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Abstract

This thesis addresses the exploitation of high-frequency financial data through the mod-

eling of realized covariances, with the purpose of forecasting the covariance matrix of

the selected assets. Generally, the analysis of realized covariances is carried out with

models using a Wishart distribution whose scale matrix is described by an autoregres-

sive moving average structure. The first chapter introduces a novel distribution used in

place of the Wishart, which can be employed to identify a common factor in the assets

behaviour, representing the systematic risk in the market. The model is empirically

tested in an asset allocation framework with the objective of tracking the market index

of reference. Therefore, the purpose of this chapter is not to improve the conventional

models based on the Wishart distribution, but rather to expand their usual scope of

application.

Another common issue stems from the presence of data retrieved at multiple frequen-

cies and the ensuing need to properly exploit the available information content. The sec-

ond chapter briefly reviews the literature concerning the modeling mixed-frequency data,

and formulates a way to integrate the high-frequency information in a low-frequency-

based model, using the former as ”views” about the assets. Thus, the approach proposed

in this chapter requires the derivation of a posterior equation, which depends upon the

distributional assumptions for the high and low-frequency data. The resulting expres-

sion for the posterior distribution effectively allows to operate with data retrieved at

different frequencies, and therefore to provide an alternative to the common approaches

used in this framework.

The final chapter is intended to outline a possible way of exploiting high-frequency

data in the field of risk spillover analysis, starting from recent results concerning the

structured specifications of conventional models employing low-frequency data.





Sommario

Questa tesi affronta il tema dell’utilizzo dei dati finanziari ad alta frequenza attraverso

la modellazione delle covarianze realizzate, al fine di prevedere la matrice di covarianza

degli asset selezionati. In genere, l’analisi delle covarianze realizzate viene eseguita tra-

mite modelli che utilizzano una distribuzione Wishart la cui matrice di scala è descritta

da una struttura autoregressiva a media mobile. Il primo capitolo introduce una nuo-

va distribuzione usata al posto della Wishart, che può essere utilizzata per identificare

un fattore comune nell’andamento degli asset, rappresentante il rischio sistematico del

mercato. Il modello viene testato empiricamente in un contesto di asset allocation al

fine di replicare l’indice di mercato di riferimento. Quindi, l’obiettivo del capitolo non

è di migliorare i modelli classici basati sulla distribuzione Wishart, bens̀ı di espandere

il loro tradizionale campo di applicazione.

Un altro problema comune sorge per via della presenza di dati raccolti a frequen-

ze multiple e la conseguente necessità di sfruttare in maniera appropriata il contenuto

informativo a disposizione. Il secondo capitolo rivede sinteticamente la letteratura ri-

guardante la modellazione di dati a frequenza mista e formula un modo per integrare

l’informazione ad alta frequenza in un modello basato su dati a bassa frequenza, usando

la prima come ”opinione” riguardo gli asset. Quindi, l’approccio proposto in questo ca-

pitolo richiede la derivazione dell’equazione del posterior, che dipende dalle assunzioni

riguardo la distribuzione dei dati ad alta e bassa frequenza. La risultante espressione

per la distribuzione del posterior consente di operare efficacemente con dati raccolti a

frequenze diverse, e quindi di fornire un’alternativa agli approcci più comuni in questo

contesto.

Il capitolo finale intende delineare una possibile modalità di sfruttamento dei dati

ad alta frequenza nel campo dell’analisi del risk spillover, partendo da recenti risultati

relativi alle structured specifications di modelli convenzionali che impiegano dati a bassa

frequenza.
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Introduction

Overview

Modernization that has taken place over the past decades has led to a continuous evo-

lution of the concepts of availability and speed. Needless to say, how this is evident

in everyday reality, from purchases delivered in a matter of hours to the exchange of

information in real time. Financial markets have not been excluded from this trans-

formation, with participants under an obligation to stay one step ahead of others, in

a constant chase to take advantage of the new information available in the shortest

possible time and in the best possible way. An aspect arising from the increased flow

of information concerns the exploitation of high-frequency data. Although it can be

debated how frequent the observations need to be in order to be considered as properly

high-frequency, it is necessary to develop a process that allows to exploit them regardless

of the frequency at which they are retrieved. An approach that has gained attention

in the field of volatility and covariance modeling consists in the use of realized mea-

sures constructed from high-frequency data as drivers of information. The focus, when

using such measures, is on predictive models, rather than on obtaining non-parametric

measurements of past movements. A widely used model in this area is the Conditional

Autoregressive Wishart (CAW) model developed by Golosnoy et al. (2012), which uses

a Wishart distribution to analyze realized covariances, and assumes an autoregressive

moving average structure for the scale matrix of such distribution. The model is suitable

for large panels of assets, since it ensures positive-definite covariance matrices without

imposing parameter constraints and can be easily estimated by maximum likelihood.

This thesis aims to address the exploitation of high-frequency data for covariance

modeling in the field of portfolio allocation. Throughout the dissertation, data collected

at a frequency of 1 minute are used as high-frequency data for the construction of realized

covariances. Chapter 1 departs from the usual design of the CAW model as it introduces

a novel distribution used in place of the Wishart distribution and employed to identify a

common factor in the assets behaviour, which constitutes the inherent risk in the market.
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2 Overview

The distribution is obtained as the product of a scalar component, distributed as a

unit-mean inverse gamma, and a matrix component following a Wishart distribution.

The mean is endowed with an autoregressive moving average structure, and the one-

step-ahead forecasts of the covariance matrix are employed in a portfolio allocation

framework with the aim of tracking the reference index performance by limiting the

impact of specific risk. The model is empirically tested in its covariance targeting version

with autoregressive and moving average components of order one. The common factor

detected by the model is highly correlated with market variance and plays a crucial role

in estimating and forecasting conditional covariances. With regard to the index tracking

objective, the realized variance of the portfolio ensuing from the empirical application

is close to the common factor itself as well as to the realized variance of the market.

Additionally, the risk-adjusted performance of the portfolio is comparable to the market

index for a level of proportional transaction costs of 15 basis points.

As opposed to the high-frequency-based models, there exist a much more crowded

literature concerning the estimation of covariances from daily data. Such approaches

are generally used in the field of high-frequency data as benchmarks to assess and test

the results of the model under development. Differently from this view, Chapter 2

aims to formulate a way to integrate the high-frequency information within the low-

frequency-based model, thus finding an expression for operating with data retrieved at

different frequencies. In the literature, data collected at multiple frequencies are com-

monly processed by aggregating the highest frequency data to reduce all data to the

same frequency. Other approaches addressing this practice and preserving frequency

differences are proposed by Ghysels et al. (2004) and Shephard and Sheppard (2010).

Nevertheless, they both jointly model high-frequency and low-frequency data. As op-

posed to such models, Chapter 2 takes its cue from Black and Litterman (1992), and uses

the information from high-frequency data as views about the assets under analysis with

the aim of integrating the output of a low-frequency-based model. The mixing process

requires the derivation of the posterior equation, which depends upon the distributional

assumptions for the high and low-frequency data.

Chapter 3 is intended to outline a possible way of exploiting high-frequency data in

the field of risk spillover analysis, starting from recent results concerning the structured

specifications of conventional models employing low-frequency data. Thus, the purpose

of the chapter is not to provide conclusive results, but rather to provide a research

idea that exploits what is presented in the other chapters. Risk spillover refers to

the impact that one or more events affecting the risk of an asset have on the risk of

other assets or asset classes, either within the same country or across countries. This
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network effect has its roots in the financial interconnections that have been persistently

increasing among countries, markets, financial institutions and even asset classes, and

its implications affect a wide range of financial areas, such as credit risk management,

portfolio management, hedging strategies, and financial stability as a whole. Thus, much

research has been conducted on this topic, also in order to facilitate the development

of various regulatory requirements, such as capital requirements or capital controls.

Nevertheless, most of the current literature is limited to the use of low-frequency data.

The aim is therefore to take inspiration from the most recent strands of literature about

this issue, and provide an enhanced specification obtained through the CAW model,

which has the advantage of modeling the covariance matrix using an estimate of it (i.e.

the realized covariance matrix) rather than using a latent process.

Main contributions of the thesis

The main contributions of this PhD thesis are related to the exploitation of financial

high-frequency data, with emphasis on modeling and forecasting covariances, and are

organized into the following chapters. The contents presented in Chapter 1 provide the

necessary tools for identifying and isolating a common factor in the assets behaviour,

representing the specific risk in the market, and the idiosyncratic risk component. This

becomes particularly useful when it comes to understanding the extent to which di-

versification can reduce the risk of an investment. Alternatively, the model can be

exploited as an intermediary linking the quantities retrieved from high frequency and a

low-frequency-based model. In this perspective, the output of the former can be used to

augment the dynamics of the latter, allowing for a richer and finer depiction. Chapter 1

reveals that the model allows to accurately track the reference market index, by limiting

the impact of specific risk.

Chapter 2 contributes to the asset allocation literature by trying to improve the signal

used for the computations through the blending process. The assessment is conducted

under realistic assumptions concerning the allocation process, that is with transaction

costs and monthly rebalancing of the assets. Although it may seem reasonable that

increasing the frequency of data used would improve the result, Chapter 2 shows that

combining high-frequency and low-frequency data yields superior results, despite the

former undoubtedly has the advantage of supplying the finest representation of assets.

Additionally, the presence of transaction costs highlights that relying solely on high-

frequency data leads to excessive turnover. In such a context, in fact, it might be worth

giving up accuracy partially for more stability, to avoid the depletion of any possible



4 Main contributions of the thesis

benefit provided by high-frequency data.



Chapter 1

Conditional autoregressive G model

for high-frequency data

1.1 State of the art

Multivariate modeling and forecasting of variances and covariances of asset returns

is crucial in many financial activities, although the time series of these quantities

are not directly observable. Conventional approaches, based on low-frequency data,

model variance-covariance matrices either given past observations, such as multivariate

GARCH models (Bollerslev et al., 1988), or treat them as an unobserved stochastic

process, such as multivariate stochastic volatility models (Harvey et al., 1994).

More recently, realized measures computed from high-frequency data have proven to

be a valuable tool for modeling volatility and covariances. Such measures provide pow-

erful insights if included in the analysis and lead to more accurate estimates compared

to conventional models, which are limited to daily-level inputs. They are extremely rel-

evant in capturing sudden movements in the markets, and have an empirical application

that spans a wide range of areas, including risk management, asset pricing and portfolio

optimization.

Andersen et al. (2003) and Barndorff-Nielsen and Shephard (2004) showed that these

measures are precise estimates of actual covariation, as they quickly adapt to the market

conditions by exploiting intraday information.

Noureldin et al. (2012) proposed a multivariate extension of the class of high-frequency-

based volatility (HEAVY) models developed by Shephard and Sheppard (2010), which

uses high-frequency data to obtain greater predictive ability with respect to the mul-

tivariate GARCH model. The main advantage of HEAVY models is the usage of a

two-equation system, conditioned on a high-frequency information set, that allows to

5



6 Section 1.1 - State of the art

deliver precise multi-step forecasts exhibiting short response time in periods of abrupt

market changes and short-run momentum effects before reverting.

An alternative approach for covariance modeling was adopted by Golosnoy et al.

(2012), generalizing the Wishart Autoregressive (WAR) model developed by Gouriéroux

et al. (2009). The proposed Conditional Autoregressive Wishart (CAW) model assumes

an autoregressive moving average structure for the mean of Wishart distribution, al-

lowing both lagged covariance matrices and lagged predictions of the covariance to

contribute to the prediction, while in the WAR specification, only lagged covariances

are used. WAR and CAW models have been used in several empirical studies focus-

ing on the prediction of realized variances, or in the interpretation of spillovers among

assets (see, e.g. the contributions of Bonato et al. (2013) and Gribisch et al. (2020)).

We contribute to this strand of literature on both the methodological and empirical

sides. We propose to use a different multivariate distribution, the G distribution, for

realized covariance modeling and forecasting. This novel distribution is obtained as the

product of Wishart distribution and a scalar component following a unit-mean inverse

gamma. The distribution can be scaled by a dynamically evolving scalar factor and

can also account for dynamic changes in the entire covariance by allowing the scale ma-

trix of the original Wishart distribution to be time-varying. The resulting distribution

has a notable advantage compared to Wishart distribution, since it allows to identify

a common market risk factor which can be implicitly obtained from the information

associated with the assets; the market risk factor is associated with the dynamic scalar

scaling term. The scalar component can also be removed, simplifying, if needed, the

model estimation. To recover the model dynamic components, we suggest the use of a

two-step procedure. First, the scalar scaling term is modeled as the conditional mean of

a Multiplicative Error Model (MEM); then, the observed realized covariance matrices

are filtered from this mutual element and endowed with a dynamic structure equivalent

to that adopted in CAW models (Golosnoy et al., 2012), which is particularly useful for

prediction purposes. The remaining model parameters are estimated through maximum

likelihood accounting for symmetry and positive definiteness of the covariance matrices.

