
DIPARTIMENTO

DI INGEGNERIA

DELL'INFORMAZIONE

Pushing the Boundaries of Federated Learning:

Super-Linear Convergence and Reinforcement Learning Over Wireless

Ph.D. candidate

Nicoló Dal Fabbro

Advisor

Prof. Luca Schenato

Co-Advisor

Prof. Michele Rossi

Director & Coordinator

Prof. Fabio Vandin

Ph.D. School in

Information Engineering

.

Department of

Information Engineering

.

University of Padova

2023

ii

Acknowledgments

I would like to acknowledge my advisor, Prof. Luca Schenato, to whom I owe the most

sincere gratitude. Thank you, Luca, for the time you devoted to me, for teaching me

a lot, especially on going deeper in the fascinating methodological problems we have

addressed together, with passion and commitment. Thank you for your patience, for

having confidence in me, for having always provided constructive comments in every

circumstance, with a positive and friendly attitude which I will hardly forget. For this

and for the countless occasions in which I have treasured of your guidance, thank you.

I would also like to thank Prof. Michele Rossi, to which I owe my decision to start a

PhD, as well as my first experience in research, and that has been a precious and helpful

co-advisor in my PhD journey. Thank you, Michele, for being there when I needed help

and advice, for your dedication, and for teaching me a lot.

I would like to thank with gratitude Prof. Subhrakanti Dey for working with me

and advising me from the first year of the PhD onwards. I would also like to thank

Prof. Giuseppe Piro for spending a considerable amount of time with me when, at the

beginning of the PhD, we were investigating potential research topics related to the 5G

technology. I have fond memories of those (sometimes very challenging) days.

When starting the PhD, I had the luck of having the support of wonderful people

that I have to mention here. First, I would like to mention how much I appreciated the

help and guidance of Francesca Meneghello, that tutored me during my Master thesis

and with whom I kept working during the PhD. Thank you for your kindness, gentleness,

and devotion to work. You have been very important for my first steps in the research

world and it was great working with you. Another person I would like to mention with

gratitude is Luca Ballotta. I started the PhD during the Covid-19 shutdowns and I did

not have a chance to meet many people at the department. Luca has been there in those

days, whenever I needed help. Thank you, Luca, for your kindness and availability. Last

but not least, I would like to thank Nicola Lissandrini for his friendship and for being

the man I shared more Spritz with in the Department.

I would like to thank the Department of Information Engineering of the University of

Padova for being a great and welcoming learning environment along all my undergraduate

and graduate studies. Within the department, I would like to thank all the PhD students,

postdocs and professors I had a chance to interact with and sharing moments.

I spent a relevant part of my PhD abroad, during the third year. During this time, I

had the privilege of being hosted as a visiting scholar at the University of Pennsylvania

(Penn), where I met truly amazing people. Firstly, I would like to thank Prof. George

Pappas for being my host and supervisor during my period at Penn. George’s guidance

iv Acknowledgments

and advice has been precious for me. I would like to express the deepest gratitude to

Prof. Aritra Mitra, who was a postdoc at Penn at the time of my visit, for involving me

in great projects and for guiding me through a theoretical topic that was very new to

me, with patience and kindness. Thank you, Aritra, for being not only a great research

advisor, but also for welcoming me at Penn and in Philadelphia in the most warm and

friendly way. Your passion and dedication to research has been of great inspiration to

me. I would like to thank Prof. Lars Lindemann, who was a postdoc at Penn at the time,

with whom I shared the office, for being very kind, friendly and helpful. I would also

like to thank Claudio Battiloro, who was a visiting scholar at Penn like me, for being an

amazing room mate, for his support and for being a true friend. I would like to extend

all my gratitude also to all the other beautiful people I met at Penn and in Philadelphia.

Finally, I want to thank with all my heart all the people outside of the University

who gave me love. I owe immense gratitude to all of you. Thank you to my parents,

my brother, all the members of my family, all my friends, and those whom I loved and

who loved me back. I am grateful for all the love I received from all of you. To all these

people, with which I shared unforgettable experiences: thank you.

Abstract

In an age defined by explosive growth in information technology, data generation, storage

and transmission have increased dramatically. This data fuels the core of machine learning

and artificial intelligence. However, we are witnessing increasingly pressing questions

raised about data ownership and privacy, given the pivotal role of individuals as data

generators. In this context, research efforts in distributed machine learning, particularly

Federated Learning (FL), have recently gained momentum. FL enables multiple agents,

each with private datasets, to collaborate on machine learning tasks without sharing their

data. In recent years, the design of communication-efficient FL methods has garnered

significant attention, given the inherent need for frequent information exchange among

agents to train distributed machine learning algorithms. Given this premise, in this thesis

we explore the boundaries of FL, focusing on two aspects. First, we study second-order

methods with superlinear convergence rate that can effectively deal with ill-conditioned

problems while being communication efficient. Towards this direction, we introduce SHED

(Sharing Hessian Eigenvectors for Distributed learning), a novel Newton-type algorithm

for FL with state-of-the-art empirical performance that excels in terms of communication

efficiency and convergence guarantees. Second, we study the theoretical foundations

of Federated Reinforcement Learning (FRL) within the constraints of communication,

with special emphasis on wireless networks. In these settings, we provide finite-time

convergence rates for FRL, showing the beneficial effect of cooperation even under

communication constraints, establishing convergence speedups with the number of agents

in different configurations.

vi Abstract

Contents

Acknowledgments iv

Abstract v

1 Introduction 1

1.1 Federated Learning . 4

1.1.1 Second-Order Methods . 5

1.1.2 Federated Reinforcement Learning 7

1.2 Contributions and Thesis Organization . 9

1.2.1 SHED: A Novel Newton-Type Algorithm for Federated Learning

Based on Hessian Eigendecomposition 10

1.2.2 Finite-Time Analysis of Federated Reinforcement Learning under

Communication Constraints . 10

2 SHED: A novel Newton-type algorithm for federated learning 13

2.1 Introduction . 13

2.1.1 Main contributions . 15

2.1.2 Related work . 15

2.1.3 Organization of the Chapter . 16

2.2 Problem Formulation . 17

2.2.1 An eigendecomposition-based Newton-type method 18

2.2.2 The algorithm in a nutshell . 20

2.3 Linear regression (least squares) . 20

2.3.1 Centralized iterative least squares 21

2.3.2 Federated least squares . 22

2.4 From least squares to general convex cost 25

2.4.1 Backtracking line search for step size tuning 25

2.4.2 Algorithm with periodic renewals 26

2.5 Federated learning with convex cost . 27

2.5.1 Heuristics for the choice of I . 31

2.6 Empirical Results . 34

2.6.1 Federated backtracking . 34

2.6.2 Comparison against other algorithms 34

2.7 Additional Experiments . 38

2.8 Conclusions . 40

viii Contents

2.9 Related Publications and Conference Presentations 40

3 Q-SHED: Distributed Optimization at the Edge via Hessian Eigenvec-

tors Quantization 43

3.1 Introduction . 43

3.2 Distributed optimization framework . 45

3.2.1 Distributed Newton method . 45

3.2.2 The SHED algorithm . 46

3.2.3 Q-SHED: Hessian eigenvectors quantization 46

3.3 Optimal quantization of eigenvectors . 47

3.3.1 Scalar Uniform Quantization . 48

3.4 Q-SHED: algorithm design . 50

3.4.1 Uniform scalar quantization with incremental refinements 50

3.4.2 Multi-agent setting: notation and definitions 52

3.4.3 Heuristic choice of q
(d)
t . 52

3.4.4 Convergence analysis . 53

3.5 Empirical Results . 55

3.6 Conclusion and future work . 57

3.7 Related Publications and Conference Presentations 57

4 Federated Reinforcement Learning under Communication Constraints:

Finite-Time Rates 59

4.1 Introduction . 59

4.2 System Model and Problem Formulation 62

4.3 Convergence Results . 69

4.3.1 QFedTD: Convergence . 69

4.3.2 OACFedTD: Convergence . 71

4.3.3 AsyncFedTD: Convergence . 72

4.4 Numerical Simulations . 73

4.5 Related Publications and Conference Presentations 76

5 Stochastic Approximation with Delayed Updates: Finite-Time Rates

under Markovian Sampling with Optimal Dependencies 77

5.1 Introduction . 78

5.2 Stochastic Approximation with Delayed Updates 79

5.3 Warm Up: Stochastic Approximation with Constant Delays 82

5.4 Stochastic Approximation with Time-Varying Delays 86

ix

5.5 Related Publications and Presentation at Conferences 91

6 Conclusions and Future Work 93

A Appendix: Proofs of Chapter 2

and additional experiments 95

A.1 Proof of Theorem 2.1 . 95

A.2 Proof of Corollary 2.1 . 96

A.3 Proof of Theorem 2.2 . 96

A.4 Proof of Lemma 2.1 . 97

A.5 Proof of Lemma 2.2 . 98

A.6 Proof of Theorem 2.4 . 98

A.7 Proof of Theorem 2.5 . 99

A.8 Proof of Theorem 2.6 . 100

A.9 Additional Experiments: Results on EMNIST and w8a 105

B Appendix: Proofs of Chapter 4 109

B.1 Proof of Theorem 4.2 . 109

B.2 Proof of Theorem 4.3 . 120

B.3 Proof of Theorem 4.4 . 132

C Appendix: Proofs of Chapter 5 145

C.1 Proof of Theorem 5.3 . 146

C.1.1 Proofs of Auxiliary Lemmas . 147

C.1.2 Proof of Theorem 5.3 . 158

C.2 Proof of Theorem 5.4 . 163

C.2.1 Proofs of Auxliary Lemmas . 163

C.2.2 Conclusion of the Proof . 175

References 191

x Contents

1
Introduction

Thanks to the major information technology advancements of the last fifty years, human

civilization has been recently characterized by an extraordinary increase in the capacity

to produce, store and telecommunicate information data, usually in the form of digital

objects, i.e., streams of encoded bits. Together with the phenomena of massive data

production and massive connectivity, algorithmic advancements and a dramatic boost

in computational power of computing machineries have paved the way towards the

development of data-driven algorithms, which nowadays represent the core of the so-

called machine learning (ML) paradigm, which in turn is at the foundations of artificial

intelligence (AI). The main AI applications, at the time of the writing of this thesis, are

not only in prediction, classification and regression, but also in the emerging frameworks

of generative algorithms, i.e., algorithms that can generate new data based on past data.

In this context, given the high pace of development of AI algorithms, the crucial value of

data is becoming apparent together with the relevance of the concepts of data ownership

and data privacy. Indeed, in a modern civilization whose destiny seems to be unavoidably

intertwined with the development of AI, which relies on data-driven algorithms, data

itself becomes a "magic powder" without which the human civilization system does

not have the capacity to function and progress. In recent years, major multinational

technology companies, such as Google, Meta, Apple, Microsoft, and Amazon, have been

aggressively expanding their businesses by leveraging AI, largely built on the vast reserves

of human data they manage. However, it is not clear how individuals, private citizens

and institutions, should reap benefits from the AI algorithms that rely on the data they

generate daily. In this context, western civilization is finding itself in the presence of the

following key aspects: (i) the growing awareness of the value and power of the increasing

amount of data produced and collected by humans, (ii) the evidence of the benefit that

the use of as much data as possible has in obtaining extremely powerful AI data-driven

algorithms, and (iii) the growing awareness that the economic value of data, the identity

2 Introduction

of the people that should be benefiting from this value, and consequently the regulations

to use human data itself, should be seriously reconsidered.

One natural consequence of the above considerations is the increased interest, surged with

great momentum in recent years, within both the scientific and industrial communities,

for distributed machine learning algorithms in which, although participating in training

AI models based on the data they produce, individual entities keep their data private.

In addition to the privacy-preserving arguments and the data ownership considerations

provided above, there are several reasons why distributed ML solutions are of high

interest to the information and communication technology research community. Among

these, distributed computation and distributed algorithms are very appealing because

they allow a system to distribute the computational effort across multiple entities. In

the ML context, this implies the possibility of training AI models on datasets stored in

multiple machines, rather than in a single one. Training a global ML model without

the need to transfer all the data to a single machine, which, for large datasets, could be

undoable, was the original motivation provided by Google researchers when they first

proposed the leading distributed ML paradigm of the last years, i.e., Federated Learning

(FL) [92]. In addition to the practical storage convenience of ML distributed training, in a

general multi-agent setting in which data are stored across multiple machines in multiple

locations of a communication network, transferring the data of the individual entities to

a central server for ML training could be very expensive from a communication point of

view. This latter aspect is particularly crucial when data are generated continuously by

devices at the network edge, from which reaching central servers in the core network is

well known to be very expensive, from both an energy consumption point of view [116],

and a communication resources point of view, given the pace of growth of the network

traffic in the present and upcoming years [85]. Distributed computation is indeed also a

key design principle for Internet-of-Things and the Multi-access Edge Computing (MEC)

paradigms [117], where connected entities collect and produce data, execute algorithms

and communicate at the network edge (see Figure 1.1 for an illustration of this scheme1).

Based on these considerations, we see how distributed computing architectures are not

only a requirement for data privacy considerations in the deployment of AI, they are also

a key requirement in the modern Internet infrastructure.

In recent years, as mentioned above, the leading paradigm for distributed machine

learning has emerged under the name of Federated Learning (FL). In FL, multiple

agents, each owning a private dataset, cooperate to solve a common ML problem without

sharing their data with each others. FL involves cooperation through the exchange of

1Figure source: https://www.wipro.com/infrastructure/edge-computing-understanding-the-user-experience/

3

Figure 1.1: Edge Computing architecture.

optimization parameters, such as agents’ gradients or ML models, with a central entity

known as the Master, Server, or Aggregator. The collective of agents participating in

this framework constitutes a "federation" of entities. These entities seek to harness the

benefits of cooperation while maintaining the privacy of their data. In essence, solving

a machine learning problem often translates to solving a mathematical optimization

problem. Likewise, mostly for convergence analysis purposes, an FL problem is often

analysed as a particular instance of a distributed optimization (DO) challenge. The

realm of DO has garnered significant attention in recent decades, with an extensive body

of related literature. From an engineering perspective, one of the primary hurdles in

DO and FL lies in achieving communication efficiency. DO and FL algorithms, indeed,

necessitate frequent information exchange among agents, demanding coordination and

communication. Over the past few years, there has been a growing focus on studying the

FL framework under communication constraints, which is motivated also by the fact that

in many real-world scenarios, like MEC 5G networks, the bottleneck in time and cost is

represented by communicating rather than by performing local distributed computation.

In this thesis, we study some areas in FL that, although very promising, were not very

much explored yet during the PhD time span, at the "boundaries" of FL. Specifically, we

focus on two aspects: (i) communication-efficient second-order methods in FL, in which

local devices computational effort is pushed to the extreme to improve the communication

efficiency. In this context, we propose SHED (Sharing Hessian Eigenvectors for Distributed

learning) an original Newton-type algorithm for FL with state-of-the-art performance and

appealing features like, notably, global convergence guarantees with asymptotic super-

linear rate. As a second aspect, (ii) we provide novel theoretical foundation results for

the emerging paradigm of federated reinforcement learning (FRL) under communication

4 Introduction

Figure 1.2: Federated Learning framework. N agents communicate with a central entity to
cooperatively train an ML model without sharing their private datasets.

constraints, considering different communication models including wireless analog over-

the-air computation and settings in which the the Stochastic Approximation operator is

computed with delayed parameters and observations.

In the following sections, we will provide a broad overview of FL together with a

description of the topics that we investigate in our thesis. We then illustrate our specific

contributions and the organization of this manuscript, introducing the key novelties of

our findings, and the advancements that we provide with respect to the state-of-the-art.

1.1 Federated Learning

Federated Learning (FL) is a paradigm for distributed machine learning that has been

first introduced in [92], [93]. The framework consists of a group of agents aiming to

cooperate in training a machine learning (ML) algorithm by communicating with a

central entity. Each FL agent holds a private dataset, and is willing to cooperatively

training an ML algorithm but without sharing their private data with the other network

entities. See Figure 1.2 for an illustration of this scheme. In this thesis, we often refer to

the central entity as the Master. Together with the growing concerns for data privacy

and data ownership that were mentioned in the first part of the introduction, one of the

reasons why the FL framework has gathered a lot of attention lately is the large amount

of real-world settings in which multiple agents communicate with some central entity. A

relevant example is the client-server type of architecture which pervasively characterizes

the modern internet infrastructure and protocols. A further example are wireless cellular

1.1 Federated Learning 5

systems in which users are usually connected to a central entity (e.g., a base station),

which in turn is usually connected to some server in the core network. From the point

of view of distributed optimization (DO), FL represents a special case, being a network

configuration with a star topology, where the center of the star is the Master. Compared

to peer-to-peer types of frameworks, in which the main building block for DO is usually

computing an average, reaching the consensus, in most FL instances consensus is reached

in one step, thanks to the star topology type of configuration. In mathematical form, the

DO and FL problem in a setting with N agents can be written as a minimization of the

sum of N cost functions, as follows

minimize f(θ) =
1

N

N∑

i=1

fi(θ), θ ∈ R
n, (1.1)

where fi(θ) is the (expected) cost function of agent i, which in turn depends on the

local dataset of agent i. The most common methods to train FL models are first-order

DO algorithms (e.g., gradient descent). Among the research endeavours on first-order

methods for FL, considerable effort has been devoted to reducing the communication

load, i.e., in developing communication efficient solutions. Indeed, first-order DO requires

frequent information exchange between agents and the master. To reach communication

efficiency, many techniques have been proposed, including communication compression

and related approaches [6], [76], [80], [98], local computation [74], [100], [136] and partial

participation [58], [60].

1.1.1 Second-Order Methods

Although very effective, first-order methods are usually very sensitive to the problem

structure, which is usually captured by the notion of condition number. As it is very well

known, first-order methods are all extremely sensitive to the condition number of the

cost function. In mathematical terms, an example of this dependency can be observed

simply inspecting the convergence rate of (centralized) gradient descent (GD). Let us

write the GD iterative update rule as follows:

θk+1 = θk − αg(θk), (1.2)

where θk is the parameter at iteration k, α > 0 is a step size/learning rate and g(θ) =

∇f(θ) is the gradient of the learning surrogate cost function f computed at θ. In the

deterministic least squares case, the optimal rate of convergence achievable with a specific

6 Introduction

choice of step size is the following:

‖θT − θ∗‖ ≤
(

1− 1

κ

)T

‖θ0 − θ∗‖, (1.3)

where, denoting by λi the i-th eigenvalue (in decreasing order) of the Hessian matrix,

κ = λ1
λn

is the condition number of the problem. It is well known that all first-order

methods have a similar form of dependency on the condition number. On the other

hand, it is well-known that Newton-type methods, which use the curvature information

provided by the Hessian matrix, can achieve a super-linear convergence rate independent

of the condition number [15]. The Newton method update rule has the following form

θk+1 = θk − α [H(θk)]−1
g(θk) (1.4)

where H(θ) = ∇2f(θ) is the Hessian matrix of the cost function f computed in θ. To

illustrate the aforementioned convergence properties, let us consider a µ-strongly convex

cost function with L-Lipschitz continuous Hessian. The Newton method attains a local

convergence rate of the following form [24]:

‖θk − θ∗‖2 ≤ 4µ2

L2

(
1

2

)2k

. (1.5)

Note that (i) the convergence rate is equal to 1
2 , independent of the condition number

and (ii) the rate is superlinear, specifically quadratic.

The extremely appealing convergence properties of Newton-type methods have mo-

tivated the research community to use the curvature information, by means of the

Hessian matrix, in distributed optimization and federated learning to reduce the number

of iterations required to converge, and therefore to reduce the communication load

of distributed training. The use of agents second-order information implies, however,

an increased computational burden at the agents, as computing the Hessian matrix is

computationally intense. In other words, second-order methods have been advocated

to attain communication efficiency at the price of increasing the computational effort.

Indeed, in FL, agents are often assumed to have good computing capabilities, like, e.g., in

the case of smartphones and laptops in edge networks [85]. Therefore, wisely increasing

the computational effort at the agents is an appealing strategy to speedup the conver-

gence. For this reason, Newton-type approaches, characterized by robustness and fast

convergence rates, even if computationally demanding, have been recently advocated [63],

[125], [139]. In addition to the increased computational burden, it is very impractical

to directly apply the Newton method in the FL setting (and in general in DO). Indeed,

1.1 Federated Learning 7

given N agents, each computing their own local Hessian matrix, Hi(θ) = ∇2fi(θ) and

gradient gi(θ) = ∇fi(θ) on their local cost functions fi(θ), applying the Newton method

directly would require performing the following update rule (assuming for simplicity that

all agents have the same number of data samples):

θk+1 = θk − α
(

1

N

N∑

i=1

Hi(θk)

)−1(
1

N

N∑

i=1

gi(θk)

)

. (1.6)

Note that while computing the global cost function gradient g(θk) = 1
N

∑N
i=1 gi(θk)

requires each agent to transmit their gradient vector of size O(n) to the master, which is

the standard for first-order methods in FL and DO, the computation of the global Hessian

H(θk) = 1
N

∑N
i=1 Hi(θk) would require each agent to transmit their local Hessian matrix

of size O(n2). The transmission of O(n2) information at each iteration is prohibitive when

the size n of the parameter θ ∈ R
n increases, and this additional communication cost

would make pointless the use of second-order information, whose purpose would be to

improve the communication efficiency. Therefore, recent research efforts [39], [125], [128],

[144] have proposed techniques for DO and FL in which approximations of the Hessian

matrices are used in place of the actual Hessian, in order to obtain a communication

complexity of O(n) while enjoying faster convergence thanks to the use of second-order

information. The update rule of these types of approximate Newton methods, also

referred to as Newton-type methods, has usually the following form:

θk+1 = θk − αĤ−1
k g(θk), (1.7)

where Ĥk is an approximation of the Hessian matrix used at iteration k. In chapter 2

of the thesis, we will illustrate SHED (Sharing Hessian Eigenvectors for Distributed

learning), a novel Newton-type method based on eigendecomposition of local agents’

Hessian matrices, whose update rule also has the form shown in (1.7).

1.1.2 Federated Reinforcement Learning

In the last years, the FL framework described above has attracted considerable research

interest. Major research efforts have been devoted to communication efficiency, i.e.,

to reap the benefit of cooperation while communicating as few bits as possible. Re-

cently, the need for distributed solutions who preserve data privacy while boosting the

training efficiency and effectiveness of ML algorithms has motivated also the study of

distributed reinforcement learning (RL) algorithms. Towards this direction, the paradigm

of federated reinforcement learning (FRL) has recently emerged [44], [77], [113]. While

8 Introduction

empirical studies have already shown the benefits of cooperation in RL training in specific

applications [106], there is a lack of theoretical understanding as to whether convergence

speedups similar to the ones we obtain in FL also hold for FRL. Furthermore, while the

effect of communication compression schemes and, more generally, of communication

constraints has been widely studied in FL, little to nothing is known about their effect

in FRL. In this regard, an improved theoretical understanding of FRL could pave the

way to novel algorithms and effective solutions to boost the performance of FRL in a

communication efficient way, which is of major practical relevance. Indeed, RL algorithms

are notoriously very data hungry and RL training requires a critical amount of time.

A large class of RL algorithms are just instances of Stochastic Approximation. As such,

many RL algorithms can be written as iterative update rules as follows:

θk+1 = θk + αg(θk, ok), (1.8)

where ok is a "data sample", usually an observation process temporally correlated and

modelled as a Markov chain. While it is evident the similarity of this update rule with

the typical stochastic gradient descent update rule, the main difference in RL algorithms

such as temporal difference (TD) and Q-learning is that (i) the data samples ok are

temporally correlated and (ii) there is not a well-defined cost function associated with

the learning problem. Hence, the study of finite-time convergence properties of these

algorithms is much more challenging compared to optimization algorithms like stochastic

gradient descent. In the context of multi-agent and FRL, one very relevant research

question is related to the possibility to obtain a convergence speedup when the RL

training is performed in parallel by multiple agents. This question can be formulated

mathematically in the following way. Consider a setting in which an agent would achieve

1/T convergence precision in T iterations. In a setting in which N agents are training

an RL algorithm in parallel, each acting in a replica of the same environment and with

the same set of states and rewards, can cooperation - obtained via communication, in

FRL with a central aggregator - allow the agents to obtain an overall 1/NT convergence

precision in T iterations? In addition, would this speedup still hold in the presence

of communication constraints such as communication compression, lossy links, noisy

wireless channels and asynchronous delayed transmissions? In this thesis, we investigate

these research questions, providing novel theoretical results which we believe contribute

to build the foundations for an improved understanding and algorithmic advancements

of multi-agent cooperative RL.

1.2 Contributions and Thesis Organization 9

Federated Learning

Communication-efficient
second-order methods

SHED: an original algorithm
based on Hessian eigenvectors

sharing

Federated reinforcement
learning

Theoretical foundations: the
benefits of cooperation under

communication constraints

Figure 1.3: Summary of thesis contributions.

1.2 Contributions and Thesis Organization

In this section, we illustrate the main contributions of this thesis. First, we present the

two main research questions we have investigated:

• Is it possible to design superlinearly convergent algorithms in FL that effectively

combat ill-conditioning while having an O(n) communication complexity per itera-

tion, i.e., the same complexity of first-order methods?

• Is it possible to show that in FRL the cooperation of N agents provides an N -fold

linear convergence speedup despite the correlated nature of agents’ observation

processes and under communication constraints?

In this regard, the contributions of the thesis are mainly as follows: (i) the design and

analysis of a novel Newton-type algorithm for FL with state-of-the-art performance,

which we briefly summarize in Section 1.2.1; (ii) the theoretical analysis of the finite-time

convergence behaviour of FRL under communication constraints, which we summarize

next in Section 1.2.2. See Figure 1.3 for a summary illustration of thesis contributions.

10 Introduction

1.2.1 SHED: A Novel Newton-Type Algorithm for Federated Learning

Based on Hessian Eigendecomposition

In chapter 2, we introduce SHED (Sharing Hessian Eigenvectors for Distributed learning)

a novel Newton-type algorithm for FL. The algorithm is based on building approximations

of the global Hessian using local Hessian eigenvalue-eigenvector pairs. SHED has several

appealing features and state-of-the-art performance. In the chapter, we describe the

algorithm in detail. First, we provide the main intuition in the case of linear regression

with quadratic cost (least squares). Then, we present the algorithm in the general case

of a convex cost function. We provide a rigorous convergence analysis that shows (i)

the superlinear convergence of SHED and (ii) how SHED is effective in combatting

ill-conditioning thanks to the distributed Hessian approximation technique. We then

illustrate an extensive empirical analysis of SHED’s performance comparing it against

several state-of-the-art approaches. In chapter 3, we present Q-SHED, an extension of

SHED based on a quantization scheme in which each agent allocates a bit budget to their

local Hessian eigenvectors. The bit allocation strategy is cast as an optimization problem

to minimize the difference between the resulting quantized Hessian approximation and

the actual Hessian. The empirical results show that Q-SHED can reduce to up to 60%

the number of communication rounds required for convergence.

1.2.2 Finite-Time Analysis of Federated Reinforcement Learning under

Communication Constraints

In chapter 4, we present a finite-time convergence analysis of FRL frameworks under

different communication constrained settings. Specifically, we consider a policy evaluation

problem in which N agents cooperate to evaluate a common policy via temporal difference

(TD) learning, by communicating with a central aggregator. See Fig. 1.4 for a pictorial

representation of the considered federated TD learning framework. We present novel

theoretical results for the following three communication settings: (i) a setting in which

uplink communications are subject to random dropouts and transmitted gradients are

quantized; (ii) a setting in which uplink transmission exploits over-the-air computation,

inducing an iterative update rule in which local updates are subject to distortion and

additive measurement noise at the receiver; (iii) an asynchronous setting in which local

TD update directions are subject to bounded asynchronous delays. For all of these

settings, we are able to provide a finite-time convergence analysis and to establish an

N -fold linear convergence speedup, i.e., we are able to show the beneficial effect of

cooperation even under the considered communication constrained settings. Notably, our

results are the first available theoretical groundings providing finite-time convergence

1.2 Contributions and Thesis Organization 11

Agent 1

Agent N

Server

Figure 1.4: Federated TD Learning framework. N agents communicate with a central entity
to cooperatively evaluate a common policy µ. Agents compute local TD update directions
gi,k(θk, oi,k) based on their observations oi,k, collected interacting with their environment.

results for FRL under communication constraints.

In chapter 5, we focus with greater attention on a Stochastic Approximation (SA)

setting with delayed updates, in the single agent case. Note that the SA setting under

Markovian sampling is a generalization of the TD learning framework considered in

chapter 4, and includes also Stochastic gradient descent under Markovian sampling and

more complex RL algorithms like Q-learning. Within the considered setting, we are able

to provide a finite-time convergence result that enjoys optimal dependencies on both

the mixing time of the Markov chain (consistently with the non-delayed case) and on

the delay sequence (consistently with the i.i.d. sampling case). Notably, our work is the

first to provide finite-time convergence guarantees for SA under Markovian sampling and

delayed updates.

12 Introduction

2
SHED: A novel Newton-type algorithm for

federated learning

In Federated Learning (FL), much attention is being turned to scenarios where the

communication network is strongly heterogeneous in terms of communication resources

(e.g., bandwidth) and data distribution. In these cases, communication between local

machines (agents) and the central server (Master) is a main consideration. In this

chapter, we present SHED, an original communication-constrained Newton-type (NT)

algorithm designed to accelerate FL in such heterogeneous scenarios. SHED is by

design robust to non independent identically distributed (non i.i.d.) data distributions,

handles heterogeneity of agents’ communication resources (CRs), only requires sporadic

Hessian computations, effectively combats ill-conditioning, and achieves global asymptotic

super-linear convergence. This is possible thanks to an incremental strategy, based on

eigendecomposition of the local Hessian matrices, which exploits (possibly) outdated

second-order information. The proposed solution is thoroughly validated on real datasets

by assessing (i) the number of communication rounds required to achieve ǫ-convergence, (ii)

the overall amount of data transmitted and (iii) the number of local Hessian computations.

For all these metrics, the proposed approach shows superior performance against state-

of-the art techniques like FedNL, GIANT and BFGS.

2.1 Introduction

With the growing computational power of edge devices and the booming increase of data

produced and collected by users worldwide, solving machine learning problems without

having to collect data at a central server is becoming very appealing [131]. One of the

main reasons for not transferring users’ data to cloud central servers is due to privacy

concerns. Indeed, users, such as individuals or companies, may not want to share their

14 SHED: A novel Newton-type algorithm for federated learning

private data with other network entities, while training their machine learning algorithms.

In addition to privacy, distributed processes are by nature more resilient to node/link

failures and can be directly implemented on the servers at network edge, i.e., within

multi-access edge computing (MEC) scenarios [117].

In recent years, the leading distributed machine learning framework is federated learning

(FL) ([85], [94]), which has attracted much research interest in recent years. Direct

applications of FL can be found, for example, in the field of healthcare systems [69], [123]

or of smartphone utilities [68].

Among the open challenges of FL, a key research question is how to provide efficient

distributed optimization algorithms in scenarios with constrained heterogeneous commu-

nication links (different bandwidth) and non i.i.d. data distributions [71], [133], [152],

[155]. These aspects are found in a variety of applications, such as the so-called federated

edge learning framework, where learning is moved to the network edge, and which often

involves unstable and heterogeneous wireless connections [13], [28], [110], [131], [139].

In addition, the MEC and FL paradigms are of high interest to IoT scenarios such as

data retrieval and processing within smart cities, which naturally entail non i.i.d. data

distributions due to inherent statistical differences in the underlying spatial processes

(e.g., vehicular mobility, user density, etc.) [89]. Within this context, recent works have

also considered variants of the original FL framework, such as hierarchical and serverless

settings [150], [107], [61].

The bottleneck represented by communication overhead is one of the most critical aspects

of FL. In fact, in scenarios with massive number of devices involved, inter-agent commu-

nication can be much slower than the local computations performed by the FL agents

themselves (e.g., the edge devices), by many orders of magnitude [85]. The problem

of reducing the communication overhead of FL becomes even more critical when the

system is characterized by non i.i.d. data distributions and heterogeneous communica-

tion resources (CRs) [86]. In this setting, where the most critical aspect is inter-node

communications, FL agents are often assumed to have good computing capabilities, like,

e.g., in the case of smartphones and laptops in edge networks [85]. Therefore, wisely

increasing the computational effort at the agents is an appealing strategy to speedup the

convergence. For this reason, Newton-type approaches, characterized by robustness and

fast convergence rates, even if computationally demanding, have been recently advocated

[63], [125], [139].

2.1 Introduction 15

2.1.1 Main contributions

In this chapter, we present SHED (Sharing Hessian Eigenvectors for Distributed learning),

a novel Newton-type algorithm for FL. The main features of SHED and our contributions

can be summarized as follows:

• SHED uses an incremental strategy exploiting (possibly) outdated second-order

information of the cost function. In particular, local machines (agents) provide the

central server (the Master) with Hessian approximations by means of transmitting

eigenvalue-eigenvector pairs (EEPs) of their local Hessian matrices together with

a carefully computed approximation parameter. We take inspiration from [53] to

build Hessian approximations from EEPs.

• SHED is by design robust in dealing with non i.i.d. data distributions and in

effectively handling ill-conditioned problems. Furthermore, SHED handles agents’

heterogeneous communication resources (CRs) by allowing those with more per-

iteration CRs to share more EEPs per communication round. We analytically and

empirically show how this improves the convergence rate. Furthermore, in sharp

contrast with prior art, SHED, by design, requires agents to locally compute the

Hessian matrix only sporadically.

• In the chapter, we first analyse the convergence rate of SHED for least squares

problems, and then extend the analysis to the case of general FL problems with

convex cost. In the convex case, we show that SHED enjoys global asymptotic

super-linear convergence, and we analyse the super-linear convergence rate by

studying the Lyapunov exponent of the estimation error dynamical system.

• Our results show that SHED is (i) competitive with state-of-the-art approaches in

scenarios with i.i.d. data distributions and (ii) robust to non i.i.d. data distributions

and ill-conditioned problems, for which it outperforms competing solutions.

2.1.2 Related work

Next, to put our contribution into context, we review related works on first and second

order methods for FL.

First-order methods. To improve the robustness and the convergence properties

of FedAvg [94], first-order methods like SCAFFOLD [72], FedProx [86], FedLin [101] and

the work in [148] deal with system’s heterogeneity, non i.i.d. datasets and communication

constraints, like finite-rate channels. Along these lines, the work in [31] leverages the

use of outdated first-order information by designing rules to detect slowly varying local

16 SHED: A novel Newton-type algorithm for federated learning

gradients. With respect to the problem of heterogeneous time-varying CRs, [9] presented

techniques based on gradient quantization and on analog communication exploiting the

additive nature of the wireless channel, while [28] studied a framework to jointly optimize

learning and communication for FL in wireless networks.

Second-order methods. Newton-type (NT) methods exploit second-order informa-

tion of the cost function to provide accelerated optimization, and are therefore appealing

candidates to speed up FL. NT methods have been widely investigated for distributed

learning purposes: GIANT [144] is an NT approach exploiting the harmonic mean of

local Hessian matrices in distributed settings. Other related techniques are LocalNewton

[63], DANE [128], AIDE [120], DiSCO [151], DINGO [39] and DANLA [150]. DONE [139]

is another technique inspired by GIANT and specifically designed to tackle federated

edge learning scenarios. Communication efficient NT methods like GIANT and DONE

exploit an extra communication round to obtain estimates of the global Hessian from the

harmonic mean of local Hessian matrices. These algorithms, however, were all designed

assuming that data is i.i.d. distributed across agents and, as we empirically show in this

work, under-perform if such assumption does not hold. A recent study, FedNL [125],

proposed algorithms based on matrix compression which use theory developed in [70] to

perform distributed training, by iteratively learning the Hessian matrix at the optimum.

However, FedNL requires the computation of the local Hessians at each iteration, and does

not consider heterogeneity in the CRs. Furthermore, FedNL only offers local super-linear

convergence guarantees. Our work, instead, provides global (asymptotic) super-linear

convergence guarantees. Other related NT approaches have been proposed in FLECS

[2], FedNew [52] and Quantized Newton [5]. Quasi-Newton methods (i.e., second-order

methods that do not explicitly compute the Hessian matrix) have also been recently

investigated for FL [50], [90], [134], usually proposing variants of the popular BFGS [87]

algorithm. These methods, however, provide usually only local convergence analysis or

require the knowledge of problem specific constants, and their rate is heavily impacted by

the condition number. Although some preliminary NT approaches have been proposed for

the FL framework, there is still large space for improvements especially in ill-conditioned

setups with heterogeneous CRs and non i.i.d. data distributions.

2.1.3 Organization of the Chapter

The rest of the chapter is organized as follows: in Section 2.2, we detail the problem

formulation and the general idea behind the design of SHED. In Section 2.3, we present

SHED, and the corresponding theoretical results, in the least squares (LS) case. Starting

with LS enables us to provide the core intuition on the working principle of SHED in the

2.2 Problem Formulation 17

simpler case of constant Hessians. Section 2.4 is instrumental to extend the algorithm

to a general strongly convex problem, which is done later on in Section 2.5, and which

represents the main contribution of this chapter. At the end of Section 2.5, based on

the theoretical results, we propose some heuristic choices for tuning SHED parameters.

Finally, in Section 2.6, empirical performance of SHED is shown on real datasets. The

proofs of the theoretical results are reported in Appendix A.

Notation: Vectors and matrices are written as lower and upper case bold letters,

respectively (e.g., vector v and matrix V). The operator ‖ · ‖ denotes the 2-norm for

vectors and the spectral norm for matrices, diag(v) denotes a diagonal matrix with the

components of vector v as entries. We denote by I the identity matrix.

2.2 Problem Formulation

In Fig. 2.1 we illustrate the typical framework of an FL scenario. In the rest of the

chapter, we denote the n-dimensional optimization parameter by θ ∈ R
n, and a generic

cost function by f : Rn → R. We denote a dataset by D = {xj , yj}Nj=1, where N is the

global number of m-dimensional data samples xj ∈ R
m and response yj ∈ R. In the case

of classification problems, yj would be an integer specifying the class to which sample xj

belongs. We consider the problem of regularized empirical risk minimization of the form

min
θ
f(θ) :=

1

N

N∑

j=1

lj(θ) +
µ

2
‖θ‖22, (2.1)

where each lj(θ) is a convex function related to the j-th element of D and µ is the

regularization parameter. Examples of convex cost functions considered in this work, are

linear regression with quadratic cost (least squares): lj(θ) = 1
2(xT

j θ − yj)
2, and logistic

regression: lj(θ) = log(1+e−yj(xT
j θ)), in which n = m. In this chapter, we denote the data

matrix by X = [x1, ...,xN] ∈ R
m×N , and the label vector by Y = [y1, ..., yN] ∈ R

1×N .

We refer to the dataset D as the tuple D = (X,Y). We denote by M the number

of agents involved in the optimization algorithm, and we can write X = [X1, ...,XM],

Y = [Y1, ...,YM], where Xi ∈ R
m×Ni and Yi ∈ R

1×Ni , where Ni is the number of data

samples of the i-th agent. We denote the local dataset of agent i by Di = (Xi,Yi). In

this chapter we consider optimization problems in which the following assumptions on

the agents’ cost functions f (i)(θ) = 1
Ni

∑

(xj ,yj)∈Di
lj(θ) + µ

2‖θ‖22 hold:

Assumption 1. Let H(i)(θ) := ∇2f (i)(θ) be the local Hessian matrix of agent i. f (i)(θ)

is twice continuously differentiable, Ki-smooth, κi-strongly convex and H(i)(θ) is Li-

Lipschitz continuous for all i = 1, ...,M .

18 SHED: A novel Newton-type algorithm for federated learning

Master

Figure 2.1: Considered FL framework: agents A1, ..., AM cooperate to solve a common
learning problem. After receiving the global parameter θt, at the current iteration t, they

share their optimization sets U
(1)
t , ..., U

(M)
t with the Master.

The above assumptions imply that

κiI ≤ H(i)(θ) ≤ KiI, ∀θ

‖H(i)(θ)−H(i)(θ′)‖ ≤ Li‖θ − θ′‖, ∀θ,θ′

Note that Ki-smoothness is also a consequence of the K-smoothness of any global cost

function f(θ) for some constant K, while strong convexity of agents’ cost functions is

always guaranteed, if the functions lj(θ) are convex, in the presence of a regularization

term µ > 0. The results of the next sections all rely either on the existence of a positive

regularization term µ > 0, or on the fact that at least one of the cost functions f (i)(θt)

is ki-strongly convex with ki > 0.

2.2.1 An eigendecomposition-based Newton-type method

The Newton method to solve (2.1) works as follows:

θt+1 = θt − ηtH
−1
t gt,

where t denotes the t-th iteration, gt = g(θt) = ∇f(θt) is the gradient at iteration t and

ηt is the step size at iteration t. Ht = ∇2f(θt) denotes the Hessian matrix at iteration t.

Compared to gradient descent, the Newton method exploits the curvature information

provided by the Hessian matrix to improve the descent direction. We define pt := H−1
t gt.

In general, Newton-type (NT) methods try to get an approximation of pt. In an FL

scenario, assuming for simplicity that all M agents have the same amount of data, we

have that:

Ht =
1

M

M∑

i=1

H
(i)
t , gt =

1

M

M∑

i=1

g
(i)
t , (2.2)

2.2 Problem Formulation 19

where H
(i)
t = ∇2f (i)(θt) and g

(i)
t = ∇f (i)(θt) denote local Hessian and gradient of the

local cost f (i)(θt) of agent i, respectively. To get a Newton update at the master, in an

FL setting one would need each agent to transfer the whole matrix H
(i)
t of size O(n2) to

the master at each iteration, that is considered a prohibitive communication complexity

in a federated learning setting, especially when the size of the feature data vectors, n,

increases. Hence, in this work we propose an algorithm in which the Newton-type update

takes the form:

θt+1 = θt − ηtĤ
−1
t gt, (2.3)

where Ĥt is an approximation of Ht. In some previous contributions, like [139], [144], Ĥt

is the harmonic mean of local Hessians, obtained at the master through an intermediate

additional communication round to provide each agent with the global gradient, gt. In

the recent FedNL algorithm [125], each agent at each iteration sends a compressed version

of a Hessian-related matrix.

Our algorithm incrementally obtains at the master an average of full-rank approxima-

tions of local Hessians through the communication of the local Hessian most relevant

eigenvalue-eigenvector pairs (EEPs) together with a carefully computed local approx-

imation parameter. In particular, we approximate the Hessian matrix Ht exploiting

eigendecomposition in the following way: the symmetric positive definite Hessian Ht

can be diagonalized as Ht = VtΛtV
T
t , with Λt = diag(λ1,t, ..., λn,t), where λk,t is the

eigenvalue corresponding to the k-th eigenvector, vk,t. Ht can be approximated as

Ĥt = Ĥt(ρt, qt) = VtΛ̂tV
T
t =

qt∑

k=1

(λk,t − ρt)vk,tv
T
k,t + ρtI, (2.4)

with Λ̂t := Λ̂t(ρt, qt) = diag(λ1,t, ..., λqt , ρt, ..., ρt). The scalar ρt > 0 is the approximation

parameter (if ρt = 0 this becomes a low-rank approximation). The integer qt = 1, ..., n

denotes the number of EEPs {λk,t,vk,t}qt

k=1 being used to approximate the Hessian

matrix. We always consider eigenvalues ordered so that λ1,t ≥ λ2,t ≥ ... ≥ λn,t. The

approximation of Eqn. (2.4) was used in [53] for a sub-sampled centralized optimization

problem. Note that the EEPs up to the q-th can be efficiently computed via singular

value decomposition [53]. In the FL setting, we use the approximation shown in Eqn.

(2.4) to approximate the local Hessian matrices of the agents. In particular, letting Ĥ
(i)
t

be the approximated local Hessian of agent i, the approximated global Hessian is the

average of the local approximated Hessian matrices:

Ĥt =
M∑

i=1

piĤ
(i)
t , pi = Ni/N

20 SHED: A novel Newton-type algorithm for federated learning

where Ĥ
(i)
t := Ĥt(ρ

(i)
t , q

(i)
t) is a function of the local approximation parameter ρ

(i)
t and of

the number of EEPs q
(i)
t shared by agent i, denoted by {λ(i)

k,t,v
(i)
k,t}

q
(i)
t

k=1.

2.2.2 The algorithm in a nutshell

The idea of SHED is that agents share with the Master, together with the gradient,

some of their Hessian EEPs, according to the available CRs. They share the EEPs in a

decreasing order dictated by the value of the positive eigenvalues corresponding to the

eigenvectors. At each iteration, they incrementally add new EEPs to the information

they have sent to the Master. In a linear regression problem, in which the Hessian does

not depend on the current parameter, agents would share their EEPs incrementally up to

the n-th. When the n-th EEP is shared, the Master has the full Hessian available and no

further second order information needs to be transmitted. In a general convex problem,

in which the Hessian matrix changes at each iteration, being a function of the current

parameter, SHED is designed in a way in which agents perform a renewal operation at

certain iterations, i.e., they re-compute the Hessian matrix and re-start sharing the EEPs

from the most relevant ones of the new matrix.

2.3 Linear regression (least squares)

In this section we illustrate our algorithm and present the convergence analysis considering

the problem of solving (2.1) via Newton-type updates (2.3) in the least squares (LS)

case, i.e., in the case of linear regression with quadratic cost. We start by considering LS

because, in this case, the Hessian matrix is H(θ) = HLS , ∀θ, i.e., it does not depend

on the parameter θ. This fact makes the analysis and the algorithm much simpler

than the general convex case. This, in turn, allows us to provide the main intuition

behind SHED and to illustrate the effect of the incremental EEPs sharing strategy on the

convergence rate when the eigenspectrum is constant. When considering LS, we write

the eigendecomposition as HLS = VΛVT , with Λ = diag(λ1, ..., λn) without specifying

the iteration t when not needed. Let θ∗ denote the solution to (2.1). In the following, we

use the fact that the gradient can be written as gt = HLS(θt − θ∗). In this setup, the

update rule of Eqn. (2.3) can be written as a time-varying linear discrete-time system:

θt+1 − θ∗ = At(θ
t − θ∗) (2.5)

where At := A(ρt, ηt, qt) = I− ηtĤ
−1
t HLS . Indeed,

2.3 Linear regression (least squares) 21

θt+1 − θ∗ = θt − θ∗ − ηtĤ
−1
t gt

= (I− ηtĤ
−1
t HLS)(θt − θ∗).

Before moving to the FL case, we prove some results for the convergence rate of the

centralized iterative least squares problem.

2.3.1 Centralized iterative least squares

In this sub-section, we study the optimization problem in the centralized case, so when all

the data is kept in a single machine. We provide a range of choices for the approximation

parameter ρt that are optimal in the convergence rate sense. We denote the convergence

factor of the descent algorithm described by Eqn. (2.3) by

rt := r(ρt, ηt, qt),

making its dependence on the tuple (ρt, ηt, qt) explicit.

Theorem 2.1. Consider solving problem (2.1) via Newton-type updates (2.3) in the least

squares case. At iteration t, let the Hessian matrix HLS be approximated as in Eqn. (2.4)

(centralized case). The convergence rate is described by

‖θt+1 − θ∗‖ ≤ rt‖θt − θ∗‖. (2.6)

For a given qt ∈ {0, 1, ..., n} the best achievable convergence factor is

r∗
t = r∗(qt) := min

(ρt,ηt)
r(ρt, ηt, qt) = (1− λn

ρ∗
t

), (2.7)

where

ρ∗
t := (λqt+1 + λn)/2. (2.8)

r∗
t is achievable if and only if (ρt, ηt) ∈ S∗, with

S∗ = {(ρt, ηt) : ρt ∈ [λn, λqt+1], ηt =
2ρt

λqt+1 + λn
}

Proof. See Appendix A.1.

In the above Theorem, we have shown that the best convergence rate is achievable,

by tuning the step size, as long as ρt ∈ [λn, λqt+1]. In the following Corollary, we provide

an optimal choice for the tuple (ρt, ηt) with respect to the estimation error.

Corollary 2.1. Among the tuples (ρt, ηt) ∈ S∗, the choice of the tuple (ρ∗
t , 1), with ρ∗

t

defined in (2.8), is optimal with respect to the estimation error ‖θt+1
ρt,ηt
− θ∗‖, for any θt

22 SHED: A novel Newton-type algorithm for federated learning

Figure 2.2: In (a) we show the different performance obtained with SHED w.r.t. different
choices for the parameter ρt: the best choice in terms of estimation error from Corollary 2.1 is
compared against the choice that was proposed in [53], that is ρt = λqt+1. In the experiment,
qt = qt−1 + 1. In (b), we show an example of the set S∗, and outline two points: LSs is the
choice of the tuple in S∗ providing the optimal convergence factor in LS, while CVX, which

does not belong to S∗, is the choice we do in the scenario of FL with convex cost.

and for any t, in the sense that

‖θt+1
ρ∗

t ,1 − θ∗‖ ≤ ‖θt+1
ρt,ηt
− θ∗‖, ∀(ηt, ρt) ∈ S∗

Proof. See Appendix A.2

See Fig. 2.2 for an illustration of the set S∗ and the impact of the optimal choice in

the performance. We remark that the bound in (2.6) is tight for rt = r∗
t . If qt increases,

the convergence factor decreases until it becomes zero, when qt = n − 1, thus we can

have convergence in a finite number of steps.

