) =0 and p,(x,0,1) >0,
so that
/S [t|pi (x, 0, t)8§?U(x, 0,)%,(x,0,1) > 0.

We thus conclude

d
7<%/{ U7 K
e (U, pe,r)

v

_cri=2 _ ¢ <||U||L2(gfr_‘y|a) + ”pK”LZ(ST,‘yW) + 1) r°

v

—0o
—C (”U||L2<Sl+,\y|ﬂ) Flpell 2ty + 1) r

as desired. O
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11 Structure of the singular set

As before, we assume that the obstacle ¢ € HYY2 for some ¢ > 4. Similarly to [13],
we define the spatial dimension of the singular set based on the polynomial p,({xo’m) as in
Proposition 9.2. For a singular point (xo, #p) € 2, (U), we define

d@on) = dim{g € R" | (€, V.02 ploi) =0

for any o = (ay, ..., ) and j > O such that || +2j =« — 1}, (11.1)

which we call as the spatial dimension of X, (U) at (xo, fo). Likewise, foranyd =0, ..., n,
we define

£AU) = {(x0, 10) € T (U) | A0 = d.

In the case when d = n, i.e., (xo, to) € X} (U), the blow up limit p,((xo’[‘)) depends only on
v, t when k = 2m < . In such a case, (xo, tp) is referred to as time-like singular point. The
proof of this fact is analogous to that of Lemma 12.10 in [13] (for the case ¢ = 0) and can
be seen as follows. Since in this case it holds

V099! pe =0

for all || +2j = k — 1, we have vanishing of 9y, p, on {y = 0}. Moreover, using the fact
that 8;?8xi Di« also vanishes identically on {y = 0} and 0oy, p, is .Z, caloric, by the strong
unique continuation property we obtain dy; p, = 0 and hence p, depends only on y, 7.

Now we recall the definition of space-like and time-like manifolds as in Definition 12.11
in [13].

Definition 11.1 We say thata (d+ 1) dimensional manifold.” C R" xR ford =0, ...,n—1
is space-like of class C1-0 if locally, after a rotation of coordinates, one can represent it as a
graph

(Xd41s vy Xn) = g(X1, ..., X4, 1),

where g, V, g are continuous.
Likewise, a n-dimensional manifold . C R” x R is time-like of class C! if it can be
locally represented as

t=g(x1, ~--7xn),
where g is C'.

With the Monneau-type monotonicity formula as in Theorem 10.5 in hand, we can repeat
the arguments as in [13] using the L> — L? type estimates as in Lemma 6.4 to assert non-
degeneracy of Almgren-Poon blowup at singular points and also uniqueness and continuous
dependence of k-homogeneous blowups at singular points. Then by again arguing as in [13],
using Whitney extension and the implicit function theorem, we obtain the following structure
theorem of the singular set based on spatial dimension of the singular point as defined in
(11.1).

Theorem 11.2 (Structure of the singular set) Let U be a solution to (2.3), where ¥ € Hu2
for some £ > 4. Then for any k = 2m < £, we have T4 (U) = X (U). Moreover, for every
d=0,...,n—1, the set E,‘f(U) is contained in a countable union of (d + 1)-dimensional
space-like C10 manifolds and X1(U) is contained in a countable union of time-like n-
dimensional C' manifolds.
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12 Appendix

In this appendix we collect the proofs of some of the auxiliary results in Sect. 4

Proof of Lemma 4.1 To prove (4.6) we observe that by the equation (3.4) satisfied by U in
ST, we have that in R

Ly(U?) =2U%,U —2|VU > y* = 2UFy® —2|VU|*y“.

J

The following computation can be justified rigorously considering the region

This gives

_ _ 1 _
IVU|*Z,y* = / UFZ,y* — f/ LU ,. (12.1)
+ RrJlrJrl 2 RrJtrJrl

n+1
4

e = (X eR |y > e},

and then let ¢ — 0. One should keep in mind that the outer normal on % is v = —e,,y|.
Integrating by parts we find

/ LUNHG, =2 / UUY 4" — / div(y*V(U*)%,
RnJrl Rn+l ]Rn+1
+ + +
= 2/ UU;Y 4 y* +2/ Uagu9, +/ (V(U?), VG )"
R R" {0} d

+1
R+

@ 4 X a
=2 UU9Gay" +2 U(VU, )94y,
Rn++l R:Jxr+1 2t

where in the last equality we have used (2.19) and the fact that

/ UagU%, = 0.
R x {0}

The vanishing of this integral is proved as follows. We write

/ UoiU%, :/ UagU%, +/ UdyU%,.
R x {0} R x{0OHN{U>0} (R"x {0)N{U=0}

The firstintegral in the right-hand side vanishes since 8;‘ U = Oontheset (R" x{0)HN{U > 0}.

