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ABSTRACT An approach based on dictionary-based Gaussian decomposition of electrocardiogram (ECG)
traces is presented and characterized, and its performance potential is demonstrated using traces from the
MIT-BIH Arrythmia Database. A Gaussian model is employed to describe ECG morphology. Parameters are
estimated using a dictionary-based approach, that is purposely designed to obtain accurate representations
with limited complexity and ensure comparability among different traces and subjects. The standardized
Gaussian dictionary allows compact representations, enhances comparability and provides the support for
machine learning-based diagnostics of ECG traces. Data-oriented large-scale medical analyses of ECG data
are made possible, allowing the investigation of elusive cardiac phenomena and personalized diagnostics.

INDEX TERMS Electrocardiogram, feature extraction, Gaussian dictionary, standardization, uncertainty.

I. INTRODUCTION

ELECTROCARDIOGRAM (ECG) recordings are among
the most frequently employed diagnostic tools in

medicine, as people of all ages routinely get ECG health
checks [1]. Many individuals can thus have a large number
of ECG traces, of varying quality and length, associated with
them over their lifetimes. The availability of such extensive
information raises the possibility of systematic investigation
into ECG patterns, their variability, relevant features and
trends for possible pathology precursors, that could help
develop diagnostics.
Objective comparison of individual ECG traces by means

of a standard set of reference features is a key require-
ment for this kind of big-data inspired study. Prerequisites
for a quantitatively oriented analysis are the essential
metrological requirements of repeatability and compara-
bility of the analyzed feature set. Consideration must
also be given to the nature of features. Bioelectrical
signals like ECG traces, electromyograms, electroencephalo-
grams, etc. are often analyzed by considering, for instance,
energy in a certain bandwidth, interquantile range, time
interval between fiducial points [2], [3], [4]. These fea-
tures summarize essential characteristics of a waveform for
a certain purpose, consequently they may lack generality.

Reconstruction of the original waveform might not be
possible, which hardly suits the requirement of general
comparability among traces.
In this work we propose a morphological feature set that can

be introduced as an explicit intermediate step between a plain
ECG trace and its annotations produced by clinicians. The
approach is based on Gaussian modelling, that has been shown
in the literature to achieve accurate ECG trace representations
in a wide variety of cases [5], [6]. A well-designed and well-
fitting model can reproduce the morphology of a cardiac
period by a limited number of suitable Gaussian components,
uniquely identified by a small number of parameters [7].
Therefore, a whole trace can be associated to a very compact
parameter set, representing a unique “ECG fingerprint” [8]. As
with actual fingerprints, this parameter set can be standardized
and, to this aim, we provide criteria for the definition of an
objective reference grid of parameter values, exclusively based
on the analysis of uncertainty for ECG traces.
The conceptual novelty is the “application independent”

nature of the ECG feature set, that satisfies the metrolog-
ical requirements of repeatability and comparability, and
can provide a basis for reliably sharing diagnostic-related
medical data. It could be argued that the proposed set does
not include any of the specific features in use for ECG trace
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analyses. However, since an “ECG fingerprint” preserves
measurement information, a suitable explicit mapping, or
possibly some form of machine learning training can be
expected to create links to other trace features of common
interest and actually help improve the quality of examination.
In the next Section Gaussian modelling for ECG traces is

introduced and relevant literature is discussed. The design of
the Gaussian dictionary and criteria to define the associated
parameter grid are presented in Section II-B. Section III
presents results obtained by the use of the “ECG fingerprint”,
with examples of monitoring ECG traces taken from a well-
known reference data set.

II. METHODS AND PROCEDURES
A. ECG SIGNAL MODEL
A general framework for morphological modelling of heart
beats by ECG signal decomposition is presented in [9]. Using
Gaussian functions, a single heart beat can be represented
by the sum:

x(t) =
I∑

i=1

αie
− 1

2

(
t−τi
σi

)2

(1)

where αi is the magnitude of the i-th component, τi is its time
position relative to a reference point and σi is a shape-related
(dispersion) parameter. At least one Gaussian component is
needed for each elementary ECG wave (P, Q, R, S and T), but
two more are usually added to help describe asymmetries in P
and T waves, making seven in all [7], [10], [11]. In practice,
shapes of actual ECG recordings may not exactly follow
this model. Our analysis of acquired waveforms consistently
showed that rigid allocation to specific elementary waves
must be avoided, in which case a pool of seven components
can still be employed, resulting in a compact representation
of the ECG trace.
The use of a Gaussian model was proposed in [12] for the

