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Abstract

Nowadays, food quality assessment has become a topic of huge importance for both the
consumer and the industry along the whole supply chain. Globalisation has resulted in
increasingly vulnerable and less transparent food supply chains with greater incidence of
sophisticated food fraud especially economically motivated adulteration. With increasing
complexity of food chains and hidden food fraud, the authentication of agri-food products
has become necessary. There is a need to develop analytical methodologies to tackle
authenticity concerns, reassure safety parameters and ensure product quality. This body of
work regards different applications of NMR and NIR spectroscopic techniques to evaluate
authenticity of agri-food products from animal origin. These spectroscopic techniques
provide structural and physiochemical properties of the sample of interest and could play an
important role in the assessment of food quality due to their high-throughput and rapidity
especially when using portable devices. The large datasets that can be generated using the
various spectroscopic techniques can be analysed through chemometrics to extract the
maximum amount of meaningful information and to distinguish significant trends in the
data.

This thesis is divided in four case studies (Chapters 3, 4, 5 & 6) with different
experimental designs, specific aims, food matrices and chemometric applications but they
all share a common goal - to determine the viability of those techniques for food
authentication.

In Chapter 3, a bench-top and a portable NIR spectrometer are used to discriminate
pyrrolizidine alkaloids (PAs) and their N-oxides (PANOs) in 60 contaminated dehydrated
bee pollen samples. PAs/PANOs are secondary metabolites produced by plants as a
chemical defence against herbivorous insects. They have been reported to cause toxicity in
many animal species, including humans especially in the case of chronic exposure. Since
the consumption of bee pollen as a food supplement and a health product has increased in
recent years, there is a need for rapid detection of these natural toxins in food; a challenge
that could be met by NIR spectroscopy. The main goal of this trial was to assess the
feasibility of two NIR systems by means of a statistical modelling approach based on
targeted canonical discriminant analysis (CDA). The application of CDA resulted in a

modelling statistical approach that demonstrates the predictive capacity of NIR systems to
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distinguish among the three quantitative PA/PANOs classes, especially for detection of
those samples belonging to the low class, which corresponds to safe samples.

In Chapter 4, the feasibility of using bench-top and portable NIR spectrometers for
discriminating chicken breast shelf life is explored since fresh chicken meat (and meat in
general) is highly perishable, leading to rapid loss of freshness during storage. Given the
relatively short shelf life, preservation of quality during refrigerated storage represents one
of the main challenges for the poultry industry. For this reason, a fast, cost-effective and
non-destructive quality control system to assess meat freshness is needed. The study
evaluates the feasibility of using NIR spectrometers combined with multivariate statistical
models to discriminate chicken breasts during a 14-day refrigeration period. Also, suitability
of the portable instrument for real time, on-the-spot evaluations is explored. NIR
spectroscopy showed reliable effectiveness to recognise a 7-day shelf life threshold of
breasts, suitable for routine at-line application for screening of meat quality.

In Chapter 5, capability of a VIS/NIR and two NIR instruments (portable and bench-
top) to discriminate among table eggs from quails fed with different inclusion levels of
silkworm pupa meal was evaluated. Since insects represent an alternative to conventional
protein and lipid feedstuffs for monogastric animals, they could provide strategic solutions
to address some environmental and ethical concerns linked to animal production and
sustainability, and represent a premium value by declaring a highly-marketable labelling
designation. Both NIR benchtop and portable devices combined with PLS-DA, KNN and
SVM successfully showed capacity to recognise in the eggs the inclusion of insect meal in
layers diet while the VIS-NIR portable tool displayed worse predictive capacity. The
portable NIR spectrometer had comparatively accurate classification to the benchtop
instrument, highlighting the potential of hand-held NIR spectrometers in at-line monitoring
of insect-based feed along the egg supply chain.

In Chapter 6, discriminant capacity of fatty acids and NMR metabolomic profiles of
milk from three different forage-based dairy chains was tested. Forage may affect the
environmental sustainability of a given dairy chain, the quality of milk and its suitability for
high-value dairy products. For these reasons, the study was conducted to better understand
the influence of the dietary forage proportion on the milk metabolomic profile for better
understanding of the relationship between feeding system and the wide pool of biomarkers
useful to authenticate the milk dairy chain. The outcomes showed that only a total
replacement of maize silage with legume and grass hays in the cows’ diet led to a significant

change in the milk metabolomic profile. A low-level FA and NMR data fusion coupled with
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a CDA chemometric approach has been shown to improve the predictive performance of
the supervised CDA discriminant model of milk samples from diverse ensiled or dried
forage-based feeding systems.

Our findings suggest that both NIR and NMR spectroscopic techniques are effective
methods for the authentication and analysis of the studied food products. Implementation of
such methods in routine authentication analysis while keeping the costs low and the
performance level high can open up the potential for further incorporation of NMR and NIR

technologies in food analysis.
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List of Commonly used Abbreviations

'H NMR Proton Nuclear Magnetic Resonance
CDA Canonical Discriminant Analysis
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FS Forage Source

GC-MS Gas Chromatography-Mass Spectrometry
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LC-MS/MS Liquid Chromatography coupled to Tandem Mass Spectrometry
MCC Matthew Correlation Coefficient

ML Machine Learning

MVSA Multivariate Statistical Analysis

NIR Near-infrared

NIRS Near-infrared Spectroscopy

NMR Nuclear Magnetic Resonance

PANOs Pyrrolizidine Alkaloids N-oxides

PAPs Processed Animal Proteins

PAs Pyrrolizidine Alkaloids

PCA Principal Component Analysis

PLS-DA Partial Least Squares-Discriminant Analysis
RF Random Forest

SVM Support Vector Machine
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CHAPTER 1

Introduction

1.1 Food quality

In the past, food was produced close to the place of consumption, whereas nowadays,
globalisation has increased the length of the “farm to fork™ food chain, highlighting the
importance of food quality (Lineback et al., 2009). Food quality has become a central issue
in the public debate, in food policy, in industry and in today’s food economics, but its
objective description is a very challenging task (Petrescu et al., 2020). The term, a complex
and multi-dimensional concept, refers to a range of attributes and factors that are mainly
related to sensory traits, shelf life, ethics, nutrition, authenticity, freshness of food and
properties associated with microbiological and technological parameters. Food quality has
both a subjective and objective dimension. Subjective quality pertains to the experience of
the consumer, framed by consumer expectations, perceptions, and acceptance (‘fitness for
consumption’). Objective quality pertains to measurable characteristics inherent to the
product, physicochemical attributes typically explored by food technologists. At the core of
the economic importance of food is the relationship between the subjective and objective
quality of food. Food quality can only be a competitive parameter for producers when
consumer expectations and desires are translated into physical product characteristics that
are recognized by the consumer (Grunert, 2005).

Globalisation has resulted in increasingly vulnerable and less transparent food supply chains.
As a result, food quality assessment has become of huge importance for both the consumer
and the industry along all the whole supply chain, from the raw material to the final product.
Increasing demand for food, globalisation of the supply chain, constant integrity challenges,
ambiguous definitions, and lack of specific guidance are some of the factors that have
resulted in a greater incidence of sophisticated food fraud (Robson et al., 2021; Valand et
al., 2020). Food fraud is an umbrella term for intentional practices committed for extracting
economic profits through consumer deception, defined as “any suspected intentional action
by businesses or individuals for the purpose of deceiving purchasers and gaining undue
advantage therefrom, in violation of the rules referred to in Article 1(2) of Regulation (EU)
2017/625”. The rising threat of food fraud, including the more defined subcategory of

economically motivated adulteration is gaining recognition and concern among consumers,



Food Business Operators (FBO’s) and governments and necessitates a constant investigation
of food to safeguard quality and safety. In particular, high-value food commodities (Table
1) such as meat, dairy products, alcoholic beverages, oils, bee products, spices, coffee and
tea are vulnerable to fraudulent economically motivated adulteration (EMA) due to the
potential for economic gain (Galvin-King et al., 2018). In fact, the global estimated value of
food frauds each year ranges from 10 to 40 billion US dollars affecting 1% of the global
food industry (U.S. Food & Drug Administration, 2022).

Table 1. Different types of deliberate adulterants in food products.

Food product Adulterants Purpose/Fraud type
Ghee Vanaspati, anatta, & oleomargarine To make more yellow
Milk Water, skim milk To increase volume

Condensed milk

Paneer, khoya

To give rich texture

Butter

Vegetable oil, anatta, banana,

oleomargarine

To increase volume & make

yellowish

Milk

Water

Diluition

Minced lamb meat

Duck minced meat

To increase weight

Minced chicken

Carrageenan solution

To increase weight

meat
Ice cream Starch, rice powder or wheat flour To thicken cream
Tea leaves Black/Bengal gram dal husk with colour To add colour
Red wine Juice of blueberries To attract/produce deep blue

precipitate with lead acetate

Seafood products

Substitution of a more valuable species by

a cheaper one

Substitution

Sugar

Chalk powder

To increase amount

Oils

Rancid oil

To increase volume

Common salt

White powdered stone,chalk

To increase amount

Honey

Molasses, cane sugar

To increase volume

Wheat

Ergot (poisonous fungus)

To increase weight

Modified from literature (Choudhary et al., 2020; Tibola et al., 2018; Zhang et al., 2019;
Zheng et al., 2019)

Food fraud is a serious offence that jeopardizes food integrity and undermines consumer
confidence in government regulatory mechanisms and food industries. It can prevent
consumers from making informed decisions and leads to unfair competition with
considerable long-term economic consequences. However, the fight against food fraud is

hindered by a lack of a harmonised and consistent definition of the term due to the range of



different categories of fraud (Robson et al., 2021). For this reason, globally recognised
standardised processes and adequate policing of the supply chains and the food industry are
necessary to deter, mitigate and prevent any food fraud. With increasing complexity of food
chains and hidden food fraud, the authentication of agri-food products has become
necessary. The determination of food authenticity is an important surveillance measure for
the official bodies in charge of labeling and for the industries controlling and testing the
quality and traceability of raw materials and finished products (Lohumi et al., 2015; McVey
et al., 2021). If a sample could be traced along the supply chain from raw material to final
product, its authenticity can be insured. During authentication, it is necessary that the
description of the food on the label is in compliance with the regulations (Selamat et al.,
2021) in relation to composition, origin (species, geographical or genetic) and production
method (conventional, organic, traditional procedures, free range or processing
technologies) (Danezis et al., 2016b) (Fig. 1). Since food safety legislation has become more
stringent in modern times, there is a need to develop analytical methodologies to tackle
authenticity concerns, reassure safety parameters and ensure product quality (Kritikou et al.,

2022; Valand et al., 2020)
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Fig. 1. Food product features analyzed by the authentication process (Saadat et al., 2022).



1.2 Analytical techniques for the evaluation of food quality

The growing concern about food quality worldwide has resulted in a rapid growth and
expansion of authentication procedures through the implementation of reliable and efficient
technologies to ensure compliance with national laws, international standards and other
directives (Selamat et al., 2021). A range of physical and chemical methodologies have been
developed and established for the investigation of authenticity of agri-food commodities, on-
farm practices and food processing conditions. At the beginning of the 20th century, food
quality was determined using a range of destructive, labor-intensive and time-consuming
approaches, with modest analytical performance, that have evolved nowadays into powerful,
novel analytical techniques (Cifuentes, 2012; Tiimsavas et al., 2013). To keep up with
modern demands of food authentication there is a constant need to develop instruments with
enhanced analytical accuracy, precision, robustness, lower detection limits, and higher
sample throughput (Cifuentes, 2012), opposite to time-inefficient and resource-intensive
conventional methods of analysis. Furthermore, authentication control can rarely be
completed using a single method, there is no ‘one size fits all’ methodology. Each technique
provides specific information about the sample or components in question based on a
specific physical-chemical interaction and each has its own positive and negative attributes
when applied to food analysis. A comprehensive strategy incorporating several
complementary analytical approaches is often required (Cifuentes, 2012; McVey et al.,
2021).
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Fig. 2. Overview of different analytical techniques used for food analysis.

The analytical methods suitable for the authentication and characterisation of food products
are based on a variety of chemical, physicochemical and physical methods, mainly targeted
and non-targeted-based approaches (Fig. 2). Despite the different development history,
theory and range of technical equipment (Tumanov, 1984) each method shares a common
approach; namely, that a certain food matrix is investigated with at least one analytical
technique for data acquisition and subsequently one or more chemometric approaches for
statistical evaluation (Riedl et al., 2015). Several analytical techniques and combinations of
techniques within chromatography (e.g., hyphenated techniques), spectrometry, and
spectroscopy have been used to identify and detect emerging fraudulent trends in various
food products especially the ones with high market price per volume/weight (Fig. 3). There
are many analytical instruments useful for food analysis and thus large volumes of raw data
can be generated for samples of interest. However, the raw data in and of itself, is not

informative — it must be processed in order to extract meaningful and useful information that



can then be interpreted by the researcher and used to build models that can aid in the

understanding the sample in question (De Aratjo Gomes et al., 2022).
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Fig. 3. Analytical techniques preferred in relation to specific food commodities (Danezis et
al., 2016a).

In recent years, the number of publications concerning analytical methods for food
authentication has grown exponentially as reported in Fig. 3 (Danezis et al., 2016a); and in
relation to food fingerprint analysis, spectroscopic and spectrometric-based studies are most
reported (Cubero-Leon et al., 2018; Medina et al., 2019). For the purposes of the thesis, an
in-depth discussion on nuclear magnetic resonance and infra-red techniques is presented in

Sections 1.3 and 1.4.

1.2.1 Targeted vs non-targeted techniques

The analytical methods for authentication are classified into several types (Fig. 4). They can
search for markers related to a particular adulteration of the product that are not naturally
present in the food, and then compare them with threshold limits often established by
specification rules or regulations. They can point to a targeted analysis of analytes naturally
present in food or they can simultaneously measure a range of analytes/markers (non-
targeted) and compare these profile (fingerprint) with authentic reference sample databases

(Donarski et al., 2019).
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Fig. 4. Targeted versus non-targeted analytical food authentication.

Targeted approaches usually allow the precise and accurate detection of marker
compounds linked directly or indirectly to the authentication issue. Targeted approaches
involve the monitoring of a priori selected metabolites that are known to be directly related
to the characteristics under investigation. The analytical targets are chemically or
biologically characterised before data acquisition and then compared to reference data (legal
limit or threshold value/database) (Ballin & Laursen, 2019) and are followed by univariate
statistical analysis. In classical targeted analysis, validation is well defined, comprising the
whole procedure from sampling or sample preparation to statistical evaluation of the
acquired data (Riedl et al., 2015). Even though they enable the lowering of the analytes’
detection limits (up to sub ppt-levels) in complex matrices, the extraction procedures are
often very complex and expensive (Kaufmann et al., 2015). Focusing on a narrow group of
targeted analytes, these approaches provide limited information about the product, incapable
of providing an overall picture of samples’ chemical composition making it unsuitable for
identifying different adulterants that have potentially been added to the food (Cavanna et al.,
2018; Daglia et al., 2014). This example of complexity epitomizes the inadequacy of several
targeted methods into routine analysis and food surveillance, underlining the importance of
using methods that instead are able to detect different classes of compounds at the same time
(Ballin & Laursen, 2019).

Profiling analysis (pseudo-targeted) is a multi component analysis targeting a group
of metabolic products or a specific class of compounds. Profiling often provides increased
classification power and is richer in information when compared to targeted-based method.

The profile can be used to calculate a value to be tested against a threshold limit, or it can be



used for comparison to a database much in the same way as a non-targeted analytical
approach. As an indirect authentication procedure, the obtained data are usually investigated
using multivariate data analysis (Ballin & Laursen, 2019).

Non-targeted analysis, also referred to as “fingerprinting”, globally studies the
metabolite fingerprint itself measuring a range of unspecified analytes/markers, not known
a priori, to gain a comprehensive insight into the composition of the sample. Then, a
comparison of the profile is made to reference data in order to reveal possible adulterations.
Non-targeted analytical analysis is typically much more demanding when compared to
classical targeted approaches since the workflow requires multivariate statistical models and
subsequent model validation in order to guarantee reliability of the data and to allow a
conclusion on the applicability of the analysis method (Riedl et al., 2015). Owing to the large
number of features typically contained in non-targeted analyses, the classification models
are enhanced and there is an increased chance that the chosen model/analysis is successful
in accurately describing the data. Emerging technologies will enable parallel measurements
of large number of targets increasing the accuracy and speed of data collection while
decreasing the cost and allowing for measurements to be performed at the site of sample

collection (Danezis et al., 2016a).

1.3 Nuclear magnetic resonance (NMR) spectroscopy

Nuclear magnetic resonance (NMR) is one of the most suitable methods to obtain “high-
throughput” spectroscopic and structural information on a wide range of metabolites in
various food products with high analytical precision (Danezis et al., 2016b). NMR
spectroscopy leverages the fact that in the presence of a magnetic field, atomic nuclei absorb
and emit electromagnetic radiation than can be detected to discern information about the
physical and chemical properties of the material in question (Rusilowicz et al., 2014). NMR
identifies the carbon-hydrogen framework in a sample according to the absorption of
electromagnetic radiation, allowing for the characterisation of the compounds present (Farag
et al., 2018). It is a non-destructive, highly-reproducible analytical method that can
determine and quantify a large number of compounds simultaneously. Its high
reproducibility enables a single NMR instrument to be used to conduct many different
analyses without the need for additional calibration or adjustment specific to the material
under analysis (Minoja & Napoli, 2014). This reduces both the time required for analysis
and also the cost per sample. An additional benefit of NMR is that it can be used to gather



information from samples of all states of matter, although most food-related applications
involve liquids and solids (Tang et al., 2019) (Fig. 5).

In food analysis two types of NMR are applied, low-resolution NMR (LR-NMR) and
high-resolution NMR (HR-NMR) (Luykx & van Ruth, 2008). LR-NMR instruments
(frequencies ranging 10—40 MHz), provide less detailed information than the high-resolution
version due to a sensitivity loss that somewhat limits its applicability. However, LR-NMR
is typically more accessible and versatile than HR-NMR since it is less expensive and easier
to use (Azeredo et al., 2003). HR-NMR (frequencies above 100 MHz) is a spectroscopic
technique commonly used in the field of food composition analysis (Consonni & Cagliani,
2022) since it can provide “high-throughput” spectroscopic and structural information on a
wide range of molecular compounds. However, HR-NMR comes at a high cost — both in
terms of the initial capital required to setup and the associated running costs (Luykx & van
Ruth, 2008). The data gathered using NMR includes a diverse array of measurable
parameters such as peak intensity, frequency (normalized to chemical shift), line shape, line
width and relaxation times. This technique is an extremely powerful and useful tool that can
give insight into molecular structures and to investigate foodstuffs at molecular scale
(Eisenmann et al., 2016). Acquired NMR data needs to be processed before statistical
analysis can be carried out (Fig. 5). The choice of preprocessing techniques depends on
multiple factors, including: the nature of data, the focus of the investigation, and the analysis
methods to be used. A single approach is not appropriate for all kinds of acquired data even

within a particular NMR technique.
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Fig. 5. Schematic representation of the workflow for the application of NMR-based
metabolomics in food science (Hatzakis, 2019).

Despite its usefulness and power, NMR alone is not sufficient to describe precisely the
constituents of food. Foods are very complex matrices consisting of hundreds or thousands
of compounds that can and do interact with one another (Hatzakis, 2019; Tang et al., 2019).
Also, these compounds can be affected by external factors such as processing, storage or
transport. Often, NMR fails to capture these details and even more simply, NMR signal
overlap can occur which results in the misidentification of compounds of interest (Hatzakis,
2019; Tang et al., 2019). The main disadvantage of NMR compared to other technologies
used in food analysis is its relatively low sensitivity. The sensitivity of the experiment
depends on the type of NMR probe used, the strength of the applied magnetic field, the type
of the spectroscopic experiment (nucleus, pulse sequence, acquisition parameters) and the
nature of the sample (Tang et al., 2019). Furthermore, advances in NMR technology (higher
field magnets and cryogenically cooled probes that increase signal-to-noise ratios (SNR) are
constantly being made in an effort to overcome any sensitivity concerns (Rusilowicz et al.,
2014). With that said, an alternative, more efficient and holistic interpretation of the gathered
spectral information needs to be applied. One such approach is food-based metabolomics, a
member of the “foodomics” family (Cifuentes, 2009), where the data gathered using NMR
and other analytical methods are combined with multivariate statistical analysis (MVSA) to
fully characterise a food product as a whole, allowing for the collection of information the

food’s origin, quality, processing, storage history and sensory perception (Hatzakis, 2019).
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Metabolomics can also be used to investigate what impact a specific nutritional approach
has on metabolism and overall health (Hatzakis, 2019). The vast amount of information that
can be derived from NMR data often requires a multivariate statistical protocol to effectively
highlight the possible markers in quality assessment applications. Univariate methods can
be used to identify individual variables that differ significantly between groups and are
particularly useful when carrying out targeted studies (Rusilowicz et al., 2014). In addition,
according to the type of investigation, metabolomic analysis can be performed using a
targeted or an untargeted approach (Cagliani et al., 2017).

The use of NMR and MVSA in routine analysis allows for the simultaneous
identification of a wide range of chemical compounds (Consonni & Cagliani, 2019) — an
attribute that is particularly useful when trying to discern food origin and whether food fraud
is at play. In fact, the coupling of chemometrics and NMR spectroscopy was a significant
step forward in the field of food analysis. Chemometrics elevated NMR’s status from a
technique used only for compositional analysis to one that could be used to achieve a holistic
and unbiased food assessment and explore interactions and relationships between chemical
profile and food properties (Tang et al., 2019).

Some use cases of NMR combined with MVSA include for food authentication,
quality control, geographical origin, production monitoring/improvement and sensory
evaluation (Masetti et al., 2021; Tang et al., 2019). NMR combined with MVSA has been
used for assessing the authenticity of certain food products such as wines (Amargianitaki &
Spyros, 2017; Viski¢ et al., 2021), spirits (Fotakis & Zervou, 2016; Kuballa et al., 2018;
Monakhova et al., 2012), coffee (Consonni et al., 2018), olive oils (Dais & Hatzakis, 2013)
and vinegar (Nie et al., 2019; Wang et al., 2016), honey (Olawode et al., 2018), meat (Akhtar
et al., 2021; Bertram & Ersen, 2004; Zanardi et al., 2015), fish (Erikson et al., 2012;
Shumilina et al., 2016) and dairy (Consonni & Cagliani, 2008; Klein et al., 2012; Niero et
al., 2022; Segato et al., 2019; Sundekilde et al., 2013; Tomassini et al., 2019). In these
studies, NMR has been applied for the investigation of the metabolite profile of dairy
products, in relation to different aspects such as feeding system, animal health, lactation
stage, milk quality, geographical origin and cheese ripening process. NMR has proved to be
a valuable contribute to the metabolite profiling, even if further applications of the technique
in the field are still unexploited and suggested (Scano et al., 2019). In Chapter 6 that follows,
NMR with MVSA is used to authenticate bovine milk from different feeding systems and to

better understand the influence of the dietary forage proportion.
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1.4 Vibrational spectroscopy techniques

In recent years, a number of vibrational spectroscopic techniques have been developed that
enable the determination of complex chemical information from the samples being
scrutinised. The non-destructive techniques that have been developed can be used for the
qualitative and quantitative evaluation of food fraud and food authenticity (Sun, 2009).
These techniques include Fourier transform near-infrared (NIR), medium-infrared (MIR),
Raman spectroscopy, terahertz spectroscopies and hyperspectral imaging (HIS) (Be¢ et al.,
2020). Spectroscopic techniques operate over different and limited frequency ranges
depending on the process being studied and the magnitude of the associated energy change
(Lohumi et al., 2015) (Fig. 6). There are many instances where non-invasive techniques such
as NIR, MIR, Raman spectroscopy and HIS have been used as analytical methods during
routine analysis of food ingredients and products (Be¢ & Huck, 2019; Cattaneo & Stellari,
2019; Cozzolino, 2012; Kartheek et al., 2011; Qu et al., 2015). These techniques have the
advantage of being non-destructive and have a relatively low analysis cost. Some advantages
associated with non-destructive vibrational spectroscopy include: the need for minimal or
no sample preparation, reagentless preparation, easy-to-use instrumentation, and, more
recently, the availability of portable and inexpensive devices (Cozzolino, 2022). These
spectroscopic techniques have been adopted for both qualitative and quantitative analysis of
agriculture and food products, and have provided an alternative to other wet-chemical and
time-consuming techniques (Cozzolino, 2022; Lohumi et al., 2015).

Infrared radiation (IR) spectroscopy leverages the fact that solids, liquids and gaseous
samples can absorb some of the incoming infrared radiation at specific frequencies
producing a spectral ‘fingerprint’ of the sample. The infrared spectrum can be divided into
three distinct regions; near- (0.8-2.5 um, 12,500-4000 cm™!) incorporating both electronic
and vibrational spectroscopy, mid- (2.5-25 um, 4000-400 cm™!) monitoring mainly
molecular vibrations and far- (25-1000 pum, 400-10 cm™!) infrared containing rotatory and
vibrational movements (Ozaki, 2021). Infrared-based spectroscopic methods have been used
to develop qualitative (pattern recognition) and quantitative (multivariate calibration)
procedures for food analysis (Osborne, 2000). MIR fingerprints result from the stretching,
bending and rotating vibrations of the molecules that absorb the IR radiation, while NIR
spectra result from the complex overtones and high-frequency combinations of the shorter

emitted wavelengths. Compared to MIR, NIR spectroscopy is more adequate for food
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analysis as it requires less sample preparation and can be easily used for in-field and at-line

analysis (De Marchi et al., 2018).
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Fig. 6. Schematic diagram of typical vibrational spectroscopic techniques (Lohumi et al.,
2015).
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1.4.1 Near-infrared (NIR) spectroscopy

NIR spectroscopy (NIRS) involves the use of electromagnetic radiation to probe the
vibrational degrees of freedom (DOFs) of molecules. This spectroscopic technique reveals
molecular information of the sample being probed by measuring absorption bands resulting
from overtones and combination excitations (Be¢ et al., 2020). NIR spectroscopic tools are
comprised of a radiation source, wavelength selector/modulator, sample cell, detector, and
signal processor (Esteve Agelet, 2011). Spectra can be recorded in reflection, transmission
or interactance modes (Fig. 8), providing information related to the vibration behaviour of
typical molecular bonds mainly C-H, O-H, and N-H (Lohumi et al., 2015; Nicolai et al.,
2007; Osborne, 2000).
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Fig. 8. Modes of data collection in NIRS system. (a) Reflectance mode, (b) Transmittance
mode, and (c) Interactance mode (Qu et al., 2015).

In recent years, the last two decades or so, NIRS has become a spectroscopic tool of
choice for many across the sciences. This is because the instrument is chemical-free, cost-
effective, environmentally friendly, safe and easy to use, non-invasive, non-destructive and
suitable for in situ analysis. NIR spectroscopy can be carried out in non-contact mode or
using an optical fibre, making it much easier to study and analyze aqueous solutions (Ozaki,
2012). However, as with all characterisation techniques, there are certain limitations
associated with NIRS. For one, analysis and interpretation of large data sets can be extremely
difficult (due to wavelength-dependent scattering effects, instrumental noise, ambient
effects, and other sources of variability), which can contribute to less robust and reliable
results. In this case, chemometrics (a combination of statistical and mathematical sciences)
can be employed to complement the NIRS and help resolve issues associated with the
interpretation of the NIR data (Nobari Moghaddam et al., 2022; Qu et al., 2015; Teixeira
Dos Santos et al., 2013).