Through an empirical example, we provide some insights into the estimated parame-

ters and show that the common factor extracted from a small set of equities, a subset of

the constituents of the Dow Jones Industrial Average (DJIA) index, is highly correlated

with market volatility, as proxied by the conditional variance estimated, on a univariate

basis, on the DJIA daily index returns or by using the daily realized variance of DJIA.

By exploiting the informative content of the common factor, we design a market risk

replicating portfolio (a sort of tracking portfolio), which can be used as a benchmark
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or as a passive investment portfolio. The risk replicating portfolio exhibits reduced car-

dinality, compared to the full set of assets used for the common factor estimation, and

exhibits superior performances compared to the market index. Additionally, we provide

a simple example showing how the passive portfolio can be combined with an active

strategy for stock picking, which can lead to performances above those of the reference

and naive portfolios.

The rest of Chapter 1 is structured as follows. In section 2, we derive the G density

and describe the model, including its estimation. Section 3 is devoted to the empirical

analysis, including the model application in a portfolio allocation framework. Section 4

concludes the main results.

1.2 The conditional autoregressive G model

Let us consider an observed sequence of realized covariance matrices Zt of dimension m

with a multiplicative structure, such that Zt = δtXtYt, where δt is a scalar parameter,

Xt follows an inverse-gamma density with unit mean and Yt follows a Wishart density

with n degrees of freedom and scale matrix Ct/n. For modeling such covariances, we

first introduce an explicit expression of the density of Zt.

In the multiplicative model framework, Freitas et al. (2005) introduced a multivari-

ate extension of the polarimetric distributions available in the literature for describing

synthetic aperture radar (SAR) data, proposing the family of polarimetric GP laws, ob-

tained as the product of a generalized inverse Gaussian distribution and a multivariate

complex Wishart. In this section, we derive a similar distribution, which we refer to

as G, for modeling realized covariances. Afterwards, we move to a conditional setting,

discussing the model dynamics, constraints and estimation.

1.2.1 The G density

Let X be a unitary-mean inverse gamma random variable with shape parameter −α
and Y be a Wishart random variable with n degrees of freedom and scale matrix C/n:

fX(x) =
xα−1

(−α− 1)αΓ(−α) exp
(
α + 1

x

)
, −α, x > 0, (1.1)

and

fY(y) =
|y|(n−m−1)/2 exp(−1

2
Tr(nC−1y))

2nm/2 h(n,m) |C/n|n/2 , (1.2)
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where m is the dimension of Y and h(n,m) = πm(m−1)/4
∏m

j=1 Γ(n/2 + (1 − j)/2).

Equation 1.2 can be equivalently expressed in terms of C, which is the expected value

of Y, as

fY(y) =
(n/2)nm/2|y|(n−m−1)/2 exp(−n

2
Tr(C−1y))

h(n,m)|C|n/2 . (1.3)

Considering equations 1.1 and 1.3, the densities of Ω = XY and Z = δΩ, where δ is a

scalar, are provided by Theorem 1.1 and Corollary 1.2, respectively.

Theorem 1.1. Let X be a unitary-mean inverse gamma random variable and Y be a

Wishart random variable with n degrees of freedom and scale matrix C/n, then Ω = XY

follows a G(α,C, n) density; that is,

fΩ(ω) =
(n/2)nm/2|ω|(n−m−1)/2Γ(nm/2− α)

h(n,m)|C|n/2(−α− 1)αΓ(−α) ×

×
(n
2
Tr(C−1ω)− (α + 1)

)α−nm/2
. (1.4)

Proof. The density of Ω is given by

fΩ(ω) =

∫
R+

fxY(ω)fX(x) dx, (1.5)

where the scale transformation xY is distributed as a Wishart with expected value xC:

fxY(ω) =
(n/2)nm/2|ω|(n−m−1)/2 exp(−n

2
Tr((xC)−1ω))

h(n,m)|xC|n/2 . (1.6)

Therefore, the density of Ω(ω) is

fΩ(ω) =
(n/2)nm/2|ω|(n−m−1)/2

h(n,m)|C|n/2(−α− 1)αΓ(−α) ×

×
∫
R+

xα−1−nm/2 exp
(
x−1
(
− n

2
Tr(C−1ω) + (α + 1)

))
dx. (1.7)

The solution of such an integral was provided by Gradshteyn and Ryzhik (2007) in

section 3.326 on page 337. In particular,∫ ∞

0

xa exp(−βxb) dx =
Γ(γ)

bβγ
, γ =

a+ 1

b
, β > 0. (1.8)
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In our case, we have ∫ ∞

0

y−A exp(−By−1) dy, (1.9)

where A = 1− α + nm/2 and B = n
2
Tr(C−1ω)− (α + 1).

Integrating by substitution using x = y−1 and then applying formula 3.326 of Grad-

shteyn and Ryzhik (2007), we get∫ ∞

0

xA−2 exp(−Bx) dx =
Γ(A− 1)

B(A−1)
, (1.10)

where A − 2 = 1 − α + nm/2 − 2 = −α + nm/2 − 1 > 0 is satisfied by construction

given that −α > 0,m > 1 and n > 0. Moreover, B = n
2
Tr(C−1ω) − (α + 1) is positive

for −α > 1. We rewrite the integral solution as

Γ(A− 1)

B(A−1)
=

Γ(nm/2− α)

Bnm/2−α
= Γ(nm/2− α)Bα−nm/2. (1.11)

Therefore, fΩ(ω) becomes

fΩ(ω) =
(n/2)nm/2|ω|(n−m−1)/2Γ(nm/2− α)

h(n,m)|C|n/2(−α− 1)αΓ(−α) ×

×
(n
2
Tr(C−1ω)− (α + 1)

)α−nm/2
(1.12)

which is a G(α,C, n) density.

Corollary 1.2. Let Ω ∼ G(α,C, n) and δ be a scaling factor, then δΩ ∼ G(α, δC, n).

Proof. Let Y ∼ W (C, n), where C is the expected value of Y and A is a square matrix

of dimension m, then AYA′ ∼ W (ACA′, n). If we apply the scale transformation δ to

the Wishart density Y and define A = diag(a1, . . . , am) with ai =
√
δ, i = 1, . . . ,m,

then δY = AYA′ ∼ W (δC, n), and, by Theorem 1.1, the density of Z = δΩ is

fZ(z) =
(n/2)nm/2|z|(n−m−1)/2Γ(nm/2− α)

h(n,m)|δC|n/2(−α− 1)αΓ(−α) ×

×
(n
2
Tr
(
(δC)−1z

)
− (α + 1)

)α−nm/2
, (1.13)

which is a G(α, δC, n) density.
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Remark X̃ = δX follows an inverse gamma with shape −α and mean equal to

δ. This allows us to interpret X̃ as a common stochastic market risk factor, whose

conditional mean equals δ.

In this work, we use the G density to characterize the conditional distribution of

realized covariance matrices. Namely, we set Zt|It−1 ∼ G(α, δtCt, n), where It−1 is the

time t − 1 information set, and both δt and Ct have dynamical representations, which

are described in the following sub-sections.

1.2.2 Dynamics of δt

The purpose of this component of the conditional density is to extract a common risk

factor from a panel of securities. Therefore, the first step is to define how to model the

elements of the covariance matrix in a way that allows us to sort out mutual and specific

components. If we denote by zij,t the generic [ij] element of the realized covariance

matrix, we can express it in a multiplicative way as zij,t = λtσij,t, where λt is a common

factor for the elements in the matrix and σij,t is an element-specific factor assuming

either positive or negative values. Then, log z2ij,t = log λ2t + log σ2
ij,t, and an estimate l̃t

of log λ2t is provided by the arithmetic average:

l̃t =

∑
ij∈S log z

2
ij,t

m(m+ 1)/2
, (1.14)

where S is the set of ij combinations of the elements in the lower triangular part of the

realized covariance matrix, including the elements on the main diagonal. Therefore, the

estimate of λt can be expressed as

λ̃t =

(∏
ij∈S

|zij,t|
) 2

m(m+1)

, (1.15)

which is a geometric average of zij,t elements in absolute value. Thus, λ̃t can be reason-

ably interpreted as the source of information for the common component.

The scalar δt is modeled as the conditional mean of the Multiplicative Error Model

(MEM) by Engle (2002b):

δt = θ1 + θ2δt−1 + θ3λ̃t−1. (1.16)

According to Lee and Hansen (1994), the parameters of equation 1.16 can be esti-

mated with a GARCH software by taking λ̃1/2 as dependent variable and setting the

mean to zero.
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1.2.3 Dynamics of Ct

The conditional mean of Yt is endowed with an autoregressive moving average process

resembling the CAW model developed by Golosnoy et al. (2012). This model allows the

predicted covariance matrix to depend on lagged covariance matrices as well as on their

lagged predictions. For instance, the mean Ct of a Wishart density at time t can be

expressed as a CAW of order (p, q):

Ct = CC′ +

p∑
i=1

AiCt−iA
′
i +

q∑
j=1

BjZt−jB
′
j, (1.17)

where C is a lower-triangular matrix, and Ai,Bj are the parameter matrices. The

structure guarantees the symmetry and positive definiteness of the conditional mean Ct

without imposing strong parametric restrictions on (C,Ai,Bi).

The number of parameters being estimated in a CAW(p, q) model increases rapidly

with the number of assets. In fact, for m assets, the model involves m(m+ 1)/2 + (p+

q)m2+1 parameters. A straightforward restriction is to assumeAi andBi to be diagonal

matrices; in this case, the number of parameters becomes m(m+ 1)/2 + (p+ q)m+ 1.

The model can be further simplified by substituting the intercept with a function

of the model’s long-run covariance obtained as follows. Let vec(·) denote the operator

that stacks all columns of a matrix into a vector, and let vech(·) and ivech(·) denote,

respectively, the operator that stacks the lower triangular portion (including the diag-

onal) of a matrix into a vector and the one reversing this operation. Then, the vector

representation of the CAW (p, q) is

ct = c+

p∑
i=1

Aict−i +

q∑
j=1

Bjzt−j, (1.18)

where ct = vech(Ct), zt = vech(Zt), c = vech(CC′) and (Ai,Bj) are k×k matrices, with

k = m(m+ 1)/2, obtained as

Ai = Lm(Ai ⊗Ai)Dm, Bj = Lm(Bj ⊗Bj)Dm, (1.19)

where Lm and Dm denote the elimination and duplication matrices, such that vec(X) =

Dmvech(X) and vech(X) = Lmvec(X). Note that zt can be written as zt = E[zt|It−1] +

vt = ct+vt, with E[vt] = 0 and E[vsv′t] = 0 for all s ̸= t. Then, the VARMA(max(p, q), p)
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representation of the CAW(p, q) model is

zt = c+

max(p,q)∑
i=1

(Ai + Bi)zt−i −
p∑
j=1

Ajvt−j + vt, (1.20)

with Ap+1 = · · · = Aq = 0 if p < q and Bq+1 = · · · = Bp = 0 if q < p. The unconditional

mean of zt is given by

E[zt] =

(
Ik −

max(p,q)∑
i=1

(Ai + Bi)
)−1

c, (1.21)

and, therefore, the covariance targeting variant is

Ct = C̃+

p∑
i=1

AiCt−iA
′
i +

q∑
j=1

BjZt−jB
′
j, (1.22)

where C̃ = ivech(c) has to be positive definite to ensure that Ct is also positive definite.

We adopt an analogous approach for modeling the conditional mean ofY, using diagonal

parameter matrices with p = 1, q = 1 and covariance targeting. The resulting model is

Ct = C̃+ACt−1A
′ +B(Zt−1/λ̃t−1)B

′, (1.23)

where Zt−1 in equation 1.17 is replaced by Zt−1/λ̃t−1, since realized covariances are

filtered by the terms used for the common factor estimation. In the application, the

expected value of zt in equation 1.21 is estimated by z̄ = vech(Z̄), where Z̄ is the sample

mean of realized covariances divided by the corresponding λ̃t−1.