—a

The integral on the set (R" x {0}) N {U = 0} vanishes since 8)‘fU IS CI)O’T

1
.~ up to thin set
{y =0}
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We conclude that

1 _ X\ _
f/ L,UHG, :/ U <U, +(VU, —)) Gauy®.
2 ]R:_H R1+I 2t

From this formula, (2.24) and (4.5) we conclude that

1 s 1 .
= LUy = — UZU 9,y" = —-i(U,1t).
2 R':rl 2t R'jjl t
Combining this equation with (12.1), we conclude that (4.6) holds. O

In order to prove Lemmas 4.4 and 4.7 for every § € (0, 1) we consider the following
truncated quantities

1o 1 _
Hs(U,r) = 7/ hU, tdt = — U?G,y*dXdt, (12.2)
r2 ) r? ST\SE,
and
1 [ 1 _
Ds(U,r) = —f dU, tydt = —/ 1t||VU > G, y*d Xdt. (12.3)
r? )2 r? S\S{,

Consideration of these integrals is justified by the fact that for every § € (0, 1) we have
Gy e L°RY x (=1, -5)). (12.4)
Proof of Lemma 4.4 Using our assumptions on U we can proceed as in the proof of Lemma 6.5

in [4]. We thus skip most details and only refer to the relevant changes. The first step is to
recognize that for ¢ € (—1, —4) one has

1 _ 2
U, t) = ;/ L vzu Gy = ;i(U, t). (12.5)
RY

Again the proof of (12.5) can be rigorously justified by integrating on the region %, , where we
know that (12.4) holds, and then let ¢ — 07 using (2.19), (2.17), (2.18) and the assumptions
on U on the thin set {y = 0}.

Substituting (12.1) in (12.5) we have

th'(U,t) =2d(U, 1) +2t/ " UF%,y°. (12.6)
R
Using (12.2) we obtain from (12.6)

/ - / 2 4 4 a +a
Hs(U,r)="2r th"(U, r7t)dt = ;D(g(U,r)—r—3 UF|t|9.y". (12.7)
—1 S

Sy,

At this point we can argue as in the proof of Lemma 6.5 in [4] to pass to the limitas § — 0
in (12.7) and reach the desired conclusion for H'(U, r). ]

Proof of Lemma 4.7 For every § € (0, 1) we have

)
Ds(U,r) = / d(U, rt)dt.
-1
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This gives

) I L
Ds(U,r) = Zr/ td (U, r*ndt = = td' (U, r)dr. (12.8)
—1 r 2

—r

We next compute d'(U, t) for —1 < r < —§. We are going to use the scalings (2.20) and
(2.22).

Again, to make rigorous the following computation we should first consider integrals on
the region %, and then pass to the limit as ¢ — 0F.Fort € (—1,—8)and 0 < A < 1/t we
have from (4.4)

d(U,  ’t) = —kzt/ N VU (X', 220> o (X', M2 (y)*dX.
Rn

+

The change of variable X’ = A X and (2.22) give

d(U,  ’t) = —A"+“+1A2t/ N VU X, A0 1P, (AX, A1)y d X
R

n
+

= —Azz/ (IVU* 08,) (X, 1) Go(X, 1)y dX.
RZ:H
Recalling that

d
(ot X. 0,y =27 (X.0),

if we differentiate with respect to A and set A = 1 in the previous identity we find

2td'(U, 1) = —2:/ IVU)? Gyy° —t/ Z(IVU ) Z4y*
Rn+] RnJrl
+ +

—t/ L [ZavUP) +21VU P Zay
R}’l

+

Consider the vector fields X; = %, i=1,....,n, X411 = % One easily verifies that the

commutator [X;, Z] = X;,i = 1,...,n + 1. This gives (using summation convention)

Z(VU}) =2ZX;uX;U = 2X; ZuX;U — 2X;UX;U = 2(V(ZU), VU) = 2|VU*.
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Substituting in the latter equation and integrating by parts and recalling that the outer unit
normal on 8R’j_+1 is —e,+1, we find

2td' (U, t) = —ZI/ (
RnJrl
"

:2t/ 83UZU?Q+2t/ ZU div(y?94,VU)
R x{0} ~ RAH

V(ZU), VU)G 4y*

= 2;/ WUZU Go + 2r/ ZU div(y*VU) 9,
R” x {0} RAH
+2z/ ZU(VU, VY ,)y"
RT]

