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Abstract: In the paper, an innovative approach for the fast estimation of the mutual inductance be- 13 

tween transmitting and receiving coils for Dynamic Wireless Power Transfer Systems (DWPTS) is 14 

implemented. To this end, a Convolutional Neural Network (CNN) is used; an image representing 15 

the geometry of two coils that are partially misaligned is the input of the CNN, while the output is 16 

the corresponding inductance value. Finite Element Analyses are used for the computation of the 17 

inductance values, needed for the CNN training. This way, thanks to a fast and accurate inductance 18 

estimated by the CNN, it is possible to properly manage the power converter devoted to charge the 19 

battery, avoiding the wind up of its controller when it attempts to transfer power in poor coupling 20 

conditions. 21 
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 24 

1. Introduction 25 

Wireless Power Transfer (WPT) is a technology that uses magnetic coupling instead 26 

of classical plugs and cables to charge the onboard batteries of electric vehicles (EVs) [1– 27 

7]. In general, WPT systems (WPTSs) are based on a pair of coils, a transmitting (Tx) and 28 

a receiving (Rx) one, separated by an air gap [3], [5], [8]–[10]. Usually, the Tx coil is buried 29 

under a parking pitch while the receiving coil is fitted under the chassis of the vehicle and 30 

the onboard battery is charged while the car is parked (static WPTS). Nowadays, dynamic 31 

WPTSs is an emerging method to charge the battery while the vehicle runs over suitable 32 

roads equipped with a set of transmitting coils under the ground [11], [12]. In this case, 33 

depending on the car position, the Rx coil could be aligned, partially aligned or misa- 34 

ligned with the respect to the Tx one [13]–[16]. Then, it is important to investigate the 35 

variation of the mutual inductance considering different displacements from the fully 36 

aligned condition [13], [17]. In fact, knowing the value of the mutual inductance for a 37 

given car position can be useful for the actively controlling the WPTS, optimizing its effi- 38 

ciency and maximizing the transferred power [18]. 39 

“Questo si può togliere?”In the past, the authors of this paper have studied WPTSs 40 

from different viewpoints, but never in the field of mutual inductance estimation in view 41 

of WPTS control. They have studied the optimal synthesis of compensation networks for 42 

WPTS [15], [18] and models for fast and accurate simulations of the magnetic field in 43 

WPTS; moreover they investigated the aspects related to the electromagnetic compatibil- 44 

ity of these systems [16]. In this paper, a deep learning technique, which belongs to the 45 
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more recent fields of research in electromagnetism, is exploited for optimizing the trans- 46 

ferred power in WPTSs. 47 

In this paper, a fast method for identifying the mutual inductance of two misaligned 48 

coils at a given distance is proposed. This method, based on a Convolutional Neural Net- 49 

work (CNN), will allow to predict the mutual inductance at each position of the Rx coil 50 

(and hence the car) for any trajectory of the car. The mutual inductance is predicted by the 51 

CNN by processing an image that shows in real time the relative position of the TX and RX 52 

coils while the vehicle is running, and is used for implementing a real-time control of the 53 

power transfer for any trajectory of the vehicle moving over the Tx coil [31]. 54 

The CNN is a deep neural network, able to effectively treat images, and to solve a 55 

regression problem. In this paper, the idea is to exploit the images generated by a camera 56 

mounted on the car bottom, which can catch the transmitting coil position thanks to its 57 

shape drawn on the road concrete. On the other hand, the shape and position of the Rx 58 

coil is known and hence, its image can be superimposed to the one of the Tx coils. The 59 

resulting image is processed by the neural network, which is able to predict the value of 60 

the mutual inductance between the Tx and Rx coils. Hence, the CNN is used for solving a 61 

regression problem: knowing the image of the Rx and Tx coils, find the value of the mutual 62 

inductance between them. The information on the coil shapes and on the relative position 63 

between the two coils is embedded in the image itself. The distance between the car bot- 64 

tom and the concrete is supposed to be constant, hence the distance between Tx and Rx 65 

coils in z-direction is constant too.  66 

The CNN is trained by means of a database of 3D Finite Element Analyses (FEAs). 67 