1.2.4 Model estimation

Initially, the parameters in the δt equation are estimated from the data with a GARCH(1,1),

using λ̃1/2 as dependent variable and setting the mean to zero, according to Lee and

Hansen (1994). Subsequently, the parameters ψ = (A,B, α, n) are estimated through

maximum likelihood. Assuming that Zt ∼ G(α, δtCt, n), the log-likelihood function is

lT (ψ) =
T∑
t=1

{
nm

2
log
(n
2

)
+
n−m− 1

2
log
(
|zt|
)
+ log

(
Γ(nm/2− α)

)
− log

(
h(n,m)

)
− n

2
log
(
|δtCt|

)
− α log

(
− α− 1

)
− log

(
Γ(−α)

)
+
(
α− nm

2

)
log
(n
2
Tr
(
(δtCt)

−1zt
)
− (α + 1)

)}
, (1.24)
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and the estimated parameters are

ψ̂ = argmax
ψ∈Ψ

l̂T (ψ). (1.25)

We assume that given correct model specification and under the standard regularity

conditions hold and that the maximum likelihood estimator of the parameter has an

asymptotically normal distribution with mean equal to the true parameter and covari-

ance matrix given by the inverse of the Fisher information matrix. However, we under-

stand that evaluating the correctness of model specification is challenging and thus we

might interpret the estimator as a quasi-maximum likelihood one, and use the sandwich

estimator for the covariance.

Since the model is estimated in two stages, we acknowledge that the standard errors

are not the most efficient ones, as demonstrated by Newey and McFadden (1994).

1.3 Empirical analysis

1.3.1 Data

We use high-frequency data at 1-minute level (390 daily observations) of the 26 assets

of DJIA with available data for the whole period of analysis. The realized covariance

matrices are computed as Zt =
∑I

i=1 rt,ir
′
t,i, where rt,i is the vector of percentage log-

returns for the i -th 1-min interval of the t-th trading day.1 The sample period is 2

January 2003 to 24 June 2020, with 4400 trading days. Table 1.1 is an overview of

the realized measures, reporting minimum, median and maximum for three quantiles of

every measure (quantiles are computed over time). Apart from a few cases, the realized

covariances and correlations are mostly positive. This will reduce the extent to which

portfolio risk can be managed by resorting to diversification benefits, as we will show

in the following applications. Figure 1.1 plots the time series of the log-average realized

variance (top panel) and covariance (bottom panel), showing two main subperiods of

greater instability, coinciding with the 2008 financial crises and the 2020 pandemic crises.

1We are aware that other approaches for estimating the realized covariance exist. However, as our
purpose is to illustrate the model properties, we consider the simplest estimator. The comparison of
the model fit according to different estimators for the realized covariance is beyond the scope of the
present thesis.
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Table 1.1: Summary statistics for realized measures.

Var Cov Corr

quantiles 0.05 0.5 0.95 0.05 0.5 0.95 0.05 0.5 0.95

Min. 0.272 0.663 2.969 -0.044 0.159 1.170 -0.059 0.163 0.438

Med. 0.458 1.264 6.463 0.009 0.260 2.362 0.013 0.230 0.527

Max. 0.701 1.890 13.748 0.142 0.642 7.601 0.171 0.489 0.727

Figure 1.1: Average realized variance and covariance.

1.3.2 Estimation results

We first show that δt can be interpreted as a proxy for market variance. We fit the model

to the complete sample of daily realized covariances to recover the fitted series of the

common factor for the whole period. The estimation results are summarized in Table

1.2. As the actual number of assets considered is 26, δt would be slightly different if

computed on all DJIA assets. Nevertheless, the correlation between the common factor

and DJIA variance, where the latter is estimated by fitting an EGARCH(1,1) on daily

data, is above 0.9, meaning that δt well represents market variance. Figure 1.2 plots

δt and the variance showing a very close relation. Likewise, Figure 1.3 plots δt and
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the index realized variance, which is obviously more volatile than the variance obtained

from the EGARCH(1,1). Figure 1.4 presents the corresponding scatter plots.

Table 1.2: Estimated parameters and the corresponding standard errors (sandwich
approach).

Aii Bii Aii Bii

Asset Value SE Value SE Asset Value SE Value SE

AAPL 0.8184 0.0116 0.1688 0.0103 JNJ 0.9026 0.0077 0.0871 0.0067
AMGN 0.8692 0.0083 0.1197 0.0073 JPM 0.8595 0.0093 0.1207 0.0074
AXP 0.8647 0.0107 0.1162 0.0083 KO 0.8761 0.0084 0.1066 0.0067
BA 0.8441 0.0170 0.1319 0.0130 MCD 0.8681 0.0103 0.1183 0.0087
CAT 0.8450 0.0097 0.1304 0.0076 MMM 0.8731 0.0081 0.1088 0.0064
CSCO 0.8487 0.0087 0.1334 0.0072 MRK 0.8476 0.0130 0.1305 0.0105
CVX 0.8770 0.0067 0.1107 0.0056 MSFT 0.8448 0.0084 0.1340 0.0068
DIS 0.8165 0.0181 0.1540 0.0140 NKE 0.8412 0.0138 0.1324 0.0107
GS 0.8493 0.0100 0.1276 0.0079 PG 0.8726 0.0083 0.1106 0.0067
HD 0.8394 0.0112 0.1332 0.0087 UNH 0.8312 0.0122 0.1415 0.0094
HON 0.8806 0.0101 0.1029 0.0079 VZ 0.8726 0.0083 0.1132 0.0069
IBM 0.8594 0.0130 0.1189 0.0102 WBA 0.8485 0.0117 0.1309 0.0094
INTC 0.8399 0.0100 0.1385 0.0081 WMT 0.8425 0.0154 0.1370 0.0120

Param. Value SE
n 83.0081 0.1889
α 4.9829 0.0582
θ1 0.0175 0.0023
θ2 0.3534 0.0330
θ3 0.6293 0.0359

Figure 1.2: Common factor and DJIA variance.
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Figure 1.3: Common factor and DJIA realized variance.

Figure 1.4: Scatter plots of δt versus DJIA variance and realized variance.

The crucial role of δt also emerges when we focus on its relevance within the conditional

mean of realized variances and covariances. Figure 1.5 shows the effect of removing
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the common factor from the fitted conditional mean of the realized covariance matrix

elements, using the median value of the off-diagonal elements of Zt and Ct. The latter

plays a relatively marginal role in explaining realized covariances, as it exhibits no

distinctive movement and has a correlation of 0.02 with the median of the off-diagonal

elements of Zt and E[Zt|It−1].

Figure 1.5: Median of realized covariances and fitted values of Ct (off-diagonal).

Table 1.3 compares the proposed conditional autoregressive G model with the baseline

CAW specification, using the AIC and BIC.

Table 1.3: AIC and BIC for the conditional autoregressive G model compared to
the standard CAW.

AIC BIC

G -742.6 -378.4

CAW -677.5 -338.8

Most of the variability of the index dynamics is therefore explained by the common

factor, leaving a peripheral role to the Ct component. This is also shown in the follow-

ing results, obtained as the one-step-ahead forecast after fitting the model in a rolling

window approach, using 500 observations for the estimation. Figure 1.6 shows the fore-

casted values of the off-diagonal elements of Ct for different quantiles. In particular, the
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median value floats around 1; thus, the corresponding value of the off-diagonal elements

of δtCt is very close to the common factor itself, as indicated in Figure 1.7. Analogously,

Figure 1.8 provides a similar representation considering median values of the diagonal

elements of Ct and δtCt. Fluctuations in the conditional variance-covariance matrix

are mostly captured by the common factor, which promptly adapts to sudden market

changes, while residual movements are explained by the elements in Ct. This is more

noticeable for periods marked by extreme instability, indeed we can clearly identify the

aftermath of the 2008 financial crisis and the recent turmoil caused by the pandemic.

Figure 1.6: Quantiles of forecasted Ct (off-diagonal elements).

Figure 1.7: Median forecasts for δt, Ct and δtCt (off-diagonal elements).



Chapter 1 - Conditional autoregressive G model for high-frequency data 19

Figure 1.8: Median forecasts for δt, Ct and δtCt (diagonal elements).

1.3.3 Market risk tracking portfolio

The interesting property of the common factor to accurately track market variance can

be useful in a portfolio allocation framework. As seen before, the model allows to sepa-

rate out the effect of the common factor from the remainder part; δt represents a proxy

for the portion of un-diversifiable risk, while Ct embeds the remaining idiosyncratic

risk component. It is, therefore, possible to build portfolios whose expected variance

equals the common factor itself (i.e. at the systematic level) by imposing w′Cw = 1,

where w is the vector of portfolio weights. To take a realistic perspective, we develop

an empirical example in which we use the predicted values of Ct, as mentioned in the

previous section, to create a no short selling portfolio with daily rebalancing. Table 1.4

summarizes the performance in terms of profitability and portfolio rotation, compared

to the Global Minimum Variance (GMV) and the Equally Weighted (EW) portfolios.

In particular, the target variance portfolio delivers superior return with a very low car-

dinality. To provide a comprehensive representation of portfolio composition, we group

companies according to their Industry Classification Benchmark (ICB). This method-

ology aims to partition companies into 11 broad industry levels. The necessary data

are provided by Datastream and point at the companies’ ICB. Figure 1.9 displays the

portfolio weights using a 40-day moving average.2 We can notice greater diversification

2The moving average is introduced for graphical analysis only and is not adopted in the portfolio
construction.
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before the 2008 financial crisis, even though with moderate relevance of the Energy,

Financials, and Telecommunications industries, which tend to become gradually less

important, together with Industrials, in proximity of the crisis. In the midst of the

crisis, the portfolio is almost entirely concentrated on the Consumer Discretionary in-

dustry. The latter aspect is not observable during the recent pandemic crisis, while we

can still notice a reduction in some industries such as Energy, Financials and Industrials.

Considering the aim of the optimization, it is reasonable to compare the portfolio

and the index realized variances to assess effectiveness. This is shown graphically in

Figure 1.10, where the portfolio properly tracks the index, with a correlation of 0.89.

Table 1.4: Target variance and GMV portfolios.

Portfolio Sharpe Turnover Cardinality

Tgt 0.0456 0.128 15.7

GMV 0.0451 0.100 17

EW 0.0451 0.008 26

Figure 1.9: Weight by industry (40 days MA).
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Figure 1.10: Portfolio and DJIA realized variances.

For a realistic assessment, the portfolio performance is also compared with the index

after deducting the transaction costs, which are assumed to be linear as in DeMiguel

et al. (2009). Let c > 0 be the level of proportional transaction costs expressed in basis

points, then the net return of a portfolio P at time t+ 1 is

RN
P,t+1|t =

(
1− c

M∑
m=1

| wm,t+1 − wm,t+ |
)(

1 +RG
P,t+1|t

)
− 1, (1.26)

where wm,t+ is the weight of asset m at time t+ 1 just before rebalancing. Figure 1.11

plots the cumulated returns for different levels of c. The daily Sharpe ratio of DJIA is

approximately 0.024 for the period of interest, which is comparable to the value of 0.026

achieved by the portfolio under proportional transaction costs of 15 basis points.
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Figure 1.11: Portfolio net return and DJIA gross return.

1.3.4 An active asset allocation application

In this section, we provide a further possible empirical analysis involving our model.

The proposal starts from one of the features of our modeling strategy, namely the role

of δt, which tries to mimic the market risk movements. The portfolio with expected

variance equal to this common factor, obtained in the previous section, can be, therefore,

exploited to set up and handle actively managed portfolio strategies. Treynor and Black

(1973) proposed an efficient method which does not require excessive insight or personal

beliefs about the market we are operating in, and thus, looks appropriate for the scope.

The optimal portfolio mixes a benchmark with actively chosen securities whose weights

depend on their abnormal returns and their residual standard deviations. We briefly

introduce the essential features and notations of the model. Let the excess rate of return

of the ith security at time t over the risk-free rate be

Ri,t = αi + βiRB,t + ei,t,

where RB,t is the excess return of the benchmark index, αi and βi are, respectively, the

abnormal excess return level and excess return sensitivity to the benchmark, while ei,t is

the residual. The position in each security is wi = w0
i /
∑n

i=1w
0
i , where w

0
i = αi/σ

2(ei).

Furthermore, the model establishes the precise share of wealth that is devoted to the
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active portfolio:

w∗
A =

w0
A

1 + (1− βA)w0
A

,

where

w0
A =

αA/σ
2(eA)

E(RB)/σ2
B

,

αA =
∑n

i=1wiαi, βA =
∑n

i=1wiβi and σ
2(eA) =

∑n
i=1w

2
i σ

2(ei). As illustrated, most of

the model implications rely on the accuracy of αi, which are difficult to estimate with

sufficient precision. Such uncertainty is not only relevant within the active portfolio,

but largely affects its share in the optimal risky portfolio. Additionally, low estimates of

E(RB) (in absolute terms) can exacerbate the problem resulting in completely unrealistic

levels of w0
A. Different solutions to mitigate the estimation problem have been proposed.