According to the flowchart (Fig. 7), chemometrics is mainly used during three phases
of the NIRS data processing flow: pre-processing of data, classification or regression model
building, and model validation. A variety of spectral pretreatments are necessary when
dealing with NIRS data, since there is plenty of noise and redundant information, which give
rise to noise and baseline fluctuations (Ozaki, 2012; Qu et al., 2015). Thus, by employing
appropriate chemometric algorithms, the pre-processed data could be employed to develop
qualitative and/ or quantitative models. Of course, the choice of the applied chemometric
techniques depends heavily on the nature of the dataset. Accordingly, multivariate statistical

analysis is used for extracting useful information from NIR spectra. This analysis helps solve
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the complex interactions between components and considers their collective effects on the

matrices and scrutinizes the sample holistically (Kowalski, 1984).

Raw data

NIR spectroscopy or HSI

Spectral derivatives (PLS, PCR, ANN, ..))
and scatter-correlation Quantitative analysis

Fig. 7. Work flow of the chemometrics analysis (Nobari Moghaddam et al., 2022)

In recent years, the use of NIRS in combination with chemometrics for the detection
of food fraud and for food authentication purposes has been employed. The growth of
chemometrics methods combined with technological advances in NIR spectroscopic
instrumentation have increased the value of this technology (Nobari Moghaddam et al.,
2022). The application of NIR spectroscopy is far-reaching and has been used to probe many
foods including, but not limited to: dairy products (Dvorak et al., 2016; Hsieh et al., 2011;
Ottavian et al., 2012), oils (Li et al., 2020; Luna et al., 2013; Mendes et al., 2015), meat
(Alamprese et al., 2013; Morsy & Sun, 2013; Prieto et al., 2009), fish and fishery products
(Curro et al., 2022; Fasolato et al., 2012; Varra et al., 2022), honey (Bisutti et al., 2019) and
wine (Cozzolino et al., 2006; Hencz et al., 2022; Liu et al., 2006). The above-mentioned
studies highlighted the potential of NIR spectroscopy as rapid and at-line detection method
for non-destructive estimation of several chemical properties useful to classify the samples
according to the different experimental conditions under investigation.

Recently, considerable effort has been made to miniaturize spectroscopic devices such
that they be portable (Be¢ et al., 2021). These new developments in spectrometer design
have partly been driven by the advances in microelectromechanical systems (MEMS)
production (Sorak et al., 2012). Portable NIR spectrometers offer several advantages for
non-destructive, in situ analysis. Such advantages include; small size, low cost, robustness,
simplicity of analysis, sample user interface, portability, and ergonomic design (Teixeira
Dos Santos et al., 2013). With that said, several issues associated with the miniaturization of
the spectrometers have become apparent. Most noticeable among them are the narrower
spectral regions and/or lower spectral resolution with which the portable devices operate
(Be¢ et al., 2020).

NIRS is promising in food safety assessments, so more research is needed to

investigate its full power and limitations, especially when coupled with different modeling
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techniques as a way of improving its accuracy and robustness. In the chapters that follow
(Chapters 3, 4, 5, respectively) the reliability of using bench-top and portable NIR in the
detection of pyrrolizidine alkaloids in bee pollen, the assessment of chicken breast shelf-life
and for the classification of eggs from quail fed with silkworm meal is tested combined with

different multivariate approaches.
1.5 Chemometrics applications

Data analysis has become a fundamental task in analytical chemistry due to the vast amount
of information that can be generated by modern analytical instruments. Therefore it is
necessary to apply multivariate statistical procedures to efficiently extract the maximum
amount of meaningful information from the large datasets that are gathered and to
distinguish significant trends in the data (Berrueta et al., 2007; Bevilacqua et al., 2017).
Specifically and in relation to this thesis, chemometric techniques can be used to extract
meaningful information about food authenticity from large datasets gathered using the

various spectroscopic techniques discussed herein.

1.5.1 Procedure flow

In Fig. 8, a typical procedure flow highlighting the core components of a well-designed study
is shown. After the hypothesis has been formed, the design of experiment (DoE) is
determined (step 1), whereby the choice of what kind of samples will be collected and how
those samples will be reliably handled and measured is made. After the sampling and the
samples preparation (step 2) the data is then analysed according to the strategy outlined (step
3) and pre-processed to extract information from the raw instrumental data and remove
random or systematic sources of variation in the data set (Nunes et al., 2015) (step 4). In fact,
many analytical signals are associated with useless noise or redundant information and data
pre-treatment (selection of a limited number of informative predictors or data compression)
is often necessary to filter the useful information and help generate useful models (Oliveri
& Downey, 2012). After data pre-processing, statistical analysis of the data has to be
performed to elucidate any trends that exist (step 5). Finally, the results have to be interpreted
(step 6).

Chemometrics play a critical role in this process flow since getting meaningful results
requires not only meaningful data but also meaningful analysis (Kjeldahl & Bro, 2010). In

chemometrics, chemical compounds are not generally identified — instead, their spectral
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patterns and intensities are recorded and used to identify spectral features that distinguish
sample classes (Trygg et al., 2007). Various statistical analysis methods are grouped under
the well-established term ‘chemometrics’. Typically, unsupervised methods are used during
feature identification, to find affiliations and classifications groups, assuming no preliminary
information about the samples (Creydt & Fischer, 2018). In contrast, supervised methods
are generated based on preliminary information about the samples. Many different
algorithms can be applied to multivariate data sets, some of which are summarized in Fig.

8.

1.5.2 Unsupervised and preliminary approach (graphical approach to the dataset)

Classical unsupervised techniques are very useful for the initial interrogation of data
(Bevilacqua et al., 2017). Such techniques are examples of exploratory data analysis (EDA)
and are used to gain deeper insight into high-volume complex data such as a large NIR
datasets (Be¢ & Huck, 2019). One such example is principal component analysis (PCA)
which is especially useful for the analysis of multidimensional data that have some degree
of correlation (Zhao & Maclean, 2000). The technique involves the reduction of the data
dimensionality, allowing visualization while retaining much of the information in the
original dataset. PCA transforms the original measured variables into uncorrelated variables
called principal components and is frequently used in exploratory data analysis to determine
whether there are trends in the dataset. With that said, PCA is not always appropriate. For
instance, when data are from designed experiments, PCA has limited capacity in extracting
the information related to the different factors in the design (Bevilacqua et al., 2017).

Other unsupervised pattern recognition techniques such as cluster analysis (CA), can be used
for preliminary evaluation of the information in the data matrices (Lavine, 2006). In CA,
samples are grouped by similarities without taking into account the class information.
Clusters refer to sets of observations which are more similar to each other than they are to
the remaining objects. CA is based on the premise that this similarity is inversely related to
the distance between samples (Kaufman & Rousseeuw, 1990). The most used type of CA is
the hierarchical approach (HCA) (Nunes et al., 2015).
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Fig. 8. Flowchart of a typical food study with the main related topics and the commonly
used pattern recognition methods. Modified from Bevilacqua et al. (2017) and Jiménez-
Carvelo et al. (2019).

1.5.3 Supervised approach

Supervised classification involves predicting interesting characteristics about the samples
using the data together with some additional information (Bevilacqua et al., 2017).
Supervised pattern recognition techniques use the class membership of the samples in order
to classify new unknown samples in one of the known classes (Vandeginste et al., 1998).
Classifying a sample involves predicting one or more of its properties based on the
information collected during the characterization of the sample. The term class or category
refers to a collection of objects sharing similar characteristics. It is imperative to highlight
that the definition of these characteristics is problem-dependent. The same set of samples
can be grouped in different ways, depending on the problem and the statistical models to be
used. Supervised methods of analysis are divided into two groups: (i) classification methods

and (i1) regression methods (Fig. 8). Classification techniques are used for the separation,
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sorting and grouping of samples with regard to a specific sample property whereas regression
analysis groups the methods used for the prediction/quantification of chemical content
(predictive models) (Be¢ & Huck, 2019). Given the chemometric applications used in the
following chapters, supervised classification models rather than regression methods will be
further discussed. Classification methods play an essential role in food quality assessment
and are often used to solve various kinds of authentication issues (Bevilacqua et al., 2013)
and are conventionally divided into discriminant analysis methods and class modelling
methods depending on how the model is built.

Linear discriminant analysis (LDA) is based on the determination of linear
discriminant functions, which maximize the ratio of inter-class variance and minimize the
ratio of intra-class variance (Berrueta et al., 2007). With LDA, the number of variables
should not exceed the number of samples (Bevilacqua et al., 2013; Medina et al., 2019),
however this can easily be solved by employing PCA or feature selection procedures. The
canonical discriminant analysis (CDA) is a synonym of LDA, and the name points out that
the linear discriminant model can be expressed directly in terms of the coordinates of
samples along the direction(s) of maximum class separation (the canonical variates) (Cruz-
Castillo et al., 1994), instead of the original variables. CDA is used in Chapter 3 & 4 which
follow as a discriminating method for the purpose of the designed experiments.

Partial least squares discriminant analysis (PLS-DA) method involves performing a
multivariate regression and assigning a numeric value to each sample, followed by
classification into specific classes (Brereton & Lloyd, 2014). Despite their differences, many
authors (Barker & Rayens, 2003; Indahl et al., 2007; Nergaard et al., 2006) have shown that
PLS-DA and LDA/CDA are perfectly equivalent. Variable importance in projection (VIP)
method is often used for identifying significant variables in complex datasets from the PLS-
DA model by calculating the VIP score for each variable. It also removes non-important
variables with VIP score below a threshold (default = 1) (Medina et al., 2019).VIP method
is implemented in Chapter 3 & 4 to highlight the most influential absorbance wavelengths
from the PLSDA model. LDA and PLS-DA have been widely used in food research in order
to obtain classification models, the most often used discriminant approaches in food
fingerprinting (Medina et al., 2019; Nunes et al., 2015).

The nearest method (KNN) is a distance based non-parametric procedure that is based
on the determination of the distances between an unknown object and the objects of the

training set. The smallest distance is selected for the assignment of the class membership.
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This method is relatively simple to implement and is especially useful when there are few
samples.

Soft independent modelling of class analogies (SIMCA) is a supervised classification
technique that uses samples with known origin (training samples) to create a classification
rule which allows the classification of new samples (test samples) with unknown origin
(Mees et al., 2018). The SIMCA method has garnered much attention from those who are
interested in solving food authentication problems in areas such as food chemistry. In such
applications, a training set represents authentic samples, the properties of which are
compared to those of a suspect sample (Pomerantsev & Rodionova, 2020).

In recent years, the application of new pattern recognition tools is becoming popular
in the area of food science, due to their potential ability to solve complex problems related
to food authenticity. To date, support vector machine (SVM), classification and regression
tree (CART) and random forest (RF) are the most widely used since they can be used in both
classification and calibration models. Their application is widespread in areas such as
metabolomics and is growing in the area of food quality and authenticity (Jiménez-Carvelo
et al., 2019). RF, a relatively new pattern recognition method (Breiman, 2001), is based on
a strategy named “ensemble learning” whereby many classifiers are generated and their
results are aggregated. It is very suitable for unstable models and for class imbalance
problems (Liu et al., 2013). In Chapter 4 & 5, RF is used as a feature selection tool for
selecting the most informative NIR wavelengths and to improve the classification
performance.

Support vector machine (SVM) is a supervised learning technique, based on the
statistical learning theory (Cortes & Vapnik, 1995; Xu et al., 2006). SVM is applicable to
both classification and regression problems. This method can circumvent the issue of having
non-evident separation between the regions of the different classes of the samples. However,
development of the model is often quite difficult, and a lot of informatics resources are
necessary (Jiménez-Carvelo et al., 2019). In Chapter 5, SVM, KNN and PLS-DA
supervised recognition algorithms were performed on NIR informative wavelengths in order

to exploit the spectroscopic information for pursuing classification purposes.

1.5.4 Validation procedure

Prediction models are only useful if appropriate criteria are defined and applied to measure
the performance of the model (Varmuza & Filzmoser, 2016). To investigate the prediction

performance of a model, a validation procedure can be conducted during supervised pattern
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recognition procedures no matter which algorithm is applied. That strategy consists of the
following methodological steps (Berrueta et al., 2007; Riedl et al., 2015) common for both,
classification and regression models:

(1) Selection of a training, and a test set. These sets consist of objects of known class for
which variables are measured. The training set is used for the optimization of parameters of
each multivariate technique. Exploratory data analysis (EDA) and unsupervised pattern
recognition are commonly used to simplify and gain better understanding of datasets. As is
often the case, the great challenge is to remove the noise while retaining the meaningful
information (Siebert, 2001).

(2) Variable selection. Variables that contain information pertaining to the targeted
classification are kept, whereas the variables contributing to noise and/or with no
discriminating power are eliminated. Datasets with excessive numbers of variables can give
rise to some complications. Firstly, from a technical perspective, too many variables can
cause the algorithms to run unnecessarily slow; secondly, the predictive performances of the
algorithms can decrease, especially in the case of spectroscopy analyses where the
wavelength measurements are highly correlated to each other (Bisutti et al., 2019). A
strategy against the so-called minimal-optimal problem is to use a small (possibly minimal)
feature set that avoids the use of irrelevant variables (Nilsson et al., 2007). Herein, both a
RF feature selection (Chapter 4 & 5) procedure based on the Boruta algorithm (Kursa &
Rudnicki, 2010) and a Stepwise feature selection (Chapter 3, 4 & 6) based on the analysis
of variance (ANOVA) were used to select the most informative wavelengths and to remove
unrelated and noisy data.

(3) Construction of a model using the training set. A mathematical model is derived using
a certain number of variables measured on the samples (the training set) and their known
categories.

(4) Validation of the model using an independent set of samples. This is done to evaluate the
reliability of the classification achieved (Brereton, 2003; Vandeginste et al., 1998). Model
validation process is essential since it demonstrates that the models obtained by the
supervised pattern recognition techniques are sufficient to perform classification of unknown
samples. At best, there are enough available samples to create separate (independent)
training and test sets, with each set containing class-representative samples. This validation
procedure is known as external validation (Chapter 5) whereby the test set is completely
independent from the model building process. However, in food analysis, this ideal situation

is rarely the case. In this situation, cross-validation methods (Chapter 3) are commonly
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employed whereby, the prediction ability of the model is determined by developing a model
using part of the dataset (training or learning set) and applying it to another part of dataset

(test set) to validate it.

1.5.5 Data fusion

Data fusion is a very useful tool that can be used in parallel with the other aforementioned
chemometric methods. It can be used in an integrated way, to make good use of the
abundance of data that often is analysed in food omics studies (Bevilacqua et al., 2017). The
use of data fusion is expected to increase the global classification/prediction ability, decrease
the uncertainty of results and enable better outlier detection (Borras et al., 2015).

Statistical data fusion achieves a global view of the system being investigated by
simultaneously focusing on the analysis of multiple sets of data. Low-level data fusion is
when individual data matrices from different experiments are treated as a single “super-
matrix” to be processed by a multivariate technique of choice to extract the information
about both experiments; mid-level data fusion involves the integration of the data at the level
of features which are extracted from each different data block and is generally preferred,
over low-level, when the goal is to predict rather than interpret. Both strategies are applicable
to exploratory and predictive analysis. Further data fusion of the latter is possible, which
occurs at the level of the predictions and is known as high level fusion (Bevilacqua et al.,
2017). The use of data fusion approaches coupled with chemometric classification
techniques has mostly been reported for the authentication of the food matrices (Biancolillo
et al., 2014; Borras et al., 2015; Riuzzi et al., 2021). In Chapter 6 low-level data fusion was

performed to improve the discriminating capacity of the model applied.
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CHAPTER 2
Aim of the study

The main objective of this doctoral thesis is to evaluate NIR and NMR spectroscopic
techniques in combination with pattern recognition tools as chemometric approaches for
assessing authenticity of food products from animal origin through analytical methods based
on safety inspection and/or quality traits assessment.

e Presence of pyrrolizidine alkaloids (PAs) and their N-oxides (PANOs) in bee pollen
have been reported to cause toxicity in humans. Since consumption of bee pollen as a
food supplement has increased recently, there is need for rapid detection of these natural
toxins in food; a challenge that could be met by NIR spectroscopy. Two NIR
spectroscopic devices (portable and benchtop) were used to discriminate levels of PAs
and PANOs in bee pollen and their capacities to do so were evaluated (Chapter 3).

e Fresh chicken meat is highly perishable, leading to a fast loss of freshness during
storage. Due to its relatively short shelf life, a rapid, cost-effective and non-destructive
quality control system to assess meat freshness is needed. The capacities of two NIR
spectroscopic devices (portable and benchtop) to analyse chicken meat freshness are
explored in discriminating among four refrigeration time (2, 6, 10 and 14 days post
mortem) coupled with multivariate classifier models (Chapter 4).

e Insects represent an alternative to conventional protein and lipid feedstuffs for
monogastric animals, providing strategic solutions to address some environmental and
ethical concerns. Therefore, the need for rapid and reliable analytical methods for
evaluating product quality, preferably exploiting real-time methods arises. For these
reasons, capabilities of a VIS/NIR and two NIR instruments (portable and bench-top) to
discriminate among table eggs from quails fed with different inclusion levels of
silkworm pupa meal is evaluated throughout four supervised pattern recognition
models. An in-depth interpretation of the most predictive VIS/NIR and NIR features
selected by a random forest (RF) algorithm was another challenge of the experimental
trial (Chapter 5).

e Forage may affect the environmental sustainability of a given dairy chain, the quality of
milk and its suitability for high-value dairy products. To better understand the influence

of the dietary forage proportion, especially in the case of intensive dairy systems, NMR
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metabolomic and FAs profiles of milk are gathered and analysed giving better
understanding of the relationship between feeding system and the wide pool of

biomarkers useful to authenticate the milk dairy chain (Chapter 6).
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Abstract

Bee pollen may be contaminated with pyrrolizidine alkaloids (PAs) and their N-oxides (PANOs), which are mainly detected
by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), even though the use of fast near-infrared
(NIR) spectroscopy is an ongoing alternative. Therefore, the main challenge of this study was to assess the feasibility of
both a lab-stationary (Foss) and a portable (Polispec) NIR spectrometer in 60 dehydrated bee pollen samples. After an
ANOVA-feature selection of the most informative NIR spectral data, canonical discriminant analysis (CDA) was performed
to distinguish three quantitative PA/PANO classes (pg/kg): <LOQ (0.4), low; 0.4-400, moderate; > 400, high. According
to the LC-MS/MS analysis, 77% of the samples were contaminated with PAs/PANOs and the sum content of the 17 target
analytes was higher than 400 pg/kg in 28% of the samples. CDA was carried out on a pool of 18 (Foss) and 22 (Polispec)
selected spectral variables and allowed accurate classification of samples from the low class as confirmed by the high values
of Matthews correlation coefficient (>0.91) for both NIR spectrometers. Leave-one-out cross-validation highlighted precise
recognition of samples characterised by a high PA/PANO content with a low misclassification rate (0.02) as false negatives.
The most informative wavelengths were within the < 1000, 1000-1660 and > 2400 nm regions for Foss and > 1500 nm for
Polispec that could be associated with cyclic amines, and epoxide chemical structures of PAs/PANOs. In sum, both lab-
stationary and portable NIR systems are reliable and fast techniques for detecting PA/PANO contamination in bee pollen.

Keywords Pyrrolizidine alkaloids - Bee pollen - LC-MS/MS - NIR spectroscopy - Canonical discriminant analysis

Introduction

Bee pollen is a mixture of flower pollen, nectar and bee
saliva. This beehive product is rich in essential nutrients
and biologically active substances, such as phenolic com-
pounds that can exhibit antioxidant, anti-inflammatory and
anti-microbial activity. Thus, the consumption of bee pollen
as a food supplement and a health product has increased in
recent years [1]. However, depending on the geographical
and botanical origin, bee pollen might be potential hazard

4 Roberta Merlanti
roberta.merlanti @unipd.it

Department of Comparative Biomedicine and Food Science,
University of Padova, 35020 Legnaro, PD, Italy

< Department of Animal Medicine, Production and Health,
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for human intake due to the presence of natural toxins like
pyrrolizidine alkaloids (PAs) and their N-oxides (PANOs)
[2].

PAs/PANOs are secondary metabolites produced by
plants as a chemical defence against herbivorous insects.
They are predominant in all genera of the Boraginaceae fam-
ily, in the Senecioneae and Eupatorieae tribes (Asteraceae),
but they are also present in the genus Crotalaria (Fabaceae)
[3]. PAs/PANOs have been reported to cause toxicity in
many animal species, including humans. Experimental
data obtained from in vitro and in vivo studies suggest that
chronic exposure to PAs/PANOs may lead to hepatotoxicity,
genotoxicity, carcinogenicity and pulmonary lesions [4, 5].
However, the toxicity of PAs/PANOSs is dependent on their
chemical structure [6]. Only those compounds that contain
a double bond at the 1,2-position of the necine base can be
transformed into highly reactive pyrroles in the liver. Fur-
thermore, PAs/PANOSs can be classified according to their
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esterification level as cyclic diesters, open-chain diesters
and monoesters, which are in decreasing order of toxicity
[4-6]. Based on botanical origin and chemical structure,
PAs/PANOs can be classified into different groups, such
as lycopsamine, senecionine and heliotrine types [3]. The
lycopsamine-type PAs/PANOSs consist of monoesters (e.g.,
lycopsamine and its N-oxide, indicine N-oxide, intermedine)
and open-chain diesters (e.g., echimidine and its N-oxide)
produced by plants from the Boraginaceae and tribe Eupa-
torieae. The senecionine-type compounds are cyclic diesters
(e.g., jacobine, retrorsine, senecionine, seneciphylline and
their N-oxides, and senkirkine), particularly found in plants
from the tribe Senecioneae, while the heliotrine-type PAs/
PANOs are monoesters (e.g.. heliotrine and its N-oxide) that
occur in the genus Heliotropium (Boraginaceae) [3].

Although PAs/PANOs can cause toxic effects, it has not
yet been possible to establish a limit in food and feed due
to analytical uncertainties [7]. In addition, there is a lack of
toxicological data relating to the PAs/PANOs found most
frequently in food [8]. Some authorities, such as the Euro-
pean Food Safety Authority (EFSA), have performed inde-
pendent risk assessments by applying the margin of exposure
(MOE) approach, based on the benchmark dose lower confi-
dence limit for a 10% excess cancer risk (BMDL ;) derived
from animal studies. In this approach, an MOE value of at
least 10,000 is of low concern for carcinogenic effects [3]. In
2011, the EFSA proposed an orientation value of 0.007 pg/
kg body weight (b.w) for the sum content of PAs/PANOs,
based on a BMDL,;, of 70 pg/kg b.w/day of lasiocarpine in
male rats, and an MOE value of 10,000 [3, 9, 10]. In 2017,
the EFSA updated its risk characterisation using the MOE
approach and a new BMDL,, of 237 pg/kg b.w, derived
from the incidence of liver haemangiosarcoma in female
rats exposed to riddelliine [8]. Thus, an orientation value of
0.024 pg/kg b.w/day for the sum of PAs/PANOs could be
considered of low concern for public health [11]. Regard-
ing non-carcinogenic risks, with PA/PANO concentrations
lower than 0.1 pg/kg b.w/day, these kinds of effect are not
expected to occur [10]. This orientation value was obtained
from a No Observed Adverse Effect Level (NOAEL) for
riddelliine in rats of 10 pg/kg b.w/day, divided by an uncer-
tainty factor of 100 [10]. Based on data published by EFSA
[12], possible limits for PAs/PANOSs in those foods that most
contribute to human exposure through the diet are currently
being discussed at European Union level [13]. Maximum
PA/PANO levels of 400 and 500 pg/kg have been proposed
for pollen products [14, 15]. Nevertheless, given that intake
of even low PA/PANO amounts could increase the risk to
health, especially if consumed frequently, the recommenda-
tion is still that the intake of these natural toxins should be
minimised to the lowest level possible [ 16]. For this reason,
the EFSA recommends the development of more sensitive
methods to detect PAs/PANOs in food [8].
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The main methods for analysis of PAs/PANOs are based
on liquid chromatography coupled to tandem mass spec-
trometry (LC-MS/MS), which is highly sensitive, specific
and reliable [17-19] but also time-consuming and expensive.
Therefore, there is a need to develop fast, non-destructive,
cost-effective and multi-modality analytical methods that
support at-line control of natural toxins throughout the sup-
ply chain. Near-infrared (NIR) spectroscopy is a powerful
technology that has been already proposed in food-con-
taminant monitoring related to human health concern [20].
Hence, there is an ongoing increase in the application of
NIR to detect mycotoxins [21, 22], allergens [23] and gluten
[24] in food products, even at low levels (pg/kg). However,
to the best of our knowledge, NIR spectroscopy applications
for the detection of PAs/PANO:s in bee pollen or analogous
food supplements have not yet been performed. So far, only
Carvalho et al. have reported the potential of NIR to pre-
dict the PA/PANO content in fresh and dried leaves of three
Senecio species [25]. Furthermore, there is a lack of litera-
ture on the feasibility of applying miniaturised and portable
spectroscopic devices, which could further raise the rapidity
of measurement as well as avoiding the transportation of
samples to the laboratory [26, 27].

In this context, this study first aimed to evaluate the dis-
tribution of PAs in bee pollen through univariate analysis
across a classification criterion based on 400 pg/kg that
could be considered a potential threshold of compliance in
line with the future policy of food safety authorities. Regard-
less of the compliance limit, there is a need for rapid detec-
tion of these natural toxins in food, a challenge that could
be reliably met by NIR spectroscopy technique. Thus, the
main goal of this trial was to assess the feasibility of two
NIR systems by means of a statistical modelling approach
based on targeted canonical discriminant analysis (CDA).
To achieve these aims, 60 bee pollen samples were analysed
by a validated LC-MS/MS method, suitable for detecting
and quantifying 17 PAs/PANOs suggested by EFSA to be
monitored in food.

Materials and methods
Sampling and experimental design

Sixty dehydrated bee pollen samples were purchased from
stores and online shops from different countries (39 from
Italy, 17 from EU countries, 4 from non-EU countries).
Based on standard guidelines and literature data, the sam-
ples were supposed to have a moisture level lower than 6%
[28, 29]; therefore, they were kept in a dark, cool and dry
place until analysis by LC-MS/MS and NIR spectroscopy.
Approximately 50 g of each bee pollen sample was ground
and homogenised by a GRINDOMIX GM 200 mill (Retsch,
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[talia, Torre Boldone, Italy) at 6000 rpm for 15 s. The NIR
spectral data collection and LC-MS/MS analysis were car-
ried out on ground bee pollen.