Once the CNN is trained, it is able to predict the mutual inductance between the two coils 68 

for any displacement between them, i.e. for any vehicle trajectory. To the best knowledge 69 

of the authors, this approach is new in the field of dynamic wireless power transfer. In 70 

literature, similar approaches have been proposed recently, but they all refer to different 71 

applications or different machine learning methods. Indeed, there are a few papers deal- 72 

ing with wireless power transfer, which are based on the use of CNNs: these deep learning 73 

methods are usually applied to other kinds of usage or to different applications. In [22], a 74 

CNN is trained for estimating the overlapping area between a pot and a multi-coil system 75 

in the frame of domestic induction heating appliances: knowing the measured data for 76 

each coil (output power, current and quality factor), the area coverage is predicted by the 77 

CNN.   78 

The papers dealing with WPTS propose the use fully-connected neural networks 79 

(NNs) (shallow or deep), which are different from CNNs and are able to treat numbers or 80 

vector of numbers but not able to properly treat images. For the sake of an example, in 81 

[19], the estimation of the mutual inductance of a wireless power system is done by means 82 

of a neural network: a Bayesian neural network is used. This kind of network is able to 83 

predict the inductances of the WPTS knowing the parameters of the system i.e. geomet- 84 

rical and material parameters. A similar result is obtained in [GG], where a deep NN ac- 85 

cepts five structural parameters as input to estimate the self- and mutual inductances of 86 

the coupled coils of a WPTS. In [20] a fully-connected neural network is used for estimat- 87 

ing the mutual inductance, knowing the distance between the two coils in a WPTS. How- 88 

ever, with this approach, the distance must be measured, and this is not feasible in the 89 

case of dynamic WPTSs. In [21] a deep fully-connected neural network is used for the 90 

WPTS parameter estimation based on the input current and the distance between the coils: 91 

this approach is not suitable for a dynamic WPTS. In [AA] a NN is used to estimate the 92 

inductive parameters, the stray magnetic field, and the ferrite magnetic field of two cou- 93 

pled coils using their geometrical characteristics as inputs. Paper [CC] introduces the use 94 

an NN to estimate the efficiency of a WPT system that encompasses an intermediate coil. 95 

The efficiency is estimated as a function of the resonance frequency and of the geometrical 96 

parameters of this coil. In [DD] e similar layout is considered, but the NN is used to esti- 97 

mate the electromagnetic emission of the WPT system for different layout of the interme- 98 

diate coil. Paper [FF] considers a biomedical application of WPT for transcutaneous power 99 
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transfer and used a NN to estimate the voltages, currents and transferred power of the 100 

WPT using its geometrical data and coil distance as inputs. Paper [HH] deals with the 101 

estimation of the inductive parameters of a circular coil and compares the estimates of a 102 

NN trained using data from FEM with the analytical results coming from the Neumann’s 103 

formula. In [II] a similar topic is faced using the PyTorch framework to train the NN using 104 

data coming from simulations as inputs. The system considered in [JJ] is formed by the TX 105 

and the RX coils and by four detection coils whose induced voltage are processed by a NN 106 

to detect the presence of foreign metallic object between the two main coils and to assess 107 

their relative displacement. None of the cited papers deal with dynamic WPTS whilst 108 

most of them use data coming from FEM simulations as input. The processing of real time 109 

data, whether in form of images or not, is not considered.  110 

Considering the control of the power converters, NNs have been used in the field of 111 

WPTSs for different purposes. In [23] a radial basis NN has been proposed to adjust the 112 

gains of a PID controller devoted to maintain the resonant condition of the a WPTS. A NN 113 

is used to assess the gains of a PID controller also in [24], in this paper the controller acts 114 

on the phase shift angle of the Rx side converter of a bidirectional WPTS. In [25] a NN is 115 

adopted with the aim of adjusting the supply frequency of the system, but in this case the 116 

NN directly generates the required frequency value, without an intermediate controller. 117 

Paper [26] faces the topic of maintaining a constant current on the WPTS load despite 118 

variation of the coils mutual inductance M. The NN is trained to assess the phase shift 119 

angle of the primary side high frequency inverter as a function of the Tx coil current. In 120 

[27] the maximum power transfer efficiency in an underwater WPTS is maintained by 121 

adjusting the supply voltage according to the outputs of a NN. In [EE] the efficiency of a 122 