=2t/ agUzu?a—ztf ZUF 94y"
R x{0} ~ R

X —
+2t/ ZU(VU,—)gay“+2t/ ZUU; 9,y°
]R"jl 2t Rz_+l

:21‘/ a;UZU?a—zt/ ZUF 9 ,y°
R" x {0} RAH
+ [ 0P
R’jr+1
We have thus proved the following formula for ¢ € (—1, —§)
/ 1 2 .a a a a 7
dU,t)=— (ZU)* Yoy — ZUF 9G,y" + BUZU Y,. (12.9)

2t R'_;__H R'_;__H R" x {0}

Substituting now (12.9) in (12.8) we obtain

/ 1 e 4 2 _
Dy(U,r) = —= (ZUY'Gay" — = t(ZUYF9G,y
e Jshsy, e Jshsy,
Sr

r 8r

2 _
+r73/ tB;ZUZU Y,. (12.10)
Sr\S(Sr

We claim that on the thin set {y = 0} we have
IyUZU =0 a.e. with respect y*d Xdt. (12.11)

We first note that U restricted to {y = 0} is locally Lipschitz continuous in x, . We also
have that for a.e ¢, since VU,(-,t) € LIZOC(RTI, v*dX), therefore U; has a leoc trace at
{y = 0}. Moreover by a standard weak type argument using test functions, we can show that
such a trace is in fact bounded because of the Lipschitz continuity of U in ¢ and coincides
with the weak time derivative of U at {y = 0}. Now on the set {U > 0}, we have that

limy_,¢ y*Uy = 0, hence a.e. we have

lim y*Uy,ZU =0 on {U > 0}.
y—0

Then on the set {U = 0} N {y = 0}, we note that

ZU =0a.e.
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which again implies lim,_.o y*U,ZU = 0 a.e. Therefore the claim (12.11) follows. Com-
bined with (12.10), it gives

1 — 2 _
Di(U,r) = 7/ (ZUY*Gyy" — 7/ H(ZUYFG 4. (12.12)
r* Jshsi, r* Jshsi,
Atthis point, we can argue as in the proof of Lemma 6.10 in [4] to reach the desired conclusion
by letting § — 0. m]
References

1. Athanasopoulos, I., Caffarelli, L., Milakis, E.: On the regularity of the non-dynamic parabolic fractional
obstacle problem. J. Differ. Equ. 265(6), 2614-2647 (2018)

2. Athanasopoulos, I., Caffarelli, L., Milakis, E.: Parabolic obstacle problems, quasi-convexity and regularity.
Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) XIX, 781-825 (2019)

3. Audrito, A., Terracini, S.: On the nodal set of solutions to a class of nonlocal parabolic reaction-diffusion
equations. arXiv:1807.10135

4. Banerjee, A., Garofalo, N.: Monotonicity of generalized frequencies and the strong unique continuation
property for fractional parabolic equations. Adv. Math. 336, 149-241 (2018)

5. Banerjee, A., Smit Vega Garcia, M., Zeller, A.: Higher regularity of the free boundary in the parabolic
Signorini problem, Calc. Var. Partial Differ. Equ. 56, Paper 7 (2017)

6. Banerjee, A., Danielli, D., Garofalo, N., Petrosyan, A.: The regular free boundary in the thin obstacle
problem for degenerate parabolic equations, St. Petersburg Math. Jour., Special issue in occasion of the
85th birthday of Nina Uraltseva, 32(2), (2020). to appear. arXiv:1906.06885

7. Caffarelli, L.A., De Silva, D., Savin, O.: The two membranes problem for different operators. Ann. Inst.
H. Poincare Anal. Non Lineaire 34(4), 899-932 (2017)

8. Caffarelli, L.A., Salsa, S., Silvestre, L.: Regularity estimates for the solution and the free boundary of the
obstacle problem for the fractional Laplacian. Invent. Math. 171(2), 425-461 (2008)

9. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial
Differ. Equ. 32(7-9), 1245-1260 (2007)

10. Chiarenza, F., Serapioni, R.: A remark on a Harnack inequality for degenerate parabolic equations. Rend.
Sem. Mat. Univ. Padova 73, 179-190 (1985)

11. Colombo, M., Spolaor, L., Velichkov, B.: On the asymptotic behavior of the solutions to parabolic varia-
tional inequalities. arXiv:1809.06075

12. Danielli, D., Garofalo, N.: Interior Cauchy-Schauder estimates for the heat flow in Carnot—Caratheodory
spaces. Methods Appl. Anal. 15(1), 121-136 (2008)

13. Danielli, D., Garofalo, N., Petrosyan, A., To, T.: Optimal regularity and the free boundary in the parabolic
Signorini problem, Mem. Am. Math. Soc. 249, no. 1181, v + 103 pp (2017)