LC-MS/MS analysis
Standards, solvents and reagents

Analytical standards were obtained from different suppliers
as follows: echimidine (purity 97%), echimidine N-oxide
(purity 97%), heliotrine (purity 91%), heliotrine N-oxide
(purity 91%), lycopsamine (purity 80%) and lycopsamine
N-oxide (purity 80%) from PhytoLab GmbH & Co. KG
(Vestenbergsgreuth, Germany); senecionine (purity 99%),
senecionine N-oxide (purity 99%), seneciphylline (purity
94%) and seneciphylline N-oxide (purity 94%) from Carl
Roth & Co. KG (Karlsruhe, Germany); indicine-N-oxide
(purity 99%), intermedine (purity 99%), jacobine (purity
98%), jacobine N-oxide (purity 98%), retrorsine (purity
90%), retrorsine N-oxide (purity 96.0%) and senkirkine
(purity 98%) from Phytoplan (Heidelberg, Germany); caf-
feine (purity 98%), used as an internal standard, was from
Sigma-Aldrich (Steinheim, Germany).

Methanol (LC-MS grade) and sulphuric acid (98% purity,
analytical grade) were from Carlo Erba reagents (Milan,
[taly). Ammonia (28% purity, analytical grade) was from
VWR Chemicals. Formic acid (98% purity, LC-MS grade)
was from Sigma-Aldrich. Ultra-pure water was obtained
from a water purification system (Purelab Classic, ELGA
Lab Water, High Wycombe, UK).

Sample preparation and LC-MS/MS analysis

Sample preparation, PA/PANO extraction from bee pol-
len samples and LC-MS/MS analysis were performed as
described by De Jesus Inacio et al. [30]. The validated
LC-MS/MS method used in this work is suitable for detect-
ing and quantifying 17 PAs/PANOs in bee pollen. Detailed
information on the analytical parameters (specificity, lin-
earity, apparent recovery, precision, absolute recovery and
matrix effect) evaluated in the LC-MS/MS method valida-
tion for target PAs/PANOs were reported in De Jesus Inacio
et al. [30].

Briefly, the PAs/PANOs were extracted from 2.5 g of
ground bee pollen samples using 15 mL of 0.05 M sulphuric
acid solution. After 10 min of shaking, 10 mL of n-hexane
was added and the samples were shaken for another 10 min
and centrifuged at 3000g for 10 min. The organic phase
was discarded and the aqueous extracts were then applied
onto strong cation polymeric solid phase cartridges (Bond
Elut Plexa PCX, 200 mg/6 mL, Agilent), previously con-
ditioned with 6 mL methanol and 6 mL 0.1% formic acid
in water. After loading, the cartridges were washed with

3 mL methanol and then eluted with 6 mL of 5% ammonia
in methanol. The eluates were dried under an air stream at
50 °C, re-suspended with 1 mL of caffeine (internal stand-
ard, 500 ng/mL) in 0.1% formic acid in methanol and 0.5%
formic acid in water (20:80, v/v) and filtered with a syringe
filter consisting of a 0.22-um regenerated cellulose (RC)
membrane [31]. The PA/PANO extracts were analysed using
a high-performance liquid chromatography system consist-
ing of an Accela 600 HPLC pump equipped with a CTC
automatic injector (Thermo Fischer Scientific, San Jose,
CA, USA) and coupled to an LTQ XL ion trap mass spec-
trometer (Thermo Fischer Scientific, San Jose, CA, USA)
with a heated electrospray ionisation (HESI-II) probe. Five
microliters of extract samples was loaded onto the analytical
column (Hypersil GOLD 100x 2.1 mm, 1.9 pm, Thermo
Fisher Scientific, San Jose, CA, USA), and the PA/PANO
separation was performed in a gradient of solvent A (water
with 0.1% formic acid) and B (methanol with 0.1% formic
acid) at a flow rate of 200 pL/min as follows: isocratic con-
dition from 0 to 4 min (90% A and 10% B); from 10 to 15%
(B) in 0.5 min; 15% (B) from 4.5 to 9 min; from 15 to 40%
(B) in 5 min; from 40 to 80% (B) in 1 min; 80% (B) for
1.5 min; from 80 to 10% (B) in 0.5 min; from 17 to 20 min
10% (B) to re-equilibrate the column.

The 17 PAs/PANOs were detected by the MS with the
ESI source operating in positive-ion mode. The optimised
operational LC-ESI(+)-MS/MS and detection conditions
used for all the PAs/PANOs were as follows: sheath gas flow,
35 arbitrary units; auxiliary gas flow, six arbitrary units; ion
spray voltage, 3.5 kV; capillary temperature, 350 °C; capil-
lary voltage, 11 V; and tube lens, 60 V. The MS/MS condi-
tions (collision energy, precursor and product ions) and the
retention times obtained for each analyte were reported in
Inacio et al. [30].

The limit of quantification (LOQ) of each PA/PANO was
set at 0.4 pg/kg which is the lowest calibrator concentra-
tion on the calibration curve that could be quantified with a
precision within 20%, and trueness between 80 and 120% as
reported by the European Commission Decision 2002/657/
EC [30].

The concentration of individual PAs/PANOs was calcu-
lated based on calibration curves prepared with a pool of
blank bee pollen spiked with the 17 PAs/PANOs prior to
the extraction to obtain the final concentration in the range
0.4-100 pg/kg.

NIR analysis

All bee pollen samples were analysed in triplicate using
both a FOSS DS-2500 scanning monochromator (FOSS
NIRSystem, Hillergd, Denmark) and portable NIR appa-

ratus (PoliSPECN'®, ITPhotonics, Breganze, Italy). In the
case of the lab-stationary system (referred to as Foss), scans
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were recorded in reflectance mode (850-2500 nm at 0.5-nm
intervals) using a slurry cup with a quartz window (12.6
em” area) in 30 g aliquots. With regard to the portable sys-
tem (referred to as Polispec), scans were also performed in
reflectance mode (902—-1670 nm at 2-nm intervals) using
a quartz cylinder (9.1 cm? area) in 5 g aliquots. Spectral
data were recorded as absorbance (A) calculated as log(1/R),
where R represents reflectance, using WinlISI4 software
V4.10.0.15326 (FOSS Analytical A/S, Hillergd, Denmark)
for Foss and using poliDATA (ITPhotonics, Breganze,
Italy) for Polispec. For both systems, to carry out the sta-
tistical analysis, spectra were exported to an Excel (Micro-
soft Office®, USA) spreadsheet and averaged before further
chemometric modelling.

Data and statistical analysis

The 60 bee pollen samples analysed were grouped into
three quantitative (pg/kg) classes according to the sum of
the 17 PAs/PANOs: <LOQ (0.4), low; 0.4-400, moder-
ate; and > 400, high. As the PA/PANO data were not nor-
mally distributed, a Kruskal-Wallis test was carried out
to analyse the effect of the distribution of these alkaloids
within the three quantitative classes (XLSTAT, Addinsoft,
release 2019, NY, USA). To evaluate the classifying effect,
a multiple pairwise comparison was conducted using the
Steel-Dwass—Critchlow—Fligner procedure (based on the
averaged rank).

The variable importance in projection (VIP) indices
were calculated using the relevance of predictors accord-
ing to the threshold criterion of ‘greater than one’ of the
PLS-DA algorithm [32], by means of MATLAB R2017a
software V9.2.0.538062 (The MathWorks Inc., Natick, MA,
USA) and PLS Toolbox (PLS Toolbox V5.8.2.1, Eigenvector
Research Inc., Manson, WA, USA).

To discriminate the PA/PANO classes, a supervised CDA
was also adopted for each NIR spectrometer (SAS 9.4 soft-
ware, SAS Institute Inc., Cary, NC, USA). The first step
was processing of the Foss dataset to reduce the number of
wavelengths. For this purpose, the absorbance (A) was aver-
aged every 8-nm interval, and the mean value was assigned
to the intermediate wavelength (i.e., Ags4 is equal to the aver-
age of A from 850 to 858 nm, 4,49, is equal to the average of
A from 2492 to 2500 nm). The second step was a stepwise
feature selection based on analysis of variance (ANOVA) to
select those significant (p <0.05) spectral variables related to
the PA/PANO classes. CDA was performed on the selected
spectral variables (PROC CANDISC of SAS), to explain the
total variance of the model in two main canonical functions
(CAN 1 and CAN 2). The degree of dissimilarity among
the three quantitative PA/PANO classes was measured by
squared Mahalanobis distances (D’-Mahalanobis).

@ Springer

43

The reliability of the CDA model was assessed by a
confusion matrix obtained by means of a cross-validation
based on the leave-one-out criterion (PROC DISCRIM of
SAS). As suggested by Bisutti et al. [33], the reliability of
the related confusion matrix was evaluated by a set of sta-
tistical metrics: accuracy, precision, sensitivity, specificity
and Matthews correlation coefficient (MCC).

Results and discussion

LC-MS/MS analysis and distribution of PAs/PANOs
in bee pollen

LC-MS/MS analysis of the 60 dehydrated bee pollen sam-
ples was performed according to a validated method pub-
lished in a previous study [30].

PAs/PANOs were found in 46 (77%) of the 60 bee pollen
samples and the sum amounts of the detected compounds
were noticeably distinct (from 2 to 3356 pg/kg); a detailed
framework of the descriptive statistics is reported in Table 1.
In 17 (37%) of the contaminated samples, the sum of PA/
PANO concentration was over the value of 400 pg/kg, which
has been considered as threshold for further analyses per-
formed in this study. Lycopsamine-type PAs/PANOs were
found in the majority (85%) of the contaminated bee pollen
samples, followed by senecionine-type (48%) and heliotrine-
type PAs/PANOs (11%) that were rarely found. Figure 1
summarises the descriptive statistics of the main individual
and total PAs/PANOs within the three quantitative classes
through univariate non-parametric analysis. There was a pre-
dominance of echimidine, echimidine N-oxide and lycop-
samine. The most noticeable feature is that there is high
variability in the distribution of the PA/PANO concentration
within the high class, while it is negligible for the moderate
class. This is especially observed for lycopsamine (Fig. 1a),
senecionine and seneciphylline N-oxides (Fig. 1b), while for
echimidine and echimidine N-oxide (Fig. 1a), the range of
variability is much lower and the distribution of samples is
quite close to the median value.

The results of this trial are in agreement with those
published by Mulder et al. [17] and Picron et al. [18]
who also reported a similar pattern for PAs/PANOs in
bee pollen, with echimidine and its N-oxide as the main
contributors to the sum content of these natural toxins.
Even though the LC-MS/MS methods used by these
authors cover a higher number of analytes (28-30), most
of the additional compounds, including lasiocarpine and
its N-oxide, have not been detected or they were found at
trace levels and therefore, such compounds do not con-
tribute remarkably to sum of PA/PANO concentration.
Furthermore, the PA/PANO composition identified in
the bee pollen samples, is also in agreement with that
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Table 1 Descl:ri'pl.ive smtist.ics of Analytes Range Mean (+sd) Percentiles nd

the 17 pyrrolizidine alkaloids

(PAs) and PA N-oxides 10th 50th 90th (n)

(PANOs) and ZPAs/PANOs

(pg/kg) monitored in bee pollen Echimidine 0-2128 124 (332) 0 0 316 33
Echimidine N-oxide 0-2078 96 (310) 0 254 32
Jacobine - - - - - 60
Jacobine N-oxide - - - - - 60
Indicine N-oxide 0-318 20 (58) 0 0 47 32
Intermidine 0-246 10 (34) 0 0 34 32
Lycopsamine 0-418 30 (77) 0 1 115 27
Lycopsamine N-oxide 0-368 23 (61) 0 0 92 30
Retrorsine 0-109 2(14) 0 0 3 52
Retrorsine N-oxide 0-953 17 (123) 0 0 0 37
Senkirkine - - - - - 60
Senecionine 0-64 6(16) 0 0 22 47
Senecionine N-oxide 0-297 19 (59) 0 0 74 44
Seneciphylline 0-173 8(27) 0 0 24 45
Seneciphylline N-oxide 0-679 24 (104) 0 0 30 49
Heliotrine 0-2 0(0) 0 0 0 57
Heliotrine N-oxide 0-11 0(2) 0 0 0 55
EPAs/PANOs 0-3356 382 (736) 0 32 1081 14

nd number (n) of samples where the analytes were not detected; sd standard deviation

reported for honeys from Europe [18, 34]. In addition,
the data from this work underline the high variability of
the presence of PAs/PANOs in bee pollen, as observed for
lycopsamine (Fig. 1a) and senecionine N-oxide (Fig. 1b).
This phenomenon is probably due to the fact that bees
collect pollen from both plants that do not synthesise
these toxins and PA-producing plants [18]. Indeed, both
the PA/PANO concentration and composition depend on
the botanical taxon, geographical origin [35] and devel-
opmental stage of the plants. Moreover, synthesis of PAs/
PANOs by plants is influenced by many other agronomic
and environmental factors such as soil fertility, water
availability and climate conditions [36-38]. Since most
bee pollen samples analysed were from Italy and other
European countries, possible sources of the lycopsamine-
type PAs/PANOs could be plants from the genus Echium
(e.g., E. vulgare), which is known to produce high lev-
els of echimidine and its N-oxide, and Borago officinalis
and Eupatorium cannabinum that synthesise lycops-
amine, lycopsamine N-oxide and their isomers. Echium
and Borago species are abundant in the Mediterranean
region [39, 40], while Eupatorium cannabinum is diffuse
in Europe [40]. Regarding senecionine-type PAs/PANOs,
their origin could be Senecio species, which are widely
distributed in Europe and grow everywhere [25, 39].
Although these plants are abundant, if other more attrac-
tive pollen sources are available, bees may prefer them

[40], and this could also explain the high variability of
the PA/PANO concentration and frequency in bee pollen.

NIR spectral data and discriminant analysis of PAs/
PANOs

The development of a rapid spectroscopic method in the
detection of PAs/PANOs in food supplements was the main
challenge of this trial. For food safety purposes, this chal-
lenge was to verify if NIR combined with a statistical model-
ling approach could be a feasible technique to discriminate
bee pollen samples grouped into three classes according to
their PA/PANO content.

NIR spectra

The NIR spectral data were recorded for ground bee pollen
because the grinding process tends to improve the discrim-
inative performance. As reported by Pasikitan et al. [41],
NIR analysis is sensitive to the particle size and homoge-
neity of the matrix, both of which can affect the spectra
and, consequently, the predictive performance. Thus, to
guarantee a satisfactory precision in discriminative analy-
ses, a grinding step is useful to obtain a more homoge-
neous matrix and reduce the light scattering effects that
result in spectral noise. In the previous study of De Jesus

@ Springer

44



2476

European Food Research and Technology (2020) 246:2471-2483

a Echimidine Echimidine N-oxide Lycopsamine
3000 - p <0.001 3000 4 p<0.001 800 -
r s p— 1 r — - 1
p=0004 _p=0009 —p=0002 p=0007 | p <0.001
2500 T 2500 T 500 - : p< 0.001 = p= 0.036 :
2000 A 2000 - * 400 | .
o
= .
8 1500 - 1500 200 -
1000 - 1000 ) 200 | T
500 - 500 100 - x +
ol «— & 0. = é ™ PR
Low Moderate High Low Moderate High Low Moderate High
b Senecionine N-oxide Seneciphylline N-oxide c ¥17 PAs/PANOs
: p=0077 ) p=0.041 7 p <0.001
- 50025 p=085" - =023 _p=0188" - <0001 _p<0001"
300 | r r I. 700 - o 3500 + *
250 | . 600 -+ 3000 - :
g 500 2500 |
* .
o 200 +
= 400 - x 2000 -
150
300 - 1500 - -
100 1 x T 200 - 1000 - L
50 | + A
x 100 - + 500 + ==
0 — — = 0
Low Moderate High Low Moderate High Low Moderate High

Fig.1 Box—whisker plots of lycopsamine-type (a) and senecionine-
type compounds (b) and total PAs/PANOs (e) according to the three
quantitative (ug/kg) PA/PANO classes (<LOQ (0.4), low; 0.4-400,
moderate; and>400, high). The box plots represent the follow-
ing descriptive statistics: median (bar in box), mean (+, red cross),
25-75% quartile (bottom and top end of the box), minimum and

Inacio et al. [30], which tested the capability of a visible
spectrophotometer to predict the presence of PAs/PANOs
in bee pollen, the highest correlation between PA/PANO
amount and the spatial colour coordinate named lightness
was observed in ground samples.

Figure 2 evidences the averaged NIR spectra of the
three quantitative PA/PANO classes. For both NIR sys-
tems, in the first part of the spectrum region (< 1450 nm),
there was overlapping of the absorbance (A) among the
three classes, while the absorbance of the low class was
noticeably separated from the other two classes at higher
wavelengths (> 1500 nm). In the study of Gonzalez-Mar-
tin et al. [42], which applied NIR spectroscopy to assess
bee pollen quality parameters, the spectra seemed to be
comparable to those of the Foss system, with a meaning-
ful absorbance peak around 1950 nm and a subsequent
increasing trend up to 2500 nm. Costa et al. [43] reported a
similar absorbance profile, although they analysed samples
with a Fourier transform (FT)-NIR system. With regard
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maximum values (whiskers) except for outliers (“circles, distance to
box 1.5-3.0 times interquartile range) and extreme values (*asterisks,
distance to box>3 times interquartile range). The significance (p
values on the top) of the multiple comparisons among the three PA/
PANO classes was determined by Kruskal-Wallis non-parametric test

to the portable system, it was not possible to confirm
the absorbance pattern with data from the literature. The
main outcomes of this alternative NIR instrument are an
increasing absorbance from 1450 nm and A values about
half of the Foss ones.

The VIP scores chart obtained for each NIR spectrom-
eter is shown in Fig. 3. The VIP pathway was characterised
by intense peaks (VIP scores > 1) in the < 1000, 1000-1660
and > 2400 nm regions for Foss and only > 1500 nm for
Polispec. The explicative VIP predictors showed an overlap
between low and moderate classes throughout almost all the
spectral range of the Foss system, meaning that the informa-
tive bands correlated with the smallest or medium PA/PANO
content involved similar dominant wavelength regions. In
contrast, the Foss-VIP pattern of the high class was almost
distinguished from the other ones, and its explicative predic-
tors (VIP scores > 1) belonged to the 900-1350-nm region.
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Fig.2 Absorbance spectra for the three quantitative classes of pyr-
rolizidine alkaloids (PAs) and their N-oxides (PANOs) in bee pollen.
based on lab-stationary (Foss, upper panel) and portable (Polispec,

However, in the last part of the spectrum (> 2400 nm) there
was a similar trend among the three classes. In the case of
the portable NIR system, the VIP pathway was characterised
by lower values (< 1.6) and slight differences among the PA/

lower panel) near-infrared (NIR) systems. Quantitative (ug/kg) PA/
PANO classes: <LOQ (0.4), low; 0.4-400, moderate; > 400, high

PANO groups. A potential relationship between VIP and PA/
PANO detection could be due to a multiplicity of interfer-
ences that are discussed in the following section.
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CDA based on NIR spectral data

The main purpose of this study was to apply a multivariate
pattern recognition method to determine the functional
relationship between spectral NIR data and the presence
of PAs/PANOs in a set of bee pollen samples, simulat-
ing a rapid screening to enhance the safety of on-market
operating conditions. Among the supervised discriminat-
ing methods, CDA has been already proposed as a statis-
tical model able to classify a sub-population of samples
within a specific genetic, geographical or chemical class
(e.g.., PA/PANO amount) according to the similarity of a
huge set of chemometric variables such as the NIR spectra
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Wavelengths (nm)

[30]. Despite being less frequently applied, the CDA
algorithm allows a reduction of data redundancy, thus the
discriminating power is preserved in the first canonical
discriminant function [44]. Even though CDA seems to
improve the classification accuracy when spatial separa-
tion of the experimental groups is achieved by the use of
a large number of closed-spectral signatures, the use of a
large dataset with too many highly correlated variables
could be inappropriate for selecting the more informative
wavelengths avoiding the irrelevant ones [32, 45]. Indeed,
a data arrangement is required when a dataset has too
many irrelevant variables, a high multicollinearity among
instrumental signals and a number of predictors larger than



European Food Research and Technology (2020) 246:2471-2483

2479

the sample size [46]. Therefore—in the case of the Foss
system—before the stepwise selection, the dataset was
restricted to 207 averaged spectral variables so that each
one represents a 16 nm wavelength range (from Ay, to
A2494)- The portable NIR system presents a short window
for spectral acquisition and a relatively longer measure-
ment interval (2 nm); hence, there was no need to restrict
the original dataset composed of 390 spectral variables.

For the lab-stationary NIR system (Foss), the stepwise
procedure selected 18 significant averaged wavelengths:
A1162 A12500 413300 41362 A1 A1s1a Arssar A17aer Aissor A193o
A1994> 420422 420740 421860 422180 22500 A2322 AN Aygqy. These
spectral variables were used to perform the CDA algorithm
that defined two significant functions, CAN1 and CAN2
(Wilks’s 4=0.19, approximate F value =2.85, df1 =30,
df2 =80, p<0.001), which explained 78.9% and 21.1%
of the total variability, respectively. Regarding the port-
able NIR system, 22 wavelengths were sorted as the most
informative by the stepwise procedure: A; 46, 41158 411729
41186 412000 412260 41270 41320 41332 A13aas Aiaess Aiaier A1aans
A14600 41484 41514 415340 415760 41588 416322 41652 A0 Ay 65- The
CDA algorithm defined two canonical functions (CANI1 and
CAN2) that showed a high discriminative power (Wilks’s
A=0.25, approximate F value=1.59, df1 =44, df2=72,
p=0.039), which accounted for 71.6% and 28.4% of the total
variability, respectively. As shown in Fig. 4, for both NIR
systems the CDA model highlighted the possibility of sepa-
rating the 0.95 confidence circles for population centroids,
especially the low class from the others. This discriminative
capacity was confirmed by the significant D>-Mahalanobis
values, which were equal to 9.5 (» <0.001) between low
and moderate classes, and 16.1 (p<0.001) between low and
high classes for Foss, and 7.7 (p=0.023) between low and
moderate classes, and 9.9 (p=0.022), between low and high
classes for Polispec.

Furthermore, a confusion matrix obtained by leave-
one-out cross-validation confirmed that the CDA classi-
fication functions allowed the correct assignment of each
sample to its actual PA/PANO class based on the restricted
pool of the selected NIR features (Table 2). Overall, both
NIR spectrometers showed an accurate prediction of the
absence of PAs/PANOs because of the high values of pre-
dictive parameters for the low class, as summarised by
the MCC values of 0.96 and 0.91 for Foss and Polispec,
respectively. Conversely, assessment of the high class by
the NIR-based algorithm highlighted a decrease in discri-
minant performance that was more relevant for the port-
able apparatus (MCC of 0.73 versus 0.59), even though no
sample was misclassified as low class (Table 2). Consider-
ing the hypothesis of rapid spectroscopy-based screening
for the absence (low class) and presence of PAs/PANOs
(fusion of moderate and high classes), both NIR systems
showed a false negative misclassification rate equal to 0.02

High

CAN2 (21.1%)
o

Moderate

-1 ;‘ - B

-4 -3 -2 -1 0 1 2 3 4

CAN1 (78.9%)

CAN2 (28.4%)
{=]

Moderate

\ o

-4 -3 -2 -1 0 1 2 3 4

CAN1 (71.6%)

Fig.4 Biplots of the 0.95 confidence circles around the centroids for
the three quantitative classes of pyrrolizidine alkaloids (PAs) and
their N-oxides (PANOs) in bee pollen, based on lab-stationary (Foss,
upper panel) and portable (Polispec, lower panel) near-infrared (NIR)
systems. Quantitative (pgfkg) PA/PANO classes: <LOQ (0.4), low;
0.4-400, moderate; and > 400, high

(1 out of 46), which refers to a sample from the moder-
ate class that was recognised as from the low class. That
value is lower than the 0.05 threshold for false negatives
usually applied in toxicological screening tests [47]. For
Polispec, there was also a false-positive misclassification
rate of 0.07 (1 out of 14) related to wrong assignment of a
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Table2 Confusion matrix

S S Foss Polispec

and descriptive statistics

in cross-validation (leave- Actual Actual

one-out criterion) for the

three quantitative classes of Predicted Low Moderate High Predicted Low Moderate High

pyrrolizidine alkaloids (PAs) Low 14 1 0 Low 13 1 0

and their N-oxides (PANOs} in  ppqeryge 0 24 3 Moderate I 22 5

ground bee pollen based on lab- ; .

stationary (Foss) and portable High 0 4 14 High 0 6 12

(Polispec) near-infrared (NIR) Total 14 29 17 Total 14 29 17

systems Sensitivity 1.00 0.83 0.82 0.93 0.76 0.71
Specificity 0.98 0.90 0.91 0.98 0.81 0.86
Accuracy 0.98 0.87 0.88 0.97 0.78 0.82
Precision 0.93 0.89 0.78 0.93 0.79 0.67
MCC 0.96 0.75 0.73 0.91 0.61 0.59

Quantitative (ng/kg) PA/PANO classes: <LOQ (0.4), low; 0.4-400, moderate; and > 400, high; bold values
represent the samples classified correctly

MCC Matthews correlation coefficient

sample from the low class to the moderate class, but this
represents only an additional charge because it implies
further confirmatory analysis by LC-MS/MS, which is
the analytical technique recommended by food safety
authorities.

The outcomes of this study indicate the potential capa-
bility of NIR spectroscopy to perform reliable screening of
bee pollen samples contaminated with PAs/PANOs. Indeed,
these natural toxins significantly affected the spectral data,
indicating that the NIR technology can be applied for a rapid
evaluation of the presence of contaminants [48]. However, as
underlined by the decrease in the sensitivity and specificity
values (Table 2), the attempt to distinguish a moderate from
a high level of PAs/PANOs seems to be partially predictable,
probably due to the chemical structure and stereochemistry
of these molecules, which influence their toxicity and physi-
cal-optical properties [49].

The slightly lower capability of the tested portable NIR
instrument is in agreement with the literature. This phenom-
enon is probably due to worse optical properties and the
negative interference of the field operative conditions com-
pared to the lab-stationary apparatus [26, 50], even though
its flexibility and the possibility of application at/in-line rep-
resent major advantages.

