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Abstract. We apply quantum control techniques to a long spin chain by acting only on two qubits at
one of its ends, thereby implementing universal quantum computation by a combination of quantum
gates on these qubits and indirect SWAP operations across the chain. It is shown that the control
sequences can be computed and implemented efficiently. We discuss the application of these ideas to
physical systems such as superconducting qubits in which full control of long chains is challenging.
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INTRODUCTION

Controlling quantum systems at will has been a dream for physicists for a long time.
In particular, the future success of quantum information processing depends largely on
our ability of taming many body quantum systems that are highly fragile. Although the
progress of technology allows us to manipulate a small number of quanta quite well,
controlling larger systems seems still to be an enormous challenge. Unless we overcome
difficulties towards the control over many body systems, the benefits we can enjoy with
the quantumness will be severely limited.

Problems we need to contemplate before attempting to build a quantum computer
using quantum control are as follows. Firstly, the control criterion is generally not
computable for large systems. Secondly, even if the question of controlability can be
answered positively for specific systems, the precise sequence of actual controls (or
‘control pulses’) are realistically not computable. And thirdly, even if they can be
computed, the theory of control tells us nothing about the overall duration of the control
pulses to achieve a given task, and it might take far too long to be practically meaningful.
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controlled spins shielded spin chain

FIGURE 1. Our scheme for universal computation works on a chain of N spins. By modulating the
magnetic fields in the “accessible area” (spins 1 and 2) we induce effective swap gates on the chain, e.g.,
between 1 and k, or 2 and /. The gates from the quantum algorithm are then performed on the control
qubits only by operations Uj».

QUANTUM CONTROLLABILITY AND CLASSICAL
COMPUTABILITY

We consider the problem of controlling a 1-dimensional chain of N spin-1/2 particles
(Fig. 1). If we take the most generic Heisenberg interaction with a time-dependent
magnetic field at spin 1,

H = Hy+H (),
N—1
where Hy = Y cn(XuXps1+YoYui1 +ZuZpy1) and Hy(t) = b1 (1)Zy,

n=1

then any unitary operation U € SU(2") can be realisable by modulating the field inten-
sity b1(t) only. Here, X,Y, and Z are the Pauli operators and we take the standard basis
so that Z|0) = |0) and Z|1) = —|1). The full controllability can be shown by utilising a
theorem in the theory of quantum coherent control in terms of Lie algebra, which states
as follows. The set of realisable unitary operations are those generated by the dynamical
Lie algebra .Z that can be constructed with H,, (in this case m = 0, 1). All we need to
do to obtain the dynamical Lie algebgra . is simply to repeat taking commutators of
generators, such as [H,,, H,y|, [Hp, [Hy, Hyr)], [[Hms Hye |y [Hyer, Hy]], etc. Because we
are considering Hilbert spaces of finite dimension, the number of independent genera-
tors we can obtain this way is finite and thus the process terminates at certain point. The
theorem says that if . has the same dimensionality as su(2") the entire system is fully
controllable, which is the case with Hy and H; above.

However, the optimisation of the control pulses b1(¢) would be inefficient. That is,
the (classical) computing time will be exponential with respect to the system size N,
since the Hamiltonian cannot be diagonalised straightforwardly. In such a case, we
would need a quantum computer to design the pulses to run a quantum computer! This
difficulty can be circumvented by employing the (time-independent) nearest-neighbour
XX Hamiltonian,

N—1
Z Cn[<1+7)Xan+1+(1_}/)Ynyn+1] (D

n=1

1
H = -
L)
which, through Jordan-Wigner transformation, can be efficiently diagonalised for large
systems, and it is still a Hamiltonian with practical relevance in realistic systems. Hence,
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the control pulses b (¢) with this Hamiltonian can be computed efficiently by using
standard numerical algorithms developed in the field of optimal quantum controls, such
as Krotov’s.

THE MAIN RESULTS

Yet, the dynamical Lie algebra obtained from H{X in Eq. (1) and H, (t) = by (¢)Z; does
not span the whole su(2"), thus the spin chain is not fully controllable by modulating

the field b; () only. Nevertheless, a closer look into the algebra brings us the following

generators, ihy = a;gal — a;ak (k— Il even),ihy = i(aZal + a;ak) (k—1lodd),Z; =1—

2a,tak, where a, and a/ are the annihilation and creation operators of Jordan-Wigner
fermions. The operators /;; work essentially as SWAP operations for the k-th and the
[-th spins (precisely, JW fermions). Therefore, if we can access the two spins at the
chain end (spins 1 and 2 in Fig. 1), any operations of SU(2") can be possible. That is,
if we want to apply a two-spin operation between the k-th and the /-th spins, no matter
where they reside in the chain, we can swap spins 1 and &, and 2 and / to bring both
to the controllable area. Then, the two-spin operation could be applied to the spins 1
and 2 fast enough (compared with the spin-chain dynamics), and by swapping two pairs
again we will have completed the desired two-spin operation effectively. Single-spin
operations can be performed in a similar manner, hence any SU(2") operations can be
implemented.