He (2007) revisited the model in a Bayesian framework, accounting for the estimation

risk of model parameters and simultaneously considering the expected active returns αi,

and the variance–covariance structure of active returns. The solution shrinks the sample

estimates of alpha towards the equilibrium-implied value of zero. Pástor and Stambaugh

(2000) compared the portfolios selected with three different pricing models used as prior

specification. MacKinlay and Pástor (2000) found that factor-based pricing models can

be improved when a factor is unobserved, by imposing a link between the alphas and

the variance–covariance of returns. Hence, in such a framework, covariances provide

information that can be useful in estimating the means. This leads to more precise

estimates of expected returns and improved portfolio selection.

This section aims to propose an implementation of our model as a benchmark index

and not to improve the effectiveness of the most refined methods in the active portfolio

theory; therefore, we relieve the methodology and apply a plain version of the Treynor-

Black model. Sticking to the previous section, we impose long-only positions, so wi = 0

for all the securities with a negative αi, and we impose a 20% cap on each security

within the active portfolio, to limit overexposure and mitigate the αi estimation prob-

lem. Furthermore, we set w∗
A = 0.3 to avoid making the active portfolio prominent in

the operation. For the estimation, we fit a linear regression model considering a rolling

window approach using 1000 data points (about 4 years of daily data); thus, the output

comprises 2900 daily results, from 16 December 2008 to 24 June 2020. The risk-free rate

used is the daily value of the 13-week United States Treasury Bill (recovered from Datas-

tream, with mnemonic FRTBS3M). The results, net of transaction costs, are presented

in Table 1.5. The active portfolio becomes increasingly beneficial when the transaction

costs rise; thus, the advantage lies in reducing the turnover while preserving a similar

return level.
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Table 1.5: Sharpe ratios net of transaction costs for market risk mimicking portfolio
(passive benchmark) and Active optimal portfolio.

BP Sharpe Passive Sharpe Active

0 0.0616 0.0600

5 0.0546 0.0550

10 0.0477 0.0500

15 0.0408 0.0451

20 0.0339 0.0401

30 0.0201 0.0301

1.4 Conclusions

We propose a new multivariate approach for modeling realized covariances of financial as-

sets. The main advantage, compared to standard models for dealing with high-frequency

data, is the employment of G distribution, which allows to separate a common factor

embedded in realized covariances and a matrix component. The former captures the

inherent risk of the market, while the latter represents the idiosyncratic share of risk.

The model is empirically tested in its covariance targeting version with autoregressive

and moving average components of order one. We show that the common factor de-

tected by the model is highly correlated with market variance and plays a crucial role in

estimating and forecasting conditional covariance. We provide a model application to

an asset allocation framework, with the aim of tracking the market by curbing the im-

pact of idiosyncratic risk. The realized variance of the resulting portfolio is close to the

common factor itself as well as to the realized variance of the market. Additionally, the

risk-adjusted performance of the portfolio is comparable to the market in case propor-

tional transaction costs of 15 basis points are applied. We provide a further extension

to the empirical analysis by using the market tracking portfolio as the benchmark to

identify companies providing higher than expected return and to exploit such companies

in an actively managed portfolio strategy.

For future research, it will be interesting to employ and assess further specifications of

the conditional autoregressive G model as alternative approaches within the frameworks

that currently rely on the CAW and WAR models. A possible variant that still addresses

the curse of dimensionality problem might include a diagonal intercept in the model

instead of using the covariance targeting method, as proposed by Shen et al. (2020).
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Another relevant element to work on might be to increase the flexibility of the conditional

autoregressive G model by taking a cue from the paper of Yu et al. (2017), who developed

the generalized CAW model, which possesses features of both CAW and WAR models.

A final note should be reserved for the common factor estimation procedure. In this

chapter we used the basic MEM to enable fast implementation of the model and its

preliminary evaluation, but we might consider applying an extension to improve the

accuracy of the estimate, for instance following Brownlees et al. (2011).





Chapter 2

Blended frequency model

2.1 State of the art and proposal

An important component of portfolio management, of a possibly large set of assets, is

the modeling and forecasting of the variances and covariances. As in the seminal work

of Markowitz (1952), the simplest approach is to consider i.i.d. returns and estimate

them using sample estimators. However, the two most common stylized facts of finan-

cial returns are volatility clustering and heavy-tails. Sample estimator of the covariance

matrix captures neither of them, and several multivariate GARCH (MGARCH) models

have been proposed to take into account these and other features of returns (see Silven-

noinen and Teräsvirta (2009) and references therein). Many of them, however, exhibit

limitations due to the sprawl of parameters that need to be estimated, and some of

them end up being applicable to a fistful of assets and thus rendering their usefulness in

large-scale portfolio optimization futile. Some thrifty specifications include the VECH

model of Bollerslev et al. (1988), the BEKK model of Engle and Kroner (1995), the

constant conditional correlation (CCC) and the dynamic conditional correlation (DCC)

models of Bollerslev (1990) and Engle (2002a), respectively.

The MGARCH literature has partly overcome the assumption of multivariate nor-

mality of returns. One can use different copula constructions as in Paolella and Polak

(2015a, 2018). However this requires computationally intensive simulations from the

estimated copula distribution in high dimensions. A more efficient approach that ac-

counts for asymmetric and heavy-tailed returns is the COMFORT model developed by

Paolella and Polak (2015b). According to the COMFORT specification, the returns are

conditionally described by the multivariate generalized hyperbolic (MGHyp) distribu-

tion, which allows to include a univariate component common to all the assets, and to

endow the conditional dispersion matrix with a GARCH-like structure. Compared to

27
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other non-Gaussian approaches, the estimation via maximum likelihood is feasible for a

potentially large numbers of assets owing to an Expectation-Conditional Maximization

Either (ECME) algorithm, thus ameliorating the curse of dimensionality. In the con-

text of portfolio optimization, the improved covariance matrix forecasts provided by the

broad class of MGARCH models generally lead to more competitive risk-adjusted re-

turns, however, the covariance matrix dynamics of such models are extremely sensitive

to new data, leading to frequent pronounced changes in the forecasts and in portfo-

lio weights. Thus, the inclusion of transaction costs allows for a more realistic view

of the situation, and highlights the trade-off between the benefits and costs of portfo-

lio rebalancing. An orthogonal specification of the COMFORT model is proposed by

Paolella et al. (2019) to address this issue. The resulting COMFORT-PCA model al-

lows the dispersion matrix dynamics to be driven by the leading factors in a principal

component decomposition, and thus enables to reduce portfolio turnover thanks to the

limited evolution of the dispersion matrix. Compared to the original specification, the

latter is much more beneficial in real-world applications, where transaction costs impair

performances that seem deceptively good.

The aim of this chapter is to exploit data retrieved at high-frequency (HF) as ad-

ditional information to enhance and refine the performance of the COMFORT-PCA

model. The starting point is the model proposed by Black and Litterman (1992), where

the authors incorporate some subjective prior views in the analysis. In that context the

views represent the personal opinion of an investor about the possible movements in the

market, and the model is the statistical way used to quantify and embed the views in

the analysis. Among the various extensions of the model, Meucci (2005) and Meucci

(2010) propose to rephrase the problem in a more parsimonious way that allows for the

inclusion of scenario analysis, by incorporating the views on the future returns and not

on the parameters of the distribution. As is often the case, one of the limitations is

the Gaussianity assumption of the prior and posterior distribution of returns, while, as

mentioned before, we aim to operate with heavy-tailed asymmetric returns. Thus, we

derive the posterior distribution under the MGHyp assumption, by incorporating the

views from HF data.

We select 100 assets from the S&P 500 and use the proposed approach as well as

benchmark approaches to perform a multi-step ahead forecast of the covariance matrix

and expected returns. The forecasts are subsequently used in a portfolio allocation

analysis aiming to observe how different approaches behave along the efficient frontier:

we show that benchmark approaches based solely on high or low-frequency data provide

poorer results the closer we move towards the Maximum Sharpe portfolio, while the
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blended approach preserves stable results along the frontier.

The rest of this chapter is structured as follows. Section 2.2 provides an overview

of the Black-Litterman paradigm. In Section 2.3, we firstly describe the COMFORT-

PCA model and the HF data modeling. Then we derive the posterior for the MGHyp

distribution and describe the simulation procedure to get multi-step-ahead forecasts

using filtered historical simulation. The last part of Section 2.3 concerns the asset

allocation procedure and the performance evaluation. Section 2.4 is devoted to the

empirical analysis: we start by comparing the proposed approach with the benchmark

models, then we replicate the same analysis for the limiting case of the multivariate

Gaussian distribution, and finally we highlight how different models behave in two

subperiods of the sample. Section 2.5 concludes the main results.

2.2 The Black-Litterman approach

The Black and Litterman model is a portfolio allocation model developed in 1990 at

Goldman Sachs by Fischer Black and Robert Litterman (see Black and Litterman, 1990

andBlack and Litterman, 1992) which seeks to overcome some of the problems that

institutional investors have encountered in applying portfolio theory in practice. The

model takes into account the specific opinions (called views) of the investor about asset

returns, to obtain an allocation blending the initial inputs with such views. Indeed, it

provides a procedure for quantifying the investor’s views and their inherent uncertainty,

expressed either in absolute or relative terms, and incorporate them into the prediction of

the distribution of future returns. The model outputs the estimates of expected returns

along with the corresponding precision estimates. In spite of its novelty and success in

the field of asset allocation, the Black and Litterman (1992) paper does not provide all

derivations and formulas used in the model. Moreover, during the thirty years since the

original papers, many authors have published research referring to their model as Black-

Litterman, despite being very different from the original one. The survey of Walters

et al. (2014) provides a chronology of the significant papers contributing to the Black-

Litterman literature, as well as the taxonomy of models which have been labeled as

Black Litterman. Naturally, the survey contains a complete description of the canonical

model including full derivations using both Theil’s Mixed Estimation model and Bayes

Theory. The various parameters of the model are assessed, along with information on

their computation or calibration.

Bevan and Winkelmann (1998) provide details on how they use Black-Litterman

as part of their broader asset allocation process at Goldman Sachs, including some
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calibrations of the model. They focus on their performance to illustrate how the

Black-Litterman framework can be used for designing investment strategies. The Black-

Litterman model allows investors to take risk when they have views, with stronger views

justifying more risk-taking. The accuracy of the views is then reflected by assessing the

performance of the strategy relative to the benchmark.

The research by Mankert (2010) reveals that it is not the Black-Litterman model

alone that is rewarding, but rather the combination of model-user situations. Overall,

the research indicates the great gap between theory and practice, and the importance

of understanding the model in order to keep a critical attitude towards the model itself

and its output.

As previously mentioned, many extensions have been proposed since the first release

of the model in 1990. Giacometti et al. (2007) improve the classical Black-Litterman

model by applying more realistic distributions for asset returns and by using alternative

risk measures (dispersion-based risk measures, value at risk, conditional value at risk).

The results are reported for monthly data and the performance of the models is tested

using a rolling window of fixed size along a fixed horizon. The authors show that the

incorporation of the investors’ views in the model provides information on how the

different distributional hypotheses can impact the optimal composition of the portfolio.

This work is close to the approach proposed in this thesis because of the non-Gaussian

assumption.

A clear exposition of the original Black-Litterman model, including the derivation of

the output parameters, is presented by Meucci (2005) and Meucci (2010). Consider a

market of N assets whose returns are normally distributed:

X ∼ N(µ,Σ), (2.1)

While the covariance Σ is estimated by exponential smoothing of past returns, µ is

modeled as a random variable whose dispersion represents the possible estimation error.