2.3.2 Federated least squares

We now consider the FL scenario described in section 2.2, in which M agents keep their

local data and share optimization parameters to contribute to the learning algorithm.

For notation convenience, in the rest of the chapter we assume that each agent has the

same amount of data samples, Ni = N
M . This allows us to express global functions, such

as the gradient, as the arithmetic mean of local functions (e.g., gt = (1/M)
∑M

i=1 g
(i)
t).

This assumption is made only for notation convenience. It is straightforward to show that

all the results are valid also when Ni is different for each i. To show this, it is sufficient

to replace the arithmetic mean of local functions with the weighted average, weighting

each local function with pi = Ni/N .

We now introduce the algorithm for the LS case (Algorithm 1), that is a special case

of Algorithm 5, described in Sec. 2.5, which is designed for a general convex cost. We

refer to Algorithm 1 as SHED-LS and it works as follows: at iteration t, each agent

2.3 Linear regression (least squares) 23

Algorithm 1 Least Squares, SHED-LS

Input: {Di}Mi=1 = {(Xi,Yi)}Mi=1, f , θ1, ∇f(θ1), A = {agents}, I = {1}, ǫ > 0
Output: θt

1: t← 1
2: while ‖∇f(θt)‖2 ≥ ǫ do
3: for agent i ∈ A do
4: when Received θt from the Master do
5: if t ∈ I then
6: compute H

(i)
LS = ∇2f (i)(θt) = XiX

T
i

7: {(λ(i)
j ,v

(i)
j)}nj=1 ← eigendecomp(H

(i)
LS)

8: q
(i)
0 ← 0

9: end if
10: compute g

(i)
t = ∇f (i)(θt)

11: set d
(i)
t q

(i)
t ← q

(i)
t−1 + d

(i)
t // According to CRs

12: ρ
(i)
t ← (λ

(i)

q
(i)
t +1

+ λ
(i)
n)/2

13: U
(i)
t ← {{v

(i)
j , λ

(i)
j }

q
(i)
t

j=q
(i)
t−1+1

,g
(i)
t , ρ

(i)
t }

14: Send U
(i)
t to the Master.

15: end for
16:

17: At the Master:
18: when Received U

(i)
t from all agents do

19: compute Ĥ
(i)
t , ∀i. // see (2.10)

20: Compute Ĥt (as in eq. (2.9)) and gt.
21: Perform Newton-type update (2.3) with ηt = 1.
22: Broadcast θt+1 to all agents.

23: t← t+ 1
24: end while

i = 1, ...,M shares with the Master some of its EEPs together with its approximation

parameter ρ
(i)
t . The eigenvectors are shared incrementally, where the order in which they

are shared is given by the corresponding eigenvalues. For example, at t = 1 agent i will

start by sharing its first Hessian EEPs {v(i)
j , λ

(i)
j }

q
(i)
1

j=1, according to its CRs, and then

will incrementally send up to the last EEP {λ(i)
n−1,v

(i)
n−1} in the following iterations. To

enable the approximation of the local Hessian via a limited number of eigenvectors using

(2.4), the parameter ρ
(i)
t is sent as well. The Master averages the received information to

obtain an estimate of the global Hessian as follows:

Ĥt =
1

M

M∑

i=1

Ĥ
(i)
t , (2.9)

24 SHED: A novel Newton-type algorithm for federated learning

where Ĥ
(i)
t is

Ĥ
(i)
t := Ĥ(i)(ρ

(i)
t , q

(i)
t) =

q
(i)
t∑

j=1

(λ
(i)
j − ρ

(i)
t)v

(i)
j v

(i)T
j + ρ

(i)
t I, (2.10)

in which q
(i)
t is the number of the local Hessian EEPs that agent i has already sent

to the Master at iteration t. We denote by d
(i)
t the increment, meaning the number

of eigenvectors that agent i can send to the Master at iteration t. Given the results

shown in Sec. 2.3.1, in this section we fix the local approximation parameter to be

ρ
(i)
t = ρ

(i)∗
t = (λ

(i)

q
(i)
t +1

+ λ
(i)
n)/2 and the step size to be ηt = 1. The following results

related to the convergence rate allow the value q
(i)
t to be different for each agent i, so we

define

qt = [q
(1)
t , ..., q

(M)
t]T , q

(i)
t ∈ {0, ..., n− 1}, i = 1, ...,M

By construction, the matrix Ĥt is positive definite, being the sum of positive definite

matrices, implying that −pt = −Ĥ−1
t gt is a descent direction.

Theorem 2.2. Consider the problem in (2.1) in the least squares case. Given Ĥt defined

in (2.9), the update rule defined in (2.3) is such that, for ρ
(i)
t ≥ (λ

(i)

q
(i)
t +1

+ λ
(i)
n)/2, ∀i,

and ηt = 1:

‖θt+1 − θ∗‖ ≤ ct‖θt − θ∗‖, (2.11)

with ct = (1− λ̄n/ρ̄t) and

ρ̄t := ρ̄(qt) =
1

M

M∑

i=1

ρ
(i)
t , λ̄n =

1

M

M∑

i=1

λ(i)
n . (2.12)

If Algorithm 1 is applied, ct+1 ≤ ct ∀t, and, if for all i it holds that q
(i)
t′ = n− 1, at some

iteration t′, ct′ = 0.

Proof. See Appendix A.3.

This theorem shows that SHED-LS provides convergence in a finite number of

iterations, if q
(i)
t keeps increasing through time for each agent i. Indeed, as in the

centralized case, if q
(i)
t increases for all i, the factor ct decreases until it becomes zero.

Furthermore, each agent is free to send at each iteration an arbitrary number of EEPs,

according to its CRs, and by doing so it can improve the convergence rate. See Fig.

2.2-(a) for an example of SHED-LS performance.

2.4 From least squares to general convex cost 25

2.4 From least squares to general convex cost

We want to extend the analysis and algorithm presented in the previous sections of the

chapter to a general convex cost f(θt). With respect to the proposed approach, the

general convex case requires special attention for two main reasons: (i) the update rule

defined in (2.3) requires tuning of the step-size ηt, usually via backtracking line search,

and (ii) the Hessian matrix is in general a function of the parameter θ. In this section,

still focusing on the least squares case, we provide some results that are instrumental to

the analysis of the general convex case.

2.4.1 Backtracking line search for step size tuning

We recall the well-known Armijo-Goldstein condition for accepting a step size ηt via

backtracking line search:

f(θt − ηtp) ≤ f(θt)− αηtp
T gt, (2.13)

where α ∈ (0, 1/2). The corresponding line search algorithm is the following:

Algorithm 2 Backtracking line search algorithm

Input: α ∈ (0, 1/2), β ∈ (0, 1), θt, pt, gt, f
Output: η̄t

η0
t ← 1,
k ← 0
while f(θt − η(k)

t p) > f(θt)− αη(k)
t pT gt do

k ← k + 1
η

(k)
t = βη

(k−1)
t

η̄t = η
(k)
t

end while

Lemma 2.1. Consider the problem in (2.1) in the least squares case. Let pt = Ĥ−1
t gt, with

Ĥt defined in (2.9). A sufficient condition for a step size ηt to satisfy Armijo-Goldstein

condition (2.13), for any α ∈ (0, 1/2), is

ηt = min
i=1,...,M

ρ
(i)
t

λ
(i)

q
(i)
t +1

(2.14)

Proof. See Appendix A.4.

26 SHED: A novel Newton-type algorithm for federated learning

Corollary 2.2. In the least squares case (Algorithm 1), when choosing ρ
(i)
t = ρ

(i)∗
t , ∀i,

Armijo backtracking line search (Algorithm 2) would choose a step size ηt ≥ 1
2 . When

choosing ρ
(i)
t = λ

q
(i)
t +1

, ∀i, Algorithm 2 would choose a step size ηt = 1.

Proof. The proof is straightforward from Eqn. (2.14) of Lemma 2.1.

Remark 2.3. For the choice ρ(i) = ρ(i)∗, the Armijo-backtracking might not choose a

step size ηt = 1 even for arbitrarily small α < 0.5. Indeed, we can easily build a

counter-example in the centralized case considering Ĥt = Λ̂t = diag(λ1, ..., λq, ρ
∗, ..., ρ∗),

a gradient gt such that pt = Ĥ−1
t gt = [0, ..., 0, 1, 0, ..., 0]⊤ (e.g., gt = [0, ...0, ρ∗, 0, ..., 0]⊤).

We see that with ηt = 1, Eq. (A.5) becomes f(θt+1) = f(θt)− λn/2 and, in order to be

satisfied, the Armijo condition would require α ≤ λn
λq+1+λn

, where the right hand side can

become arbitrarily small depending on the eigenspectrum.

The results of Lemma 2.1 and of Corollary 2.2 and the counter-example of the above

Remark are important for the design of the algorithm in the general convex case. Indeed,

as illustrated in the next Section (Section 2.5), a requirement for the theoretical results on

the convergence rate is that the step size becomes equal to one, which is not guaranteed

by the Armijo backtracking line search, even when considering the least squares case, if

ρ
(i)
t < λ

(i)

q
(i)
t +1

. For this reason, the algorithm in the general convex case is designed with

ρ
(i)
t = λ

(i)

q
(i)
t +1

2.4.2 Algorithm with periodic renewals

Now, we introduce a variant of Algorithm 1 that is instrumental to study the convergence

rate of the proposed algorithm in the general convex case. The variant is Algorithm 3. The

definition of I = {1, T, 2T, ...} implies that every T iterations the incremental strategy is

restarted from the first EEPs of HLS , in what we call a periodic renewal. Differently

Algorithm 3 Variant of Algorithm 1, SHED-LS-periodic

In Algorithm 1, substitute I = {1} with I = {1, T, 2T, ...}, for some input parameter
T < n.

from Algorithm 1, Algorithm 3 can not guarantee convergence in a finite number of

steps, because T < n and thus it could be that ct > 0, ∀t (see Theorem 2.2). We study

the convergence rate of the algorithm by focusing on upper bounds on the Lyapunov

exponent [91] of the discrete-time dynamical system ruled by the descent algorithm. The

Lyapunov exponent characterizes the rate of exponential (linear) convergence and it is

defined as the positive constant a∗ > 0 such that, considering h(θt) := (θt − θ∗)a−t,

2.5 Federated learning with convex cost 27

if a > a∗ then h(θt) vanishes with t, while if a < a∗, for some initial condition, h(θt)

diverges. The usual definition of Lyapunov exponent for discrete-time linear systems [40]

is, considering the system defined in (2.5),

a∗ := lim sup
t→∞

‖Ψt‖1/t, Ψt = A1 · · ·At. (2.15)

From (2.11), we have that, for each k, ‖Ak‖ ≤ ck = (1 − λ̄n/ρ̄k). This implies that,

defining

at : = (
t∏

k=1

ck)1/t,

ā : = lim sup
t→+∞

at,

(2.16)

it is a∗ ≤ ā. The following Lemma formalizes this bound and provides an upper bound

on the Lyapunov exponent obtained by applying Algorithm 3.

Lemma 2.2. Let ck = (1− λ̄n/ρ̄k) (see Eq. (2.12)). Applying Algorithm 3, the Lyapunov

exponent of system (2.5) is such that

a∗ ≤ ā = lim sup
t→+∞

(
t∏

k=1

ck)1/t.

If q
(i)
t = q

(i)
t−1 + 1, ∀i, t,

a∗ ≤ āT := (
T∏

k=1

ck)1/T . (2.17)

where āT is such that āT +1 ≤ āT and ān = 0.

Proof. See Appendix A.5

2.5 Federated learning with convex cost

Given the previous analysis and theoretical results for linear regression with quadratic

cost, we are now ready to illustrate our Newton-type algorithm (Algorithm 5) for general

convex FL problems, of which Algorithm 1 is a special case. We refer to the this general

version of the algorithm simply as SHED. Since in a general convex problem the Hessian

depends on the current parameter, θt, we denote by H(θt) the global Hessian at the

current iterate, while we denote by Ĥt the global approximation, defined similarly to

(2.9), with the difference that now eigenvalues and eigenvectors depend on the parameter

28 SHED: A novel Newton-type algorithm for federated learning

for which the Hessian was computed.

We therefore write Ĥt in the following way:

Ĥt =
1

M

M∑

i=1

Ĥ
(i)
t (θk

(i)
t), (2.18)

where k
(i)
t ≤ t denotes the iteration in which the local Hessian of agent i was computed.

The parameter θk
(i)
t is the parameter for which agent i computed the local Hessian, that

in turn is being used for the update at iteration t.

The idea of the algorithm is to use previous versions of the Hessian rather than always

recomputing it. This is motivated by the fact that as we approach the solution of

the optimization problem, the second order approximation becomes more accurate and

the Hessian changes more slowly. Hence, recomputing the Hessian and restarting the

incremental approach provides fewer and fewer advantages as we proceed. From time to

time, however, we need to re-compute the Hessian corresponding to the current parameter

θt, because H(θk
(i)
t) could have become too different from H(i)(θt). As in Sec. 2.4.2, we

call this operation a renewal. We denote by I the set of iteration indices at which a

renewal takes place. In principle, each agent could have its own set of renewal indices,

and decide to recompute the Hessian matrix independently. In this work, we consider for

simplicity that the set I is the same for all agents, meaning that all agents use the same

parameter for the local Hessian computation, i.e., k
(i)
t = kt, ∀i. At the end of this section

we describe heuristic strategies to choose I with respect to the theoretical analysis. We

remark that in the case of a quadratic cost, in which the Hessian is constant, one chooses

I = {1}, and so Algorithm 1 is a special case of Algorithm 5.

The eigendecomposition can be applied to the local Hessian as before, we define

v̂
(i)
j,t = v

(i)
j (θkt), λ̂

(i)
j,t = λ

(i)
j (θkt). (2.19)

For notation convenience we also define

ṽ
(i)
j,t = (λ̂

(i)
j,t − ρ̂

(i)
t)1/2v̂

(i)
j,t , (2.20)

Our theoretical results on the convergence rate hold if, for some t̄ > 0, the backtracking

strategy always chooses ηt = 1, ∀t ≥ t̄. To meet this requirement, the analysis requires

that Ĥ(i)(θkt) ≥ H(i)(θkt),∀t, i which in turn requires ρ
(i)
t (θkt) ≥ λ̂(i)

q
(i)
t +1,t

. Accordingly,

we set:

ρ
(i)
t (θkt) := ρ̂

(i)
t = λ̂

(i)
qt+1,t. (2.21)

2.5 Federated learning with convex cost 29

The local Hessian can be approximated as

Ĥ
(i)
t (θkt) =

q
(i)
t∑

j=1

ṽ
(i)
j,t ṽ

(i)T
j,t + ρ̂

(i)
t I. (2.22)

Clearly, it still holds that Ĥt ≥ ρ̄tI, ∀t, where ρ̄t = 1
M

∑M
i=1 ρ̂

(i)
t . Furthermore, it is easy

to see that Ĥt ≤ KI, with K the smoothness constant of f . Note that SHED uses the

Armijo backtracking strategy, that is recalled in Algorithm 2.

Theorem 2.4. For any initial condition, SHED (Algorithm 5) ensures convergence to the

optimum, i.e.,

lim
t→+∞

‖θt − θ∗‖ = 0.

Proof. See Appendix A.6.

In the remainder of this section, we provide the convergence analysis of SHED for

the general strongly convex cost case. The results of Theorem 2.5 and 2.6 are the main

theoretical contribution of this chapter. In order to provide the convergence guarantees

of SHED, we need to impose some constraints on the renewal indices set I. Specifically,

Assumption 2. Denoting I = {Ij}j∈N, there exists a finite positive integer l̄ such that

Ij ≤ Ij−1 + l̄, ∀j.

In words, the above assumption implies that writing kt = t − τ , the ‘delay’ τ is

bounded. The next theorem provides a bound that relates the convergence rate and the

increments of outdated Hessians.

Theorem 2.5. Applying SHED (Algorithm 5), for any iteration t, it holds that:

‖θt+1 − θ∗‖ ≤ c1,t‖θt − θ∗‖+ c2,t‖θt − θ∗‖2 (2.23)

where, defining λ̄n,t = 1
M

∑M
i=1 λ̂

(i)
n,t and ρ̄t = 1

M

∑M
i=1 ρ̂

(i)
t (see (2.19) and (2.21)),

c1,t = (1− λ̄n,t

ρ̄t
) +

L

ρ̄t
‖θt − θkt‖+ (1− ηt)

‖H(θt)‖
ρ̄t

,

c2,t =
ηtL

2ρ̄t
.

(2.24)

Proof. See Appendix A.7.

The above theorem is a generalization of Lemma 3.1 in [53] (without sub-sampling). In

particular, the difference is that (i) the dataset is distributed and (ii) an outdated Hessian

30 SHED: A novel Newton-type algorithm for federated learning

is used. The next theorem formally establishes linear and super-linear convergence of

SHED.

Theorem 2.6. Recall the definition of the average strong convexity constant κ̄ = (1/M)
∑M

i=1 κi,

with κi the strong convexity constant of agent i. Let K be the smoothness constant of f .

The following results hold:

1. Applying SHED (Algorithm 5), as soon as

3κ̄(M(t) + ‖θt − θ∗‖) +K‖θt − θ∗‖ ≤ 3κ̄2

L
(1− 2α), (2.25)

and
3

2
L‖θt − θ∗‖+ LM(t) ≤ κ̄, (2.26)

with M(t) = max{‖θt − θ∗‖, ‖θkt − θ∗‖}, the algorithm enjoys at least linear

convergence.

2. Define Xt := {k ≤ t : ρ̄k = λ̄n,k}. Let |Xt| denote the cardinality of Xt. If |Xt| = 0

then SHED enjoys linear convergence and the Lyapunov exponent of the estimation

error can be upper bounded as

a∗ ≤ lim sup
t

(
t∏

k=1

1− λ̄o
n

ρ̄o
k

)1/t (2.27)

where λ̄o
n and ρ̄o

k are the average of the n-th eigenvalues and approximation param-

eters, respectively, computed at the optimum:

λ̄o
n =

1

M

M∑

i=1

λ(i)
n (θ∗), ρ̄o

k =
1

M

M∑

i=1

ρ
(i)o
k ,

with ρ
(i)o
k = λ

(i)

q
(i)
k

+1
(θ∗).

3. Let |Xt| denote the cardinality of Xt. Let T̄ > 0 be finite. If |Xt| ≥ t1/2h(t) − T̄ ,

with h(t) any function such that h(t)→∞ as t→∞, then the Lyapunov exponent

is a∗ = 0 and thus SHED enjoys super-linear convergence.

Sketch of proof. For 1), we first show that when condition (2.25) holds, the step size

is chosen equal to one by the Armijo backtracking line search. We then show that

when also (2.26) holds, then the cost converges at least linearly for any subsequent

iteration. For 2), we upper bound the Lyapunov exponent and exploit local Lipschitz

continuity to provide the result. For 3), we exploit at least linear convergence proved in

2.5 Federated learning with convex cost 31

1) together with the assumption on the cardinality of the set Xt. For the complete proof,

see Appendix A.8.

In the above theorem, we have shown that SHED enjoys at least linear convergence

and provided a sufficient condition on the choice of renewals indices set to guarantee

global super-linear convergence. In sharp contrast to existing works, global asymptotic

super-linear convergence is guaranteed (i) regardless of the initial condition, and (ii)

without requiring the knowledge of problem specific constants, as long as the requirement

on the set Xt is satisfied. The sufficient condition can be easily guaranteed with a choice

of periodic renewals with a period such that the cardinality of Xt is big enough. A simple

example is as follows. Let I = {1, n, 2n, ...}, and let d
(i)
t = 1 for each agent i and for

each t, meaning that at each iteration, each agent transmits a single EEP together with

the gradient. In this case, at iterations k ∈ {n− 1, 2n− 1, 3n− 1, ...} we have ρ̄k = λ̄n,k,

and thus |Xt| = ⌊t/n⌋. Note that in this case |Xt| ≥ t/n − 1, and the condition for

super-linearity is satisfied with h(t) = t1/2

n and T̄ = 1. Note that if |Xt| = 0, ∀t, with

renewal period T and d
(i)
t = 1 ∀i, t, we can get

a∗ ≤ āT :=
T∏

k=1

(1− λ̄o
n

ρ̄o
k

)1/T . (2.28)

2.5.1 Heuristics for the choice of I

From the theoretical results provided above we can do a heuristic design for the renewal

indices set I. In particular, we see from the bound (2.23) in Theorem 2.5 that when

we are at the first iterations of the optimization we would frequently do the renewal

operation, given that the Hessian matrix changes much faster and that the term ‖θkt−θt‖
is big. As we converge, instead, we would like to reduce the number of renewal operations,

to improve the convergence rate, and this is strongly suggested by the result 2) related

to the Lyapunov exponent in Theorem 2.6. Furthermore, the super-linear convergence

that follows from 3) in the same Theorem suggests to keep performing renewals in order

to let the cardinality of Xt to grow sufficiently fast with t.

To evaluate SHED, we obtain the results of the next section using two different renewal

strategies. In the first, we choose the distance between renewals to be determined by the

Fibonacci sequence, so I = {Ij}, where Ij =
∑j

k=1 Fk, Fk being the Fibonacci sequence,

with F0 = 0, F1 = 1. When the sequence Ij reaches n− 1, the next values of the sequence

are chosen so that Ij+1 = Ij + n − 1. We call this method Fib-SHED. Note that this

strategy is compliant with the requirements for super-linearity of Theorem 2.6. The

second strategy is based on the inspection of the value of the gradient norm, ‖gt‖, which

32 SHED: A novel Newton-type algorithm for federated learning

Renewal Increment

I1
(a)

(b)

(c)

I1 I2 I3 I4

I1 I2 I3 I4 I5 I6

Figure 2.3: Illustration of possible choices of renewal indices set. The set I = {Ij} specifies
the iterations at which a renewal takes place. (a) illustrates the least squares case in which
renewal is performed only once, see Algorithm 1, (b) the periodic renewals case with T = 5,
so I = {1, 5, 10, ...}, see Algorithm 3, and (c) the set in which the distance between renewals

increases according to the Fibonacci sequence.

is directly related to ‖θt − θ∗‖. In particular, we make a decision concerning renewals at

each iteration by evaluating the empirically observed decrease in the gradient norm. If

‖gt−1‖ − ‖gt‖ < b(‖gt−2‖ − ‖gt−1‖) for some constant b, this strategy triggers a renewal.

To guarantee at least linear convergence, we impose a renewal after n iterations in which

no renewal has been triggered. In the rest of the chapter we call this strategy GN-SHED

(Gradient Norm-based SHED). We remark that, contrary to Fib-SHED, GN-SHED does

not guarantee super-linear convergence. See Fig. 2.3 for an illustration of some different

possible choices for the renewal indices sets.

2.5 Federated learning with convex cost 33

Algorithm 4 FL with convex cost - SHED

Input: {Di}Mi=1, I, θ1, f , ∇f(θ1), A = {agents}, ǫ > 0
Output: θt

1: t← 1
2: while ‖∇f(θt)‖2 ≥ ǫ do
3: for agent i ∈ A do
4: when Received θt from the Master do
5: if t ∈ I then
6: kt ← t
7: compute H

(i)
t = ∇2f (i)(θt) // renewal

8: {(λ̂(i)
j,t , v̂

(i)
j,t)}nj=1 ← eigendecomp(H

(i)
t)

9: q
(i)
t−1 ← 0

10: end if
11: compute g

(i)
t = g(i)(θt) = ∇f (i)(θt)

12: set d
(i)
t // according to CRs

13: q
(i)
t ← q

(i)
t−1 + d

(i)
t // increment

14: ρ̂
(i)
t ← λ̂

(i)

q
(i)
t +1,t

// approximation parameter

15: U
(i)
t ← {{v̂

(i)
j,t , λ̂

(i)
j,t}

q
(i)
t

j=q
(i)
t−1+1

,g
(i)
t , ρ̂

(i)
t } // see (2.20) and (2.22)

16: Send U
(i)
t to the Master

17: end for
18:

19: At the Master:
20: when Received U

(i)
t from all agents do

21: compute Ĥ
(i)
t , ∀i. // see (2.22)

22: Compute Ĥt (as in eq. (2.18)) and gt.
23: Get ηt via federated backtracking line search.
24: Perform Newton-type update (2.3).
25: Broadcast θt+1 to all agents.

26: t← t+ 1
27: end while

34 SHED: A novel Newton-type algorithm for federated learning

2.6 Empirical Results

In this section we present our empirical results with real datasets. We experimented

with the Million Song (1M Songs) dataset [16] for LS, and FMNIST [146], EMNIST [37]

and ‘w8a’, available from libSVM [26] for logistic regression. We compare SHED against

state-of-the-art approaches in both i.i.d. and non i.i.d. data distributions. We also show

the resilience and superiority of SHED under ill-conditioning. Here, we focus mainly on

illustrating the results obtained with FMNIST, and we defer the results obtained with

the other dasatets to Appendix 2.7 and to the technical report [54]. In Appendix 2.7,

we also include additional experiments that illustrate the working principle of SHED.

For FMNIST, we consider one-vs-all binary classification with M = 28 agents, with a

parameter size (after PCA [129]) of n = 300. For more details on the datasets setup and

on the partitions (i.i.d. and non i.i.d.), see Sec. 6.1 of the technical report [54].

In the convex case, we follow the heuristics discussed at the end of Sec. 2.5, showing

the results for both Fib-SHED and GN-SHED. If the value of d
(i)
t is not specified, then

d
(i)
t = 1 for each iteration t and agent i = 1, ...,M . to show that SHED is effective in

the case of heterogeneous (per-iteration) CRs. In this section, we show results with

regularizer µ = 10−5, 10−6, 10−8, and we have obtained similar results with µ = 10−4.

Note that 10−4, 10−6, 10−8 were the values considered in [144].

2.6.1 Federated backtracking

To tune the step size ηt when there are no guarantees that ηt = 1 decreases the cost,

we adopt the same strategy adopted in [144]: an additional communication round takes

place in which each agent shares with the master the loss obtained when the parameter

is updated via the new descent direction for different values of the step size. In this

way, we can apply a distributed version of the popular Armijo backtracking line search

(see Algorithm 2). When showing the results with respect to communication rounds, we

always include also the additional communication round due to backtracking.

2.6.2 Comparison against other algorithms

In the following, SHED+ means that the number of Hessian EEPs is chosen randomly

for each agent i, d
(i)
t = dγ , with an average increment equal to 4 (see Sec. 6.3 of the

technical report [54] for more details on the choice of the random variable). We compare

the performance of our algorithm with a state-of-the art first-order method, accelerated

gradient descent (AGD, with the same implementation of [144]). As benchmark second-

order methods we consider a distributed version of the Newton-type method proposed

in [53], to which we refer as Mont-Dec, which is the same as Algorithm 5 with the

2.6 Empirical Results 35

difference that the renewal occurs at each communication round, so the Hessian is always

recomputed and the second-order information is never outdated. We then compare SHED

against BFGS [87], GIANT [144] and the recently proposed FedNL [125]. For more

details on the implementations, see the technical report (Sec. 6.7 in [54]).

Communication complexity. In Fig. 2.4 we show the results obtained with

FMNIST. We show the performance of Fib-SHED, Fib-SHED+ and GN-SHED. For

GN-SHED, we fix the constant b = 0.95. To provide a complete comparison, in Fig.

2.4-(c)-(d) we show also the relative cost versus the overall amount of data transmitted,

in terms of number of vectors in R
n transmitted. From Fig. 2.4, we can see how the non

i.i.d. configuration causes a performance degradation for GIANT, while SHED, BFGS

and FedNL are not impacted.

In the i.i.d. case, we see that GN-SHED, Fib-SHED, Fib-SHED+ and GIANT require a

similar number of communication rounds to converge, and a similar amount of overall data

transmitted per agent. On the other hand, FedNL shows a much slower convergence speed

with respect to Fib-SHED and GN-SHED (requiring the same per-iteration communication

load). Notice, for FedNL, in Figure 2.4-(c)-(d), the impact that the transmission of

the full Hessian matrices at the first round has on the overall communication load. In

the considered non i.i.d. case, the large advantage that our approach can provide with

respect to the other considered algorithms is strongly evident in both data transmitted

and communication rounds. Comparing the SHED approaches against Mont-Dec we see

the key role that the incremental strategy exploiting outdated second order information

has on the convergence speed of our approach. Indeed, even though in the first iterations

the usage of the current Hessian information provides the same performance of the SHED

methods, the performance becomes largely inferior in the following rounds. From a

computational point of view, both the Mont-Dec and the FedNL approaches are much

more demanding relative to SHED as they require that each agent recomputes the Hessian

and SVD at each round. Fib-SHED, instead, requires the agents to compute the Hessian

matrix only 12 times out of the 450 rounds needed for convergence. For more details on

this, see Figure 2.6.

In Fig. 2.5, we show how SHED is much more resilient to ill-conditioning with respect to

competing algorithms, by comparing the convergence performance when the regularization

parameter is µ = 10−5 and µ = 10−8. With respect to FedNL, note how Fib-SHED

worsens its performance when µ = 10−8 by being around 2.5 times slower compared to

the case µ = 10−5, while FedNL worsens much more, being more than 8 times slower

when µ = 10−8 compared to the case µ = 10−5.

Computational complexity. In the technical report [54], we show the results

36 SHED: A novel Newton-type algorithm for federated learning

Figure 2.4: Performance comparison of logistic regression on FMNIST when µ = 10−6.
Relative cost is f(θt) − f(θ∗).

obtained with the EMNIST and w8a datasets. In the case of EMNIST, we obtain results

similar to FMNIST, except that, when µ = 10−5, GIANT is not much impacted by the

considered non i.i.d. configuration. Even if in that case GIANT seems to be the best

choice, all the other results show that GIANT and related approaches based on the

harmonic mean (like DONE) are strongly sensitive to non i.i.d. data distributions. With

image datasets (EMNIST and FMNIST), FedNL is largely outperformed by SHED, while,

with the ‘w8a’ dataset, FedNL is more competitive. However, the SHED approaches

have the very appealing feature that they require agents to compute the local Hessian

2.6 Empirical Results 37

Figure 2.5: Performance of logistic regression on FMNIST, comparing µ = 10−5 and µ = 10−8.
Relative cost is f(θt) − f(θ∗).

Fib-SHED FedNL
100

101

102

103
FMNIST, μ=10−5

Fib-SHED FedNL
100

101

102

103
FMNIST, μ=10−6

Fib-SHED FedNL
100

101

102

103
EMNIST, μ=10−5

Fib-SHED FedNL
100

101

102

103
EMNIST, μ=10−6

Fib-SHED FedNL
100

101

102

103
w8a, μ=10−5

Fib-SHED FedNL
100

101

102

103
w8a, μ=10−6

Re
qu

ire
d

co
m

pu
ta

tio
ns

 o
f t

he
 H

es
sia

n

Figure 2.6: In this plots, we show, for three datasets (FMNIST, EMNIST and w8a), the
number of times an agent is required to compute the local Hessian matrix in order for an
algorithm to converge, comparing the proposed Fib-SHED and the FedNL [125] algorithms.

matrices only sporadically. FedNL, instead, requires that the Hessian is recomputed by

the agents at each round, thus it is much more computationally demanding. To better

illustrate and quantify this advantage, we show, in Figure 2.6, the number of times that

an agent is required to compute the local Hessian matrix in order to obtain convergence,

comparing Fib-SHED and FedNL, in the cases of the three datasets. In the case of

EMNIST and FMNIST, we are showing the non i.i.d. configurations, but similar results

38 SHED: A novel Newton-type algorithm for federated learning

Figure 2.7: Linear convergence with periodic renewals illustrated via the study of the upper
bound on the dominant Lyapunov exponent of the estimation error from equation (2.16) and
point 2) of Theorem 2.6. āT is as in eqs. (2.16) and (2.28) for (a) and (b), respectively. Note

that the upper bound is on the slope of the decreasing cost.

can be obtained with the i.i.d. ones. The results show that, compared with Fib-SHED,

the number of times agents are required to compute the Hessian is always at least ten

times greater for FedNL to converge.

2.7 Additional Experiments

In this section, we provide some additional experiments that better illustrate the working

principles of SHED and corroborate our theoretical analysis. Lyapunov exponent

convergence bound. In Fig. 2.7, we illustrate how the Lyapunov exponent bounds

derived in Sec. 2.4.2 and 2) of Theorem 2.6 characterize the linear convergence rate of

the algorithms. In particular, we consider the cases of periodic renewals in both the LSs

and logistic regression case, letting q
(i)
t = q

(i)
t−1 + 1, ∀i, t and renewals are periodic with

period T (see (2.28) for the convex case). The plots show how the linear convergence

rate is dominated by the Lyapunov exponent bound characterized by āT . For illustrative

purposes, we show the results for the choice of T = 35 and of T = 25 for LSs on 1M

songs and logistic regression on FMNIST, respectively.

Communication complexity analysis. In Figure 2.8, we show the impact of the

number of EEPs transmitted per communication rounds when d
(i)
t takes different values.

We consider the case when the number is the same and fixed (specifically we consider

d
(i)
t ∈ {1, 3, 6, 30}) for all the agents and the case d

(i)
t = dγ . In this latter case each agent

is able to transmit a different random number of EEPs. This configuration is relevant as

our algorithm allows agents to contribute to the optimization according to their specific

2.7 Additional Experiments 39

Figure 2.8: Performance comparison for different values of dt for (i) linear regression on 1M
Songs ((a) and (c)) and (ii) logistic regression on FMNIST ((b) and (d)). In (b), we emphasize

three points where the renewal operation (see Algorithm 5) takes place.

CRs. In Figures 2.8-(a)-(c) we show the results for LSs on 1M Songs, while in Figures

2.8-(b)-(d) we show the results in the convex case on FMNIST. We can see from Figures

2.8-(a)-(b) how the global number of communication rounds needed for convergence can

be significantly reduced by increasing the amount of information transmitted at each

round. In particular, at each round, the number of vectors in R
n being transmitted is

dt + 1, since together with the dt scaled eigenvectors, {ṽ(i)
j,t}

q
(i)
t

j=q
(i)
t−1+1

(see Algorithm 5),

agents need to transmit also the gradient. In the LSs case, the number of iterations

needed for convergence is smaller than the number of EEPs sent: when the n− 1-th EEP

has been shared, convergence occurs. When the number of EEPs is random (dγ), but

40 SHED: A novel Newton-type algorithm for federated learning

equal to 4 in average, we see that we can still get a significant improvement

For the case of regularized convex cost (logistic regression), in Figures 2.8-(b)-(d) we

emphasize the role of the renewal operation, showing also how incrementally adding

EEPs of the outdated Hessian improves the convergence, as formalized and shown in

Theorems 2.5 and 2.6. In particular, from Figure 2.8-(b) it is possible to appreciate the

impact of increasing the interval between renewals.

In Figures 2.8-(c)-(d) we plot the error as a function of the amount of data transmitted

per agent, where the number of vectors in R
n is the unit of measure. These plots show

that, for small values of dt (in particular, dt ∈ {1, 3, 6}), the overall data transmitted does

not increase for the considered values of dt, meaning that we can significantly reduce the

number of global communication rounds by transmitting more data per round without

increasing the overall communication load. This is true in particular also for the case

dt = dγ , thus when the agents’ channels availability is heterogeneous at each round,

showing that our algorithm works even in this relevant scenario without increasing the

communication load. On the other hand, in the case of dt = 30, even if we get faster

convergence, we pay with a significant increase in the overall communication load that

the network has to take care of.

2.8 Conclusions

In this work, we have proposed SHED, an NT algorithm for FL that enjoys global

asymptotic super-linear convergence. SHED is versatile with respect to agents’ (per-

iteration) CRs and operates effectively in the presence of non i.i.d. data distributions,

outperforming state-of-the-art techniques. SHED achieves better performance with

respect to the competing FedNL approach, while involving sporadic Hessian computations.

In the case of i.i.d. data statistics, SHED is also competitive with GIANT, even though the

latter may perform better under certain conditions. We stress that the key advantage of

SHED lies in its robustness under ill-conditioning and non i.i.d. data, and its effectiveness

and versatility when CRs differ across nodes and links.

Future work includes the use and extension of the algorithm for more specific scenarios

and applications, like, for example, wireless networks, and also the study of new heuristics

for the renewal operation in the general convex case.

2.9 Related Publications and Conference Presentations

The content of this chapter is available in ArXiv [41] and has been accepted for publication

in Automatica. Part of the content has also been accepted as an extended abstract to

2.9 Related Publications and Conference Presentations 41

the IFAC Conference on Networked Systems, 2022 (NecSys22), and presented in a poster

session at the conference in Zurich.

42 SHED: A novel Newton-type algorithm for federated learning

3
Q-SHED: Distributed Optimization at the Edge

via Hessian Eigenvectors Quantization

Edge networks call for communication efficient (low overhead) and robust distributed

optimization (DO) algorithms. These are, in fact, desirable qualities for DO frame-

works, such as federated edge learning techniques, in the presence of data and system

heterogeneity, and in scenarios where inter-node communication is the main bottleneck.

Although computationally demanding, Newton-type (NT) methods have been recently

advocated as enablers of robust convergence rates in challenging DO problems where

edge devices have sufficient computational power. Along these lines, in this chapter

we propose Q-SHED, an original NT algorithm for DO featuring a novel bit-allocation

scheme based on incremental Hessian eigenvectors quantization. The proposed technique

is integrated with the SHED algorithm, that we presented in Chapter 2, from which it

inherits appealing features like the small number of required Hessian computations, while

being bandwidth-versatile at a bit-resolution level. Our empirical evaluation against

competing approaches shows that Q-SHED can reduce by up to 60% the number of

communication rounds required for ǫ-convergence.

3.1 Introduction

Solving distributed optimization problems in a communication-efficient fashion is one

of the main challenges of next generation edge networks [131]. In particular, much

attention is being turned to distributed machine learning (ML) settings and applications,

and to the distributed training of ML models via federated learning (FL) [85]. FL

is a distributed optimization (DO) framework motivated by the increasing concerns

for data privacy at the user end, and by the convenience of performing distributed

processing in multi-access edge computing (MEC) networks. However, DO is particularly

44
Q-SHED: Distributed Optimization at the Edge via Hessian Eigenvectors

Quantization

challenging in federated edge learning (FEL) scenarios where communication occurs over

unpredictable and heterogeneous wireless links [75]. To tackle these challenges, major

research efforts have been conducted in recent years [14], [30], [132]. A common assumption

in FEL is that edge devices are equipped with sufficient computing capabilities. Hence,

Newton-type (NT) methods, although computationally demanding, have been recently

advocated to improve the convergence rate of distributed optimization, while significantly

reducing its communication overhead [82], [139]. Communication efficient distributed

NT (DNT) algorithms like GIANT [144], and DONE [139] have shown promising results

in configurations with i.i.d. data distributions among devices, but underperform when

applied to ill-conditioned problems and heterogeneous data configurations [42], which

are scenarios of major practical relevance. Some works, like FedNL [125] and SHED

(sharing Hessian eigenvectors for distributed learning) [42] have been recently proposed

to robustify FL in the presence of non i.i.d. data distributions, system heterogeneity

and ill-conditioning. A DNT method with over-the-air aggregation has been studied

in [82]. Quantized Newton (QN) [4] has investigated the convergence properties of the

distributed Newton method when the Hessian matrix is quantized. However, QN entails

a communication load proportional to O(n2), where n is the problem dimensionality,

while a linear per-iteration communication complexity of O(n) is desirable.

In this chapter, we present Q-SHED, a new algorithm that extends the recently

proposed SHED [42] via a novel bit-allocation scheme based on incremental Hessian

eigenvector quantization. In particular, our main contributions are:

• We propose an original bit-allocation scheme for Hessian approximation based

on uniform scalar dithered quantization of Hessian eigenvectors, to improve the

efficiency of second-order information transmission in a DNT method.

• We integrate our bit-allocation scheme with the recently proposed SHED tech-

nique [42], obtaining a new approach, Q-SHED, based on incremental dithered

quantization of Hessian eigenvectors. Q-SHED has a communication complexity of

O(n) (inherited by SHED) and handles per-iteration heterogeneity of communica-

tion channels of the different edge computers involved in the optimization problem

at a bit-resolution (per vector coordinate) level.

• We evaluate Q-SHED on two datasets assessing its performance in a standard

distributed optimization setup, as well as in a scenario where the transmission

quality of communication links randomly fluctuates over time according to a

Rayleigh fading model (a popular model for wireless channels). With respect to

competing solutions, Q-SHED shows convergence speed improvements of at least

3.2 Distributed optimization framework 45

30% in a non-fading scenario and of up to 60% in the Rayleigh fading case.

3.2 Distributed optimization framework

We consider the typical DO framework where M machines communicate with an aggre-

gator to cooperatively solve an empirical risk minimization problem of the form

min
θ
f(θ) :=

1

N

M∑

d=1

Ndf
(d)(θ), (3.1)

where θ ∈ R
n is the optimization variable, Nd is the number of data samples of the d-th

machine and N =
∑M

d=1Nd. For the convergence analysis of the algorithm, we make the

following standard assumption on the cost function f :

Assumption 3. Let H(θ) := ∇2f(θ) be the Hessian matrix of the cost f(θ). f(θ) is twice

continuously differentiable, smooth, strongly convex and H(θ) is Lipschitz continuous.

3.2.1 Distributed Newton method

The Newton method to solve (3.1) is:

θt+1 = θt − ηtH
−1
t gt,

where t denotes the t-th iteration, gt = g(θt) = ∇f(θt), ηt and Ht = ∇2f(θt) denote

the gradient, the step size and the Hessian matrix at iteration t, respectively. In the

considered DO scenario, we have that:

Ht =
1

N

M∑

d=1

NdH
(d)
t , gt =

1

N

M∑

d=1

Ndg
(d)
t , (3.2)

where H
(d)
t = ∇2f (d)(θt) and g

(d)
t = ∇f (d)(θt) denote local Hessian and gradient of the

local cost f (d)(θt) of machine d, respectively. To get a Newton update at the aggregator,

in a FL setting one would need each agent to transfer the matrix H
(i)
t of size O(n2) to

the aggregator at each iteration, whose communication cost is considered prohibitive

in many practical scenarios, especially when n is large. To deal with communication

constraints, while still exploiting second-order information, DNT methods use Hessian

approximations:

θt+1 = θt − ηtĤ
−1
t gt, (3.3)

where Ĥt is an approximation of Ht.

46
Q-SHED: Distributed Optimization at the Edge via Hessian Eigenvectors

Quantization

3.2.2 The SHED algorithm

In this chapter, we propose a DNT approach built upon SHED [42], a DNT algorithm for

FL designed to require few Hessian computations by FL workers, that efficiently shares

(low communication overhead) second-order information with the aggregator, see [42]

for a detailed description. SHED exploits a full-rank approximation of the workers’

Hessians by sending to the aggregator the most relevant eigenvalue-eigenvector pairs

(EEPs) of the local Hessian, along with a local approximation parameter. Approximations

are incrementally improved across iterations, as machines send additional EEPs to the

aggregator. By doing so, the Hessian is computed only sporadically and outdated versions

of it are used to incrementally improve the convergence rate. Under Lipschitz Hessians,

strong convexity and smoothness assumptions, SHED has super-linear convergence.

3.2.3 Q-SHED: Hessian eigenvectors quantization

Let H = VΛV⊤, be the eigendecomposition of a machine (edge computer) Hessian

matrix, with Λ = diag(λ1, ..., λn), where λk is the eigenvalue corresponding to the k-th

unitary eigenvector, vk. In general, the Hessian is a function of the parameter θ, but here

we omit this dependence for ease of notation. We always consider eigenvalues ordered so

that λ1 ≥ λ2 ≥ ... ≥ λn. In SHED, a machine shares with the aggregator a parameter ρq

together with q EEPs, allowing for a full-rank (q, ρq)-approximation of its Hessian, of the

form

Hq,ρq =
q
∑

i=1

(λi − ρq)viv
⊤
i + ρqI = VΛρq V⊤, (3.4)

where V := [v1, ...,vn], Λρq := diag(λ1, ..., λq, ρq, ..., ρq) ∈ R
n×n. In the original SHED

algorithm, eigenvectors are transmitted exactly (up to machine-precision). Differently,

we here design a quantization scheme for the eigenvectors, obtaining a quantized approxi-

mation of the Hessian of the form:

Ĥq,ρq (b1, ..., bq) =
q
∑

i=1

(λi − ρq)v̂i(bi)v̂i(bi)
⊤ + ρqI, (3.5)

where we denote by v̂i(bi) the i-th eigenvector, quantized with bi bits per vector element.

As in [42], we fix ρq = λq+1. We design the quantization scheme so that if an eigenvector

vi is quantized and transmitted, then at least one bit is assigned to each of its components.

The vectors to which no bit is assigned are all set equal to zero, i.e., v̂i(0) = 0. We

assume that, as in typical machine learning problems, n ≫ 1. Hence, we design the

quantization scheme such that the approximation parameter ρq and the eigenvalues {λi}
are not quantized and are transmitted exactly (up to machine precision).

3.3 Optimal quantization of eigenvectors 47

3.3 Optimal quantization of eigenvectors

We formulate the design of the quantization scheme as a bit allocation problem, exploiting

the specific structure of the Hessian. In particular, as, e.g., in [132], we consider dithered

quantization, so that we can model the quantization error as a uniformly distributed

(in the lattice) zero mean additive random noise. Let vi be a Hessian eigenvector and

let v̂i = v̂i(bi) be the same eigenvector quantized with bi bits per vector coordinate (to

improve readability, the dependence on bi is omitted in the following). We write:

v̂i = vi + ǫi, (3.6)

where ǫi is a uniformly distributed quantization noise, with E[ǫi] = 0. This is a general

and standard model for the quantization noise, widely adopted in the literature, see,

e.g., [132].

The aim of the bit allocation is to provide the best possible Hessian approximation

given a bit budget. Hence, the quantization scheme design is obtained as the solution of

the following problem:

min
b1,...,bq ,q

E[‖H− Ĥq,ρq (b1, ..., bq)‖2F |{vi, λi}qi=1]

s.t.
q
∑

i=1

bi = B

0 ≤ bi ≤ bmax,∀ i,

(3.7)

where Ĥq,ρq (b1, ..., bq) is defined in (3.5). The operator ‖ · ‖F denotes the Frobenius norm.

Note that q is a variable determining the approximation parameter ρq. The constant B

denotes the bit budget, normalized by n: denoting the total number of available bits

by Btot, it holds B = ⌊Btot/n⌋. The integer bmax is the maximum number of bits per

vector component. In the following, for ease of notation, we omit the conditioned values

from the expectation expression of the squared Frobenius norm introduced in (3.7). For

simplicity, we define Ĥq,ρq := Ĥq,ρq (b1, ..., bq). Denoting by tr(·) the trace operator, we

have that

E[‖H− Ĥq,ρq‖2F] = E[tr((H− Ĥq,ρq)(H− Ĥq,ρq))], (3.8)

where we can write, denoting the unitary eigenvector matrix by V := [v1, ...,vn],

H− Ĥq,ρq = V(Λ−Λρq)V⊤ +
q
∑

i=1

(λi − ρq)δVi. (3.9)

48
Q-SHED: Distributed Optimization at the Edge via Hessian Eigenvectors

Quantization

defining δVi := (viv
⊤
i − v̂iv̂

⊤
i). Plugging (3.9) into (3.8):

E[‖H− Ĥq,ρq‖2F] = tr(V(Λ−Λρq)2V⊤)

+ 2 tr

n∑

i=q+1

(λ̄q,i)viv
⊤
i

q
∑

i=1

(λ̄q,i)E[δVi]

+ E

tr

(q
∑

i=1

λ̄2
q,iδViδVi

)

+ tr

q
∑

i,j=1
i6=j

λ̄q,iλ̄q,jδViδVj

.

(3.10)

where λ̄q,i := λi − ρq. The first term of the previous expression does not depend on the

quantization strategy, but only on the choice of q. The second and third terms, instead,

both depend on q and on the quantization strategy through the matrices {δVi}qi=1.