The CDA algorithm (by means of the canonical standard-
ised coefficient) highlighted a relatively similar explicative
power of all the predictors because their loading values (pre-
dictive scores) ranged from 0.30 to 0.50 and these selected
wavelengths involved the spectral region> 1150 nm (Fig. 3).
Among them, within the 1140-1370 nm region, A;,43, 41350,
Az and 4,36, (Foss) and 4; 146, 411580 41172 412000 412260 412700
A304s A13325 1344 ANd 4344 (Polispec) could be related to C-H
stretching second overtones [51]. The absorption bands 4,5
(Foss) and 44,4 (Polispec) can be related to O-H stretch-
ing first overtones of R—OH [52] that are present in the
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chemical structure of PAs/PANOs. The predictors 4,4, and
2460 (Polispec) could be associated with the first overtones
of cyclic amines [52], which compose the basic structure
of all PAs/PANOs. In relation to these latter selected wave-
lengths, the 1400 nm has been already suggested as a shared
region between tertiary-amines and N-oxides, where these
molecules seemed to interact with electromagnetic radiation,
resulting in vibrational spectroscopic signals [25]. Although
the N-oxide spectrum is related to many wavelengths in the
visible and infrared regions, the interpretation of the spec-
troscopic dynamic behaviour of the structure of PANOs is
still lacking [53]. Another region that can also be affected by
cyclic amines is within the 1900-2100 nm region [25], rep-
resented by 41930, 41994» A2042 and 457, (Foss). The CDA fea-
ture stepwise procedure also sorted some informative wave-
lengths between 1500 and 1590 nm, including 4,5, (Foss)
and 45,4, 4,534, 41576 and 4,554 (Polispec). These wavelengths
may be influenced by stretch overtones of O-H and com-
bination bands of N-H with C=0, and C-N stretching of
amine/amide structures [25]. The absorption peak at 4,45,
(Foss) may be related to the second overtone of C=0 stretch-
ing of carboxyl groups [52], which are also found in the
PA/PANO chemical structure. Some of these alkaloids can
also contain epoxide—amine structures that may influence the
Arg3as Argsa (Polispec) and 4,54 (Foss) regions [25]. In the
case of the Foss spectrometer, the selected wavelengths of
A2186+ 42218 422505 42322 and 4,474 can be considered informa-
tive NIR variables because they correspond to combination
bands of N-H from amines/amides and O—H from alcohols,
and C-H and C—C stretching from —CH, —-CH, and —CHj;
[43, 54].
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Conclusions

The outcomes of this work highlighted that over 75% of
the 60 bee pollen samples analysed were contaminated
with PAs/PANOs, even though less than 30% might have a
concentration higher than the threshold of 400 pg/kg used
for the NIR analyses. However, a relevant variability was
observed in the distribution of the 17 PAs/PANOs moni-
tored, as confirmed by the relevant values of standard devia-
tion within both moderate and high classes, which repre-
sent a classification method below or above the threshold
of 400 pg/kg.

The presence of the PAs/PANOSs in bee pollen signifi-
cantly affected the NIR spectra, highlighted a rising level of
absorbance as their concentration increased. This outcome
suggests that their chemical structure interferes with the
light scattering throughout many band regions. The appli-
cation of CDA resulted in a modelling statistical approach
that demonstrates the predictive capacity of NIR systems to
distinguish among the three quantitative PA/PANO classes,
especially for detection of those samples belonging to the
low class, which corresponds to safe samples.

In summary, both NIR systems have the potential to be
applied for rapid and reliable identification of contaminated
bee pollens in large-scale screening in the food supply chain
by also using an at-line operating system, however, the lab-
stationary might be considered the more feasible NIR tool to
achieve this purpose. PA/PANO detection could be strength-
ened by applying a chemometric approach based on a further
informative dataset shared among the research community
and food safety agencies.
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Abstract

Objectives: Near-infrared (NIR) spectroscopy is a rapid technique able to assess meat quality
even if its capability to determine the shelf life of chicken fresh cuts is still debated, especially for
portable devices. The aim of the study was to compare bench-top and portable NIR instruments
in discriminating between four chicken breast refrigeration times (RT), coupled with multivariate
classifier models.

Materials and Methods: Ninety-six samples were analysed by both NIR tools at 2, 6, 10 and 14 days
post mortem. NIR data were subsequently submitted to partial least squares discriminant analysis
(PLS-DA) and canonical discriminant analysis (CDA). The latter was preceded by double feature
selection based on Boruta and Stepwise procedures.

Results: PLS-DA sorted moderate separation of RT theses, while shelf life assessment was more
accurate on application of Stepwise-CDA. Bench-top tool had better performance than portable one,
probably because it captured more informative spectral data as shown by the variable importance
in projection (VIP) and restricted pool of Stepwise-CDA predictive scores (SPS).

Conclusions: NIR tools coupled with a multivariate model provide deep insight into the
physicochemical processes occurring during storage. Spectroscopy showed reliable effectiveness
to recognise a 7-day shelf life threshold of breasts, suitable for routine at-line application for
screening of meat quality.

© The Author(s) 2021. Published by Oxford University Press on behalf of Zhejiang University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
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Introduction

Globally, about 127 million tonnes of poultry meat is produced per
year, making it the biggest meat sector worldwide (FAO, 2020a).
The low price, valuable nutritional profile, mild sensory attributes,
ease of cooking and cultural acceptability are all key factors pushing
the market development of chicken meat (FAO, 2020b; Katiyo
et al., 2020). As for meat in general, the high nutrient and mois-
ture content as well as the tendentially higher pH of fresh chicken
meat make it highly perishable, leading to a fast loss of freshness
during storage (Fernandez-Pan et al., 2014; Kariyo et al., 2020).
Inappropriate storage conditions (e.g. temperature variations, in-
adequate packaging and prolonged shelf life) can result in product
discoloration, accumulation of off-flavours and off-odours, and
alteration of sensory traits, ultimately making meat consumption
unsuitable (Sivarajan et al., 2017). Given poultry meat's relatively
short shelf life (Fernandez-Pan et al., 2014), preservation of quality
during refrigerated storage represents one of the main challenges
for the poultry industry. Currently, meat ageing can be assessed by
sensory, enzymatic, DNA-based, microbiological, bio-imaging and
spectroscopic analytical approaches. However, non-spectroscopic
methods are laborious, time-consuming and destructive and also re-
quire sophisticated laboratory procedures (Alamprese et al., 2016;
Falkovskaya et al., 2019). Due to the dynamism of the meat industry,
a cost-effective and non-destructive quality control system to assess
meat freshness is therefore needed (Teixeira dos Santos et al., 2013;
Mendez et al., 2019).

In this context, near-infrared (NIR) spectroscopy is a fast,
eco-friendly, non-invasive and reliable technology for the analysis
and authentication of a wide range of meat products (Morsy and
Sun, 2013; Mendez et al., 2019), for predicting chicken cur differ-
entiation (Nolasco Perez et al., 2018), identifying breed origin (Ding
et al., 1999), quality attributes (Barbin et al., 2015) and spoilage
(Alexandrakis et al., 2012), and for the discrimination of fresh from
frozen—thawed poultry meat (Atanassova et al., 2018). NIR radi-
ation ranges from 780 to 2500 nm on the electromagnetic spectrum.
The interaction of this radiation with meat samples results in weak
and broad absorption bands that must be analysed through multi-
variate analysis methods, coupled with spectral pre-processing tech-
niques for clear data interpretation (Teixeira dos Santos et al., 2013;
Zareef et al., 2020). Recently, considerable attention has been given
to portable spectroscopic devices due to their valuable advantages
compared to stationary ones. Portable spectrometers are lightweight
and easy-to-use tools that allow direct, non-destructive and in situ
sample measurement. Furthermore, they avoid laboratory transpor-
tation (time and cost saving), improve the efficiency of the testing
process and provide the knowledge to make informed decisions on
the spot (Teixeira dos Santos et al., 2013; Crocombe, 2018).

Based on the above-mentioned premises, our aim was to evaluate
the feasibility of using bench-top and portable NIR spectroscopy
instruments for discriminating chicken breasts during a 14-day re-
frigeration period. The reliability of the portable NIR tool for a
real time control of meat shelf life to make on-the-spot evaluations
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Figure 1. Flow chart of the experimental design: sampling, setting refrigeration time theses, acquiring NIR spectra and predicting discriminative modelling,
LDPE, low-density polyethylene; PLSDA, partial least square-discriminant analysis; CDA, canonical discriminant analysis; NIR, near-infrared.

along supply chain, was compared to the well-known predictive
performance of the bench-top instrument. An in-depth descrip-
tion of the interaction among electromagnetic radiation and alter-
ation pathways aiming at obtaining detailed information about the
physicochemical changes occurring during poultry meat shelf life.
This comparative analysis of the spectroscopy behaviour was related
to a restricted pool of informative NIR wavelengths selected by two
multivariate discriminative models.

Materials and Methods

Experimental design and meat sampling

The study was conducted under ethical approval (project 17/2016;
No 154392 of the 10 May 2016) of the Ethical Committee for
Animal Experimentation of the University of Padova to perform ex-
periments on animals. Moreover, all efforts were made to curtail the
anmimal suffering throughout the trial.

A total of 96 male Ross 308 chickens were slaughtered (car-
cass weight: 2.8 = 0.3 kg) in a commercial plant at 49 days old.
After stunning, exsanguination, plucking and evisceration of birds,
breast muscles were dissected (0.88 = 0.09 kg as averaged weight),
immediately (first experimental day) packed in low-density poly-
ethylene trays wrapped in a 12 um-thick PVC film (Weegal, KOEX
412, Gruppo Fabbri, Vignola, Modena, Italy) and stored in a re-
frigerated cabinet (Majolo® Plus 100 Seasoning Controller, Majolo,
Cadoneghe, Padova, Italy). The storage was designed to simulate
commercial refrigeration setting conditions: samples were exposed
to a 36 W fluorescent lamp light for about 12 h daily (from 8 a.m.
to 8 p.m.), and then in dark during night (from 8 p.m. to 8§ a.m.),
always keeping a temperature of 4 = 1 °C.
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As reported in Figure 1, to assess meat freshness during the shelf
life by NIR spectroscopy, breasts were randomly grouped into four
theses (n = 24) corresponding to the following refrigeration times
(RT), as days post mortem: <2 (2 d), 3-6 (6 d), 7-10 (10 d) and
11-14 (14 d).

Chemical and sensorial analyses on breast samples
The breast samples were analyzed according to the set storage
time (after 2, 6, 10 and 14 days post mortem) to measure their
physicochemical and sensorial traits. The pH was recorded in trip-
licate with a portable pH-meter (KnickPortamess® 911, Berlin,
Germany) equipped with a penetrating electrode (5 mm diameter
conic tip, Crison 5232, Modena, Italy). Colour (averaged of § areas
on the breast surface) was measured by a Konica Minolta CD-600
visible spectrophotometer (Konica Minolta Sensing, Inc., Osaka,
Japan), applying CIE L*a*b* system (L*, lightness; a*, redness; b*,
yellowness) with D65 as light source and 10° observed angle (Melro
et al., 2020). Drip loss was determined by weighing of 2.5 cm-slice
cut from the surface of dorsal breast, which was packaged in poly-
ethylene bags and kept overnight at 2 = 1 °C. Drip loss (%) was
calculated by the following equation: [(initial weight - final weight)/
initial weight]. Sensory evaluation was conducted by a panel con-
sisting of 10 trained students and researchers of the School of
Agricultural Sciences and Veterinary Medicine of Padova University,
and sensory traits (odour, texture and colour) were scored according
to Raab et al. (2008) using a demerit 3-point scoring system (1 = not
acceptable, 2 = acceptable, 3 = good quality). A synthetic sensory
index (SI) was calculated as: [(2 x odour score + 2 x colour score +
1 x texture score)/5], with 1.8 score as the threshold to define spoiled
samples (Raab et al., 2008).
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NIR spectroscopy analysis

As reported in Figure 1, after 2, 6, 10 and 14 days post mortem,
chicken breast samples were analysed (at 18 = 2 °C) within 45 =
10 min using both a bench-top FOSS NIRSystems 5000 analyser
(FOSS Analytical A/S, Hillerod, Denmark) and a portable Polispec
NIR (PoliSPEC™®, ITPhotonics, Breganze, Italy).

For the lab-scale system (referred to as Foss) a right-side breast
subsample (around 125 g) was minced at 4000 rpm for 10 s with
a Grindomix GM200 knife mill (Retsch GmbH, Haan, Germany)
and then poured and gently compressed into a small ring cup with
a quartz window that allowed irradiation of an area of about
9.6 cm’. Spectral data were recorded in duplicate by covering a
range of 1100-2500 nm at 2 nm intervals. The instrument was
equipped with a spinning module, and spectra were collected in re-
flectance mode, averaging 32 scans of the sample after 16 internal
references.

For the portable system (referred to as Polispec), the raw left side
of the breast (not minced) was submitted to NIR analysis through an
embedded 3.2 em? quartz cylinder probe for 10 s scanning time, thus
covering around a 10 cm® meat surface; spectra were acquired in re-
flectance mode (900-1600 nm at 2 nm intervals), in duplicate. Fach
scan lasted § s (about 10 ms of integration time), covering about
10 cm? of the sample area.

For both NIR instruments, spectral data were recorded as ab-
sorbance (A) calculated as log(1/R), where R is the reflectance of the
sample, by using WinISI 2 software V1.05 (Infrasoft International
Inc., Port. Matilda, USA) and poliDATA (ITPhotonics, Breganze,
Italy), for bench-top and portable instrument, respectively. Spectra
were subsequently exported in .csv format for further chemometric
analysis. Prior to statistical analysis, spectra of the two replicates
were averaged. For both instruments, in order to reduce light scat-
tering and to remove the baseline shift, smoothing, standard normal
variate (SNV), first-order derivative and detrend transformations
were applied (Bisutti et al., 2019).

Statistical and chemometric analyses

Regarding meat quality variables, the assumption of normality
was tested using the Shapiro-Wilk test (PROC UNIVARIATE).
Then, instrumental colour, pH and drip loss data were submitted
to a one-way ANOVA (PROC GLM) to test the effect of RT. The
hypotheses of the linear model (normality, independence and
homoscedasticity) were visually assessed on the residuals. Post
hoc pairwise multiple comparisons among levels were conducted
using Bonferroni correction. Orthogonal contrasts were performed
to assess the linear and quadratic components of RT effect. Data
not normally distributed (sensory traits) were analysed using a
non-parametric Kruskal-Wallis test. Post-hoc multiple pairwise
comparisons were conducted using the Steel-Dwass—Critchlow—
Fligner procedure (based on the averaged ranks). The SAS software
(release 9.4, SAS Institute Inc., Cary, USA) was used for all the
above-mentioned analyses.

Then, partial least square-discriminant analysis (PLS-DA) and
canonical discriminant analysis (CDA) statistical modelling ap-
proaches were applied on the NIR spectral variables of both spectro-
meters to discriminate among the 2 d, 6 d, 10 d and 14 d RT theses.
The PLS-DA multivariate classifier model was performed using the
PLS Toolbox (PLS Toolbox, V5.8.2.1, Eigenvector Research, Inc.,
Manson, WA, USA) of MATLAB software (v 9.2.0 538062; The
MathWorks Inc., Natick, MA, USA). Smoothing, SNV, first-order
derivative and detrend transformations gave better results for
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bench-top, while no pre-treatments were carried out for portable
system. The reliability of PLS-DA was assessed by a cross-validation
performing a venetian blind algorithm with 10 splits and one sample
per split (Rubingh et al., 2006). Furthermore, variable importance
in projection (VIP), used to highlight the most influential absorb-
ance wavelengths, was calculated using the relevance of predictors
according to the PLS-DA threshold criterion of ‘greater than one’
(Ottavian et al., 2015).

Despite CDA is reported as multivariate model able to improve
the classification performance by using a high number of closed-
spectral variables, a discriminative process based on a dataset of
many highly correlated variables could not retain some informative
wavelengths. Therefore, prior to application of supervised CDA, the
bench-top dataset was arranged reducing averaged spectral variables
to 175 (Akarachantachote et al., 2014), each referring to an 8 nm
interval range, so that the mean value was assigned by interpolating
the R values to the intermediate wavelength (from &, equal to the
average of R from 1102 to 1110 nm, to 4,,,,, equal to the average
of R from 2486 to 2494 nm). Double feature selection was carried
out as the preliminary step of the CDA. The first (named Boruta)
was based on the Boruta random forest feature selection (Kursa and
Rudnicki, 2010), using an R software package (Comprehensive R
Archive Network, R Development Core Team, 2010). The second
(named Stepwise) was run within the forward Stepwise procedure
(PROC STEPWISE) of SAS software. Both Boruta and Stepwise
features were submitted to the last step of CDA (PROC CANDISC
of SAS) to achieve the most discriminative analysis by maximising
the distance among RT theses, and their degree of dissimilarity was
measured by squared Mahalanobis distances (D*-Mahalanobis). The
outcomes of the CDA were plotted according to the main canonical
functions CAN1 and CAN2 using XLSTAT software (release 2016,
Addinsoft, New York, USA). The reliability of the CDA was assessed
by a confusion matrix obtained by a cross-validation based on the
leave-one-out criterion (PROC DISCRIM of SAS).

The metrics depicted in the confusion matrices used to assess the
goodness of the classification performance of the PLS-DA and CDA
models were the following descriptive statistics (Segato et al., 2019):
accuracy, sensitivity, specificity, precision and Matthews correlation
coefficient (MCC).

Results and Discussion

Assurance of meat quality related to shelf life assessment has led
to the design of models based on rapid and non-destructive high-
throughput techniques. In this study, three targeted multivariate clas-
sifier models, PLS-DA, Boruta-CDA (random forest selection) and
Stepwise-CDA (targeted selection), were built using the NIR spectral
data from bench-top and portable NIR spectrometers. Their effi-
ciency to predict chicken breast shelf life was evaluated according to
four classes of freshness (days post-mortem): fresh (2 d), acceptable
(6 d), spoiled (10 d) and rotten (14 d). Fresh and acceptable theses
guarantee safety and maintain the overall quality attributes with re-
spect to consumer preferences. During storage, shifts in biochem-
ical pathways and spoiling microbial populations occur, leading to
changes in meat appearance. Detrimental sensorial decay usually
starts after a chilled storage period that coincides with a cut-off be-
tween the end of the acceprable and the beginning of the spoiled
thesis. Since poultry meat is a highly perishable food, the predom-
inant organisms and biochemical changes lead to intense proteolysis,
amino acid degradation and lipid oxidation that at the end of storage
(rotten thesis with more of 10 davs of refrigerated storage) induce
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the formation of by-products associated with the production of off-

flavour and slime, thus prejudicing consumer acceptability (Gram
et al., 2002; Bruckner et al., 2012).

Chemical and sensorial analyses

As reported in Table 1, RT significantly affected the physicochemical
and sensorial traits of chicken breast samples. The pH values showed
a linear increase (P < 0.001) after six days of refrigeration mainly
due to the proliferation of spoilage microorganisms as reported by
Sujiwo et al. (2018). Meat colour showed a significant change of
L*: in detail, an initial decrease in lightness was observed after six
days followed by a progressive increase in the latest conservation
time (P-value of the quadratic component of variance < 0.001). This
trend was related to changes in water retention ability and myofibrils
structure along the storage period which affected the content of free
water in meat. Moreover, during storage, a significant increase of
drip losses was recorded which increased the lightness because water
previously bound to myofibrils was released (Grartta et al., 2019).
The sensorial traits (odour, colour and texture) were associated to
the highest level of freshness until six days of conservation, after
which the SI (meat acceptability) decreased (Table 1). A detrimental
effect of RT was observed for the rotten samples (thesis 14 d) that
showed the lowest values of odour and colour contributing to an un-
acceptable (<1.8) SI (Raab et al., 2008). The results of the sensorial
evaluation defined a cut-off between 6 (fresh meat) and 10 (spoiled
meat) days since at least 25% of 10 d-poultry breast samples had
a SI value lower than 1.8 (Figure 2). The metabolism of spoilage
bacteria leading to the formation of by-products associated with off-
flavour and slime production, prejudicing acceptability in the rotten
samples.

Shelf life assessment by PLS-DA

As reported in Table 2, the performance of the PLS-DA model in
predicting the four chicken breast RT theses was moderately ac-
curate, highlighting an overall better discriminative capacity for the
bench-top instrument (MCC > 0.75) compared to portable (MCC
> 0.35) one. The higher accuracy (>0.91) and precision (>0.83)
values for the bench-top instrument are probably linked to the meat
mincing pre-process. Muscle grinding tends to improve discrimina-
tive performance, reducing sample heterogeneity (i.e. texture, colour
and proximate composition) and increasing the repeatability of NIR

spectrum acquisition (Xu et al., 2019). Moreover, analysis of intact
muscles is susceptible to the effect of the high moisture content on
the surface as well as fine subcutaneous fat, even if samples are well
trimmed. The lower discriminative capability of the portable tool
might be also explained by the size of the measuring head, the dis-
tinctive optical properties and the detector type, which must be re-
sized in order to miniaturise the NIR device, resulting in a shorter
spectral wavelength range (Teixeira dos Santos et al., 2013).

Shelf life assessment by CDA

The main purpose of the research was to evaluate the feasibility
of using NIR spectroscopy to predict chicken breast shelf life: for
this purpose, further multivariate modelling was performed. CDA
seemed to improve the spatial separation of the experimental groups,
but could not work efficiently in the case of a large dataser with
too many irrelevant and highly correlated variables obscuring the
informative ones and worsening the discriminative performance
(Leardi, 2000; Zhao and Maclean, 2000). Since the CDA algorithm
allows a reduction of redundancy (Akarachantachote et al., 2014),
before the Stepwise selection, a spectral arrangement was carried
out on the bench-top dataset, restricting it to 175 averaged spectral
variables so that each one represented an 8 nm wavelength range
(from &, to k). Since the portable system was characterised by
a shorter spectral acquisition time, there was no need to restrict the
original dartaset.

As described above, four CDAs were performed using two pre-
liminary fearure selections (Stepwise vs Boruta) for each instrument
(bench-top vs portable). A summary of the predictive performance
of this CDA set is reported in Table 3. Both NIR instruments had a
lower value of Wilks' &, a test statistic that is minimised within the
procedure in order to obtain the widest spatial segregation of the
experimental groups, when the algorithm was performed with the
preliminary Stepwise criterion as feature selection. The better dis-
criminative capacity of the preliminary Stepwise procedure was also
assessed by higher D*-Mahalanobis values than those observed for
Boruta (Table 3).

Thus, we focus the discussion on the Stepwise forward CDA
being the most accurate fitting model.

For the lab-scale NIR tool, the Stepwise procedure selected 32
significant averaged wavelengths (Table 3). These spectral vari-
ables were used to perform the CDA algorithm that defined two

Table 1. Effect of the refrigeration time (RT) on pH, colour (CIE L*a*b*), drip losses and sensorial attributes of chicken breasts

Refrigeration time (RT) P-value
Quality traits SEM
2d 6d 10d 14d Global Linear Quadratic

pH 5.92 5.96 6.12% 6.18° 0.02 <0.001 <0.001 0.034
L* (lightness) 47.0% 4570 45.7" 48.1° 0.6 0.014 0.249 0.003
a* (redness) 1.8 228 1.8 1.8" 0.1 0.029 0.316 0.067
b* (yellowness) 10.6% 11.3 10.1® 10.1* 3 0.034 0.096 0.308
Drip losses (%) 3.00 3.8 3.4 n.e.! 0.2 0.006 0.096 0.006
Sensorial analysis*

Odour 3.0 (3.0-3.0)" 3.0 (3.0-3.0)® 2.5 (1.0-3.0p 1.0 (1.0-2.0) <0.001

Colour 3.0 (2.0-3.0)" 3.0 (2.0-3.0) 2.0 (1.5-3.0) 1.5 (1.0-2.0) <(.001

Texture 3.0 (2.5-3.0) 3.0 (2.0-3.0)* 2.0 (2.0-3.0)* 2.0 (1.5=2.0" <0.001

sp 3.0 (2.6-3.0)° 3.0 (2.4-3.0)° 2.3 (1.4-3.0)% 1.5 (1.2-1.6) <0.001

SEM, standard error of the means. 'Not estimated. *Results (medians and range) are reported as score units (1 means not acceptable; 2 means acceptable; 3

means good quality). ‘Sensory index calculated as: [(2 x odour score + 2 x colour score + 1 x texture score)/5]. **Means with different superscript lowercase let-
ter indicate significant differences berween RT theses (P < 0.05). Refrigeration time theses (days post-mortem): <2 (2 d), 36 (6 d), 7-10 (10 d) and 11-14 (14 d).
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significant functions, CAN1 and CAN2 (Wilks' & = 0.001, approx. F
value = 19.4, df1 = 96, df2 = 1833, P < 0.001) which explained 64.4
and 24.9% of the total variability, respectively. For the portable NIR
instrument, 10 wavelengths were sorted as the most informative by
the Stepwise procedure (Table 3). The CDA algorithm defined two
canonical functions (CAN1 and CAN2) that showed a high discrim-
inative power (Wilks' & = 0.094, approx. F value = 9.9, df1 = 30,
df2 = 241, P < 0.001), which accounted for 80.0 and 13.5% of the
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Figure 2. Box-whisker plot of sensory index (Sl) across refrigeration time
(RT) theses. The box plot represents the following descriptive statistics:
median (bar in box), mean (+, red cross), 25-75% quartile (bottom and
top end of the box), minimum and maximum values (whiskers) except
for outliers (circles, distance to box 1.5-3.0 times interquartile range) and
extreme values (* asterisks, distance to box > 3 times interquartile range).
The significance (P-values on the top) of the pairwise multiple comparisons
among the four RT theses was determined by Kruskal-Wallis non-parametric
test (Steel-Dwass-Critchlow-Fligner correction). Refrigeration time theses
(days post-mortem): <2 (2 d), 3-6 (6 d), 7-10 {10 d) and 11-14 (14 d).

total variability, respectively. As shown in Figure 3A, for the bench-
top system, the CDA model highlighted the possibility of satisfactory
separation of the 0.95 confidence ellipses, even though there was a
partial overlap between the two shorter shelf life theses. This discrim-
inative capacity was confirmed by the significant D*-Mahalanobis
values, which ranged from 17.4 to 121.5 (P < 0.001). For the port-
able instrument (Figure 3B), there was a moderate spread of the 0.95
confidence ellipses across the two main canonical functions, with a
partial overlap between the three shorter RT theses (2d, 6 d, 10 d) as
confirmed by the lower D*-Mahalanobis values, which ranged from
2.8 t0 20.6 (P < 0.001).

The discriminating ability of the instruments was further inves-
tigated by means of a leave-one-out cross-validation to assess if the
Stepwise-CDA classification functions allowed correct assignment of
each chicken breast sample to its actual RT thesis (Table 4). The
related confusion matrix shows how the bench-top is able to accur-
ately distinguish all the theses (MCC > 0.94). Moreover, the bench-
top instrument proves to be extremely reliable for discriminating
fresh samples (2 d) compared to spoiled ones (10 d). There was a
negligible misclassification of fresh samples, assigned to a class of
lower freshness (6 d), which seemed to limit the monitoring effective-
ness during the early stage of storage (fresh vs acceptable). However,
there was no misclassification of samples with a shelf life longer than
six days, thus ensuring meat safety. The portable instrument showed
the lowest discriminatory capacity (MCC > 0.45) because it accur-
ately recognised only the rotten class (MCC = 1.00), but showed
a high level of misclassification between acceptable and spoiled
samples (Table 4). However, it is noticeable that the discrimination
performance seemed to be more reliable for fresh samples than for
low-quality breast samples, and only one sample was misclassified
as spoiled (MCC of 0.75). The CDA algorithm also confirmed the
better discriminative capacity of bench-top with respect to port-
able instrument, which was previously explained in the PLS-DA
paragraph.

NIR spectra, VIP and SPS and shelf life

interpretation

Analysis of the discriminative models indicated a strong progressive
separation during the shelf life of the refrigerated chicken breasts.