WPT system is maximized by means of a NN that computes the optimal parameters for a 123 

tunable compensation network in order to enforce the impedance matching of the system 124 

despite variation in the coils distance or in the load. The NN in [28] is used to estimate the 125 

orientation of the receiving coil with respect to the transmitting ones in an omnidirectional 126 

WPTS. Position estimation is considered also in [29], with the NN processing the signals 127 

coming from four auxiliary coils to assess the relative position of the coupled coils. The 128 

lateral misalignment between the Tx and the Rx coils is estimated in [30] by a NN fed by 129 

the dc link current actual value, by its integrated value and by the actual vehicle speed. In 130 

[BB] the NN is used to select and enable the optimal transmitting coil among three avail- 131 

able coils and to tune the relevant compensating capacitor using the distance between the 132 

transmitting and receiving coils as input. 133 

Considering the most recent papers published in literature, the approach we propose 134 

in this paper seems not to have been investigated yet. 135 

The paper is organized as follows. In Section 2 the WPTS model is described: the 136 

circuit model and the Finite Element (FE) model are presented, along with the control 137 

strategy. Moreover, in Subsection 2.3 the deep learning strategy is described. In Section 3 138 

the results are shown: in Subsection 3.1 the outcome of the CNN training is discussed and 139 

in Subsection 3.2 the results of the control strategy, based on the trained CNN, are shown. 140 

Finally, in Section 4 a conclusion is drawn. 141 

2. WPTS model  142 

The Finite Element Analysis is used to compute lumped parameters used in a cir- 143 

cuital model for the supply control of the transmitting coil in a WPTS for the recharge of 144 

an electric vehicle. 145 

2.1. Lumped parameter WPTS model 146 

The lumped parameter first harmonic equivalent circuit of the WPTS is represented 147 

in Fig. 1. In the transmitting side, the Tx coil is supplied by the voltage 𝑉̅𝑆 through an LCL 148 

compensation network. This topology has been adopted in order to have a current with a 149 

constant amplitude in the TX coils irrespectively from the actual reflected load. The 150 
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compensation network is formed by the inductor LS and the capacitor CTx. The inductance 151 

LS is equal to the self-inductance of LTx of the transmitting coil and CTx resonated with both 152 

of them. The resistance RS accounts for the parasitic resistances of LS and of the voltage 153 

generator whilst RTx represents the parasitic resistance of the TX coil. The TX coil is flown 154 

by the current 𝐼𝑇̅𝑥 and is subjected to the induced voltage 𝑗𝜔𝑀𝐼𝑅̅𝑥 , which is proportional 155 

to the amplitude of the current 𝐼𝑅̅𝑥  in the receiving coil, to the WPTS supply angular fre- 156 

quency , and to the mutual inductance M between the TX and the RX coil, which is inher- 157 

ently variable in time. At the RX side, a series compensation network formed by the capac- 158 

itor CRx that resonates with the self-inductance LRx of the RX coil has been chosen so that 159 

the full voltage −𝑗𝜔𝑀𝐼𝑇̅𝑥 induced across the RX coil is available to charge the battery. The 160 

resistor RRx represents the parasitic resistance of the RX coil whilst RL represent the equiv- 161 

alent load o the system. Following the SAE standard [11], the WPTS is supplied by a volt- 162 

age oscillating at 85 kHz, so that the current flowing in the TX induces a voltage with the 163 

same frequency across the RX coil. 164 

RS
ITx
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VL

jMIRx -jMITx

+++ LRx

RL

IRxLTx
CRx

CTx VRxVTx

RRxLS RTx

 165 

Figure 1. WPTS with LCL-series topology. 166 

2.2. Field model of WPTS for database creation: finite-element analysis 167 

In order to train the CNN for the mutual inductance estimation, a 3D Finite Element 168 

Model (FEM) is set up. Fig. 2 represents the pair coils simulated in the FEM to compute 169 

their mutual inductance at different positions of the Rx coil with respect to the Tx coil. 170 

Each coil is formed by 10 turns having a pitch of 10 mm and a wire diameter of 6 mm: the 171 

width of the inductor is 106 mm. The vertical distance between the coils is set to 200 mm. 172 

The mesh of the FEM has 832,251 nodes and 619,680 second order volume elements.  173 