3.3.1 Scalar Uniform Quantization

In the next section, we consider the special case of scalar uniform quantization of the

eigenvectors’ coordinates. In the case of scalar uniform quantization, each component of

vector vi is uniformly quantized in the range [−1, 1]. Applying dithering, the quantization

error vector has i.i.d. uniformly distributed components of known covariance [132]. We

can write

E[ǫiǫ
⊤
i] = σ2

i I, with σ2
i = E[ǫ2

ij] = ∆2
i /12, ∆i = 2−(bi−1) (3.11)

with ∆i being the quantization interval length, and bi the number of bits assigned to

each coordinate of the i-th eigenvector. After some algebra, we can get

E[tr(δVi)(δVi)] = ∆2
i (a1(n) + a2(n)∆2

i), (3.12)

using the fact that α4
i = ∆4

i /80 = E[ǫ4ij], and defining a1(n) := 1
12 + n

6 , a2(n) := n
80 + n(n−1)

122 .

With similar calculations, one gets

E[tr(δViδVj)] = nσ2
i σ

2
j =

n∆2
i ∆2

j

122
= a3(n)∆2

i ∆2
j , (3.13)

3.3 Optimal quantization of eigenvectors 49

with a3(n) := n
122 . The expectation of the Frobenius norm of the quantization error in

(3.10) can then be written as

E[‖H− Ĥq,ρq‖2F] =
n∑

i=q+1

λ̄2
q,i + dq

q
∑

i=1

λ̄q,i∆
2
i

+
q
∑

i=1

λ̄2
q,i∆

2
i (a1(n) + a2(n)∆2

i) +
q
∑

i,j=1
i6=j

λ̄q,iλ̄q,ja3(n)∆2
i ∆2

j ,
(3.14)

with dq = 1
6(
∑n

i=q+1(ρq − λi)). Our objective is to pick the integer parameter q and

the quantization intervals ∆1, ...,∆q so as to minimize (3.8), with the constraint that
∑q

i=1 bi = B, with B = ⌊Btot/n⌋, where Btot is the number of available bits. Given that

bi = − log ∆i + 1, we see that the constraint becomes
∑q

i=1 log ∆i = q − B, which is

equivalent to
∑q

i=1 log ∆2
i = 2(q −B). Defining xi := ∆2

i and xq = (x1, ..., xq), we define

the expectation of the quantization error as a cost function ℓ:

ℓ(xq, q) := E[‖H− Ĥq,ρq‖2F], (3.15)

and we aim to minimize such cost function over the choice of q and over the choice of xq.

We can rewrite (3.14) as

ℓ(xq, q) =
n∑

i=q+1

λ̄2
q,i +

q
∑

i=1

γn,q,ixi + a2(n)
q
∑

i=1

λ̄2
q,ix

2
i

+ a3(n)
q
∑

i,j=1
i6=j

λ̄q,iλ̄q,jxixj ,

where γn,q,i := dqλ̄q,i + a1(n)λ̄2
q,i. The optimization problem is thus turned into the

following equivalent form:

min
xq ,q

ℓ(xq, q)

s.t. −
q
∑

i=1

log xi ≤ 2(B − q)

0 < xi ≤ 4, i = 1, ..., q

(3.16)

where the last constraint (xi ≤ 4) amounts to requiring bi ≥ 0, i = 1, ..., q. At optimality,

the constraint −∑q
i=1 log xi ≤ 2(B − q) will be satisfied with equality. The solution to

the optimization problem (3.16) needs to be converted in a vector of bits. This can be

50
Q-SHED: Distributed Optimization at the Edge via Hessian Eigenvectors

Quantization

done by converting each xi back to bi using (3.11) and then rounding each bi to the

closest integer, being careful to meet the bit budget
∑q

i=1 bi = B.

Lemma 3.1. For any q = 1, ..., n, the cost function ℓ(xq, q) is strictly convex in xq =

(x1, . . . , xq)⊤.

Proof. Let λ̄q := (λ̄1, ..., λ̄q)⊤, γn,q := (γn,q,1, ..., γn,q,q)⊤, Λ̄q := diag(λ̄2
1, ..., λ̄

2
q), and

Λ̄c ∈ R
q×q a matrix such that (Λ̄c)i,j = λ̄iλ̄j(1− δij), where δii = 1 and δij = 0 for i 6= j.

Note that a2(n) = n
80 + n(n−1)

122 > n
122 = a3(n). Omitting terms that do not depend on xq,

the cost can be rewritten as

ℓ(xq, q) = γ⊤
n,qxq + a2(n)x⊤

q Λ̄qxq + a3(n)x⊤
q Λ̄cxq

= γ⊤
n,qxq + x⊤

q (a3(n)Λ̄q + (a2(n)− a3(n))λ̄qλ̄⊤
q)xq

= γ⊤
n,qxq + x⊤

q Aqxq,

(3.17)

and because of the fact that a2(n) > a3(n), we have

Aq = a3(n)Λ̄q + (a2(n)− a3(n))λ̄qλ̄⊤
q > 0. (3.18)

Given the convexity of the constraints, and the strict convexity of the objective

function ℓ(xq) for any q = 1, ..., n the optimization problem can be solved by solving n

convex problems whose solution x∗
q is unique. The optimal solution can be found as the

tuple {x∗
q∗ , q∗}, with q∗ = argminq{ℓ(x∗

q , q)}.

3.4 Q-SHED: algorithm design

SHED [42] is designed to make use of Hessian approximations obtained with few Hessian

EEPs. In [42], it has been shown that incrementally (per iteration) transmitting additional

EEPs improves the converges rate. In this section, we augment SHED with the optimal

bit allocation of the previous section, making it suitable to incrementally refine the

Hessian approximation at the aggregator. The full technique is illustrated in Algorithm 5,

and the details are provided in the following sections.

3.4.1 Uniform scalar quantization with incremental refinements

Let H(θkt) be the Hessian computed for parameter θkt at round kt. At each round t ≥ kt,

a number of bits Bt is sent to represent second-order information. At each round, we use

newly available bits to incrementally refine the approximation of H(θkt). From now on,

3.4 Q-SHED: algorithm design 51

eigenvectors are always denoted by vi = vi(θ
kt), i.e., they are always the eigenvectors of

the most recently computed (and possibly outdated) Hessian. If t = kt, the optimal bit

allocation for eigenvectors v1, ...,vn is provided by the scheme presented in Sec. 3.3.1.

Fix t > kt. Let bt−1(i) denote the bits allocated to each coordinate of eigenvector vi up

to round t − 1, and let bi,t be the number of bits to be used together with bt−1(i), at

round t, to refine the approximation of the coordinates of vi. We can write

bt(i) := bt−1(i) + bi,t, ∆t,i :=
2

2bt(i)
:= 2−bt−1(i)2−bi,t+1 (3.19)

with bt(i) the number of bits sent up to round t. The interval ∆t,i is the quantization

interval resulting from adding bi,t bits for the refinement of the i-th eigenvector information,

for which b
(t−1)
i had been previously allocated. We can plug these intervals into (3.14),

and defining xt,i := 2−2(bi,t−1), γ̃n,qt,i := 2−2bt−1(i)γn,qt,i, λ̃t,qt,i := 2−2bt−1(i)λ̄qt,i, we get a

cost ℓ(xqt , qt), with xqt = (xt,1, ..., xt,qt),

ℓ(xqt , qt) =
n∑

i=qt+1

λ̄2
qt,i +

qt∑

i=1

γ̃n,qt,ixt,i

+b(n)
qt∑

i=1

λ̃2
t,qt,ix

2
t,i + c(n)

qt∑

i,j=1
i6=j

λ̃t,qt,iλ̃t,qt,jxt,ixt,j .
(3.20)

Following the same proof technique as for Lemma 3.1, it can be shown that the cost

ℓ(xqt , qt) is strictly convex in xqt for any qt = 1, ..., n. Given that up to round t − 1,

qt−1 eigenvectors were considered for bit allocation, it is easy to see that it needs to be

qt ≥ qt−1. Similarly to Sec. 3.3.1, we formulate the optimal bit allocation of bits {bi,t}qt
i=1

as
min

xqt ,qt≥qt−1

ℓ(xqt , qt)

s.t. −
qt∑

i=1

log xt,i ≤ 2(Bt − qt)

0 < xt,i ≤ 4, i = 1, ..., qt.

(3.21)

The problem can be solved by finding the unique solution to the n − qt−1 + 1 strictly

convex problems corresponding to the different choices of qt = qt−1, qt−1 + 1, ..., n.

As before, the solution to problem (3.21) needs to be converted to integer numbers,

for example by rounding the corresponding allocated number of bits to the closest

integer, being careful to retain
∑q

i=1 bi,t = Bt. Sorting the eigenvalues in a decreas-

ing order, we get a monotonically decreasing sequence of allocated bits to the corre-

sponding eigenvectors. To provide an example, with the FMNIST dataset (see Sec.

52
Q-SHED: Distributed Optimization at the Edge via Hessian Eigenvectors

Quantization

2.6), at a certain iteration t of the incremental algorithm, an agent allocates bits

bt = [3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1] to the first 11 eigenvectors, whose corresponding (rounded)

eigenvalues are [0.21, 0.11, 0.06, 0.03, 0.03, 0.02, 0.02, 0.01, 0.01, 0.01, 0.01].

3.4.2 Multi-agent setting: notation and definitions

To illustrate the integration of our incremental quantization scheme with SHED, we

introduce some definitions for the multi-agent setting. We denote by B
(d)
t the bit-budget

of device d at iteration t. Let ρ
(d)
t = λ

(d)

q
(d)
t +1,t

be the Hessian approximation parameter

of device d at iteration t, function of the q
(d)
t -th eigenvalue of the d-th device, where

the integer q
(d)
t is tuned by device d as part of the bit-allocation scheme at iteration t.

Let g
(d)
t , H

(d)
t , Ĥ

(d)
t be the gradient, Hessian, and Hessian approximation, respectively,

of device d. We denote by v
(d)
i and v̂

(d)
i the i-th eigenvector of the d-th device and its

quantized version, respectively. Note that eigenvectors always correspond to the last

computed Hessian H(θkt), with kt ≤ t. The integer b
(d)
t (q) denotes the number of bits

allocated by device d to the q-th eigenvector coordinates up to iteration t, while b
(d)
q,t is the

per-iteration bits allocated to the q-th eigenvector, i.e., b
(d)
t (q) = b

(d)
t−1(q) + b

(d)
q,t . We define

A to be the set of devices involved in the optimization, I the set of iteration indices in

which each device recomputes its local Hessian, f (d) the cost function of device d, and

ǫ > 0 the gradient norm threshold. Hessian approximations are built at the aggregator

in the following way:

Ĥt =
1

N

M∑

d=1

NdĤ
(d)
t , Ĥ

(d)
t =

q
(d)
t∑

i=1

λ̄
(d)
i v̂

(d)
i v̂

(d)⊤
i + ρ

(d)
t I, (3.22)

where λ̄
(d)
i = λ

(d)
i − ρ

(d)
t . Incremental quantization allows devices to refine the previously

transmitted quantized version of their eigenvectors by adding information bits, see (3.19).

We denote the set of information bits of device d sent to quantize or refine previously

sent quantized eigenvectors by Q
(d)
t .

3.4.3 Heuristic choice of q
(d)
t

To reduce the computational burden at the edge devices and to solve the bit-allocation

problem only once per round, we propose a heuristic strategy for each device to choose

q
(d)
t : at each incremental round t, instead of inspecting all the options corresponding to

q
(d)
t−1, ..., q

(d)
n , which would provide the exact solution, but would require solving problem

(3.21) n − q
(d)
t−1 + 1 times. We fix q̄ = q

(d)
t−1 + B

(d)
t : With this choice of q̄, we solve

problem (3.21), and we subsequently convert the solution to bits obtaining {b(d)
i,t }q̄i=1 and

3.4 Q-SHED: algorithm design 53

{b(d)
t (i)}q̄i=1. We then fix the value

q
(d)
t = q̂

(d)
t ({b(d)

t (i)}q̄i=1) := max
q
{q : b

(d)
t (q) > 0} (3.23)

3.4.4 Convergence analysis

The choice of Hessian approximation is positive definite by design (see (3.22)). Hence,

the algorithm always provides a descent direction and, with a backtracking strategy

like in [144] and [42], convergence is guaranteed (see Theorem 4 of [42]). Empirical

results suggest that linear and superlinear convergence of the original SHED may still be

guaranteed under some careful quantization design choices. We leave the analysis of the

convergence rate as future work, but we provide an intuition on the convergence rate

in the least squares case. In the least squares case, for a given choice of q and of the

allocated bits {b(d)
i,t }qi=1 of each device d, an easy extension of Theorem 3 in [42] provides

the following bound
‖θt+1 − θ∗‖ ≤ κt‖θt − θ∗‖, (3.24)

with κt = (1− (λ̄n − et)/ρ̄t), where

λ̄n =
1

N

M∑

d=1

Ndλ
(d)
n ρ̄t =

1

N

M∑

d=1

Ndρ
(d)
t

and

et =
1

N

M∑

d=1

Nd

q
(d)
t∑

i=1

(λ
(d)
i − ρ

(d)
t)‖δV(d)

i ‖ (3.25)

where δV
(d)
i := (v

(d)
i v

(d)⊤
i − v̂

(d)
i v̂

(d)⊤
i). It can be noted how for a sufficiently small quan-

tization error, which can always be achieved by incremental refinements, the convergence

rate in the least squares case is at least linear. The extension to the general case is left

as a future work.

54
Q-SHED: Distributed Optimization at the Edge via Hessian Eigenvectors

Quantization

Algorithm 5 Q-SHED

Input: {f (d)}Md=1, I, θ1, ∇f(θ1), A, ǫ > 0
Output: θt

1: t← 1
2: while ‖∇f(θt)‖2 ≥ ǫ do
3: for device d ∈ A do
4: when received θt from the aggregator do
5: if t ∈ I then
6: kt ← t
7: compute H

(d)
t = ∇2f (d)(θt) // renewal

8: {(λ(d)
j,t ,v

(d)
j)}nj=1 ← eigendecomp(H

(i)
t)

9: q
(d)
t−1 ← 0

10: end if
11: compute g

(d)
t = g(d)(θt) = ∇f (d)(θt)

12: q̄ ← q
(d)
t−1 +B

(d)
t

13: x∗
q̄ ← solve (3.21) for qt = q̄ with budget B

(d)
t

14: {b(d)
i,t }q̄i=1 ← convertToBits(x∗

q̄) // back to bits

15: q
(d)
t ← q̂

(d)
t ({b(d)

t (i)}q̄i=1) // see (3.23)

16: ρ
(d)
t ← λ

(d)

q
(d)
t +1,t

17: Q
(d)
t ← quantize({v(d)

i }
q

(d)
t

i=1 , {b
(d)
i,t }

q
(d)
t

i=1 , {b
(d)
t (i)}q

(d)
t

i=1) // quantize or refine
quantization, see (3.19)

18: U
(d)
t ← {Q(d)

t , {λ(d)
j,t }

q
(d)
t

j=q
(d)
t−1+1

,g
(d)
t , ρ

(d)
t }

19: send U
(d)
t to the aggregator

20: end for
21:

22: at the aggregator:

23: when received U
(d)
t from all devices do

24: compute Ĥ
(d)
t , ∀d // see (3.22)

25: compute Ĥt (see (3.22)) and gt

26: get ηt via distributed backtracking line search.
27: perform Newton-type update (3.3)
28: broadcast θt+1 to all devices.
29: t← t+ 1
30: end while

3.5 Empirical Results 55

3.5 Empirical Results

In this section, we provide empirical results obtained with two datasets, FMNIST [146]

and w8a [26]. We simulate two configurations for the network: one where every device has

the same transmission rate at each communication round, and one where the rate changes

randomly for each device based on the widely adopted Rayleigh fading model [114],

[142]. For both FMNIST and w8a we build up a binary classification setting with logistic

regression (in FMNIST we learn to distinguish class ‘1’ from all the others), simulating

a scenario with M = 8 devices, each with 500 data samples. We use L2 regularization

with parameter µ = 10−5. For FMNIST, we apply PCA [129] to the data to reduce

the dimensionality to n = 90, while for w8a we keep the original data dimensionality,

n = 300. To simulate the fading channels, we adopt the following simple model. We

consider that all the devices allocate the same bandwidth β for the communication with

the aggregator and write the achievable transmission rate as (see, e.g., [114], [142])

R(d) = β log2(1 + γΓ(d)) (3.26)

where Γ(d) is a value related to transmission power and environmental attenuation for

user d. For simplicity, we fix Γ(d) = Γ = 1 for all users (in [114], for instance, Γ = 1 and

Γ = 10 were considered). The only source of variability is then γ ∼ exp(ν), modelling

the Rayleigh fading effect. We fix ν = 1. Specifically, to simulate the different bit

budgets, we compute the individual bit budget of each device as B
(d)
t = B log2(1 + γΓ(d)),

setting B = 2bmax. We fix bmax = 16. In the non-fading case, the bit budget for each

device is constant and set to B
(d)
t = 2bmax. We consider a scenario where the full-quality

gradient is always transmitted to the aggregator by the devices. We compare Q-SHED

against an ideal version of SHED, dubbed ideal-SHED, where the eigenvectors that

are quantized by Q-SHED are transmitted at full quality. We also compare Q-SHED

against a naively-quantized counterpart, NQ-SHED, for which all bits are allocated to the

first eigenvectors, and the state-of-the-art FedNL [125] with rank-1 compressors. With

the exception of ideal-SHED, the per-round bit budget of the considered algorithms is

the same. We have experimented with the possibility of quantizing the second-order

information of FedNL, but we observed a performance degradation. Hence, when the

bit budget of a device is not enough for communicating the rank-1 compression of the

Hessian drift at full quality, we only use the device’s local gradient. We do the same for

NQ-SHED. The results on FMNIST and w8a are shown in Figs. 3.1 and 3.2, respectively.

In both cases, it is possible to appreciate the robustness of Q-SHED in terms of iterations

required for convergence, while both NQ-SHED and FedNL performance is degraded in

56
Q-SHED: Distributed Optimization at the Edge via Hessian Eigenvectors

Quantization

Figure 3.1: Comparison of Q-SHED against NQ-SHED and FedNL with the FMNIST dataset.
With the exception of ideal-SHED, for a fair comparison, in each communication round the

algorithms use the same number of bits. Relative cost is f(θt) − f(θ∗).

the presence of fading channels. In terms of convergence speed, the results show that

Q-SHED provides performance improvements against the selected competing solutions

between 30% and 60%.

3.6 Conclusion and future work 57

Figure 3.2: Comparison of Q-SHED against NQ-SHED and FedNL with the w8a dataset.
With the exception of ideal-SHED, for a fair comparison, in each communication round the

algorithms use the same number of bits. Relative cost is f(θt) − f(θ∗).

3.6 Conclusion and future work

We have empirically shown that Q-SHED outperforms its naively-quantized version as

well as state-of-the-art algorithms like FedNL. Future works include an in-depth analysis

of the convergence rate, and the adoption of more advanced quantization schemes, like

vector quantization techniques.

3.7 Related Publications and Conference Presentations

The content of this chapter is available in ArXiv [55] and has been accepted for presentation

at the IEEE International Conference on Communications, 2023 (presented in Rome in

May 2023).

58
Q-SHED: Distributed Optimization at the Edge via Hessian Eigenvectors

Quantization

4
Federated Reinforcement Learning under

Communication Constraints: Finite-Time Rates

Federated learning (FL) has recently gained much attention due to its effectiveness in

speeding up supervised learning tasks under communication and privacy constraints.

However, whether similar speedups can be established for reinforcement learning remains

much less understood theoretically. Towards this direction, we study a federated policy

evaluation problem where agents communicate via a central aggregator to expedite the

evaluation of a common policy. To capture typical communication constraints in FL, in

this chapter we consider several communication models. In particular, we consider (i)

finite capacity up-link channels that can drop packets based on a Bernoulli erasure model,

(ii) over-the-air computation for bandwidth efficient wireless up-link transmission, and

(iii) an asynchronous configuration in which up-link transmissions are subject to time-

varying delays. We refer to these three schemes as QFedTD, OACFedTD and AsyncFedTD,

respectively. In the following, we present and analyze these algorithms.

4.1 Introduction

Is it possible to obtain statistical models of high accuracy for supervised learning problems

(e.g., regression, classification, etc.) by aggregating information from multiple devices

while keeping the raw data on these devices private? This is the central question of

interest in the popular machine learning paradigm of federated learning (FL) [22], [79],

[92]. When the data-generating distributions of the participating devices are identical

(or sufficiently similar), several works have shown that one can reap the benefits of

collaboration by exchanging locally trained models via a central aggregator (server) [1],

[38], [59], [66], [72]–[74], [99], [100], [136], [145]. In practice, these models are typically

high-dimensional and need to be exchanged over unreliable communication links of limited

60
Federated Reinforcement Learning under Communication Constraints:

Finite-Time Rates

bandwidth. As such, a large body of work in FL has investigated the effects of the

communication constraints on the convergence properties of optimization algorithms.

Drawing inspiration from this literature, in this chapter, we ask: Can we establish

collaborative performance gains for federated reinforcement learning (FRL) problems

subject to communication challenges? As it turns out, little to nothing is known about

this question from a theoretical standpoint.

Towards this direction, we study one of the most basic problems in RL, namely

policy evaluation, in a federated setting. Specifically, in our problem, N agents, each

of whom interacts with the same Markov Decision Process (MDP), communicate via a

server to evaluate a fixed policy. While each agent can evaluate the policy on its own

using Monte-Carlo sampling or temporal difference (TD) learning algorithms [138], [141],

the reason for communicating is the same as in the standard FL setting: to achieve an

N -fold speedup in the sample-complexity of policy evaluation relative to when an agent

acts alone. In the recent survey paper on FRL [118], the authors mention that the goal of

the FRL framework is to achieve such speedups while respecting privacy constraints, i.e.,

without revealing the raw data (states, actions, and rewards) of the agents. Relative to

the FL setting, proving finite-time rates for FRL is significantly more challenging since

we need to deal with temporally correlated Markovian samples. Indeed, even for the

single-agent setting, finite-time rates under Markovian sampling have only recently been

established [19], [35], [115], [135]. Works prior to these developments either provided

a finite-time analysis under a restrictive i.i.d. sampling assumption [46], [83], or only

came with asymptotic guarantees [23], [141]. For the multi-agent setting, almost all

the prior works on TD learning make a restrictive i.i.d. sampling assumption [47], [88].

The only two exceptions to this are the very recent papers [77], [143] that establish

linear speedups under Markovian sampling; however, none of the above works consider

any communication constraints. As such, establishing linear speedups in FRL under

Markovian sampling and communication constraints remains largely unexplored. In this

regard, we consider three communication models which have many practical motivations

and that have been widely investigated in the literature of distributed optimization and

distributed machine learning, which we list here:

• QFedTD, in which agents upload quantized TD update directions over channels with

finite capacity and subject to random packet drops (lossy links). These models [65],

[121] have been extensively analyzed in the FL [65], [121], distributed optimization

[49], [97], [119], [122], and networked control literature [67], [126] for almost two

decades.

• OACFedTD, in which agents transmit their local TD update directions in up-link

4.1 Introduction 61

as analog wireless signals, and the server lets the wireless channel perform the

average in the setting of over-the-air computation, that has recently been advocated

to provide large-scale, bandwidth- and energy-efficient up-link communication in

FL [8], [81]. In particular, OAC exploits the waveform-superposition property

of the wireless multiple access channel (MAC) to enable the receiver (server) to

obtain the average of the analog signals transmitted by the agents over the same

time-frequency block [25]. Compared to standard digital transmission, OAC comes

with notable gains in up-link bandwidth efficiency. Furthermore, OAC has intrinsic

privacy-preserving features [7], [127]. However, analog signals transmitted over the

air are subject to fading channel distortion and additive noise at the receiver [127],

[147], [154].

• AyncFedTD we consider an asynchronous framework in which multiple agents trans-

mit their local TD update directions to a central server via up-link communication

channels subject to asynchronous bounded delays. Asynchronous settings of this

kind have been theoretically and empirically studied for FL and distributed opti-

mization [51], [78], [108]. On the other hand, although asynchronous multi-agent RL

(MARL) implementations have shown promising empirical performance, like in the

case of parallel actor-learner frameworks [103], [106], little to nothing is known re-

garding their non-asymptotic convergence guarantees and multi-agent collaborative

gains. Indeed, the only existing study providing finite-sample convergence guar-

antees for asynchronous MARL [130] establishes collaborative performance gains

only under a simplifying i.i.d. sampling assumption on the agents’ observations,

i.e., considering observations that are not temporally correlated. However, even

in the non-delayed single-agent case, the major technical hurdle in the finite-time

analysis of RL algorithms (like TD learning) relative to optimization/supervised

learning, comes precisely from the fact that the agent’s observation sequence is

generated by a Markov chain, and, as such, exhibits temporal correlations. For

such settings, finite-time convergence bounds have only recently been provided in

[19], [135] via some fairly involved analysis. Thus, for the MARL setting we con-

sider with Markovian sampling and asynchronous delays, establishing collaborative

performance benefits turns out to be highly non-trivial. Nonetheless, we provide

such an analysis as a contribution of this chapter.

For each of the above schemes, our contribution is two-fold: we provide the first

non-asymptoptic convergence analysis for the presented communication constrained

multi-agent RL schemes while at the same time we establish a linear convergence speedup

with the number of agents, i.e., we analytically show the beneficial effect of cooperation

62
Federated Reinforcement Learning under Communication Constraints:

Finite-Time Rates

even when agents’ trajectories are temporally correlated (Markovian sampling).

We now comment on some of the highlights of our analysis relative to [77] and [143].

Our work crucially departs from both these papers in that, in addition to correlated

Markovian samples, we add the constraints of communication. Unlike [143], our work

does not require any projection step to ensure the boundedness of iterates. Moreover,

compared to [143], and the analysis in [77] that relies on Generalized Moreau Envelopes,

our proof is significantly shorter and simpler. As a byproduct of this simpler analysis,

for QFedTD and OACFedTD, we derive bounds that have a tighter linear dependence on

the mixing time (consistent with the centralized setting) as opposed to the quadratic

dependence in [77], [143]. In this regard, we should point out that [77] and [143] look at

somewhat more general updating schemes than us by allowing for the agents to perform

multiple local updates in every communication round. Instead, we only consider one local

step in our analysis. While performing more than one local step leads to a “client-drift"

effect [27], [72], [100], it is not clear to us whether/why such a drift effect should lead to

sub-optimal dependencies on the mixing time. In fact, the dependence of O(τ) in our

variance bounds (where τ is the mixing time) is information-theoretically optimal [104].

The other natural advantage of our simple proof template is that one can potentially

build on it while trying to establish linear speedups for more involved RL settings.

4.2 System Model and Problem Formulation

We consider a setting involving N agents, where all agents interact with the same Markov

Decision Process (MDP). Let us denote the shared MDP by M = (S,A,P,R, γ), where

S is a finite state space of size n, A is a finite action space, P is a set of action-dependent

Markov transition kernels, R is a reward function, and γ ∈ (0, 1) is the discount factor. We

are interested in a policy evaluation (PE) problem where the agents exchange information

via a central aggregator (server) to evaluate the value function associated with a policy

µ. Here, the policy is a map from the states to the actions, i.e., µ : S → A. In

what follows, we first briefly review some key concepts relevant to PE with function

approximation. Then, we formally describe our communication model, objectives, and

technical challenges.

Policy Evaluation with Linear Function Approximation. The policy µ to

be evaluated induces a Markov Reward Process (MRP) with transition matrix Pµ and

reward function Rµ : S → R. The purpose of PE is to evaluate the value function Vµ(s)

for each s ∈ S, where Vµ(s) is the discounted expected cumulative reward obtained by

4.2 System Model and Problem Formulation 63

playing policy µ starting from initial state s. Formally, we have

Vµ(s) = E

[∞∑

k=0

γkRµ(sk)|s0 = s

]

, (4.1)

where sk represents the state of the Markov chain at the discrete time-step k under the

action of the policy µ. Our particular interest is in the RL setting where the Markov

transition kernels and reward functions are unknown.

In several large-scale practical settings, the size n of the state space S is large, thereby

creating a major computational challenge. To work around this issue, we will resort to the

popular idea of linear function approximation where Vµ is approximated by vectors in a

linear subspace of Rn spanned by a set of m basis vectors {φℓ}ℓ∈[m]
1; importantly, m≪ n.

To be more precise, let us define the feature matrix Φ , [φ1, ...,φm] ∈ R
n×m. Given a

weight (model) vector θ ∈ R
m, the parametric approximation V̂θ of Vµ is then given

by V (θ) := V̂θ = Φθ. If we denote the s-th row of Φ as φ′
s, then the approximation of

Vµ(s), in particular, is given by V̂θ(s) = 〈θ,φ′
s〉. Throughout, we will make the standard

assumption [19] that the columns of Φ are independent and that the rows are normalized,

i.e., ‖φ′
s‖22 ≤ 1,∀s ∈ S.

Given the above setup, the goal of the server-agent system is to collectively estimate

the model vector θ∗ corresponding to the best linear approximation of Vµ in the span

of Φ. To achieve this goal, we now describe a multi-agent variant of the classical TD(0)

algorithm [138]. All agents start out from a common initial state s0 ∈ S with an initial

estimate θ0 ∈ R
m. Subsequently, at each time-step k ∈ N, a global model vector θk

is broadcasted by the server to all agents. Each agent i ∈ [N] then takes an action

ai,k = µ(si,k), and observes the next state si,k+1 ∼ Pµ(·|si,k) and instantaneous reward

ri,k = Rµ(si,k); here, si,k is the state of agent i at time-step k. Using the model vector

θk and the observation tuple oi,k = (si,k, ri,k, si,k+1), agent i computes the following local

TD update direction:

gi,k(θk, oi,k) = (ri,k + γ〈φ′
si,k+1

,θk〉 − 〈φ′
si,k
,θk〉)φ′

si,k
.

We will often use gi,k(θk) as a shorthand for gi,k(θk, oi,k), and we sometimes also use

g(θk, oi,k), omitting the agent-iteration subscript. Note that although all agents play the

same policy µ, and interact with the same MDP, the realizations of the local observation

sequences {oi,k} can differ across agents. We assume that these observation sequences are

statistically independent across agents.2 Intuitively, based on this independence property,

1Given a positive integer m, we use the notation [m] = 1, ..., m.
2Notice that for each agent i, the observations over time are, however, correlated since they are all

64
Federated Reinforcement Learning under Communication Constraints:

Finite-Time Rates

one can expect that exchanging agents’ local TD update directions should help reduce

the variance in the estimate of θ∗.

We now provide some technical preparation and machinery that is needed for each of

the provided non-asymptotic analysis that we provide for the considered RL schemes. As

is standard, we assume that the rewards are uniformly bounded, i.e., ∃r̄ > 0 such that

Rµ(s) ≤ r̄,∀s ∈ S. This ensures that the value function in (4.1) is well-defined. Next,

we make a standard assumption that plays a key role in the finite-time analysis of TD

learning algorithms [19], [135], [141].

Assumption 4. The Markov chain induced by the policy µ is aperiodic and irreducible.

An immediate consequence of the above assumption is that the Markov chain induced

by µ admits a unique stationary distribution π [84]. Let Σ = Φ⊤DΦ, where D is a

diagonal matrix with entries given by the elements of the stationary distribution π. Since

Φ is assumed to be full column rank, Σ is full rank with a strictly positive smallest

eigenvalue ω < 1; ω will later show up in our convergence bounds. Next, we define the

steady-state local TD update direction as follows:

ḡ(θ) , Esi,k∼π,si,k+1∼Pµ(·|si,k) [gi,k(θ, oi,k)] ,∀θ ∈ R
m. (4.2)

Essentially, the deterministic recursion θk+1 = θk + αḡ(θk) captures the limiting

behavior of the TD(0) update rule. In [19], it was shown that the iterates generated by

this recursion converge exponentially fast to θ∗, where θ∗ is the unique solution of the

projected Bellman equation ΠDTµ(Φθ∗) = Φθ∗. Here, ΠD(·) is the projection operator

onto the subspace spanned by {φℓ}ℓ∈[m] with respect to the inner product 〈·, ·〉D, and

Tµ : Rn → R
n is the policy-specific Bellman operator [141]. We now define the notion of

mixing time τǫ that will play a crucial role in our analysis.

Definition 4.2.1. Let τǫ be the minimum time such that the following holds:

‖E [gi,k(θ, oi,k)|oi,0]− ḡ(θ)‖ ≤ ǫ (‖θ‖+ 1) ,∀k ≥ τǫ,∀θ ∈ R
m,∀i ∈ [N],∀oi,0.

3

Assumption 6 implies that the Markov chain induced by µ mixes at a geometric

rate [84], i.e., the total variation distance between P (si,k = ·|si,0 = s) and the stationary

distribution π decays exponentially fast ∀k ≥ 0,∀i ∈ [N],∀s ∈ S. This immediately

implies the existence of some K ≥ 1 such that τǫ in Definition 5.2.1 satisfies τǫ ≤
K log(1

ǫ) [35]. Loosely speaking, this means that for a fixed θ, if we want the noisy TD

update direction to be ǫ-close (relative to θ) to the steady-state TD direction (where

part of a single Markov chain.
3Unless otherwise specified, we use ‖ · ‖ to denote the Euclidean norm.

4.2 System Model and Problem Formulation 65

both these directions are evaluated at θ), then the amount of time we need to wait for

this to happen scales logarithmically in the precision ǫ. For our purpose, the precision

we will require is ǫ = αq, where q is an integer satisfying q ≥ 2. Unlike the centralized

case where q = 1 suffices [19], [135], to establish the linear speedup property, we will

require q ≥ 2. Henceforth, we will drop the subscript of ǫ = αq in τǫ and simply refer

to τ as the mixing time. Let us define by σ , max{1, r̄, ‖θ∗‖, δ0} the “variance" of the

observation model for our problem.

Communication Model and QFedTD Algorithm. For the QFedTD variant of the

multi-agent TD scheme, we model two key aspects of realistic communication channels in

large-scale FL settings: finite capacity (due to limited bandwidth) and erasures/packet

drops. To account for the first issue, we will employ a simple unbiased quantizer which is

a (potentially random) mapping Q : Rm → R
m satisfying the following constraints [18].

Definition 4.2.2. (Unbiased Quantizer) We say that a quantizer Q is unbiased if the

following hold for all x ∈ R
m: (i) E [Q(x)] = x, and (ii) there exists some constant ζ ≥ 0

such that E
[‖Q(x)− x‖22

] ≤ ζ‖x‖22, where the expectation is w.r.t. the randomness of

the quantizer.

The constant ζ captures the amount of distortion introduced by the quantizer. Using

any quantizer that satisfies Definition 4.2.2, each agent i computes an encoded version

hi,k(θk) = Q(gi,k(θk)) of gi,k(θk). Here, we assume that the randomness of the quantizer

is independent across agents and also independent of the Markovian observation tuples.

Next, to capture packet drops, we assume that the encoded TD directions are uploaded

to the server over Bernoulli erasure channels. Specifically, the transmission of information

from an agent i to the server is over a channel whose statistics are governed by an i.i.d.

random process {bi,k}, where for each k, bi,k follows a Bernoulli fading distribution. To

be more precise, bi,k = 0 with erasure probability (1− p), and bi,k = 1 with probability

p. The packet-dropping processes are assumed to be independent of all other sources of

randomness in our model.

We are now in a position to describe the global parameter update rule at the server

for this Quantized Federated TD learning algorithm, to which we refer to as QFedTD:

θk+1 = θk + αvk; vk =
1

N

N∑

i=1

bi,khi,k(θk), (4.3)

where α is a constant step-size/learning rate.

Objective and Challenges. We want to provide a finite-time analysis of QFedTD.

This is non-trivial for several reasons. Even in the single-agent setting, providing a non-

asymptotic analysis of TD(0) without any projection step is known to be quite challenging

66
Federated Reinforcement Learning under Communication Constraints:

Finite-Time Rates

Agent 1

noise

Agent N

Server

Figure 4.1: Illustration of the OAC-FedTD scheme.

due to temporal correlations between the Markov samples. To analyze QFedTD, we need to

contend with three distinct sources of randomness: (i) randomness due to the temporally

correlated Markov samples {oi,k}i∈[N]; (ii) randomness due to the quantization step; and

(iii) randomness due to the Bernoulli packet dropping processes {bi,k}i∈[N]. Each of these

sources of randomness influence the evolution of the parameter vector θk. Furthermore,

unlike a single-agent setting, our goal is to establish a “linear speedup" w.r.t. the number

of agents under the different sources of randomness above. This necessitates a very

careful analysis that we provide in Appendix B.1.

Remark 4.1. We note here that both the quantization mechanism and the channel model

studied for QFedTD are quite simple. We have chosen to stick to these models primarily

because the focus of our work is on establishing the linear speedup effect under Markovian

sampling. That said, we conjecture that the analysis in Section B.1 can potentially be

extended to cover more involved encoding schemes (e.g., the use of error-feedback [102]).

We reserve these questions for future work.

Over-the-air computation model for OACFedTD. We consider the typical OAC

channel model that has been adopted, for example, in [7], [25], [127], [154]. In this scheme,

N agents, coordinated by a central entity, synchronously transmit their local update

directions as analog wireless signals. The central entity then collects the superposition

of these signals; hence, the term ‘over-the-air.’ The analog signals are subject to fading

channel distortion and to additive white Gaussian noise at the receiver.

Under the assumptions of synchronization and phase compensation [25], [127], [147],

the server at iteration k obtains the following noisy and distorted global TD direction:

4.2 System Model and Problem Formulation 67

vk =
1

N

N∑

i=1

hi,kgi,k(θk) + wk,N , (4.4)

where wk,N ∼ N (0, σ2
wId) and σ2

w = σ̃2
w/N

2, where σ̃2
w is the additive white noise variance

at the receiver. The distortion term hi,k is the random channel gain experienced by agent

i at iteration k, with mean mh and variance σ2
h. We make the standard assumption

that the random channel gain process is independent across agents and iterations. We

will also assume that the random processes {wk,N} and {hi,k} related to the channel

effects are independent of the Markovian data tuples {oi,k}. The model in (4.4) captures

different settings of OAC. For example, the model adopted in [25] considers transmitters

with adaptive power transmission. In that case, hi,k = ci,k
√
pi,k, where ci,k is the actual

channel gain, and
√
pi,k is the power scaling factor of device i that can be adaptively

adjusted to reduce the impact of the channel gain. Due to channel estimation errors [62],

even in the case in which channel inversion is performed, hi,k is typically a random object.

In general, the model considered in this work captures any OAC framework with phase

compensation, as long as the distortion hi,k in (4.4) admits first and second moments.

Once the server receives vk, it updates the estimate of the parameter θk according to

the following update rule, to which we refer to as over-the-air TD learning algorithm, or

simply OAC-FedTD:

θk+1 = θk + αvk, (4.5)

where α is a constant step-size/learning rate, and vk is as in (4.4).

Objective and Challenges. We aim to provide a finite-time analysis of OAC-FedTD.

This is non-trivial for several reasons. To analyze OAC-FedTD, we need to deal with a

multi-agent setting where two distinct sources of randomness are concurrently in place:

(i) the randomness due to the time-correlated agents’ trajectories, and (ii) the randomness

due to the wireless fading channel. Furthermore, the final objective of OAC-FedTD is to

provide a linear convergence speedup w.r.t. the number of agents. This requires a careful

analysis that we provide in Appendix B.2.

Communication model for AsyncFedTD. We now describe the model for AsyncFedTD,

which is analogous to the models studied, for example, in FL [51], [108] and asynchronous

multi-agent RL [130]. At each time-step k, the server updates the model vector θk using

the average of asynchronously delayed agents’ local TD update directions. Specifically,

for each agent i, at iteration k, the corresponding available TD update direction is subject

to a bounded delay τi,k. Define ti,k , (k − τi,k)+, where, for x ∈ R, (x)+ = max{0, x}.
The server updates the model vector θk according to the following rule, to which we refer

68
Federated Reinforcement Learning under Communication Constraints:

Finite-Time Rates

Server

1

MDP

i N

Figure 4.2: System Model for AsyncFedTD. Agents 1, . . . , N cooperatively learn a common
policy interacting with replicas of the same MDP. At each iteration k, the server uses the

available delayed update directions with delays τ1,k, . . . , τN,k.

to as AsyncFedTD:

θk+1 = θk + αvk, (4.6)

where α is a constant step-size/learning rate, and

vk =
1

N

N∑

i=1

g(θti,k
, oi,ti,k

). (4.7)

In this work, we assume that the down-link communication from the server to the agents

is not subject to delays. Such an assumption is practically motivated by the fact that in

most client-server architectures (e.g., wireless networks [29]), the main communication

bottleneck comes from up-link transmissions, instead of down-link broadcasting. Note

that the update direction vk used by the server features iterates θti,k
and observations

oi,ti,k
from potentially stale time-steps. Furthermore, the delays τ1,k, . . . , τN,k can differ

across agents.

We make the following assumption on the delay sequence, which is common in the

study of asynchronous distributed optimization and FL [78], [108].

Assumption 5. There exists a positive integer τmax > 0 such that 0 ≤ τi,k ≤ τmax, for all

i and for all k.

Objective and Challenges. We provide a finite-time analysis of AsyncFedTD. This

poses several challenges. In fact, even in the single-agent setting, providing a non-

asymptotic analysis of TD(0) without performing intermediate projection steps is known

to be challenging due to the temporal correlation between the Markov samples in the

4.3 Convergence Results 69

iterative learning process. Crucially, this challenge is absent in asynchronous stochastic

optimization where one assumes i.i.d. data, precluding the use of techniques used in this

line of work. For the analysis of AsyncFedTD, we encounter further obstacles: the update

rule involves the use of multiple correlated iterates θti,k
, i = 1, ..., N , at which the local

TD update directions are asynchronously computed. Indeed, note that, although the

observation sequences oi,k are statistically independent across agents, the iterates used

to compute the local TD update directions are all correlated. This aspect introduces

the need for a much finer analysis when we want to provide finite-time convergence

guarantees. Furthermore, unlike a single-agent setting, we aim to establish an N -fold

linear convergence speedup while jointly dealing with the challenges outlined above. This

necessitates a very careful study, which we detail extensively in Appendix B.3.

4.3 Convergence Results

In this section, we state and discuss our main results pertaining to the non-asymptotic

performance of QFedTD, OACFedTD and AyncFedTD. Recall δ2
k , ‖θ∗ − θk‖2. All the proofs

of the results of this section are provided in full details in Appendix B.

4.3.1 QFedTD: Convergence

We now state the convergence result for QFedTD. Let ζ ′ , max{1, ζ}, where ζ is as in

Definition 4.2.2.

Theorem 4.2. Consider the update rule of QFedTD in (4.3). There exist universal constants

C0, C2, C3 ≥ 1, such that with α ≤ ω(1−γ)
C0τζ′ , the following holds for T ≥ 2τ :

E

[

δ2
T

]

≤ (1− αω(1− γ)p)TC1 +
τσ2

ω(1− γ)

(
C2αζ

′

N
+ C3α

3
)

, (4.8)

where C1 = 4δ2
0 + 2pσ2.

Discussion: There are several important takeaways from Theorem 4.2. From (4.12),

we first note that QFedTD guarantees linear convergence (in expectation) to a ball around

θ∗ whose radius depends on the variance σ2 of the noise model. While the linear

convergence rate gets slackened by the probability of successful transmission p, the

“variance term", namely the second term in (4.8), gets inflated by the quantization

parameter ζ. Both of these channel effects are consistent with what one typically observes

for analogous settings in FL [121]. Next, compared to the centralized setting [135,

Theorem 7], the variance term in (4.8) gets scaled down by a factor of N , up to a

70
Federated Reinforcement Learning under Communication Constraints:

Finite-Time Rates

higher-order O(α3) term that can be dominated by the (α/N) term for small enough α.

Note that this α3 term is obtained thanks to mixing arguments relative to the biasedeness

of the TD direction g(.), and we do not see a way to avoid the presence of this term.

Before we make the point on the linear speedup effect explicit, it is instructive to note

that our variance bound exhibits a tighter dependence on the mixing time τ relative to

[77] and [143], where similar bounds are established. In particular, while this dependence

is O(τ) for us, it is O(τ2) in [77, Theorem 4.1] and in [143, Theorem 4]. Notably, the O(τ)

dependence that we establish is consistent with results on centralized TD learning [19],

[135], and is in fact the optimal dependence on τ under Markovian data [104]. We have

the following immediate corollary of Theorem 4.2.

Corollary 4.1. Consider the update rule of QFedTD in (4.3). Let the step-size α and the

number of iterations T be chosen to satisfy:

α =
logNT

ω(1− γ)pT
, and T ≥ 2C0Nτζ

′ logNT

ω2(1− γ)2p
, (4.9)

where C0 is as in Theorem 4.2. We then have the following bound:

E[δ2
T] ≤ O

((
ζ ′

p

)
max{δ2

0 , σ
2}τ log(NT)

ω2(1− γ)2trNT

)

. (4.10)

To appreciate the above result, let us compare it to the result for the single agent

TD setting in [19]. Under Markovian sampling, part (c) of Theorem 3 in [19] establishes

that the mean-square error for single-agent TD decays at the following rate:

O

(

G2τ log(T)

ω2(1− γ)2T

)

,

where G, as defined in [19], captures the effect of both the projection radius (in [19],

the authors consider a projected version of TD learning) and the noise variance.4 The

term G2 can be viewed as the analog of max{δ2
0 , σ

2} in our bound. Comparing the above

bound with that in Eq. (4.10), we make two immediate observations. (i) The term T

in the centralized bound gets replaced by NT in our bound. This is precisely what we

wanted since in our setting, each agent has access to T samples, yielding a total of NT

samples. Essentially, this goes on to show that our algorithm is sample-efficient in that it

makes use of all the samples from all the agents and achieves a linear speedup w.r.t. the

number of agents. Second, the effect of channel effects is succinctly captured by the term

4Part (c) of Theorem 3 in [19] provides a bound on the error in the value function, and not the iterates
(like we do). The bound on the iterates that we report above is derived from the bound on the value
functions in Appendix A.2 of [19], where the authors provide a proof of Theorem 3.

4.3 Convergence Results 71

in blue in Eq. (4.10). This term essentially inflates the variance max{δ2
0 , σ

2} of our noise

model. When the number of agents N = 1, the probability of successful transmission

p = 1, and there is no quantization effect (i.e., ζ ′ = 1), our bound exactly recovers the

bound in the centralized setting (even up to log factors). As far as we are aware, our

work is the first to establish such a tight result in multi-agent/federated reinforcement

learning under Markovian sampling and communication constraints.

4.3.2 OACFedTD: Convergence

We now present the first finite-time result in RL with OAC. Notably, we consider the

challenging case in which agents’ trajectories follow a Markov process, and show that

cooperation between agents provides a linear convergence speedup even under noisy

analog communication over wireless fading channels.

Theorem 4.3. Consider the update rule of OAC-FedTD in (4.5). There exists a universal

constant C0 ≥ 1, such that with α ≤ mhω(1−γ)
C0τph

, the following holds for T ≥ 2τ :

E

[

δ2
T

]

≤ (1−mhαω(1− γ))TC1 +
C2phατσ

2

mhω(1− γ)N

+
C3phτσ

2α3

mhω(1− γ)
+

C4ατσ̃
2
wd

mhω(1− γ)N2
,

(4.11)

where C1 = 4δ2
0 + 2σ2 + 2 σ̃2

w
d

N2 , and C2, C3, C4 are universal constants.

A detailed proof of Theorem 4.3 is provided in the Appendix, where we outline the

key technical challenges relative to the centralized analysis in [135].

Discussion: We now discuss the main takeaways from Theorem 4.3. From (4.11),

we first note that OAC-FedTD guarantees linear convergence (in the mean-square sense) to

a ball around θ∗ whose radius depends on the second, third and fourth terms in (4.11).

The linear convergence rate gets slackened by both the mean distortion mh, and by

the choice of the step size, which needs to scale inversely with phτ . The term ph also

inflates the dominant “variance term", namely the second term in (4.11). So, given that

E

[

h2
i,k

]

= m2
h + σ2

h and recalling that ph = max{1,m2
h + σ2

h}, our bound clearly reveals

the effect of fading distortion. This channel effect is consistent with what one observes

for analogous settings in FL with OAC [127]. Compared with the effect of noise in FL via

OAC, we note that the variance term related to the additive noise at the receiver, i.e., the

fourth term in (4.11), gets scaled by the mixing time τ . Next, compared to the centralized

setting [135, Theorem 7], observe that the second and fourth terms in (4.11) get scaled

down by a factor of N . Moreover, the third term is O(α3), i.e., it is a higher-order term

72
Federated Reinforcement Learning under Communication Constraints:

Finite-Time Rates

that is dominated by the second term for small enough α. Thus, ours is the first work in

MARL/FRL over wireless fading channels to establish a variance-reduction effect w.r.t.

the number of agents. With α = O(log (NT)/T), we can explicitly show that each of the

four terms in (4.11) is O(1/NT), yielding the linear speedup effect we had hoped for.

Finally, note that, compared to the only other very recent paper [77] that establishes

linear speedup under Markovian sampling (albeit, without channel effects), the second,

third, and fourth terms in (4.11) have a tighter dependence on the mixing time τ . Indeed,

while we achieve a linear dependence of O(τ), which is consistent with the centralized

setting [135], the dependence in [77, Theorem 4.1] is O(τ2).