Table 2. Classification performance of PLS-DA (venetian blind cross-validation criterion) for the four chicken breast refrigeration time (RT)

theses based on bench-top and portable NIR instruments

Bench-top Portable

Predicted Actual Predicted Actual

2d 6d 10d 14 d 2d 6d 10d 14 d
2d 19 3 0 0 2d 16 & 4 1
6d 3 19 1 0 6d 6 13 6 1
10d 1 1 22 1 10d 2 6 11 1
14 d 1 1 1 23 14 d 0 0 3 21
Total 24 24 24 24 Total 24 24 24 24
Sensitivity 0.79 0.79 0.92 0.96 0.67 0.54 0.43 0.88
Specificity 0.96 0.94 0.96 0.96 0.86 0.82 0.88 0.96
Accuracy 0.92 0.91 0.95 0.96 0.81 0.75 0.77 0.94
Precision 0.86 0.83 0.88 0.88 0.62 0.50 0.55 0.88
MCC 0.77 0.75 0.86 0.76 0.51 0.35 0.36 0.58

Refrigeration time theses (days post-mortem): < 2 (2 d), 3-6 (6 d), 7-10 (10 d) and 11-14 (14 d). Bold values represent samples classified correctly. PLS-DA,

partial least squares discriminant analysis; NIR, near-infrared; MCC, Matthews correlation coefficient.
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Table 3. CDA statistics according to preliminary Stepwise and
Boruta feature selection for discrimination of chicken breast re-
frigeration time by bench-top and portable NIR instruments

Bench-top Portable

CDA statistics

Stepwise Borura Stepwise Boruta
Selected variables 32 29k 10¢ g4
Wilks® & 0.001 0.010 0.094 0.169
CANI1 (%) 64.4 54.9 80.0 74.0
CAN2 (%) 249 26.2 13.5 15.7
D?*-Mahalanobis
2dvsed 40.0 17.4 4.1 2.8
2dvs10d 65.3 24.2 4.8 36
2dvs14d 121.5 37.6 20.6 14.0

Wilks' & and D?-Mahalanobis always had a highly significant value
(P < 0.001). CDA predictive scores (selected wavelengths, & ):
T B ok
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(10 d) and 11-14 (14 d). CDA, canonical discriminant analysis; NIR, near-
infrared; CAN1 and CAN2, two canonical functions.
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Indeed, the overall results highlighted a moderate capacity of NIR
spectroscopy to differentiate refrigerated poultry meat of the two
shorter RT theses, probably due to mild biochemical and spoilage
changes (Alexandrakis et al., 2012). The findings for the chemometric
models suggest that the effectiveness of NIR spectroscopy to cor-
rectly assess poultry meat shelf life seems to have a 6-day threshold
for the bench-top tool, a cut-off that was delayed to around eight
days for the portable one. These evidences are also supported by the
results of SI that detected around 25% of spoiled samples within
10 d thesis (Figure 2). These performances are related to a simul-
taneous increase of many dominant NIR bands arising from the
overall vibrations, overtones and combination bonds in functional
groups such as -H, N-H, C-H and S-H (Liu et al., 2001; Alamprese
et al., 2013; Barbin et al., 2015), In this section, a deep biochem-
ical interpretation of NIR wavelengths is carried out, evaluating the
raw spectra, VIP indices and Stepwise-CDA predictive scores (SPS)
patterns.

The raw spectra for experimental theses are reported in Figure 4,
partitioned by the two NIR instruments. The distribution and mag-
nitude of the main absorption bands observed in the present study
agreed with those reported by Barbin et al. (2015) and Alexandrakis
et al. (2012) referring to a wide region including the 900-2500 nm
range of the applied instruments. Four high absorption bands are
noticeable around 980, 1190, 1460 and 1930 nm, which are attrib-
uted to water absorption, protein changes and the effect of bacterial
spoilage metabolites corresponding to O-H, C-H, NH, and CONH,
stretching and bending, first, second and third overtones, and com-
bination bands (Liu et al., 2001; Alexandrakis et al., 2012; Barbin
et al., 2015). The main difference between the two instruments was
that the portable tool recorded high absorption values for the pro-
longed shelf life theses, whereas the bench-top instrument showed
the opposite trend (Figure 4). The rotten thesis is the storage phase
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Figure 3. Stepwise-CDA scatterplots of the four chicken breast refrigeration
time (RT) theses according to bench-top (A) and portable (B) NIR instruments;
the 0.95 confidence ellipses are drawn around each centroid of groupings.
RT theses (days post-mortem): <2 (2 d): green dotted line and diamonds; 3-6
(6 d): blue solid line and dots; 7-10 (10 d): orange dotted-pointed line and
triangles; 11-14 (14 d): red pointed line and squares. CAN1 and CAN2, two
canonical functions; CDA, canonical discriminant analysis; NIR, near-infrared.

with the highest muscle denaturation and intense proteolysis that
increase the movement of water from intracellular into extracellular
spaces (Bowker et al., 2014). This means that a prolonged shelf life
reduces the water holding capacity (WHC), increasing drip losses
and NIR spectral absorbance, as in the case of portable tool, since
free water is retained on the breast surface, The significant increase
of L* values observed in the rotten theses was related to the release
of exudates on breasts surface (Table 1). With regard to the bench-
top instrument, mincing the samples promotes a partial loss of this
water, with a probable subsequent reduction in absorption.
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Table 4. Classification performance of Stepwise-CDA (leave-one-out cross-validation criterion) for the four chicken breast refrigeration time

(RT) theses based on bench-top and portable NIR instruments

Bench-top Portable

Predicted Actual Predicted Actual

2d 6d 10d 14d 2d 6d 10d 14 d
2d 22 0 0 0 2d 20 4 2 0
6d 2 24 0 0 6d 3 13 7 0
10d 0 0 24 0 10d 1 7 15 0
14d 0 0 0 24 14d 0 0 0 24
Total 24 24 24 24 Total 24 24 24 24
Sensitivity 0.92 1.00 1.00 1.00 0.83 0.54 0.61 1.00
Specificity 1.00 0.97 1.00 1.00 0.92 0.83 0.89 1.00
Accuracy 0.98 0.98 1.00 1.00 0.90 0.75 0.82 1.00
Precision 1.00 0.92 1.00 1.00 0.77 0.57 0.64 1.00
MCC 0.94 0.95 1.00 1.00 0.75 0.45 0.54 1.00

Refrigeration time theses (days post-mortem): < 2(2 d), 3-6 (6 d), 7-10 (10 d) and 11-14 (14 d). Bold values represent samples classified correctly. CDA, canon-

ical discriminant analysis; MCC, Matthews correlation coefficient.

An in-depth scrutiny of absorbance related to different chemical
compounds could also help better understand meat behaviour during
refrigeration. The VIP and SPS procedures captured a multitude of
spectral information (Figure 5). The bench-top chilling preservation
profile highlighted many significant VIP indices (>1.0), which rep-
resent the most relevant spectral features in the ranges 1100-1160,
1300-1350, 1380-1400 and 1850-1900 nm, and other additional
features in the ranges 2050-2350 and over 2400 nm. Instead, the
portable system refrigerated storage VIP pattern resulted in just three
informative (>1.0) wavelengths belonging to the following spectral
ranges: 1200-1250, 1350-1450 and over 1500 nm. With regard to
SPS, these selected wavelengths belonged to four main spectral re-
gions corresponding to 1200-1250, 1300-1500, 1900-2000 and
over 2100 nm for bench-top system, and just two regions, 900-1200
and 1500-1580 nm, for portable one.

In general, the absorptions observed in the NIR region are over-
tones or combinations of the fundamental stretching bands which
are usually due to C-H, N-H or O-H stretching mode (Cen and He,
2007). As confirmed by the physicochemical and sensorial analyses
carried out as preliminary step (Table 1), post-mortem processes
cause several biochemical changes including pH modification (i.e.
early muscle acidification), alteration of cellular compartmentalisa-
tion, release of free catalytic iron, and myofibrillar contraction (Mir
et al., 2017). During meat storage, a shift in absorbance bands may
be induced by changes that occur in proteins, due to the action of
oxidising enzymes promoting the formation of protein carbonyls,
and in lipids, due to the evolution of oxidative reactions, resulting in
the formation and release of secondary products including lipid alco-
hols, ketones, epoxides, aldehydes and hydrocarbons (Estévez, 2011)
that affected odour acceptability (Table 1). Overall, physicochemical
modifications of meat structure induce a decrease in WHC, a change
in surface colour and the development of microbial spoilage (Mir
et al., 2017). We have attempted to explain the significance of VIP
and SPS in terms of the relationship between these muscle chemical
changes and NIR spectral patterns, for both bench-top and portable,
during 14 days of chicken breast storage.

Compared to the portable one, the bench-top instrument provides
a wide range of spectral information suitable for the in-depth inter-
pretation of biochemical and spoilage phenomena causing meat de-
terioration (Figure 5A). Thus, we focus the following discussion on
the bench-top tool, even though the few VIPs for the portable one,
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found around 1190, 1370, 1400, 1440 and 1600 nm, are involved in
the same biochemical processes described below. The 1100-1400 nm
region is mainly characterised by the second overtones of C-H
stretching and vibration modes associated with carbonyl formation
(Alamprese et al., 2016), which is an irreversible and non-enzymatic
process involving the formation of carbonyl moieties and further al-
dehydes and ketones by the oxidation of many amino acids (Estévez,
2011). Probably, these chemical pathways related to carbonylation
are recognised by NIR spectroscopy because they affect the vibration
of functional groups. Several VIPs were observed at wavelengths re-
lated to water interactions through hydrogen bonds and other meat
components (Nolasco Perez et al., 2018). A few broad and high VIP
scores are noticeable around the region of the first overtone of water,
especially the wavelengths around 1384-1388 nm that could be as-
signed to H,0-OH-bonded water molecules, while around 1410 nm
the VIPs are mainly related to free water molecular species (Tsenkova
et al., 2015). Indeed, the 1400-1600 nm region basically includes the
first overtones of the O-H/N-H stretching modes of self-associated
and water-bonded OH/NH groups of N-compounds in meat (Liu
et al., 2001). Once again, changes in this spectral region could be
linked to protein denaturation, proteolysis and WHC reduction.
Thus, the physical relationship between water molecular species and
protein and lipid C-H/N-H seem to be the major contributors to
sample shelf life differentiation. In this study, additional weak sharp
spectral markers were found at 1700 and 1732 nm, corresponding to
the first overtones of C-H stretching modes, which might be linked
to a change in lipid deterioration (Ding et al., 1999; Peng and Wang,
2015). The NIR spectra of chicken meat showed a prominent VIP in
the absorbance region 1850-1910 nm, specific to O-H functional
groups, H,O overtones and vibration of O-H bonds (1920 nm)
(Alamprese et al., 2016; Ghidini et al., 2019). Specific carbonyl and
N-H asymmetric stretching has been reported in this region, prob-
ably due to amides and amines, major N-catabolites arising from the
late proteolytic process (Alamprese et al., 2016). A strong relation-
ship between informative bands and both amides and amines has al-
ready been reported by the authors in Alexandrakis ef al. (2012), as
a consequence of prolonged storage associated with ammonia and
volatile amines from free amino acids and peptides related to auto-
lytic and microbial enzyme activity (Alexandrakis et al., 2012). The
second overtone of carbonyl groups related to peptides, aldehydes
and ketones has been already selected at 1900-1960 nm, even though
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Figure 4. Average spectra of the four refrigeration time (RT) theses related to bench-top (A) and portable (B) NIR instruments. Refrigeration time theses (days

post-mortem): <2 (2 d), 3-6 (6 d}, 7-10 (10 d) and 11-14 {14 d). NIR, near-infrared.

these wavelengths are overlap with the water band at 1940 nm (Jha,
2010). The 2040-2350 nm region might be associated with myo-
globin N-H bonds (Burns and Ciurczak, 2008) and related to C-H
combination tones (2340 nm) of unsaturated fatty acids (Cozzolino
et al., 2002; Peng and Wang, 2015).

Interpretation of the SPS feature variables was similar to that
for VIP indices previously mentioned. These were partly overlapping
or closer to the VIPs previously described. However, around 1000,
1500, 2000 and 2400 nm, in particular in &, & .. (for portable
instrument), Ay o by :"min' higs J"mu’ )‘H'H’ st Migzgs kwxz’ Manper
hyiser Masger Magnas Pazgy @and A, (for bench-top instrument), the SPS
are distant from the VIP peaks, but identify themselves in wave-
lengths that express those biochemical processes already described.

The findings of this study suggested that the VIPs pattern and
SPS could be useful markers of meat deterioration related to prote-
olysis (1100-1400 and 1850-1920 nm) and amino acids oxidation
(1400-1600 nm), lipid oxidation (1700-1740 nm) and decrease in
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WHC (1380-1410 nm). Moreover, we advise the use of the selected
spectral ranges described above, as a NIR benchmark for a rapid as-
sessment of spoilage threshold of chicken breasts.

Conclusions

Overall results of the present experiment highlighted that NIR tech-
nology could be considered a potential safety and quality labelling
tool to prevent deceptive practices related to meat freshness, both
for food industry and consumer protection. The combination of NIR
technology with discriminating chemometric approaches potentially
allowed a reliable assessment of chicken breasts shelf life, with a re-
frigeration cut-off of a week. Based on a multivariate model, a selec-
tion of NIR features were suitable for the interpretation of the main
physicochemical changes during poultry meat storage.

Based on actual findings, the bench-top tool seemed to be more
effective for predicting chicken breast shelf life than the portable
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Figure 5. VIP index scores obtained by PLS-DA algorithm and CDA predictive scores (SPS) sorted by the Stepwise feature selection procedure according to the
four refrigeration time (RT) theses related to bench-top (A} and portable (B) NIR instruments. Refrigeration time theses (days post-mortem): <2 (2 d), 3-6 (6 d),
7-10 (10 d) and 11-14 (14 d). VIR, variable importance in projection; PLS-DA, partial least squares discriminant analysis; CDA, canonical discriminant analysis;

NIR, near-infrared.

one, probably due to better oprtical properties and the longer spectral
range. Considering an operative scenario, the challenge of portable
NIR instruments could be its suitability for rapid at-line screening of
poultry mear along the supply chain in a real enterprise environment.
Meanwhile, the application of the bench-top NIR might be proposed
as spectroscopy gold standard for evaluating the shelf life of fresh
cuts. Perhaps it could be useful for minced mear quality control and
meat preparation at the slaughterhouse and in curtting plants. Further
experimental trials are needed to improve the accuracy and reliability
of the portable spectrometer in detecting biochemical meat changes.
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ARTICLE INFO ABSTRACT

Keywords:
Coturnix coturnix japonica

The study aimed at evaluating the VIS/NIR and NIR instrument’s capability to discriminate among table eggs
from quails fed with different inclusion levels of silkworm (Bombyx mori L.) pupa meal (SWM). The trial consisted
of four experimental groups of laying quails fed for 8 weelks with a 0%, 4%, 8% or 12% SWM inclusion levels. At
week 7, 120 eggs (30 per experimental group) were sampled to form the training set used to perform the
spectroscopy-based classification models, whereas at the end of the trial a second batch (n = 48) was used as an
independent test set to assess the reliability of the classification models. Using a benchtop and two portable
devices, VIS-NIR and NIR spectra were recorded from the training set and subsequently submitted to a random
forest (RF) feature selection. The selected NIR informative wavelengths were used to perform the following
supervised classification algorithms: partial least squares-discriminant analysis (PLS-DA), K-nearest neighbour
(KNN) and support vector machine (SVM) linear and radial. The RF features predictive models were applied
against the independent test set to assess the reliability by a set of confusion matrices. A moderate predictive
capacity of the tested VIS/NIR and NIR devices in predicting the eggs feeding groups was observed probably due
to the relative low difference in SWM amount among the classes. After a merging of the SWM4-12 experimental
groups, both NIR benchtop and portable devices combined with the advanced machine learning models suc-
cessfully showed capacity to recognize in the eggs the inclusion of insect meal in layers diet since an accuracy
higher than 0.90 has been observed. Instead, the VIS-NIR portable tool recorded worse predictive capacity with
an accuracy lower than 0.73. The most informative NIR wavelengths belonged to the 1350-1600 and 1850-2200
nm spectral regions. The achieved outcomes in terms of accuracy suggested that both KNN and SVM models
provided more powerful machine learning algorithm than PLS-DA. The results showed that a portable NIR
spectrometer had comparatively accurate dassification to the benchtop instrument, highlighting the potential of
hand-held NIR spectrometers in at-line monitoring eggs from SWM-fed layer quails.

Sillkworm meal
Table egg

NIR spectroscopy
NIR instruments
Random forest
Machine learning

1. Introduction

Currently, one of the main concemns in livestock systems is the
limited availability of high biological value proteins for animal feeding
as well as the shift towards a more sustainable production system which
includes the utilisation of new feedstuffs with remarkable sustainability
(Hawkey et al., 2021). Insects represent good candidates in this
perspective, offering an alternative to conventional protein and lipid
feedstuffs for monogastric animals, and therefore providing strategic

solutions to address some environmental and ethical concerns linked to
animal production and sustainability (Dalle Zotte, 2021). Many poultry
species naturally consume insects as part of their diet, and available
research on the inclusion of different insect species and derived products
(i.e., protein meal and oil) in the diet of different poultry species pro-
vided positive outcomes in terms of animal performance and product
quality (Dalle Zotte et al, 2019; Gasco et al, 2020). Furthermore,
research on some insect species also highlighted that they could be used
as feed ingredient for different food-producing animals, and it is even

Abbreviations: KNN, K-nearest neighbour; MCC, Matthew correlation coefficient; PLS-DA, partial least squares-diseriminant analysis; ML, machine learning; NIR,
near-infrared; PAPs, processed animal proteins; RF, random forest; SVM, support vector machine; SWM, silkworm meal.
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possible to achieve product improvements in terms of healthiness
and/or sensory quality. In a study carried out on laying hens, eggs from
the feeding group receiving a ration with insect meal (defatted meal
from Hermetia illucens larvae) showed a redder yolks and a higher inci-
dence of y-tocopherol and carotenoids (lutein, p-carotene) compared to
the soybean meal feeding group (Secci et al., 2018). The partial substi-
tution of soybean meal and oil with full-fat silkworm (Bombyx mori L.)
meal in the diet of growing chickens brought to an increase of poly-
unsaturated fatty acids (PUFA) n-3 on the breast meat, leading to a
reduction of the n-6:n-3 PUFA ratio (Miah et al., 2020).

Together with the aforementioned positive research findings, the
recent EU regulation 2021/1372 (European Comumission, 2018)
authorising the inclusion of processed animal proteins (PAPs) from in-
sects in animal feeding boosted European companies who specialise in
producing insects and stimulated conventional feeding companies to
start considering insects as possible new livestock feedstuffs in their
produets range. On the consumer side, a recent UK-survey highlighted
that consumers are keen to pay an extra amount of money to purchase
eggs from insect-fed hens if animal welfare and sustainability are
improved (Spartano & Grasso, 2021). Similarly, another study on Italian
consumers showed that 85% of the surveyed people accept to consume
eggs from insect-fed laying hens (Lippi et al., 2021).

Therefore, the inclusion of PAPs from insects in feed formulation for
egg-producing poultry species could represent a premium value by
declaring a highly-marketable labelling designation. With that said, the
convenience of rearing livestock based on these insect-derived concen-
trates should be investigated also in terms of cost-benefit before pro-
motion, in case of increased cost of production. To this regard, the need
for rapid and accurate analytical methods and chemometric approaches
for confirming specific quality features of the product, preferably
exploiting real-time methods arises. Generally, the non-destructive
characterisation tools based on the principles of light-matter interac-
tion (such as VIS/NIR spectroscopy) could represent an end-step valu-
able screening of authentication providing a comprehensive overview of
the productive and/or manufacturing process. A major challenge in the
NIR spectroscopy-based analysis and authentication is the possibility of
revealing the relationship between spectral data and cluster similarities
among samples derived by proper development of predictive models
that exploit the spectroscopic information for pursuing classification
purposes.

Thus far, multivariate analysis techniques such as PLS-DA (Lin et al.,
2011) and many machine learmning (ML) approaches (Cruz-Tirado et al.,
2021) have been widely used to process spectral data in order to esti-
mate the freshness or quality traits of eggs (Coronel Reyes et al, 2018;
Loffredi et al., 2021). However, the use of algorithms based on ML
models to distinguish among quality levels is still an ongoing topic as
described in a recent study on the assessment of many egg’s physical
features (weight, size, colour), which highlighted different performance
of classification among various classifier methods including LDA, SVM
and KNN (Sehirli & Arslan, 2022).

Moreover, robust and ergonomic portable NIR spectrometers were
also developed with similar spectral data recognition performance to the
benchtop ones but offering more potential advantages in terms of wide
applications in-field farm and/or on-site supply-chain control in-
spections (Zhu et al., 2022). However, to the best of our knowledge no
research has been conducted to discriminate eggs obtained from
insect-fed laying hens through NIR spectroscopic techniques. Thus, this
study aimed to evaluate the feasibility of VIS/NIR and NIR spectroscopic
techniques to segregate quail table eggs according to the dietary inclu-
sion of an increasing percentage of silkworm meal (SWM). The evalua-
tion of the predictive capability of VIS/NIR and NIR portable
instruments compared to a NIR benchtop device was also performed
according to four supervised pattern recognition models throughout a
comparison between the consolidate approach based on PLS-DA and the
more innovative SVM and KNN supervised classification models. An
in-depth interpretation of the most predictive VIS/NIR and NIR features
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selected by a random forest (RF) algorithm was another challenge of the
experimental trial.

2. Materials and methods
2.1. Experimental design and eggs sampling

The study was conducted during spring 2021 on an experimental
farm (Veneto region, Italy) after the ethical approval (No 147882,
December 2020) of the Ethical Committee for Animal Experimentation
of the University of Padova. For the study, a total of 240 laying quails
were allocated into 4 dietary groups with different inclusion levels of
silkworm meal (SWM): SWMO (control group with no SWM inclusion),
SWM4, SWM8 and SWM12 corresponding to a dietary inclusion of 4%,
8% and 12%, SWM, respectively (Fig. 1). Quails received the experi-
mental diets for 8 weeks. Feed and water were provided ad libitum
throughout the study, temperature was kept in the range 20-25 “C and
the photoperiod was 16L:8D. At the 7th week of feeding, eggs of each
feeding group were collected in the morning (8 a.m.) in three sampling
days to form the training set of eggs (n = 120) used to perform the
classification models. At the end of the trial, the second batch of eggs
was collected (n = 12 per treatment), and used as an independent test set
(n = 48) to assess the reliability of the multivariate classification models.
Collected eggs were analysed the day of sampling for NIR spectral data
aecquisition.

2.2. Spectra acquisition in transflectance mode

As reported in Fig. 1, the edible content (yolk and albumen mixture)
of 168 eggs was individually homogenised by gentle mixing using a soft
blender (Bonsenkitchen, Flowery Branch, Georgia, USA) and then the
content of each egg (approx. 10 g) was submitted for NIR's spectra
acquisition. To this purpose, the product was gently placed into a small
ring cup, avoiding air bubbles, with a quartz window that allowed
irradiation of an area of approximately 9.6 cm?, and equipped with a 0.5
mm gold-reflector (1 mm of pathlength). The spectral data were
collected in duplicate using: (i) a bench-top FOSS DS2500 analyser
(FOSS Analytical A/S, Hillersd, Denmark), referred to in the study as
NIR-benchtop, covering a range of 850-2500 nm at 0.5 nm intervals and
each sample was scanned 32 times, placing the small ring cup in a
rotating module; (ii) a NIR-portable Polispec (ITPhotonics, Fara Vice-
ntina, Italy) covering a range of 902-1680 nm at 2.0 nm intervals; (iii) a
VIS/NIR-portable Polispec (ITPhotonics, Fara Vicentina, Italy) covering
arange of 700-1080 nm at 2.0 nm intervals. For both the portable tools,
referred to as NIR portable and VIS-NIR portable, spectra were acquired
through an embedded round scanning window (area of 3.2 em?) placed
directly over the gold ring cup; each spectrum was obtained by aver-
aging three scans of 5 s of data acquisition at 10 msec integration time
each, by rotating the ring cup 120° after a scan. Spectral data were
recorded in reflectance (R) and converted to absorbance (A) units as log
(1/R) using WinlSI 2 V1.05 (Infrasoft International Inc., Port. Matilda,
USA) and poliDATA 3.0.1 (ITPhotonies, Fara Vicentina, Italy) software
for benchtop and portable instruments, respectively. Spectra were sub-
sequently exported in.csv format, and the two replicates were averaged
prior to any manipulation. To reduce light scattering and to remove the
baseline shift, all chemometric data analyses were performed after
mathematical pre-treatment of the spectra with standard normal variate
(SNV), detrend, first-order derivative and smoothing (Curro et al., 2021)

(Figs. 18, 28, 38, supplementary materials).
2.3. Chemometric modelling and machine learning algorithms

Chemometrics and data analyses were performed using R software
version 3.2.5 (R Core Team, 2016). Based on the Boruta algorithm with a
wrapper approach (Segato et al., 2019), RF feature selection procedure
was applied to select the most informative bands and remove irrelevant



I. Lanza et al

Food Control 147 (2023) 109589

SWMO

Laying quail feeding groups
|
} I }
SWM 8 SWM 12
= :
Test se
l
- E )

X30

|

.
OXSD

; !
O‘XSO ‘ O‘XJO

X 120

Oxw OXIZ Ox12 X12

"

|

NIR- benchtop

NIR -portable

s

External
validation

VIS/NIR-portable

RF
e
i

Ll

Fig. 1. Bench-top and portable NIR and VIS/NIR pre-treated data (training set,

v
___________ Actual
—————— 1 Confusion
T s
SVM-radlal '

n = 120) of eggs (yolk and albumen) from laying quails fed 4 dietary levels of

sillkworm meal (SWM 0-12% inclusion) were submitted to random forest (RF) selection. Spectral RF features were used to build the supervised classification models.
The predictive performance of classifying algorithms were evaluated by an external validation (test set, n = 48) by means of a set of confusion matrices.

and noisy data from the training set (120 samples). Choosing a short
range of wavelengths to avoid irrelevant ones could be a strategy against
the so-called minimal-optimal problem, improving the model’s predic-
tive ability and reducing complexity since many irrelevant variables
may yield considerable variation in test set prediction (Mehmood et al.,
2012). To segregate the feeding groups (SWMO, SWM4, SWM8 and

SWM12) a set of independent classification models was performed and
tested through a repeated K-folds cross-validation (setting number = 10
and repeats = 5) (Marcot & Hanea, 2021) applied on the RF selected
VIS/NIR or NIR variables and then validated on the independent test set
(n = 48 samples). The supervised classification models were performed
through the PLS-DA, KNN and SVM algorithms. The PLS-DA is a
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quantitative algorithm that involves performing a multivariate regres-
sion and classifying the samples into the pre-determined feeding classes
(Bisutti et al., 2019). The KNN classification algorithm was assessed by
using the ‘caret’ package in R; this classification algorithm predicts a
class for a given test observed by attributing the class of the K-nearest
observed sample and is optimised according to the CV accuraey (Cuiro
etal.,, 2022). The SVM was modelled by the use of the ‘caret” package,
through both the linear and radial kernels and applied to the training
dataset (Curro etal., 2022). In detail, the ‘one-against-one’ approach for
multi-class (classes >3) classification was adopted, in which k (k — 1)/2
binary eclassifiers are trained, and a voting scheme to find the appro-
priate class; the C-value (Cost) in the linear classifier and the radial basis
function sigma were customised, adopting a grid search.