generation of realistic synthetic ECG traces. ECG compres-
sion and classification were discussed in [7], whereas [13]
aimed at identification and removal of contaminants in
the cardiac trace. Algorithms of significant computational
complexity are often involved, since signal model (1) is non-
linear in the parameters τi, σi. Approaches proposed in the
literature include gradient descent [7], non-linear Kalman fil-
tering [11], [14], extended Kalman filtering/smoothing [15].
More recently, dictionary-based signal decomposition has

been considered for ECG signals. A dictionary is obtained by
selecting a finite set of K functions from a family D = {φγ },
where γ is a generic parameter set. A single dictionary
element (atom) can be associated to an index k and indicated
as φγk(t), where γk denotes specific values of γ . Since k
univocally identifies γk we use notation φk(t) for simplicity.
The model for a single heart beat takes the general form:

x(t) =
∑

i∈I(x)
aiφi(t), (2)

where each atom is associated with a non-zero magnitude
value ai and I(x) is a signal-specific index subset, whose

cardinality |I(x)| is assumed to be small for any signal of
interest [16].
It should be remembered that ECG trace analysis starts

with segmentation into single heart beats, after which signal
model (2) is fitted to each segment. Dictionary-based decom-
position yields the index set I(x) and the set of amplitudes
A = {ai | i ∈ I(x)}.
A dictionary may be constructed from ECG-specific wave-

form templates, as reported for instance in [17]. In this case
features are specific to a given subject or to the particular set
of traces forming the training set. For Gaussian dictionary-
based ECG analysis, promising results are shown in [5] and
the approach has been successfully employed for compres-
sive sensing of fetal ECG signals [18]. Even these works,
however, do not specifically address the aspect of generality,
which is the main focus of this work.
Our preference for a pre-defined Gaussian dictionary as

a standard general representation tool is summarized by the
following reasons:
1) the suitability of Gaussian kernels for the morpholog-

ical description of ECG waveforms is demonstrated in
several works, for instance, [10], [14], [15];

2) model (1) is adaptable and can be applied to non-
pathological, as well as to pathological traces. Although
some loss of accuracy might be incurred with the latter,
a Gaussian representation can be quite general;

3) computational costs of feature extraction algorithms
are acceptable for a range of medical and healthcare
equipment, including comparatively unsophisticated
devices.

These characteristics allow to meet challenges involved in
defining a common feature set for waveforms acquired by
various devices under different conditions, in particular:

• achieve robustness against noise and artifacts in
recorded traces, and

• provide compact representations of trace data, that
can be useful for archiving, transmission and efficient
analysis.

B. GAUSSIAN DICTIONARY DESIGN
Functions in a Gaussian dictionary have the general
expression:

φ{s,u}(t) = 1
(√
πs

)1
2

e−
1
2 (

t+u
s )

2

, (3)

where u ∈ R is a location parameter and s ∈ R
+ is a scale

parameter.
In practice a segment would be a finite-length sequence of

samples represented by vector x = [x(n1Ts), . . . , x(n2Ts)]T ,
where Ts is the sampling interval, n1 and n2 are the initial
and final segment indices, N = n2 − n1 + 1 and superscript
‘T’ denotes transposition. In this case a dictionary is a matrix
D with size N×K and its elements are the column vectors of
N sampled values of (3), characterized by distinct parameter
couples: γk = [uk, sk].
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Since only finite discrete sets of parameter values can
be considered in a dictionary, a suitable two-dimensional
grid needs to be defined for γ = {s, u}. For the purpose
of discussing design criteria, we keep using continuous-time
functions. In this case dictionary elements are vectors in a
Hilbert space, where the vector product between signal x(t)
and one of the functions φk(t) is defined by the integral:

< x, φk > =
∫ +∞

−∞
x(t) · φk(t) dt. (4)

The function φs,u(t), as defined in (3), is normalized so that:

‖φs,u(t)‖2 = < φs,u(t), φs,u(t) > = 1. (5)

When index set I(x) is given, signal model (2) is linear
with regards to parameters ai, whereas the dependence on
non-linear parameters u and s is accounted for in the selected
set of functions φk(t). The decomposition can be written as:

x(t) =
∑

i∈I(x)
< x(t), φi(t) > φi(t)+ rx(t) (6)

where rx(t) is the waveform estimation residual.
Accuracy is determined by two aspects:

1) the quality of the dictionary, that should offer an appro-
priate variety of functions to choose from. In this
regard, the design problem translates into the deter-
mination of two finite sets of values for u and s that
enable sufficiently accurate representations for ECG
trace segments;

2) the effectiveness of the selection process leading to an
index set I(x) with any segment.