4.3.3 AsyncFedTD: Convergence

Let δ2
k , ‖θ∗ − θk‖2 and define by σ , max{1, r̄, ‖θ∗‖, δ0} the “variance" of the observa-

tion model for our problem. We can now state our convergence result for AsyncFedTD.

Theorem 4.4. Consider the update rule of AsyncFedTD in (4.6). There exist universal

constants C0, C1, C2, C3 ≥ 1, such that, for α ≤ ω(1−γ)
C0(τ+τmax) and T ≥ 2τ + τmax,

E

[

δ2
T

]

≤ exp

(

−α(1− γ)ωT

2(τ + τmax)

)

C1σ
2

+
(τ + τmax)σ2

2ω(1− γ)

(
C2α

N
+ C3α

3
)

.

(4.12)

Discussion: We now remark on the main takeaways from Theorem 4.4. From the

bound in (4.12), we note that AsyncFedTD guarantees linear convergence (in mean-square

sense) to a ball around θ∗ whose radius depends on the variance σ2 of the noise model.

We now comment on the effect of the asynchronous delays on the convergence bound,

and on the linear convergence speedup established by the theorem.

Effect of asynchronous delays. From (4.12), note how both the exponent of the

linear convergence term and the radius of the noise ball are impacted by the delay

sequence via the maximum delay τmax. Indeed, compared to the centralized TD case [135,

Theorem 7], and to the synchronous federated TD case [44, Theorem 1], we see that for

AsyncFedTD, the noise ball gets multiplied by the sum of mixing time and maximum

delay, i.e., τ + τmax. In essence, our analysis reveals that τ + τmax plays the role of an

effective delay. Interestingly, an immediate implication is that if the underlying Markov

chain mixes slowly, i.e., has a larger mixing time τ , then the effect of the delay is less

pronounced. This appears to be a novel observation.

Linear convergence speedup. Compared to the centralized setting [135, Theorem 7],

the noise variance term in (4.12) gets scaled down by a factor of N up to a higher-order

4.4 Numerical Simulations 73

O(α3) term that, for small enough α, is dominated by (α/N). To better illustrate the

linear speedup effect, consider the following choice of α and T (define τ̄ , τ + τmax):

α =
τ̄ logNT

ω(1− γ)T
, and T ≥ 2C0Nτ̄

2 logNT

ω2(1− γ)2
. (4.13)

With the above choices, and simple manipulations of the bound in (4.12), it can be

explicitly shown that

E[δ2
T] ≤ O

(

σ2τ̄2 log(NT)

ω2(1− γ)2NT

)

. (4.14)

The above bound tells us that AsyncFedTD yields a convergence rate of O(1/(NT)),

which is a factor of N better than the O(1/T) rate in the centralized case [19]. Note

the quadratic dependence on both the delay sequence and on the mixing time of the

Markov chain, that we can see in the term τ̄2. Note that in the convergence results for

QFedTD and OACFedTD this dependence was linear which is the optimal dependence from

an information theoretic point of view. We further study this aspect in the more general

framework of stochastic approximation under Markovian sampling and delayed updates

in Chapter 5, where we derive optimal dependencies on τmax and τ for the single-agent

case of delayed SA.

We remark that this is the first analysis for asynchronous multi-agent and federated

RL that provides finite-time convergence guarantees, while jointly establishing an N -fold

linear convergence speedup under Markovian sampling.

4.4 Numerical Simulations

In this section, we provide simulation results to validate our theory. We consider an MDP

with |S| = 100 states and a feature space spanned by d = 10 orthonormal basis vectors;

we set the discount factor to γ = 0.5 and the step size to α = 0.05. For AsyncFedTD,

to simulate the asynchronous delays in the TD update directions, we generate random

delays at each iteration k for each agent i, by generating a uniform random variable τi,k

in the range [1, τmax]. We set τmax = 100. For QFedTD, we generate the erasure channels

with Bernoulli random variables, and employ uniform scalar quantization of the TD

update directions, assigning a certain number of bits for the quantization of each vector

component of each agent, and set the probability of successful transmission to p = 0.6,

while we quantize the TD update directions assigning 4 bits to each vector component.

For OACFedTD, we generate the channel distortion hi,k (with mean mh and variance σ2
h)

as a Rayleigh random variable, which is a widely adopted model for fading channels

74
Federated Reinforcement Learning under Communication Constraints:

Finite-Time Rates

Figure 4.3: Comparison between vanilla FedTD and AsyncFedTD in single-agent (N = 1) and
multi-agent (N = 20) settings. For AsyncFedTD, we set τmax = 100.

[127]. In the multi-agent seting, we experiment with different numbers of agents, like

N = 15, 20, 40. For each configuration, we plot the average of 20 experiments. From the

results, it is apparent how the linear speedup property also holds for QFedTD (Figure 4.5),

OACFedTD (Figure 4.4) and AsyncFedTD (Fig 4.3).

4.4 Numerical Simulations 75

1000 2000 3000 4000 5000 6000 7000 8000
10

-3

10
-2

10
-1

10
0

10
1

Figure 4.4: Performance of OAC-FedTD for different values of the standard deviation of the
measurement noise at the receiver (σ̃w = 0.2, 0.8), and for different values of the number of

cooperating agents (N = 1, 15).

1000 2000 3000 4000 5000 6000 7000
10

-3

10
-2

10
-1

10
0

10
1

TD, N = 1

QFedTD, N = 1

TD, N = 40

QFedTD, N = 40

Figure 4.5: Comparison between vanilla FedTD and QFedTD in single-agent (N = 1) and
multi-agent (N = 40) settings. The number of bits used to quantize the TD update direction

is 4 per vector component, and the erasure probability is p = 0.6.

76
Federated Reinforcement Learning under Communication Constraints:

Finite-Time Rates

4.5 Related Publications and Conference Presentations

The content of this chapter has been published in the IEEE Control Systems Letters [55]

and accepted for presentation at the Machine Learning and Systems conference, 2023, in

the Workshop on Resource-Constrained Learning in Wireless Networks [43]. Content of

this chapter has also be accepted for presentation at the IEEE Conference on Decision

and Control in December 2023 and submitted to the American Control Conference, 2024.

5
Stochastic Approximation with Delayed Updates:

Finite-Time Rates under Markovian Sampling

with Optimal Dependencies

In Chapter 4, we studied a model of asynchronous federated reinforcement learning

(FRL). The convergence bound that we derived for the considered model, in which

TD update directions are computed at stale iterates and observations from the past,

showed a sub-optimal quadratic dependence on the delay sequence and on the mixing

time of the Markov chain (see Theorem 4.4 and related discussion). In this chapter,

we focus on this specific aspect of the dependency on mixing time and delay sequence,

studying a - single-agent - more general stochastic approximation (SA) setting under

Markovian sampling with delayed updates. In this setup , iterative updates of SA are

based on delayed versions of the SA operator evaluated at stale iterates and samples

from the past. We are interested in understanding the finite-time performance of this

updating scheme with a focus on characterizing the interplay between the properties of

the underlying Markov process and the delay sequence. Our first contribution is to show

that, under standard assumptions, the delayed SA update rule guarantees exponentially

fast convergence to a ball around the desired fixed point of the operator. We establish

that in a constant delay scenario, the optimal convergence rate achieved by the delayed SA

algorithm is scaled down by a (information-theoretically optimal) factor of max{τ, τmix},
where τ denotes the constant delay, and τmix represents the mixing time of the Markov

process. This result is proven using a technique inspired by previous works that utilizes

the weighted average of iterates. This technique that works for the constant delay case

cannot be directly generalized to time-varying delay cases. To address this issue, we

propose an approach that involves proving the boundedness of the SA iterates for a

suitable choice of step size. We then conduct a novel analysis to show that in the case of

78
Stochastic Approximation with Delayed Updates: Finite-Time Rates under

Markovian Sampling with Optimal Dependencies

time-varying delays, the exponent of convergence for the last iterate is scaled down by

a (information-theoretically optimal) factor of max{τmax, τmix}. Here, τmax represents

the maximum delay. This is the first result to provide finite-time rates for SA under

time-varying delayed updates, while establishing a tight bound in both τmax and τmix on

the last iterate. Our theoretical findings apply to various algorithms where the finite-time

effects of delays were previously unknown, such as TD learning and Q-learning with

function approximation, and stochastic gradient descent under Markovian sampling.

5.1 Introduction

Stochastic Approximation (SA) is an iterative technique used to solve root-finding

problems in the presence of noisy information. This method finds its application in

various fields such as machine learning and reinforcement learning. In this section, we

will provide a brief summary of previous works and then highlight our contributions.

The Stochastic Approximation (SA) framework, was originally introduced in 1951 [124]

and it has been extensively studied in the literature, with a focus on understanding its

convergence behavior and applications in various domains. Several works have contributed

to the finite-time analysis of SA algorithms [20], [32], [33], [135], [149].

In this chapter, we make significant contributions to the field of stochastic approxi-

mation (SA) by studying the non-asymptotic convergence rates of SA under Markovian

sampling with delayed updates. Our investigation focuses on understanding the finite-time

performance of this updating scheme, considering the interplay between the properties

of the underlying Markov process and the delay sequence. Our contributions are the

following:

1. The first major contribution of this work is the exploration of finite-time analysis

for delayed Stochastic Approximation (SA) under Markovian sampling. We delve

into the analysis of the joint effect of delayed updates and the correlated Markov

observation process on the convergence behaviour of SA algorithms, which has not

been studied before.

2. Optimal dependencies. Starting from a setting with constant delay, we establish that

a carefully weighted average of iterates achieves a convergence rate with optimal

dependencies on the delay sequence and on the mixing time of the Markov chain,

with the exponent of convergence scaled down by a factor of max{τ, τmix}, where

τ represents the constant delay, and τmix denotes the mixing time of the Markov

chain. This result sheds light on the trade-off between the delay and mixing time,

providing valuable insights into the impact of the delay on convergence performance.

5.2 Stochastic Approximation with Delayed Updates 79

3. Optimal dependencies. We then expand our analysis to more general time-varying

delays settings. The analysis with constant delay cannot be directly applied to the

time-varying delay case, and it also guarantees a bound only on a weighted average

of iterates. Therefore, we introduce a novel approach for the time-varying case,

proposing an analysis that involves proving the boundedness of SA iterates for a

suitable choice of step size. We then show that with this new analysis the exponent

of convergence for the last iterate is scaled down by a factor of max{τmax, τmix},
where τmax represents the maximum delay. This is the first study to achieve a tight

bound on both τmax and τmix.

In summary, our work provides a comprehensive analysis of the finite-time convergence

behaviour of delayed Stochastic Approximation. The insights and results presented in

this work pave the way for the development of more efficient and adaptive algorithms

that can handle delays effectively in a wide range of applications.

Related Work in Optimization. The impact on the convergence bounds of optimiza-

tion algorithms under delays and asynchronous settings has been a topic of interest since

the seminal work [17], which investigates convergence rates of asynchronous iterative

algorithms in parallel or distributed computing systems. In this same area there have been

subsequently many efforts, usually focused on stochastic gradient descent and federated

learning, like, for example, [3], [36], [78], [137].

5.2 Stochastic Approximation with Delayed Updates

The objective of general SA is to solve a root finding problem of the following form:

Find θ∗ ∈ R
m such that ḡ(θ∗) = 0, (5.1)

where, for a given approximation parameter θ ∈ R
m, the deterministic function ḡ(θ) is

the expectation of a noisy operator g(θ, ot), and {ot} denotes a stochastic observation

process. In this work, we consider SA under Markovian sampling, i.e., the observations

{ot} are temporally correlated and form a Markov chain. For this SA scheme, we define

(see also [19], [135], [149])

ḡ(θ) , Eot∼π[g(θ, ot)], (5.2)

where π is the stationary distribution of the Markov chain {ot}.
SA consists in finding an approximate solution to (5.1) while having access only to

noisy instances g(θ, ot) of ḡ(θ). The typical iterative SA update rule with a constant

80
Stochastic Approximation with Delayed Updates: Finite-Time Rates under

Markovian Sampling with Optimal Dependencies

step size α is as follows [34], [135],

θk+1 = θk + αg(θk, ot). (5.3)

The asymptotic convergence of SA under Markov randomness method has been thoroughly

investigated in prior work [140]. Recently, there is an increased interest in finite-time

convergence guarantees for SA. Finite-time analysis of SA is relevant because it provides

insightful theoretical guarantees about the algorithm’s convergence rate.

Several recent works have investigated linear [19], [135] and non-linear [34] SA, and

provided finite-time convergence bounds under Markovian sampling. Notably, Finite-time

convergence analysis for SA under Markovian sampling are significantly more challenging

relative to i.i.d. sampling. Indeed, temporal correlation between samples of {ot}, which

is also inherited by the iterates {θk}, prevents the use of some techniques commonly

used for the finite-time rates study of SA under i.i.d. sampling, triggering the need for

a more elaborate analysis. In many real-world applications, like the FRL framework

considered in Chapter 4, the SA operator g(·) is only available when computed with

delayed iterates and/or observations. The main objective of this work is to provide a

unified framework to analyse the finite-time convergence of SA under delays. We proceed

by formally introducing the setting.

SA with delays. We consider the following stochastic recursion with delayed updates:

θk+1 = θk + αg(θk−τ , ot−τt), τt ≤ t, (5.4)

where α is a constant step size and τt is the delay with which the operator g(·) is

available to be used at iteration t. This specific update rule is motivated by many scenarios

of practical interest. For instance, in distributed machine learning and reinforcement

learning, it is often the case that the agents’ updates are performed in an asynchronous

manner, leading naturally to update rules of the form (5.4).

Update rules of the form (5.4) have been recently studied in the context of SA but

with i.i.d. observations (see e.g. [78], [109] for SGD updates with delays). However, to

the best of our knowledge, little to nothing is known about the finite-time convergence

behaviour of such update rules under Markovian observations. Compared with i.i.d.

setting, the Markovian setting introduces major technical challenges, including dealing

with the joint effect of (i) the use of a delayed operator g(θk−τ , ot−τt) and (ii) sequences

of correlated observation samples {ot}. The interplay of update rules based on delayed

SA operator instances and the presence of time correlation in the noise process requires a

5.2 Stochastic Approximation with Delayed Updates 81

notably careful analysis, one which we provide as a main contribution of this work. The

key features and challenges of the analysis are provided with more details in section 5.4.

We proceed with describing a few assumptions needed for our analysis. First, we

make the following natural assumption on the underlying Markov chain {ot} [19], [34],

[135].

Assumption 6. The Markov chain {ot} is aperiodic and irreducible.

Next, we state two further assumptions that are common in the analysis of SA

algorithms.

Assumption 7. Problem (5.1) admits a solution θ∗, and ∃µ > 0 such that for all θ ∈ R
m,

we have

〈θ − θ∗, ḡ(θ)− ḡ(θ∗)〉 ≤ −µ‖θ − θ∗‖2. (5.5)

Assumption 8. For every θ1,θ2 and o ∈ {ot}, we have

‖g(θ1, o)− g(θ2, o)‖ ≤ L‖θ1 − θ2‖. (5.6)

Assumption 9. For any θ ∈ R
m and o ∈ {ot}, we have

‖g(θ, o)‖ ≤ L(‖θ‖+ σ). (5.7)

Finally, we introduce an assumption on the time-varying delay sequence {τt}.

Assumption 10. There exists an integer τmax ≥ 0 such that τt ≤ τmax, ∀t ≥ 0.

Assumption 7 is a strong monotone property of the map −ḡ(θ) that guarantees

that the iterates generated by a “mean-path” version of Eq. (5.1), θk+1 = θk + αḡ(θk),

converge exponentially fast to θ∗. Assumption 8 states that g(θ, ot) is globally uniformly

Lipschitz in the parameter θ. Without loss of generality, we have fixed the Lipschitz

constant to be L = 2, which is the Lipschitz constant value in the case of TD learning

with linear function approximation.

Remark 5.1. Assumption 7 holds for TD learning (Lemma 1 and Lemma 3 in [19]),

Q-learning [34], and SGD for strongly convex functions. Similarly, Assumption 8 holds for

TD learning [19], and for Q-learning and SGD analysis, it holds up to some constant L [34],

[48]. Our proof technique generalizes to this setting easily. Furthermore, Assumption 9

holds for TD learning [19], and for Q-learning, it holds up to some constant [34].

We now introduce the following notion of mixing time τα, that plays a crucial role in

our analysis, as in the analysis of all existing finite-time convergence studies on SA under

Markovian sampling.

82
Stochastic Approximation with Delayed Updates: Finite-Time Rates under

Markovian Sampling with Optimal Dependencies

Table 5.1: Summary of results.

Algorithm Variance Bound Bias Bound

Constant Delay (5.8) O(σ2) O
(

exp
(

−µ2T
L2 max{τ,τmix}

))

Time-Varying Delays (5.26) O(σ2) O
(

exp
(

−µ2T
L2 max{τmix,τmax}

))

Definition 5.2.1. Let τα be such that

‖E [g(θ, ot)|o0]− ḡ(θ)‖ ≤ α (‖θ‖+ 1) ,∀t ≥ τα,∀θ ∈ R
m,∀o0.

In the rest of the Chapter, we refer to τα simply as τmix.

Remark 5.2. Note that Assumption 6 implies that the Markov chain {ot} mixes at a

geometric rate. This, in turn, implies the existence of some K ≥ 1 such that τα in

Definition 5.2.1 satisfies τα ≤ K log(1
α). In words, this means that for a fixed θ, if we

want the noisy operator g(θ, ot) to be α-close (relative to θ) to the expected operator

ḡ(θ), then the amount of time we need to wait for this to happen scales logarithmically

in the precision α.

5.3 Warm Up: Stochastic Approximation with Constant

Delays

In this section, we present the first finite-time convergence analysis of SA with constant

delay under Markovian sampling. With respect to the SA with delayed updates introduced

in (5.4), we fix τt = τ , with τ the constant delay. Similarly to [137], we define the SA

update rule accordingly:

SA with Constant Delay: θt+1 =

θ0 if 0 ≤ t < τ

θt + αg(θt−τ , ot−τ) if t ≥ τ
(5.8)

The following Theorem provides a finite-time convergence bound for the update rule

in (5.8). The form and analysis of the Theorem is inspired by [137] and it is the first

contribution of this work.

5.3 Warm Up: Stochastic Approximation with Constant Delays 83

Theorem 5.3. Let wt := (1− 0.5αµ)−(t+1) and WT =
∑T

t=0wt. Let θout be a randomly

chosen iterate from {θt}Tt=0. Specifically, θout = θt with probability wt
WT

. Define rout :=

‖θout−θ∗‖ and τ̄ := max{τ, τmix}. For T ≥ 0, there exist universal constants C1, C2, C3 ≥
2, such that, for α ≤ µ

C1L2τ̄
, applying the update rule in (5.8), the following holds,

E

[

r2
out

]

≤ Cα exp (−0.5αµT) r2
0 + C2

αL2τ̄σ2

µ
, (5.9)

where Cα is inversely proportional to α. Setting α = µ
C1L2τ̄

, we get

E

[

r2
out

]

≤ Cτ̄ exp

(

−0.5
µ2

C1L2τ̄
T

)

r2
0 +

C2σ
2

C1
, (5.10)

with Cτ̄ = τ̄
µ

(
2C1L2

µ + 4B
)

, with B = C3σ
2.

Main Takeaways: We now outline the key takeaways of the above Theorem. First,

we showed exponential convergence of E
[
r2

out

]
to a ball around the fixed point θ∗. This

latter result represents the first finite-time convergence bound for SA with delayed updates

under Markovian sampling. Second, the obtained convergence exponent scales inversely

with τ̄ = max{τ, τmix}. Hence, if τ ≥ τmix, we get a dependency on the constant delay τ

which is consistent with what is known for SA with delayed updates in the i.i.d. sampling

case, specifically in the case of SGD with constant delay [137]. Note that this dependency

has been shown to be tight for SGD [10], and, consequently, our rate is optimal in terms of

the obtained dependency on the delay τ . If τmix ≥ τ , the obtained convergence exponent

scales inversely with τmix, which is consistent with the non-delayed case of SA under

Markovian sampling [19], [135], and has been shown to be in fact minimax optimal [105].

In summary, in the above Theorem we provide the first finite-time convergence bound

for SA with updates subject to constant delays under Markovian sampling, getting a

convergence rate that has optimal dependencies on both the delay τ and the mixing time

τmix.

Outline of the Analysis and Challenges. We now provide the main steps of the

analysis and underline the key challenges that make each step necessary. First of all,

similarly to [137], we define a sequence of virtual iterates, θ̃t, which, at each iteration t,

are updated with the actual SA update direction g(θk, ot):

θ̃t+1 = θ̃t + αg(θt, ot). (5.11)

Accordingly, we define an error term dt which is the gap between θk and θ̃t at each

iteration t, i.e., θ̃t = θk + dt. A key step in the analysis that, as it was the case for [137],

84
Stochastic Approximation with Delayed Updates: Finite-Time Rates under

Markovian Sampling with Optimal Dependencies

relies on the fact that the delay τ is constant, is that, for any t ≥ 0, we can write the

error term as follows,

dt = α
t−1∑

l=t−τ

g(θl, ol). (5.12)

In the first part of the proof of Theorem 5.3, we provide a convergence bound for the

virtual iterates sequence θ̃t, studying E
[
r̃2

t

]
= E

[

‖θ̃t − θ∗‖2
]

and providing a bound

that is a function of ‖dt‖2 and r̃2
l , ‖dl‖2, with l = t− τ̄ , ..., t− 1. To get this bound, we

analyze the following recursion

r̃2
t+1 = r̃2

t + 2α〈g(θk, ot), θ̃t − θ∗〉+ α2‖g(θk, ot)‖2

= r̃2
t + 2α〈ḡ(θ̃t), θ̃t − θ⋆〉+ 2αht + 2αmt + α2‖g(θk, ot)‖2

≤ (1− 2αµ)r̃2
t + 2αht + 2αmt + α2nt,

(5.13)

where the last inequality follows from Assumption 7, and where we have

nt := ‖g(θt, ot)‖2,
ht := 〈g(θ̃t, ot)− ḡ(θ̃t), θ̃t − θ∗〉,
mt := 〈g(θk, ot)− g(θ̃t, ot), θ̃t − θ∗〉.

(5.14)

The term ht is an error term related to Markovian sampling. Indeed, if the process ot

were sampled in an i.i.d. fashion, it would be E [ht] = 0. However, due to the correlated

nature of ot, this does not hold true, and, consequently, ht requires careful care in the

analysis. On the other hand, the term mt is an error term related to the delayed nature

of the SA algorithm under consideration. In absence of delays, it would be mt = 0. To

obtain the convergence bound for E
[
r̃2

t

]
, we provide bounds on E [ht], mt and ‖g(θk, ot)‖2.

Obtaining bounds for these terms require some work, that we present as auxiliary Lemmas

in the last part of this section. Providing the bound on E [ht] is the most challenging

part of the analysis, which also requires mixing time arguments. We provide such a

bound in Lemma 5.3 - (iii). In order to provide a bound that is a function of ‖dt‖2 and

r̃2
l , ‖dl‖2, with l = t− τ̄ , ..., t− 1, we need to provide a novel analysis compared to the

one used for the non-delayed SA under Markovian sampling in [135]. Specifically, we

need to introduce a new way to bound the terms ‖θt − θt−τmix‖ and ‖θt − θt−τmix‖2 and

use the corresponding bounds accordingly when bounding E [ht]. The bound obtained

5.3 Warm Up: Stochastic Approximation with Constant Delays 85

thanks to the auxiliary Lemmas has the following form:

E

[

r̃2
t+1

]

≤ (1− 2αµ+ 48α2L2τ̄)E
[

r̃2
t

]

+ 128α2L2τ̄σ2

+ 4α2L2
E

[

‖dt‖2
]

+ 20α2L2
t−1∑

l=t−τ̄

E

[

‖dl‖2 + 2r̃2
l

]

+ 2αB̄t,
(5.15)

with

B̄t =

111σ2 if 0 ≤ t < τmix

0 otherwise
. (5.16)

Starting from this bound, we analyze the weighted average
∑T

t=0wtE
[
r̃2

t

]
. Applying the

weighted average to both sides of the bounds, applying some manipulations and with

the proper choice of upper bound on the step size α, we are able to get the following

inequality

T∑

t=0

wtE

[

r̃2
t+1

]

≤ (1− 0.5αµ)
T∑

t=0

wtE

[

r̃2
t

]

+ 150WTα
2L2τ̄σ2

+2Wτmix−1α
(

111σ2
)

.

(5.17)

This last inequality is obtained thanks to Lemma 5.1, which we state in the next paragraph

and which establishes a bound on
∑T

t=0wtE
[‖dt‖2

]
. With some further manipulations

and using the fact that E
[
r2

t

] ≤ 2E
[
r̃2

t

]
+ 2E

[‖dt‖2
]
, we can derive the final result.

Auxiliary Lemmas. Here, we present the main Lemmas needed to prove Theo-

rem 5.3. We start with three bounds on ‖dt‖, ‖dt‖2 and
∑T

t=0wt‖dt‖2, as follows

Lemma 5.1. The three following inequalities hold:

(i) ‖dt‖ ≤ ατLσ + αL
t−1∑

l=t−τ

‖θl‖, (5.18)

(ii) ‖dt‖2 ≤ 2α2τ2L2σ2 + 2α2τL2
t−1∑

l=t−τ

‖θl‖2, (5.19)

(iii)
T∑

t=0

wt‖dt‖2 ≤ 4WTα
2τ2L2σ2 + 16α2τ2L2

T∑

t=0

wt‖θ̃t‖2, (5.20)

where (iii) holds for α ≤ 1
4τL .

Part (iii) of this Lemma is key to obtain the bound in (5.17). In the next Lemma,

we provide bounds on the terms ‖θ̃t − θ̃t−τmix‖ and ‖θ̃t − θ̃t−τmix‖2.

86
Stochastic Approximation with Delayed Updates: Finite-Time Rates under

Markovian Sampling with Optimal Dependencies

Lemma 5.2. For any t ≥ τmix, we have

(i) ‖θ̃t−τmix − θ̃k‖ ≤ Lαστmix + Lα
t−1∑

l=t−τmix

‖θl‖ (5.21)

(ii) ‖θ̃t−τmix − θ̃k‖2 ≤ 2L2α2τ2
mixσ

2 + 2L2α2τmix

t−1∑

l=t−τmix

‖θl‖2 (5.22)

Note that this Lemma is a variation of Lemma 3 in [135], which is key to invoke

mixing time arguments to get finite-time convergence bounds in existing non-delayed SA

analysis. To obtain a bound in the form (5.15), we need to bound E [ht] properly, for

which, in turn, we need Lemma 5.2. Furthermore, note that, in contrast to [135], the

bound is obtained for the sequence of virtual iterates. In the next Lemma, we provide

bounds for the three key terms of the bound in (5.13), i.e., ‖g(θk, ot)‖2, mt and E [ht].

Lemma 5.3. For all t ≥ 0, we have

(i) nt ≤ 4L2‖dt‖2 + 8L2r̃2
t + 10L2σ2, (5.23)

(ii) mt ≤ 6ατL2σ2 + 3ατL2r̃2
t + 2αL2

t−1∑

l=t−τ

(

‖dl‖2 + 2r̃2
l

)

, (5.24)

(iii) E [ht] ≤

111σ2L2, for 0 ≤ t ≤ τmix

4ατmixL
2
(
8σ2 + 3E

[
r̃2

t

])
+ 8αL2∑t−1

l=t−τmix
E
[‖dl‖2 + 2r̃2

l

]
, for t ≥ τmix

(5.25)

where (iii) holds for α ≤ 1
36L2τmix

.

The proof of this last Lemma relies on the bound on ‖dt‖ established in Lemma 5.1.

The proof of (iii) relies on the mixing properties of the Markov chain {ot} and on the

bounds on ‖θt− θt−τmix‖ and ‖θt− θt−τmix‖2 established in Lemma 5.2. Part (iii) is the

key and most challenging part of the proof, which allows us to get to the bound in (5.15).

Using this last Lemma, in combination with Lemma 5.1, we are able to get the bound

in (5.17). The conclusion of the proof is enabled by using E
[
r2

t

] ≤ 2E
[
r̃2

t

]
+ 2E

[‖dt‖2
]

and some further manipulations. The proofs of all the Lemmas in this section and the

complete proof of Theorem 5.3 are available in Appendix C.1.

5.4 Stochastic Approximation with Time-Varying Delays

In this section, we present the first finite-time convergence analysis of the delayed SA

update rule that was introduced in (5.4), with time-varying delays. Note that, by

5.4 Stochastic Approximation with Time-Varying Delays 87

Assumption 10, we can re-write (5.4) as:

Delayed SA: θk+1 = θk + αg(θt−τt , ot−τt), τt ≤ min{t, τmax} (5.26)

The following theorem provides a convergence bound for the update rule in (5.26)

and it is a major contribution of this work.

Theorem 5.4. Let rt := ‖θt − θ∗‖, τ ′ := 2τmax + τmix and τ̄ := max{τmix, τmax}. There

exist absolute constants C,C ′, C ′′ ≥ 2 such that the iterates generated by the update

rule (5.26), for T ≥ τ ′ and α ≤ µ
CL2τ̄

, satisfy

E

[

r2
T

]

≤ exp (−2αµT) 2B +
αC ′L2(τmix + τmax)B

µ
, (5.27)

with B = C ′′σ2. Setting α = µ
CL2τ̄

, we get

E

[

r2
T

]

≤ exp

(

− 2µ2T

CL2τ̄

)

2B +
2C ′B
C

. (5.28)

Main Takeaways: There are many relevant takeaways from this Theorem. We

focus on the convergence bound in (5.28), i.e., the case in which the step size matches

its upper bound. We note that, (i) with a choice of step size inversely proportional to

τmix + τmax, the Delayed SA update rule (5.26) converges exponentially fast in mean

square to a ball around θ∗ whose radius is proportional to the "variance" term B = 9σ2,

which is consistent with the non-delayed case; (ii) the exponent of convergence gets

scaled down by a factor τ̄ = max{τmax, τmix}. Remarkably, the dependence on both

τmax and τmix is optimal. With respect to the dependence on the delay sequence, early

works on SA with delayed updates and i.i.d. sampling - specifically, gradient descent

on a strongly convex smooth cost function - and with time-varying delays [12], [57],

[64] showed an exponential convergence with a convergence exponent that gets scaled

down by a factor proportional to τ2
max (see, e.g., [64, Theorem 3.3]). Recent works

considering a constant delay τ have shown that the same iterative algorithm can achieve

a better convergence rate with a convergence exponent that gets scaled down by a factor

proportional to τ [137]. This type of dependence has also been shown to be tight for

the same configuration [10]. The works in [10], [137] claim that their analysis can be

extended to time-varying delay sequences, with the dependence on τ being replaced

by a dependence on τmax. However, they do not provide an explicit derivation of this

extension. In Section 5.3, we have shown that, in the constant delay case, an analysis

similar to [137] provides the same dependence on τ also for SA under Markovian sampling.

88
Stochastic Approximation with Delayed Updates: Finite-Time Rates under

Markovian Sampling with Optimal Dependencies

In the analysis, we outlined the critical points that make the extension of the same type of

analysis in [137] to the time-varying delays case difficult. In Theorem 5.4, with a different

type of analysis, we provide the first convergence guarantee for SA under delayed updates

and time-varying delays with an explicit derivation of optimal dependency on the delay

sequence. Remarkably, compared to [10], [137], our analysis is done on the much more

challenging case of SA under Markovian sampling. Notably, in this configuration, our

analysis jointly provides also an optimal dependency on the mixing time τmix. Indeed,

note that this dependence on τmix of the convergence exponent of the rate of exponential

convergence of SA under Markovian sampling has been shown to be minimax optimal in

the case without delays [105].

Outline of the Analysis. We now provide insights on the key steps in the analysis.

To analyze the convergence of the update rule in (5.26), we consider the delay as a

perturbation to the original update. We define the error at iteration t as follows,

et , g(θk, ot)− g(θt−τt , ot−τt), (5.29)

which we use to rewrite the update rule in (5.26) as

θk+1 = θk + αg(θk, ot)− αet. (5.30)

We examine ‖θk+1 − θ∗‖2 using (5.30), which leads us to

‖θk+1 − θ∗‖2 = Jt,1 + α2Jt,2 − 2αJt,3. (5.31)

with
Jt,1 := ‖θk − θ∗ + αg(θk, ot)‖2,
Jt,2 := ‖et‖2,
Jt,3 := 〈et,θk − θ∗〉+ α〈et,g(θk, ot)〉.

(5.32)

Note that the presence of Jt,2 and Jt,3 in (5.31) is a consequence of the delay and it

would not occur in the case of non-delayed updates. The convergence analysis is built up

providing bounds on the expectation of the three terms defined in (5.32).

Main challenges. We now comment on some of the main challenges of the analysis.

First, the term Jt,1 cannot be bounded with the methods used in [135] for non-delayed

SA under Markovian sampling. Indeed, Lemma 3 in [135], which is key to prove the

finite-time linear convergence rate invoking properties of the geometric mixing of the

Markov chain, is not valid when using the delayed operator g(θk−τ , ot−τt). To see why

this is the case, note that Lemma 3 in [135] establishes a bound on ‖θk − θt−τ‖, for any

5.4 Stochastic Approximation with Time-Varying Delays 89

0 ≤ τ ≤ t, of the following form

‖θk − θt−τ‖ ≤ O(ατ)(‖θk‖+ σ), (5.33)

which, however, does not hold true when using the delayed operator g(θk−τ , ot−τt). Indeed,

the first key step in proving (5.33) is using the fact that ‖θk+1 − θk‖ ≤ O(α)(‖θk‖+ σ),

which is not true for the delayed case, where we can only get ‖θk+1−θk‖ ≤ O(α)(‖θk−τ‖+
σ) by using the bound ‖g(θk−τ , ot−τt)‖ ≤ O(α)(‖θk−τ‖+σ) on the delayed operator. This

fact, that prevents us from applying the analysis of Lemma 3 in [135], forces us to develop

a different strategy and to prove a more general result, the statement of which we provide

in Lemma 5.4. This new Lemma enables us to deal with ‖θk − θt−τ‖ in an functional

way with respect to the proof of finite-time rates for the considered delayed SA algorithm.

Second, note that bounding the term 〈et,θk − θ∗〉 is much more challenging compared

to the i.i.d. sampling setting considered in the optimization literature with delays [11],

[36], [78], [153]. This difficulty arises due to the statistical correlation among the terms

in g(θk, ot)− g(θt−τt , ot−τt) and θk − θ∗, which calls for a more careful analysis. Indeed,

the fact that in general, for correlated Markovian samples, E [g(θk, ot)] 6= ḡ(θk), forces us

to invoke mixing time arguments to bound this cross term and get the desired finite-time

rate, as it is typically done for SA under Markovian sampling. However, the presence of

the delay in the operator g(θk−τ , ot−τt) introduces further statistically correlated iterates

θk−τ and observations ot−τt in the analysis, whose interplay needs to be carefully taken

care of. To do so, we provide a novel analysis, whose results are stated in Lemma 5.5. This

analysis is enabled also thanks to the new bound stated in Lemma 5.4 which generalizes

Lemma 3 in [135] and which we present next. Another challenge is presented by the

presence of time-varying delays. As noted in Section 5.3, with time-varying delays some

of the steps of the analysis for the constant delay configuration are not easy to extend to

the time-varying delays case. To deal with this challenge, we provide a novel analysis,

which is based on the uniform boundedness of the iterates generated by the iterative

update rule (5.26), when the constant step-size α is small enough. Specifically, as for the

statement of Theorem 5.4, we require α ≤ µ
CL2τ̄

, where C is some absolute constant. The

key result establishing the uniform boundedness of the iterates is provided in Lemma 5.6.

Auxiliary Lemmas. We now introduce three Lemmas that are fundamental to prove

Theorem 5.4. We start with a result that provides bounds in expectation on quantities

of the form ‖θt − θt−τ‖2. This result, as mentioned above, represents a generalization

of Lemma 3 in [135], being suitable to be applied for the analysis of the delayed case.

90
Stochastic Approximation with Delayed Updates: Finite-Time Rates under

Markovian Sampling with Optimal Dependencies

Recalling that τ ′ = 2τmax + τmix, define

rt,2 := max
t−τ ′≤l≤t

E

[

r2
l

]

. (5.34)

Lemma 5.4. For any t ≥ τmix, we have

(i) E

[

‖θk − θt−τmix‖2
]

≤ 2α2τ2
mixL

2(2rt,2 + 3σ2).

Similarly, for any t ≥ 0 and τt ≤ t,

(ii) E

[

‖θk − θt−τt‖2
]

≤ 2α2τ2
maxL

2(2rt,2 + 3σ2).

The above Lemma plays a critical role in providing the finite-time rate established in

Theorem 5.4. Specifically, the Lemma establishes a bound that enables us to relate θt,

θt−τt , and θt−τmix , which is key to establish the finite-time linear rate for (5.26), which is

the main result of this section and one of the major contributions of this work. Exploiting

these bounds, we can provide bounds on E [Jt,1], E [Jt,2], and E [Jt,3] in terms of rt,2,

which we do next, in Lemma 5.5.

Lemma 5.5. Let t ≥ τ ′ = 2τmax + τmix, then

(i) E [Jt,1] ≤ (1− 2αµ)E
[

r2
t

]

+ 28α2τmixL
2rt,2 + 34α2τmixL

2σ2,

(ii) E [Jt,2] ≤ 8L2(2rt,2 + 3σ2),

(iii) E [Jt,3] ≤ 28αL2(τmix + τmax)(rt,2 + σ2).

The bounds provided in the above Lemma play a central role in the convergence

analysis of (5.26). The most challenging part of the proof is part (iii), in which mixing

time arguments need to be carefully applied to deal with the joint appearance of the

statistically correlated terms θk−τ , ot−τt and θt−τmix . Using the bounds established in

the above Lemma, we can rewrite equation (5.31) as

E

[

r2
t+1

]

= E

[

‖θk+1 − θ∗‖2
]

= E [Jt,1] + α2
E [Jt,2]− 2αE [Jt,3]

≤ (1− 2αµ)E
[

r2
t

]

+ 98α2L2(τmix + τmax)(rt,2 + σ2).

(5.35)

The above bound is key to get the finite-time convergence rate of Theorem 5.4. The

5.5 Related Publications and Presentation at Conferences 91

crucial step to get the optimal dependence on the delay sequence is to use this bound

to prove that, for α sufficiently small, the iterates generated by (5.26) are uniformly

bounded by B = 9σ2. The statement of this key result is provided in the next Lemma,

and its proof is obtained by induction.

Lemma 5.6. For all t ≥ 0, there exists an absolute constant C such that for α ≤ µ
Cτ̄L2 ,

E

[

r2
t

]

≤ B, with B = 9σ2. (5.36)

By applying this Lemma to the recursion illustrated in (5.35), the result stated in

Theorem 5.4 follows in few simple steps. The complete proofs of all Lemmas and of

Theorem 5.4 is provided in Appendix C.2.

5.5 Related Publications and Presentation at Conferences

Part of the work presented in this chapter has been submitted to the 27th International

Conference on Artificial Intelligence and Statistics (AISTATS, 2024).

92
Stochastic Approximation with Delayed Updates: Finite-Time Rates under

Markovian Sampling with Optimal Dependencies

6
Conclusions and Future Work

In this thesis, we have presented algorithmic and theoretical advancements in FL. The

focus, in particular, has been on (i) the design and analysis of super-linearly conver-

gent algorithms, and (ii) the finite-time convergence analysis of federated reinforcement

learning algorithms. With respect to super-linear convergence in FL, we have designed

and analysed SHED, a Newton-type algorithm for FL based on agents’ Hessians eigen-

decomposition, extensively described in Chapter 2. We extended this algorithm to a

version exploiting quantization, Q-SHED, described in Chapter 3, in which the agents

carefully allocate the available bits to quantize the eigenvectors used to perform ap-

proximate Newton-type updates. SHED provides state-of-the-art theoretical guarantees

and empirical performance, while Q-SHED, at the cost of an additional computational

burden, can boost the empirical performance of SHED. With respect to (ii), i.e., federated

reinforcement learning (FRL), we have provided finite-time explicit convergence bounds

for instances of RL under communication constraints, while establishing the beneficial

effects of multi-agent cooperation by means of proving N -fold linear convergence speedups

(with N the number of agents) under different communication settings and models.

Future work include the following:

• For second-order methods in FL, in particular for the proposed algorithms (SHED

and Q-SHED), future efforts include the extension to non-convex cost functions,

e.g., via cubic regularization; efforts to reduce the computational burden at the

agents, for example by means of analysing sub-sampled Newton methods in the FL

setting (see [53] for examples of sub-sampled Newton methods) or by means of using

approximated versions of singular value decomposition. Similar efforts to reduce

the computational burden of second-order algorithms in FL while maintaining the

improved convergence features have been considered, e.g., in [2]. Other potential

future works include an improved understanding of the convergence properties of

94 Conclusions and Future Work

Q-SHED and the potential application, in practice, of second-order methods in

deep learning: similar research works have been recently proposed, for example,

see [111], [112]

• For Federated Reinforcement Learning (FRL), the main focus of thesis has been on

analysing the convergence of vanilla algorithms under communication constraints

common in many applications. Future works include the design and analysis of novel

distributed algorithms for FRL, and the evaluation of these algorithms on real-world

RL tasks. The focus of future works should be on validating and engineering the

beneficial effects of cooperation-via-communication in FRL. Theoretical questions

to be addressed also include the possibility of obtaining tight convergence bounds

(relative to the dependence on the mixing time) for FRL even when agents perform

multiple local steps, updating their local parameter communicating with the central

servers/other nodes only at intermittent iterations. Indeed, existing studies (see [77],

[143]) only provide suboptimal dependencies on the mixing time. Other research

directions include integrating the design of communication schemes with adaptive

algorithms relative to the number of local steps performed by the agents, and

relative to asynchronous configurations with partial participation.

A
Appendix: Proofs of Chapter 2

and additional experiments

A.1 Proof of Theorem 2.1

From (2.4), writing HLS = VΛVT and Ĥt = VΛ̂tV
T , with Λ̂t = diag(λ1, ..., λqt , ρt, ..., ρt),

define θt+1
ρt,ηt

:= θt − ηtĤ
−1
t gt. Recalling that gt = HLS(θt − θ∗), we have:

θt+1
ρt,ηt
− θ∗ = At(θ

t − θ∗) = (I− ηtĤ
−1
t HLS)(θt − θ∗)

= V(I− ηtΛ̂
−1
t Λ)VT (θt − θ∗).

(A.1)

For some given qt ∈ {1, ..., n}, rt is a function of two tunable parameters, i.e., the

tuple (ηt, ρt). We now prove that r∗
t can be achieved if and only if ρt ∈ [λn, λqt+1]. The

convergence rate is determined by the eigenvalue of (I − ηtΛ̂
−1
t Λ) with the greatest

absolute value. First, we show that ρt /∈ [λn, λqt+1] implies rt > r∗
t , then we show that,

if ρt ∈ [λn, λqt+1], there exists an optimal η∗
t for which r∗

t is achieved. If ρt < λn, the

choice of ηt minimizing the maximum absolute value of (I− ηtΛ̂
−1
t Λ) is the solution of

|1− ηt| = |1− ηtλqt+1/ρt|, which is η∗
t = 2ρt/(ρt +λqt+1). The corresponding convergence

factor is 1−η∗
t > r∗

t . Similarly, if ρt > λqt+1, one gets η∗
t = 2ρt/(ρt +λn) and convergence

factor equal to 1 − 2λn/(ρt + λn) > r∗
t . If ρt ∈ [λn, λqt+1], the best ηt is such that

|1− ηtλn/ρt| = |1− ηtλqt+1/ρt|, whose solution is

η∗
t =

2ρt

λqt+1 + λn
(A.2)

and the achieved factor is rt = 1− η∗
t λn/ρt = 1− λn/ρ

∗
t = r∗

t . We see that the definition

of the set S∗ immediately follows.

96
Appendix: Proofs of Chapter 2

and additional experiments

A.2 Proof of Corollary 2.1

Define B∗
t := (I−(Λ̂t(ρ

∗
t , qt))

−1Λ) = diag(0, ..., 0, 1−λqt+1/ρ
∗
t , ..., 1−λn/ρ

∗
t). For ρt 6= ρ∗

t ,

with ρt ∈ [λn, λqt+1], define Bt := (I − η∗
t (Λ̂t(ρt, qt))

−1Λ) = diag(1 − η∗
t , ..., 1 − η∗

t , 1 −
λqt+1/ρ

∗
t , ..., 1−λn/ρ

∗
t) = B∗

t +δBt, with δBt = diag(1−η∗
t , ..., 1−η∗

t , 0, ..., 0), where η∗
t is

defined in (A.2) and ρ∗
t in (2.8). Now define zt := VT (θt−θ∗) and zt+1

ρt,ηt
:= VT (θt+1

ρt,ηt
−θ∗),

where (θt+1
ρt,ηt
− θ∗) is defined in (A.1). We have

‖θt+1
ρ∗

t ,1 − θ∗‖2 = ‖zt+1
ρ∗

t ,1‖2 = ‖B∗
t zt‖2,

‖θt+1
ρt,η∗

t
− θ∗‖2 = ‖Btz

t‖2 = ‖B∗
t zt‖2 + ‖δBtz

t‖2,

because the cross term is 2(B∗
t zt)T (δBtz

t) = 0. We see that, for any t and for any θt,

‖θt+1
ρ∗

t ,1 − θ∗‖ ≤ ‖θt+1
ρt,η∗

t
− θ∗‖

A.3 Proof of Theorem 2.2

Fix ηt = 1 in (2.5),

θt+1 − θ∗ = At(θ
t − θ∗) = (I− Ĥ−1

t HLS)(θt − θ∗).

We have that
‖θt+1 − θ∗‖ ≤ ‖I− Ĥ−1

t HLS‖‖θt − θ∗‖
≤ ‖Ĥ−1

t ‖‖Ĥt −HLS‖‖θt − θ∗‖

≤ (ρ̄t − λ̄n)

ρ̄t
‖θt − θ∗‖

The last inequality follows from two inequalities: (i) ‖Ĥ−1
t ‖ ≤ 1/ρ̄t and (ii) ‖Ĥt−HLS‖ ≤

ρ̄t − λ̄n.

(i) holds because ‖Ĥ−1
t ‖ = (λmin(Ĥt))

−1, and λmin(Ĥt) ≥ ρ̄t, thus implying ‖Ĥ−1
t ‖ ≤

1/ρ̄t.

(ii) follows recalling that HLS = 1
M

∑M
i=1 H

(i)
LS , with H

(i)
LS the local Hessian at agent i.

We have

‖Ĥt −HLS‖ =
1

M
‖

M∑

i=1

(Ĥ
(i)
t −H

(i)
LS)‖ ≤ 1

M

M∑

i=1

‖Ĥ(i)
t −H

(i)
LS‖.

A.4 Proof of Lemma 2.1 97

Being Ĥ
(i)
t −H

(i)
LS symmetric, it holds that

‖Ĥ(i)
t −H

(i)
LS‖ = max

j
|λj(Ĥ

(i)
t −H

(i)
LS)| = ρ

(i)
t − λ(i)

n ,

where the last equality holds because

Ĥ
(i)
t −H

(i)
LS = V(i)(Λ̂

(i)
t −Λ

(i)
t)V(i)T (A.3)

where
Λ̂

(i)
t = diag(λ

(i)
1 , ..., λ

(i)

q
(i)
t

, ρ
(i)
t , ..., ρ

(i)
t),

Λ
(i)
t = diag(λ

(i)
1 , ..., λ

(i)

q
(i)
t

, λ
(i)

q
(i)
t +1

, ...λ(i)
n),

(A.4)

and because ρ
(i)
t = (λ

(i)

q
(i)
t +1

+ λ
(i)
n)/2.

A.4 Proof of Lemma 2.1

The quadratic cost in θt can be written as

f(θt) = f(θ∗) + f̄(θt).

with f̄(θt) = 1
2(θt − θ∗)T HLS(θt − θ∗). Given that f(θ∗) does not depend on θt, we can

focus on f̄(θt).

We have that

f̄(θt − ηtpt) =
1

2
(θt − ηtpt − θ∗)T HLS(θt − ηtpt − θ∗)

(1)
= f̄(θt) +

1

2
η2

t pT
t HLSpt − ηtp

T
t gt

(2)
= f̄(θt)− ηtp

T
t (Ĥt − ηt

HLS

2
)pt (A.5)

where we have used identity HLS(θt − θ∗) = gt and the fact that pT
t gt = pT

t ĤtĤ
−1
t gt =

pT
t Ĥtpt to get equality (1) and (2), respectively. We see that if

Ĥt − ηtHLS/2 ≥ Ĥt/2, (A.6)

98
Appendix: Proofs of Chapter 2

and additional experiments

then Armijo-Goldstein condition (2.13) is satisfied. Indeed, in that case,

f̄(θt)− ηtp
T
t (Ĥt − ηt

HLS

2
)pt ≤ f̄(θt)− 1

2
ηtp

T
t Ĥtpt

≤ f̄(θt)− αηtp
T
t gt.