 174 

Figure 2. Geometry of the model used in FEA: (a) XY section with coil size and (b) 3D with 175 

vertical distance. 176 

 177 

The FEA solves a time harmonic magnetic field problem using Flux 3D (software 178 

released by Altair Engineering, Inc. Troy MI, USA https://altairhyperworks.com/prod- 179 

uct/flux). The model is simple since considers an air volume where the coils are described 180 

as ideal sources of the magnetic field without discretization (non-meshed coils). In this 181 

frame the magnetic field produced by the coils is evaluated in a semi-analytical way using 182 

Biot-Savart formula [32], whereas in the air volume a reduced scalar magnetic potential, 183 

𝛷𝑅, formulation is applied [33], [34]: 184 

 185 

∇ ∙ 𝜇0𝑯𝑠 = ∇ ∙ 𝜇0∇𝛷𝑅      (1) 186 
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 187 

𝑯 = 𝑯𝑠 − ∇𝛷𝑅      (2) 188 

 189 

Where 𝑯 is the che campo è questo?, 𝜇0 is the vacuum magnetic permeability, and 190 

𝑯𝑠 is the magnetic field generated by the coil and computed using the Biot-Savart law.  191 

A typical magnetic flux density map for three different Rx coil positions is shown in 192 

Fig. 3 in terms of an arrow plot of B vector. The magnetic flux density is visualized in a xz 193 

plane with y=0, where x=0 and y=0 corresponds to the aligned-coil case. In Fig. 3a the 194 

perfectly aligned case is represented, Fig. 3b corresponds to a particular position of the RX 195 

coil where it is partially overlapped to the TX coil but nevertheless it is flown by a null net 196 

flux generated by 𝐼𝑇̅𝑥 and, consequently, the mutual coupling M is equal to 0. Fig. 3c cor- 197 

responds to the coils superposed only on a corner. 198 

 199 

Figure 3. Arrow plot of magnetic flux density (a) centered inductor, (b) M=0 case and (c) 200 

superposition on a corner.  201 

 202 

To evaluate the lumped parameters, i.e. self and mutual inductance, the electromag- 203 

netic model was coupled to an electric circuit [17,35].  204 

The Rx coil was moved on a (Dx, Dy) grid having the origin on the center of the Tx 205 

and ranging from -100 cm to 100 cm in the x direction and from -60 cm to 60 cm in the y 206 

direction, as depicted in Fig. 2a. The worst case considered for misalignment is Dx=100 207 

mm and Dy=60 mm; in this case a 117×112 mm area of overlapping takes place. Because 208 

the coil width is 106 mm, in the worst case, the overlap between the two coils occurs in 209 

the copper areas. This case, as well as all the cases where a strong misalignment occurs, 210 

cannot be properly treated with analytical formulations for the mutual inductance calcu- 211 

lation, because the accuracy of analytical methods strongly depends on the level of misa- 212 

lignment. In general, the stronger the misalignment, the worse the accuracy of mutual 213 

inductance evaluation. However, thanks to the use of 3D FE field analysis, the fringing 214 

field effect is well simulated, even in case of a substantial misalignment of the coils. 215 

Fig. 4 represents the mutual inductance as a function of the Dx shift in the range from 216 

0 cm to 100 cm for different values of Dy chosen in the range from 0 cm to 60 cm. The 217 

mutual inductance M obtained from the FEA ranges from -2.2 μH to 19.9 μH. The self- 218 

inductances are unaffected by the relative position of the coils and are equal to 245 μH 219 

and 81.9 μH for the Tx and the Rx coil, respectively. 220 

(a) (b) (c)
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 221 

Figure 4. Mutual inductance in one quarter of the model.  222 

The database of solutions is composed of 5,000 random samples. Each sample is com- 223 

posed of a simplified black and white image of the two coils formed by 100×120 pixels, 224 

shown in Fig. 5b, and by the corresponding mutual inductance value. 225 

 226 

  

(a) (b) 

Figure 5. Geometry of the system (a), image for the CNN input (b). 227 

 228 

The image is a black and white image of size 100×120 pixels (Fig. 5b). 229 

 230 

2.3. CNN-based approach 231 

For predicting the mutual inductance, a CNN is used [36]. The CNN is composed of 232 

27 layers as shown in Table 1. 233 

The input is a matrix 100×120 (the image of the coils) and 1 value is the output (mu- 234 

tual inductance). The image resolution has been set up as a trade-off between the accuracy 235 

in the representation of image details and the lowest resolution. In fact, the image resolu- 236 

tion is usually a critical parameter, because the lower the resolution image, the better the 237 