To ensure generality in our study, we assume that any
ECG trace segment can be described by model (1), whose
effectiveness is well proven. We disregard superpositions
for simplicity, so that each elementary Gaussian wave
in (1) can be considered individually when the projection
< x(t), φ{s,u}(t) > is analyzed.

The effect of a discrete parameter grid on estimation accu-
racy can be analyzed as a quantization problem. We introduce
a standard criterion for defining parameter quantization steps
and ranges, based on the analysis of the effect of gridding
on reconstructed waveform accuracy. Let �s and �u be the
grid steps, respectively for s and u, with �s,�u > 0. For
a Gaussian wave with parameters σ , τ the two conditions
|s− σ | ≤ �s

2 and |u− τ | ≤ �u
2 will be satisfied. Step sizes

determine resolutions for the estimates of parameters σ and
τ , lower bounding measurement uncertainties accordingly.

Dropping subscripts for simplicity, the projection on
φ{s,u}(t) of a Gaussian elementary wave having amplitude α
and parameters σ , τ is given by the closed-form expression:

<α e−
1
2 (

t−τ
σ )

2

, φs,u(t)> = α
(√
πσ

)1
2 · ρ(s, u) (7)

where:

ρ(s, u) =
[

2 s
σ

1 + ( s
σ

)2

] 1
2

·
[
e−

1
2 (

u−τ
σ )

2] 1

1+( sσ )2 . (8)

FIGURE 1. Ratio of estimated amplitude α̂ to the nominal parameter value α versus
u−τ

σ , for different values of the ratio s
σ .

Because of the normalization in (3), the amplitude estimate is:

α̂ = α
(√
πσ

)1
2 · ρ(s, u)

(√
πs

)1
2

(9)

and its relative deviation has the general expression:

α̂ − α

α
=

[√
σ

s
ρ(s, τ )

]
− 1. (10)

Plots of (10) are shown in Fig. 1, where the abscissa is
the time location difference u − τ normalized by the wave
parameter σ , and plots are parameterized by the ratio s/σ .

Obviously, zero relative deviation is achieved when s = σ

and u = τ . Since discrete parameter values are considered
in the dictionary, quantized values must be assumed instead.
Given step sizes �s and �u it is:

s

σ
≤

(
1 + �s

2σ

)
and

|u− τ |
σ

≤ �u

2σ
, (11)

therefore it suffices to analyze the behaviour of (10) in the
neighbourhood of s

σ
= 1 and |u−τ |

σ
= 0.

Horizontal lines in Fig. 1 illustrate the boundaries cor-
responding to ±5% relative deviation. It can be seen that
too narrow dictionary elements (that is, s

σ
< 1) overestimate

amplitude, whereas wider ones ( s
σ
> 1) lead to underes-

timation. When u = τ , that means the time location of a
Gaussian elementary wave is exactly matched by a dictio-
nary element, relative amplitude deviation remains within the
±5% boundaries with scale parameter variations up to ±10%.
Time location resolution is important for the accurate

determination of ECG fiducial point position, therefore
we refer to the ECG sampling interval, setting a uniform
quantization step for u:

�u = Ts. (12)

By this choice gridding effects become mostly negligible for
time location.
For the scale parameter s the dependence of relative ampli-

tude deviation on the ratio s
σ

suggests the adoption of a
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logarithmic grid. This can be built according to the rule:

s = smin · (1 + δs)
h−1 with h = 1, . . . ,H (13)

where smin ≤ σ ≤ sMAX is assumed to hold for all possi-
ble values of σ and sMAX = smin · (1 + δs)

H−1. Setting δs
determines the relative resolution for the estimate of σ .
From a review of physiological values we set

sMAX ∼= 90 ms as the upper end for the range of dispersion
values s. An objective criterion to determine the lower end
may be derived by considering that any measured ECG trace
is band-limited by the data acquisition system bandwidth B.
Therefore, dictionary elements are not expected to match any
elementary wave with a broader bandwidth. Considering the
relationship between the −3 dB bandwidth of a Gaussian
function of time and its dispersion parameter, a lower bound
is then provided by:

smin =
√

ln 2

2π
· 1

B
∼= 0.1325 · 1

B
. (14)