14. Duvaut, G., Lions, J.-L.: Les inéquations en mécanique et en physique, (French) Travaux et Recherches
Mathématiques, No. 21. Dunod, Paris, 1972. xx+387 pp

15. Ferndndez-Real, X., Jhaveri, Y.: On the singular set in the thin obstacle problem: higher order blow-ups
and the very thin obstacle problem, arXiv:1812.01515

16. Garofalo, N.: Fractional thoughts, New developments in the analysis of nonlocal operators, Contemp.
Math., vol. 723, Am. Math. Soc., Providence, RI, pp. 1-135 (2019)

17. Garofalo, N.: Two classical properties of the Bessel quotient /,,1 /], and their implications in pde’s,
Advances in Harmonic Analysis and Partial Differential Equations, Contemp. Math., vol. 748, Am.
Math. Soc., Providence, RI, pp. 57-98 (2020)

18. Garofalo, N., Petrosyan, A.: Some new monotonicity formulas and the singular set in the lower dimensional
obstacle problem. Invent. Math. 177(2), 415-461 (2009)

19. Garofalo, N., Petrosyan, A., Smit Vega Garcia, M.: An epiperimetric inequality approach to the regularity
of the free boundary in the Signorini problem with variable coefficients. J. Math. Pures Appl. (9) 105(6),
745-787 (2016)

20. Garofalo, N., Petrosyan, A., Pop, C. A., Smit Vega Garcia, M.: Regularity of the free boundary for the
obstacle problem for the fractional Laplacian with drift, Ann. Inst. H. Poincaré Anal. Non Lindire 34(3),
533-570 (2017)

21. Garofalo, N., Ros-Oton, X.: Structure and regularity of the singular set in the obstacle problem for the
fractional Laplacian, Revista Matematica Iberodmericana. Rev. Mat. Iberoam. 35(5), 1309-1365 (2019)

@ Springer


http://arxiv.org/abs/1807.10135
http://arxiv.org/abs/1906.06885
http://arxiv.org/abs/1809.06075
http://arxiv.org/abs/1812.01515

91

Page 52 of 52 A.Banerjee et al.

22.

23.

24.

25.

26.
27.

Lebedev, N. N.: Special functions and their applications, Revised edition, translated from the Russian and
edited by R. A. Silverman, Unabridged and corrected republication. Dover Publications, Inc., New York,
1972. xii+308 pp

Monneau, R.: Pointwise estimates for Laplace equation. Applications to the free boundary of the obstacle
problem with Dini coefficients. J. Fourier Anal. Appl. 15, 279-335 (2009)

Nystrom, K., Sande, O.: Extension properties and boundary estimates for a fractional heat operator.
Nonlinear Anal. 140, 29-37 (2016)

Petrosyan, A., Zeller, A.: Boundedness and continuity of the time derivative in the parabolic Signorini
problem. Math. Res. Let. 26(1), 281-292 (2019)

Shi, W.: An epiperimetric inequality approach to the parabolic Signorini problem, arXiv:1810.11791
Stinga, P.R., Torrea, J.L.: Regularity theory and extension problem for fractional nonlocal parabolic
equations and the master equation. SIAM J. Math. Anal. 49(5), 3893-3924 (2017)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Authors and Affiliations

Agnid Banerjee' - Donatella Danielli2 - Nicola Garofalo®@® - Arshak Petrosyan®

=4

Nicola Garofalo
rembrandt54 @ gmail.com

Agnid Banerjee
agnidban @gmail.com

Donatella Danielli
DDanielli@asu.edu

Arshak Petrosyan
arshak @purdue.edu
TIFR CAM, Bangalore 560065, India

School of Mathematical and Statistical Sciences, Arizona State University, 900 S Palm, Walk
Tempe, AZ 85281, USA

Dipartimento di Ingegneria Civile, Edile e Ambientale (DICEA), Universita di Padova, 35131
Padova, Italy

Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA

@ Springer


http://arxiv.org/abs/1810.11791
http://orcid.org/0000-0002-0018-6779

	The structure of the singular set in the thin obstacle problem for degenerate parabolic equations
	Abstract
	1 Introduction
	2 Notations and preliminaries
	3 Classes of solutions
	4 Almgren-Poon type monotonicity formula
	5 Gaussian estimates
	6 Existence and homogeneity of blowups
	7 Homogeneous global solutions and regular points
	8 Classification of free boundary points
	9 Singular points
	10 Weiss and Monneau type monotonicity formulas
	11 Structure of the singular set
	12 Appendix
	References