CNN training with a given dataset of images but, on the other hand, no loss of information 238 

is wanted. 239 

During the CNN training, the database is used as follows: batches of coil images are 240 

given one by one as input to the CNN, characterized by a set of weights, previously ini- 241 

tialized. At each iteration, the predicted value of mutual inductance is compared to the 242 

true value, given by the database, and an error (usually the Root Mean Square Error, 243 

RMSE) is calculated. From batch to batch the weights of the CNN are updated, based on 244 

Dy =0 cm

Dy = 60 cm
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the chosen optimization algorithm e.g. the Adaptive Moment Estimation (ADAM) in our 245 

case, and when the maximum number of iterations is reached or a prescribed tolerance is 246 

met, the training stops. 247 

Hence, for the supervised training procedure, the problem reads as follows: given the 248 

database of images and relevant mutual inductance values, find the network weights minimizing 249 

the error between predicted and prescribed output, according to the selected algorithm. 250 

In turn, the trained CNN is then used to solve the following problem: given an un- 251 

previously seen image of the two coils as input, find the mutual inductance value utilizing the 252 

trained CNN.  253 

As far as the CNN architecture is concerned, it is possible to highlight some recurrent 254 

sequence of layers: each sequence is composed of an average pooling layer, a convolu- 255 

tional layer, a batch normalization layer [37] and a Rectified Linear Unit ReLU function 256 

(see Table 1). 257 

Table 1 CNN Architecture 258 

Layers Layers 

1) Image based input (size 100×120×1) 15) Batch Normalization  

2) Convolution 2D (size 3×8), 16) ReLU activation function  

3) Batch Normalization  17) Average Pooling Layer (size 2×2) 

4) ReLU activation function  18) Convolution 2D (size 3×128) 

5) Average Pooling Layer (size 2×2) 19) Batch Normalization  

6) Convolution 2D (size 3×16) 20) ReLU activation function  

7) Batch Normalization  21) Average Pooling Layer (size 2×2) 

8) ReLU activation function  22) Convolution 2D (size 3×256) 

9) Average Pooling Layer (size 2×2) 23) Batch Normalization  

10) Convolution 2D (size 3×32) 24) ReLU activation function 

11) Batch Normalization  25) Dropout (40% probability) 

12) ReLU activation function  26) Fully connected layer  

(1 output) 

13) Average Pooling Layer (size 2×2) 27) Regression layer 

14) Convolution 2D (size 3×64),  

 259 

The ReLU function is one of the most used activation functions for CNN because it 260 

has shown good performance in training this kind of neural network in terms of avoiding 261 

overfitting [36]. The convolutional layers are characterized by filters of size 3×3. The num- 262 

ber of filters varies from 8 to 256. In order to obtain a more stable solution, average pooling 263 

layers with filter of size 2×2 are applied. At the end of the CNN a dropout layer is used, 264 

and a fully connected layer followed by the regression layer allows to obtain 1 element as 265 

output of the neural network. 266 

The CNN was trained with 80% of database samples for training and 20% for valida- 267 

tion i.e. 4,000 samples for the training set and 1,000 samples for the validation set. The 268 

CNN was trained with the Adaptive Moment Estimation (ADAM) method, with the fol- 269 

lowing hyper-parameter values: initial learning rate 10-4, learning rate drop factor 0.9, 270 

learning rate drop period 20. 271 

The tuning of the hyper-parameters is done by means of a trial-and-error procedure: 272 

the highest sensitivity of the CNN training is given by the initial learning rate. By increas- 273 

ing the initial learning rate, a faster training can occur, but a local minimum of the weights 274 
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optimization can occur as well as a divergent behavior during the training: this results in 275 

non-accurate training. On the other hand, if the initial learning rate is too small, the train- 276 

ing is very long. The best value of the initial learning rate depends also on the CNN archi- 277 

tecture. For our problem we found that the best value is 10-4. 278 

For evaluating the quality of the CNN based prediction, the Mean Average Percent- 279 

age Error MAPE (%) was calculated considering the N points of the validation set, namely, 280 

in percentage: 281 

𝑀𝐴𝑃𝐸 = 100
1

𝑁
∑

|𝑌̂𝑖−𝑌𝑖|

|𝑌𝑖|

𝑁
𝑖=1       (5) 282 

where Y is the true value calculated analytically, and 𝑌̂is the value predicted by the 283 