We chose smin = 2 ms, corresponding to slightly wider than
B = 55 Hz, a common bandwidth value for ambulatory
electrocardiographic systems complying to IEC 60601-2-
47:2012. The range of values should be enough to account
for possible morphological variations in the ECG signal and
can be covered in 10% increment steps by setting H = 41.
It must be emphasized that the analysis in this Section does

not rely on any specific or individual ECG feature. Achieving
a satisfactory trade-off between dictionary size and waveform
estimation accuracy is far from trivial in practice. Sufficiently
fine parameter granularity is needed to preserve the quality
of clinical information conveyed by an ECG trace. Using
finer steps may reduce approximation distortion, but only
up to the intrinsic limits of model (1). Conversely, too fine a
granularity would result in an unmanageably large dictionary,
making the approach impractical and, possibly, numerically
unstable.
Criteria outlined here lead to a dictionary with K = N ·H

elements, that is a N×N ·H dictionary matrix D, admittedly
a rather large size. However, the result is a standardized dic-
tionary, that can be pre-computed and stored in any device.
Therefore, it only introduces a memory size requirement
that can be easily met with low-cost storage devices. On
the other hand, ECG analysis based on a standard dictionary
can ensure broad comparability among traces acquired by
different devices.

C. TRACE DECOMPOSITION ALGORITHM
Determination of the most representative index sub-set I(x) is
crucial to the accuracy of dictionary-based signal decompo-
sition. Results may partly depend on the algorithm employed
for this purpose, therefore a brief outline is necessary before
progressing further in the analysis.
We estimate parameters in (2) by orthogonal matching

pursuit (OMP) [19], a recursive “greedy” algorithm that
iteratively selects model components. Trace analysis actu-
ally begins with a pre-processing stage where low frequency

FIGURE 2. Correlation trend according to relation s
σ .

noise and baseline wander are removed. Their contribution is
extracted by a cascade of two median filters (window lengths
200 ms and 600 ms, respectively), then subtracted from the
original ECG signal [20]. A peak detector next determines
the positions of R-wave peaks, creating a sequence of time
values T = {Tl}, where l is the heart beat index. Taking
these positions as reference points, a corresponding sequence
of sample vectors xl is produced. Each segment is decom-
posed by OMP, that yields the two sets Al and Il(x). The
most compact representation of a single heart beat is the set
�l = {Tl, Il(x),Al}, since corresponding values of ui and si
are determined by the dictionary when I(x) is given. The
sequence � = {�l} provides the “ECG fingerprint” for a
full trace.
Dropping the subscript l for simplicity, OMP can be

described as the iterative application of a number of steps,
starting from the discrete vector x. Initialization sets the
estimated signal to x̂ = 0 and the set of selected dictionary
indices to I(x) = ∅. The algorithm performs the following
operations:

1) compute r = x − x̂, then find the dictionary index
k∗ = arg maxk |dTk r|2;

2) update the index set: I(x) = I(x) ∪ k∗ and form
submatrix DI(x) = [D[·, k]]k∈I(x);

3) compute a new vector of amplitude estimates: â =
(DT

I(x)DI(x))
−1DT

I(x)x;
4) calculate the new signal estimate: x̂ = DI(x)â.
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D. RESIDUAL PEAKS
OMP performance is critically dependent on the effectiveness
of the search for k∗ in the first step of each iteration. Index
k∗ indicates the dictionary element on which the projection
of r is largest. However, discretization of parameters s and
u implies that in general an exact match with σ and τ is
not possible.
Mismatch can cause spurious peaks to appear in subse-

quent matching pursuit iterations, preventing correct com-
ponent detection. To assess this effect we consider the
difference ψ(t) = φs,u(t) − φσ,τ (t) and analyze the pro-
jection < ψ(t), φs,u(t) >, that can still be described by a
closed-form expression.
This provides the residual peak amplitudes that are plot-

ted in Fig. 2, in percent of the original peak amplitude, as
functions of the time offset from the original peak position,
normalized with respect to σ . Plot parameters are referred
to the dictionary element selected in association with the
original peak:

• Fig. 2(a) – normalized position mismatch u−τ
σ

;
• Fig. 2(b) – dispersion mismatch, expressed by the ratio

s
σ
.