In particular, the original model states that µ is normally distributed

µ ∼ N(π, τΣ), (2.2)

where π represents the best guess for µ and τΣ the uncertainty on this guess. The origi-

nal Black-Litterman model embraces a market equilibrium approach to set π. Assuming
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there is no estimation error, the reference model becomes

X ∼ N(π,Σ). (2.3)

Moreover, assume that all investors maximize a mean-variance trade-off portfolio with

unconstrained weights, that is:

wλ ≡ argmax
w

{w′π − λw′Σw}. (2.4)

The problem can be solved explicitly by setting to zero the derivative with respect to

w of the term in curly brackets, obtaining the relationship between the equilibrium

portfolio w̃, resulting from the average risk-aversion level λ̄, and π:

π ≡ 2λ̄Σw̃, (2.5)

where λ̄ is exogenous. Thus, the determination of π is not influenced by historical infor-

mation, but rather depends on the market-weighted portfolio w̃. The Black-Litterman

model takes into account the investor’s views affecting the expectation µ. A view is

therefore a statement concerning the expected performance of an asset or asset class

which may clash with the model 2.1. For instance, the investor might claim that an

asset class will rise by 10% on an annualized basis, in absolute terms or relatively to

another asset class. The K views are represented by a K ×N ”pick” matrix P, whose

generic k-th row determines the relative weight of each expected return in the corre-

sponding view. The uncertainty about the views is expressed through the model:

Pµ ∼ N(v,Ω), (2.6)

where v and Ω quantify the views and the corresponding uncertainty, respectively.

The model also allows the investor to express qualitative views. In this scenario it is

convenient to set the entries of v in terms of the market volatility, that is

vk ≡ (Pπ)k + ηk

√
(PΣP′)k,k, k = 1, . . . , K, (2.7)

where ηk defines the qualitative view. For instance, one can choose ηk ∈ {−β,−α,+α,+β}
with α = 1 and β = 2 to express ”very bearish”, ”bearish”, ”bullish” and ”very bullish”

views, respectively. In addition, it is convenient to set

Ω ≡ 1

c
PΣP′ (2.8)
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as in Meucci (2010), where c ∈ {0,∞} represents the overall level of confidence in the

views. Appendix A shows how to obtain the distribution of µ given the views using

Bayes’ formula, that is

µ|v;Ω ∼ N(µBL,Σ
µ
BL), (2.9)

where

µBL ≡
(
(τΣ)−1 +P′Ω−1P

)−1 (
(τΣ)−1π +P′Ω−1v

)
, (2.10)

Σµ
BL ≡

(
(τΣ)−1 +P′Ω−1P

)−1
. (2.11)

However, the aim is to find the distribution of X, which can be easily computed by

writing the reference model 2.1 as X
d
= µ+Z, where Z ∼ N(0,Σ). The posterior model

is therefore

X|v;Ω ∼ N(µBL,ΣBL), (2.12)

where µBL is defined in equation 2.10 and ΣBL follows from equation 2.11 by assuming

that µ and Z are independent, that is

ΣBL = Σ+ΣBL
µ. (2.13)

Note that equations 2.10 and 2.13 can be written equivalently as

µBL = π + τΣP′(τPΣP′ +Ω)−1(v −Pπ) (2.14)

ΣBL = (1 + τ)Σ− τ 2ΣP′(τPΣP′ +Ω)−1PΣ. (2.15)

The complete proof is reported in Appendix A.

2.3 Methodological framework

This section is devoted to the methodological procedure adopted to combine data at

different frequencies, starting from an introductory part describing how low-frequency

and high-frequency data are modeled separately and then moving on to the blending

process. Finally, we describe the asset allocation strategies and discuss their assessment.
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2.3.1 COMFORT PCA model

The fundamental point of the work is the use of the high-frequency data as a refine-

ment of the low-frequency estimates. This requires a baseline model for the latter. In

this chapter we use as benchmark the COMFORT-PCA model developed by Paolella

et al. (2019) which uses the multivariate generalized hyperbolic distribution to describe

conditional returns. The main advantage is delivered by the inclusion of PCA in the

procedure, allowing the dispersion matrix dynamics to be driven only by the leading

factors in the decomposition, which are endowed with a univariate GARCH structure,

while leaving the secondary factors constant over time. This leads to stable estimates

and generates portfolios with much lower turnover and superior risk-adjusted returns

net of transaction costs.

Analogously to Paolella et al. (2019), let Yt = (Y1,t, Y2,t, . . . , YK,t)
′, t = 1, 2, . . . , T ,

be the daily return vector of K assets at time t, and let Φt be the information set

up to time t. The conditional distribution of Yt | Φt is assumed to be Multivariate

Generalized Hyperbolic (MGHyp) with the stochastic representation

Yt | Φt−1
d
= µ+ γGt + εt, (2.16)

εt =
√
GtH

1/2
t Zt,

where µ = (µ1, . . . , µK)
′ ∈ RK and γ = (γ1, . . . , γK)

′ ∈ RK are the location and

asymmetry vectors, respectively, Ht ∈ RK×K is a symmetric and positive definite con-

ditional dispersion matrix, Zt
iid∼ N(0, IK) is a multivariate Gaussian random vector,

and Gt
iid∼ GIG(λ, χ, ψ) is a univariate mixing random variable, independent of Zt, with

generalized inverse Gaussian (GIG) density given by

fGt(g) =
χ−λ(

√
χψ)λ

2Kλ(
√
χψ)

gλ−1exp

(
−1

2
(χg−1 + ψg)

)
, g > 0, (2.17)

where Kλ is the modified Bessel function of the third kind. The density function of the

MGHyp distribution is

fYt|Φt−1(y) = cdλ−K/2Kλ−K/2(d)exp{(y − µ)′H−1
t γ}, (2.18)

where

c =
(
√
χψ)−λ(ψ + γ ′H−1

t γ)K/2−λψλ

(2π)K/2 |Ht|1/2Kλ(
√
χψ)

,

d = [(χ + (y − µ)′H−1
t (y − µ))(ψ + γ ′H−1

t γ)]1/2.
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The dispersion matrix Ht can be decomposed as

Ht = QΞtQ
′, (2.19)

whereQ is the orthogonal matrix of eigenvectors and Ξt = diag(ξ1,t, . . . , ξK,t) is the diag-

onal matrix of eigenvalues. The leading factors in Ξt are equipped with a GARCH(1,1)

dynamics while the others are kept constant, so only the eigenvalues explaining the

largest portion of variation in the data are time-varying.

The model parameters are estimated using an expectation conditional maximization

either (ECME) algorithm.

2.3.2 High-frequency data

Realized measures are nonparametric estimators of daily price variation and covariation

based on high-frequency data. The simplest of such realized measures is the realized

covariance. Andersen et al. (2001) discuss the properties of quadratic variation and

covariation, suggesting that, under suitable conditions, realized covariance is an unbi-

ased and efficient estimator of return covariance. Based on this idea, we exploit high-

frequency data to compute daily realized covariances. Let rt,i be the vector of returns or

log-returns for the i -th 1-min interval of the t-th trading day, then the realized covari-

ance matrix is computed as Zt =
∑I

i=1 rt,ir
′
t,i. The first return of each day is computed

on an open-to-close basis (i.e. using the opening and closing prices of the first trading

minute) to disregard overnight variation of prices, while the other returns are computed

on a close-to-close basis during the day. The aim of this work is to include HF data in

a low-frequency-based model, so we use the realized covariance as an approximation of

the actual and unobservable covariance matrix of the assets, without using any model to

forecast covariances from HF data. Hence, we have that the expected covariance matrix

and return vector from HF data are

ΣHF,T+1 = ZT

µHF,T+1 =
1

Ws

∑
t∈S

I∑
i=1

rt,i,

where the latter corresponds to the average daily log-return, disregarding overnight

variations, over the time window S = {(T −Ws + 1), . . . , T}, of length Ws.
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2.3.3 Combining HF and LF data

High-frequency data can be exploited as views about the assets and thus can be used

to blend the results of the COMFORT model. However, before specifying the way

high-frequency data are included, we need to derive the posterior distribution resulting

from the mixing of prior believes following a MGHyp distribution and Normal views.

According to the COMFORT model, returns follow a normal distribution conditionally

on the mixing random variable, that is

Y|G ∼ N(µ+ γG,GH). (2.20)

As proposed by Meucci (2005) and Meucci (2010) we incorporate views (in our case from

high-frequency data) not on the parameters of the distribution but directly on returns.

In particular, we consider views as linear functions of the market V ≡ PY, where P

is a pick matrix characterizing relative views and Y represents the returns of a broad

market. The views V are a perturbation of the outcome implied by the reference model

and as such they are modeled using a conditional distribution, given the realization of

the returns vector and of the mixing random variable (in order to accommodate possible

common market shocks and their impact on the uncertainty in the views), that is

V|Y = y;G = g ∼ N(Py, gΩ), (2.21)

where Ω represents the uncertainty about the views. As shown by Meucci (2010), if

Y ∼ N(µ,H), (2.22)

and

V|Y = y ∼ N(Py,Ω), (2.23)

then

Y|V = v;Ω ∼ N(µBL,HBL), (2.24)

where

µBL = µ+HP⊤(PHP⊤ +Ω)−1(v −Pµ), (2.25)

HBL = H−HP⊤(PHP⊤ +Ω)−1PH. (2.26)
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In our case, from Equation 2.20 we have that (Y−γG)|G ∼ N(µ, GH) so we can get the

posterior using the results above, considering the views as reported in Equation 2.21.

Thus, from Equation 2.20 and 2.21 we obtain that the posterior, given the realization

of the mixing random variable, follows a normal distribution with mean and variance

equal to

µBL = µ+HP⊤(PHP⊤ +Ω)−1(v −Pµ), (2.27)

GHBL = GH−GHP⊤(PHP⊤ +Ω)−1PH, (2.28)

respectively. This result implies that, without conditioning on the mixing random vari-

able, the vector of returns admits the following decomposition

Y = µBL + γG+
√
G(HBL)

1/2Z, (2.29)

which is a MGHyp distribution with updated location vector and dispersion matrix.

We incorporate the HF data as views in the analysis by blending the outcome of the

COMFORT-PCA model, that is we set

GΩ = ΣHF

v = µHF.

A more detailed derivation of expressions 2.25 and 2.26 is reported in Appendix B.

2.3.4 Multi-step forecast

For a realistic application we aim to reduce portfolio rebalancing and increase the hold-

ing period. Hence, we have to derive the expression for the forecasts over longer horizons.

For the realized covariances we adopt the square root rule, which involves multiplying

the last daily realized covariance by the length of the period. On the other hand, for

the COMFORT model estimates we adopt a non-parametric approach called filtered

historical simulation (FHS) to build up a multi-period conditional distribution of the

random vector of returns. This approach was presented by Barone-Adesi et al. (1999),

who introduced a simulation model based on the historical distribution of returns, thus

not imposing any theoretical distribution on the data. The returns are filtered to remove

serial correlation and volatility clustering. The resulting standardized returns are inde-

pendently and identically distributed so the non-parametric bootstrap can be applied.

Polak and Ulrych (2021) applied this approach to the baseline version of the COMFORT

model, which also includes the mixing random variable.
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In this section we extend the approach to the COMFORT-PCA model specified in

Equation 2.16. The (K × 1) standardized residuals vector at time t is

ẽ(t) =
(Yt − µ̂− γ̂E[Gt | Φt])QΞ̂

−1/2

t√
E[Gt | Φt]

, (2.30)

where E[Gt | Φt] corresponds to the imputed mixing random variable from the ex-

pectation step of the ECME-algorithm. As in Polak and Ulrych (2021), we denote with

Z̃ the (K ×T ) matrix of standardized residuals in Equation 2.30. The resulting filtered

historical innovations can be drawn randomly with replacement and used as innovations

to generate pathways of future returns, although empirical observations depart from the

hypothesis of independence and identical distribution (see Barone-Adesi et al. (1999)).

Analogously to Polak and Ulrych (2021), we also need to standardize the filtered

mixing random variables related to the corresponding standardized residuals for the

filtered historical simulation. We use a kernel cumulative distribution function (cdf)

estimation to estimate the cdf of the mixing random variable in a non-parametric way.

Consider the sample of imputed mixing random variables E[Gt | Φt], for t = 1, . . . , T ,

and denote with Kcdf,T (·) the kernel cdf. Then Kcdf,T (E[Gt | Φt]) is the realization of

the empirical kernel cdf of the filtered mixing random variable. Additionally, we remind

that (GT+1 | ΦT ) ∼ GIG(λ, χ, ψ), so if we denote with GIGcdf,T (·) and GIG−1
cdf,T (·) the

corresponding cdf and its inverse, then the standardized conditional mixing random

variables are

G̃(t) = GIG−1
cdf,T (Kcdf,T (E[Gt | Φt])). (2.31)

The (T × 1) vector G̃ containing the standardized mixing random variables expressed

in Equation 2.31 is defined in such a way that each component is related to the corre-

sponding entry of matrix Z̃.