CNN. Another figure of merit for evaluating the CNN performance is the Root Mean 284 

Square Error (RMSE). The MAPE error was preferred in this paper because it has an easy 285 

interpretation, and it is expressed as a percentage. When the outliers (points with large 286 

error) are to penalize, the RMSE is preferred, because it increases when the number of 287 

outliers increases.  288 

2.4. Control strategy 289 

Fig. 6 gives a more detailed representation of the WPTS. The main difference with 290 

respect to Fig. 1 is in the RX side of the system, where the equivalent load RL has been split 291 

into its main components. Indeed, it is formed by the cascade of a diode rectifier, a buck 292 

chopper, a filter inductance and, finally, by the battery to be charged. 293 

Thanks to the LCL compensation, the current flowing in the Tx coil depends only 294 

marginally by the actual values of the power injected in the battery and of M, so that it 295 

can be considered as a given parameter of the system. Consequently, it is possible to de- 296 

sign the control algorithm focusing only on the RX side of the WPTS. 297 

The battery charging is controlled by means of two nested loops. The outer loop con- 298 

trols the battery voltage and, by processing the voltage reference and the actual voltage, 299 

works out the reference for the current to be injected in the battery. The inner loop pro- 300 

cesses the current reference and generates command signals for power switches of the 301 

chopper. 302 

Obviously, when the coupling between the TX and the RX coil is very low or when the 303 

coils are not coupled at all, no power transfer can be performed, and the controller of the 304 

above-mentioned control loops saturate. When the vehicle moves and coil are coupled 305 

again, the saturated controllers cause unwanted overshoot on the battery charging cur- 306 

rent. These unwanted solicitations are avoided by exploiting the estimate of M computed 307 

by the CNN. When it is too low to the power transfer is considered unfeasible and the 308 

outer loop controller sets the charging current reference to zero. When the estimate M is 309 

high enough, the current refence is updated in order to go on with the battery charging. 310 

 311 

 312 
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Figure 6. Scheme of the dynamic WPTS equivalent circuit. 313 

3. Results 314 

The CNN was trained using the database obtained by means of FEAs. The trained 315 

CNN was used in the control of the WPTS, with focus on properly managing the transition 316 

from couple to uncoupled conditions and vice versa. 317 

3.1. CNN training 318 

The MAPE error of the CNN trained for 500 epochs is equal to 16%. The solutions of 319 

the validation set obtained with the FEM versus those predicted by the trained CNN are 320 

shown in Fig. 7. 321 

In Fig. 8 the prediction of the mutual inductance for two test cases (linear and V- 322 

shaped trajectory) is shown. 323 

 324 

 325 

Figure 7. True vs. predicted values of mutual inductance. 326 

 327 

 328 

(a)           (b) 329 

Figure 8. Linear (a) and V-shaped (b) trajectories and relevant estimated and actual mutual 330 

inductances. 331 

In both cases, the value of the mutual inductance is predicted with acceptable accu- 332 

racy and the maximum prediction errors can be recognized to happen in correspondence 333 

with the maximum values of M. As it will be explained in the following Section, this 334 

Linear trajectory V-shaped
trajectory
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characteristic does not impair the effectiveness of the algorithm that manages the battery 335 

charging. Fig. 8a, relevant to the liner trajectory, shows the same profile of M reported in 336 

Fig. 4. Along the V-shaped trajectory, considered in Fig. 8b, the RX coil moves from two 337 

times from the misaligned to the aligned condition while the EV passes on one TX coil. For 338 

this reason, the profile of M exhibits two rounded peaks instead of a flat top like in Fig. 339 

8a.   340 

 341 

3.2. Battery charging 342 

The CNN trained as described in 3.1 was used in the control strategy that manages 343 

the battery charging according to the approach described in Section 2.4. Two different 344 

trajectories have been used: the linear one and the V-shaped one (see Fig. 8). 345 

3.2.1. Linear trajectory 346 

When the EV follows a linear trajectory, the induced voltage vr has the waveform 347 

reported in Fig. 9 with the blue line.  348 

 349 

 350 

Figure 9. Induced voltage vr (solid blue) and dc bus voltage Vdc,r (dashed red). 351 