The above mentioned scheme would work, however, if the operators ihy; generate a
genuine SWAP operation for spin states. But this is not the case. For example, what can
be realised as a time evolution of ik, (for k — [ even) is a unitary operator

e M2 — (00)(00[+ [ 11) (1)) @I+ (j01){10| = [10) 01 )@ [] 2, (@)
k<j<l

where (...)x is an operation only on the k-th and the /-th spins. The operator [T« j<; Z;,
which arises from the nonlocal tail of the Jordan-Wigner transformation, acts on the
spins between k and [/, being controlled by the parity of the spins k and /. Such ‘con-
trolled” operations together with one- and two-spin operations at sites 1 and 2 will pro-
duce undesired complicated entanglement over the chain and mess the whole state up.

In order to fix this problem, we encode a logical qubit with two physical spins as
|0)z :=|01) and |1), := |10). The rough idea behind this encoding is that by restricting
ourselves in the subspace spanned by {|01),|10)} we can always be sure about the
value the operator [];. j; Z; acting between two logical qubits will induce. Single qubit
operations then can be performed on any qubit without transferring the state to the
accessible area. This is because the dynamical Lie algebra contains Z; and the SWAP
between the neighbouring spins, which corresponds to the X operation on the k-th
qubit. Note also that the cumbersome operator [[;. j;Z; does not appear in the SWAP
for neighbouring k and j. Therefore, the spin chain is fully controllable for quantum
computation by controlling only two qubits (1and 2) [1].

The remaining problem is how long/short the overall control pulses should be. To
show this, we used one of the numerical techniques, called Krotov’s method, for opti-
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mising the control pulses. We found out that the overall timescale of the operations is
only proportional to N2, which is polynomial with respect to the system size N. In order
to estimate the necessary accuracy and the required speed of modulation, we have car-
ried out a Fourier analysis of the optimised b (¢) for the SWAP operation between the
spins 1 and 29 in the chain of 30 spins. The dominant frequency components are in the
slower region compared with the intrinsic dynamics of the chain, and neglecting (cutting
off) the components whose frequencies are higher than ~J does not impair the resulting
operation fidelity substantially (cutoff frequencies higher than 2J still gives the fidelity
higher than 1 — 10~%). We refer interested readers to ref.[1] for more details.

Meanwhile, obtaining the precise knowledge on the coupling strengths J; is also a
nontrivial problem under the condition of restricted access. Without accurate informa-
tion on Ji, full quantum control can by no means be possible. We have also analysed
this problem and found a positive answer; not only Ji, but also the strengths of local
magnetic fields By can be determined by accessing only the end spin of the chain [2].
Therefore the whole scenario here is applicable to physical situations, where we can
have only a limited access to a large system for some technical/physical reasons.

CONCLUSIONS

We have shown how to efficiently compute control pulses for large spin chains described
by a vast class of Hamiltonians. The pulses are computed for a 2N-dimensional system
but can be applied to the full 2N-dimensional system. Full quantum computation is
possible by controlling only two spins at one end of the chain. The only price for
this indirect control is that the quantum computation takes quadratically longer than
for direct control. Given the large benefit of requiring so little control for a quantum
computer, we believe that this scheme would be very useful for future implementations.

ACKNOWLEDGMENTS

We acknowledge support by the EPSRC Grant No. EP/F043678/1 (D.B.), an Incentive
Research Grant of RIKEN (K.M.), US NSA, LPS, ARO, NSF Grant No. EIA-0130383
(EN.), the E.U. under the Integrated Project SCALA (T.C.) and Contract No. MRTN-
CT-2006-035369 (EMALI) (M.M.), DFG SFB TRR21 (S.M. and T.C.), a Royal Society
Wolfson Research Merit Award, Integrated Project QAP, and the E.U. STREP project
HIP (M.P.). We thank the bwGRiD for computational resources.

REFERENCES

1. D.Burgarth, K. Maruyama, M. Murphy, S. Montangero, T. Calarco, F. Nori, and M. B. Plenio, Phys.
Rev. A 81, 040303(R) (2010)

2. D. Burgarth, K. Maruyama, and F. Nori, Phys. Rev. A79, 020305(R) (2009); D. Burgarth and K.
Maruyama, New J. Phys. 11, 103019 (2009).

172

Downloaded 28 Jun 2013 to 141.211.173.82. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://proceedings.aip.org/about/rights_permissions