So, we need to find a sufficient condition on ηt for (A.6) to be true. We see that (A.6) is

equivalent to Ĥt − ηtHLS ≥ 0. We have Ĥt − ηtHLS = 1
M

∑M
i=1 V(i)(Λ̂

(i)
t − ηtΛ

(i)
t)V(i)T ,

and, ∀i, all the elements of the diagonal matrix Λ̂
(i)
t −ηtΛ

(i)
t are positive if ηt ≤ ρ(i)

t /λ
(i)

q
(i)
t +1

(see Eq. (A.4)), and we see that the choice (2.14) provides a sufficient condition to satisfy

(A.6), from which we can conclude.

A.5 Proof of Lemma 2.2

We see that a∗ ≤ ā from definition (2.15), because for each k, ‖Ak‖ ≤ ck = (1− λ̄n/ρ̄k).

Now, we show that, if q
(i)
t = q

(i)
t−1 + 1, ∀i, t, then ā = āT . To show this latter inequality,

let us consider the logarithm of the considered values, so we prove log ā = log āT . Indeed,

if q
(i)
t = q

(i)
t−1 + 1 and applying Algorithm 3, ck is a periodic sequence of the index k

(ck+T = ck):

log ā = lim sup
t

1

t

t∑

k=1

log ck

= lim sup
R

1

RT + T ′ (R
T∑

k=1

log ck +
T ′

∑

k=1

log ck)

=
1

T

T∑

k=1

log ck = log āT

(A.7)

where R = ⌊t/T ⌋ and T ′ = t−RT .

A.6 Proof of Theorem 2.4

First, we need to prove the following Lemma:

Lemma A.1. If ‖gt‖ > ω > 0, for Ĥt defined in (2.18), pt = Ĥ−1
t gt there are γt, ηt > 0

such that

f(θt − ηtpt) ≤ f(θt)− γt, (A.8)

in particular, for a backtracking line search with parameters α ∈ (0, 0.5), β ∈ (0, 1), it

holds:

γt = αβ
ρ̄t

K2
ω2 (A.9)

A.7 Proof of Theorem 2.5 99

Proof. The proof is the same as the one provided in [24] for the damped Newton phase

(page 489-490), with the difference that the "Newton decrement", that we denote by σt,

here is σ2
t := gT

t pt = gT
t Ĥ−1

t gt = pT
t Ĥtpt. Furthermore, the property Ĥt ≥ ρ̄tI, ∀t is

used in place of strong convexity.

Note that, because of Assumption 3, it always holds that ρ
(i)
t > 0, ∀i,∀t, and this

implies ρ̄t > 0,∀t. When ρ̄t > 0,∀t, Lemma A.1 implies ‖gt‖ → 0. Indeed, if not, there

would be some ǫ > 0 such that ‖gt‖ > ǫ, ∀t. But then (A.8) immediately implies that

f(θt)→ −∞, that contradicts the strong convexity hypothesis. By strong convexity and

differentiability of f , g(θ) = ∇f(θ) = 0 =⇒ θ = θ∗.

A.7 Proof of Theorem 2.5

The beginning of the proof follows from the proof of Lemma 3.1 in [53], (see page 18).

In particular, we can get the same inequality as (A.1) in [53] (the Qt here is Ĥt) with

the difference that since we are not sub-sampling, we have (using the notation of [53])

S = [n]. The following inequality holds:

‖θt+1 − θ∗‖ ≤ ‖θt − θ∗‖‖I − ηtĤ
−1
t H(θt)‖

+ ηtL
‖Ĥ−1

t ‖
2
‖θt − θ∗‖2.

Note that, as we have shown in the proof of Theorem 2.2, it holds ‖Ĥ−1
t ‖ ≤ 1/ρ̄t. We

now focus on the first part of the right hand side of the inequality:

‖I − ηtĤ
−1
t H(θt)‖ ≤ ‖Ĥ−1

t ‖(‖Ĥt −H(θt)‖
+ (1− ηt)‖H(θt)‖)

≤ 1

ρ̄t
‖Ĥt −H(θt)‖+

(1− ηt)

ρ̄t
‖H(θt)‖

and focusing now on the first term of the right hand side of the last inequality

1

ρ̄t
(‖Ĥt −H(θkt)‖+ ‖H(θt)−H(θkt)‖)

≤ 1

ρ̄t
(

1

M

M∑

i=1

‖Ĥ(i)
t (θkt)−H(i)(θkt)‖+ L‖θkt − θt‖)

=1− λ̄n,t

ρ̄t
+
L

ρ̄t
‖θkt − θt‖,

100
Appendix: Proofs of Chapter 2

and additional experiments

where the last equality holds being ‖Ĥ(i)
t (θkt)−H(i)(θkt)‖ = ρ̂

(i)
t − λ

(i)
n,t, which in turn is

true given that ρ̂
(i)
t = λ̂

(i)

q
(i)
t +1,t

.

A.8 Proof of Theorem 2.6

1) We first need the following Lemma:

Lemma A.2. Let κ̄ =
∑M

i=1 κi, with κi the strong convexity constant of the cost f (i) of

agent i, let K be the smoothness constant of f and M(t) = max{‖θt − θ∗‖, ‖θkt − θ∗‖}.
Applying Algorithm 5, if

3κ̄(M(t) + ‖θt − θ∗‖) +K‖θt − θ∗‖ ≤ 3κ̄2

L
(1− 2α), (A.10)

then, for any α ∈ (0, 1/2), the backtracking algorithm (2) chooses ηt = 1.

Proof. The following proof is similar to the proof for the beginning of the quadratically

convergent phase in centralized Newton method by [24], page 490-491. We start with

some definitions: at iteration t, let f(θt),gt = ∇f(θt),Ht = ∇2f(θt) be the cost, the

gradient and the Hessian, respectively, computed at θt. Let Hkt = ∇2f(θkt) be the

Hessian at θkt , and Ĥt the global Hessian approximation of Algorithm 5. Let the NT

descent direction be pt = Ĥ−1
t gt. Define

σ̄2
t := pT

t gt = gT
t Ĥ−1

t gt,

σ2
t := pT

t ∇2f(θt)pt = pT
t Htpt,

f̃(η) := f(θt − ηpt), f̃(0) = f(θt),

f̃ ′(η) :=
∂f̃(η)

∂η
= −∇f(θt − ηpt)

T pt,

f̃ ′′(η) :=
∂2f̃(η)

∂η2
= pT

t ∇2f(θt − ηpt)pt.

(A.11)

Note that
f̃ ′(0) = −gT

t pt = −σ̄2
t ,

f̃ ′′(0) = pT
t Htpt = σ2

t .
(A.12)

Note that Ĥt ≥ κ̄, ∀t. Thanks to L-Lipschitz continuity, it holds that ‖∇2f(θt− ηpt)−

A.8 Proof of Theorem 2.6 101

∇2f(θt)‖ ≤ ηL‖pt‖ and we have that

|f̃ ′′(η)− f̃ ′′(0)| = pT
t (∇2f(θt − ηpt)−∇2f(θt))pt

≤ ηL‖pt‖3 ≤ ηL
σ̄3(θt)

κ̄3/2

(A.13)

where the last inequality holds because κ̄‖pt‖2 ≤ pT
t Ĥpt = σ̄2

t . From (A.13) it follows

that

f̃ ′′(η) ≤ f̃ ′′(0) + ηL
σ̄3(θt)

κ̄3/2
= σ2

t + ηL
σ̄3(θt)

κ̄3/2
. (A.14)

Similarly to [24], page 490-491, we can now integrate both sides of the inequality getting

f̃ ′(η) ≤ f̃ ′(0) + ησ2
t +

η2

2
L
σ̄3

t

κ̄3/2
= −σ̄2

t + ησ2
t +

η2

2
L
σ̄3

t

κ̄3/2
.

By integrating again both sides of the inequality, we get, recalling that f̃(0) = f(θt),

f̃(η) = f(θt − ηpt) ≤ f(θt)− ησ̄2
t +

η2

2
σ2

t +
η3

6
L
σ̄3

t

κ̄3/2
. (A.15)

Now, recalling H(θkt) ≤ Ĥt, we get that

σ2
t = pT

t Htpt = pT
t (Hkt + Ht −Hkt)pt

= pT
t Hktpt + pT

t (Ht −Hkt)pt

≤ pT
t Ĥtpt + L‖pt‖2‖θt − θkt‖ ≤ σ̄2

t +
Lσ̄2

t

κ̄
‖θt − θkt‖,

(A.16)

where we have used Lipschitz continuity, and the fact that pT
t Ĥtpt = σ̄2

t and κ̄‖pt‖2 ≤ σ̄2
t .

Next, setting η = 1 and plugging (A.16) in (A.15), we get

f(θt − pt) ≤ f(θt)− σ̄2
t +

σ2
t

2
+
L

6

σ̄3
t

κ̄3/2

≤ f(θt)− σ̄2
t

2
+
Lσ̄2

t

2κ̄
‖θt − θkt‖+

L

6

σ̄3
t

κ̄3/2

≤ f(θt)− σ̄2
t (

1

2
− L

2κ̄
‖θt − θkt‖ − L

6

σ̄t

κ̄3/2
)

= f(θt)− pT
t gt(

1

2
− L

2κ̄
‖θt − θkt‖ − L

6

σ̄t

κ̄3/2
).

(A.17)

In order for (A.17) to satisfy the Armijo-Goldstein condition (2.13) for any parameter

102
Appendix: Proofs of Chapter 2

and additional experiments

α ∈ (0, 1/2) we see that

1

2
− L

2κ̄
‖θt − θkt‖ − L

6

σ̄t

κ̄3/2
≥ α (A.18)

provides a sufficient condition. The above inequality can be written as

3κ̄‖θt − θkt‖+ κ̄1/2σ̄t ≤
3κ̄2

L
(1− 2α). (A.19)

We have that σ̄2
t = gT

t Ĥ−1gt ≤ ‖gt‖2/κ̄, which implies κ̄1/2‖σt‖ ≤ ‖gt‖. Furthermore,

by triangular inequality, we have ‖θt − θkt‖ ≤ ‖θt − θ∗‖+ ‖θkt − θ∗‖. Therefore, we see

that if

3κ̄(‖θt − θ∗‖+ ‖θkt − θ∗‖) + ‖gt‖ ≤
3κ̄2

L
(1− 2α), (A.20)

then the Armijo-Goldstein condition is satisfied and η = 1 is chosen by the backtracking

algorithm, proving the Lemma. Indeed, by K-smoothness of the cost function (see

Assumption 3) we have ‖gt‖ ≤ K‖θt − θ∗‖ and so the condition of the Lemma implies

(A.20).

Let condition (A.10) be satisfied. Then, if

(3/2)L‖θt − θ∗‖+ LM(t) ≤ κ̄, (A.21)

the convergence of SHED is at least linear. Indeed, if (A.10) is satisfied, then, from

Lemma A.2, the step size is ηt = 1 and the convergence bound (see Theorem 2.5) becomes

‖θt+1 − θ∗‖ ≤ ct‖θt − θ∗‖, with

ct = (1− λ̄n,t

ρ̄t
+
L

ρ̄t
‖θt − θkt‖+

L

2ρ̄t
‖θt − θ∗‖)

≤ (1− λ̄n,t

ρ̄t
+
L

ρ̄t
‖θkt − θ∗‖+

3L

2ρ̄t
‖θt − θ∗‖)

(A.22)

and it is easy to see that condition (A.21) implies that ct < 1 and thus we get a contraction

in ‖θt − θ∗‖. Furthermore, when conditions (A.10) and (A.21) are both satisfied at some

iteration t̄, they are then satisfied for all t ≥ t̄ and thus ct < 1 for all t ≥ t̄. Indeed, ct < 1

implies that ‖θt+1 − θ∗‖ < ‖θt − θ∗‖ and M(t+ 1) ≤M(t) because either kt+1 = kt or

kt+1 = t+ 1. Note that Assumption 2 is needed to guarantee that (A.10) and (A.21) are

eventually satisfied.

2) From 1), we can write ‖θt−θ∗‖ ≤ Cat for some a ∈ (0, 1) and some C > 0. Considering

t ≥ t̄, with t̄ the first iteration for which both conditions (A.10) and (A.21) are satisfied,

A.8 Proof of Theorem 2.6 103

we consider ct as in (A.22), and let T = t− kt

ct ≤ 1− λ̄n,t

ρ̄t
+
L

ρ̄t
‖θkt − θ∗‖+

3L

2ρ̄t
‖θt − θ∗‖

≤ 1− λ̄n,t

ρ̄t
+
L

ρ̄t
C1a

t−T +
3L

2ρ̄t
C2a

t

= 1− λ̄n,t

ρ̄t
+Bat,

(A.23)

where B = L
ρ̄t
C1a

−T + 3L
2ρ̄t
C2, and C1, C2 are some bounded positive constants. Note that

T is bounded by Assumption 2. For any iteration t, we can write ‖θt+1−θ∗‖ ≤ c̄t‖θt−θ∗‖
for some c̄t that could also be greater than one, if t < t̄, but it is easy to see that c̄t is

always bounded. Now, we consider ā := lim supt (
∏t

k=1 c̄k)1/t. It is straightforward to

see that, as in the least squares case, the Lyapunov exponent of ‖θt − θ∗‖ is a∗ ≤ ā. We

can write log ā = lim supt
1
t (
∑t

k=t̄+1 log ck). We get

log ā ≤ lim sup
t

1

t

t∑

k=t̄+1

log (1− λ̄n,k

ρ̄k
+Bak)

= lim sup
t

1

t

t∑

k=t̄+1

log (1− λ̄n,k

ρ̄k
) + log (1 +

Bak

1− λ̄n,k

ρ̄k

).

We see that the last term is

log (1 +
Bak

1− λ̄n,k

ρ̄k

) ≤ Bak

1− λ̄n,k

ρ̄k

≤ B̄ak

that comes from the identity log (1 + x) ≤ x, and where B̄ = maxk
1

1− λ̄n,k
ρ̄k

, bounded

because |Xt| = 0, ∀t, and thus ρ̄k > λ̄n,k,∀k. Now, we see that

lim sup
t

1

t

t∑

k=1

B̄ak = lim sup
t

1

t
B̄(

1− at+1

1− a − 1) = 0.

Hence, we get, using also the finiteness of t̄,

log ā = lim sup
t

1

t

t∑

k=1

log (1− λ̄n,k

ρ̄k
). (A.24)

Now we use local Lipschitz continuity (Assumption 3) to conclude the proof. Lipschitz

continuity of f (i)(θ) implies that, for L̄ = maxk Lk and for any k ∈ {1, ..., n}, |λ(i)
k (θ)−

104
Appendix: Proofs of Chapter 2

and additional experiments

λ
(i)
k (θ∗)| ≤ L̄‖θ−θ∗‖, which in turn implies λ

(i)
k (θ) ≥ λ(i)

k (θ∗)− L̄‖θ−θ∗‖ and λ
(i)
k (θ) ≤

λ
(i)
k (θ∗) + L̄‖θ − θ∗‖. For a proof of this result, see also [21], page 116, Theorem 4.25. It

follows that

log ā ≤ lim sup
t

1

t

t∑

k=1

log (1− λ̄o
n − L̄‖θkt − θ∗‖
ρ̄o

k + L̄‖θkt − θ∗‖)

(1)
= lim sup

t

1

t

t∑

k=1

log (1− λ̄o
n

ρ̄o
k + L̄‖θkt − θ∗‖)

= lim sup
t

1

t

t∑

k=1

log (
ρ̄o

k − λ̄o
n + L̄‖θkt − θ∗‖

ρ̄o
k + L̄‖θkt − θ∗‖)

≤ lim sup
t

1

t

t∑

k=1

log (1− λ̄o
n

ρ̄o
k

+
L̄‖θkt − θ∗‖

ρ̄o
k

)

(2)
= lim sup

t

1

t

t∑

k=1

log (1− λ̄o
n

ρ̄o
k

)

where equalities (1) and (2) follow from calculations equivalent to the ones used to obtain

(A.24).

3) Consider ct as it was defined and bounded in (A.23), C3 > 0 a constant such that

log ck ≤ C3, ∀k, and such that logB ≤ C3. Let ā be defined as before. Let a ∈ (0, 1).

We have

log ā = lim sup
t

1

t

t∑

k=1

log ck

≤ lim sup
t

1

t

t∑

k=1

log (1− λ̄n,k

ρ̄k
+Bak)

= lim sup
t

1

t
(
∑

k /∈Xt

log ck +
∑

k∈Xt

logBak)

≤ 2C3 + lim sup
t

1

t
log a

∑

k∈Xt

k

≤ 2C3 + lim sup
t

1

t
C4|Xt|2 log a

≤ 2C3 + lim sup
t

1

t
C4(t1/2h(t)− T̄)2 log a

≤ 2C3 + lim sup
t

C4h(t)2 log a = −∞

(A.25)

where C4 > 0 is some positive constant and the last equality follows because log a < 0

and limt h(t) =∞. We see that 0 ≤ a∗ ≤ ā ≤ 0, which implies a∗ = 0.

A.9 Additional Experiments: Results on EMNIST and w8a 105

A.9 Additional Experiments: Results on EMNIST and w8a

In this appendix, we include the results on the EMNIST digits and ‘w8a’ datasets when

comparing the different algorithms. We show results for two values of the regularization

parameter µ, specifically µ = 10−5 and µ = 10−6, in Figure A.1 and A.2, respectively. The

results obtained on the EMNIST digits dataset confirm the results that were obtained

with FMNIST, with the difference that in the case µ = 10−5, GIANT is not much

impacted by the considered non i.i.d. configuration. The results obtained with the ‘w8a’

dataset show that, while GIANT performance is largely degraded because of the non

i.i.d. configuration, also in this case Fib-SHED and Fib-SHED+ significantly outperform

FedNL in both communication rounds and communication load required for convergence.

Figure A.1: Performance comparison of logistic regression on EMNIST when µ = 10−5.
Relative cost is f(θt) − f(θ∗).

106
Appendix: Proofs of Chapter 2

and additional experiments

Figure A.2: Performance comparison of logistic regression on EMNIST when µ = 10−6.
Relative cost is f(θt) − f(θ∗).

A.9 Additional Experiments: Results on EMNIST and w8a 107

Figure A.3: Performance comparison of logistic regression on w8a when µ = 10−5 and
µ = 10−6. Relative cost is f(θt) − f(θ∗).

108
Appendix: Proofs of Chapter 2

and additional experiments

B
Appendix: Proofs of Chapter 4

B.1 Proof of Theorem 4.2

In this section, we will prove Theorem 4.2. We start by introducing some definitions to

lighten the notation, and by recalling some basic results from prior work. Let us define:

η
(i)
k,τ (θ) , ‖E [gi,k(θ, oi,k)|oi,k−τ]− ḡ(θ)‖, k ≥ τ,
δk,τ , ‖θk − θk−τ‖, k ≥ τ.

(B.1)

For our analysis, we will need the following result from [19].

Lemma B.1. The following holds ∀θ ∈ R
m:

〈θ∗ − θ, ḡ(θ)〉 ≥ ω(1− γ)‖θ∗ − θ‖2.

We will also use the fact that the random TD update directions and their steady-state

versions are 2-Lipschitz [19], i.e., ∀i ∈ [N],∀k ∈ N, and ∀θ,θ′ ∈ R
m, we have:

max{‖gi,k(θ)− gi,k(θ′)‖, ‖ḡ(θ)− ḡ(θ′)‖} ≤ 2‖θ − θ′‖. (B.2)

Finally, we will use the following bound from [135]:

‖gi,k(θ, oi,k)‖ ≤ 2‖θ‖+ 2r̄,∀i ∈ [N],∀k ∈ N,∀θ ∈ R
m. (B.3)

Equipped with the above basic results, we now provide an outline of our proof before

delving into the technical details.

110 Appendix: Proofs of Chapter 4

Outline of the proof. We start by defining:

ḡN (θk) ,
1

N

N∑

i=1

bi,kḡ(θk), and

ψk , 〈vk − ḡN (θk),θk − θ∗〉.
(B.4)

Since for all i ∈ [N], bi,k is independent of θk, we have E [〈ḡN (θk),θk − θ∗〉] = pE [〈ḡ(θk),θk − θ∗〉].
Thus, recalling that δ2

k , ‖θ∗ − θk‖2, and using (4.3), we obtain

E

[

δ2
k+1

]

= E

[

δ2
k

]

− 2αE [〈θ∗ − θk,vk〉] + α2
E

[

‖vk‖2
]

= E

[

δ2
k

]

− 2αpE [〈θ∗ − θk, ḡ(θk)〉]

+ 2αE [ψk] + α2
E

[

‖vk‖2
]

.

(B.5)

The main technical burden in proving Theorem 4.2 is in bounding E
[‖vk‖2

]
and E [ψk] in

the above recursion. Following the centralized analysis in [19], [135], one can easily bound

E
[‖vk‖2

]
using (C.4). However, this approach will fall short of yielding the desired linear

speedup property. Hence, to bound E
[‖vk‖2

]
, we need a much finer analysis, one that

we provide in Lemma B.2. Leveraging Lemma B.2, we then establish an intermediate

result in Lemma B.3 that bounds E [‖θk − θk−τ‖]. This result, in turn, helps us bound

E [ψk] in Lemma B.4. We now proceed to flesh out these steps. In what follows, τ = τǫ

with ǫ = αq, q ≥ 2.

Lemma B.2. (Key Technical Result) For k ≥ τ , we have

E

[

‖vk‖2
]

≤ 60ζ ′pE
[

δ2
k

]

+ 12σ2p

(

10
ζ ′

N
+ α2q

)

. (B.6)

Proof. Note that ‖vk‖2 ≤ 3
N2 (T1 + T2 + T3), with

T1 = ‖
N∑

i=1

bi,kgi,k(θ∗)‖2,

T2 = ‖
N∑

i=1

bi,k(gi,k(θk)− gi,k(θ∗))‖2, and

T3 = ‖
N∑

i=1

bi,k(gi,k(θk)− hi,k(θk))‖2.

(B.7)

B.1 Proof of Theorem 4.2 111

We now proceed to bound T1 − T3. To that end, we first write T1 as

T1 = T11 + T12, with

T11 =
N∑

i=1

b2
i,k‖gi,k(θ∗)‖2, and

T12 =
N∑

i,j=1
i6=j

bi,kbj,k〈gi,k(θ∗),gj,k(θ∗)〉.

(B.8)

Now using (C.4), we obtain T11 ≤ 8(‖θ∗‖2+r̄2)
∑N

i=1 b
2
i,k. Recalling that σ , max{1, r̄, ‖θ∗‖},

we then have E [T11] ≤ 16σ2
E

[
∑N

i=1 b
2
i,k

]

= 16σ2Np. Next, to bound the cross-terms

in T12, we will exploit the mixing property in Definition 5.2.1. To that end, we note

that since (i) ḡ(θ∗) = 0 [19], (ii) the packet-dropping processes are independent of the

Markovian tuples, and (iii) gi,k(θ∗) and gj,k(θ∗) are independent for i 6= j,

E [T12] =
N∑

i,j=1
i6=j

E [bi,kbj,k] 〈E [E [gi,k(θ∗)|oi,k−τ]− ḡ(θ∗)] ,E [E [gj,k(θ∗)|oj,k−τ]− ḡ(θ∗)]〉.

Using the Cauchy-Schwarz inequality followed by Jensen’s inequality, we can further

bound the above inner-product via E

[

η
(i)
k,τ (θ∗)

]

× E

[

η
(j)
k,τ (θ∗)

]

≤ 4σ2α2q. For the last

inequality, we used the mixing property by noting that k ≥ τ . Specifically, appealing to

Definition 5.2.1, and recalling that σ , max{1, r̄, ‖θ∗‖}, we have

η
(i)
k,τ (θ∗) ≤ αq(‖θ∗‖+ 1) ≤ 2σαq.

Clearly, the same bound also applies to η
(j)
k,τ (θ∗) via an identical reasoning. Combining

this analysis with the fact that E [bi,kbj,k] = E [bi,k]E [bj,k] = p2, we obtain that E [T12] ≤
4N2p2σ2α2q. Combining the bounds for E [T11] and E [T12] thus yields:

E [T1] ≤ 16σ2Np+ 4N2p2σ2α2q. (B.9)

Now, using (C.3), we see that

E [T2] ≤ N
N∑

i=1

E

[

b2
i,k‖gi,k(θk)− gi,k(θ∗)‖2

]

≤ 4NE

[

δ2
k

] N∑

i=1

E

[

b2
i,k

]

= 4pN2
E

[

δ2
k

]

.

(B.10)

112 Appendix: Proofs of Chapter 4

Defining λi,k(θk) , hi,k(θk)− gi,k(θk), we now turn to bounding T3 by writing it as

T3 = T31 + T32, with

T31 =
N∑

i=1

b2
i,k‖λi,k(θk)‖2, and

T32 =
N∑

i,j
i6=j

bi,kbj,k〈λi,k(θk),λj,k(θk)〉.

(B.11)

We now proceed to bound E [T31] and E [T32] as follows:

E [T31] =
N∑

i=1

E

[

b2
i,k

]

E

[

E

[

‖λi,k(θk)‖2|oi,k,θk

]]

(a)

≤
N∑

i=1

pζE
[

‖gi,k(θk)‖2
]

(b)

≤ 8Npζ(E
[

‖θk‖2
]

+ σ2)

≤ 16NpζE
[

‖θk − θ∗‖2
]

+ 24Npζσ2,

where (a) follows from the variance bound of the quantizer map Q(·), and (b) follows

from (C.4). Next, observe that:

E [T32] = p2
N∑

i,j=1
i6=j

E [E [〈λi,k(θk),λj,k(θk)〉|oi,k, oj,k,θk]] .

Using the fact that the randomness of the quantization map is independent across agents,

and the unbiasedness of Q(·), we conclude that E [T32] = 0. Combining the bounds on

E [T1], E [T2], and E [T3] above yields the desired result.

Remark B.1. As the rest of our analysis will reveal, Lemma B.2 is really the key technical

result that will help us establish the desired linear speedup effect under Markovian

sampling. One important takeaway from the proof of this result is that we do not need to

exploit the fact that the TD update direction is an affine function of the parameter θk. As

such, Lemma B.2 should essentially be applicable (with potentially minor modifications)

to more general stochastic approximation schemes where the operator under consideration

satisfies basic smoothness properties.

Later in the analysis, we will once again need to invoke a mixing time argument by

conditioning on θk−τ . This will give rise to the δk,τ = ‖θk − θk−τ‖ term that we proceed

B.1 Proof of Theorem 4.2 113

to bound below by leveraging Lemma B.2.

Lemma B.3. Let α ≤ 1
484τζ′ and k ≥ 2τ . Then, we have

E

[

δ2
k,τ

]

≤ 480α2τ2pζ ′
E

[

δ2
k

]

+ α2τ2pσ2
(

360ζ ′

N
+ 4αq

)

.

Proof. We start with a bound on δ2
k+1:

δ2
k+1 = δ2

k − 2α〈vk,θ
∗ − θk〉+ α2‖vk‖2

(a)

≤ δ2
k + 2α‖vk‖δk + α2‖vk‖2

(b)

≤ (1 + α)δ2
k + (α+ α2)‖vk‖2

(c)

≤ (1 + α)δ2
k + 2α‖vk‖2.

(B.12)

In the above steps, (a) follows from the Cauchy-Schwarz inequality. For (b), we note that

given any two positive numbers x and y, it holds that

xy ≤ 1

2
x2 +

1

2
y2.

For (c), we simply used the fact that since α ∈ (0, 1), it holds that α2 ≤ α. Hence,

α+ α2 ≤ 2α. Using Lemma B.2 and the fact that p < 1, we obtain

E

[

δ2
k+1

]

≤ (1 + 121αζ ′)E
[

δ2
k

]

+ 24αpσ2
(

10ζ ′

N
+ α2q

)

︸ ︷︷ ︸

B

.

Iterating this inequality, we get for any k − τ ≤ k′ ≤ k,

E

[

δ2
k′

]

≤ (1 + 121αζ ′)τ
E

[

δ2
k−τ

]

+B
τ−1∑

ℓ=0

(1 + 121αζ ′)ℓ. (B.13)

Now using (1 + x) ≤ ex,∀x ∈ R, observe that (1 + 121αζ ′)ℓ ≤ (1 + 121αζ ′)τ ≤ e0.25 ≤ 2,

for α ≤ 1/(484τζ ′). Thus,
∑τ−1

ℓ=0 (1 + 121αζ ′)ℓ ≤ 2τ . Plugging this bound in (B.13), we

obtain

E

[

δ2
k′

]

≤ 2E
[

δ2
k−τ

]

+ 2τB. (B.14)

Next, observe that

δ2
k,τ ≤ τ

k−1∑

ℓ=k−τ

‖θℓ+1 − θℓ‖2 = τα2
k−1∑

ℓ=k−τ

‖vℓ‖2.

114 Appendix: Proofs of Chapter 4

Since k ≥ 2τ , we have ℓ ≥ τ . Hence, we can invoke Lemma B.2 to bound E
[‖vℓ‖2

]
. This

yields

E

[

δ2
k,τ

]

≤ α2τ
k−1∑

ℓ=k−τ

60ζ ′pE
[

δ2
ℓ

]

+ 0.5ατ2B. (B.15)

Using (B.14) to bound E
[
δ2

ℓ

]
above, we further obtain

E

[

δ2
k,τ

]

≤ α2τ
k−1∑

ℓ=k−τ

120ζ ′p
(

E

[

δ2
k−τ

]

+ τB
)

+
1

2
ατ2B.

Simplifying using α ≤ 1/484ζ ′τ , p < 1, and q ≥ 2 yields

E

[

δ2
k,τ

]

≤ 120α2τ2pζ ′
E

[

δ2
k−τ

]

+ α2τ2σ2p

(
180ζ ′

N
+ 2αq

)

.

Using δ2
k−τ ≤ 2δ2

k + 2δ2
k,τ and 240α2τ2ζ ′ ≤ 1/2 to simplify the above inequality, we arrive

at the desired result.

Our next result is the final ingredient needed to prove Theorem 4.2.

Lemma B.4. Define

gN (θk) ,
1

N

N∑

i=1

bi,kgi,k(θk),

and let α ≤ 1/(484ζ ′τ) and k ≥ 2τ . We have

E [ψk] ≤ ατp
(

3191ζ ′
E

[

δ2
k

]

+ σ2
(

2461ζ ′

N
+ 30αq

))

.

Proof. We can write ψk = T1 + T2 + T3 + T4 + T5, with

T1 = 〈θk − θk−τ ,gN (θk)− ḡN (θk)〉,
T2 = 〈θk−τ − θ∗,gN (θk−τ)− ḡN (θk−τ)〉,
T3 = 〈θk−τ − θ∗,gN (θk)− gN (θk−τ)〉,
T4 = 〈θk−τ − θ∗, ḡN (θk−τ)− ḡN (θk)〉,
T5 = 〈θk − θ∗,vk − gN (θk)〉.

(B.16)

B.1 Proof of Theorem 4.2 115

To bound T1, observe the following inequalities:

T1 = 〈θk − θk−τ ,gN (θk)− ḡN (θk)〉
(a)

≤ ‖θk − θk−τ‖‖gN (θk)− ḡN (θk)‖
(b)

≤ 1

2ατ
‖θk − θk−τ‖2 +

ατ

2
‖gN (θk)− ḡN (θk)‖2

(c)

≤ 1

2ατ
‖θk − θk−τ‖2

︸ ︷︷ ︸

S1

+ατ‖gN (θk)‖2
︸ ︷︷ ︸

S2

+ατ‖ḡN (θk)− ḡN (θ∗)‖2
︸ ︷︷ ︸

S3

.

(B.17)

In the above steps, (a) follows from the Cauchy-Schwarz inequality. For (b), we used the

fact that given any two positive numbers x and y, the following holds for any η > 0:

xy ≤ 1

2η
x2 +

η

2
y2.

We used the above inequality with η = ατ to arrive at (b). Finally, for (c), we used the

fact that ḡ(θ∗) = 0; hence, ḡN (θ∗) = 0. We now proceed to bound the expectations of

each of the terms S1 − S3, starting with S3. Note that using (C.3), i.e., the Lipschitz

property of the TD update directions, we get:

‖ḡN (θk)− ḡN (θ∗)‖2 ≤ ‖ 1

N

N∑

i=1

bi,k(ḡN (θk)− ḡN (θ∗))‖2

≤ 1

N

N∑

i=1

b2
i,k‖ḡN (θk)− ḡN (θ∗)‖2

≤ 4

N

N∑

i=1

b2
i,k‖θk − θ∗‖2.

Taking expectations on each side of the above inequality then yields:

E

[

ατ‖ḡN (θk)− ḡN (θ∗)‖2
]

≤ 4ατpE
[

‖θk − θ∗‖2
]

. (B.18)

In arriving at the above inequality, we used the following facts: (i) the randomness in

θk depends on all the sources of randomness in our model up to time k−1; (ii) the Bernoulli

packet-drop random variables {bi,k}i∈[N] are independent of all the sources of randomness

up to time k − 1. Hence, for each i ∈ [N], E
[

b2
i,k‖θk − θ∗‖2

]

= E

[

b2
i,k

]

E
[‖θk − θ∗‖2] =

pE
[‖θk − θ∗‖2] .

Next, to bound E [S1], note that E

[
1

2ατ ‖θk − θk−τ‖2
]

can be directly bounded using

116 Appendix: Proofs of Chapter 4

Lemma B.3 in the following way:

1

2ατ
E

[

‖θk − θk−τ‖2
]

≤ 240ατpζ ′
E

[

‖θk − θ∗‖2
]

+ ατpσ2
(

180ζ ′

N
+ 2αq

)

. (B.19)

Finally, the only term that remains to be bounded is E
[‖gN (θk)‖2]. Note that we

can write:

‖gN (θk)‖2 ≤ 2

N2
(T ′

1 + T ′
2) with

T ′
1 = ‖

N∑

i=1

bi,kgi,k(θ∗)‖2, and

T ′
2 = ‖

N∑

i=1

bi,k(gi,k(θk)− gi,k(θ∗))‖2.

(B.20)

Observe that T ′
1 and T ′

2 above correspond exactly to the terms T1 and T2 in the proof of

Lemma B.2. Thus, they can be bounded as follows:

E
[
T ′

1

] ≤ 16σ2Np+ 4N2p2σ2α2q.

E
[
T ′

2

] ≤ 4pN2
E

[

‖θk − θ∗‖2
]

.
(B.21)

So, plugging (B.18), (B.19), (B.20), and the above bound into (B.17), we get the final

bound on E [T1] as follows:

E [T1] ≤ 304ατζ ′pE
[

δ2
k

]

+ ατpσ2
(

300ζ ′

N
+ 3αq

)

.

Next we bound E [T3] and E [T4]. Observe that:

E [T3] =
1

N

N∑

i=1

E [bi,k〈θk−τ − θ∗, (gi,k(θk)− gi,k(θk−τ))〉]

≤ pE
[

δk−τ
1

N

N∑

i=1

‖gi,k(θk)− gi,k(θk−τ)‖
]

(C.3)

≤ 2pE [δk−τδk,τ]

≤ ατp

2
E

[

δ2
k−τ

]

+
2p

ατ
E

[

δ2
k,τ

]

.

Using δ2
k−τ ≤ 2δ2

k + 2δ2
k,τ and Lemma B.3, we then obtain:

E [T3] ≤ 1441ατpζ ′
E

[

δ2
k

]

+ 6ατpσ2
(

180ζ ′

N
+ 2αq

)

.

B.1 Proof of Theorem 4.2 117

Using the same process, we can derive the exact same bound for E [T4]. We now bound

E [T2]. For ease of notation, let us define Fk,τ = ({oi,k−τ}Ni=1,θk−τ). Observe:

E [T2] = E [E [T2|Fk,τ]]

= E[〈θk−τ − θ∗,
p

N

N∑

i=1

(E [gi,k(θk−τ , oi,k)|Fk,τ]− ḡ(θk−τ))〉]

≤ E

[

δk−τ
p

N

N∑

i=1

η
(i)
k,τ (θk−τ)

]

≤ pαq
E [δk−τ (1 + ‖θk−τ‖)] ,

where in the last step, we made use of the mixing property. Since α < 1, we have

δk−τ (δk−τ + 2σ) ≤ δ2
k−τ

α + 2σδk−τ + ασ2 =
(

δk−τ√
α

+
√
ασ
)2
≤ 2

(
δ2

k−τ

α + ασ2

)

. Using

q ≥ 2, we obtain:

E [T2] ≤ 2pαq
E

[
1

α
δ2

k−τ + ασ2
]

≤ 2pαE
[

δ2
k−τ

]

+ 2pαq+1σ2.

(B.22)

Using δ2
k−τ ≤ 2δ2

k + 2δ2
k,τ and Lemma B.3, and then simplifying yields:

E [T2] ≤ 5ατpζ ′
E

[

δ2
k

]

+ ατpσ2
(
ζ ′

N
+ 3αq

)

. (B.23)

Finally, to bound T5, let Fk = {{oi,k}Ni=1,θk}. We have

E [T5] = E

〈θk − θ∗,E [vk − gN (θk)|Fk]

︸ ︷︷ ︸

T51

〉

 . (B.24)

Note that T51 = p
N

∑N
i=1 E [hi,k(θk)− gi,k(θk)|Fk] = 0, based on the unbiasedness of

Q(·). Thus, E [T5] = 0. Collecting the bounds on T1 − T5 concludes the proof.

With the help of the auxiliary lemmas provided above, we are now ready to prove

our main result, i.e., Theorem 4.2.

Proof of Theorem 4.2. Setting α ≤ 1
484ζ′τ , we can apply the bounds in Lemmas

C.1, B.2, and B.4 to (B.5). This yields:

E

[

δ2
k+1

]

≤ E

[

δ2
k

]

− αp(2(1− γ)ω − 6446ατζ ′)E
[

δ2
k

]

+ 5162
α2τpσ2ζ ′

N
+ 61α(2+q)τpσ2.

(B.25)

118 Appendix: Proofs of Chapter 4

For α ≤ ω(1−γ)
C0τζ′ with C0 = 6446, we then obtain:

E

[

δ2
k+1

]

≤ (1− αω(1− γ)p)E
[

δ2
k

]

+ 5162
α2τpσ2ζ

N
+ 61α(2+q)τpσ2. (B.26)

Iterating the last inequality, we have ∀k ≥ 2τ :

E

[

δ2
k

]

≤ ρk−2τ
E

[

δ2
2τ

]

+
τσ2

ω(1− γ)

(
C2αζ

′

N
+ C3α

3
)

,

where ρ = (1− αω(1− γ)p), C2 = 5162, C3 = 61, and we set q = 2. It only remains to

show that with our choice of α, E
[
δ2

2τ

]
= O(δ2

0 + σ2). This follows from some simple

algebra and steps similar to those in the proof of Lemma B.3. We provide these steps

below for completeness. Note that, defining T ′ = ‖∑N
i=1 bi,kgi,k(θk)‖2, and using (C.4),

E
[
T ′] ≤ 8N2pE

[

2δ2
k + 3σ2

]

≤ N2(16pE
[

δ2
k

]

+ 24pσ2).

Letting T3 be as defined in (B.7), note that

E

[

‖vk‖2
]

≤ 2

N2
E
[
T ′ + T3

] ≤ 64pζ ′
E

[

δ2
k

]

+ 96pζ ′σ2.

Plugging this inequality into (B.53) and iterating,

E

[

δ2
k

]

≤ (1 + 129αζ ′)kδ2
0 + 192αpσ2

k−1∑

j=0

(1 + 129αζ ′)j .

Using the same arguments used to arrive at (B.14), we have

E

[

δ2
2τ

]

≤ (1 + 129αζ ′)2τδ2
0 + 768ατpζ ′σ2

≤ 2δ2
0 + pσ2,

(B.27)

where we used the fact that ατ ≤ ω(1−γ)
6446ζ′ ≤ 1

1032ζ′ . Given that ατ ≤ 1
C0
≤ 1

4 , from

Bernoulli’s inequality, we have that (1 − α)2τ ≥ 1 − 2ατ ≥ 1
2 . Thus, observe that

(1− αω(1− γ)p)−2τ ≤ (1− α)−2τ ≤ 2. This concludes the proof. �

We now provide the proof of Corollary 4.1.

Proof of Corollary 4.1. We first recall the main result of Theorem 4.2, i.e., the

B.1 Proof of Theorem 4.2 119

following bound:

E

[

δ2
T

]

≤ (1− αω(1− γ)p)TC1
︸ ︷︷ ︸

T1

+
C2αζ

′τσ2

ω(1− γ)N
︸ ︷︷ ︸

T2

+
C3α

3τσ2

ω(1− γ)
︸ ︷︷ ︸

T3

. (B.28)

Let us also recall the choice of step-size α and number of iterations T from Corollary 4.1:

α =
logNT

ω(1− γ)pT
, and T ≥ 2C0Nτζ

′ logNT

ω2(1− γ)2p
. (B.29)

To simplify the first term in Eq. (B.28), we use the fact that for all x ∈ (0, 1), it holds

that (1− x) ≤ e−x. Using this in conjunction with the choice of α in (B.29) yields the

following bound on T1 in Eq. (B.28):

T1 = O

(

max{δ2
0 , σ

2}
NT

)

.

To bound T2, we simply substitute the choice of α in Eq. (B.29). For T3, we first

substitute the choice of α to obtain:

T3 =
C3τσ

2(logNT)3

ω4(1− γ)4p3T 3
.

From our choice of T in Eq. (B.29), the following hold:

τ log(NT)

pω2(1− γ)2T
≤ 1,

N log(NT)

Tp
≤ 1.

Using these two inequalities, we immediately note that:

T3 = O

(

σ2 log(NT)

pω2(1− γ)2NT

)

.

Combining the individual bounds on T1, T2, and T3 leads to Eq. (4.14). Let us

complete our derivation with a couple of other points. First, straightforward calculations

suffice to check that the choice of α and T in Eq. (B.29) meet the requirement on α in the

statement of Theorem 4.2. Finally, recall from the discussion following Definition 5.2.1

that the mixing time τǫ satisfies:

τǫ ≤ K log(1/ǫ),

for some constant K ≥ 1. Throughout our analysis, we set ǫ = α2, and then dropped

120 Appendix: Proofs of Chapter 4

the dependence of τ on ǫ for notational convenience. Plugging in the choice of α from

Eq. (B.29), we obtain:

τ ≤ 2K log

(
ω(1− γ)pT

log(NT)

)

≤ 2K log (ω(1− γ)pT) ,

for NT ≥ e. The point of the above calculation is to explicitly demonstrate that one can

indeed meet the requirement on T in Eq. (B.29) for large enough T .

B.2 Proof of Theorem 4.3

In this appendix, we will provide the detailed proof of Theorem 4.3. We start by

introducing some definitions and preliminary results. To lighten the notation, let us

define

η
(i)
k,τ (θ) , ‖E [gi,k(θ, oi,k)|oi,k−τ]− ḡ(θ)‖,∀k ≥ τ,∀θ ∈ R

d,∀i ∈ [N],

δk,τ , ‖θk − θk−τ‖,∀k ≥ τ.
(B.30)

Next, we summarize in one lemma a result from [19] that we will use in our analysis.

Lemma B.5. The following holds ∀θ ∈ R
d:

〈θ∗ − θ, ḡ(θ)〉 ≥ ω(1− γ)‖θ∗ − θ‖2.

We will also use the fact that the random TD update directions and their steady-state

versions are 2-Lipschitz [19], i.e., ∀i ∈ [N],∀k ∈ N, and ∀θ,θ′ ∈ R
d, we have:

‖ḡ(θ)− ḡ(θ′)‖ ≤ 2‖θ − θ′‖, and

‖gi,k(θ)− gi,k(θ′)‖ ≤ 2‖θ − θ′‖.
(B.31)

From [135], we further have

‖gi,k(θ)‖ ≤ 2‖θ‖+ 2r̄,∀i ∈ [N],∀k ∈ N,∀θ ∈ R
d. (B.32)

Given that (x+ y)2 ≤ 2(x2 + y2),∀x, y ∈ R, and the definition of σ, we will often use the

following inequality:

‖gi,k(θ)‖2 ≤ 4(‖θ‖+ r̄)2 ≤ 8(‖θ‖2 + r̄2) ≤ 8(‖θ‖2 + σ2). (B.33)

In what follows, τ = τǫ with ǫ = α2. We now provide an intuitive outline of the proof,

B.2 Proof of Theorem 4.3 121

highlighting the challenges and the key technical steps in establishing Theorem 4.3.

Outline of the Proof

The proof relies on analyzing the following recursion, which, in turn, follows directly

from the update rule of OAC-FedTD:

δ2
k+1 = δ2

k − 2α〈vk,θ
∗ − θk〉+ α2‖vk‖2. (B.34)

Let ḡN (θk) , 1
N

∑N
i=1 hi,kḡ(θk) and gh,k(θk) , 1

N

∑N
i=1 hi,kgi,k(θk). Taking expectation

on both sides of (B.34),

E

[

δ2
k+1

]

= E

[

δ2
k

]

− 2αE [〈ḡN (θk),θ∗ − θk〉]

− 2αE [〈gh,k(θk)− ḡN (θk),θ∗ − θk〉]
− 2αE [〈wk,θ

∗ − θk〉] + α2‖vk‖2.

(B.35)

Now note that E [〈wk,θk − θ∗〉] = 〈E [wk] ,E [θk − θ∗]〉 = 0, using the fact that the

measurement noise at iteration k and the iterate θk are independent, and E [wk] = 0.

Moreover, using the fact that the distortion hi,k of agent i at iteration k and the parameter

θk are independent, we obtain

E [〈ḡN (θk),θ∗ − θk〉] =
1

N

N∑

i=1

E [hi,k]E [〈ḡ(θk),θ∗ − θk〉] = mhE [〈ḡ(θk),θ∗ − θk〉] .

(B.36)

Based on the above discussion, we can write

E

[

δ2
k+1

]

= E

[

δ2
k

]

− 2αmh〈ḡ(θk),θ∗ − θk〉+ 2αE [〈gh,k(θk)− ḡN (θk),θk − θ∗〉] + α2‖vk‖2.
(B.37)

Now define

ψk , 〈gh,k(θk)− ḡN (θk),θk − θ∗〉. (B.38)

Using Lemma C.1, we then obtain

E

[

δ2
k+1

]

≤ E

[

δ2
k

]

− 2αmh(1− γ)ωE
[

δ2
k

]

+ 2αE [ψk] + α2
E

[

‖vk‖2
]

. (B.39)

The most challenging part of the analysis is in bounding E
[‖vk‖2

]
and E [ψk] while

guaranteeing a convergence speedup w.r.t. the number of agents. In fact, even without

the channel effects, this is highly non-trivial. Let us elaborate on this point. First, in

standard stochastic optimization analyses, E [ψk] would vanish under the unbiasedness

122 Appendix: Proofs of Chapter 4

assumption of the stochastic gradient oracle. However, in our case, since the Markovian

observations are temporally coupled, E [ψk] does not vanish. To work around this

difficulty, the bounding techniques in the centralized setting, like the ones in [19] and

[135], use mixing-time arguments in conjunction with equation (C.5). Unfortunately,

directly appealing to such techniques will fail to provide the desired convergence speedup

that we seek in our multi-agent setting. The key technical step of our proof is providing

a bound for E
[‖vk‖2

]
of the following form:

E

[

‖vk‖2
]

≤ O (ph)E
[

δ2
k

]

+O

(

σ2ph

N

)

+O
(

σ2m2
hα

4
)

+O

(

σ̃2
wd

N2

)

. (B.40)

We derive this bound by appealing to the Lipschitz properties of gi,k(θk) and performing

some careful manipulations that allow us to exploit the mixing property of the Markov

chain. Leveraging this key result, our next main step is to obtain a bound on E

[

δ2
k,τ

]

of

the following form:

E

[

δ2
k,τ

]

≤ O
(

α2τ2ph

)

E

[

δ2
k

]

+O

(

α2τ2 phσ
2

N

)

+O
(

τ2σ2α4
)

+O

(

α2τ2 σ̃
2
wd

N2

)

.

(B.41)

This result, derived in Lemma B.7, turns out to play an essential role in bounding E [ψk].

In particular, using Lemma B.7, we show that

E [ψk] ≤ O (ατph)E
[

δ2
k

]

+O

(

ατphσ
2

N

)

+O
(

τphσ
2α3

)

+O

(

ατσ̃2
wd

N2

)

.

This final ingredient is established in Lemma B.8. Combining these bounds leads to

Theorem 4.3. In what follows, we flesh out the above argument.