 352 

 353 

Figure 10. Battery charging current reference IB,ref (dashed red) and actual charging current IB 354 

(solid blue). 355 

 356 

The figure refers to an EV running at a constant speed of 130 km/h and considers a 357 

time span of 2 s during which the EV meets 35 Tx coils. Because of the high supply fre- 358 

quency of the Tx coils, the oscillations of vr are too fast to be resolved at the time scale of 359 

the figure and only the envelope of the induced voltage can be recognized. The dashed 360 

red line in the figure represents the receiving side dc bus voltage. As shown in Fig. 6, it is 361 
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obtained at the output of a diode rectifier processes the induced voltage and charges the 362 

dc bus capacitor. For this reason, the dc bus voltage follows the envelope of the induced 363 

voltage but is a little lower because of the voltage drop across the diodes. At the same 364 

time, a buck chopper discharges the capacitor and injects in the battery the power coming 365 

from the Tx coils. On its turn, the battery supplies the traction drive of the vehicle, which 366 

is represented in Fig. 6 by a constant current generator.  367 

The control algorithm of the chopper is designed to charge the battery following the 368 

current reference represented by the red dashed line of Fig. 10. It is saturated to the max- 369 

imum battery charging current when the battery voltage is much lower than the reference 370 

one, thus implementing the constant-current charging stage, and then decays slowly to 371 

zero while the battery voltage approaches the reference value.  372 

This current can be drawn from the dc bus capacitor only if the diode rectifier is in 373 

the conduction state, otherwise the capacitor voltage decreases below the battery voltage 374 

and the chopper does not work anymore. In this condition, the current controller must be 375 

disabled in order to avoid its windup and the consequent current overshoot as soon as 376 

enough voltage is again available. 377 

Considering that the amplitude of vr is proportional to M, the estimated M computed 378 

by the CNN is used to enable and disable the current controller and the chopper opera- 379 

tions. In particular, when the estimated M is lower than 45% of its nominal value MN, the 380 

chopper is disabled, and the current reference is kept constant. When M exceeds 50% of 381 

MN the controller and the chopper are enabled again. The 5% hysteresis between disabling 382 

and enabling the controller avoids undue commutation between the two working condi- 383 

tions during the vehicle run. 384 

In order to speed up the simulations used to test the performance of overall dynamic 385 

WPTS, the battery has been substituted for by a large capacitor and the load current has 386 

been set to zero. In this way, a simulation time of 2 s is enough to check all the working 387 

conditions of the systems. 388 

Fig. 10 shows that at the beginning of the charging process, IB,ref saturates to its max- 389 

imum value. After about 1 s it exits from saturation and decreases down to zero at the end 390 

of the simulation time. Due to the high speed of the vehicle, the battery current IB does not 391 

reach IB,ref within the time taken by the vehicle to move over a single TX coil. Instead, IB is 392 

forced to zero every time M falls below 45% of MN and the chopper is disabled. The current 393 

IB restarts flowing when the power transfer from the next transmitting coil is enabled 394 

again, and a new partial charge of the battery is performed. 395 

When IB,ref decreases, the duration of the coupling with a single TX coil becomes 396 

enough to allow IB to approach IB,ref, as it can be recognized in Fig. 10 in the time interval 397 

from about 1.2 s to 2 s. This behavior is highlighted in Fig. 11, which reports a magnifica- 398 

tion of Fig. 10.  399 

 400 

Figure 11. Battery charging current reference IB,ref (dashed red) and actual charging current IB 401 

(solid blue). 402 

It clearly shows that neither IB,ref nor IB are subject to overshot and that IB,ref is kept 403 
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constant while IB is forced to zero. The oscillations of IB,ref are due to the repeated enabling 404 

and disabling of the power transfer. For time higher than 1.6 s, IB,ref is even lower and IB 405 

reaches it within the duration of a coupling with a single TX coil, as shown in Fig. 10.  406 

The current IB is forced to zero and the chopper is disabled while M is decreasing. It 407 

means that the amplitude of the induced voltage vr is decreasing as well and that, given 408 

that the dc bus capacitor is not discharged by the chopper, the diodes of the rectifier are 409 

inversely polarized. In these conditions, Vdc,r does not follow anymore vr but is kept con- 410 

stant to the value it had when the chopper has been disabled. This behavior is confirmed 411 

by Fig. 12, which is a magnification of Fig. 9 relevant to the same time interval as Fig. 11. 412 