The filtered historical simulation for the h-step ahead Y
FHS,(i)
t+h|Φt

is recursively obtained

using

Y
FHS,(i)
T+h|ΦT

= µ̂+ γ̂G̃T+h|ΦT
+
√
G̃T+h|ΦT

QΞ̂
1/2
T+h|ΦT

Z̃T+h|ΦT
, i = 1, . . . , B,

where B denotes the number of simulations, G̃T+h|ΦT
and Z̃T+h|ΦT

are realizations of G̃

and Z̃ for a randomly chosen t, and Ξ̂T+h|ΦT
is a (K ×K) diagonal matrix such that

Ξ̂T+h|ΦT
=

ω̂ + α̂(YT − µ̂− γ̂E[GT | ΦT ])
2 + β̂(Ξ̂T |ΦT

) for h = 1

ω̂ + α̂(Y
FHS,(i)
T+h−1|ΦT

− µ̂− γ̂G̃T+h−1|ΦT
)2 + β̂(Ξ̂T+h−1|ΦT

) for h > 1
,
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where ω̂, α̂ and β̂ are the GARCH parameters estimated in the COMFORT-PCA model.

We can now repeatedly draw sequences of returns and find the h-step conditional cu-

mulative log-return, that is

Y
FHS,(i)
T+h|ΦT

(h) = Y
FHS,(i)
T+1|ΦT

+Y
FHS,(i)
T+2|ΦT

+ · · ·+Y
FHS,(i)
T+h|ΦT

, i = 1, . . . , B, (2.32)

and compute the h-step covariance matrix directly from simulated values, for a suffi-

ciently large B.

2.3.5 Asset allocation strategies and performance evaluation

The aim of the analysis is to assess how different models behave when moving along

the efficient frontier. We consider as extremes the Global Minimum Variance (GMV)

and the Maximum Sharpe (MS) portfolios, and we equally split (in terms of risk) the

frontier in the middle to obtain 10 further portfolios. We assume a realistic 4-weeks

rebalancing (i.e. 20 days) so the inputs of the mean-variance optimization are the

multi-step forecasts obtained as described in Section 2.3.4. Moreover, performances are

assessed net of transaction costs, which are assumed to be proportional as in DeMiguel

et al. (2009). Let c > 0 be the level of proportional transaction costs expressed in basis

points, then the net return of a portfolio P at time t+ 1 is

µNP,t+h|t =

(
1− c

K∑
k=1

| wk,t+h − wk,t+ |
)(

1 + µGP,t+h|t
)
− 1, (2.33)

where wk,t+ is the weight of asset m at time t + h just before rebalancing, and µNP,t+h|t

and µGP,t+h|t are, respectively, the net and gross portfolio returns at time t+ h given the

weights selected at time t. Let 1K be a K -dimensional vector whose elements are 1, Σ

and µ the assets’ expected covariance matrix and expected return vector, respectively,

then the vector of weights w is the outcome of the usual optimization problem including

the no-short-selling constraint, that is

min
w

w′Σw

s.t. w′1K = 1

wk ≥ 0 ∀k
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for the GMV portfolio, while

max
w

w′µ√
w′Σw

s.t. w′1K = 1

wk ≥ 0 ∀k

for the MS portfolio assuming a zero risk-free rate, and finally

max
w

w′µ

s.t. σ2
P = w′Σw

w′1K = 1

wk ≥ 0 ∀k

for portfolios with a target variance level, where σ2
P is the expected portfolio variance.

The obtained portfolios are evaluated based on their Sharpe Ratio and Sortino Ratio

after deducing transaction costs, as in Equation 2.33.

2.4 Empirical analysis

We use high-frequency data at 1-minute level (390 daily observations) of the 100 assets

with higher capitalization within the S&P 500 index and with available data for the

whole period of analysis. The realized covariance matrices Zt are computed as described

in Section 2.3.2 for the period from October 16, 2006 to the end of December 2019.

2.4.1 Asset allocation strategies and performances

For the empirical analysis we adopt a 250-days rolling window approach. We consider

the 20-days forecasts obtained from the LF and HF data to get the blended forecasts,

as described in the Section 2.3.3. Since we are mixing data at different frequencies and

not expressing real views, it is reasonable to set P = I, where I is the identity matrix,

that is each view is about the single asset and all views have the same magnitude.

Additionally, for the empirical analysis we set the number of eigenvalues endowed with

a GARCH structure to 3, coherently with the findings of Paolella et al. (2019). Thus,

from equation 2.19, Ξt = diag(ξ1,t, ξ2,t, ξ3,t, ξ4, . . . , ξK).

We use the forecasts to build the GMV and MS portfolios and consider 10 further

portfolios between these two extremes, as mentioned in Section 2.3.5. The portfolios
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are then rebalanced every 20 days, coherently with the forecasts, and evaluated net of

transaction costs based on the Sharpe Ratio and Sortino Ratio. The results are shown

in Figure 2.1 and 2.2. The difference between the three approaches is minimal for the

GMV portfolio, while it intensifies as we move towards the MS portfolio. Specifically, the

Sharpe and Sortino ratios are stable across different portfolios when the mixed-frequency

approach is considered whilst, conversely, employing a pure high or low-frequency-based

method leads to inferior results as we get closer to the MS portfolio. Additionally, this

result holds for different levels of transaction costs, although it can be noticed that, as the

level increases, the COMFORT-PCA model narrows the gap with the blended approach,

whereas the HF model performs substantially worse. Thus, in such a framework, where

reducing turnover is essential, the main feature of the COMFORT-PCA model stands

out. On the other hand, the accuracy of high-frequency data backfires because of the

higher turnover induced.

Figure 2.1: Annualized Sharpe ratio.

The improvement provided by the blended model is both in terms of higher average

return and lower volatility. Figure 2.3 shows the combination of these two effects for the

three approaches, considering the zero-transaction costs case. When shifting towards

more volatile portfolios, the mixed model maintains a stable return while slightly in-

creasing variance, instead the other approaches have lower annualized return and their
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annualized variance increases rapidly. Analogous results are obtained for positive levels

of transaction cost, although not displayed for conciseness.

Figure 2.2: Annualized Sortino ratio.

Figure 2.3: Annualized mean and variance of returns (0bp).
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As a comparison, we use the Gaussian version of the COMFORT-PCA model, that is

the limiting case with γ = 0 and Gt = 1 when looking at Equation 2.16. Figure 2.4 and

2.5 show, respectively, the annualized Sharpe and Sortino ratios for this version of the

model, highlighting a mild improvement in the blended approach, except for high level

of transaction costs. Although the improvement is more restrained, we observe again

that using information from different frequencies leads to a superior signal when data are

applied in this context. It should be made clear that the Gaussian version of the model is

not intended to be a benchmark approach to beat, but rather an alternative application

of the blended approach, even though in the research paper by Paolella et al. (2019) the

inclusion of asymmetry and of the mixing random variable led to better results in other

financial applications.

Figure 2.4: Annualized Sharpe ratio (Gaussian model).
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Figure 2.5: Annualized Sortino ratio (Gaussian model).

Figure 2.6 shows the results, in terms of annualized return and volatility, obtained with

the COMFORT-PCA model and its Gaussian version, compared to the ensuing blended

approaches and the high-frequency-based strategy. The blended models provides gen-

erally stable returns for all portfolios, at a level above the other approaches, and at the

same time they exhibit a moderate increase in volatility while the counterparties are

markedly less performing.
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Figure 2.6: Annualized return and volatility (0bp).

Another important feature of any approach adopted, concerns the presence of severe

drawdowns that persist for a prolonged period. A drawdown measure quantifies the

decline in portfolio value from a historical peak. Ideally, it is advisable to have as

few drawdowns as possible, and in the event that they happen, to have mild and short

declines. Figure 2.7 and 2.8 want to take this measure into consideration for the original

version of the COMFORT-PCA. They plot the return and the corresponding drawdown

of the GMV and MS portfolios for three approaches, in case of absence of transaction

costs. From the plots we can clearly observe the aftermath of the 2008 financial crises,

underlined by a very substantial drawdown that lasts for years. As expected, the GMV

portfolios exhibit a quicker recovery from the losses and in general the HF and the

blended approaches provide close performances. With regard to the MS portfolios we

can immediately notice longer and more remarkable drawdowns for all the approaches,

compared to the GMV case, and a far better performance of the blended approach over

the benchmarks, both in terms of return and in terms of drawdowns, which are milder

and shorter for the former.
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Figure 2.7: GMV portfolio performance and drawdown (0bp).

Figure 2.8: MS portfolio performance and drawdown (0bp).
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2.5 Conclusions

In this chapter we have presented a proficient technique to mix the information modeled

at different frequencies while accounting for heavy-tailedness of returns. Compared to

many procedures seen in the literature, our approach blends the information after the

two typologies of data are modeled separately, obtaining a time efficient result. High-

frequency data undoubtedly possess the advantage of supplying the finest representation

of assets, however, in such a context it might be worth giving up accuracy partially for

more stability. It is not new that Markowitz model is very sensitive to input variation,

so minimal changes captured by high-frequency data result in unnecessary turnover and

transaction costs that deplete any possible benefit. For sufficiently large levels of trans-

action costs the high-frequency based approach worsens excessively, due to the high

turnover. On the upside, for lower levels the COMFORT-PCA model provides compa-

rable results, despite being grounded in lower frequency data. The proposed blended

model provides superior results compared to both alternatives, and its improvements

grow along the efficient portfolio frontier. Overall, Sharpe and Sortino ratios remain

stable along the efficient frontier, while the alternative models worsen as soon as vari-

ance increases. Similar results, although less marked, are obtained using the Gaussian

version of the COMFORT-PCA model. The improvement concerns both the return and

the risk levels: the former remains stable or slightly increases along the efficient frontier

while the counterparties have lower annualized returns, and the latter increases moder-

ately but less markedly compared to the benchmarks. Additionally, the drawdowns of

the blended approach are significantly shorter and less pronounced. Thus, the blending

process proposed in this chapter shows that mixing information at different frequencies

may lead to a finer signal that allows to improve performances in this asset allocation

environment.

The work done so far can obviously be deepened and improved. We highlight a

possible limitation involving the empirical application of the blending methodology,

that is the oversimplifying choice of setting the pick matrix equal to the identity matrix,

meaning that each view about the corresponding asset has the same magnitude. This in

turn implies that the high-frequency measures (both returns and realized covariances)

have the same relevance for each asset, which could easily not be the case. Thus,

trying to advance on this side of the application could lead to substantial improvements.

Moreover, the high-frequency data are used without any processing, while it might

be worth considering possible approaches to model the raw data before the empirical

analysis. Finally, we recall that the results depend on the choice of the low-frequency

model, that in our case has the characteristic of being extremely parsimonious in terms of
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conditional covariance dynamics. This feature is particularly important and desirable as

long as transaction costs are taken into account, but it could fail in environments where

they are almost negligible and a more accurate covariance dynamics becomes optimal.

This implies that other low-frequency models and, more generally, other environment

settings could produce different outcomes.





Chapter 3

CAW model and risk spillover

analysis

This chapter proposes a possible implementation of the CAW model for the analysis of

risk spillover. Thus, the purpose of this chapter is not to provide conclusive results, but

rather to outline a research idea that exploits what has been presented so far. Although

risk spillover is a much debated topic in finance, most of the current literature is limited

to the use of low-frequency data. The aim is therefore to take inspiration from the

most recent strands of literature about this issue, and provide an enhanced specification

obtained through the CAW model.

3.1 Risk spillover

The current chapter is devoted to the examination of the risk spillover phenomenon, with

the aim of proposing possible improvements to the extant literature. The term refers to

the proliferation of risk, triggered by one or more events, from one asset to another one,

either within the same country or across countries. This network effect has its roots in

the financial interconnections that have been persistently increasing among countries,

markets, financial institutions and even asset classes, and its implications affect a wide

range of financial areas, such as credit risk management, portfolio management, hedging

strategies, and financial stability as a whole. Thus, much research has been conducted on

this topic, also in order to facilitate the development of various regulatory requirements,

such as capital requirements or capital controls.

Reinhart and Rogoff (2008) note that each financial crisis has its own characteris-

tics but at the same time shares some striking similarities with the others, for instance

with respect to debt accumulation, growth patterns, and current account deficits. Also,
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during crises the financial market volatility generally increases sharply and spills over

across markets. This interdependence between financial markets has also been analyzed

by King et al. (1990) and Forbes and Rigobon (2002), both in terms of returns and

return volatilities. Consequently, it is clearly essential to be able to measure and mon-

itor such spillovers, in order to monitor the ongoing market health, detect the early

signs of a potential crisis, and eventually track it effectively. To this end, Diebold and

Yilmaz (2009) proposed a volatility spillover measure based on forecast error variance

decompositions from vector autoregressions, which can be used to quantify spillovers in

returns or volatilities across individual assets, portfolios and markets. They found that

spillovers have relevant impact and exhibit time-varying intensity, with a strikingly di-

vergent behaviour in the dynamics of return spillovers compared to volatility spillovers.