Auxiliary Lemmas

We state and prove three lemmas that are instrumental to the proof of Theorem 4.3. In

particular, these three results allow us to bound the terms E
[‖vk‖2

]
and E [ψk] in (B.39).

We start by providing a bound on E
[‖vk‖2

]
of the form illustrated in (B.40). To that

end, we state and prove the following lemma.

Lemma B.6. For k ≥ τ , we have

E

[

‖vk‖2
]

≤ 8phE

[

δ2
k

]

+ 32
σ2ph

N
+ 8σ2m2

hα
4 +

σ̃2
wd

N2
. (B.42)

Proof. Let us start by noting that the randomness in θk is induced by {hi,ℓ}i∈[N],ℓ∈[k−1], {oi,ℓ}i∈[N],ℓ∈[k−1],

B.2 Proof of Theorem 4.3 123

and {wℓ}ℓ∈[k−1]. Based on our assumptions on the noise process, wk is independent of each

of these random variables and also independent of {hi,k}i∈[N] and {oi,k}i∈[N]. Using these

observations with the fact that E [wk] = 0, we immediately obtain E [〈gh,k(θk),wk〉] =

〈E [gh,k(θk)] ,E [wk]〉 = 0. This yields:

E

[

‖vk‖2
]

= E

[

‖gh,k(θk)‖2
]

+ E

[

‖wk‖2
]

. (B.43)

Now, note that in the centralized/single-agent TD analysis, ‖gh,k(θk)‖2 could be bounded

using (C.4), and this would provide a term of the form O(δ2
k) +O(σ2). This approach

would, however, fail to provide a linear convergence speedup with the number of agents,

N . We will show how through a finer analysis, we can establish a tighter bound. We

start by writing

‖gh,k(θk)‖2 = ‖gh,k(θk)− gh,k(θ∗) + gh,k(θ∗)‖2

≤ 2

N2
(T1 + T2) ,

(B.44)

where T1 and T2 are as follows:

T1 = ‖
N∑

i=1

hi,kgi,k(θ∗)‖2, T2 = ‖
N∑

i=1

hi,k(gi,k(θk)− gi,k(θ∗))‖2. (B.45)

We proceed to bound T1 first. We express T1 = T11 + T12, with

T11 =
N∑

i=1

h2
i,k‖gi,k(θ∗)‖2, and

T12 =
N∑

i,j=1
i6=j

hi,khj,k〈gi,k(θ∗),gj,k(θ∗)〉.
(B.46)

Using (C.5) and the fact that ‖θ∗‖ ≤ σ, we obtain

‖gi,k(θ∗)‖2 ≤ 16σ2, (B.47)

and hence, T11 ≤ 16σ2∑N
i=1 h

2
i,k. Taking expectations, we thus obtain

E [T11] ≤ 16σ2
E

[
N∑

i=1

h2
i,k

]

= 16σ2N(m2
h + σ2

h) ≤ 16Nσ2ph.

Next, to bound the cross-terms in T12, we will exploit the mixing property in Defini-

124 Appendix: Proofs of Chapter 4

tion 5.2.1. To that end, we write

E [T12] =
N∑

i,j=1
i6=j

E [hi,khj,k〈gi,k(θ∗),gj,k(θ∗)〉]

(a)
=

N∑

i,j=1
i6=j

E [hi,khj,k]E [〈gi,k(θ∗),gj,k(θ∗)〉]

(b)
=

N∑

i,j=1
i6=j

E [hi,k]E [hj,k] 〈E [gi,k(θ∗)] ,E [gj,k(θ∗)]〉

(c)
= m2

h

N∑

i,j=1
i6=j

〈E [E [gi,k(θ∗)|oi,k−τ]− ḡ(θ∗)] ,E [E [gj,k(θ∗)|oj,k−τ]− ḡ(θ∗)]〉

(d)

≤ m2
h

N∑

i,j=1
i6=j

‖E [E [gi,k(θ∗)|oi,k−τ]− ḡ(θ∗)] ‖‖E [E [gj,k(θ∗)|oj,k−τ]− ḡ(θ∗)] ‖

(e)

≤ m2
h

N∑

i,j=1
i6=j

E

‖E [gi,k(θ∗)|oi,k−τ]− ḡ(θ∗)‖
︸ ︷︷ ︸

η
(i)
k,τ

(θ∗)

E

‖E [gj,k(θ∗)|oj,k−τ]− ḡ(θ∗)‖
︸ ︷︷ ︸

η
(j)
k,τ

(θ∗)

,

where (a) follows from the independence between the channel distortion gains and the

Markovian tuples; (b) follows from the independence between hi,k and hj,k for i 6= j, and

between oi,k and oj,k for i 6= j; (c) follows from the fact that ḡ(θ∗) = 0 [19]; (d) is a

consequence of the Cauchy-Schwarz inequality; and (e) follows from Jensen’s inequality.

Now observe that:

E

[

η
(i)
k,τ (θ∗)

]

× E

[

η
(j)
k,τ (θ∗)

]

≤
(

α2(1 + ‖θ∗‖)
)2
≤ 4σ2α4. (B.48)

In the step above, we used the mixing property by noting that k ≥ τ . We therefore

obtain that E [T12] ≤ 4N2m2
hσ

2α4. Combining the bounds for E [T11] and E [T12] thus

yields:

E [T1] ≤ 16σ2Nph + 4N2m2
hσ

2α4. (B.49)

B.2 Proof of Theorem 4.3 125

Now, using (C.3), we see that

E [T2] ≤ N
N∑

i=1

E

[

h2
i,k‖gi,k(θk)− gi,k(θ∗)‖2

]

≤ 4NE

[

δ2
k

] N∑

i=1

E

[

h2
i,k

]

= 4phN
2
E

[

δ2
k

]

.

(B.50)

Combining all the bounds above, we conclude that

E

[

‖gh,k(θk)‖2
]

≤ 8phE

[

δ2
k

]

+ 32
σ2ph

N
+ 8σ2m2

hα
4. (B.51)

The claim of the lemma then follows from the above bound and by noting that E
[‖wk‖2

]
=

σ̃2
w

d
N2 .

Our next key result is the following.

Lemma B.7. Let k ≥ 2τ and α ≤ 1
68τph

. We then have

E

[

δ2
k,τ

]

≤ 64α2τ2phE

[

δ2
k

]

+ 96α2τ2 phσ
2

N
+ 4α4τ2σ2 + 4α2τ2 σ̃

2
wd

N2
. (B.52)

Proof. We start by writing

δ2
k+1 = δ2

k − 2α〈vk,θ
∗ − θk〉+ α2‖vk‖2 ≤ (1 + α)δ2

k + (α+ α2)‖vk‖2

≤ (1 + α)δ2
k + 2α‖vk‖2.

(B.53)

Now using Lemma B.6, we have

E

[

δ2
k+1

]

≤ (1 + α)E
[

δ2
k

]

+ 2α

(

8phE

[

δ2
k

]

+ 32
σ2ph

N
+ 8σ2m2

hα
4 +

σ̃2
wd

N2

)

≤ (1 + 17αph)E
[

δ2
k

]

+ 64α
σ2ph

N
+ 16σ2m2

hα
5 + 2α

σ̃2
wd

N2
︸ ︷︷ ︸

B

.
(B.54)

Iterating this inequality, we can obtain for any k − τ ≤ k′ ≤ k,

E

[

δ2
k′

]

≤ (1 + 17αph)τ
E

[

δ2
k−τ

]

+B
τ−1∑

ℓ=0

(1 + 17αph)ℓ. (B.55)

Now using the fact that (1 + x) ≤ ex,∀x ∈ R, observe that (1 + 17αph)ℓ ≤ (1 +

17αph)τ ≤ e0.25 ≤ 2, for α ≤ 1/(68phτ). Using the same argument, we also have

126 Appendix: Proofs of Chapter 4

∑τ−1
ℓ=0 (1 + 17αph)ℓ ≤ 2τ . This yields:

E

[

δ2
k′

]

≤ 2E
[

δ2
k−τ

]

+ 2Bτ. (B.56)

Next, note that

δ2
k,τ ≤ τ

k−1∑

ℓ=k−τ

‖θℓ+1 − θℓ‖2 = τα2
k−1∑

ℓ=k−τ

‖vℓ‖2. (B.57)

Taking expectations on both sides of the above equation and applying Lemma B.6 and

(B.56), we get

E

[

δ2
k,τ

]

≤ α2τ
k−1∑

ℓ=k−τ

(

8phE

[

δ2
ℓ

]

+ 32
σ2ph

N
+ 8σ2m2

hα
4 +

σ̃2
wd

N2

)

= 8phα
2τ

k−1∑

ℓ=k−τ

E

[

δ2
ℓ

]

+
1

2
ατ2B

≤ 8phα
2τ

k−1∑

ℓ=k−τ

(

2E
[

δ2
k−τ

]

+ 2Bτ
)

+
1

2
ατ2B

= 16α2τ2phE

[

δ2
k−τ

]

+ 16α2τ3Bph +
1

2
ατ2B.

(B.58)

In the above steps, we used the fact that ℓ ≥ τ since k ≥ 2τ . We now proceed to simplify

the resulting inequality above as follows:

E

[

δ2
k,τ

]

≤ 16α2τ2phE

[

δ2
k−τ

]

+ 16α2τ3ph

(

64α
σ2ph

N
+ 16σ2m2

hα
5 + 2α

σ̃2
wd

N2

)

+
1

2
ατ2

(

64α
σ2ph

N
+ 16σ2m2

hα
5 + 2α

σ̃2
wd

N2

)

= 16α2τ2phE

[

δ2
k−τ

]

+ 16α3τ3ph

(

64
σ2ph

N
+ 16σ2m2

hα
4 + 2

σ̃2
wd

N2

)

+
1

2
α2τ2

(

64
σ2ph

N
+ 16σ2m2

hα
4 + 2

σ̃2
wd

N2

)

(a)

≤ 16α2τ2phE

[

δ2
k−τ

]

+ 48α2τ2σ
2ph

N
+ 2α4τ2σ2 + 2α2τ2 σ̃

2
wd

N2
,

(B.59)

where for (a), we used the fact that ατ ≤ 1
68ph

, and that
m2

h
ph
≤ 1, implying m2

hα ≤ 1
68τ .

B.2 Proof of Theorem 4.3 127

Now noting that δ2
k−τ ≤ 2δ2

k + 2δ2
k,τ , we obtain

E

[

δ2
k,τ

]

(1− 32α2τ2ph) ≤ 32α2τ2phE

[

δ2
k

]

+ 48α2τ2σ
2ph

N
+ 2α4τ2σ2 + 2α2τ2 σ̃

2
wd

N2
.

(B.60)

Since ατ ≤ 1
68ph

, we have that 1− 32α2τ2ph ≤ 1
2 , and hence

E

[

δ2
k,τ

]

≤ 64α2τ2phE

[

δ2
k

]

+ 96α2τ2σ
2ph

N
+ 4α4τ2σ2 + 4α2τ2 σ̃

2
wd

N2
. (B.61)

Using the above lemma, we are now able to provide a bound for E [ψk], which is the

last ingredient we need to prove Theorem 4.3.

Lemma B.8. Let k ≥ 2τ and α ≤ 1
68τph

. We then have

E [ψk] ≤ 435ατphE

[

δ2
k

]

+ 657ατ
phσ

2

N
+ 30τphσ

2α3 + 27ατ
σ̃2

wd

N2
. (B.62)

Proof. Recall the definition of ḡN (θk) , 1
N

∑N
i=1 hi,kḡ(θk) and gh,k(θk) , 1

N

∑N
i=1 hi,kgi,k(θk).

We write ψk as ψk = T1 + T2 + T3 + T4, where

T1 = 〈θk − θk−τ ,gh,k(θk)− ḡN (θk)〉,
T2 = 〈θk−τ − θ∗,gh,k(θk−τ)− ḡN (θk−τ)〉,
T3 = 〈θk−τ − θ∗,gh,k(θk)− gh,k(θk−τ)〉,
T4 = 〈θk−τ − θ∗, ḡN (θk−τ)− ḡN (θk)〉.

(B.63)

We now bound each of the terms E [T1]− E [T4] individually. We start by observing that

E [T1] = 〈θk − θk−τ ,gh,k(θk)− ḡN (θk)〉

≤ 1

2ατ
E

[

δ2
k,τ

]

+
1

2
ατE

[

‖gh,k(θk)− ḡN (θk)‖2
]

≤ 1

2ατ
E

[

δ2
k,τ

]

+ ατE
[

‖gh,k(θk)‖2
]

+ ατE
[

‖ḡN (θk)− ḡN (θ∗)‖2
]

.

(B.64)

Now note that E
[‖gh,k(θk)‖2] can be bounded using the same procedure we used in

128 Appendix: Proofs of Chapter 4

(B.44), while for E

[

δ2
k,τ

]

we can invoke Lemma B.7. We also have

E

[

‖ḡN (θk)− ḡN (θ∗)‖2
]

≤ N

N2

N∑

i=1

E

[

h2
i,k‖ḡ(θk)− ḡ(θ∗)‖2

]

≤ 4

N
E

[

δ2
k

] N∑

i=1

E

[

h2
i,k

]

= 4phE

[

δ2
k

]

.

(B.65)

Now, combining the bounds on these three terms and simplifying, we can obtain

E [T1] ≤ 44ατphE

[

δ2
k

]

+ 80ατ
σ2ph

N
+ 3τσ2α3 + 2ατ

σ̃2
wd

N2
. (B.66)

We now proceed to bound E [T3]. We will again use the fact that δ2
k−τ ≤ 2δ2

k + 2δ2
k,τ .

E [T3] = E [〈θk−τ − θ∗,gh,k(θk)− gh,k(θk−τ)〉]

= E

[

〈θk−τ − θ∗,
1

N

N∑

i=1

hi,k(gi,k(θk)− gi,k(θk−τ))〉
]

= E

[

1

N

N∑

i=1

hi,k〈θk−τ − θ∗,gi,k(θk)− gi,k(θk−τ)〉
]

≤ mhE

[

δk−τ
1

N

N∑

i=1

‖gi,k(θk)− gi,k(θk−τ)‖
]

≤ ατ

2
m2

hE

[

δ2
k−τ

]

+
2

ατ
E

[

δ2
k,τ

]

≤ ατm2
hE

[

δ2
k

]

+ ατm2
hE

[

δ2
k,τ

]

+
2

ατ
E

[

δ2
k,τ

]

≤ ατm2
hE

[

δ2
k

]

+
3

ατ
E

[

δ2
k,τ

]

,

(B.67)

where we have used that ατ ≤ 1
68ph

and
m2

h
ph
≤ 1, which imply m2

hατ ≤ 1. Applying

Lemma B.7, we can then get

E [T3] ≤ ατphE

[

δ2
k

]

+
3

ατ

(

64α2τ2phE

[

δ2
k

]

+ 96α2τ2 phσ
2

N
+ 4α2τ2σ2α2 + 4α2τ2 σ̃

2
wd

N2

)

.

(B.68)

Simplifying the above bound yields:

E [T3] ≤ 193ατphE

[

δ2
k

]

+ 288ατ
phσ

2

N
+ 12τσ2α3 + 12ατ

σ̃2
wd

N2
. (B.69)

With analogous calculations, we can derive exactly the same bound for E [T4].

B.2 Proof of Theorem 4.3 129

We now proceed to bound E [T2]. For ease of notation, let us define Fk,τ =

({oi,k−τ}Ni=1,θk−τ). Observe:

E [T2] = E [E [T2|Fk,τ]] = E[〈θk−τ − θ∗,
mh

N

N∑

i=1

(E [gi,k(θk−τ , oi,k)|Fk,τ]− ḡ(θk−τ))〉]

≤ E

[

δk−τ
mh

N

N∑

i=1

η
(i)
k,τ (θk−τ)

]

≤ mhα
2
E [δk−τ (1 + ‖θk−τ‖)] .

Since α < 1, we have δk−τ (δk−τ + 2σ) ≤ δ2
k−τ

α + 2σδk−τ + ασ2 =
(

δk−τ√
α

+
√
ασ
)2
≤

2

(
δ2

k−τ

α + ασ2

)

. Based on this observation, Lemma B.7, and the fact that mh ≤ ph, we

obtain

E [T2] ≤ 2mhα
2

(

δ2
k−τ

α
+ ασ2

)

= 2mhαδ
2
k−τ + 2mhα

3σ2

≤ 4mhαδ
2
k + 4mhαδ

2
k,τ + 2mhα

3σ2

≤ 5phατE
[

δ2
k

]

+ ατ
σ2ph

N
+ 3τσ2phα

3 + ατ
σ̃2

wd

N2
.

(B.70)

Combining all the terms, we can conclude the proof.

We are now in position to prove Theorem 4.3.

130 Appendix: Proofs of Chapter 4

Proof of Theorem 4.3

Consider the inequality that we derived in (B.34). For k ≥ 2τ , plugging in the inequality

the bounds derived in Lemma B.6 and in Lemma B.8, we get

E

[

δ2
k+1

]

≤ E

[

δ2
k

]

− 2αmh(1− γ)ωE
[

δ2
k

]

+ 2αE [ψk] + α2
E

[

‖vk‖2
]

≤ E

[

δ2
k

]

− 2αmh(1− γ)ωE
[

δ2
k

]

+ 2α

(

435ατphE

[

δ2
k

]

+ 657ατ
phσ

2

N
+ 30τphσ

2α3 + 27ατ
σ̃2

wd

N2

)

+ α2

(

8phE

[

δ2
k

]

+ 32
σ2ph

N
+ 8σ2m2

hα
4 +

σ̃2
wd

N2

)

= E

[

δ2
k

]

− 2αmh(1− γ)ωE
[

δ2
k

]

+ 878α2τphE

[

δ2
k

]

+ 1346α2τ
phσ

2

N
+ 61τphσ

2α4 + 55α2τ
σ̃2

wd

N2

= E

[

δ2
k

]

− α (2mh(1− γ)ω − 878ατph)E
[

δ2
k

]

+ 1346α2τ
phσ

2

N
+ 61τphσ

2α4 + 55α2τ
σ̃2

wd

N2
.

(B.71)

Hence, for α ≤ mh(1−γ)ω
C0τph

, with C0 = 878, we get

E

[

δ2
k+1

]

≤ (1−αmh(1− γ)ω)E
[

δ2
k

]

+ 1346α2τ
phσ

2

N
+ 61τphσ

2α4 + 55α2τ
σ̃2

wd

N2
. (B.72)

Unrolling this inequality, we obtain

E

[

δ2
T

]

≤ (1− αmh(1− γ)ω)T −2τ
E

[

δ2
2τ

]

+ C2
ατphσ

2

mh(1− γ)ωN

+
C3τphσ

2α3

mh(1− γ)ω
+

C4ατσ̃
2
wd

mh(1− γ)ωN2
,

(B.73)

with C2 = 1346, C3 = 61 and C4 = 55. To conclude, we proceed to bound E
[
δ2

2τ

]
. Note

that, for any k ≥ 0,

E

[

δ2
k+1

]

≤ (1 + α)E
[

δ2
k

]

+ 2αE
[

‖vk‖2
]

. (B.74)

Observe as before (see (B.43)):

E

[

‖vk‖2
]

= E

[

‖gh,k(θk)‖2
]

+ E

[

‖wk‖2
]

. (B.75)

B.2 Proof of Theorem 4.3 131

Note that E
[‖wk‖2

]
= σ̃2

w
d

N2 and that we can bound E
[‖gh,k(θk)‖2] as follows:

E

[

‖gh,k(θk)‖2
]

= E

[

‖ 1

N

N∑

i=1

hi,kgi,k(θk)‖2
]

≤ N

N2

N∑

i=1

h2
i,k‖gi,k(θk)‖2

≤ 1

N

(

8(‖θk‖2 + σ2)
N∑

i=1

E

[

h2
i,k

]
)

≤
(

8(2δ2
k + 3σ2)

)

ph

= 16phE

[

δ2
k

]

+ 24phσ
2.

(B.76)

Hence,

E

[

‖vk‖2
]

≤ 16phE

[

δ2
k

]

+ 24phσ
2 +

σ̃2
wd

N2
. (B.77)

We thus have

E

[

δ2
k+1

]

≤ (1 + α)E
[

δ2
k

]

+ 2α

(

16phE

[

δ2
k

]

+ 24phσ
2 +

σ̃2
wd

N2

)

≤ (1 + 33phα)E
[

δ2
k

]

+ 48αphσ
2 + 2α

σ̃2
wd

N2
.

(B.78)

Iterating this inequality, we obtain

E

[

δ2
2τ

]

≤ (1 + 33αph)2τδ2
0 +

(

48αphσ
2 + 2α

σ̃2
wd

N2

)
2τ−1∑

j=0

(1 + 33αph)j . (B.79)

Now with the same procedure used to obtain (B.56), we see that if 66αphτ ≤ 1
4 , then

E

[

δ2
2τ

]

≤ 2E
[

δ2
0

]

+ 4τ

(

48αphσ
2 + 2α

σ̃2
wd

N2

)

≤ 2E
[

δ2
0

]

+ 192ατσ2ph +
8ασ̃2

wdτ

N2

≤ 2E
[

δ2
0

]

+ σ2 +
σ̃2

wd

N2
,

(B.80)

where we have used that ατ ≤ 1
878ph

. With the choice of step size in the statement of the

theorem, we have αω(1−γ)mh ≤ 1. This then yields (1−αω(1−γ)mh)−2τ ≤ (1−αmh)−2τ .

Finally note that since ατ ≤ 1
C0ph

≤ 1
4ph

, we have ατmh ≤ mh
4ph
≤ 1

4 , where we used

the fact that mh
ph
≤ 1. Based on this discussion and using Bernoulli’s inequality, we

obtain (1 − αmh)2τ ≥ 1 − 2ατmh ≥ 1
2 ; hence, (1 − αmh)−2τ ≤ 2. We thus have

(1− αω(1− γ)mh)−2τ ≤ 2. Plugging this bound back in (B.73) completes the proof.

132 Appendix: Proofs of Chapter 4

B.3 Proof of Theorem 4.4

In this section, we prove Theorem 4.4. We start by introducing the following definitions

to lighten the notation:

η
(i)
k,τ (θ) , ‖E [gi,k(θ, oi,k)|oi,k−τ]− ḡ(θ)‖, k ≥ τ,
δk,h , ‖θk − θk−h‖, k ≥ h ≥ 0,

dk , max
k−2τmax−τ≤j≤k

E

[

δ2
j

]

, k ≥ τ + 2τmax.

(B.81)

For our analysis, we will need the following result from [19].

Lemma B.9. The following holds ∀θ ∈ R
m:

〈θ∗ − θ, ḡ(θ)〉 ≥ ω(1− γ)‖θ∗ − θ‖2.

We will also use the fact that the random TD update directions and their steady-state

versions are 2-Lipschitz [19], i.e., ∀i ∈ [N],∀k ∈ N, and ∀θ,θ′ ∈ R
m, we have:

max{‖g(θ)− g(θ′)‖, ‖ḡ(θ)− ḡ(θ′)‖} ≤ 2‖θ − θ′‖. (B.82)

From [135], we also have that ∀i ∈ [N],∀k ∈ N,∀θ ∈ R
m:

‖g(θ, oi,k)‖ ≤ 2‖θ‖+ 2r̄, (B.83)

which, squared, using r̄ ≤ σ, yields

‖g(θ, oi,k)‖2 ≤ 8(‖θ‖2 + σ2). (B.84)

We will often use the fact that, from the definition of the mixing time in Definition 5.2.1,

we have, for a given iteration k ≥ τ , defining Θi,k , {θk−τ , oi,k−τ},

‖E [g(θk−τ , oi,k)|Θi,k]− ḡ(θk−τ)‖ ≤ αq (‖θk−τ‖+ 1) (B.85)

The proof also relies on the following result from [56]:

Lemma B.10. Let Vk be non-negative real numbers that satisfy

Vk+1 ≤ pVk + q max
(k−d(k))+≤ℓ≤k

Vℓ + β,

for β, p, q > 0. Here, k ≥ 0 and 0 ≤ d(k) ≤ dmax for some dmax ≥ 0. If p+ q < 1, then

B.3 Proof of Theorem 4.4 133

we have

Vk ≤ ρkV0 + ǫ,

where ρ = (p+ q)1/(1+dmax) and ǫ = β
1−p−q .

We will also use the fact that, for any a, b ∈ R, c ≥ 0,

ab = a
√
c
b√
c
≤ 1

2

(

ca2 +
b2

c

)

, (B.86)

and also the fact that, for ai ∈ R, i = 1, ..., N ,

(
N∑

i=1

ai

)2

≤ N
N∑

i=1

a2
i . (B.87)

Equipped with the above basic results, we now provide an outline of our proof before

illustrating the technical details.

Outline of the proof. Recall ti,k , (k − τi,k)+. We write the update rule (??) as

θk+1 = θk + αvk = θk + αḡ(θk)− αek, (B.88)

with ek , ḡ(θk)− vk. Thus,

ek =
1

N

N∑

i=1

(

ḡ(θk)− g(θti,k
, oi,ti,k

)
)

. (B.89)

We analyze the following recursion:

δ2
k+1 = T1 + α2T2 − 2αT3, with

T1 = ‖θk − θ∗ + αḡ(θk)‖2

T2 = ‖ek‖2

T3 = 〈θk − θ∗ + αḡ(θk), ek〉.

(B.90)

The most important part of the proof consists of obtaining a bound of the following form:

E

[

δ2
k+1

]

≤ pE
[

δ2
k

]

+O(α2(τ + τmax))dk +Bα,N , (B.91)

134 Appendix: Proofs of Chapter 4

where dk was defined in (B.81), p < 1 is a contraction factor and

Bα,N = O(α2(τ + τmax))
σ2

N
+O(α4)σ2, (B.92)

which guarantees the linear speedup effect with N . The bound in (B.91) allows us to

obtain the desired result, by picking a step size small enough and applying Lemma B.10.

Given this outline, in the following we provide bounds for E [T1], E [T2] and E [T3].

Bounding E [T1]. Note that

T1 = ‖θk − θ∗ + αḡ(θk)‖2

= δ2
k + 2α〈θk − θ∗, ḡ(θk)〉+ α2‖ḡ(θk)‖2.

(B.93)

Note that, using Lemma C.1, we get

〈θk − θ∗, ḡ(θk)〉 ≤ −(1− γ)ωδ2
k, (B.94)

and using (C.3) we get

‖ḡ(θk)‖2 = ‖ḡ(θk)− ḡ(θ∗)‖2 ≤ 4δ2
k. (B.95)

Combining the two bounds above and taking the expectation,

E [T1] ≤ (1− 2α(1− γ)ω)E
[

δ2
k

]

+ 4α2
E

[

δ2
k

]

. (B.96)

Bounding E [T2]. We need the following result.

Lemma B.11. For k ≥ τ + τmax, we have

E

[

‖vk‖2
]

≤ 8 max
k−τmax≤j≤k

E

[

δ2
j

]

+ 32
σ2

N
+ 8σ2α2q (B.97)

Proof. We write

‖vk‖2 ≤
2

N2
(V1 + V2), with

V1 = ‖
N∑

i=1

g(θti,k
, oi,ti,k

)− g(θ∗, oi,ti,k
)‖2,

V2 = ‖
N∑

i=1

g(θ∗, oi,ti,k
)‖2.

(B.98)

B.3 Proof of Theorem 4.4 135

We now bound V1.

V1 ≤ N
N∑

i=1

‖g(θti,k
, oi,ti,k

)− g(θ∗, oi,ti,k
)‖2

(C.3)

≤ 4N
N∑

i=1

δ2
ti,k
. Thus,

E [V1] ≤ 4N
N∑

i=1

E

[

δ2
ti,k

]

≤ 4N2 max
k−τmax≤j≤k

E

[

δ2
j

]

(B.99)

We now proceed to bound V2.

V2 = V21 + V22, with

V21 =
N∑

i=1

‖g(θ∗, oi,ti,k
)‖2

V22 =
N∑

i,j=1
i6=j

〈g(θ∗, oi,ti,k
),g(θ∗, oj,tj,k

)〉.

(B.100)

We see that, using (B.84), we get

V21 ≤ 8
N∑

i=1

(‖θ∗‖2 + σ2) ≤ 16Nσ2. (B.101)

Now, using the fact that the observations oi,k and oj,k′ are independent for i 6= j and for

any k, k′ ≥ 0,

E [V22] =
N∑

i,j=1
i6=j

〈E
[

E

[

g(θ∗, oi,ti,k
)|oi,ti,k−τ

]]

,

E

[

E

[

g(θ∗, oj,tj,k
)|oj,tj,k−τ

]]

〉.

(B.102)

Using the fact that ḡ(θ∗) = 0, and Cauchy-Schwarz inequality followed by Jensen’s

inequality, we can write

E [V22] ≤
N∑

i,j=1
i6=j

E

[

η
(i)
ti,k,τ (θ∗)

]

× E

[

η
(j)
tj,k,τ (θ∗)

]

≤ N2α2q(‖θ∗‖+ σ)2 ≤ 4N2α2qσ2.

(B.103)

Plugging the above bounds on E [V1] and E [V2] in (B.98), we can conclude the proof of

the lemma.

136 Appendix: Proofs of Chapter 4

We are now in the position to proceed bounding E [T2].

E [T2] = E

[

‖ek‖2
]

= E

[

‖ḡ(θk)− vk‖2
]

≤ 2E
[

‖ḡ(θk)‖2 + ‖vk‖2
]

.
(B.104)

Note that ‖ḡ(θk)‖2 = ‖ḡ(θk)− ḡ(θ∗)‖2 ≤ 4δ2
k, and so using Lemma B.11 we get

E [T2] ≤ 24 max
k−τmax≤j≤k

E

[

δ2
j

]

+ 64
σ2

N
+ 16σ2α2q. (B.105)

Bounding E [T3]. We now bound E [T3], which represents the major technical burden

of the proof. We need the following result.

Lemma B.12. Let k ≥ τmax + h. Then,

E

[

δ2
k,h

]

≤ 8α2h2

(

dk + 4
σ2

N
+ σ2α2q

)

(B.106)

Proof. Note that, using Lemma B.11,

E

[

δ2
k,h

]

= E

[

‖θk − θk−h‖2
]

≤ h
k−1∑

l=k−h

E

[

‖θl+1 − θl‖2
]

≤ α2h
k−1∑

l=k−h

E

[

‖vl‖2
]

≤ α2h
k−1∑

l=k−h

(8 max
l−τmax≤j≤l

E

[

δ2
j

]

+ 32
σ2

N
+ 8σ2α2q)

≤ 8α2h2

(

dk + 4
σ2

N
+ σ2α2q

)

.

(B.107)

Now, we can write

T3 = K + T32, with

K = 〈θk − θ∗, ek〉,
T32 = α〈ḡ(θk), ek〉.

(B.108)

B.3 Proof of Theorem 4.4 137

Note that, using Cauchy-Schwarz and (C.7),

T32 ≤
α

2

(

‖ḡ(θk)‖2 + ‖ek‖2
)

≤ 2αδ2
k +

α

2
‖ek‖2.

(B.109)

Taking the expectation and using the bound on E [T2],

E [T32] ≤ α(14dk + 32
σ2

N
+ 8σ2α2q). (B.110)

Now we bound K. Define ḡN,k , 1
N

∑N
i=1 ḡ(θk−τi,k

). Adding and subtracting ḡN,k, we

write
K = K1 +K2, with

K1 = 〈θk − θ∗, ḡ(θk)− ḡN,k〉,
K2 = 〈θk − θ∗, ḡN,k − vk〉.

(B.111)

Now note that, taking the sum of the second term outside of the inner product in K1,

K1 =
1

N

N∑

i=1

K1,i, with

K1,i = 〈θk − θ∗, ḡ(θk)− ḡ(θti,k
)〉.

(B.112)

We now bound E [K1,i]. Using (C.7) and (C.3),

K1,i ≤ ατmaxδ
2
k +

1

4ατmax
‖ḡ(θk)− ḡ(θti,k

)‖2

≤ ατmaxδ
2
k +

1

ατmax
δ2

k,τi,k
.

(B.113)

Note that, using Lemma B.12, which requires ti,k = k − τi,k ≥ τ , which holds for

k ≥ τmax + τ ,

E

[

δ2
ti,k,τ

]

≤ 8α2τ2
max

(

dk + 4
σ2

N
+ σ2α2q

)

. (B.114)

Taking the expectation and applying (B.114), we get

E [K1,i] ≤ ατmax

(

9dk + 32
σ2

N
+ 8σ2α2q

)

, (B.115)

138 Appendix: Proofs of Chapter 4

and note that E [K1] is bounded by the same quantity. We now proceed to bound E [K2].

K2 =
1

N

N∑

i=1

K2,i, with

K2,i = 〈θk − θ∗, ḡ(θti,k
)− g(θti,k

, oi,ti,k
)〉

= ∆1,i + ∆2,i + ∆3,i, where

∆1,i = 〈θk − θ∗, ḡ(θti,k
)− ḡ(θti,k−τ)〉,

∆2,i = 〈θk − θ∗, ḡ(θti,k−τ)− g(θti,k−τ , oi,ti,k
)〉

∆3,i = 〈θk − θ∗,g(θti,k−τ , oi,ti,k
)− g(θti,k

, oi,ti,k
)〉.

(B.116)

Note that, using Cauchy-Schwarz inequality and (C.3),

∆1,i ≤ δk‖ḡ(θti,k
)− ḡ(θti,k−τ)‖

≤ 2δkδti,k,τ

(C.7)

≤
(

ατδ2
k +

δ2
ti,k,τ

ατ

)

.

(B.117)

For k ≥ τ + τmax, we can apply Lemma B.12 and get

E

[

δ2
ti,k,τ

]

≤ α2τ2

(

8dk + 32
σ2

N
+ 8σ2α2q

)

. (B.118)

Thus, taking the expectation, we can get

E [∆1,i] ≤ 9ατdk + 32ατ
σ2

N
+ 8ατσ2α2q. (B.119)

Note that, using the Lipschitz property (see (C.3)), we get the exact same bound for

∆3,i. Now note that

K2 =
1

N

N∑

i=1

(∆1,i + ∆3,i) + ∆̄, with

∆̄ =
1

N

N∑

i=1

∆2,i.

(B.120)

To bound ∆̄, we want to use the geometric mixing property of the Markov chain, that

follows from Assumption 6. However, due to the correlations existing between the iterates

θti,k
, this needs to be done with special care. Defining k′ , k − τmax − τ , we start by

B.3 Proof of Theorem 4.4 139

adding and subtracting θk′ from the first term in the inner product of ∆2,i, getting

∆̄ = ∆̄1 + ∆̄2, with

∆̄1 = 〈θk − θk′ ,
1

N

N∑

i=1

ḡ(θti,k−τ)− g(θti,k−τ , oi,ti,k
)〉,

∆̄2 = 〈θk′ − θ∗,
1

N

N∑

i=1

ḡ(θti,k−τ)− g(θti,k−τ , oi,ti,k
)〉.

(B.121)

Note that we can write, using (C.7) and (B.87),

∆̄1≤
1

2α (τmax + τ)
δ2

k,τ+τmax

+
α (τmax + τ)

2N2
‖

N∑

i=1

ḡ(θti,k−τ)− g(θti,k−τ , oi,ti,k
)‖2

︸ ︷︷ ︸

G

(B.122)

For k ≥ τ + 2τmax, we can apply Lemma B.12 and get

E

[

δ2
k,τ+τmax

]

≤ 8α2 (τ + τmax)2 (dk + 4
σ2

N
+ σ2α2q). (B.123)

Now note that

G ≤ 2 ‖
N∑

i=1

ḡ(θti,k−τ)‖2

︸ ︷︷ ︸

G1

+2 ‖
N∑

i=1

g(θti,k−τ , oi,ti,k
)‖2

︸ ︷︷ ︸

G2

,
(B.124)

with E [G1] ≤ 4N2
E

[

δ2
ti,k−τ

]

≤ 4N2dk. Also note that

G2 ≤ 2G21 + 2G22, with

G21 = ‖
N∑

i=1

g(θti,k−τ , oi,ti,k
)− g(θ∗, oi,k−τi,k

)‖2,

G22 = ‖
N∑

i=1

g(θ∗, oi,ti,k
)‖2.

(B.125)

Note that E [G21] and E [G22] can be bounded in the same way as E [V1] and E [V2] in

the proof of Lemma B.11. We get

E [G2] ≤ 8
(

N2dk + 4Nσ2 +N2σ2α2q
)

. (B.126)

140 Appendix: Proofs of Chapter 4

Hence, we get

E

[

∆̄1

]

≤ 16α (τmax + τ)

(

dk + 3
σ2

N
+ σ2α2q

)

. (B.127)

Defining ∆̄2,i , 〈θk′ − θ∗, ḡ(θti,k−τ)− g(θti,k−τ , oi,ti,k
)〉,

E

[

∆̄2

]

=
1

N

N∑

i=1

E

[

∆̄2,i

]

. (B.128)

Now, defining Θ̄i,k , {θk′ ,θti,k−τ , oti,k−τ},

E

[

∆̄2,i

]

=E[〈θk′ − θ∗, ḡ(θti,k−τ)− g(θti,k−τ , oi,ti,k
)〉]

=E[〈θk′ − θ∗,

ḡ(θti,k−τ)− E

[

g(θti,k−τ , oi,ti,k
)|Θ̄i,k

]

〉]

≤E[δk′

· ‖ḡ(θti,k−τ)− E

[

g(θti,k−τ , oi,ti,k
)|Θ̄i,k

]

‖
︸ ︷︷ ︸

η̄k,i

].

(B.129)

Now, recall Θi,k = {θti,k−τ , oi,ti,k−τ}. Note that, for the memoryless property of the

Markov chain {oi,k}, we have

E

[

g(θti,k−τ , oi,ti,k
)|Θ̄i,k

]

= E

[

g(θti,k−τ , oi,ti,k
)|Θi,k

]

. (B.130)

Indeed, by inspecting the update rule (4.6) we see that the parameter θk′ is a function of

agent i observations only up to time step k′ − 1, so up to observation oi,k′−1. Hence, all

the statistical information contained in θk′ has no influence on the random variable oi,ti,k

once we condition on oi,ti,k−τ , because ti,k − τ = k− τi,k − τ > k′ − 1 = k− τmax − τ − 1.

Therefore,

η̄k,i = ‖ḡ(θti,k−τ)− E

[

g(θti,k−τ , oi,ti,k
)|Θi,k

]

‖
(B.85)

≤ αq
(

‖θti,k−τ‖+ σ
)

.
(B.131)

B.3 Proof of Theorem 4.4 141

Hence, we get

E

[

∆̄2,i

]

≤ E

[

δk′αq
(

‖θti,k−τ‖+ σ
)]

≤ E

[

δk′αq
(

δti,k−τ + 2σ
)]

≤ E

[
α

2
δ2

k′ + α2q−1
(

δ2
ti,k−τ + 4σ2

)]

≤ αdk + 4ασ2α2(q−1)

≤ αdk + 4ασ2αq

(B.132)

where we used the fact that α ≤ 1
2 and the fact that 2(q − 1) ≥ q for q ≥ 2. Putting all

the above bounds together, and also the fact that α ≤ 1
16(τmax+τ) we get

E [T3] ≤ α (τmax + τ)

(

44dk + 144
σ2

N

)

+ 7ασ2αq. (B.133)

Concluding the proof. Using the bounds on E [T1] ,E [T2] and E [T3], we obtain, for

k ≥ τ ′ , 2τmax + τ ,

E

[

δ2
k+1

]

≤ (1− 2α(1− γ)ω)E
[

δ2
k

]

+ 15α2σ2αq

+ α2 (τ + τmax)

(

112dk + 352
σ2

N

)

.
(B.134)

We can now write the above bound in the following way:

Vk+1 = pVk + q max
k−τ ′≤j≤k

Vj + β, with

Vk = E

[

δ2
k

]

,

p = (1− 2α(1− γ)ω),

q = 112α2 (τmax + τ) ,

β = 352α2 (τmax + τ)

(

σ2

N

)

+ 15α2σ2αq.

(B.135)

Imposing α ≤ (1−γ)ω
112(τ+τmax) , we get p+ q ≤ 1− α(1− γ)ω, and we can apply Lemma B.10

getting

E

[

δ2
T

]

≤ ρT −τ ′

E

[

δ2
τ ′

]

+ ǫ, (B.136)

with ρ = (1− α(1− γ)ω)
1

1+τ ′ and ǫ = β
1−p−q . Note that we can easily show that ρ−τ ′ ≤ 2

for α ≤ 1
16(τmax+τ) . Furthermore, we can show that E

[
δ2

τ ′

] ≤ 3σ2, as we do next. Note

142 Appendix: Proofs of Chapter 4

that, using (B.84),

‖vk‖2 ≤
1

N

N∑

i=1

8(2δ2
ti,k

+ 3σ2)

≤ 16 max
i=1,...,N

δ2
ti,k

+ 24σ2.

(B.137)

Using this bound, note that, for any k ≥ 0

δ2
k+1 = δ2

k + 2α〈θt − θ∗,vk〉+ α2‖vk‖2
(C.7)

≤ δ2
k + αδ2

k + α‖vk‖2 + α2‖vk‖2

≤ (1 + α)δ2
k + 2α‖vk‖2

≤ (1 + α)δ2
k + 32α max

i=1,...,N
δ2

ti,k
+ 48ασ2,

(B.138)

where recall that ti,k ≤ k. Now define p̄ , 1 + α, q̄ , 32α and ν , p̄+ q̄ and β̄ , 48ασ2.

We now prove by induction that, for all k ≥ 0,

δ2
k ≤ νkδ2

0 + ǫk, (B.139)

where ǫk = νǫk−1 + β̄ for k ≥ 1 and ǫ0 = 0. The base case is trivially satisfied, because

δ2
0 ≤ δ2

0 . As an inductive step, suppose that (C.137) is true for 0 ≤ s ≤ k, for some k ≥ 0,

so

δ2
s ≤ νsδ2

0 + ǫs, 0 ≤ s ≤ k. (B.140)

Now, we check the property for k + 1, using (C.136), and noting that ǫk is an increasing

sequence:

δ2
k+1 ≤ p̄δ2

k + q̄ max
i=1,...,N

δ2
ti,k

+ β̄,

≤ p̄(νkδ2
0 + ǫk) + q̄

(

max
i=1,...,N

νti,kδ2
0 + ǫti,k

)

+ β̄

≤ p̄(νkδ2
0 + ǫk) + q̄(νkδ2

0 + ǫk) + β̄

≤ (p̄+ q̄)νkδ2
0 + (p̄+ q̄)ǫk + β̄

= νk+1δ2
0 + ǫk+1.

(B.141)

From which we can conclude the proof of (C.137). Now, note that ǫk = β̄
∑k−1

j=0 ν
j , and

that for 0 ≤ k ≤ τ ′,

νk ≤ ντ ′ ≤ (1 + 33α)τ ′ ≤ e33ατ ′ ≤ e0.25 ≤ 2, (B.142)

B.3 Proof of Theorem 4.4 143

imposing α ≤ 1
132τ ′ . Hence, for 0 ≤ k ≤ τ ′,

δ2
k ≤ νkδ2

0 + ǫk ≤ 2δ2
0 + β̄

τ ′−1∑

j=0

νj ≤ 2δ2
0 + 2β̄τ ′

= 2δ2
0 + 2(48ασ2)τ ′ ≤ 2δ2

0 + σ2 ≤ 3σ2,

(B.143)

where we used the fact that α ≤ 1
100τ ′ and that δ2

0 ≤ σ2. We can therefore conclude,

writing the bound in (B.136) as

E

[

δ2
T

]

≤ exp

(

−α(1− γ)ωT

2 (τ + τmax)

)

6σ2

+ 352
α (τ + τmax)σ2

(1− γ)ωN
+ 15

α3σ2

(1− γ)ω
.

(B.144)

144 Appendix: Proofs of Chapter 4

C
Appendix: Proofs of Chapter 5

In this Appendix, we provide the proofs for the theoretical results stated in Chapter 5.

In particular, we provide the proofs for all the Theorems and Lemmas. We start by

recalling some implications of the Assumptions of Section 5.2 in the following.

Preliminaries

First, recall that from Assumption 7 we have, ∀θ ∈ R
d:

〈θ∗ − θ, ḡ(θ)〉 ≥ µ‖θ∗ − θ‖2. (C.1)

Throughout the proof, we will often invoke the mixing property (see Definition 5.2.1),

which implies that, for a fixed θ,

‖E [g(θ, ot)|ot−τmix]− ḡ(θ)‖ ≤ α (‖θ‖+ σ) (C.2)

We will also use the fact that the SA update directions and their steady-state versions

are L-Lipschitz (Assumption 8), i.e., ∀o ∈ {ot}t∈N, and ∀θ,θ′ ∈ R
d, we have:

‖ḡ(θ)− ḡ(θ′)‖ ≤ L‖θ − θ′‖, and

‖g(θ, ot)− g(θ′, ot)‖ ≤ L‖θ − θ′‖.
(C.3)

We further have

‖g(θ, o)‖ ≤ L(‖θ‖+ σ),∀o ∈ {ot}t∈N,∀θ ∈ R
d. (C.4)

Given that (x+ y)2 ≤ 2(x2 + y2),∀x, y ∈ R, we will often use the following inequality:

‖g(θ, ot)‖2 ≤ L2(‖θ‖+ σ)2 ≤ 2L2(‖θ‖2 + σ2). (C.5)

146 Appendix: Proofs of Chapter 5

Without loss of generality, we assume that

L ≥ 1, σ ≥ max{‖θ0‖, ‖θ∗‖}, µ < 1. (C.6)

We will often use the fact that, for any x, y ∈ R, we have

xy ≤ 1

2
(x2 + y2). (C.7)

In addition, we will often use the fact that, for t ≥ 2, ai ∈ R, i = 0, ..., t− 1, it holds

(
t−1∑

i=0

ai

)2

≤ t
t−1∑

i=0

a2
i (C.8)

C.1 Proof of Theorem 5.3

First, we recall the definition of the SA recursion with constant delay:

θt+1 =

θ0 if 0 ≤ t < τ

θt + αg(θt−τ , ot−τ) if t ≥ τ
(C.9)

For analysis purposes, we define a virtual iterate, θ̃t. This virtual iterate is updated

with the SA update direction without delays, and it is defined as follows:

θ̃t+1 = θ̃t + αg(θt, ot), θ̃0 = θ0. (C.10)

We also introduce the related error term dt, which is the gap between the virtual iterate

and the actual iterate.

θ̃t = θt + dt, with d0 = 0. (C.11)

From the definition of θ̃t, we can write the following recursions for dt, for t ≥ 0:

dt+1 = dt + α(g(θt, ot)− g(θt−τ , ot−τ)). (C.12)

We define g(θl, ol) = θl = dl = 0 for l < 0. We also define r̃t = ‖θ̃t − θ∗‖. For

convenience, we define r̃t = 0 for t < 0, which is equivalent to setting θ̃t = θ∗ for t < 0.

C.1 Proof of Theorem 5.3 147

C.1.1 Proofs of Auxiliary Lemmas

We first state and prove the following Lemma, which we will use in the proof of Theo-

rem 5.3.

Lemma C.1. For wt := (1− 0.5µα)−(t+1) with α ≤ µ
Cτ̄ , C ≥ 2, the following inequality

holds for 0 ≤ i ≤ 2τ̄ , and for any t,

wt ≤ 2wt−i. (C.13)

Proof.

wt = wt−i

(

1− µα

2

)−i

(a)

≤ wt−i

(

1− µ2

2Cτ̄

)−i

(b)

≤ wt−i

(

1− µ2

2Cτ̄

)−τ̄

(c)

≤ wt−i

(

1− 1

4τ̄

)−τ̄

(d)

≤ wt−i

(

1 +
1

2τ̄

)τ̄

(e)

≤ wt−i exp

(
1

2

)

≤ 2wt−i,

(C.14)

in (a), we used the bound on α, in (b), we used the bound on i, in (c), we used µ < 1

and C ≥ 2, in (d), we used

(1− x)−1 ≤ (1 + 2x) for 0 ≤ x ≤ 1

2
, (C.15)

and for (e) we used (1 + x)k ≤ exp(xk) for k ≥ 0.

We defined g(θi, oi) = 0 for i < 0, θt = 0 for t < 0, and dt = 0 for t < 0. First, note

148 Appendix: Proofs of Chapter 5

that, starting from the definition of dt in (C.12),

dt+1 = dt+ α (g(θk, ot)− g(θt−τ , ot−τ)

= dt−1 + α (g(θt−1, ot−1)− g(θt−1−τ , ot−1−τ))

+ α (g(θk, ot)− g(θt−τ , ot−τ))

= d0 + α
t∑

l=0

(g(θl, ol)− g(θl−τ , ol−τ))

(∗)
= 0 + α

t∑

l=t−τ+1

g(θl, ol),

(C.16)

where (∗) follows because the overlapping terms in the sum cancel out. So, we obtain,

for all t ≥ 0,

dt = α
t−1∑

l=t−τ

g(θl, ol). (C.17)

We can now prove Lemma 5.1, which is key to prove Theorem 5.3.