The figure confirms that the amplitude of vr, represented by the blue solid shape, 413 

follows the profile of M shown in Fig. 4. Between the two Tx coils Vdc,r, represented by the 414 

red dashed line, is constant. It starts following the envelope of vr as soon as the peak of vr 415 

exceeds Vdc,r and the diode rectifier conducts again.     416 

 417 

 418 

Figure 12. Induced voltage vr (solid blue) and dc bus voltage Vdc,r (dashed red). 419 

Despite the intermittent power transfer, the battery is actually charged, and its volt- 420 

age increases up to the end-of-charge reference value. This is confirmed by Fig. 13 that 421 

reports the behavior of the battery voltage starting from the initial value of 54 V to the full 422 

load value of 56 V. The stepped profile is due to the subsequent chopper turning on and 423 

off. Indeed, the battery voltage increases while the chopper injects current on it and stays 424 

constant while the chopper is off. 425 

3.2.2. V-shaped trajectory 426 

In the V-shaped trajectory, M has the profile shown in Fig 7b. Even if it is not realistic 427 

for a driver to follow such a profile, this case has been studied to check the robustness of 428 

the estimates coming from the NN and of the control algorithm that exploits them to 429 

 

Figure 13. Battery voltage. 
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charge the vehicle battery. As in the previous case, the vehicle speed has been considered 430 

equal to 130 km/h. However, because of the longer path to travel over each Tx coil, the 431 

vehicle meets only 25 Tx coils in 2 s. In this time span, the profile of the induced voltage 432 

is not clearly distinguished from that one reported in Fig. 9, relevant to the linear trajec- 433 

tory.  434 

 435 

In order to appreciate the differences between the two trajectories it is necessary to 436 

examine the induced voltage profile considering a shorter time interval, as in Fig. 14. It 437 

should be compared with Fig. 12, which is relevant to the linear trajectory and considers 438 

the same time interval. In this interval, the vehicle running on the linear trajectory meets 439 

two Tx coils, each of the originating one of the two blue solid spots in Fig. 12. In the same 440 

time interval, the vehicle running on the V-shaped trajectory meets only one Tx coil, but, 441 

as shown in Fig. 7b, the mutual inductance M between this Tx coil and the Rx coil exhibits 442 

two maxima. Consequently, Fig. 14 reports two solid spots, like Fig. 12, both originated 443 

by the same Tx coil. The smaller spot laying in the 1.04 s -1.05s time interval corresponds 444 

to the condition of having M negative but with a not negligible value. Also in this case, 445 

the red line in Fig. 14 represents the dc bus voltage Vdc,r.  446 

The presence of a large interval in which the induced voltage is rather low reduces 447 

the time available to enable the buck chopper to charge the battery. Indeed, as shown by 448 

the dashed red line in Fig. 14, the dc bus voltage remains constant for most of the time. 449 

The reference for the current charging the battery and its actual value are plotted in 450 

Fig. 15. It clearly appears that the current flows for a much shorter time interval with re- 451 

spect to Fig. 11, and that its maximum value is sensibly lower than the one reached along 452 

the linear trajectory. 453 

 

Figure 14. Induced voltage vr (solid blue) and dc bus voltage Vdc,r (solid red). 

 

Figure 15. Battery charging current reference IB,ref (dashed red) and actual charging current IB 

(solid blue). 
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Fig. 16 shows that, despite this limitation, the battery can still be charged, even if the 454 

increasing rate of its voltage is more than two times lower than the one obtained in the 455 

linear trajectory. 456 

4. Conclusion 457 

The proposed deep learning method for the fast estimation of the mutual inductance 458 

between two coils in a DWPTS system shows a rather good accuracy and allows the im- 459 

plementation of the control of the power converter for the battery charge.  460 

Being based on the image of the two coils, this approach is suitable for an early pre- 461 

diction of the mutual inductance before the Rx coil is aligned with the Tx coil, if the camera 462 

can capture the image of the forthcoming transmitting coil. 463 

Finally, this method could be also used on the Tx side, considering a camera buried 464 

in the ground, for the control of the power supply. Hence, the proposed approach is gen- 465 

eral and could improve DWPTSs from different point of view. 466 
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