The predictive models developed on the RF selected features of the
training dataset were applied against the independent test set to assess
their reliability. The predictions were arranged in a confusion matrix
and a set of statistical measurements was calculated according to the
following equations (1)-(4):

Sensitivity = TP'S-PFN s

Food Control 147 (2023) 109589

TN

Specificity =W (2)
FP + FN

SN sk (TP+TN+ FP+FN) ©

MCC = TP-TN —FP-FN 4

/(TP + FP)-(TP + EN)-(TN | FP).(IN { FN)

where, TP is true positive, FN is false negative, TN is true negative, and
FP is false positive.

3. Results
3.1. Spectra patterns and NIR feature selection

The NIR and VIS/NIR spectral data of eggs were collected in trans-
flectance mode and their overall spectra ranging between 700 and 2500

nm showed different absorption peaks across the level of SWM inclusion
in the laying quails’ diet. The eggs spectra pattern for NIR-benchtop
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Fig. 2. NIR-benchtop. The mean NIR absorbance of the original spectra for eggs (yolk and albumen) of quails fed 4 dietary levels of silkworm meal (SWM 0-12%
inclusion). Grey bars represent the informative wavelengths (wavelength score) selected by a random forest for predicting the SWM feeding groups.
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device had three main absorption bands (1350-1600, 1850-2200 and
2300-2500 nm) and two slight bands (1150-1250 and 1700-1800 nm)
with some differences in absorbance according to the four SWM dietary
inclusion levels (Fig. 2). NIR spectral data collected using the portable
device, an infrared technology with a limited range of investigation
(from 900 to 1680 nm), showed a similar pattern of absorbance since the
main peak was in the 1350-1600 nm region (Fig. 3). The use of the VIS/
NIR spectrometer device evidenced a reduced absorbance by the edible
portion of the egg with a marked absorption decrease from 700 to 900
nm and a main peak around the 950-1050 nm region where the SWMO0
feeding group seemed to be lowest (Fig. 4). The consistency in the ab-
sorption peaks proves the feasibility of egg information extraction also
in portable devices, especially in the case of the NIR-portable device.
Among all the wavelengths investigated (3302, 389 and 192 for NIR-
benchtop, NIR-portable and VIS/NIR-portable, respectively), the RF
selection showed a lower percentage of significant wavelengths for
benchtop (0.5%) than for the portable devices (7%); a relevant diver-
gence due to the wide wavelength range refeired to the NIR-benchtop
instrument. Specifically, 28, 18 and 13 (for NIR-benchtop, NIR-
portable and VIS/NIR-portable, respectively) of the selected RF wave-
lengths have been retained as significant in classifying quail table eggs
according to the SWM feeding groups (Figs. 2-4).

Food Control 147 (2023) 109589
3.2. NIR and VIS/NIR classification performance

A total of 120 quail eggs of the training set were subject to non-
targeted profiling using NIR and VIS/NIR spectroscopy to identify the
SWM level among four increasing levels of dietary inclusion of SWM
(from O to 12% SWM). Based on the significative RF wavelengths of the
training set, the results of the PLS-DA, KNN and SVM (linear and radial
kernel) supervised models showed a limited predictive performance of
spectroscopic instruments (Table 51, Table S2, Table S3 supplementary
materials). With regard to feeding classes with the inclusion of SWM,
MCC values lower than 0.52, 0.44 and 0.32 for NIR-benchtop, NIR-
portable and VIS/NIR portable, respectively, were observed. To improve
the NIR spectroscopy classification performance, a cut-off absence/
presence of SWM in layers diet was performed. In detail, the predictive
performance was calculated by comparing no (SWMO0) vs. inclusion
(SWM4-12), where the latter was a merged cluster of the rations
formulated using SWM. Based on these premises, the NIR-benchtop in-
strument has proven to achieve the best classification performance along
the algorithms (Table 1), meanwhile for the NIR-portable a slight
reduction in the overall value of statistical indicators was observed
(Table 2). The results for the VIS/NIR-portable spectrometer presented
the lowest values of overall accuracy (0.70) and the lowest classification
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capability (MCC <0.22) due to a high level of misclassification between
samples indicating the combination of spectral and colour features did
not improve the modelling results (Table 54, supplementary materials).

Among predictions obtained using the three machine leaming
methods on NIR and VIS/NIR data collected by the different devices on
quail eggs, the absolute best classification performance was observed for
the NIR-portable instrument coupled with a SVM-radial model. Indeed,
this modelling combination was shown to be suitable as a fast and
handheld screening approach reporting no misclassification of eggs from
quail fed with or without the insect-derived protein source because the
highest accuracy of prediction (accuracy and MCC of 1.00). However,
the NIR-benchtop instrument coupled with the KNN algorithm was also
proven to be accurate for egg feeding system detection since it provided
a highly reliable prediction (accuracy of 0.98 and MCC of 0.94) with
only one misclassified sample. The PLS-DA model showed the poorest
predictive capabilities confirmed by high levels of misclassification
among samples in both NIR-benchtop (MCC of 0.82) and NIR-portable
(MCC of 0.60).
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4. Discussion

The present research was designed to verify if increasing inclusion of
SWM in quails” feed would be rapidly detected in eggs throughout an
untargeted multivariate modelling approach based on NIR spectroscopy
and chemometrics. To ensure a feasible at-line control of the productive
process and a simultaneous fast qualitative characterisation of the end-
product (egg and/or egg-derivatives), the effectiveness predictive
capability of a handheld NIR instrument was also carried out. Despite a
moderate sample size, as reported in literature (Nakaguchi & Ahamed,
2022), the investigated dataset could be considered suitable to prove the
possibility of using ML coupled with VIS/NIR or NIR to solve a
discriminant challenge related to the use of SWM as protein replacer in
feeding quail’s egg producer. Even thought, the inference capacity of ML
methods to recognize patterns is generally proportional to the size of the
dataset, intentional relative small collection focusing on a specific
experimental factor could be able to produce appropriate standard sta-
tistical inferences (Faraway & Augustin, 2018). Among the more
computational innovative ML algorithms, the study focused on SVM and
KNN. SVM is proposed to separate multi-classes and try to find the best
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Table 1
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NIR-benchtop - Performance of the supervised models in classifying eggs from quails fed without (SWMO) or
with SWM (SWM4-12) by external validation.

PLS-DA Accuracy = 0.92 Actual
Predicted Sensitivity  Specificity MCC SWMO SWM4-12
SWMO 1.00 0.589 0.82 12 4
SWM4-12 0.89 1.00 0.82 0 32
KNN Accuracy = 0.98 Actual

Predicted Sensitivity  Specificity MCC SWMO SWM4-12
SWMO 0.92 L.oo 0.94 11 0
SWM4-12 1.00 0.92 0.94 1 36
SVM-linear Accuracy = 0.96 Actual

Predicted Sensitivity  Specificity MCC SWMO SWM4-12
SWMO 0.83 1.00 0.89 10 0
SWM4-12 1.00 0.83 0.89 2 36
SVM-radial Accuracy = 0.94 Actual

Predicted Sensitivity  Specificity MCC SWMO SWM4-12
SWMO 0.75 1.00 0.83 9 ]
SWM4-12 1.00 0.75 0.83 3 36

Table 2

NIR-portable - Performance of the supervised models in classifying eggs from quails fed without (SWMO) or
with SWM (SWM4-12) by external validation.

PLS-DA Accuracy =0.77 Actual
Predicted Sensitivity  Specificity MCC SWMO SWM4-12
SWMO 1.00 0.69 0.60 12 11
SWM4-12 0.69 1.00 0.60 0 25
KNN Aceuracy =090 Actual

Predicted Sensitivity  Specificity MCC SWMO SWM4-12
SWMO 0.58 1.00 0.72 7 ]
SWM4-12 1.00 0.58 0.72 5 36
SVM-linear Accuracy = 0.98 Actual

Predicted Sensitivity  Specificity MCC SWMO SWM4-12
SWMO 0.92 1.00 0.94 i1 ]
SWM4-12 .00 092 0.94 1 36
SYM-radial Accuracy = 1.00 Actual

Predicted Sensitivity  Specificity MCC SWMO SWM4-12
SWMO 1.00 1.00 1.00 12 0
SWM4-12 1.00 1.00 1.00 U] 36

line on hyper-planes for classification data for both classification and
regression (Sehirli & Arslan, 2022). The KNN model does not require any
assumption about the underlying data distribution and linearity

between dependent/independent variables) and could be implemented
at a low computational cost.
Portable NIR spectrometers demonstrated to be a low-cost and a
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viable alternative to benchtop tools showing the advantage to be
implemented on production lines and easily transported for in situ
quality monitoring along the different steps of egg supply chain (Lanza
et al., 2021). Even though NIR demonstrated a notable capability in the
direct detection of insects in cereals (Biancolillo et al., 2019), the indi-
rect assessment of insect presence (silkworm meal) in laying quails’ diet
throughout the spectroscopic analyses of eggs, showed a moderate
capability of the tested VIS/NIR and NIR devices. This finding was
probably due to the limited range of dietary SWM inclusion, which not
induce relevant physical and chemical changes of the yolk and albumen
mixture. Thus, the similarities among the spectral patterns for the
SWM-classes resulted in poor predictive performance for all the spec-
troscopic devices and ML model’s combinations. Therefore, the assess-
ment of the prediction in external validation was performed also by a
binary approach like SWM absence (SWMO) or presence (SWM4-12).
Based on this fit-cut-off purpose, both NIR-benchtop and NIR-portable
devices reported satisfactory classification performance in the external
validation on the independent set, especially if combined with KNN and
SVM models. The lower predictive accuracy of PLS-DA algorithm
observed in this study might be due to the interference and overlapping
of some uninformative spectral variables, even though a preliminary RF
features selection was carried out. SVM and KNN are more complex and
flexible supervised models reporting better classification performance
due to the identification of the best numerical values to be assigned to
building parameters (i.e., G, y, and ¢ for SVM) of the classification al-
gorithm, even with unbalanced experimental sample sets (Varra et al,
2022). In advanced ML techniques such as SVM and KNN, the proper
selection of wavelengths to obtain a small subset with lower sensitivity
to non-linearities is usually effective in improving the performance of
the models (Coronel-Reves et al., 201 8). As suggested from the literature
(Zhang et al.,, 2022), the classifier models based on an SVM approach
(linear or radial) seemed to be better than the KNN one at recognising a
correct specimen assignment within the actual class, especially when
predicting independent samples in test set. However, the choice of the
more appropriate chemometric approach is still a topic of debate. A
study on the application of a portable NIR reflective device focusing on
the eggs’ freshness prediction showed similar classification performance
among the PLS-DA and SVM algorithms (Brasil et al., 2022).

Despite portable tools being comprised of comparatively basic
spectroscopic components, which must be resized in order to miniaturise
the device, the results highlighted a similar discriminative performance
between the two devices based on NIR absorption (Zhu et al., 2022).
Instead, for the VIS-NIR portable tool, a lower classification capacity was
observed that might be explained by the size of the measuring head, the
detector type, the distinctive optical properties of the VIS region and its
lower absorption rate. Likely, the combination between the reduction in
the spectral range (700-1080 nm) and lower sensors performances
affected the prediction ability of the VIS/NIR-portable device (Lanza
et al, 2021). Given the poor predictive capacity and to facilitate data
interpretation, the results related to the latter instrument are available
in the supplementary materials (Table 54) and the discussion below will
focus only on the two NIR tools.

A preliminary feature selection based on a RF spectral NIR variable
selection was made to reduce the intrinsic complexity of NIR spectra, an
essential step for ML methods which can exhibit a decrease in accuracy
when the number of variables is significantly higher than optimal.
However, the interpretation of the interaction between infrared radia-
tion and chemical traits of the investigated organic samples (eggs) still
remained a limiting factor. The broad absorption trend for NIR or VIS-
NIR spectra contain undemeath a large number of overlapped bands
making it a challenge to define a clear fingerprinting of the nominal
chemical composition along the samples of the investigated classes.
Based on spectra NIR line shape, peaks represent the result of vibrational
transitions associated with chemieal bonds (OH-, CH-, NH- and CO-) in
most organic molecules; however, while most often the meaningful
wavelengths for the classification models can be determined using
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various chemometric methods, their chemical attribution is not easy or
directly interpretable in this infrared region (Bec et al., 2021).

In general, the devices showed similar trends among spectral pat-
temns of eggs from laying quails fed with different SWM inclusion levels.
However, eggs laid by quails fed the control diet yielded a spectrum with
lower absorbance values, results more appreciable in spectra obtained in
the NIR-benchtop (Fig. 2) and VIS/NIR-portable (Fig. 4). The most
informative bands referred to 1150-1300 and 1350-1600 nm for both
NIR instruments, and over 1850 nm in the case of benchtop, are related
to the overtone and combination among the main functional groups such
as OH-, CH-, NH- and CO-. These wavelength ranges were identified to
exert the highest discriminative power between the feeding systems,
probably due to the effect of the SWM on the molecular structure and
spatial configuration of proteins and lipids stored in egg. Despite none
RF was recorded at 1150 nm, the low peak characterizing these spectra
region in both NIR devices has already been associated to the second
overtone of G-H absorption of pure fatty acids containing cis double
bonds (C=0 and C-H) like in oleic acid (I{aufmann et al., 2019). This
spectral outcome suggests that different levels of inclusion of SWM
might interfere with the de-novo FA synthesis. Particularly for the
benchtop-NIR instrument, more marketable differences in absorption
levels among experimental groups were observed in the peak around
1400 nm associated with O-H elongation of water content, N-H (aro-
matic amines), and C-H combination tones (Torrico et al., 2022), which
are light scattering dissimilarities not easily traceable to shift of specific
molecules (i.e., proteins) and their water H-bonding with other
molecules.

This hypothesis of changes in the egg nutrients chemical properties
linked to the dietary inclusion of SWM might be supported by the
relevant differences in absorption trends depicted for the benchtop-NIR
(Fig. 2) over 1950 nm, a spectral region associated with many OH
combination tone of water-absorbing bands and C-H combination of
fatty acids (Prieto et al., 2009). Probably, the addition of SWM in the
quails” diet caused changes in the water-holding capacity and protein
functionality in the egg that should be carefully investigated. Consid-
ering the restricted pool of the selected RF informative wavelengths, for
the NIR-portable, those recorded around 1340 nm may be associated
with the second aromatic C-H elongation overtone, mainly related to
CH; and CH; from the saturated fatty acids (Brasil et al., 2022; Cruz--
Tirado et al., 2021), while the RF at 1205 nm might be associated with
the C-H stretching second overtone of CH; and CH (Brasil et al., 2022).
With both NIR instruments, the RF recorded around 1450 nm referred to
the OH first overtone (1450 nm), while the benchtop-related RF at 2220
nm seemed to be linked to water-absorbing bands and C-H of specific
fatty acids (Prieto et al., 2009). With regard to the VIS/NIR-portable,
many RF are grouped in the water region around 970 nm generally
associated with the O-H stretching.

The findings and tuned chemometric parameters cannot be consid-
ered the final endpoint but the applicability proof of the proposed
spectroscopic methods coupled with SVM and KNN as pattern recogni-
tion models. Moreover, future studies should investigate additional
variability sources as the breed, oviposition capability and layers man-
agement, which could affect the NIR or VIS/NIR spectra outcomes, to
increase the robustness of dassification through wider datasets. Addi-
tionally, the relationship between dietary insect-derived and chemical
composition of eggs should be also explored. Furthermore, the appli-
cation of other spectroscopic devices (e.g., MicroNIRS) should be tested
to better design innovative specific analytical tools (e.g., mono-
chromator, a sample holder, interferometer, photoelectric detector, ete.)
for the at-line monitoring along the egg supply chain.

5. Conclusions
The study highlighted the feasibility of NIR spectroscopy combined

with SVM or KNN algorithms as rapid and screening online approach to
differentiate quail table eggs according to the inclusion of silkworm
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meal into layers diet. Overall, the results demonstrated that a random
forest (RF) spectral NIR variable selection improved the classification
performance and provided reliable results for the insect-in-diet identi-
fication avoiding useless and interfering information. Results revealed
an inconsistent predictive capacity of the VIS-NIR spectrometer to detect
the use of insect meal into laying quails’ diet, probably because at the
visible wavelengths, accuracy of classification models is reduced. The
NIR-portable tool showed comparable classification performance as its
benchtop counterpart, but with the advantage of being an appealing
alternative to benchtop units for its low cost, flexibility, ruggedness,
compactness, robustness, and field applications. Summarising, the
research highlights the potential of NIR data processed through a SVM or
KNN machine leaming methods to capture the spectroscopy finger-
printing linked to the dietary inclusion of SWM, suggesting that this fast
chemometric evaluation may allow for the on-line inspection of insect-
based feed along the egg supply chain.

Funding

This work was supported by University of Padova (call 2019, BIRD
project number 193891 - OneHealth).

CRediT authorship contribution statement

Ilaria Lanza: Investigation, Data curation, Methodology, Writing —
original draft, Writing — review & editing. Sarah Curro: Investigation,
Writing — original draft, Writing — review & editing. Severino Segato:
Supervision, Conceptualization, Visualization, Writing — original draft,
Writing — review & editing. Lorenzo Serva: Software, Formal analysis,
Data curation, Writing — review & editing. Marco Cullere: Investiga-
tion, Writing — original draft. Paolo Catellani: Investigation. Luca
Fasolato: Investigation. Daniela Pasotto: Investigation. Antonella
Dalle Zotte: Conceptualization, Resources, Funding acquisition, Project
administration.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the worlk reported in this paper.

Data availability
Data will be made available on request.
Appendix A. Supplementary data

Supplementary data to this article can be found online at https:/ /doi
org/10.1016/j.foodcont.2022.109589.

References

Be¢, K. B., Grabska, J., Plewka, N., & Huck, C. W. (2021). Insect protein content analysis
in handcrafted fitness bars by nir spectroscopy. Gaussian process regression and data
fusion for performance enhancement of miniaturized cost-effective consumer-grade
sensors, Molecules, 26(21). https://doi.org/ 90/molecules26216390

Biancolillo, A., Firmani, P., Bucci, R., Magri, A., & Marini, F. (2019). NIR spectroscopy vs.
food pests: The case of stored rice. NIR News, 30{5-6), 18-21. https:/ /doL.org/
10.1177/0960336019854284

Bisutti, V., Merlanti, R., Serva, L., Lucatello, L., Mirisola, M., Balzan, S., Tenti, S.,
Fontana, F., Trevisan, G., Montanucci, L., Contiero, B., Segato, S., & Capolongo, F.
(2019). Multivariate and machine learning approaches for honey botanical origin
authentication using near infrared spectroscopy. Journal of Near Infrared
Spectroscopy. https://doi.org/10.1177/0967033518824765

Brasil, Y. L., Cruz-Tirado, J. P., & Barbin, D. F. (2022). Fast online estimation of quail
eggs freshness using portable NIR spectrometer and machine learning. Food Control,
131(July 2021), Article 108418, https://doi.org/10.1016/j.foodcont.2021.108418

Coronel-Reyes, J., Ramirez-Morales, L., Fernandez-Blanco, E., Rivero, D., & Pazos, A.
(2018). Determination of egg storage time at room temperature using a low-cost NIR
spectrometer and machine learning techniques. Computers and Electronics in

Food Control 147 (2023) 109589

Agriculture, 145(September 2017), 1-10. htt
compag.2017.12.030

Cruz-Tirado, J. P., Lucimar da Silva Medeiros, M., & Barbin, D. F. (2021). On-line
monitoring of egg freshness using a portable NIR spectrometer in tandem with
machine learning. Journal of Food Engineering, 306(Oc'(ober 2020), Article 110643,
https:/ /doi.org/10.1016/].jfoodeng.2021.11 064

Curro, S., Balz.an S., Serva, L Boffo, L., Ferlito, J. C Novwelli, E., & Fasolato, L. (2021).
Fast and green method to control frauds of geographical origin in traded cuttlefish
using a portable infrared reflective instrument. Foods, 10(8). https:/ /doiorg/
10.3390/foods10081678

Curro, 8., Fasolato, L., Serva, L., Boffo, L., Ferlito, J. C., Novelli, E., & Balzan, §. (2022).
Use of a portable near-infrared tool for rapid on-site inspection of freezing and
hydrogen peroxide treatment of cuttlefish (Sepia officinalis). Food Control, 132.
https:/ /doi.org/10.1016/j.foodcont.2021.108524. August 2021.

Dalle Zotte, A. (2021). Meat quality of poultry fed with diets supplemented with insects:
A review. IOP Conference Series: Earth and Environmental Science, 854(1). hitps://doi
org/10.1088/1755-1315/854/1/012019

Dalle Zotte, A., Singh, Y., Michiels, J., & Cullere, M. (2019). Black soldier fly (Hermetia
illucens) as dietary source for laying quails: Live performance, and egg physico-
chemical quality, sensory profile and storage stability. Animals, 9(3). https://dol
org/10.3390/ani9030115

European Commission. (2018). EU regulation 2021/1372. 2016(68), 48-119.

Faraway, J. J., & Augustin, N. H. (2018). When small data beats big data. Statistics &
Probability Letters, 136, 142-145. | /doi.org/10.1016/j 2018.02.03

Gasco, L., Acuti, G, Bani, P., Dalle Zotte, A., Danieli. P. P., De Angelis, A., Fortina, R.,
Marino, R., Parisi, G., Piccolo, G., Pinotti, L., Prandini, A., Schiavone, A., Terova, G.,
Tulli, F., & Roncarati, A. (2020). Insect and fish by-products as sustainable
alternatives to conventional animal proteins in animal nutrition. Itelian Journal of
Animal Science, 19(Issue 1). https://doi.org/10.1080/1828051X.2020.1743209

Hawkey, K. J., Lopez-Viso, C., Brameld, J. M., Parr, T., & Salter, A. M. (2021). Insects: A
potential source of protein and other nutrients for feed and food. In Annual Review of
Animal Biosciences, 9. https://doi.org/10.1146/annurev-animal-021419-083930

Kaufmann, K. C., Favero, F. de F., de Vasconcelos, M. A. M., Godoy, H. T., Sampaio, K. A.,
& Barbin, D. F. (2019). Portable NIR specirometer for prediction of palm oil acidity.
Journal of Food Science, 84(3). https://doi.org/10.1111/1750-3841.14467

Lanza, 1., Conficoni, D., Balzan, §., Cullere, M., Fasolato, L., Serva, L., Contiero, B.,
Trocino, A., Marchesini, G., Xiccato, G., Novelli, E., & Segato, S. (2021). Assessment
of chicken breast shelf life based on bench-top and portable near-infrared
speciroscopy 100]3 ooupled with chemometrics. Food Quality and Safety, 5. hitps:/
doi.org/10.1093/fqsaf :

Lin, H., Zhao, J., Sun, L., Chen Q. & Zhou, F. (2011). Freshness measurement of eggs
using near infrared (NIR) spectroscopy and multivariate data analysis. Innovative
Food Science & Emerging Technologies, 12(2), 182-186. http=//dolorg/ 10,1016/

ifset.2011.01.008

Lippi, N., Predieri, S., Chieco, C., Daniele, G. M., Cianciabella, M., Magli, M.,
Maistrello, L., & Gatti, E. (2021). Italian consumers’ readiness to adopt eggs from
insect-fed hens. Animals, 11(11). https://doi.org/10.3390/ani1111 3278

Loffredi, E., Grassi, S., & Alamprese, C. (2021). Spectroscopic approaches for non-
destructive shell egg quality and freshness evaluation: Opportunities and challenges.
Food Contrel, 129. https://doi.org/10.1016/j.foodcont.2021.108255

Marcot, B. G., & Hanea, A. M. (2021). What is an optimal value of k in k-fold cross-
validation in discrete Bay network analysis? Comp ional Statistics, 36(3),
2009-2031. https://doi.org/10.1007 /s00180-020-00999-9

Mehmood, T., Liland, K. H., Snipen, L., & Sm=bg, 5. (2012). A review of variable selection
methods in Partial Least Squares Regression. Chemometrics and Intelligent Laboratory
Systems, 118, 62-69. https://doi.org/10.1016/j.chemolab.2012.07.010

Miah, M. Y., Singh, Y., Cullere, M., Tent, S., & Dalle Zotte, A. (2020). Effect of dietary
supplementation with full-fat silkworm (Bombyx mori L.) chrysalis meal on growth
performance and meat quality of Rhode Island Red x Fayoumi crossbred chickens.
Italian Journal of Animal Science, 19(1), 447-456. https://doi.org/10.1080,
1828051X.2020.1752119

Nakaguchi, V. M., & Ahamed, T. (2022). Fast and non-destructive quail egg freshness
assessment using a thermal camera and deep learning-based air cell detection
algorithms for the revalidation of the expiration date of eggs. Sensors, 22(20).
https:/ /doi.org/10.3390/522207703

Prieto, N., Roehe, R., Lavin, P., Batten, G., & Andres, S. (2009). Application of near
infrared reflectance spectroscopy to predict meat and meat products quality: A
review. Meat Science, 83(Issue 2). https://doi.org/10.1016/jmentsecl. 2009 D16

Secci, G., Bovera, F., Nizza, 5., Baronti, N., Gasco, L., Conte, G., Serra, A., Bonel.l.l A, &
Parisi, G. (2018). Quality of eggs from Lohmann Brown Classic laying hens fed black
soldier fly meal as substitute for soya bean. Animal, 12(10), 2191-2197. hetps://doi.
org/10.1017/81751731117003603

Segato, S., Merlanti, R., Bisutti, V., Montanucci, L., Serva, L., Lucatello, L., Mirisola, M.,
Contiero, B., Conficoni, D., Balzan, 5., Marchesini, G., & Capolongo, F. (2019).
Multivariate and machine learning models to assess the heat effects on honey
physicochemical, colour and NIR data. European Food Research and Technology, 245
(10), 2269-2278. https://doi.org/10.1007/500217-019-03332-x

Sehirli, E., & Arslan, K. (2022). An application for the classification of egg quality and
haugh unit based on characteristic egg features using machine learning models.
Expert Systems with Applications, 205(February), Article 117692, htips://dol.org/
10.1016/j.eswa.2022.117692

Spartano, S., & Grasso, S. (2021). UK consumers’ willingness to try and pay for eggs from
insectfed hens. Future Foods, 3. https://doi.org/10.1016/j.fufo.2021.100026

Torrico, D., Gonzalez Viejo, C., Christinan Hoffman, L., Ni, D Dayananda, B., Abdul
Ghafar, N., & Cozzolino, D. (2022). Unscrambling the Provenance of Eggs by Combining

oi.org/10.1016/j.