The former display no bursts but just a mild increasing trend, presumably associated

with the increasing financial market integration, conversely the latter show no trend but

clear bursts associated with crisis events.

The main shortcomings of the approach developed by Diebold and Yilmaz (2009)

concerns the variable ordering issue affecting variance decompositions and the evaluation

of just total spillovers (from each market to all the other markets). Moreover, the

application is limited to the measurement of spillovers across identical assets in different

countries. These matters are treated in the paper by Diebold and Yilmaz (2012), where

the authors use a generalized vector autoregressive framework in which forecast error

variance decompositions are invariant to the variable ordering and include directional

volatility spillovers. Additionally, they also evaluate individual-asset spillovers within

countries and across asset classes.

Eder and Keiler (2013) quantify and model systemic risk within the financial system

using a specific weighting scheme to measure the magnitude of the risk spillover effects.

The approach adopted stems from spatial econometrics and allows to decompose the

credit spread into a systemic, systematic and idiosyncratic risk premium. Other papers

in the spatial econometric literature exploit spatial weights to analyze spillovers (see

Billio et al. (2022), Blasques et al. (2016) and Tonzer (2015) for further details).

3.2 Reference literature and proposal

One of the latest approaches in the framework of risk spillover analysis is proposed by

Caporin and Paruolo (2015) and subsequently extended by Billio et al. (2021). These

works specifically address the curse of dimensionality problem affecting many multivari-

ate volatility models as the cross-sectional dimension increases, through the specification
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of a structured parametrization based on weight matrices. The weights are derived from

the economic proximity of entities, quantified using economic factors.

The curse of dimensionality problem is often circumvented in literature using di-

agonal parameter matrices, thus not accounting for covariance spillover and feedback

effects. Instead, structured specifications allow for these effects from neighbors, reflect-

ing the factor structure associated. The functioning of structured specifications requires

a precise structure derived from economic rationale to outline the association between

factors, as opposed to factor volatility models, where factors are not identified. There-

fore, structured specifications are easier to interpret.

3.2.1 Structured specification

The structured specifications used in literature adopt weight matrices defined using

prior knowledge about the existent connections between the units, and about the way

in which distances are converted into weights. The selection of appropriate weight

matrices is crucial, and special attention should be given to the approach used to define

the right ones. For instance, if the objective is to determine the proximity of some assets,

then neighbors can be defined as those assets belonging to the same sector, although

a generalization allowing for the presence of covariates can be obtained. Consider the

weight matrix definition used in Caporin and Paruolo (2015), that is for a group of n

assets and h = {0, 1, . . . }, let W(h) be the h-th n×n weight matrix, whose generic entry

w
(h)
ij indicates the weight, expressed as a real number between 0 and 1, of variable j in

the determination of variable i, such that w
(h)
ii = 0 for i = 1, . . . , n. From the definition

of weight matrix we can define proximity matrices as any matrix of the form

Π =
k∑

h=0

diag(ψ(h))W(h), (3.1)

where ψ(h) are n × 1 vector of coefficients. The structured specification of a model

allows to significantly reduce the number of parameters estimated, for instance con-

sider the BEKK model by Engle and Kroner (1995) for a cross-section of n time series

yt := (y1,t, . . . , yn,t)
′, for t = 1, . . . , T . The usual representation employs the vector of

demeaned returns ut := yt − ȳ to predict Σt = E(utu′t|Φt−1), where Φt−1 is information

set up to time t − 1 and ȳ is the sample mean, even though it can also be replaced by
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a vector of conditional returns. The resulting structure is

Σt = C+Aut−1u
′
t−1A

′ +BΣt−1B
′ (3.2)

ut = Σ
1/2
t ϵt,

where ϵt is i.i.d. with 0 mean and covariance matrix equal to the identity matrix, and A,

B andC are unrestricted n×n parameter matrices to be estimated, withC being positive

definite. Note that the total number of coefficients in equation 3.2 is 1
2
n(n+1)+ 2n2 =

O(n2), where O(n2) is the order in terms of the cross-sectional dimension n. This means

that the estimation complexity increases rapidly and becomes unfeasible for a relatively

small number of assets (depending on the number of observations available).

Structured specifications allows to curb this problem through the use of proximity

matrices, as defined in 3.1. Using a single weight matrix W, the structured specification

of the BEKK model in 3.2 is obtained by setting C = S−1VS−1 and assuming A, B,

and S to be:

A = A0 +A1W, B = B0 +B1W, S = I− S1W, (3.3)

where I is the identity matrix, A, B and S are proximity matrices, and Aj := diag(α(j)),

Bj := diag(β(j)) for j = 0, 1, S1 := diag(s(1)), V := diag(v) are n× n diagonal matrices

whose diagonal elements are the corresponding n × 1 parameter vectors α(j), β(j), s(1)

and v. Note that the specification in 3.3 implies that W(0) = I. The structured

specification C = S−1VS−1 ensures that C is positive definite, provided the elements

of v are positive and S is invertible. The model presented in structured specification is

now estimable for large cross-sections, as the number of parameters in 3.3 reduces to

6n = O(n). A refined version of structured specifications is developed in the paper by

Billio et al. (2021), where a bilateral formulation of proximity matrices is used alongside

time-varying weight matrices. Alternatively, one may consider using the more evolved

specification presented in Billio et al. (2021) and mentioned above.

3.2.2 Risk spillover in structured specification

The structured BEKK specification solves the challenge of reducing the number of pa-

rameters in the original BEKK model while still accounting for covariance spillover, in

contrast to the diagonal BEKK specification. The spillover effect can be observed by

looking at the term Aut−1u
′
t−1A

′ in 3.2, from which we get

Aut−1 = diag(α(0))ut−1 + diag(α(1))Wut−1. (3.4)
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Consider now the two terms in 3.4 and focus on the i -th element of Aut−1, that is

α
(0)
i ui,t−1 and α

(1)
i w′

iut−1. The former only includes the corresponding lagged term ut−1,

while the latter delivers the spatial effect from neighbors, where w′
i is the i -th row of W,

and w′
iut−1 is proportional to the average of ut−1 for stocks of the same sector, hence

representing the spillover effects from other stocks in the same sector of i. Overall, the

term Aut−1u
′
t−1A

′ contains both diagonal and spillover effects from the same sector. A

similar reasoning applies to the BΣt−1B
′ term in 3.2. Let ei be the i -th column of I,

then (Σt)ij depends on

(BΣt−1B
′)ij = β

(0)
i β

(0)
j (Σt−1)ij + β

(0)
j β

(1)
i (w′

iΣt−1ej) + β
(0)
i β

(1)
j (e′iΣt−1wj) (3.5)

+β
(1)
i β

(1)
j (w′

iΣt−1wj).

The first term represents a diagonal effect, while the last three are feedback effects from

the covariances of i and j with their neighbors. For a more detailed explanation of

the terms, as well as of the properties and advantages of structured specifications, see

Caporin and Paruolo (2015). Additionally, the authors extensively discuss the determi-

nation of weight matrices with one or more classification criteria, or even using covariates

such as market value, book-value, earnings/price, dividend yield and others. However,

the intent of this chapter is simply to outline an attractive research topic connected to

what has already been done in the previous two chapters, and not to review in detail

the relevant literature. Therefore, all these issues will not be deepened further.

3.2.3 Structured CAW specification

The proposal presented in this chapter is to use a structured CAW specification for the

analysis of risk spillover. The main contribution is not in terms of improved specification,

as the approach presented is reliant upon the existent settings regarding proximity

matrices, but rather relates to the belief that more precise results can be obtained

through the use of high-frequency data. Apart from being more accurate, high-frequency

data provide an additional advantage to the CAW, which lies in the fact that it can

model the covariance matrix using an estimate of it (i.e. the realized covariance matrix)

rather than using a latent process as in the BEKK specification. Consider the usual

formulation of the CAW model, as presented in Chapter 1, that is

Ct = CC′ +

p∑
i=1

AiCt−iA
′
i +

q∑
j=1

BjZt−jB
′
j, (3.6)
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where Ct is the conditional mean of the Wishart distribution used by the model, Zt−j is

the lagged realized covariance matrix, and C, Ai,Bj are the parameter matrices, with

C being lower-triangular. As already mentioned, the number of parameters increases

rapidly with the number of assets. In fact, for n assets and using the basic specification

with p = q = 1, the model involves 1
2
n(n + 1) + 2n2 = O(n2) parameters, where O(n2)

is the order in terms of the cross-sectional dimension. Adopting diagonal parameter

matrices, as done in Chapter 1, would not allow for covariance spillover and feedback

effects. The resort to a structured specification, instead, ensures an easier estimation

while accounting for these effects. The necessary proximity matrices can be defined as

done in the literature of reference, that is similarly to 3.3, and the same reasoning applies

to the weight matrices, since they are defined based on classification criteria or using

covariates not depending upon the frequency of sampling. A reasonable alternative

approach that needs to be evaluated consists in the use of a bilateral specification for

proximity matrices coupled with time-varying weight matrices, as proposed in Billio

et al. (2021).

The objective is to exploit the informative content of high-frequency data in a frame-

work that is usually confined to the use of daily observations, with the expectation of

getting more accurate analysis of risk spillover. Thus, given the need for high-frequency

data, the scope of application is constrained to analyses for which such data can be re-

trieved. Although still to be defined, it is reasonable to consider assessing risk spillover

among a group of assets using different classification criteria, such as sector membership

or through the use of covariates, in order to understand which are most appropriate in

defining proximity matrices. Should computational advantages be observed from em-

bedding realized covariances in the modeling, then the work could be further extended to

other models such as realized DCC, WAR, or the conditional autoregressive G presented

in the first chapter.



Conclusions

Discussion

Financial high-frequency data have a key role in modern analysis because of their ex-

traordinarily informative content, which can be exploited for multiple purposes. This

thesis focused on the modeling of such data with special emphasis on the evaluation and

management of risk. Moreover, the whole work is based on realized covariances, that is

the high-frequency data are not treated as they are, but rather the data are handled to

obtain daily measures of risk. With these considerations in mind, it is easier to debate

the contributions delivered to the literature.

The first chapter primarily aimed to introduce a novel distribution in the framework

of financial high-frequency data. The rationale is to enable the identification and sep-

aration of the two leading risk components, that is systematic risk and specific risk.

Compared to standard approaches for modeling realized covariances, such as the CAW

model, the employment of the G distribution allows to separate a common factor embed-

ded in realized covariances and a matrix component. The former captures the inherent

risk of the market, while the latter represents the idiosyncratic share of risk. The model

is tested in a restricted version to reduce the estimated parameters, but more sophisti-

cated version are pretty straightforward to obtain. The common factor detected by the

model is highly correlated with market variance and plays a crucial role in estimating

and forecasting conditional covariance. At the same time, the complementary com-

ponent of the forecasted conditional covariance matrix, representing the idiosyncratic

risk, can be easily limited in empirical applications, depending on the objective of the

analysis.

The second chapter deals with the trade-off problem between accuracy and stability

in the asset allocation framework. When both low and high-frequency data are available,

it is obvious that the primary and most direct choice is to rely on the data supplying

the finest representation of assets. Nevertheless, in the context of asset allocation,

where rebalances are infrequent and transaction costs deplete potential profits, it might

be worth giving up accuracy partially for more stability. Minimal variations in the
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inputs often lead to substantial turnover in the portfolio, so the extreme precision and

promptness of high-frequency data can backfire under certain conditions. In fact, the

empirical analysis in chapter 2 confirms that portfolios relying exclusively on high-

frequency data lead to excessive portfolio turnover. Conversely, the analysis based on

a low-frequency-based model accounts for the necessity of stability although obviously

failing to capture the informative content of high-frequency data. The proposed blended

model allows to find an appealing trade-off between the strategies, providing superior

overall results and therefore highlighting that mixing information at different frequencies

may lead to a finer signal for the asset allocation environment.

Future directions of research

There are several possible extensions and improvements toward which the work done

so far can be directed. As for the first chapter, it would be interesting to employ and

assess further specifications of the conditional autoregressive G model as alternative

approaches within the frameworks that currently rely on the CAW and WAR models.

A possible variant that still addresses the curse of dimensionality problem might include

a diagonal intercept in the model instead of using the covariance targeting method, as

proposed by Shen et al. (2020). Also, it would be attractive to increase the flexibility

of the conditional autoregressive G model by taking a cue from the generalized CAW

model, developed by Yu et al. (2017).