Proof of Lemma 5.1 - (i), (ii). From (C.17), using the triangle inequality and

the bound on the update direction (C.4), we get, recalling that σ ≥ ‖θ0‖,

‖dt‖ = ‖α
t−1∑

l=t−τ

g(θl, ol)‖

(C.4)

≤ αL
t−1∑

l=t−τ

(‖θl‖+ σ)

≤ ατLσ + αL
t−1∑

l=t−τ

‖θl‖,

(C.18)

which proves (i). We now prove (ii). Using the triangle inequality and (C.8),

‖dt‖2 = ‖α
t−1∑

l=t−τ

g(θl, ol)‖2

(C.8)

≤ α2τ
t−1∑

l=t−τ

‖g(θl, ol)‖2.
(C.19)

C.1 Proof of Theorem 5.3 149

Now, using the upper bound on the squared gradient norm (C.5),

‖dt‖2 ≤ α2τ
t−1∑

l=t−τ

‖g(θl, ol)‖2

≤ 2α2τL2
t−1∑

l=t−τ

(‖θl‖2 + σ2)

≤ 2α2τ2L2σ2 + 2α2τL2
t−1∑

l=t−τ

‖θl‖2.

(C.20)

which concludes the proof. �

Using the above inequalities, we can now prove part (iii) of Lemma 5.1.

Proof of Lemma 5.1 - (iii). First, recall that, from Lemma 5.1, we have

‖dt‖2 ≤ 2α2τ2L2σ2 + 2α2τL2
t−1∑

l=t−τ

‖θl‖2. (C.21)

Based on Lemma C.1, for 0 ≤ i ≤ 2τ̄ , we have wt ≤ 2wt−i (see (C.14)). Using (C.21),

T∑

t=0

wt‖dt‖2 ≤
T∑

t=0

wt

2α2τ2L2σ2 + 2α2τL2
t−1∑

l=t−τ

‖θl‖2

≤ 2WTα
2τ2L2σ2 + 2α2τL2

T∑

t=0

wt

t−1∑

l=t−τ

‖θl‖2

(∗)

≤ 2WTα
2τ2L2σ2 + 4α2τL2

T∑

t=0

t−1∑

l=t−τ

wl‖θl‖2

(∗∗)

≤ 2WTα
2τ2L2σ2 + 4α2τ2L2

T∑

t=0

wt‖θt‖2

≤ 2WTα
2τ2L2σ2 + 8α2τ2L2

T∑

t=0

wt

(

‖θ̃t‖2 + ‖dt‖2
)

≤ 2WTα
2τ2L2σ2 + 8α2τ2L2

T∑

t=0

wt‖θ̃t‖2 +
1

2

T∑

t=0

wt‖dt‖2,

(C.22)

where for (∗) we used the fact that wt ≤ 2wl for t− 2τ̄ ≤ l ≤ t− 1, and for (∗∗) we used

the fact that each element wl‖θl‖2 appears at most τ times in the sum, for l = 0, ..., T − 1

(note that, by definition, θl = 0 for l < 0). In the last inequality, we used α ≤ 1
4τL . We

150 Appendix: Proofs of Chapter 5

can conclude getting

T∑

t=0

wt‖dt‖2 ≤ 4WTα
2τ2L2σ2 + 16α2τ2L2

T∑

t=0

wt‖θ̃t‖2. (C.23)

�

We now prove Lemma 5.2, that provides a bound on the norm of the gap ‖θ̃t−τmix−θ̃k‖
and its squared version ‖θ̃t−τmix − θ̃k‖2.

Proof of Lemma 5.2. Inequality (i) of the Lemma can be easily proved by applying

the definition of the recursion (C.10),

‖θ̃t−τmix − θ̃k‖ ≤
t−1∑

l=t−τmix

‖θ̃l+1 − θ̃l‖

≤ α
t−1∑

l=t−τmix

‖g(θl, ol)‖

≤ Lα
t−1∑

l=t−τmix

(‖θl‖+ σ)

= Lαστmix + Lα
t−1∑

l=t−τmix

‖θl‖.

(C.24)

Similarly, for inequality (ii), note that, squaring equation (C.24),

‖θ̃t−τmix − θ̃k‖2 ≤ 2L2α2τ2
mixσ

2 + 2L2α2τmix

t−1∑

l=t−τmix

‖θl‖2. (C.25)

�

We now prove Lemma 5.3, which provide bounds for ‖g(θk, ot)‖2, mt and E [ht],

respectively.

Proof of Lemma 5.3 - (i). From (C.5), we have ‖g(θt, ot)‖2 ≤ 2L2(‖θt‖2 + σ2),

C.1 Proof of Theorem 5.3 151

and so
nt = ‖g(θt, ot)‖2 ≤ 2L2(‖θt‖2 + σ2)

≤ 2L2‖θt − θ̃t + θ̃t‖2 + 2L2σ2

≤ 4L2‖dt‖2 + 4L2‖θ̃t‖2 + 2L2σ2

≤ 4L2‖dt‖2 + 4L2‖θ̃t − θ∗ + θ∗‖2 + 2L2σ2

≤ 4L2‖dt‖2 + 8L2r̃2
t + 8L2‖θ∗‖2 + 2L2σ2

≤ 4L2‖dt‖2 + 8L2r̃2
t + 10L2σ2

(C.26)

where we used ‖θ∗‖ ≤ σ and from which we can conclude. �

Proof of Lemma 5.3 - (ii). By Cauchy-Schwarz inequality, Lipschitz continuity of

g(θ, ot) in θ (see (C.3)), and from the definition of dt, we get

mt = 〈g(θt, ot)− g(θ̃t, ot), θ̃t − θ⋆〉
≤ ‖g(θt, ot)− g(θ̃t, ot)‖‖θ̃t − θ∗‖
≤ L‖θ̃t − θk‖‖θ̃t − θ∗‖
= L‖dt‖r̃t.

(C.27)

Applying Lemma 5.1 to bound ‖dt‖, we get

mt ≤ L

ατLσ + αL
t−1∑

l=t−τ

‖θl‖

 r̃t

= ατL2σr̃t + αL2
t−1∑

l=t−τ

‖θl‖r̃t

(C.7)

≤ 2ατL2σ2 + 2ατL2r̃2
t + αL2

t−1∑

l=t−τ

(

‖θl‖2 + r̃2
t

)

= 2ατL2σ2 + 3ατL2r̃2
t + αL2

t−1∑

l=t−τ

‖θl‖2

(C.8)

≤ 2ατL2σ2 + 3ατL2r̃2
t + 2αL2

t−1∑

l=t−τ

(

‖dl‖2 + ‖θ̃l‖2
)

≤ 6ατL2σ2 + 3ατL2r̃2
t + 2αL2

t−1∑

l=t−τ

‖dl‖2 + 4αL2
t−1∑

l=t−τ

r̃2
l .

(C.28)

�

Next, we provide the proof of Lemma 5.3, which provides a bound for E [ht], which is

152 Appendix: Proofs of Chapter 5

the term related to the Markovian sampling and whose analysis requires special care and

mixing time arguments.

Proof of Lemma 5.3 - (iii). We start with the case 0 ≤ t ≤ τmix Note that,

using (C.5),

ht = 〈θ̃t − θ∗,g(θ̃t, ot)− ḡ(θ̃t)〉
≤ ‖θ̃t − θ∗‖‖g(θ̃t, ot)− ḡ(θ̃t)‖
(C.7)

≤ 1

2
r̃2

t +
1

2
‖g(θ̃t, ot)− ḡ(θ̃t)‖2

(C.8)

≤ 1

2
r̃2

t + ‖g(θ̃t, ot)‖2 + ‖ḡ(θ̃t)‖2

(C.5)

≤ r̃2
t

2
+ 2L2‖θ̃t‖2 + 2L2σ2 + 2L2‖θ̃t‖2 + 2L2σ2

≤ r̃2
t

2
+ 8L2r̃2

t + 12L2σ2

≤ 9L2r̃2
t + 12L2σ2.

(C.29)

Recall that

θt+1 =

θ0 if 0 ≤ t < τ

θt + αg(θt−τ , ot−τ) if t ≥ τ
, (C.30)

from which we can write, for t ≥ τ ,

r2
t+1 = r2

t + 2α〈θt − θ∗,g(θt−τ , ot−τ)〉+ α2‖g(θt−τ , ot−τ)‖2
(C.7)

≤ r2
t + αr2

t + α‖g(θt−τ , ot−τ)‖2 + α2‖g(θt−τ , ot−τ)‖2
α<1
≤ (1 + α)r2

t + 2α‖g(θt−τ , ot−τ)‖2,

(C.31)

and note that, for t < τ , r2
t+1 = r2

t , and hence (C.31) holds true for all t ≥ 0. Now note

that

‖g(θt−τ , ot−τ)‖2 ≤ 2L2(‖θt−τ‖2 + σ2) ≤ 4L2r2
t−τ + 6L2σ2. (C.32)

Therefore, we can write

r2
t+1 ≤ (1 + α)r2

t + 8αL2r2
t−τ + 12αL2σ2. (C.33)

Now, we show that, for k < τmix,

r2
k ≤ ρkr2

0 + ǫk, (C.34)

with ǫk = ρǫk−1 + β, ǫ0 = 0, where ρ = 1 + α+ 8αL2 > 1, and β = 12αL2σ2. We show it

C.1 Proof of Theorem 5.3 153

by induction. The base case k = 0 is trivially true. Now suppose that inequality (C.34)

is true up to some k ≥ 0, thus

r2
s ≤ ρsr2

0 + ǫs, ∀s ≤ k. (C.35)

We can get, noting that, for all k, 0 ≤ ǫk ≤ ǫk+1,

r2
k+1 ≤ (1 + α)r2

k + 8αL2rk−τ + 12αL2σ2

≤ (1 + α)(ρkr2
0 + ǫk) + 8αL2(ρkr2

0 + ǫk) + 12αL2σ2

= (1 + α+ 8αL2)ρkr2
0 + (1 + α+ 8αL2)ǫk + 12αL2σ2

= ρk+1r2
0 + ρǫk + β

= ρk+1r2
0 + ǫk+1,

(C.36)

which concludes the induction proof of (C.34). Now note that, given that L ≥ 1,

ρ ≤ 1 + 9αL2, and, for α ≤ 1
36L2τmix

ρk ≤ (1 + 9αL2)k ≤ (1 + 9αL2)τ
mix ≤ e9αL2τmix ≤ e0.25 ≤ 2. (C.37)

Also note that, for all k ≤ τmix,

ǫk = β
k−1∑

j=0

(1 + 9αL2)j ≤ β
τmix−1∑

j=0

(1 + 9αL2)τ
mix ≤ 2βτmix, (C.38)

and we can get, for all k ≤ τmix, noting that r2
0 ≤ 4σ2,

r2
k ≤ 2r2

0 + 2βτmix = 2r2
0 + 24αL2σ2τmix ≤ 9σ2. (C.39)

Now note that, similarly to the calculations performed above, for t < τmix,

r̃2
t+1 = r̃2

t + 2α〈θt − θ∗,g(θt, ot)〉+ α2‖g(θt, ot)‖2

≤ (1 + α)r̃2
t + 2α‖g(θt, ot)‖2

(C.5)

≤ (1 + α)r̃2
t + 4αL2(‖θt‖2 + σ2)

≤ (1 + α)r̃2
t + 4αL2(2r2

t + 3σ2).

(C.40)

Using the bound established in (C.39), we can get

r̃2
t+1 ≤ (1 + α)r̃2

t + 8αL2r2
t + 12αL2σ2

≤ (1 + α)r̃2
t + 84αL2σ2.

(C.41)

154 Appendix: Proofs of Chapter 5

From this, we can proceed as follows:

r̃2
t+1 ≤ (1 + α)r̃2

t + 84αL2σ2

≤ (1 + α)2r̃2
t−1 + (1 + α)84αL2σ2 + 84αL2σ2

≤ (1 + α)t+1r̃2
0 + 84αL2σ2

t∑

j=0

(1 + α)j .

(C.42)

So, for 0 ≤ t < τmix,

r̃2
t+1 ≤ (1 + α)τmix r̃2

0 + 84αL2σ2
τmix∑

j=0

(1 + α)j . (C.43)

Now, given that L ≥ 1, note that, for ατmix ≤ 1
36L2 and j = 0, ..., τmix − 1, we have

(1 + α)j ≤ (1 + α)τ
mix ≤ eατmix ≤ e0.25 ≤ 2. Thus, we get

r̃2
t ≤ 2r̃2

0 + 84αL2σ2τmix ≤ 11σ2. (C.44)

Finally,

ht ≤ 9L2r̃2
t + 12L2σ2

≤ 9L2(11σ2) + 12L2σ2

≤ 111L2σ2.

(C.45)

.

We now analyze the case in which t ≥ τmix. Adding and subtracting θ̃t−τmix in the

left hand side of the inner product, we have

ht = 〈θ̃t − θ∗,g(θ̃t, ot)− ḡ(θ̃t)〉
= 〈θ̃k − θ̃t−τmix ,g(θ̃k, ot)− ḡ(θ̃k)〉
︸ ︷︷ ︸

T1

+ 〈θ̃t−τmix − θ∗,g(θ̃k, ot)− ḡ(θ̃k)〉
︸ ︷︷ ︸

T2

, (C.46)

C.1 Proof of Theorem 5.3 155

where, using (C.4), Cauchy-Schwarz inequality and Lemma 5.2,

T1 ≤ ‖θ̃k − θ̃t−τmix‖(‖g(θ̃k, ot)‖+ ‖ḡ(θ̃k)‖)
(C.4)

≤ ‖θ̃k − θ̃t−τmix‖2L(‖θ̃k‖+ σ)

≤ 2αL2

στmix +
t−1∑

l=t−τmix

‖θl‖

 (‖θ̃k‖+ σ)

≤ 2αL2στmix(‖θ̃k‖+ σ) + 2αL2
t−1∑

l=t−τmix

‖θl‖(‖θ̃k‖+ σ)

(C.7)

≤ 2αL2σ2τmix + 2αL2τmixσ‖θ̃k‖

+ 2αL2
t−1∑

l=t−τmix

(
1

2
‖θl‖2 +

1

2
(‖θ̃k‖+ σ)2

)

(C.8)

≤ 2αL2σ2τmix + αL2τmixσ
2 + αL2τmix‖θ̃k‖2

+ 2αL2
t−1∑

l=t−τmix

(
1

2
‖θl‖2 + ‖θ̃k‖2 + σ2

)

≤ 11αL2σ2τmix + 6αL2τmixr̃
2
t + αL2

t−1∑

l=t−τmix

‖θl‖2.

(C.47)

So, taking the expectation,

E [T1] ≤ 11αL2σ2τmix + 6αL2τmixE

[

r̃2
t

]

+ αL2
t−1∑

l=t−τmix

E

[

‖θl‖2
]

. (C.48)

Now, we focus on T2. Note that, adding and subtracting g(θ̃t−τmix , ot) and ḡ(θ̃t−τmix) to

the right hand side of the inner product, we can write

T2 = 〈θ̃t−τmix − θ∗,g(θ̃k, ot)− ḡ(θ̃k)〉
= T̄1 + T̄2 + T̄3

(C.49)

with
T̄1 = 〈θ̃t−τmix − θ∗,g(θ̃t−τmix , ot)− ḡ(θ̃t−τmix)〉
T̄2 = 〈θ̃t−τmix − θ∗,g(θ̃t, ot)− g(θ̃t−τmix , ot)〉
T̄3 = 〈θ̃t−τmix − θ∗, ḡ(θ̃t−τmix)− ḡ(θ̃t)〉.

(C.50)

We first bound T̄2 and T̄3. Note that, using the Lipschitz property of the TD update

156 Appendix: Proofs of Chapter 5

direction (C.3) and Lemma 5.2,

T̄2 ≤ ‖θ̃t−τmix − θ∗‖‖g(θ̃k, ot)− g(θ̃t−τmix , ot)‖
≤ L‖θ̃t−τmix − θ∗‖‖θ̃t−τmix − θ̃k‖
≤ L‖θ̃t−τmix − θ̃t + θ̃t − θ∗‖‖θ̃t−τmix − θ̃k‖
≤ Lr̃t‖θ̃t−τmix − θ̃k‖+ L‖θ̃t−τmix − θ̃k‖2

≤ L2α

στmix +
t−1∑

l=t−τmix

‖θl‖

 r̃t + L

2L2α2τ2
mixσ

2 + 2L2α2τmix

t−1∑

l=t−τmix

‖θl‖2

= L2ατmix
1

2

(

σ2 + r̃2
t

)

+
1

2
L2α

t−1∑

l=t−τmix

(

‖θl‖2 + r̃2
t

)

+ 2L3α2τ2
mixσ

2 + 2L3α2τmix

t−1∑

l=t−τmix

‖θl‖2

≤ ατmixL
2σ2 + ατmixL

2r̃2
t + αL2

t−1∑

l=t−τmix

‖θl‖2,

(C.51)

where in the last inequality we used α ≤ 1
8τmixL . Taking the expectation,

E

[

T̄2

]

≤ ατmixL
2σ2 + ατmixL

2
E

[

r̃2
t

]

+ αL2
t−1∑

l=t−τmix

E

[

‖θl‖2
]

. (C.52)

With the same calculations, we can get

E

[

T̄3

]

≤ ατmixL
2σ2 + ατmixL

2
E

[

r̃2
t

]

+ αL2
t−1∑

l=t−τmix

E

[

‖θl‖2
]

. (C.53)

C.1 Proof of Theorem 5.3 157

We now proceed to bound T̄1.

E

[

T̄1

]

= E

[

〈θ̃t−τmix − θ∗,g(θ̃t−τmix , ot)− ḡ(θ̃t−τmix)〉
]

= E

[

〈θ̃t−τmix − θ∗,E
[

g(θ̃t−τmix , ot)|ot−τmix , θ̃t−τmix

]

− ḡ(θ̃t−τmix)〉
]

≤ E

[

‖θ̃t−τmix − θ∗‖‖E
[

g(θ̃t−τmix , ot)|ot−τmix , θ̃t−τmix

]

− ḡ(θ̃t−τmix)‖
]

(∗)

≤ αE
[

‖θ̃t−τmix − θ∗‖(‖θ̃t−τmix‖+ σ)
]

≤ αE
[

‖θ̃t−τmix − θ∗‖(‖θ̃t−τmix − θ∗‖+ 2σ)
]

≤ αE
[

1

2
‖θ̃t−τmix − θ∗‖2 +

1

2
(‖θ̃t−τmix − θ∗‖+ 2σ)2

]

≤ αE
[

1

2
‖θ̃t−τmix − θ∗‖2 + ‖θ̃t−τmix − θ∗‖2 + 2σ2

]

≤ 2αE
[

‖θ̃t−τmix − θ∗‖2 + σ2
]

≤ 2αE
[

2‖θ̃t − θ∗‖2 + 2‖θ̃t − θ̃t−τmix‖2 + σ2
]

≤ 2αE

2r̃2
t + 2(2L2α2τ2

mixσ
2 + 2L2α2τmix

t−1∑

l=t−τmix

‖θl‖2) + σ2

≤ 4αE
[

r̃2
t

]

+ 3ασ2 + α
t−1∑

l=t−τmix

E

[

‖θl‖2
]

,

(C.54)

where for (∗) we used Definition 5.2.1 of mixing time and the fact that σ ≥ 1, and in the

last inequality we used α ≤ 1
8τmixL . So, we get

E [T2] = E

[

T̄1

]

+ E

[

T̄2

]

+ E

[

T̄3

]

≤ 6ατmixL
2
E

[

r̃2
t

]

+ 5ατmixL
2σ2 + 3αL2

t−1∑

l=t−τmix

E

[

‖θl‖2
]

.
(C.55)

158 Appendix: Proofs of Chapter 5

Finally, we get

E [ht] = E [T1] + E [T2]

≤ 16ατmixL
2σ2 + 12ατmixL

2
E

[

r̃2
t

]

+ 4αL2
t−1∑

l=t−τmix

E

[

‖θl‖2
]

≤ 16ατmixL
2σ2 + 12ατmixL

2
E

[

r̃2
t

]

+ 8αL2
t−1∑

l=t−τmix

(

E

[

‖dl‖2
]

+ E

[

‖θ̃l‖2
])

≤ 32ατmixL
2σ2 + 12ατmixL

2
E

[

r̃2
t

]

+ 8αL2
t−1∑

l=t−τmix

E

[

‖dl‖2 + 2r̃2
l

]

.

(C.56)

�

C.1.2 Proof of Theorem 5.3

First, we have

r̃2
t+1 = r̃2

t + 2α〈g(θk, ot), θ̃t − θ⋆〉+ α2‖g(θk, ot)‖2 (C.57)

Then, using (C.1), i.e., 〈ḡ(θ̃t), θ̃t − θ⋆〉 ≤ −µr̃2
t ,

r̃2
t+1 = r̃2

t + 2α〈g(θk, ot), θ̃t − θ∗〉+ α2‖g(θk, ot)‖2

= r̃2
t + 2α〈ḡ(θ̃t), θ̃t − θ⋆〉+ 2αht + 2αmt + α2‖g(θk, ot)‖2

≤ (1− 2αµ)r̃2
t + 2αht + 2αmt + α2nt.

(C.58)

We now apply the inequalities obtained in Lemma 5.3 to bound E [ht], mt and nt. Recall

that τ̄ = max{τ, τmix}. Note that, from Lemma 5.3 - (iii), we can write E [ht] ≤ h̄t,

defining

h̄t =

B if 0 ≤ t < τmix

qt if t ≥ τmix

, (C.59)

with B = 111σ2, and

qt = ατmixL
2
(

32σ2 + 12E
[

r̃2
t

])

+ 8αL2
t−1∑

l=t−τmix

E

[

‖dl‖2 + 2r̃2
l

]

. (C.60)

C.1 Proof of Theorem 5.3 159

As a consequence, we can write, for every t ≥ 0,

E [ht] ≤ qt + B̄t (C.61)

where, in turn,

B̄t =

B if 0 ≤ t < τmix

0 otherwise
. (C.62)

Also, recall that, from Lemma 5.3, we have

nt ≤ 4L2‖dt‖2 + 8L2r̃2
t + 10L2σ2,

mt ≤ 6ατL2σ2 + 3ατL2r̃2
t + 2αL2

t−1∑

l=t−τ

(

‖dl‖2 + 2r̃2
l

) (C.63)

Combining these inequalities together, we have, for t ≥ 0,

E

[

r̃2
t+1

]

≤ (1− 2αµ)E
[

r̃2
t

]

+ 2αE [ht] + 2αE [mt] + α2
E

[

‖g(θk, ot)‖2
]

≤ (1− 2αµ)E
[

r̃2
t

]

+ 2α2τmixL
2
(

32σ2 + 12E
[

r̃2
t

])

+ 16α2L2
t−1∑

l=t−τmix

E

[

‖dl‖2 + 2r̃2
l

]

+ 12α2τL2σ2 + 6α2τL2
E

[

r̃2
t

]

+ 4α2L2
t−1∑

l=t−τ

E

[

‖dl‖2 + 2r̃2
l

]

+ 4α2L2
E

[

‖dt‖2 + 2r̃2
t

]

+ 10α2L2σ2 + 2αB̄t.

(C.64)

Combining terms, we can get

E

[

r̃2
t+1

]

≤ (1− 2αµ+ 48α2L2τ̄)E
[

r̃2
t

]

+ 128α2L2τ̄σ2

+ 4α2L2
E

[

‖dt‖2
]

+ 20α2L2
t−1∑

l=t−τ̄

E

[

‖dl‖2 + 2r̃2
l

]

+ 2αB̄t,
(C.65)

where we have used τ + τmix ≤ 2τ̄ . Now, using the fact that r2
t ≤ 2r̃2

t + 2‖dt‖2, which

implies −r̃2
t ≤ −

r2
t
2 + ‖dt‖2, we have

(1− 2αµ+ 48α2L2τ̄)E
[

r̃2
t

]

= (1− αµ+ 48α2L2τ̄)E
[

r̃2
t

]

− αµE
[

r̃2
t

]

≤ (1− αµ+ 48α2L2τ̄)E
[

r̃2
t

]

− αµE
[
r2

t

]

2
+ αE

[

‖dt‖2
]

,

(C.66)

160 Appendix: Proofs of Chapter 5

and, using µ ≤ 1, we can re-write (C.65) as

E

[

r̃2
t+1

]

≤ (1− αµ+ 48α2L2τ̄)E
[

r̃2
t

]

− αµE
[
r2

t

]

2
+ 128α2L2τ̄σ2

+ α(1 + 4αL2)E
[

‖dt‖2
]

+ 20α2L2
t−1∑

l=t−τ̄

E

[

‖dl‖2 + 2r̃2
l

]

+ 2αB̄t,
(C.67)

Multiplying both sides by wt, we have

wtE

[

r̃2
t+1

]

≤ (1− αµ+ 48α2L2τ̄)wtE

[

r̃2
t

]

− αµwtE
[
r2

t

]

2
+ 128wtα

2L2τ̄σ2

+ α(1 + 4αL2)wtE

[

‖dt‖2
]

+ 20α2L2wt

t−1∑

l=t−τ̄

E

[

‖dl‖2 + 2r̃2
l

]

+ 2αwtB̄t,

(C.68)

by summing over t = 0, ..., T , we get, with WT =
∑T

t=0wt,

T∑

t=0

wtE

[

r̃2
t+1

]

≤ (1− αµ+ 48α2L2τ̄)
T∑

t=0

wtE

[

r̃2
t

]

− αµ

2

T∑

t=0

wtE

[

r2
t

]

+ 128WTα
2L2τ̄σ2 + α(1 + 4αL2)

T∑

t=0

wtE

[

‖dt‖2
]

︸ ︷︷ ︸

p1

+ 20α2L2
T∑

t=0

wt

t−1∑

l=t−τ̄

E

[

‖dl‖2 + 2r̃2
l

]

︸ ︷︷ ︸

p2

+2Wτmix−1αB

(C.69)

Note that, from Lemma 5.1 - (iii), we have, picking α ≤ 1
72τL2 ,

p1 =
T∑

t=0

wtE

[

‖dt‖2
]

≤ 4WTα
2τ2L2σ2 + 16α2τ2L2

T∑

t=0

wtE

[

‖θ̃t‖2
]

≤ 36WTα
2τ2L2σ2 + 32α2τ2L2

T∑

t=0

wtE

[

r̃2
t

]

≤ ατWTσ
2

2
+
ατ

2

T∑

t=0

wtE

[

r̃2
t

]

.

(C.70)

C.1 Proof of Theorem 5.3 161

Furthermore, using the fact that wt ≤ 2wl for l = t − τ̄ , ..., t − 1, we can bound p2 as

follows, using also the above bound on p1, and picking α ≤ 1
72τL2 ,

p2 =
T∑

t=0

wt

t−1∑

l=t−τ̄

E

[

‖dl‖2 + 2r̃2
l

]

(a)

≤ 2
T∑

t=0

t−1∑

l=t−τ̄

wlE

[

‖dl‖2 + 2r̃2
l

]

(b)

≤ 2τ̄
T∑

t=0

wtE

[

‖dt‖2 + 2r̃2
t

]

.

≤ 2τ̄
T∑

t=0

wtE

[

‖dt‖2
]

+ 4τ̄
T∑

t=0

wtE

[

r̃2
t

]

(c)

≤ 2τ̄

(

ατWTσ
2

2
+
ατ

2

T∑

t=0

wtE

[

r̃2
t

]
)

+ 4τ̄
T∑

t=0

wtE

[

r̃2
t

]

≤ 5τ̄
T∑

t=0

wtE

[

r̃2
t

]

+WTσ
2τ̄ ,

(C.71)

where for (a) we used Lemma C.1, for (b) we used the fact that each element wl‖θl‖2
appears at most τ times in the sum, for l = 0, ..., T−1 (note that, by definition, dl = r̃l = 0

for l < 0) and for (c) we used the bound on p1. In the last inequality we simply used

ατ ≤ 1. Plugging the two bounds on p1 and p2 in (C.69), we get

T∑

t=0

wtE

[

r̃2
t+1

]

≤ (1− αµ+ 150α2L2τ̄)
T∑

t=0

wtE

[

r̃2
t

]

− αµ

2

T∑

t=0

wtE

[

r2
t

]

+ 150WTα
2L2τ̄σ2 + 2Wτmix−1αB.

(C.72)

Now, note that for α ≤ µ
100L2τ̄

, which is such that (1− 2αµ+ 150α2L2τ̄) ≤ (1− 0.5αµ),

we can re-write (C.72) as

T∑

t=0

wtE

[

r̃2
t+1

]

≤ (1− 0.5αµ)
T∑

t=0

wtE

[

r̃2
t

]

− αµ

2

T∑

t=0

wtE

[

r2
t

]

+ 150WTα
2L2τ̄σ2 + 2Wτmix−1αB.

(C.73)

Now, dividing by WT both sides of (C.73), bringing
∑T

t=0wtE
[
r̃2

t+1

]
to the right hand

162 Appendix: Proofs of Chapter 5

side of the inequality and −αµ
2

∑T
t=0wtE

[
r2

t

]
to the left side, we get

αµ

2

T∑

t=0

wt

WT
E

[

r2
t

]

≤ 1

WT

T∑

t=0

(

wt(1− 0.5αµ)E
[

r̃2
t

]

− wtE

[

r̃2
t+1

])

+150α2L2τ̄σ2 +
2Wτmix−1αB

WT
.

(C.74)

Now, recalling that wt = (1− 0.5αµ)−(t+1), note that wt(1− 0.5αµ) = wt−1, and we can

get, noting that w−1 = 1,

T∑

t=0

(

wt(1− 0.5αµ)E
[

r̃2
t

]

− wtE

[

r̃2
t+1

])

=
T∑

t=0

(

wt−1E

[

r̃2
t

]

− wtE

[

r̃2
t+1

])

≤ E

[

r̃2
0

]

− wTE

[

r̃2
T +1

]

≤ r̃2
0.

(C.75)

Hence, we can write (C.74) as

αµ

2

T∑

t=0

wt

WT
E

[

r2
t

]

≤ r̃2
0

WT
+ 150α2L2τ̄σ2 +

2Wτmix−1αB

WT
. (C.76)

Now note that

Wτmix−1 =
τmix−1∑

t=0

wt =
τmix−1∑

t=0

(1− 0.5αµ)−(t+1) ≤
τmix−1∑

t=0

(1 + αµ)t+1 ≤ 2τmix (C.77)

and that
1

WT
≤ 1

wT
= (1− 0.5αµ)T +1 (C.78)

from which we can obtain, re-arranging the different terms in (C.76),

1

WT

T∑

t=0

wtE

[

r2
t+1

]

≤ (1− 0.5αµ)T +1r̃2
0

(
2

αµ
+

4τ̄B

µ

)

+ 300
αL2τ̄σ2

µ

= Cα(1− 0.5αµ)T +1r̃2
0 + C2

αL2τ̄σ2

µ
,

(C.79)

where we define Cα =
(

2
αµ + 4τ̄B

µ

)

and C2 = 300. By plugging the maximum value for

the step size α = µ
150L2τ̄

, we can get, defining Cτ̄ = τ̄
µ

(
2C1L2

µ + 4B
)

,

1

WT

T∑

t=0

wtE

[

r2
t+1

]

≤ C2(1− 0.5αµ)T +1r̃2
0 + 2σ2. (C.80)

C.2 Proof of Theorem 5.4 163

Indeed, for α = µ
150L2τ̄

, it holds C2
αL2τ̄

µ = 2. Finally, by definition of θout in Theorem 5.3,

note that we have

E

[

‖θout − θ∗‖2
]

=
1

WT

T∑

t=0

wtE

[

r2
t

]

(C.81)

and we can conclude the proof of Theorem 5.3. �

C.2 Proof of Theorem 5.4

Let rt := ‖θk − θ∗‖. Define τ ′ = 2τmax + τmix, and recall

rt,2 := max
t−τ ′≤l≤t

E

[

r2
l

]

. (C.82)

C.2.1 Proofs of Auxliary Lemmas

We start by proving Lemma 5.4, i.e., the bounds on terms of the form ‖θt − θt−τ‖2, for

some 0 ≤ τ ≤ t.

Proof of Lemma 5.4. To prove (i), note that we can get

‖θt − θt−τmix‖2 ≤

t−1∑

l=t−τmix

‖θl+1 − θl‖

2

(C.8)

≤ τmix

t−1∑

l=t−τmix

‖θl+1 − θl‖2

= τmixα
2

t−1∑

l=t−τmix

‖g(θl−τl
, ol−τl

)‖2

(C.5)

≤ 2α2τmixL
2

t−1∑

l=t−τmix

(‖θl−τl
‖2 + σ2)

≤ 2α2τmixL
2

t−1∑

l=t−τmix

(2r2
l−τl

+ 3σ2).

(C.83)

164 Appendix: Proofs of Chapter 5

Taking the expectation on both sides of the inequality, we get

E

[

‖θt − θt−τmix‖2
]

≤ 2α2τmixL
2

t−1∑

l=t−τmix

(2E
[

r2
l−τl

]

+ 3σ2)

≤ 2α2τmixL
2

t−1∑

l=t−τmix

(2 max
t−τmix−τmax≤j≤t

E

[

r2
j

]

+ 3σ2)

≤ 4τ2
mixα

2L2rt,2 + 6α2τ2
mixL

2σ2

= 2α2τ2
mixL

2(2rt,2 + 3σ2).

(C.84)

With analogous computations, we can get part (ii) of the Lemma, i.e.

E

[

‖θt − θt−τt‖2
]

≤ 2α2τ2
maxL

2(2rt,2 + 3σ2). (C.85)

�

Recall the definition of et,

et := g(θk, ot)− g(θt−τt , ot−τt). (C.86)

As illustrated in the outline of the analysis in Section 5.4, for the purpose of the analysis,

we write the update rule as follows,

θk+1 = θk + αg(θk, ot)− αet, (C.87)

from which we can write

‖θk+1 − θ∗‖2 = Jt,1 + α2Jt,2 − 2αJt,3, (C.88)

with
Jt,1 := ‖θk − θ∗ + αg(θk, ot)‖2

Jt,2 := ‖et‖2

Jt,3 := 〈et,θk − θ∗ + αg(θk, ot)〉.
(C.89)

C.2 Proof of Theorem 5.4 165

Proof of Lemma 5.5 - (i). Note that

Jt,1 = ‖θk − θ∗ + αg(θk, ot)‖2 = r2
t + 2α 〈θk − θ∗,g(θk, ot)〉

︸ ︷︷ ︸

Jt,11

+ α2 ‖g(θk, ot)‖2
︸ ︷︷ ︸

Jt,12

.
(C.90)

Note that
E [Jt,12] = E

[

‖g(θk, ot)‖2
]

≤ E

[

2L2
(

‖θk‖2 + σ2
)]

≤ 2L2
(

2E
[

r2
t

]

+ 3σ2
)

≤ 2L2
(

2rt,2 + 3σ2
)

(C.91)

Now note that, using (C.1),

Jt,11 = 〈θk − θ∗,g(θk, ot)〉 = −〈θ∗ − θk, ḡ(θk)〉
+ 〈θk − θ∗,g(θk, ot)− ḡ(θk)〉
≤ −µr2

t + 〈θk − θ∗,g(θk, ot)− ḡ(θk)〉
︸ ︷︷ ︸

T ′

1

,
(C.92)

where we now omit the dependence on the iterate t in the terms we bound, for notation

convenience. Now, note that

T ′
1 = 〈θk − θt−τmix ,g(θk, ot)− ḡ(θk)〉

︸ ︷︷ ︸

T ′

11

+ 〈θt−τmix − θ∗,g(θk, ot)− ḡ(θk)〉
︸ ︷︷ ︸

T ′

12

,
(C.93)

where, using the Cauchy-Schwarz inequality and the triangle inequality,

T ′
11 ≤ ‖θk − θt−τmix‖(‖g(θk, ot)‖+ ‖ḡ(θk)‖)

(C.4)

≤ 2L(‖θk − θt−τmix‖(‖θk‖+ σ))

(∗)

≤ L

(
1

ατmixL
‖θk − θt−τmix‖2 + ατmixL(‖θk‖+ σ)2

)

(C.8)

≤ L

(
1

ατmixL
‖θk − θt−τmix‖2 + 2ατmixL(‖θk‖2 + σ2)

)

,

(C.94)

where for (∗) we used the fact that, from (C.7), we have

ab = (
1√
c
a)(
√
cb) ≤ 1

2c
a2 +

cb2

2
, (C.95)

166 Appendix: Proofs of Chapter 5

specifically with c = ατmixL. Taking the expectation on both sides and applying (ii) of

Lemma 5.4, we get

E
[
T ′

11

] ≤ L
(

1

2ατmixL
E

[

‖θk − θt−τmix‖2
]

+ ατmixL(2E
[

r2
t

]

+ 3σ2)

)

≤ L
(

2α2τ2
mixL

2

2ατmixL
(2rt,2 + 3σ2) + ατmixL(2rt,2 + 3σ2)

)

= 4ατmixL
2rt,2 + 6ατmixL

2σ2.

(C.96)

Now, we proceed to bound E [T ′
12]. Note that

T ′
12 = 〈θt−τmix − θ∗,g(θk, ot)− ḡ(θk)〉

= T̄1 + T̄2 + T̄3

(C.97)

with
T̄1 = 〈θt−τmix − θ∗,g(θt−τmix , ot)− ḡ(θt−τ)〉
T̄2 = 〈θt−τmix − θ∗,g(θt, ot)− g(θt−τmix , ot)〉
T̄3 = 〈θt−τmix − θ∗, ḡ(θt−τmix)− ḡ(θt)〉.

(C.98)

We first bound T̄2 and T̄3. Note that, using Lipschitz property of the TD update

direction (C.3), and calculations similar to the ones used to bound E [T ′
11], we get

T̄2 ≤ ‖θt−τmix − θ∗‖‖g(θk, ot)− g(θt−τmix , ot)‖
≤ L‖θt−τmix − θ∗‖‖θt−τmix − θk‖
(C.95)

≤ L2ατmix

2
r2

t−τmix
+
‖θt − θt−τmix‖2

2ατmix
.

(C.99)

Taking the expectation and applying (ii) of Lemma 5.4, we can get

E

[

T̄2

]

≤ ατmixL
2rt,2

2
+ 2ατmixL

2rt,2 + 3ατmixL
2σ2

≤ 3ατmixL
2(rt,2 + σ2)

(C.100)

With the same calculations, we can get

E

[

T̄3

]

≤ 3ατmixL
2(r2

t,2 + σ2). (C.101)

C.2 Proof of Theorem 5.4 167

We now proceed to bound T̄1.

E

[

T̄1

]

= E [〈θt−τmix − θ∗,g(θt−τmix , ot)− ḡ(θt−τmix)〉]

= E [〈θt−τmix − θ∗,E [g(θt−τmix , ot)|ot−τ ,θt−τmix]− ḡ(θt−τmix)〉]
≤ E [‖θt−τmix − θ∗‖‖E [g(θt−τmix , ot)|ot−τmix ,θt−τmix]− ḡ(θt−τmix)‖]
(∗)

≤ αE [‖θt−τmix − θ∗‖(‖θt−τmix‖+ σ)]

≤ αE [‖θt−τmix − θ∗‖(‖θt−τmix − θ∗‖+ 2σ)]

≤ αE
[

1

2

(

r2
t−τmix

+ 2r2
t−τmix

+ 4σ2
)]

≤ 2α(rt,2 + σ2),

(C.102)

where for (∗) we used Definition 5.2.1 of mixing time and the fact that σ ≥ 1. So, putting

the above bounds together, we get

E
[
T ′

12

]
= E

[

T̄1

]

+ E

[

T̄2

]

+ E

[

T̄3

]

≤ 8ατmixL
2(r2

t,2 + σ2). (C.103)

So, we get

E
[
T ′

1

]
= E

[
T ′

11

]
+ E

[
T ′

12

]

≤ 4ατmixL
2rt,2 + 6ατmixL

2σ2 + 8ατmixL
2(rt,2 + σ2)

≤ 12ατmixL
2rt,2 + 14ατmixL

2σ2

(C.104)

so,

E [Jt,11] ≤ −µE
[

r2
t

]

+ E
[
T ′

1

]
. (C.105)

Hence,

E [Jt,1] = E

[

r2
t

]

+ 2αE [Jt,11] + α2
E [Jt,12]

≤ (1− 2αµ)E
[

r2
t

]

+ 28α2τmixL
2rt,2 + 34α2τmixL

2σ2,
(C.106)

which concludes the proof of the Lemma. �

168 Appendix: Proofs of Chapter 5

Proof of Lemma 5.5 - (ii). Note that

Jt,2 = ‖et‖2 = ‖g(θt, ot)− g(θt−τt , ot−τt)‖2
(C.8)

≤ 2
(

‖g(θt, ot)‖2 + ‖g(θt−τt , ot−τt)‖2
)

(C.5)

≤ 2
(

2L2(‖θt‖2 + σ2) + 2L2(‖θt−τt‖2 + σ2)
)

≤ 4L2(2r2
t + 3σ2 + 2rt−τt + 3σ2).

(C.107)

Taking the expectation, we conclude getting

E [Jt,2] = E

[

‖et‖2
]

≤ 8L2(2rt,2 + 3σ2) (C.108)

Proof of Lemma 5.5 - (iii). In the following, we drop the dependence on the iteration

t in the terms we bound. We write

Jt,3 = 〈et,θk − θ∗ + αg(θk, ot)〉
= 〈et,θk − θ∗〉
︸ ︷︷ ︸

∆

+α〈et,g(θk, ot)〉
︸ ︷︷ ︸

∆̄

. (C.109)

Note that
∆̄ = α〈et,g(θk, ot)〉 ≤ α‖et‖‖g(θk, ot)‖
≤ α

2

(

‖et‖2 + ‖g(θt, ot)‖2
)

.
(C.110)

Using (C.108) and (C.5) to bound E
[‖et‖2

]
and E

[‖g(θt, ot)‖2
]
, respectively, we get

E

[

∆̄
]

≤ α

2

(

8L2
(

2rt,2 + 3σ2
)

+ 2L2
(

2rt,2 + 3σ2
))

= 10αL2rt,2 + 15αL2σ2.
(C.111)

We now proceed to bound ∆.

∆ = 〈et,θk − θ∗〉 = 〈g(θk, ot)− g(θt−τt , ot−τt),θk − θ∗〉
= 〈g(θk, ot)− g(θk, ot−τt),θk − θ∗〉
︸ ︷︷ ︸

∆1

+ 〈g(θk, ot−τt)− g(θt−τt , ot−τt),θk − θ∗〉
︸ ︷︷ ︸

∆2

(C.112)

Note that, thanks to the Lipschitz property of the TD direction and with calculations

analogous to the ones performed to obtain the bound on E

[

T̄2

]

(see (C.99) and (C.100)),

C.2 Proof of Theorem 5.4 169

we get

E [∆2] ≤ E [L‖θk − θt−τt‖rt] ≤ 3ατmixL
2(rt,2 + σ2). (C.113)

We now bound ∆1.

∆1 = 〈g(θk, ot)− g(θt−τmix , ot),θk,−θ∗〉
︸ ︷︷ ︸

∆11

+ 〈g(θt−τmix , ot)− g(θk, ot−τt),θk − θ∗〉
︸ ︷︷ ︸

∆12

.
(C.114)

With calculations analogous to the ones performed to obtain the bound on E

[

T̄2

]

(see (C.99) and (C.100)), we get

E [∆11] ≤ E [L‖θk − θt−τt‖rt] ≤ 3ατmixL
2(rt,2 + σ2). (C.115)

We now proceed to bound ∆12.

∆12 = 〈g(θt−τmix , ot)− ḡ(θt−τmix),θk − θ∗〉
︸ ︷︷ ︸

∆′

1

+ 〈ḡ(θt−τmix)− g(θk, ot−τt),θk − θ∗〉
︸ ︷︷ ︸

∆′

2

(C.116)

We have
∆′

1 = 〈g(θt−τmix , ot)− ḡ(θt−τmix),θt−τmix − θ∗〉
︸ ︷︷ ︸

∆′

11

+ 〈g(θt−τmix , ot)− ḡ(θt−τmix),θk − θt−τmix〉
︸ ︷︷ ︸

∆′

12

(C.117)

Note that
∆′

12 ≤ ‖g(θt−τmix , ot)− ḡ(θt−τmix)‖‖θt − θt−τmix‖
≤ (‖g(θt−τmix , ot)‖+ ‖ḡ(θt−τmix)‖) ‖θt − θt−τmix‖
(C.4)

≤ 2L (‖θt−τmix‖+ σ) ‖θt − θt−τmix‖
≤ 2L

(

r2
t−τmix

+ 2σ
)

‖θt − θt−τmix‖

≤ 2αL2τmix(r2
t−τmix

+ 2σ2) +
1

2ατmix
‖θt − θt−τmix‖2.

(C.118)

170 Appendix: Proofs of Chapter 5

Taking expectation on both sides and applying Lemma 5.4, we get

E
[
∆′

12

] ≤ 2ατmixL
2
(

E

[

r2
t−τmix

]

+ 2σ2
)

+
1

2ατmix
E

[

‖θt − θt−τmix‖2
]

≤ 2ατmixL
2
(

rt,2 + 2σ2
)

+ ατmixL
2
(

2rt,2 + 3σ2
)

= 4ατmixL
2rt,2 + 7ατmixL

2σ2.

(C.119)

Now note that ∆′
11 can be bounded using the same calculations used for T̄1 in (C.102),

E
[
∆′

11

] ≤ 2α(rt,2 + σ2). (C.120)

Now note that
∆′

2 = 〈ḡ(θt−τmix)− g(θk, ot−τt),θk − θ∗〉
= 〈ḡ(θt−τmix)− g(θt−τmix , ot−τt),θk − θ∗〉
︸ ︷︷ ︸

∆′

21

+ 〈g(θt−τmix , ot−τt)− g(θk, ot−τt),θk − θ∗〉
︸ ︷︷ ︸

∆′

22

(C.121)

To bound E [∆′
22], we can proceed with calculations analogous to the ones performed to

obtain the bound on E

[

T̄2

]

(see (C.99) and (C.100)), getting

E
[
∆′

22

] ≤ 3ατmixL
2(rt,2 + σ2). (C.122)

Now, we write

∆′
21 = 〈ḡ(θt−τmix)− ḡ(θt−τmix−τt),θk − θ∗〉

︸ ︷︷ ︸

∆̄1

+ 〈ḡ(θt−τmix−τt)− g(θt−τmix , ot−τt),θk − θ∗〉
︸ ︷︷ ︸

∆̄2

.
(C.123)

We see that, as before, we can bound E

[

∆̄1

]

with the same procedure we used to bound

E [∆′
22]:

E

[

∆̄1

]

≤ 3ατmixL
2(rt,2 + σ2). (C.124)

We write
∆̄2 = 〈ḡ(θt−τmix−τt)− g(θt−τmix−τt , ot−τt),θk − θ∗〉

︸ ︷︷ ︸

∆̄21

+ 〈g(θt−τmix−τt , ot−τt)− g(θt−τmix , ot−τt),θk − θ∗〉
︸ ︷︷ ︸

∆̄22

.
(C.125)

C.2 Proof of Theorem 5.4 171

Now note that E
[

∆̄22

]

can be bounded with calculations analogous to the ones performed

to obtain the bound on ∆̄1,

E

[

∆̄22

]

≤ E [L(‖θt−τmix−τt − θt−τmix‖‖θk − θ∗‖)]

≤ 3ατmixL
2(rt,2 + σ2)

(C.126)

Now note that

∆̄21 = 〈ḡ(θt−τmix−τt)− g(θt−τmix−τt , ot−τt),θt−τmix−τt − θ∗〉
︸ ︷︷ ︸

∆̄211

+ 〈ḡ(θt−τmix−τt)− g(θt−τmix−τt , ot−τt),θk − θt−τmix−τt〉
︸ ︷︷ ︸

∆̄212

.
(C.127)

With calculations analogous to the ones performed to obtain the bound on E [∆′
12]

(see (C.119)), we get

E

[

∆̄212

]

≤ E [‖θk − θt−τmix−τt‖L (‖ḡ(θt−τmix−τt)‖+ ‖g(θt−τmix−τt , ot−τt)‖)]

≤ 4α(τmix + τmax)L2rt,2 + 7α(τmix + τmax)L2σ2.
(C.128)

Now note that ∆̄211 can be bounded using the same calculations used for T̄1 in (C.102),

getting

E

[

∆̄211

]

≤ 2α(rt,2 + σ2). (C.129)

So, E [T3] can be upper bounded by a sum of terms that are upper bounded by either

O(α)(r2
t,2 +σ2), O(ατmax)(r2

t,2 +σ2), O(ατmix)(r2
t,2 +σ2) or O(α)(τmix + τmax)(r2

t,2 +σ2).