74



I. Lanza et al

r"l. 7 e
522134933

Varra, M. 0., Ghidini, S., Fabrile, M. P., lanieri, A, & Zanardi, E. (2022). Country of
origin label monitoring of musky and common octopuses (Eledone spp. and Octopus
vulgaris) by means of a portable near-infrared spectroscopic device. Food Control,
138(April). https://doi.org/10.1016/j.foodcont. 2022.109052

N TFre o
and i

d Beflectk [ i
J:

P py. https://doi.org,/10.3390/

75

Food Control 147 (2023) 109589

Zhang, X., Gao, Z., Yang, Y., Pan, 8., Yin, J., & Yu, X. (2022). Rapid identification of the
storage age of dried tangerine peel using a hand-held near infrared spectrometer and
machine learning. Journal of Near Infrared Spectroscopy, 30(1), 31-39. https://doi.
org/10.1177 /09670335211057232

Zhu, C,, Fu, X., Zhang, J., Qin, K., & Wu, C. (2022). Review of portable near infrared
spectrometers: Current status and new techniques. Journal of Near Infrared
Spectroscapy, 30(2), 51-66. htips://doi.org/10.1177 /09670335211 030617



Appendix A.

Supplementary data
0.040
—SWM(0 —SWM4 SWM8 ——SWM12
0.030
=2 0.020
=
%0
Q
2
| ”
5
e
2
O
< 0.010
0.000
Q N N S VY O K O Q W
Q7 ¥ N7 7 J7 AR O B (7 AQ 8 N
AR RN RN NN NG NS NOENNEN
-0.010

Wavelenghts, nm

Fig. 1S. NIR-benchtop. The mean NIR absorbance curves after pre-treatment for eggs (yolk
and albumen) of quails fed 4 dietary levels of silkworm meal (SWM 0-12% inclusion).
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Fig. 2S. NIR-portable. The mean NIR absorbance curves after pre-treatment for eggs (yolk
and albumen) of quails fed 4 dietary levels of silkworm meal (SWM 0-12% inclusion).
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Fig. 3S. VIS/NIR-portable. The mean NIR absorbance curves after pre-treatment for eggs
(yolk and albumen) of quails fed 4 dietary levels of silkworm meal (SWM 0-12% inclusion).
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Table 1S. NIR-benchtop — Performance of the supervised models in classifying eggs from

quails fed increasing levels of SWM by external validation.

PLS-DA Accuracy =0.76 Actual
Predicted Sensitivity  Specificity MCC SWMO SWM4 SWMS8 SWMI2
SWMO 1.00 0.89 0.82 12 3 1 0
SwM4 0.17 0.83 0.00 0 2 5 1
SWM8 0.33 0.75 0.08 0 5 4 4
SWM12 0.58 0.89 0.49 0 2 2 7
KNN Accuracy = 0.79 Actual
Predicted Sensitivity — Specificity MCC SWMO SWM4 SWMS SWMI2
SWMO 0.92 1.00 0.94 11 0 0 0
SwM4 0.83 0.75 0.52 1 10 8 0
SWM8 0.17 0.78 -0.06 0 1 2 7
SWM12 0.42 0.92 0.39 0 1 2 5
SVM-linear Accuracy = 0.79 Actual
Predicted Sensitivity ~ Specificity MCC SWMO SWM4 SWMS8 SWMI2
SWMO 0.83 1.00 0.89 10 0 0 0
SWM4 0.83 0.67 0.43 2 10 9 1
SWM8 0.25 0.81 0.06 0 1 3 6
SWM12 0.42 0.97 0.51 0 1 0 5
SVM-radial Accuracy =0.77 Actual
Predicted Sensitivity — Specificity MCC SWMO SWM4 SWMS SWMI2
SWMO 0.75 1.00 0.83 9 0 0 0
SwM4 0.83 0.64 0.41 3 10 9 1
SWM8 0.25 0.78 0.03 0 1 3 7
SWM12 0.33 0.97 0.43 0 1 0 4

PLS-DA, partial least squares-discriminant analysis; KNN, K-nearest neighbour; SVM-
linear, support vector machine-linear; SVM-radial, support vector machine-radial; MCC,
Matthew correlation coefficient; SWMO0-SWM12, dietary inclusion (% on dry matter basis)
of 0,4, 8, 12 of silkworm meal (SWM).
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Table 2S. NIR-portable — Performance of the supervised models in classifying eggs from

quails fed increasing levels of SWM by external validation.

PLS-DA Accuracy = 0.71 Actual

Predicted Sensitivity  Specificity MCC SWM0O SWM4 SWM8 SWMI2
SWMO 1.00 0.69 0.60 12 5 6 0
SWM4 0.00 1.00 n.d. 0 0 0 0
SWM8 0.25 0.69 -0.05 0 4 3 7
SWM12 0.42 0.83 0.26 0 3 3 5
KNN Accuracy =0.75 Actual

Predicted Sensitivity  Specificity MCC SWM0O SWM4 SWM8 SWMI2
SWMO 0.58 1.00 0.72 7 0 0 0
SWM4 0.58 0.75 0.31 5 7 4 0
SWM8 0.67 0.61 0.24 0 4 8 10
SWM12 0.17 0.97 0.25 0 1 0 2
SVM-linear Accuracy = 0.75 Actual

Predicted Sensitivity  Specificity MCC SWM0O SWM4 SWM8 SWMI2
SWMO 0.92 1.00 0.94 11 0 0 0
SWM4 0.58 0.78 0.34 1 7 7 0
SWM8 0.42 0.61 0.02 0 3 5 11
SWM12 0.08 0.94 0.05 0 2 0 1
SVM-radial Accuracy =0.76 Actual

Predicted Sensitivity ~ Specificity MCC SWM0O SWM4 SWM8 SWMI2
SWMO 1.00 1.00 1.00 12 0 0 0
SWM4 0.67 0.81 0.44 0 8 7 0
SWM8 0.25 0.67 -0.08 0 2 3 10
SWM12 0.17 0.89 0.07 0 2 2 2

PLS-DA, partial least squares-discriminant analysis; KNN, K-nearest neighbour; SVM-
linear, support vector machine-linear; SVM-radial, support vector machine-radial; MCC,
Matthew correlation coefficient; SWMO0-SWM12, dietary inclusion (% on dry matter basis)
of 0,4, 8, 12 of silkworm meal (SWM).
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Table 3S. VIS/NIR-portable — Performance of the supervised models in classifying eggs

from quails fed increasing levels of SWM by external validation.

PLS-DA Accuracy = 0.65 Actual
Predicted Sensitivity  Specificity MCC SWMO SWM4 SWMS8 SWMI2
SWMO 0.33 0.78 0.11 4 3 3 2
SwM4 0.08 0.72 -0.20 8 1 2 0
SWM8 0.00 0.97 -0.08 0 0 0 1
SWM12 0.75 0.58 0.29 0 8 7 9
KNN Accuracy = 0.70 Actual
Predicted Sensitivity — Specificity MCC SWMO SWM4 SWMS SWMI2
SWMO 0.17 0.89 0.07 2 0 1 3
SwM4 0.33 0.75 0.08 7 4 2 0
SWM8 0.67 0.69 0.32 3 4 8 4
SWM12 0.42 0.86 0.30 0 4 1 5
SVM-linear Accuracy = 0.67 Actual
Predicted Sensitivity ~ Specificity MCC SWMO SWM4 SWMS8 SWMI2
SWMO 0.33 0.86 0.22 4 0 2 3
SWM4 0.25 0.75 0.00 6 3 3 0
SWM8 0.25 0.81 0.06 0 4 3 3
SWM12 0.50 0.69 0.18 2 5 4 6
SVM-radial Accuracy = 0.67 Actual
Predicted Sensitivity — Specificity MCC SWMO SWM4 SWMS SWMI2
SWMO 0.17 0.83 0.00 2 1 1 4
SwM4 0.25 0.67 -0.08 8 3 4 0
SWM8 0.50 0.78 0.26 2 3 6 3
SWM12 0.42 0.83 0.26 0 5 1 5

PLS-DA, partial least squares-discriminant analysis; KNN, K-nearest neighbour; SVM-
linear, support vector machine-linear; SVM-radial, support vector machine-radial; MCC,
Matthew correlation coefficient; SWMO0-SWM12, dietary inclusion (% on dry matter basis)
of 0, 4, 8, 12 of silkworm meal (SWM).
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Table 4S. VIS/NIR-portable — Performance of the supervised models in classifying eggs
from quails fed without (SWMO) or with SWM (SWM4-12) by external validation.

PLSDA Accuracy = 0.67 Actual
Predicted Sensitivity Specificity MCC SWMO SWM4-12
SWMO 0.33 0.78 0.11 4 8
SWM4-12 0.78 0.33 0.11 8 28
KNN Accuracy =0.71 Actual
Predicted Sensitivity Specificity MCC SWMO SWM4-12
SWMO 0.17 0.89 0.07 2 4
SWM4-12 0.89 0.17 0.07 10 32
SVM-linear Accuracy = 0.73 Actual
Predicted Sensitivity ~Specificity MCC SWMO SWM4-12
SWMO 0.33 0.86 0.22 4 5
SWM4-12 0.86 0.33 0.22 8 31
SVM-radial Accuracy = 0.67 Actual
Predicted Sensitivity — Specificity MCC SWMO SWM4-12
SWMO 0.17 0.83 0.00 2 6
SWM4-12 0.83 0.17 0.00 10 30

PLS-DA, partial least squares-discriminant analysis; KNN, K-nearest neighbour; SVM-

linear, support vector machine-linear; SVM-radial, support vector machine-radial; MCC,

Matthew correlation coefficient; SWMO, no dietary inclusion of silkworm meal; SWM4-12,

merging of feeding groups with dietary inclusion of silkworm meal.
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As forage may affect the environmental sustainability of a given dairy chain, this study evaluated the
discriminant capacity of fatty acids (FAs) and NMR metabolomic profiles of milk from three dairy chains,
where forage components of cows diets were: maize silage (MS), grass-legume and maize silage (GMS),
grass and lucerne hay (HAY). Canonical discriminant analysis (CDA) based on FAs and NMR metabolites
highlighted a reliable discriminative performance for HAY samples that were correctly recognised,

especially on the basis of C18:3n-3 and C17:0. The GMS samples were positively correlated with choline,
C14:0 and C17:1 cis-9, while the MS ones were represented mainly by C16:1 cis-9. An overlap between
MS and GMS samples was observed, even if a low-level fused CDA modelling improved their correct
assignment. The footprint of maize silage on the milk metabolomic profile seemed not to be affected if
partially replaced by a mix of legume and grass silages.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Although several factors, such as breed, herd health status and
seasonal variation, have been shown to affect milk yield and
composition, the composition of the cows’ feed is the key driver of
the metabolic processes from nutrient intake to mammary gland
synthesis (Borreani et al., 2013; Tenori et al.,, 2018).

In intensive dairy farming areas, maize is cultivated for silage
production to maximise the amount of feed energy produced per
unit of farmland (Borrelli, Catelli, Ceotto, Cabassi, & Tomasoni,
2014) and the inclusion of maize silage in dairy rations has
increased progressively since the 1980s, replacing permanent
meadow hay and/or other dried mixed grass-legume forages.

The impact of maize-related dairy rations on milk yield has been
extremely positive (Lora, Zidi, Magrin, Prevedello, & Cozzi, 2020),
but cow health status (i.e., lameness, loose faeces etc.) and repro-
ductive efficiency have been noted to be sensitive to higher level of

* Corresponding author. Tel.: +39 0521 905407.
E-mail address: veronica.lolli@unipr.it (V. Lolli).

https://doi.org/10.1016/j.idairyj.2021.105174
0958-6946/© 2021 Elsevier Ltd. All rights reserved.

impairment, due to frequent aerobic deterioration during storage
or to aflatoxin contamination of maize silage (Battilani et al., 2016).

Further concerns regarding the use of maize silage as the pre-
dominant forage source (FS) in dairy diets arise from the environ-
mental sustainability of this cereal, which requires high fossil
energy inputs in the face of high emissions of nitrous oxide into the
atmosphere (Crutzen, Mosier, Smith, & Winiwarter, 2008).

To mitigate the negative effects of the cereal monoculture, the
European common agricultural policy has recommended crop
rotation and diversification to enhance soil fertility and the quality
of underground microbial communities (Tiemann, Grandy,
Atkinson, Marin-Spiotta, & Mcdaniel, 2015). For these reasons,
several dairy chains are now evaluating the partial replacement of
maize silage with alternative FS such as winter grass (e.g., Italian
ryegrass) or cereals (e.g., wheat, oats and triticale) as well as mix-
tures of these cereals with legumes (e.g., lucerne, peas and vetch).
Dairy systems based on alternative fodders could help increase
overall farm sustainability by reducing leaching of soil nutrients,
mitigating yield-scaled farm greenhouse gas emissions (increasing
C sequestration in the soil organic matter) and limiting cows’
enteric methane emissions (Tabacco, Comino, & Borreani, 2018).
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Consumers are now increasingly aware about sustainability is-
sues in food production and recognise dairy chains that could
couple milk quality with resource conservation and biodiversity
issues (Schoof, Luick, Jirgens, & Jones, 2020). Therefore, milk
quality authentication has become a topic of interest for regulatory
authorities, food processors and dairy chains, especially when it
comes to certified and high-value dairy products such as PDO-
labelled cheeses (Coppa et al., 2015; Segato et al., 2017).

The effect of botanical origin and conservation processes of the
forage on milk composition has been largely demonstrated. In
addition to fatty acid (FA) detection by gas chromatography—mass
spectrometry (GC—MS) (Capuano et al., 2014), high-resolution
proton nuclear magnetic resonance (NMR) spectroscopy ('H
NMR) has become widespread for the screening of several metab-
olites in dairy products, providing information about the footprint
of the feeding system used to produce them (Boiani et al., 2019;
Segato et al., 2019a).

Both GC—MS and NMR are accurate metabolomic approaches
for the authentication of dairy products, especially when applied in
comparing low and high input systems (Tenori et al.,, 2018). How-
ever, a comprehensive metabolomic study is needed to better un-
derstand the influence of the dietary forage proportion (i.e., silages
versus hays), especially in the case of intensive dairy systems
(Rocchetti, Gallo, Nocetti, Lucini, & Masoero, 2020).

Findings of a study on olive oil adulteration proved that a low-
level data fusion of the FA-nonpolar or NMR-polar fraction might
enhance the discriminant performance of the model (Li, Xiong, &
Min, 2019). The hypothesis that a low-level data fusion approach
could provide a greater discriminating capacity for milk than those
built on an FA-nonpolar or on NMR-polar dataset was tested in the
present study by comparing samples from three dairy chains that
differed in the main FS included in the cows’ diets.

Two of these chains comply with cows feeding guidelines set by
PDO requirements of Grana Padano cheese, allowing the use of the
ensiled feeds. The third dairy chain identifies farms that follows the
disciplinary of production of Parmigiano Reggiano PDO cheese,
which forbids the detention and use of any ensiled feed for the
cows rationing.

2. Material and methods
2.1. Experimental design and sampling

The study involved 45 Holstein dairy farms located in the central
part of the Po Valley in Northern Italy. This is the core area of Italian
dairy sector and it is the location of the main cheese chains such as
Grana Padano PDO and Parmigiano Reggiano PDO cheeses.

As shown in Fig. 1, the experimental protocol of this study was
aimed at assessing if a partial or a total replacement of maize silage
with alternative ensiled or dried FS would significantly affect milk
FAs and polar metabolomic profiles. Therefore, three dairy chains,
based on different forages usually included in the diet of the
lactating cows, were considered. Also, to provide a wide and
comprehensive analysis, samples were taken from a relevant
number of herds within each dairy chains.

The first dairy chain (MS group, 14 farms) use maize silage (34%
of total DM) as the main forage component of the total mixed ration
(TMR), while small amounts of grass silage and lucerne silage,
lucerne hay, meadow hay and straw were the remaining in-
gredients of the forage portion of the TMR. The MS-diet was
completed by energy and protein concentrates (23.1 and 19.3% of
total DM, respectively) along with a residual of mineral-vitamin
premix and additives (2.2% of total DM).

The second dairy chain identified dairy farms in which a rele-
vant portion of maize silage was replaced by grass and lucerne
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silages (GMS group, 16 farms). In the mean composition of the
TMRs used by 16 GMS farms, grass and legume silages counted for
35% of the total dietary DM, while maize silage only for 9% of it. The
mean forage portion of GMS diets was completed by small amount
of lucerne hay, meadow hay and straw, while energy and protein
concentrates represented 34.1 and 14.7% of the total DM content of
these rations, respectively.

The third dairy chain identified farms that use only dried forages
as roughage components of cows TMR (HAY group, 15 farms).

The mean ingredient composition of the diets fed in the 15 HAY
farms considered in this study showed lucerne hay (26.6% of total
DM) and meadow hay (21.2% of total DM) as main FS and the mean
diet was completed by energy (34.2% of total DM) and protein
(13.1% of total DM) concentrates along with a residual percentage of
mineral-vitamin premix and additives. Mean ingredients and
proximate composition of the three different FS are provided as
Supplementary material Table S1.

Regardless of the dairy chain, diets on all farms were formulated
to fulfil the herd's nutritional requirements. To minimise the
background noise on milk composition due to the other ingredients
of the diets, the choice of the farms to be included in the study
considered only dairy herds using similar energy and protein
concentrates and mineral-vitamin premix, supplied by the same
feed company. Diets were provided ad libitum as TMR in a single
delivery after the morning milking.

Finally, raw bulk milk samples were collected on each farm in
two different sessions (two replicates per farm): at the end of June
and in the middle of July 2018. A total of 90 raw bulk milk samples
were collected, including 28 (from 14 farms), 32 (from 16 farms)
and 30 milk samples (from 15 farms) for MS, GMS and HAY dairy
chains, respectively.

2.2. Diet and milk analysis

The experimental trial did not influence the farm activities or
management strategies, nor involved any invasive procedure or
manipulation of the lacating dairy cows. Therefore, there was no
implication on the animals’ welfare status.

Samples of TMR were collected in each farm at the two milk
sampling sessions for further analysis. After collection, samples
were kept frozen at —20 °C and, after thawing, they were assayed
for DM, crude protein (CP), ether extract (EE), ash and starch by
official chemical methods and for neutral detergent fibre (aNDF)
and acid detergent fibre (ADF) contents using ANKOM methodol-
ogy (De Nardi et al., 2014). The non-fibre carbohydrate content was
calculated as [100 — (CP + EE + Ash + NDF)].

The levels of protein, casein, fat, lactose and urea in milk were
recorded by a Fourier transform mid-infrared (FI-MIR) spectros-
copy technique using a MilkoScan FT6000 (Foss Electric A/S, Hill-
erad, Denmark). The somatic cell count (SCC, cells mL™' of milk)
was determined by a Fossomatic 5000 (Foss Electric A/S) and re-
ported as [log; (SCC/100,000) + 3].

2.3. Fatty acid analysis

Lipid extraction of milk samples was carried out as described by
Feng, Lock, and Garnsworthy (2004). Thirty millilitres of defrosted
cows’ milk in a 50-mL conical plastic tube was mixed for 2 min with
2 mL of 33% ammonia and centrifuged at 3900xg for 30 min at 4 °C.
The entire the fat-cake layer was transferred to a 15-mL tube and
mixed (by vortexing) with 5 mL of hexane. This was then centri-
fuged at 3900xg at room temperature (20 °C) for 20 min. After
centrifugation, the sample had separated into three layers: a top
layer of lipid; a middle layer of protein, fat and other water-
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Fig. 1. Overall flowchart of the experiment. Ninety raw bulk milk samples were collected from dairy herds fed total mixed rations (TMR) based on three forage sources: maize silage
(MS), grass-legume and maize silage (GMS) and lucerne and permanent meadow hay (HAY) in 45 intensive dairy farms of Northern Italy (top). Milk samples were analysed for fatty
acid (right) and NMR (left) profiles and then submitted to canonical discriminant analysis (CDA) as illustrated in Fig. 2. After low-level FA and NMR fusion, a further CDA was
performed on the merged dataset (bottom and Fig. 3). The CDA models were performed on the training set (80% of samples) and validated by a leave-one-out cross-validation on the

test set (20% of samples), the results of which are reported in Table 3.

insoluble solids; and a bottom layer of water. The upper phase was
recovered and evaporated to dryness under vacuum.

Milk fat for GC—MS fatty acid determination was subjected to
basic transmethylation performed according to ISO 12966-2 (ISO,
2017), with slight modifications. Briefly, 20 mg of the extracted
fat was dissolved in hexane (5 mL) containing tetracosane (Sigma
Aldrich, Saint Louis, MO, USA; purity 99%) as an internal standard at
0.1 mg-- mL~', added to 0.2 mL of KOH 5% in methanol and mixed
vigorously for 5 min. After phase separation, the upper organic
phase was injected (1 pL, split mode 20:1, split flow 19.6 mL min ')
on a Thermo Scientific Trace 1300 gas chromatograph (Thermo
Scientific, Waltham, Massachusetts, USA) carrying a Supelcowax®
10 capillary column (30 m x 0.25 mm x 0.25 pm, Supelco, Bella-
fonte, USA) coupled to a Thermo Scientific Trace ISQ mass spec-
trometer (Thermo Scientific, Waltham, Massachusetts, USA).
Helium was used as the carrier gas (1 mL min 1). The injector and
detector temperatures were set at 240 °C and 250 °C, respectively.
The chromatogram was recorded in scan mode (40—500 m/z), and
the column temperature was set at 80 °C for 2 min, increased to
280 °C (15 °C min~ ') and held at 280 °C for 20 min. The content of

each single FA was calculated in relation to the concentration of the
internal standard, following calculation of the response factors
using the Supelco 37 Component FAME Mix® (Sigma Aldrich, Saint
Louis, MO, USA) added to conjugated linoleic acid standard (as a
mixture of isomers cis- and trans-9,11- and —10,12-octadecadienoic
acids, Sigma Aldrich, Saint Louis, MO, USA) as a reference material.
FA levels were expressed as g 100 g~ ! total FAs.

2.4. NMR-based metabolomic analysis

The milk polar fraction was extracted according to the protocol
described by Yanibada et al. (2018), with slight adaptations. Briefly,
aliquots (400 pL) of milk samples were mixed with 600 pL of MeOD.
First, the mixture was frozen at —20 °C for 30 min. Then, to ensure
complete removal of the apolar component and to avoid possible
chemical shift drifts due to pH effects (Yanibada et al., 2018), 400 puL
of CDCl3 and 200 puL of D;0 phosphate buffer (pH 7) solution con-
taining 3-(trimethylsilyl)-propionate-d4 sodium salt, 98% atom D
(TSP) (Sigma Aldrich, Saint Louis, MO, USA) at 1 mg min ! as the
internal standard were added to milk samples. After centrifugation
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(at 4 °C for 30 min), 600 pL of the supernatant were removed for
analysis.

"H NMR spectra were recorded according to Sezato et al. (2019h)
on a VARIAN INOVA-600 MHz spectrometer (Varian, Palo Alto, CA,
USA), equipped with a 5-mm triple resonance inverse probe.
Spectra were acquired at 298 K, with 32 K complex points; using a
45° pulse length and 3 s of relaxation delay (d1). A total of 128 scans
were acquired with a spectral width of 9595.8 Hz and an acquisi-
tion time of 1.707 s. Identification of 'H NMR markers in milk
samples was achieved through 1D and 2D spectra; TOCSY spectra
were acquired at 298 K, with 2048 data points. A total of 32 scans
were acquired for each of 256 increments, with an acquisition time
of 0.155 s. Acquired 'H NMR spectra were transferred to MestRe-
Nova software (release 6.0.2, Mestrelab Research, Spain) and
referenced to TSP (0 ppm).

The assignment of 'H NMR signals was supported using data
available in the literature (Klein et al., 2010; Sundekilde, Larsen, &
Bertram, 2013; Tenori et al., 2018; Yanibada et al., 2018) and the
metabolomics data repository for NMR Metabolomics (bmrb.io).

An integration pattern was defined by choosing buckets
manually in the range between 0 and 9 ppm on all considered
spectra in the overlapped form (Supplementary material Fig. S1).
This procedure permitted the choice of buckets sufficiently large as
to compensate for the small chemical shift fluctuations in each
spectrum and, for this reason, it was preferred to the standard
automatic bucketing integration, which utilises a bin width of
0.04 ppm. Moreover, in this way, each bucket corresponds to a
defined signal or to a group of signals, which simplifies the inter-
pretation of statistical results. The defined pattern was used for
automatic integration of all spectra and referred to TSP area.

2.5. Data and chemometric analyses

Data analyses were conducted using SAS software (release 9.4,
SAS Institute Inc,, Cary, NC, USA, 2018). The univariate step was
conducted by performing ANOVA. Milk composition, FA and NMR
data were analysed using a linear model (PROC GLM) based on the
fixed effect of FS. Post-hoc pairwise comparisons among levels (MS,
GMS and HAY) of the FS levels were performed using a Bonferroni
correction and at p < 0.05 probalility level (a p-value
threshold < 0.10 was set as a trend at the margin of statistical non-
significance). The hypotheses of the linear model on the residuals
were assessed graphically.

Prior to multivariate canonical discriminant analysis (CDA), both
datasets (FA and NMR) were split into training (80% of the records)
and test (20% of the records) sets. In each FA and NMR testing set, a
preliminary stepwise feature selection (PROC STEPDISC) was con-
ducted, and then the CDA (PROC CANDISC) was performed on the
significant (p < 0.05) selected features using the FS groups (MS,
GMS and HAY) as the prediction factor. After a low-level FA and
NMR data fusion, the supervised CDA model was run on the jointed
array (Fig. 1). Using the XLSTAT software (release 2016, Addinsoft,
New York, NY, USA), the outcomes (loadings) of the CDA were
plotted according to the two main canonical functions, named
CAN1 and CANZ2, and the degree of dissimilarity among FS groups
was measured by D%-Mahalanobis distances (Segato, Caligiani,
et al,, 2019). The total structure correlation coefficients between
the FA and NMR original variables and the canonical functions
(CAN1 and CAN2) were plotted (for absolute value greater than
0.30) in each CDA-scattergram to better understand the relation-
ship among these most discriminant features and the CDA
modelling classes.

The reliability of the CDA models was assessed by a leave-one-
out cross-validation (SAS PROC DISCRIM) performed on the test
set. A confusion matrix was built throughout the results of the
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procedure, and the classification performance was assessed by
means of descriptive statistics such as accuracy, precision, sensi-
tivity, specificity and the Matthews correlation coefficient (MCC), as
reported by Bisutti et al. (2019).

3. Results and discussion

As consumers are now more aware in recognising dairy chains
that could couple milk quality with resource conservation and
biodiversity issues (Schoof et al., 2020), several dairy chains are
now evaluating the footprint on milk and dairy products of
different FS included in the rations of dairy cows as a way to
discriminate and label products according to specific ecosystem
services. For these reasons, the present study was designed to
assess if partial or a total replacement of maize silage with alter-
native ensiled or dried forages sources would significantly affect
milk metabolomic and FA profile.

3.1. Milk quality

Proximate composition data for milk from Holstein herds fed
diets based on the three different FS are reported in Table 1. The FS
did not affect the main quality traits, except for a significantly
(p < 0.05) lower lactose content in HAY milk samples. According to
Riuzzi et al. (2021), the slight decrease in the milk lactose content
that occurred in HAY-fed cows was probably due to a lower level of
propionate synthesis in the rumen.