Fig. 2(a) shows, for instance, that a position mismatch not
greater than 0.1·σ is needed to keep the residual peaks below
5%. Dispersion mismatch in Fig. 2(b) appears to be less crit-
ical. In general, the design criteria discussed in Section II-B
for the choice of grid steps appear to be adequate to also
address the problem of residual spurious peaks.

E. NOISE SENSITIVITY
The smaller values of s are well-suited for detection of
ECG elementary waves in the shorter-duration QRS com-
plex, where R peaks are usually well above the background
noise threshold. Smaller signal components can often be
buried in noise so that detection, in particular for P waves,
becomes harder. Experience showed that narrower Gaussian
functions are more liable to produce spurious peaks caused
by the presence of noise. For this reason, we need to set
additional limits to prevent the algorithm from interpreting
noise bursts as spurious Gaussian components.
Let us assume that, in some part of the ECG segment,

residual signal components have become comparable with
Gaussian white noise, possibly after some iterations. To
analyse the problem, we consider the projection:

< n(t), φs,u(t) > = rn,φ(s, u), (15)

where the random process n(t) has zero mean and finite
variance σ 2

n . We are interested in the properties of rn,φ(s, u),
which is also a Gaussian random process. Its variance σ 2

r ,
that is independent of u because of the stationarity of n(t),
allows an assessment of noise-related artifacts in the first
step of OMP iterations and the consequent probability that
a noise-related peak exceeds signal-related peaks. From (15)
it follows:

σ 2
r = σ 2

n

∫ +∞

−∞
∣∣s,u(f )

∣∣2
df = σ 2

n

∫ +∞

−∞
φ2
s,u(t) dt = σ 2

n (16)

where s,u(f ) is the Fourier transform of φs,u(t) and the
final equality holds because of normalization (5).
A false detection occurs when peaks due to noise exceed

signal-related ones, therefore a reasonable criterion to avoid
misdetection is to simply set a threshold equal to κ · σn.
For the algorithm described in Section II-C, as σn is not
known, we consider an estimate obtained from the residual:
σ̂n = 1

N r
Tr. Indicating by α̂k the amplitude estimate for a

candidate Gaussian dictionary component of index k, this is
accepted into the set I(x) only if:

|α̂k| > κ · 1

N
rTr (17)

Therefore, OMP iterations are stopped when one of the
following conditions is met:

• a maximum allocated number of Gaussian kernels has
been reached;

• percent relative deviation (PRD) of x̂ from the analyzed
segment x drops to 1% or lower;

• peaks found in the first step of the OMP iteration can
no longer be reliably discerned from noise.

III. RESULTS
The aim of our study is to prove the value of a suit-
ably designed Gaussian dictionary as a metrological tool
for comparability of ECG recordings in a population. For
this reason, only objective criteria referring to quantization,
approximation and the robustness to noise and artifacts have
been considered. Any input from training with experimental
data sets has been intentionally avoided, since generality is
emphasized. In this way, any recorded trace is compared
against the same standard framework.
Results are presented for the ECG traces in the

MIT-BIH Arrhythmia Database [21], available at
https://physionet.org [22]. This very well-known database
contains a set of two-channel ambulatory ECG recordings
lasting about 30 minutes each, which means a total of over
100,000 heart beats. These traces have been extensively
employed for research and represent a thoroughly studied
set of measured data.
Importantly for our work, all traces have been carefully

annotated with beat labels, indicating either normal beats
or anomalies of different kinds, positioned to coincide with
R-wave peaks. This enables us to rely on time positions given
in trace annotation files for segmentation, thereby avoiding
the possible influence on dictionary-based decomposition of
a specific peak detection algorithm. Annotations then allow
to tell whether specific patterns in the estimated parameters
can be related to information of medical relevance.
We emphasize that dictionary-based analysis should be

seen as an intermediate step between trace acquisition and
medical interpretation for diagnostic purposes. Annotated
traces help validate the concept and, for this reason, our
study is strictly limited to general data analysis tools, such
as diagrams and histograms.
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FIGURE 3. Amplitude-versus-time coefficient plots, for normal beats only, in nine different subjects.