Putting all the terms together, we can get

E [Jt,3] ≤ 28αL2(τmix + τmax)(rt,2 + σ2), (C.130)

which concludes the proof. �

Now, recall the definition of the update rule for delayed SA with time-varying delay

under Assumption 10:

Delayed SA: θk+1 = θk + αg(θt−τt , ot−τt), τt ≤ min{t, τmax}. (C.131)

Consider the mean squared error term E
[
r2

t

]
= E

[‖θt − θ∗‖2], and its expression derived

in (C.88). The bounds on E [Jt,1], E [Jt,2] and E [Jt,3] provided in the previous section,

defining τ ′ = 2τmax + τmix, for t ≥ τ ′, are such that the update rule (C.131) satisfies the

172 Appendix: Proofs of Chapter 5

following:

E

[

r2
t+1

]

= E

[

‖θk+1 − θ∗‖2
]

= E [Jt,1] + α2
E [Jt,2]− 2αE [Jt,3]

≤ (1− 2αµ)E
[

r2
t

]

+ 98α2L2(τmix + τmax)(rt,2 + σ2),

(C.132)

with

rt,2 = max
t−τ ′≤l≤t

E

[

r2
l

]

.

As mentioned in the outline of the analysis in Section 5.4, the final part of the proof

of Theorem 5.4 is based on a crucial argument that shows that, for a sufficiently small

step size, the iterates generated by (C.131) are uniformly bounded, which is shown in

Lemma 5.6. To prove the result, we first provide the following Lemma, which proves the

base case of the induction proof on which the proof of Lemma 5.6 relies on.

Lemma C.2. Consider the update rule in (C.131) and let B = 9σ2. For 0 ≤ t ≤ τ ′ and

α ≤ 1
24L2τ ′

, we have

E

[

r2
t

]

≤ B, 0 ≤ t ≤ τ ′ (C.133)

Proof. Note that

r2
t+1 = r2

t + 2α〈θt − θ∗,g(θt−τt , ot−τt)〉+ α2‖g(θt−τt , ot−τt)‖2
(C.7)

≤ r2
t + αr2

t + α‖g(θt−τt , ot−τt)‖2 + α2‖g(θt−τt , ot−τt)‖2

≤ (1 + α)r2
t + 2α‖g(θt−τt , ot−τt)‖2

(C.5)

≤ (1 + α)r2
t + 4αL2(‖θt−τt‖2 + σ2)

≤ (1 + α)r2
t + 4αL2(2r2

t−τt
+ 3σ2)

= (1 + α)r2
t + 8αL2r2

t−τt
+ 12αL2σ2.

(C.134)

Taking the expectation on both sides, we get

E

[

r2
t+1

]

≤ (1 + α)E
[

r2
t

]

+ 8αL2
E

[

r2
t−τt

]

+ 12αL2σ2. (C.135)

Hence, we get an inequality of the following form:

Vt+1 ≤ pVt + qVt−τt + β, 0 ≤ τt ≤ min{t, τmax}, (C.136)

with Vt = E
[
r2

t

]
, p = 1 + α, q = 8αL2τmax, and β = 12αL2σ2. We define ρ = p + q,

C.2 Proof of Theorem 5.4 173

noting that ρ > 1. We now prove by induction that, for all t ≥ 0,

Vt ≤ ρtV0 + ǫt, (C.137)

where

ǫt =

ρǫt−1 + β for t ≥ 1

0 for t = 0
(C.138)

The base case is trivially satisfied, because V0 ≤ V0. As an inductive step, suppose

that (C.137) is true for 0 ≤ s ≤ k, for some k ≥ 0, so

Vs ≤ ρsV0 + ǫs, 0 ≤ s ≤ k. (C.139)

Now, we check the property for k + 1, using (C.136), and noting that ǫk is an increasing

sequence

Vk+1 ≤ pVk + qVk−τk
+ β,

≤ p(ρkV0 + ǫk) + q(ρk−τkV0 + ǫk−τk
) + β

≤ p(ρkV0 + ǫk) + q(ρkV0 + ǫk) + β

≤ (p+ q)ρkV0 + (p+ q)ǫk + β

= ρk+1V0 + ǫk+1.

(C.140)

From which we can conclude the proof of (C.137). Now, note that

ǫt = β
t−1∑

j=0

ρj , (C.141)

and so we can write, for 0 ≤ t ≤ τ ′,

ρt ≤ ρτ ′ ≤ (1 + α)τ ′ ≤ eατ ′ ≤ e0.25 ≤ 2, (C.142)

using the fact that α ≤ 1
4τ ′ . Hence, we can get, for 0 ≤ t ≤ τ ′, using the above results,

E

[

r2
t

]

≤ ρtr2
0 + ǫt ≤ 2r2

0 + β
τ ′−1∑

j=0

ρj ≤ 2r2
0 + 2βτ ′ = 2r2

0 + 2(12αL2σ2)τ ′

≤ 2r2
0 + σ2 ≤ 9σ2,

(C.143)

where we used the fact that α ≤ 1
24L2τ ′

and that r2
0 = ‖θ0−θ∗‖2 ≤ 2‖θ0‖2 +2‖θ∗‖2 ≤ 4σ2.

174 Appendix: Proofs of Chapter 5

We have just shown that, for 0 ≤ t ≤ τ ′, it holds

E

[

r2
t

]

≤ 9σ2 (C.144)

Now, we provide the proof of Lemma 5.6, which relies on Lemma C.2.

Proof of Lemma 5.6. We know from Lemma C.2 that for t = 0, ..., τ ′, with τ ′ =

2τmax + τmix, and α ≤ 1
24L2τ ′

, we have

E

[

r2
t

]

≤ B. (C.145)

We now proceed by induction to show that the bound holds true also for any t ≥ τ ′, thus

for all t ≥ 0. We use (C.145) as the base case for the induction proof. As an induction

step, assume that the property is true for some t ≥ τ ′ and for τ ′ ≤ s ≤ t, so

E

[

r2
s

]

≤ B ∀τ ′ ≤ s ≤ t. (C.146)

Now, from (C.132) we can write

E

[

r2
t+1

]

≤ (1− 2αµ)E
[

r2
t

]

+ 98α2L2(τmix + τmax)(rt,2 + σ2). (C.147)

Now note that by the inductive step and induction base case, it holds

rt,2 = max
t−τ ′≤l≤t

E

[

r2
l

]

≤ B. (C.148)

Hence, we can write, recalling that B = 9σ2 ≥ σ2,

E

[

r2
t+1

]

≤ (1− 2αµ)E
[

r2
t

]

+ 98α2L2(τmix + τmax)(rt,2 + σ2)

≤ (1− 2αµ)B + 98α2L2(τmix + τmax)(B + σ2)

≤ (1− 2αµ)B + 2B98α2L2(τmix + τmax)

≤ (1− 2αµ+ 196α2L2(τmix + τmax))B,

(C.149)

and so for α ≤ µ
196L2τ̄

≤ µ
98L2τ ′

≤ µ
98L2(τmix+τmax)

, we get 1−2αµ+196α2L2(τmix+τmax) ≤
1 and thus

E

[

r2
t+1

]

≤ B, (C.150)

implying that the absolute constant is C = 196, from which we can conclude the proof.

C.2 Proof of Theorem 5.4 175

�

Using this last Lemma in conjunction with (C.132), we can get the following proof of

Theorem 5.4.

C.2.2 Conclusion of the Proof

Note that, from (C.132), we can write, for T ≥ τ ′ = 2τmax + τmix,

E

[

r2
t+1

]

≤ (1− 2αµ)E
[

r2
t

]

+ 98α2L2(τmix + τmax)(rt,2 + σ2)

(∗)

≤ (1− 2αµ)E
[

r2
t

]

+ 2B98α2L2(τmix + τmax),
(C.151)

where for (∗) we used the fact that, for α ≤ 1
196L2τ̄

, it holds rt,2 ≤ B = 9σ2, as established

by Lemma 5.6. Iterating the inequality, we get

E

[

r2
t+1

]

≤ (1− 2αµ)t+1−τ ′

r2
τ ′ + 298L2α2(τmix + τmax)B

∞∑

j=0

(1− 2αµ)j

≤ (1− 2αµ)t+1−τ ′

r2
τ ′ +

98L2α(τmix + τmax)B

µ

≤ (1− 2αµ)t+1−τ ′

B +
98L2α(τmix + τmax)B

µ

≤ (1− 2αµ)t+12B +
98L2α(τmix + τmax)B

µ

≤ e−2αµ(t+1)2B +
98L2α(τmix + τmax)B

µ
,

(C.152)

where for the last inequality we used the fact that

(1− 2αµ)−τ ′ ≤ e2αµτ ′ ≤ e0.25 ≤ 2, (C.153)

where the inequality follows because αµ ≤ α ≤ 1
196L2τ̄

≤ 1
8τ ′ . Hence, for α ≤ 1

CL2τ̄
, with

C = 196, we get the result. Setting α = 1
CL2τ̄

, with C ≥ 196 and C ′ = 98, we can also

get

E

[

r2
T

]

≤ exp

(

− 2µ2T

CL2τ̄

)

2B +
C ′B
C

. (C.154)

�

176 Appendix: Proofs of Chapter 5

References

[1] D. A. E. Acar, Y. Zhao, R. M. Navarro, M. Mattina, P. N. Whatmough, and V.

Saligrama, “Federated learning based on dynamic regularization,” arXiv preprint

arXiv:2111.04263, 2021 (Cited in page 59).

[2] A. Agafonov, D. Kamzolov, R. Tappenden, A. Gasnikov, and M. Takáč, “Flecs: A

federated learning second-order framework via compression and sketching,” arXiv

preprint arXiv:2206.02009, 2022 (Cited in pages 16, 93).

[3] A. Agarwal and J. C. Duchi, “Distributed delayed stochastic optimization,” Ad-

vances in neural information processing systems, vol. 24, 2011 (Cited in page 79).

[4] F. Alimisis, P. Davies, and D. Alistarh, “Communication-efficient distributed opti-

mization with quantized preconditioners,” in Proceedings of the 38th International

Conference on Machine Learning, 2021 (Cited in page 44).

[5] ——, “Communication-efficient distributed optimization with quantized precondi-

tioners,” in Proceedings of the 38th International Conference on Machine Learning,

M. Meila and T. Zhang, Eds., ser. Proceedings of Machine Learning Research,

vol. 139, PMLR, 2021, pp. 196–206 (Cited in page 16).

[6] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “Qsgd: Communication-

efficient sgd via gradient quantization and encoding,” Advances in neural infor-

mation processing systems, vol. 30, 2017 (Cited in page 5).

[7] M. M. Amiri and D. Gündüz, “Federated learning over wireless fading channels,”

IEEE Transactions on Wireless Communications, vol. 19, no. 5, pp. 3546–3557,

2020 (Cited in pages 61, 66).

[8] ——, “Machine learning at the wireless edge: Distributed stochastic gradient

descent over-the-air,” IEEE Transactions on Signal Processing, vol. 68, pp. 2155–

2169, 2020 (Cited in page 61).

[9] M. M. Amiri and D. Gündüz, “Federated learning over wireless fading channels,”

IEEE Transactions on Wireless Communications, vol. 19, no. 5, pp. 3546–3557,

2020 (Cited in page 16).

[10] Y. Arjevani, O. Shamir, and N. Srebro, “A tight convergence analysis for stochastic

gradient descent with delayed updates,” in Algorithmic Learning Theory, PMLR,

2020, pp. 111–132 (Cited in pages 83, 87, 88).

[11] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adversarial

networks,” in International conference on machine learning, PMLR, 2017, pp. 214–

223 (Cited in page 89).

178 References

[12] M. Assran, A. Aytekin, H. R. Feyzmahdavian, M. Johansson, and M. G. Rabbat,

“Advances in asynchronous parallel and distributed optimization,” Proceedings of

the IEEE, vol. 108, no. 11, pp. 2013–2031, 2020 (Cited in page 87).

[13] C. Battiloro, P. Di Lorenzo, M. Merluzzi, and S. Barbarossa, “Lyapunov-based

optimization of edge resources for energy-efficient adaptive federated learning,”

IEEE Transactions on Green Communications and Networking, 2022 (Cited in

page 14).

[14] C. Battiloro, P. D. Lorenzo, M. Merluzzi, and S. Barbarossa, “Lyapunov-based

optimization of edge resources for energy-efficient adaptive federated learning,”

IEEE Transactions on Green Communications and Networking, 2022 (Cited in

page 44).

[15] A. Beck, Introduction to nonlinear optimization: Theory, algorithms, and applica-

tions with MATLAB. SIAM, 2014 (Cited in page 6).

[16] T. Bertin-Mahieux, D. P. Ellis, B. Whitman, and P. Lamere, “The million song

dataset,” in Proceedings of the 12th International Conference on Music Information

Retrieval (ISMIR 2011), 2011 (Cited in page 34).

[17] D. P. Bertsekas and J. N. Tsitsiklis, “Convergence rate and termination of asyn-

chronous iterative algorithms,” in Proceedings of the 3rd International Conference

on Supercomputing, 1989, pp. 461–470 (Cited in page 79).

[18] A. Beznosikov, S. Horváth, P. Richtárik, and M. Safaryan, “On biased compression

for distributed learning,” arXiv:2002.12410, 2020 (Cited in page 65).

[19] J. Bhandari, D. Russo, and R. Singal, “A finite time analysis of temporal difference

learning with linear function approximation,” in Conference on learning theory,

PMLR, 2018, pp. 1691–1692 (Cited in pages 60, 61, 63–65, 70, 73, 79–81, 83, 109–111,

120, 122, 124, 132).

[20] ——, “A finite time analysis of temporal difference learning with linear function

approximation,” in Conference on learning theory, PMLR, 2018, pp. 1691–1692

(Cited in page 78).

[21] J. Bisgard, Analysis and Linear Algebra: The Singular Value Decomposition and

Applications. American Mathematical Soc., 2020, vol. 94 (Cited in page 104).

[22] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov, C.

Kiddon, J. Konečnỳ, S. Mazzocchi, H. B. McMahan, et al., “Towards federated

learning at scale: System design,” arXiv preprint arXiv:1902.01046, 2019 (Cited in

page 59).

References 179

[23] V. S. Borkar and S. P. Meyn, “The ode method for convergence of stochas-

tic approximation and reinforcement learning,” SIAM Journal on Control and

Optimization, vol. 38, no. 2, pp. 447–469, 2000 (Cited in page 60).

[24] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press,

2004 (Cited in pages 6, 99–101).

[25] X. Cao, G. Zhu, J. Xu, Z. Wang, and S. Cui, “Optimized power control design

for over-the-air federated edge learning,” IEEE Journal on Selected Areas in

Communications, vol. 40, no. 1, pp. 342–358, 2021 (Cited in pages 61, 66, 67).

[26] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,”

ACM Transactions on Intelligent Systems and Technology, vol. 2, 27:1–27:27, 3

2011, Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

(Cited in pages 34, 55).

[27] Z. Charles and J. Konečnỳ, “On the outsized importance of learning rates in local

update methods,” arXiv preprint arXiv:2007.00878, 2020 (Cited in page 62).

[28] M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, and S. Cui, “A joint learning

and communications framework for federated learning over wireless networks,”

IEEE Transactions on Wireless Communications, vol. 20, no. 1, pp. 269–283, 2020

(Cited in pages 14, 16).

[29] M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, and S. Cui, “A joint learning

and communications framework for federated learning over wireless networks,”

IEEE Transactions on Wireless Communications, vol. 20, no. 1, pp. 269–283, 2020

(Cited in page 68).

[30] M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, and S. Cui, “A joint learning

and communications framework for federated learning over wireless networks,”

IEEE Transactions on Wireless Communications, vol. 20, no. 1, pp. 269–283, 2021

(Cited in page 44).

[31] T. Chen, G. Giannakis, T. Sun, and W. Yin, “Lag: Lazily aggregated gradient

for communication-efficient distributed learning,” Advances in neural information

processing systems, 2018 (Cited in page 15).

[32] Z. Chen, S. T. Maguluri, S. Shakkottai, and K. Shanmugam, “A lyapunov theory

for finite-sample guarantees of asynchronous q-learning and td-learning variants,”

arXiv preprint arXiv:2102.01567, 2021 (Cited in page 78).

180 References

[33] Z. Chen, S. T. Maguluri, and M. Zubeldia, “Concentration of contractive stochastic

approximation: Additive and multiplicative noise,” arXiv preprint arXiv:2303.15740,

2023 (Cited in page 78).

[34] Z. Chen, S. Zhang, T. T. Doan, J.-P. Clarke, and S. T. Maguluri, “Finite-sample

analysis of nonlinear stochastic approximation with applications in reinforcement

learning,” Automatica, vol. 146, p. 110 623, 2022 (Cited in pages 80, 81).

[35] Z. Chen, S. Zhang, T. T. Doan, S. T. Maguluri, and J.-P. Clarke, “Performance of

q-learning with linear function approximation: Stability and finite-time analysis,”

arXiv preprint arXiv:1905.11425, p. 4, 2019 (Cited in pages 60, 64).

[36] A. Cohen, A. Daniely, Y. Drori, T. Koren, and M. Schain, “Asynchronous stochas-

tic optimization robust to arbitrary delays,” Advances in Neural Information

Processing Systems, vol. 34, pp. 9024–9035, 2021 (Cited in pages 79, 89).

[37] G. Cohen, S. Afshar, J. Tapson, and A. van Schaik, “Emnist: Extending mnist to

handwritten letters,” in 2017 International Joint Conference on Neural Networks

(IJCNN), 2017, pp. 2921–2926 (Cited in page 34).

[38] L. Collins, H. Hassani, A. Mokhtari, and S. Shakkottai, “Fedavg with fine tuning:

Local updates lead to representation learning,” in Advances in Neural Information

Processing Systems (Cited in page 59).

[39] R. Crane and F. Roosta, “DINGO: Distributed newton-type method for gradient-

norm optimization,” Advances in Neural Information Processing Systems, vol. 32,

2019 (Cited in pages 7, 16).

[40] A. Czornik, A. Nawrat, M. Niezabitowski, and A. Szyda, “On the lyapunov and

bohl exponent of time-varying discrete linear system,” in 2012 20th Mediterranean

Conference on Control Automation (MED), 2012 (Cited in page 27).

[41] N. Dal Fabbro, S. Dey, M. Rossi, and L. Schenato, “Shed: A newton-type algorithm

for federated learning based on incremental hessian eigenvector sharing,” arXiv

e-prints, arXiv–2202, 2022 (Cited in page 40).

[42] ——, “SHED: A Newton-type algorithm for federated learning based on incremen-

tal hessian eigenvector sharing,” arXiv preprint arXiv:2202.05800, 2022 (Cited in

pages 44, 46, 50, 53).

[43] N. Dal Fabbro, A. Mitra, R. Heath, L. Schenato, and G. J. Pappas, “Over-the-air

federated td learning,” 2023 (Cited in page 76).

References 181

[44] N. Dal Fabbro, A. Mitra, and G. J. Pappas, “Federated TD learning over finite-

rate erasure channels: Linear speedup under markovian sampling,” IEEE Control

Systems Letters, 2023 (Cited in pages 7, 72).

[46] G. Dalal, B. Szörényi, G. Thoppe, and S. Mannor, “Finite sample analyses for

TD (0) with function approximation,” in Proceedings of the AAAI Conference on

Artificial Intelligence, vol. 32, 2018 (Cited in page 60).

[47] T. Doan, S. Maguluri, and J. Romberg, “Finite-time analysis of distributed TD

(0) with linear function approximation on multi-agent reinforcement learning,”

in International Conference on Machine Learning, PMLR, 2019, pp. 1626–1635

(Cited in page 60).

[48] T. T. Doan, “Finite-time analysis of markov gradient descent,” IEEE Transactions

on Automatic Control, 2022 (Cited in page 81).

[49] T. T. Doan, S. T. Maguluri, and J. Romberg, “Fast convergence rates of dis-

tributed subgradient methods with adaptive quantization,” IEEE Transactions

on Automatic Control, vol. 66, no. 5, pp. 2191–2205, 2020 (Cited in page 60).

[50] Y. Du and K. You, “Adaptive greedy quasi-newton with superlinear rate and

global convergence guarantee,” in 2022 IEEE 61st Conference on Decision and

Control (CDC), 2022, pp. 7606–7611 (Cited in page 16).

[51] S. Dutta, G. Joshi, S. Ghosh, P. Dube, and P. Nagpurkar, “Slow and stale gradients

can win the race: Error-runtime trade-offs in distributed sgd,” in International

conference on artificial intelligence and statistics, PMLR, 2018, pp. 803–812 (Cited

in pages 61, 67).

[52] A. Elgabli, C. B. Issaid, A. S. Bedi, K. Rajawat, M. Bennis, and V. Aggarwal,

“Fednew: A communication-efficient and privacy-preserving newton-type method

for federated learning,” in International Conference on Machine Learning, PMLR,

2022, pp. 5861–5877 (Cited in page 16).

[53] M. A. Erdogdu and A. Montanari, “Convergence rates of sub-sampled newton

methods,” Advances in Neural Information Processing Systems, vol. 28, 2015 (Cited

in pages 15, 19, 22, 29, 34, 93, 99).

[54] N. D. Fabbro, S. Dey, M. Rossi, and L. Schenato, “SHED: A Newton-type algorithm

for federated learning based on incremental hessian eigenvector sharing,” arXiv

preprint arXiv:2202.05800, 2022 (Cited in pages 34, 35).

182 References

[55] N. D. Fabbro, M. Rossi, L. Schenato, and S. Dey, “Q-shed: Distributed op-

timization at the edge via hessian eigenvectors quantization,” arXiv preprint

arXiv:2305.10852, 2023 (Cited in pages 57, 76).

[56] H. R. Feyzmahdavian, A. Aytekin, and M. Johansson, “A delayed proximal gradient

method with linear convergence rate,” in 2014 IEEE international workshop on

machine learning for signal processing (MLSP), IEEE, 2014, pp. 1–6 (Cited in

page 132).

[57] ——, “An asynchronous mini-batch algorithm for regularized stochastic optimiza-

tion,” IEEE Transactions on Automatic Control, vol. 61, no. 12, pp. 3740–3754,

2016 (Cited in page 87).

[58] E. Gorbunov, F. Hanzely, and P. Richtárik, “A unified theory of sgd: Variance

reduction, sampling, quantization and coordinate descent,” in International Con-

ference on Artificial Intelligence and Statistics, PMLR, 2020, pp. 680–690 (Cited

in page 5).

[59] ——, “Local SGD: Unified theory and new efficient methods,” in International

Conference on Artificial Intelligence and Statistics, PMLR, 2021, pp. 3556–3564

(Cited in page 59).

[60] R. M. Gower, N. Loizou, X. Qian, A. Sailanbayev, E. Shulgin, and P. Richtárik,

“Sgd: General analysis and improved rates,” in International conference on machine

learning, PMLR, 2019, pp. 5200–5209 (Cited in page 5).

[61] A. Grafberger, M. Chadha, A. Jindal, J. Gu, and M. Gerndt, “Fedless: Secure and

scalable federated learning using serverless computing,” in 2021 IEEE International

Conference on Big Data (Big Data), IEEE, 2021, pp. 164–173 (Cited in page 14).

[62] H. Guo, Y. Zhu, H. Ma, V. K. Lau, K. Huang, X. Li, H. Nong, and M. Zhou,

“Over-the-air aggregation for federated learning: Waveform superposition and

prototype validation,” Journal of Communications and Information Networks,

vol. 6, no. 4, pp. 429–442, 2021 (Cited in page 67).

[63] V. Gupta, A. Ghosh, M. Dereziński, R. Khanna, et al., “LocalNewton: Reducing

communication rounds for distributed learning,” in Uncertainty in Artificial

Intelligence, PMLR, 2021 (Cited in pages 6, 14, 16).

[64] M. Gurbuzbalaban, A. Ozdaglar, and P. A. Parrilo, “On the convergence rate

of incremental aggregated gradient algorithms,” SIAM Journal on Optimization,

vol. 27, no. 2, pp. 1035–1048, 2017 (Cited in page 87).

References 183

[65] F. Haddadpour, M. M. Kamani, A. Mokhtari, and M. Mahdavi, “Federated

learning with compression: Unified analysis and sharp guarantees,” in International

Conference on Artificial Intelligence and Statistics, PMLR, 2021, pp. 2350–2358

(Cited in page 60).

[66] F. Haddadpour and M. Mahdavi, “On the convergence of local descent methods

in federated learning,” arXiv preprint arXiv:1910.14425, 2019 (Cited in page 59).

[67] C. N. Hadjicostis and R. Touri, “Feedback control utilizing packet dropping

network links,” in Proceedings of the 41st IEEE Conference on Decision and

Control, 2002., IEEE, vol. 2, 2002, pp. 1205–1210 (Cited in page 60).

[68] A. Hard, K. Rao, R. Mathews, S. Ramaswamy, F. Beaufays, S. Augenstein, H.

Eichner, C. Kiddon, and D. Ramage, “Federated learning for mobile keyboard

prediction,” arXiv preprint arXiv:1811.03604, 2018 (Cited in page 14).

[69] L. Huang, Y. Yin, Z. Fu, S. Zhang, H. Deng, and D. Liu, “Loadaboost: Loss-based

adaboost federated machine learning with reduced computational complexity on

iid and non-iid intensive care data,” PLOS ONE, vol. 15, no. 4, pp. 1–16, Apr.

2020 (Cited in page 14).

[70] R. Islamov, X. Qian, and P. Richtárik, “Distributed second order methods with fast

rates and compressed communication,” in Proceedings of the 38th International

Conference on Machine Learning, PMLR, 2021 (Cited in page 16).

[71] P. Kairouz, H. B. McMahan, et al., “Advances and open problems in federated

learning,” Foundations and Trends® in Machine Learning, vol. 14, no. 1–2, pp. 1–

210, 2021 (Cited in page 14).

[72] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T. Suresh, “SCAF-

FOLD: Stochastic controlled averaging for federated learning,” in Proceedings of

the 37th International Conference on Machine Learning, PMLR, 2020 (Cited in

pages 15, 59, 62).

[73] A. Khaled, K. Mishchenko, and P. Richtárik, “First analysis of local gd on

heterogeneous data,” arXiv preprint arXiv:1909.04715, 2019 (Cited in page 59).

[74] ——, “Tighter theory for local SGD on identical and heterogeneous data,” in

International Conference on Artificial Intelligence and Statistics, PMLR, 2020,

pp. 4519–4529 (Cited in pages 5, 59).

184 References

[75] L. U. Khan, S. R. Pandey, N. H. Tran, W. Saad, Z. Han, M. N. H. Nguyen, and

C. S. Hong, “Federated learning for edge networks: Resource optimization and

incentive mechanism,” IEEE Communications Magazine, vol. 58, no. 10, pp. 88–93,

2020 (Cited in page 44).

[76] S. Khirirat, H. R. Feyzmahdavian, and M. Johansson, “Distributed learning with

compressed gradients,” arXiv preprint arXiv:1806.06573, 2018 (Cited in page 5).

[77] S. Khodadadian, P. Sharma, G. Joshi, and S. T. Maguluri, “Federated reinforce-

ment learning: Linear speedup under markovian sampling,” in ICML, PMLR,

2022, pp. 10 997–11 057 (Cited in pages 7, 60, 62, 70, 72, 94).

[78] A. Koloskova, S. U. Stich, and M. Jaggi, “Sharper convergence guarantees for

asynchronous sgd for distributed and federated learning,” Advances in Neural

Information Processing Systems, vol. 35, pp. 17 202–17 215, 2022 (Cited in pages 61,

68, 79, 80, 89).

[79] J. Konečnỳ, H. B. McMahan, D. Ramage, and P. Richtárik, “Federated opti-

mization: Distributed machine learning for on-device intelligence,” arXiv preprint

arXiv:1610.02527, 2016 (Cited in page 59).

[80] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon,

“Federated learning: Strategies for improving communication efficiency,” arXiv

preprint arXiv:1610.05492, 2016 (Cited in page 5).

[81] M. Krouka, A. Elgabli, C. B. Issaid, and M. Bennis, “Communication-efficient and

federated multi-agent reinforcement learning,” IEEE Transactions on Cognitive

Communications and Networking, vol. 8, no. 1, pp. 311–320, 2022 (Cited in page 61).

[82] ——, “Communication-efficient federated learning: A second order Newton-type

method with analog over-the-air aggregation,” IEEE Transactions on Green

Communications and Networking, vol. 6, no. 3, pp. 1862–1874, 2022 (Cited in

page 44).

[83] C. Lakshminarayanan and C. Szepesvári, “Linear stochastic approximation: Con-

stant step-size and iterate averaging,” arXiv preprint arXiv:1709.04073, 2017

(Cited in page 60).

[84] D. A. Levin and Y. Peres, Markov chains and mixing times. American Mathemat-

ical Soc., 2017, vol. 107 (Cited in page 64).

[85] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning: Challenges,

methods, and future directions,” IEEE Signal Processing Magazine, vol. 37, no. 3,

pp. 50–60, 2020 (Cited in pages 2, 6, 14, 43).

References 185

[86] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith, “Federated

optimization in heterogeneous networks,” in Proceedings of Machine Learning and

Systems, I. Dhillon, D. Papailiopoulos, and V. Sze, Eds., 2020 (Cited in pages 14,

15).

[87] D. C. Liu and J. Nocedal, “On the limited memory bfgs method for large scale

optimization,” Mathematical programming, vol. 45, no. 1-3, pp. 503–528, 1989

(Cited in pages 16, 35).

[88] R. Liu and A. Olshevsky, “Distributed td (0) with almost no communication,”

IEEE Control Systems Letters, 2023 (Cited in page 60).

[89] Y. Liu, M. Peng, G. Shou, Y. Chen, and S. Chen, “Toward Edge Intelligence:

Multiaccess Edge Computing for 5G and Internet of Things,” IEEE Internet of

Things Journal, vol. 7, 2020 (Cited in page 14).

[90] Y. Liu, Y. Zhu, and J. James, “Resource-constrained federated edge learning with

heterogeneous data: Formulation and analysis,” IEEE Transactions on Network

Science and Engineering, vol. 9, no. 5, pp. 3166–3178, 2021 (Cited in page 16).

[91] A. M. Lyapunov, “The general problem of the stability of motion,” International

journal of control, vol. 55, no. 3, pp. 531–534, 1992 (Cited in page 26).

[92] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-

efficient learning of deep networks from decentralized data,” in Artificial Intelli-

gence and Statistics, PMLR, 2017, pp. 1273–1282 (Cited in pages 2, 4, 59).

[93] ——, “Communication-efficient learning of deep networks from decentralized data,”

in Artificial intelligence and statistics, PMLR, 2017, pp. 1273–1282 (Cited in page 4).

[94] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas,

“Communication-efficient learning of deep networks from decentralized data,”

in AISTATS, 2017 (Cited in pages 14, 15).

[97] N. Michelusi, G. Scutari, and C.-S. Lee, “Finite-bit quantization for distributed

algorithms with linear convergence,” IEEE Transactions on Information Theory,

vol. 68, no. 11, pp. 7254–7280, 2022 (Cited in page 60).

[98] K. Mishchenko, E. Gorbunov, M. Takáč, and P. Richtárik, “Distributed learning

with compressed gradient differences,” arXiv preprint arXiv:1901.09269, 2019

(Cited in page 5).

[99] K. Mishchenko, G. Malinovsky, S. Stich, and P. Richtárik, “ProxSkip: Yes! Local

Gradient Steps Provably Lead to Communication Acceleration! Finally!” arXiv

preprint arXiv:2202.09357, 2022 (Cited in page 59).

186 References

[100] A. Mitra, R. Jaafar, G. J. Pappas, and H. Hassani, “Linear convergence in federated

learning: Tackling client heterogeneity and sparse gradients,” Advances in Neural

Information Processing Systems, vol. 34, pp. 14 606–14 619, 2021 (Cited in pages 5,

59, 62).

[101] ——, “Linear convergence in federated learning: Tackling client heterogeneity and

sparse gradients,” Advances in Neural Information Processing Systems, vol. 34,

pp. 14 606–14 619, 2021 (Cited in page 15).

[102] A. Mitra, G. J. Pappas, and H. Hassani, “Temporal difference learning with

compressed updates: Error-feedback meets reinforcement learning,” arXiv preprint

arXiv:2301.00944, 2023 (Cited in page 66).

[103] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and

K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” in

International conference on machine learning, PMLR, 2016, pp. 1928–1937 (Cited

in page 61).

[104] D. Nagaraj, X. Wu, G. Bresler, P. Jain, and P. Netrapalli, “Least squares regression

with markovian data: Fundamental limits and algorithms,” Advances in neural

information processing systems, vol. 33, pp. 16 666–16 676, 2020 (Cited in pages 62,

70).

[105] ——, “Least squares regression with markovian data: Fundamental limits and

algorithms,” Advances in neural information processing systems, vol. 33, pp. 16 666–

16 676, 2020 (Cited in pages 83, 88).

[106] A. Nair, P. Srinivasan, S. Blackwell, C. Alcicek, R. Fearon, A. De Maria, V.

Panneershelvam, M. Suleyman, C. Beattie, S. Petersen, et al., “Massively parallel

methods for deep reinforcement learning,” arXiv preprint arXiv:1507.04296, 2015

(Cited in pages 8, 61).

[107] J. S. Ng, W. Y. B. Lim, Z. Xiong, X. Cao, J. Jin, D. Niyato, C. Leung, and

C. Miao, “Reputation-aware hedonic coalition formation for efficient serverless

hierarchical federated learning,” IEEE Transactions on Parallel and Distributed

Systems, vol. 33, no. 11, pp. 2675–2686, 2021 (Cited in page 14).

[108] J. Nguyen, K. Malik, H. Zhan, A. Yousefpour, M. Rabbat, M. Malek, and D. Huba,

“Federated learning with buffered asynchronous aggregation,” in International

Conference on Artificial Intelligence and Statistics, PMLR, 2022, pp. 3581–3607

(Cited in pages 61, 67, 68).

References 187

[109] ——, “Federated learning with buffered asynchronous aggregation,” in Interna-

tional Conference on Artificial Intelligence and Statistics, PMLR, 2022, pp. 3581–

3607 (Cited in page 80).

[110] T. D. Nguyen, A. R. Balef, C. T. Dinh, N. H. Tran, D. T. Ngo, T. Anh Le, and

P. L. Vo, “Accelerating federated edge learning,” IEEE Communications Letters,

vol. 25, no. 10, pp. 3282–3286, 2021 (Cited in page 14).

[111] Y. Niu, Z. Fabian, S. Lee, M. Soltanolkotabi, and S. Avestimehr, “Ml-bfgs: A

momentum-based l-bfgs for distributed large-scale neural network optimization,”

Transactions on Machine Learning Research, 2023 (Cited in page 94).

[112] K. Osawa, S. Li, and T. Hoefler, “Pipefisher: Efficient training of large language

models using pipelining and fisher information matrices,” Proceedings of Machine

Learning and Systems, vol. 5, 2023 (Cited in page 94).

[113] C. Pan, Z. Wang, H. Liao, Z. Zhou, X. Wang, M. Tariq, and S. Al-Otaibi, “Asyn-

chronous federated deep reinforcement learning-based urllc-aware computation

offloading in space-assisted vehicular networks,” IEEE Transactions on Intelligent

Transportation Systems, 2022 (Cited in page 7).

[114] F. Pase, M. Giordani, and M. Zorzi, “On the convergence time of federated learning

over wireless networks under imperfect CSI,” IEEE International Conference on

Communications Workshops (ICC WKSHPS), pp. 1–6, 2021 (Cited in page 55).

[115] G. Patil, L. Prashanth, D. Nagaraj, and D. Precup, “Finite time analysis of

temporal difference learning with linear function approximation: Tail averaging

and regularisation,” in International Conference on Artificial Intelligence and

Statistics, PMLR, 2023, pp. 5438–5448 (Cited in page 60).

[116] G. Perin et al., “Optimizing edge computing resources towards greener networks

and services,” 2023 (Cited in page 2).

[117] Q.-V. Pham, F. Fang, V. N. Ha, M. J. Piran, M. Les, L. B. Le, W.-J. Hwang,

and Z. Ding, “A Survey of Multi-Access Edge Computing in 5G and Beyond:

Fundamentals, Technology Integration, and State-of-the-Art,” IEEE Access, vol. 8,

2020 (Cited in pages 2, 14).

[118] J. Qi, Q. Zhou, L. Lei, and K. Zheng, “Federated reinforcement learning: techniques,

applications, and open challenges,” arXiv preprint arXiv:2108.11887, 2021 (Cited

in page 60).

188 References

[119] M. G. Rabbat and R. D. Nowak, “Quantized incremental algorithms for distributed

optimization,” IEEE Journal on Selected Areas in Communications, vol. 23, no. 4,

pp. 798–808, 2005 (Cited in page 60).

[120] S. J. Reddi, J. Konečnỳ, P. Richtárik, B. Póczós, and A. Smola, “Aide: Fast and

communication efficient distributed optimization,” arXiv preprint arXiv:1608.06879,

2016 (Cited in page 16).

[121] A. Reisizadeh, A. Mokhtari, H. Hassani, A. Jadbabaie, and R. Pedarsani, “Fedpaq:

A communication-efficient federated learning method with periodic averaging and

quantization,” in International Conference on Artificial Intelligence and Statistics,

PMLR, 2020, pp. 2021–2031 (Cited in pages 60, 69).

[122] A. Reisizadeh, A. Mokhtari, H. Hassani, and R. Pedarsani, “An exact quantized

decentralized gradient descent algorithm,” IEEE Transactions on Signal Processing,

vol. 67, no. 19, pp. 4934–4947, 2019 (Cited in page 60).

[123] N. Rieke, J. Hancox, W. Li, F. Milletari, H. R. Roth, S. Albarqouni, S. Bakas,

M. N. Galtier, B. A. Landman, K. Maier-Hein, et al., “The future of digital health

with federated learning,” NPJ digital medicine, vol. 3, no. 1, pp. 1–7, 2020 (Cited

in page 14).

[124] H. Robbins and S. Monro, “A stochastic approximation method,” The Annals of

Mathematical Statistics, vol. 22, no. 3, pp. 400–407, 1951 (Cited in page 78).

[125] M. Safaryan, R. Islamov, X. Qian, and P. Richtárik, “FedNL: Making Newton-type

methods applicable to federated learning,” in Proceedings of the 39th International

Conference on Machine Learning, 2022 (Cited in pages 6, 7, 14, 16, 19, 35, 37, 44,

55).

[126] L. Schenato, B. Sinopoli, M. Franceschetti, K. Poolla, and S. S. Sastry, “Foun-

dations of control and estimation over lossy networks,” Proceedings of the IEEE,

vol. 95, no. 1, pp. 163–187, 2007 (Cited in page 60).

[127] T. Sery and K. Cohen, “On analog gradient descent learning over multiple access

fading channels,” IEEE Transactions on Signal Processing, vol. 68, pp. 2897–2911,

2020 (Cited in pages 61, 66, 71, 74).

[128] O. Shamir, N. Srebro, and T. Zhang, “Communication-efficient distributed op-

timization using an approximate newton-type method,” in Proceedings of the

31st International Conference on Machine Learning, 2014, pp. 1000–1008 (Cited in

pages 7, 16).

References 189

[129] R. Sheikh, M. Patel, and A. Sinhal, “Recognizing MNIST handwritten data set

using PCA and LDA,” in International Conference on Artificial Intelligence:

Advances and Applications, 2020 (Cited in pages 34, 55).

[130] H. Shen, K. Zhang, M. Hong, and T. Chen, “Towards understanding asynchronous

advantage actor-critic: Convergence and linear speedup,” IEEE Transactions on

Signal Processing, vol. 71, pp. 2579–2594, 2023 (Cited in pages 61, 67).

[131] Y. Shi, K. Yang, T. Jiang, J. Zhang, and K. B. Letaief, “Communication-efficient

edge AI: Algorithms and systems,” IEEE Communications Surveys Tutorials,

vol. 22, no. 4, pp. 2167–2191, 2020 (Cited in pages 13, 14, 43).

[132] N. Shlezinger, M. Chen, Y. C. Eldar, H. V. Poor, and S. Cui, “UVeQFed: Uni-

versal vector quantization for federated learning,” IEEE Transactions on Signal

Processing, vol. 69, pp. 500–514, 2020 (Cited in pages 44, 47, 48).

[133] V. Smith, C.-K. Chiang, M. Sanjabi, and A. Talwalkar, “Federated multi-task

learning,” in Proceedings of the 31st International Conference on Neural Informa-

tion Processing Systems, 2017, pp. 4427–4437 (Cited in page 14).

[134] S. Soori, K. Mishchenko, A. Mokhtari, M. M. Dehnavi, and M. Gurbuzbalaban,

“Dave-qn: A distributed averaged quasi-newton method with local superlinear

convergence rate,” in International Conference on Artificial Intelligence and

Statistics, PMLR, 2020, pp. 1965–1976 (Cited in page 16).

[135] R. Srikant and L. Ying, “Finite-time error bounds for linear stochastic approx-

imation and TD learning,” in Conference on Learning Theory, PMLR, 2019,

pp. 2803–2830 (Cited in pages 60, 61, 64, 65, 69–72, 78–81, 83, 84, 86, 88, 89, 109,

110, 120, 122, 132).

[136] S. U. Stich, “Local SGD converges fast and communicates little,” arXiv preprint

arXiv:1805.09767, 2018 (Cited in pages 5, 59).

[137] S. U. Stich and S. P. Karimireddy, “The error-feedback framework: Better rates

for sgd with delayed gradients and compressed updates,” The Journal of Machine

Learning Research, vol. 21, no. 1, pp. 9613–9648, 2020 (Cited in pages 79, 82, 83, 87,

88).

[138] R. S. Sutton, “Learning to predict by the methods of temporal differences,”

Machine learning, vol. 3, no. 1, pp. 9–44, 1988 (Cited in pages 60, 63).

190 References

[139] C. T. Dinh, N. H. Tran, T. D. Nguyen, W. Bao, A. Rezaei Balef, B. B. Zhou, and

A. Zomaya, “Done: Distributed approximate newton-type method for federated

edge learning,” IEEE Transactions on Parallel and Distributed Systems, 2022

(Cited in pages 6, 14, 16, 19, 44).

[140] J. Tsitsiklis and B Vanroy, “An analysis of temporal-difference learning with

function approximation,” IEEE Transactions on Automatic Control, vol. 42, no. 5,

pp. 674–690, 1997 (Cited in page 80).

[141] J. N. Tsitsiklis and B. Van Roy, “An analysis of temporal-difference learning with

function approximation,” in IEEE Transactions on Automatic Control, 1997 (Cited

in pages 60, 64).

[142] M. M. Wadu, S. Samarakoon, and M. Bennis, “Federated learning under channel

uncertainty: Joint client scheduling and resource allocation,” in 2020 IEEE Wire-

less Communications and Networking Conference (WCNC), IEEE, 2020 (Cited in

page 55).

[143] H. Wang, A. Mitra, H. Hassani, G. J. Pappas, and J. Anderson, “Federated tem-

poral difference learning with linear function approximation under environmental

heterogeneity,” arXiv:2302.02212, 2023 (Cited in pages 60, 62, 70, 94).

[144] S. Wang, F. Roosta-Khorasani, P. Xu, and M. W. Mahoney, “GIANT: Globally

improved approximate newton method for distributed optimization,” in Proceedings

of the 32nd International Conference on Neural Information Processing Systems,

Montréal, Canada, 2018 (Cited in pages 7, 16, 19, 34, 35, 44, 53).

[145] B. Woodworth, K. K. Patel, S. U. Stich, Z. Dai, B. Bullins, H. B. McMahan,

O. Shamir, and N. Srebro, “Is Local SGD Better than Minibatch SGD?” arXiv

preprint arXiv:2002.07839, 2020 (Cited in page 59).

[146] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: A novel image dataset for

benchmarking machine learning algorithms,” arXiv preprint arXiv:1708.07747,

2017 (Cited in pages 34, 55).

[147] H. H. Yang, Z. Chen, T. Q. Quek, and H. V. Poor, “Revisiting analog over-the-air

machine learning: The blessing and curse of interference,” IEEE Journal of Selected

Topics in Signal Processing, vol. 16, no. 3, pp. 406–419, 2021 (Cited in pages 61, 66).

[148] H. Yu, S. Yang, and S. Zhu, “Parallel restarted sgd with faster convergence and

less communication: Demystifying why model averaging works for deep learning,”

in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, 2019,

pp. 5693–5700 (Cited in page 15).

191

[149] S. Zeng, T. T. Doan, and J. Romberg, “Finite-time convergence rates of decen-

tralized stochastic approximation with applications in multi-agent and multi-task

learning,” IEEE Transactions on Automatic Control, 2022 (Cited in pages 78, 79).

[150] J. Zhang, K. You, and T. Başar, “Distributed adaptive newton methods with

global superlinear convergence,” Automatica, vol. 138, p. 110 156, 2022 (Cited in

pages 14, 16).

[151] Y. Zhang and X. Lin, “Disco: Distributed optimization for self-concordant empirical

loss,” in International conference on machine learning, PMLR, 2015, pp. 362–370

(Cited in page 16).

[152] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated learning

with non-iid data,” arXiv preprint arXiv:1806.00582, 2018 (Cited in page 14).

[153] Z. Zhou, P. Mertikopoulos, N. Bambos, P. Glynn, Y. Ye, L.-J. Li, and L. Fei-Fei,

“Distributed asynchronous optimization with unbounded delays: How slow can you

go?” In International Conference on Machine Learning, PMLR, 2018, pp. 5970–

5979 (Cited in page 89).

[154] G. Zhu, Y. Du, D. Gündüz, and K. Huang, “One-bit over-the-air aggregation for

communication-efficient federated edge learning: Design and convergence analysis,”

IEEE Transactions on Wireless Communications, vol. 20, no. 3, pp. 2120–2135,

2020 (Cited in pages 61, 66).

[155] H. Zhu, J. Xu, S. Liu, and Y. Jin, “Federated learning on non-iid data: A survey,”

Neurocomputing, vol. 465, pp. 371–390, 2021 (Cited in page 14).

	Acknowledgments
	Abstract
	Contents
	Introduction
	Federated Learning
	Second-Order Methods
	Federated Reinforcement Learning

	Contributions and Thesis Organization
	SHED: A Novel Newton-Type Algorithm for Federated Learning Based on Hessian Eigendecomposition
	Finite-Time Analysis of Federated Reinforcement Learning under Communication Constraints

	SHED: A novel Newton-type algorithm for federated learning
	Introduction
	Main contributions
	Related work
	Organization of the Chapter

	Problem Formulation
	An eigendecomposition-based Newton-type method
	The algorithm in a nutshell

	Linear regression (least squares)
	Centralized iterative least squares
	Federated least squares

	From least squares to general convex cost
	Backtracking line search for step size tuning
	Algorithm with periodic renewals

	Federated learning with convex cost
	Heuristics for the choice of I

	Empirical Results
	Federated backtracking
	Comparison against other algorithms

	Additional Experiments
	Conclusions
	Related Publications and Conference Presentations

	Q-SHED: Distributed Optimization at the Edge via Hessian Eigenvectors Quantization
	Introduction
	Distributed optimization framework
	Distributed Newton method
	The SHED algorithm
	Q-SHED: Hessian eigenvectors quantization

	Optimal quantization of eigenvectors
	Scalar Uniform Quantization

	Q-SHED: algorithm design
	Uniform scalar quantization with incremental refinements
	Multi-agent setting: notation and definitions
	Heuristic choice of qt(d)
	Convergence analysis

	Empirical Results
	Conclusion and future work
	Related Publications and Conference Presentations

	Federated Reinforcement Learning under Communication Constraints: Finite-Time Rates
	Introduction
	System Model and Problem Formulation
	Convergence Results
	QFedTD: Convergence
	OACFedTD: Convergence
	AsyncFedTD: Convergence

	Numerical Simulations
	Related Publications and Conference Presentations

	Stochastic Approximation with Delayed Updates: Finite-Time Rates under Markovian Sampling with Optimal Dependencies
	Introduction
	Stochastic Approximation with Delayed Updates
	Warm Up: Stochastic Approximation with Constant Delays
	Stochastic Approximation with Time-Varying Delays
	Related Publications and Presentation at Conferences

	Conclusions and Future Work
	Appendix: Proofs of Chapter 2 and additional experiments
	Proof of Theorem 2.1
	Proof of Corollary 2.1
	Proof of Theorem 2.2
	Proof of Lemma 2.1
	Proof of Lemma 2.2
	Proof of Theorem 2.4
	Proof of Theorem 2.5
	Proof of Theorem 2.6
	Additional Experiments: Results on EMNIST and w8a

	Appendix: Proofs of Chapter 4
	Proof of Theorem 4.2
	Proof of Theorem 4.3
	Proof of Theorem 4.4

	Appendix: Proofs of Chapter 5
	Proof of Theorem 5.3
	Proofs of Auxiliary Lemmas
	Proof of Theorem 5.3

	Proof of Theorem 5.4
	Proofs of Auxliary Lemmas
	Conclusion of the Proof

	References