With regard to the work done in Chapter 2 we can underline a limitation involving the

empirical application of the blending methodology, that is the oversimplifying choice

of setting P = I, meaning that each view about the corresponding asset has the same

magnitude. This in turn implies that the high-frequency measures (both returns and

realized covariances) have the same relevance for each asset, which could easily not

be the case. Thus, trying to advance on this side of the application could lead to

substantial improvements. Moreover, the high-frequency data are used without any

processing, while it might be worth considering possible approaches to model the raw

data before the empirical analysis. Also, we recall that the results depend on the choice

of the low-frequency model, that in our case has the characteristic of being extremely

parsimonious in terms of conditional covariance dynamics. This feature is particularly

important and desirable as long as transaction costs are taken into account, but it could

fail in environments where they are almost negligible and a more accurate covariance

dynamics becomes optimal. This implies that other low-frequency models and, more

generally, other environment settings could produce different outcomes.
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Another topic that may be worth evaluating as a possible area of research that goes to

extend what has been done so far, is that covered in Chapter 3. As explained earlier,

it involves using a structured CAW specification in the study of risk spillover. The

objective is to exploit the informative content of high-frequency data in a framework

that is usually confined to the use of daily observations, with the expectation of getting

a more accurate analysis of risk spillover. In addition, unlike the BEKK and the other

models relying on low-frequency data, the CAW has the advantage of using an observed

estimator of covariance in the process.





Appendix A

Consider the pdf of

µ ∼ N(π, τΣ), (A.1)

that is

fµ(µ) ≡
|τΣ|− 1

2

(2π)
N
2

e−
1
2
(µ−π)′(τΣ)−1(µ−π), (A.2)

and the normal model associating uncertainty to the K views

Pµ ∼ N(v,Ω), (A.3)

then we can write A.3 as

v
d
= Pµ+ Z, (A.4)

where Z ∼ N(0,Ω). Thus, v can be modeled as a random variableV whose distribution,

conditioned on the realization of µ is:

V|µ ∼ N(Pµ,Ω). (A.5)

Therefore, the pdf is

fV|µ(v) ≡
|Ω|− 1

2

(2π)
K
2

e−
1
2
(v−Pµ)′Ω−1(v−Pµ). (A.6)

The posterior of µ given V is derived using the Bayes rule

fµ|v(µ) =
fµ,V(µ,v)

fV(v)
=

fV|µ(v)fµ(µ)∫
fV|µ(v)fµ(µ) dµ

(A.7)
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by proving that the numerator can be written as the required conditional pdf fV|µ

multiplied by a factor which is not of our interest.

fµ,V(µ,v) = fV|µ(v)fµ(µ)

∝ |τΣ|− 1
2 |Ω|− 1

2 e−
1
2
[(µ−π)′(τΣ)−1(µ−π)+(v−Pµ)′Ω−1(v−Pµ)] (A.8)

This expression coincides with the formula B.6 used to derive the market version of

the Black-Litterman model, after substituting µ with X, π with µ, and τΣ with Σ.

Therefore, by using the same approach, we obtain

µ|v;Ω ∼ N(µBL,Σ
µ
BL), (A.9)

where

µBL ≡
(
(τΣ)−1 +P′Ω−1P

)−1 (
(τΣ)−1π +P′Ω−1v

)
, (A.10)

Σµ
BL ≡

(
(τΣ)−1 +P′Ω−1P

)−1
. (A.11)

Using the identity

(A−BD−1C)−1 = A−1 −A−1B(CA−1B−D)−1CA−1, (A.12)

where A and D are invertible matrices, B and C are generic and conformable matrices,

we can express A.10 as

µBL ≡
(
(τΣ)−1 +P′Ω−1P

)−1 (
(τΣ)−1π +P′Ω−1v

)
=

(
(τΣ)− (τΣ)P′(P(τΣ)P′ +Ω)−1P(τΣ)

) (
(τΣ)−1π +P′Ω−1v

)
= π + (τΣ)P′ (Ω−1 − (P(τΣ)P′ +Ω)−1P(τΣ)P′Ω−1

)
v

−(τΣ)P′(P(τΣ)P′ +Ω)−1Pπ

= π + (τΣ)P′(P(τΣ)P′ +Ω)−1(v −Pπ), (A.13)

where the last step follows from the observation that

Ω−1 − (P(τΣ)P′ +Ω)−1P(τΣ)P′Ω−1 = (P(τΣ)P′ +Ω)−1, (A.14)

obtained by left-multiplying both sides by (P(τΣ)P′ +Ω).
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Similarly, using A.12 we can write 2.13 as

ΣBL ≡ Σ+
(
(τΣ)−1 +P′Ω−1P

)−1

= (1 + τ)Σ− (τΣ)P′(P(τΣ)P′ +Ω)−1P(τΣ). (A.15)
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Derivation of the equations 2.25 and 2.26 for the Black and Litterman model with views

directly applied on returns. Consider a market with N assets whose distribution is

X ∼ N(µ,Σ) (B.1)

and the K views

V|x ∼ N(Px,Ω), (B.2)

then

fX(x) ≡
|Σ|− 1

2

(2π)
N
2

e−
1
2
(x−µ)′Σ−1(x−µ), (B.3)

fV|x(v) ≡
|Ω|− 1

2

(2π)
K
2

e−
1
2
(v−Px)′Ω−1(v−Px). (B.4)

The posterior of the market given the views is derived using the Bayes’ rule

fX|v;Ω(x) =
fX,V(x,v)

fV(v)
=

fV|x(v)fX(x)∫
fV|x(v)fX(x) dx

, (B.5)

from which

fV|x(v)fX(x) ∝ |Σ|− 1
2 |Ω|− 1

2 e−
1
2
[(x−µ)′Σ−1(x−µ)+(v−Px)′Ω−1(v−Px)]. (B.6)
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The expression in square brackets in B.6 can be written as

[...] = (x− µ)′Σ−1(x− µ) + (v −Px)′Ω−1(v −Px) (B.7)

= x′Σ−1x− 2x′Σ−1µ+ µ′Σ−1µ+ v′Ω−1v − 2x′P′Ω−1v + x′P′Ω−1Px

= x′(Σ−1 +P′Ω−1P)x− 2x′(Σ−1µ+P′Ω−1v) + µ′Σ−1µ+ v′Ω−1v.

Let’s define

µBL ≡ (Σ−1 +P′Ω−1P)−1(Σ−1µ+P′Ω−1v), (B.8)

which is equivalent to

(Σ−1 +P′Ω−1P)µBL(v) ≡ (Σ−1µ+P′Ω−1v), (B.9)

Using B.9, equation B.7 can be expressed as

[...] = x′(Σ−1 +P′Ω−1P)x− 2x′(Σ−1 +P′Ω−1P)µBL (B.10)

+µBL
′(Σ−1 +P′Ω−1P)µBL − µBL

′(Σ−1 +P′Ω−1P)µBL

+µ′Σ−1µ+ v′Ω−1v

= (x− µBL)
′(Σ−1 +P′Ω−1P)(x− µBL) + α,

where

α ≡ µ′Σ−1µ+ v′Ω−1v − µBL
′(Σ−1 +P′Ω−1P)µBL. (B.11)

Using definition B.8, α can be expressed as

α = µ′Σ−1µ+ v′Ω−1v (B.12)

−(µ′Σ−1 + v′Ω−1P)(Σ−1 +P′Ω−1P)−1(Σ−1µ+P′Ω−1v)

= µ′Σ−1µ+ v′Ω−1v

−µ′Σ−1(Σ−1 +P′Ω−1P)−1Σ−1µ

−v′Ω−1P(Σ−1 +P′Ω−1P)−1P′Ω−1v

+2µ′Σ−1(Σ−1 +P′Ω−1P)−1P′Ω−1v

= v′ [Ω−1 −Ω−1P(Σ−1 +P′Ω−1P)−1P′Ω−1
]
v

+2v′Ω−1P(Σ−1 +P′Ω−1P)−1Σ−1µ

µ′ [Σ−1 −Σ−1(Σ−1 +P′Ω−1P)−1Σ−1
]
µ.
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Using the identity

(A−BD−1C)−1 = A−1 −A−1B(CA−1B−D)−1CA−1, (B.13)

where A and D are invertible matrices, B and C are generic and conformable matrices,

we can express

Ω−1 −Ω−1P(Σ−1 +P′Ω−1P)−1P′Ω−1 = (Ω+PΣP′)−1. (B.14)

Additionally, let’s define

ṽ ≡ −(Ω+PΣP′)Ω−1P(Σ−1 +P′Ω−1P)−1Σ−1µ (B.15)

which can be written as

(Ω+PΣP′)−1ṽ ≡ −Ω−1P(Σ−1 +P′Ω−1P)−1Σ−1µ. (B.16)

Using equations B.14 and B.16, α can be expressed as

α = v′(Ω+PΣP′)−1v − 2v′(Ω+PΣP′)−1ṽ (B.17)

+ṽ′(Ω+PΣP′)−1ṽ − ṽ′(Ω+PΣP′)−1ṽ

+µ′ (Σ−1 −Σ−1(Σ−1 +P′Ω−1P)−1Σ−1
)
µ

= (v − ṽ)′(Ω+PΣP′)−1(v − ṽ) + ϕ,

where

ϕ ≡ µ′ (Σ−1 −Σ−1(Σ−1 +P′Ω−1P)−1Σ−1
)
µ (B.18)

−ṽ′(Ω+PΣP′)−1ṽ

does not depend on x or v. Substituting equation B.17 in B.10 we get

[...] = (x− µBL)
′(Σ−1 +P′Ω−1P)(x− µBL) (B.19)

+(v − ṽ)′(Ω+PΣP′)−1(v − ṽ) + ϕ,
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therefore the joint probability B.6 becomes

fV|x(v)fX(x) ∝ |Σ|− 1
2 |Ω|− 1

2 e−
1
2
(x−µBL)

′(Σ−1+P′Ω−1P)(x−µBL) (B.20)

e−
1
2
(v−ṽ)′(Ω+PΣP′)−1(v−ṽ)

= |Σ−1 +P′Ω−1P| 12 e− 1
2
(x−µBL)

′(Σ−1+P′Ω−1P)(x−µBL)

|Ω+PΣP′|− 1
2 e−

1
2
(v−ṽ)′(Ω+PΣP′)−1(v−ṽ),

where the last equality follows from

|Σ||Ω||Σ−1 +P′Ω−1P| = |Σ(Σ−1 +P′Ω−1P)||Ω| (B.21)

= |I+ΣP′Ω−1P)||Ω|
= |I+Ω−1PΣP′||Ω|
= |Ω(I+Ω−1PΣP′)|
= |Ω+PΣP′|,

which in turn follows from the identity

|Im +BC| ≡ |In +CB|, (B.22)

withB andC being anm×n and n×mmatrices, respectively. From the joint probability

B.20, and using B.8 and B.15, we get

fV|x(v)fX(x) ∝ fX|v(x|v)g(v), (B.23)

where

fX|v(x|v) ∝ |Σ−1 +P′Ω−1P| 12 e− 1
2
(x−µBL)

′(Σ−1+P′Ω−1P)(x−µBL). (B.24)

Thus,

X|v ∼ N(µBL,ΣBL), (B.25)

with

ΣBL ≡ (Σ−1 +P′Ω−1P)−1. (B.26)

The last step is to reshuffle the expressions for µBL and ΣBL, in B.8 and B.26, to get

equations 2.25 and 2.26, respectively. Consider the identity B.13, and notice that B.8
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can be written as

µBL ≡ (Σ−1 +P′Ω−1P)−1(Σ−1µ+P′Ω−1v) (B.27)

=
(
Σ−ΣP′(PΣP′ +Ω)−1PΣ

)
(Σ−1µ+P′Ω−1v)

= µ+ΣP′ (Ω−1 − (PΣP′ +Ω)−1PΣP′Ω−1
)
v

−ΣP′(PΣP′ +Ω)−1Pµ

Finally, notice that

Ω−1 − (PΣP′ +Ω)−1PΣP′Ω−1 = (PΣP′ +Ω)−1 (B.28)

by left multiplying both sides by (PΣP′ +Ω), so we can write B.27 as

µBL = µ+ΣP′(PΣP′ +Ω)−1(v −Pµ). (B.29)

Similarly, we can express B.26 as

ΣBL ≡ (Σ−1 +P′Ω−1P)−1 (B.30)

= Σ−ΣP′(PΣP′ +Ω)−1PΣ.
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