We selected a single ECG trace from each record, indi-
cated as modified limb lead II (MLII), that is obtained by
electrodes placed on the chest. This yielded the greatest
amount of data, since a trace for this lead was present in
46 records, of which 21 (numbered in the 100s) had been
randomly chosen from a set of over 4000 long-term Holter
recordings, while 25 (numbered in the 200s) were selected
from the same set to include a variety of rare but clinically
important phenomena.
The kind of systematic study envisaged in the opening

discussion would compare full-trace sets � among different
subjects, or among recordings referring to the same subject
under different conditions, or at different times, e.g., after
some months, or years.
Traces in the database under study did not provide this

kind of variety. However, as a preliminary observation, we
present in Fig. 3 a set of graphs comprising nine different
subjects, four male and five female aged between 23 and
83, drawn from among the 47 individuals making up the
full set. For each segment, that corresponds to a single heart
cycle, estimated amplitudes α̂i are plotted versus location
parameter ui and all segments within a trace are superposed
in the plot. Time reference t = 0 corresponds to the R-peak
location, accordingly the location parameter value u on the
abscissa is given as “delay from reference”. Only normal
beats are considered.
As discussed in [21], all traces were produced by a set

of recording equipment of the same model using standard

electrode placements, therefore variations can be related to
individual subject features. The purpose of Fig. 3 is to evi-
dence the variety of characteristic individual patterns, that
in several cases can make a subject recognizable [23].
A cardiac anomaly is expected to cause variations in the

pattern of Gaussian coefficients when anomalous heart beats
occur. This kind of study requires comparison among seg-
ments within a trace (for instance, �l with �m when l 
= m)
to evidence local differences, allowing the separation of
anomalies from normal beats.
Coefficient clustering is indeed feasible to highlight

unusual conditions in any of the ECG traces we consid-
ered. Given the variety of subjects and cardiac impairments
represented in the MIT-BIH Arrythmia Database, systematic
evaluation would by necessity rely on some specific data
analysis approach, its performance affecting results. To keep
the paper focus on standardization, repeatability and com-
parability we avoid this, and prefer to discuss in detail three
selected cases. Each refers to a different anomaly and we
show that relevant clusters can be evidenced by simple and
intuitive means, like parameter plots and histograms.
This is illustrated by the graphs of Fig. 4, where both

the amplitude estimate α̂i and the dispersion estimate ŝi are
considered. The trace for Subject 100 is characterized by
premature atrial contraction (PAC) events, occurring in 1.5%
of the heart beats. Plots of α̂i versus ui and ŝi versus ui
in Fig. 4(a) show that most parameter values fall in the
same areas for both normal (blue dots) and anomalous (red

4000209 VOLUME 1, 2022



FIGURE 4. Subject 100 – premature atrial contraction (PAC) events, where the ECG P-wave is involved, occur in about 1.5% of the heart beats. a) amplitude-versus-delay (top)
and dispersion-versus-delay (bottom) coefficient plots for normal (blue dots) and PAC (red dots) beats; b) amplitude-versus-delay plot of P-wave coefficients; the normalized
distributions of delay values for P-wave coefficients are reported in the inset box; c) ECG trace (top) and amplitude of each P wave versus time position (bottom), the amplitude
of a normal P wave (green) is lower than that of a P wave with PAC beats (orange).

FIGURE 5. Subject 212 - right bundle block beats (RBBB) occur in more of the 60% of the heart beats. a) amplitude-versus-delay (top) and dispersion-versus-delay (bottom)
coefficient plots for normal (blue dots) and PAC (red dots) beats; b) amplitude-versus-delay plot of T-wave coefficients; the normalized distributions of amplitude values for
T-wave coefficients are reported in the inset box; c) ECG trace (top) and amplitude of each T wave versus time position (bottom), the amplitude of a normal T wave (black) is
lower than that of a T wave with RBBB beats (magenta).

dots) beats. Indeed, blue dots in the top plot are the same
already shown in the plot at the top left corner of Fig. 3.
A significant difference is found at around u = −0.2. This
is magnified and better evidenced in Fig. 4(b), where α̂i
is plotted versus u for the ECG P-wave alone. This plot is
obtained by simply restricting the range of position values to
−0.22 ≤ u ≤ −0.1 s. The graph shows Gaussian parameters
for normal beats are closely clustered around mean values
α̂i ∼= 0.09 mV and ûi ∼= −170 ms. Not surprisingly, the two
histograms for the distance from reference of the P wave,
shown in the inset, are well separated, with PAC events
occurring earlier. They clearly suggest a threshold value,
that could be employed to detect and locate PAC events
along the trace as shown in Fig. 4(c).
A conceptually similar situation is presented in Fig. 5,

that refers to a subject affected by right bundle branch block
(RBBB), a form of irregular heart beat caused by asymmetry
in the contraction of ventricles. In this subject (No. 212)

RBBB occurs for two-thirds of the time, when the heart rate
exceeds approximately 90 beats per minute.
The ECG T-wave is most affected in this case, and the graph

in Fig. 5(b) shows that clustering in the range of position values
0.15 ≤ u ≤ 0.35 s can be effective. A bimodal histogram
is found for amplitudes, clearly showing a suitable threshold
value for detecting and locating RBBB events along the trace.
It should be remarked that comparability among traces

is harder to achieve for the amplitude parameter. In this
case, several factors can affect the calibration of the signal
acquisition channel, same ofwhich cannot be considered under
total control. Whereas the calibration state of the electronic
recording equipment may be assumed, other factors that can
affect waveform measurement, such as the use of dry or
wet electrodes, conducting gels, the repeatability of electrode
positioning for a given assumed lead, are far less controllable.
Consequently, as far as amplitudes are concerned we con-

sider advisable to restrict the analysis to relative values. The
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FIGURE 6. Subject 119 (up) and 228 (bottom) - premature ventricular contraction (PVC) occur in between the 20% and 30% of the heart beats. As in previous figures, a) and d)
show amplitude-versus-delay (top) and dispersion-versus-delay (bottom) coefficient plots for normal (blue dots) and PVC (red dots) beats; b) and e) are amplitude-versus-delay
plots of R-wave coefficients; the normalized distributions of amplitude values for R-wave coefficients are reported in the inset boxes; c) and f) present ECG traces (top) and
amplitudes of each R wave versus time position (bottom), the amplitude of a normal R wave (blue) is different from that of a R wave with PVC beats (red).

point is illustrated in Fig. 6, where Subjects 119 and 228
are compared. Both are affected by premature ventricular
contraction (PVC) in between 20% and 30% of the recorded
heart beats. It can be seen that ECG traces, as plotted in
Figs. 6(c) and 6(f) are significantly different for the two sub-
jects, although in both cases direct observation of the trace
suggests that variations in the amplitude of the R-wave peak
value are associated with PVC. Again, this is clearly evi-
denced by clustering of the appropriate parameter values,
as shown in Figs. 6(b) and 6(e) and it should be noticed
in this case that two different amplitude thresholds, respec-
tively, 2 mV and 1 mV can be determined. To reduce the
dependence on amplitude calibration it is therefore advisable
to consider amplitude in relative terms.
When needed, accurate reconstruction is possible, since

waveform morphology information is preserved. As an index
of reconstructed waveform fidelity Percent Root mean square
Difference (PRD) is defined as:

PRD = 100 ·
√√√√ 1

L

L∑

i=l

∥∥x̂l − xl
∥∥2

∥∥xl
∥∥2

(18)

TABLE 1. PRD performance metrics (mean ± std.dev.) evaluated on the MIT-BIH
database.

where xl is the l-th cardiac cycle in a reference trace x(t)
comprising L cycles and x̂l is its reconstructed estimate. It
should be reminded that in general the difference x̂i − xi
includes the contribution of ECG modelling uncertainty.
As illustrated in Table 1 the PRD value in the MIT-BIH

database is 2.3 ± 2.1%, highlighting very accurate recon-
struction performance. 1.5 ± 3.4% of cardiac cycles has a
PRD greater than 10%. This occurs especially on segments
affected by artifacts, suggesting the good capacity of the
dictionary elements to represent the morphology of ECG
trace.

IV. CONCLUSION
Electrocardiograms are widely employed in medical prac-
tice, sophisticated signal analysis techniques can be applied
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to interpret them, and medical protocols have been defined
to enhance the reproducibility of clinical tests. The approach
proposed in this paper introduces a significantly different per-
spective, where metrological criteria are employed to create
a common basis for the objective comparability of recorded
ECG traces.
We showed that the dictionary approach we propose is

an effective feature extraction scheme, enabling to high-
light useful evidence about some kinds of cardiac anomaly.
Generality is a built-in characteristic and allows to consider
the extracted parameter sets not only as an essential sup-
port for extensive data-based medical analyses, but also as
the starting point to implement effective machine learning
approaches for ECG diagnosis.
Future work will be pointing to developments in the latter

area, that shows good potential for innovative instrumenta-
tion.
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