3.2. Forage sources on fatty acid and NMR metabolomic profiles

As a first step, the FA and polar metabolite footprint of the
different dietary forage types was assessed by GC—MS and 'H NMR,
to identify significant differences between hay- and ensiled-based
milk samples. The 43 quantitatively determined milk FAs are pro-
vided as Supplementary material Table 52, while the significant
ones are reported in Table 2. Milk from MS and GMS had greater
concentrations of C14:1 cis-9 and C16:1 cis-9 than milk from the
HAY system. The C17:1 cis-9 concentration was the highest in GMS.
In contrast, milk from HAY had significant (p < 0.05) greater con-
centrations of anteiso C17:0, C17:0 and C18:3n-3, and a higher level
of C18:2n-6 even if at the threshold of the significance (p = 0.08),
which led to a significantly (p < 0.05) higher PUFA content. Overall,
the main outcomes of the study showed a positive effect on some
PUFAs and odd- and branched chain FAs (OBCFAs) in hay-compared
with MS-milk. Particularly, consistent with the results of Bernardini
et al. (2010) and Coppa et al. (2015), the hay-based TMR signifi-
cantly increased both the C18:2n-6 and the C18:3n-3 concentra-
tions as a result of high plant transfer and low ruminal
biohydrogenation of these PUFAs from the rations to the milk. The
higher content of anteiso C17;0, C17:0 and C17:1 cis-9, three odd-

Table 1
Proximate composition, somatic cell count (SCC) score and urea content of bulk milk
samples from a Holstein herd fed diets based on different forage sources (FS)."

Component MS GMS HAY SEM p-value
Protein (%) 323 325 331 024 0.081
Casein (%) 2.52 248 248 029 0.607
Fat (%) 3.64 37 3.52 0.06 0.080
Lactose (%) 4.80° 4.82° 477" 0.01 0.013
SCC (units) 43 42 45 0.1 0.128
Urea (mgdL™") 19.1 20.6 21.6 0.8 0.094

? Abbreviations are: MS, maize silage; GMS, grass-legume and maize silage; HAY,
lucerne and permanent meadow hay; SCC, somatic cell count reported as [log; (SCC/
100,000) + 3]; SEM, standard error of the mean. Least squares-means in a row
without a common superscript letter differ at p < 0.05.
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Table 2
Holstein herd bulk milk fatty acid (% total FA) and NMR metabolite (relative %) levels significantly affected by the dietary forage source (FS)."

Component Chemical shift (ppm) MS GMS HAY SEM p-value

Fatty acid (FA)
C14:1 cis-9 1.72° 1.72° 1.53° 0.06 0.027
C16:1 cis-9 2.46° 2.40° 2.18° 0.06 0.001
anteiso C17:0 0.60" 0.60" 0.68° 0.01 0.001
C17:0 1.01° 1.06% 1.14° 0.03 0.004
C17:1 cis-9 0.39" 0.44° 0.41%" 0.01 0.015
C18:2n-6 1,698 1.66" 1.89" 0.08 0.076
C18:3n-3 047" 0.59” 0.92° 0.04 0.001
C20:1 0.20° 021" 0.24° 0.01 0.002
PUFA 357° 3587 4307 0.19 0.009

Metabolite
Valine 0.92 0.24* 0.18" 0.20"% 0.02 0.076
Unknown 2.95 0.005" 0.005"" 0.006" 0.000 0.022
Unknown 313 0.045° 0.047° 0.031° 0.002 0.001
Choline 322 0.33% 0.35° 0.29° 0.02 0.026
Lactose 3.65 1.19° 1.32° 1278 0.05 0.045
Unknown 5.85 0.009 0.009 0.007 0.001 0.090
Unknown 5.97 0.010° 0.010* 0.008° 0.001 0.018
Fumarate 6.58 0.003° 0.004° 0.001° 0.000 0.001
Hippurate 7.52 0.015° 0.014° 0.010° 0.001 0.001

* Abbreviations are: MS, maize silage; GMS, grass-legume and maize silage; HAY, lucerne and permanent meadow hay; SEM, standard error of the mean. Least squares-
means in a row without a common superscript lowercase or uppercase letter differ at p < 0.05 and at p < 0.10, respectively.

chain FAs, observed in HAY- and GMS-milk, compared with that in
MS milk, was probably due to increased ruminal fibre degradation
of their forage source (Patel, Wredle, & Bertilsson, 2013).

For each "H NMR spectrum, 92 different integrating areas of all
signals were obtained and are reported as Supplementary material
Table S3 and Fig. S1 together with their 'H chemical shift (ppm
range) and relative levels. Among these, 43 signals (corresponding
to 27 metabolites) were correctly assigned in milk polar fraction
spectra (Supplementary material Table S3).

Overall, the 'H NMR spectra of the analysed samples were
dominated by resonances from lactose and a wide range of me-
tabolites belonging to amino acids, sugars (monosaccharides and
disaccharides), nucleotides, organic acids and other secondary
metabolites, such as choline, creatine and creatinine.

The three different feeding regimens under investigation had a
limited influence on this polar fraction, as only nine NMR variables
(of which five were identified) were significantly affected by the FS
(Table 2). The four unknown metabolites reported in Table 2 could
not be definitively assigned to any corresponding molecules.
Among these, the unknown compound at 3.13 ppm was suggested
to belong to the trimethylamine group of lecithin by Tenori et al.
(2018), even if they unsuccessfully attempted to assign this
signal too.

Compared with both MS and GMS, HAY milk samples showed a
significantly lower content of choline, lactose, fumarate and hip-
purate. Moreover, the highest concentration of choline was found
in the GMS samples. The MS milk tended (p = 0.08) to have the
greatest concentration of free valine, an essential branched-chain
amino acid involved in the physiology of lactation (Maher et al.,
2013). Thus, the milk NMR polar fraction seemed to be less sensi-
tive to forage dietary manipulation than FA profile.

In accordance with these findings, O'Callaghan et al. (2018) also
found that the replacement of TMR based on maize silage with
perennial ryegrass and/or white clover pasture-based feeding sys-
tems significantly increased the milk choline content. However,
Buccioni, Decandia, Minieri, Molle, and Cabiddu (2012) reported a
relationship between the forage botanical origin and the content of
phospholipids, which may include phosphatidylcholine, with im-
plications for the transfer of choline from the diet to the milk.
Moreover, in lactating dairy cows, choline traces in milk were
suggested as a biomarker of FA release from animal phospholipid

break-down, as a response to higher energetic requirements (Ilein
et al., 2012). Consistent with our findings, Besle et al. (2010) found a
higher content of hippuric acid in MS based-diets compared with
HAY based-TMR; therefore, this organic acid could be considered a
biomarker of dairy products obtained from the use of ensiled for-
ages. However, the highest levels of hippurate were also recorded
in milk from outdoor feeding regimes (i.e, cows grazing on
perennial ryegrass and legumes), highlighting how the variability
in these secondary metabolites is related to multifactorial meta-
bolic pathways (Boiani et al,, 2019). On the other side, the higher
content of valine found in MS samples is in contrast with the
literature, where it has been reported that this amino acid is a
potential limiting amino acid for milk protein synthesis, especially
in dairy cows fed grass silage-based diets (Korhonen, Vanthalo, &
Huhtanen, 2002).

3.3. Forage dairy chains discrimination

Based on the outcomes of univariate statistical analysis, it is a
challenging task to clarify the relationship between milk NMR
spectral data and the dietary FS. Indeed, great focus has been placed
on describing the changes that feeding systems can impose on milk
fatty acid composition (Borreani et al., 2013; Coppa et al., 2015;
O'Callaghan et al., 2016; Werteker, Huber, Kuchling, Rossmann, &
Schreiner, 2017); however, information is lacking on the interpre-
tation of dietary effects on the NMR milk metabolome (Boiani et al.,
2019; Tenori et al., 2018).

3.3.1. Discriminant analysis based on fatty acid and NMR datasets
The CDA carried out on the FA-nonpolar dataset (Wilks'
h =0.198, approx. Fvalue = 13.1,df1 =12 df2 = 126, p < 0.001) had a
moderate discriminative capacity because of low D?-Mahalanobis
values, which ranged from 2.7 to 14.6 (p < 0.001). This exploratory
targeting model attributed a significant discriminant role to C15:0,
C16:1 cis-9, anteiso C17:0, C17:1 cis-9, C18:3n-3 and (22:0.
Considering the plot of CDA for FAs, it appeared that milk samples
tended to cluster in two classes, mostly separated along the first
canonical function, CAN1 (Fig. 2a). The HAY sample group was
shifted on the right side of the scattergram and positively corre-
lated with anteiso C17:0 and C18:3n-3. The GMS- and MS-groups
overlapped on the centre-left of the plot, and only the GMS one
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Fig. 2. Canonical discriminant analysis scatterplot of milk samples according to the
three forage groups based on (a) fatty acid and (b) NMR variables. The 0.95 confidence
ellipses are drawn around each centroid of groupings. MS (maize silage), red-dotted-
pointed line and M; GMS (grass-legume and maize silage), blue-dotted line and #;
HAY (lucerne and permanent meadow hay), green solid line and @. The vectors (black
arrows) represent the FA with a total structure correlation coefficient higher than 0.30
in absolute values, for at least one of the two canonical functions (for graphical plot-
ting, the correlation coefficients were multiplied eight times according to the
maximum value of the axes). (For interpretation of the references to colour in this
figure legend, the reader is referred to the Web version of this article.)

seemed to be positively correlated with C17:1 cis-9 and C15:0,
while no FA was correlated with MS. As explained above, PUFA (i.e.,
C18:3n-3) and OBCFA (i.e., anteiso C:17:0) levels are increased in
milk by hay feeding due to both high plant transfer and enhanced
ruminal cellulolytic bacterial activity (Werteker et al., 2017). The
lack of separation between the MS and GMS groups confirmed that
the partial replacement of maize silage (MS group) with a mix of

&9
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grass and legume silages (GMS group) had a reduced influence on
the FA profile (Borreani et al.,, 2013), especially when the TMR is
formulated with high-density energy concentrates mainly from
maize products (Paredes et al., 2018).

The CDA performed with the NMR dataset (Wilks' A = 0.090,
approx. F value = 20.7, df1 = 14 df2 = 124, p < 0.001) also had a
limited discriminant capacity (DZ-Mahalanobis values ranged from
2.6 to 31.7; p < 0.001) and sorted a restricted pool of seven infor-
mative integrated "H NMR signals from the large dataset: creatine,
choline, fumarate, and the four unknown metabolites mentioned
above. The CDA-plot based on NMR data showed a distinguishable
separation of the HAY group on the left side according to the score
of the main CAN1 function, even though no nonpolar compounds
were correlated with this FS group, except for a weak but significant
positive relationship with creatine that was consistent with the
outcomes of Tenori et al. (2018) in a previous study (Fig. 2b). As for
FAs, the NMR-CDA-targeting model did not result in a separation
between MS and GMS, both converging on the centre-right scat-
tergram and correlating positively with choline, fumarate and the
unknown compound at 3.13 ppm; instead, the unknown one at
6.77 ppm seemed to be a marker of MS samples.

The outcomes of the validation procedure (leave-one-out cross
validation) based on the test set confirmed that the use of both
datasets (FA- and NMR-) made it possible to correctly separate HAY
milk samples from those of the two silage groups, that were instead
misclassified among them.

3.3.2. Discriminant analysis based on low-level fatty acid and NMR
fusion

The capacity of the FA-nonpolar or NMR-polar datasets to
discriminate milk samples according to the main FS was enhanced
by performing a low-level data fusion, which resulted in a better
predictive performance of the CDA algorithm. In fact, the outcomes
reported lower value of Wilks" A (Wilks’ A = 0.037, approx. F
value = 19.9, df1 = 24 df2 = 114, p < 0.001) and higher D?*~Maha-
lanobis values, which ranged from 7.2 to 51.2 (p < 0.001). The
foreword stepwise procedure within the multivariate model
selected six FAs (C4:0, C14:0, C16:1 cis-9, anteiso C17:0, C17:1 cis-9,
C18:3n-3) and six NMR variables (choline, N-acetylglucosamine,
orotate, three unknown signals centred at 3.13, 3.15, and 3.19 ppm).
However, only the original FA and NMR variables that had a total
structure correlation coefficient with at least CAN1 or CAN2 higher
than 0.30 were also plotted within the biplot-scattergram to
explain the magnitude (length and direction of the vector) of the
relationship between the metabolites and the feeding regimens.

The HAY samples migrated alone toward the right side of CAN1
and were characterised by higher contents of anteiso C17:0 and
C18:3n-3 (Fig. 3). The GMS samples tended to aggregate in the
upper-left side and were mainly correlated with C14:0, C17:1 cis-9,
choline and unknown at 3.13 ppm. On the lower-left side of the
plot, MS samples were partially separated from GMS ones due to a
higher correlation with C16:1 cis-9.

A noticeable role in explaining the effect of FS by the NMR
metabolome was also played by four unknown compounds, which
cannot be clearly assigned because of low intensities and over-
lapping signals.

Through the outcomes of the cross-validation procedure, the
fused-CDA algorithm built in this trial could be deemed a robust
and reliable discriminative model to authenticate HAY milk sam-
ples (Table 3). The discriminant capacity of the CDA carried out on
the merged dataset was also improved both for MS (MCC = 0.32)
and GMS (MCC = 0.51) groups due to the higher values of specificity
and sensitivity, respectively. However, there is still a moderate
misclassification rate between the two ensiled-based FS groups,
specifically a 33.3% bias for the MS samples.
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Fig. 3. Canonical discriminant analysis scatterplot of milk samples according to the three forage groups (MS, GMS and HAY) based on FA and NMR low-level fusion. See Fig. 2 for

details of the 0.95 confidence ellipses, vectors and forage groups.

Table 3
Classification performance of canonical discriminant analysis (CDA) by leave-one-
out cross-validation performed on the fused FA and NMR test set.”

Predicted Actual

MS GMS HAY
MS 2 1 1]
GMS 4 5 ]
HAY 0 0 [
Total 6 6 6
Sensitivity 0.33 0.83 1.00
Specificity 0.92 0.67 1.00
Accuracy 0.72 0.72 1.00
Precision 0.67 0.56 1.00
McCC 0.32 0.51 1.00

* Abbreviations are: MS, maize silage; GMS, grass-legume and maize silage; HAY,
lucerne and permanent meadow hay; MCC, Matthews correlation coefficient,

Compared with the MS group, the partial substitution of maize
silage with a mix of ensiled grass and legumes significantly
increased the C14:0 content, in accordance with the findings of
Borreani et al. (2013), even though it is a medium-chain FAs mainly
originating from de novo synthesis in the mammary gland. With
regard to MS, a high amount of C16:1 cis-9 has already been indi-
cated as a reliable biomarker of the use of a high maize silage
proportion in lactating dairy cows’ diets, compared with hay-based
rations (Khiaosa-Ard, Klevenhusen, Soliva, Kreuzer, & Leiber, 2010)
or alpine pasture (Segato et al., 2017).

Furthermore, a moderate discriminant capacity was provided by
C4:0, orotate and N-acetylglucosamine along the main function
CANZ2, as their correlation coefficient (r) values resulted 0.19, 0.23
and 0.21, respectively (vectors not graphically reported because
r < 0.30).

The short chain-FA C4:0 was related to both GMS and HAY
samples, as confirmed by the literature that highlighted the lowest
value of this SFA in milk from a maize silage-based diet (Borreani
et al., 2013; Segato et al., 2017). Moreover, a tiny but significant
correlation between C4:0 and the amount of grass silage was found
by Coppa et al. (2015), even if they stated that differences may be
related to the analytical detection, due to the volatility of this short-
chain FAs. The two NMR variables seemed to be associated with
GMS samples.

Orotate is synthesised by the mammary gland and takes part as
an intermediate in the biosynthesis of pyrimidine nucleotides,
required for the regulation of genes involved in the development of
cell, tissues and organisms (O'Callaghan et al., 2021).

N-acetylglucosamine is an amide derivative of glucose
belonging to the oligosaccharides fraction of cow milk. To the best
of our knowledge, changes in this organic acid and sugar-like
compound were not ascribed to the FS but to other husbandry
factors such as breed, stage of lactation and cow health status
(Sundekilde et al., 2015; Rysova et al., 2021).

Indeed, the outcomes of this study supported the hypothesis
that only the total replacement of maize silage (MS) with hay would
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lead to relevant variations in ruminal and mammary metabolism
with changes in the milk FA and NMR profiles (Akbaridoust et al.,
2014; Eisenstecken, Stanstrup, Robatscher, Huck, & Oberhuber,
2021). However, the low-level data fusion performed in this study
provided a more comprehensive selection of metabolomic features,
thus improving the detection accuracy.

4. Conclusions

A comparison among milk samples from different forage based
dairy chains showed that a only total replacement of maize silage
with legume and grass hays in the cows’ diet led to a significant
change in the milk metabolomic profile. The footprint of maize silage
on the milk metabolomic profile was not significantly modified
when the forage was only partially replaced by a mix of legume and
grass silages. From a methodological point of view, a low-level FA
and NMR data fusion coupled with a CDA chemometric approach has
been shown to empower the predictive performance of the super-
vised CDA discriminant model of bulk milk samples from diverse
ensiled or dried forage-based feeding systems.
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Appendix A.

Supplementary data
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Fig 1S. Overlapping of the total 90 NMR spectra of milk samples from the three different
forage sources (a) and the integration zone of all 92 detected signals in the range between 0

and 9 ppm (b).
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Table S1. Mean ingredients and proximate composition (average + standard deviation) of

total mixed rations based on different forage sources (FS).

MS GMS HAY
Ingredients (% DM)
Maize silage 34.0 (£7.1) 8.9 (¢6.3)
Grass silage 8.4 (£7.0) 26.5 (£10.7)
Lucerne silage 2.9 (+4.9) 8.0 (£6.9)
Lucerne hay 3.6 (£5.0) 3.5(£5.2) 26.6 (+4.8)
Meadow hay 4.7 (£5.5) 2.2 (£3.1) 21.2 (£5.9)
Straw 1.8 (£1.9) 0.4 (£0.8) 2.6 (£3.0)
Energy concentrates® 23.1(+4.3) 34.1 (£6.8) 34.2 (£2.7)
Protein concentrates® 19.3 (£3.0) 14.7 (£7.3) 13.1 (£3.9)
Residual® 2.2 (£2.6) 1.7 (£2.2) 2.2 (£1.8)
Proximate composition (% DM)
DM (%) 52.9 (£3.7) 49.4 (+6.6) 75.6 (£5.8)
Crude protein 15.2 (£0.8) 15.6 (£0.9) 15.1 (%1.1)
Ether extract 3.7 (£0.4) 3.6 (£0.5) 3.2(x0.4)
Ash 8.0 (£0.7) 8.4 (£1.3) 7.9 (£1.3)
aNDF 34.8 (£3.1) 34.7 (£3.0) 37.2 (£5.0)
ADF 22.9 (£2.2) 22.2 (£2.0) 26.4 (£3.8)
Non-fibre carbohydrates 38.3 (£2.6) 37.7 (£2.3) 36.6 (£5.1)
Starch 25.4 (£2.0) 23.6 (£2.5) 20.9 (+4.8)

MS, maize silage; GMS, grass-legume and maize silage; HAY, lucerne and permanent meadow hay.
"Mainly maize products. ® Mainly soybean and sunflower products. © Molasses, vit-mineral premix.
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Table 2S. List of the fatty acids (FA) quali-quantitatively determined by GC-MS in milk
samples from three different forage sources of cows’ diets, their relative mean concentrations

(g 100 g-1 total FA), standard error (SEM) and P-value resulting from the ANOVA.

Fatty acids

MS GS HAY SEM P value
(g/100 g total FA)

C4:0 3.68 3.89 3.87 0.09 0.24
C6:0 3.38 3.39 3.13 0.14 0.35
C8:0 2.49 2.58 222 0.15 0.20
C10:0 5.29 5.67 5.03 0.29 0.28
C10:1 0.54 0.46 0.39 0.05 0.16
C11:0 0.24 0.13 0.12 0.06 0.30
C12:0 5.71 6.15 5.61 0.23 0.22
C12:1 trans 0.23 0.14 0.11 0.06 0.34
C12:1 cis 0.25 0.16 0.13 0.06 0.31
C13:0 0.32 0.22 0.21 0.05 0.34
C14:0 iso 0.29 0.19 0.20 0.06 0.45
C14:0 13.36 14.23 13.91 0.31 0.14
C14:1 cis-9 1.72 1.72 1.53 0.06 0.03
C15:0 anteiso 0.53 0.47 0.47 0.05 0.58
C15:0 iso 0.85 0.77 0.83 0.05 0.44
C15:0 1.83 1.90 1.91 0.05 0.48
C15:1 0.24 0.07 0.14 0.06 0.20
C16:0 iso 0.35 0.36 0.36 0.01 0.92
C16:0 24.16 23.59 23.84 0.49 0.71
C16:1 trans 0.33 0.32 0.31 0.01 0.56
C16:1 cis-9 2.46 2.40 2.18 0.06 <0.001
C17:0 anteiso 0.60 0.60 0.68 0.01 <0.001
C17:0 iso 0.82 0.82 0.87 0.02 0.19
C17:0 1.01 1.06 1.14 0.03 <0.001
C17:1 cis-9 0.39 0.44 0.41 0.01 0.01
C18:0 10.65 10.34 10.90 0.34 0.50
C18:1 cis-9 (Oleic Acid) 12.58 12.31 13.08 0.28 0.14
C18:1 isomer 1 0.59 0.51 0.53 0.05 0.47
C18:1 isomer 2 0.64 0.65 0.68 0.05 0.81
C18:1 isomer 3 0.23 0.22 0.24 0.02 0.67
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C18:2 cis-9, cis-12 (LA) 1.69 1.66 1.89 0.08 0.08
C18:2 isomer 1 0.13 0.12 0.14 0.01 0.60
C19:0 0.08 0.09 0.09 0.01 0.60
C18:3 isomer 1 0.11 0.11 0.12 0.01 0.57
C19:1 0.09 0.10 0.10 0.00 0.24
C18:3 n-3 (linolenic) 0.47 0.59 0.92 0.04 <0.001
C18:2 cis-9 trans-11 (rumenic) 0.71 0.67 0.76 0.04 0.40
C20:0 0.15 0.16 0.17 0.01 0.38
C20:1 0.20 0.21 0.24 0.01 <0.001
C20:3 n-6 0.17 0.16 0.19 0.01 0.26
C20:4 n-6 0.29 0.27 0.29 0.02 0.75
C22:0 0.05 0.05 0.06 0.01 0.74
Total SFA 75.92 76.72 75.62 0.48 0.25
Total MUFA 20.47 19.70 20.08 0.35 0.31
Total PUFA 3.57 3.58 4.30 0.19 0.01
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Table 3S. List of 1H NMR compounds, chemical shift values (ppm range), relative levels
and proton assignments determined in milk samples from three different forage sources of

cows’ diets, standard error (SEM) and P-value resulting from the ANOVA.

'H Chemical shift
Variable (range ppm) MS GS HAY SEM Pvalue Identification
vl 0.90-0.87 023 0.18 0.19 0.02 0.24 Leucine/Isoleucine
v2 0.94-0.90 024 0.18 020 0.02 0.08 Valine
v3 1.02 - 1.01 0.03 0.02 0.03 0.00 0.13
v4 1.08 - 1.06 0.02 0.02 0.02 0.00 0.13
v5 1.10-1.09 0.01 0.01 0.01 0.00 0.73
v6 1.22-1.18 066 0.69 0.62 0.02 0.11
v7 1.32-1.23 075 054 054 0.3 0.44
v8 1.34-1.32 0.10 0.08 0.14 0.03 0.31 Lactate
v9 1.45-1.45 0.01 0.01 0.01 0.00 0.19 Alanine
v10 1.50 - 1.47 0.04 0.04 0.04 0.00 0.38 Butyrate
vll 1.61-1.56 0.14 0.09 0.10 0.02 0.12
vi2 1.81-1.76 0.06 0.06 0.07 0.00 0.93
v13 1.92-1.90 0.06 0.06 0.07 0.01 0.65 Acetate
vl4 2.04-1.99 0.13 0.12 0.12 0.01 0.48
vl5 2.07 -2.04 0.55 057 056 0.02 0.74 N-acetylglucosamine
vl6 2.09 -2.09 0.01 0.01 0.01 0.00 0.73
v17 2.10-2.09 0.02 0.02 0.02 0.00 0.26
v18 2.18-2.13 022 0.18 0.18 0.02 0.20 Glutamate + Methionine
v19 223-2.22 0.03 0.03 0.03 0.00 0.69 Succinate
v20 2.27-2.24 0.04 0.04 0.04 0.00 0.34
v21 2.31-2.30 0.03 0.03 0.03 0.00 0.82
v22 234-233 0.01 0.01 0.01 0.00 0.74
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v23 2.35-235 0.02 0.02 0.02 0.00 0.33

v24 2.45-2.36 023 024 023 0.01 0.88 Creatine/phosphocreatine
v25 2.57-2.49 1.09 1.17 1.04 0.04 0.13 Citrate

v26 2.61-2.60 0.01 0.01 0.01 0.00 0.27

v27 2.74 - 2.66 1.14 120 1.09 0.05 0.26 Citrate

v28 2.83-2.83 0.01 0.01 0.01 0.00 0.26

v29 2.89-2.87 0.03 0.02 0.03 0.00 0.26 Creatine

v30 2.92-290 0.02 0.02 0.03 0.00 0.34

v31 2.95-2.94 0.01 0.01 0.01 0.00 0.02

v32 3.01-2.98 0.06 0.06 0.06 0.00 0.94 Alpha-ketoglutarate
v33 3.03-3.03 0.01 0.01 0.02 0.00 0.34 Creatine/Phosphocreatine
v34 3.06-3.04 021 022 021 001 0.43 Creatinine

v35 3.07 - 3.06 0.03 0.03 0.03 0.00 0.46

v36 3.12-3.10 0.07 0.07 0.07 0.00 0.83

v37 3.14-3.12 0.04 0.05 0.03 0.00 <0.001

v38 3.15-3.14 0.03 0.03 0.03 0.00 0.38

v39 3.16-3.15 0.03 0.03 0.03 0.00 0.50

v40 3.19-3.19 0.01 0.02 0.01 0.00 0.12

v41 3.23-3.22 033 035 030 0.02 0.03 Choline/Phosphocoline
v42 3.29-3.24 861 9.03 879 030 0.61 Lactose + Betaine
v43 3.38-3.36 0.14 0.14 0.13 0.02 0.86

v44 3.42-3.40 0.09 0.10 0.10 0.00 0.57

v45 3.44-3.42 0.15 0.16 0.16 0.01 0.46

v46 3.46-3.44 0.18 0.18 0.16 0.02 0.52

v47 3.47-3.46 0.10 0.10 0.10 0.00 0.81

v48 3.49 -3.47 0.16 0.16 0.17 0.01 0.50

v49 3.58-3.50 26.84 28.10 27.08 0.95 0.60 Lactose
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v50 3.64-3.58 32.77 3437 3320 1.18 0.60 Lactose

v51 3.66 -3.64 .19 132 117 0.05 0.04 Lactose

v52 3.71-3.66 13.03 13.74 13.24 047 0.54 Lactose

v53 3.77-3.72 1296 13.57 13.17 0.48 0.65 Lactose

v54 3.85-3.77 25.88 27.19 26.18 0.92 0.56 Lactose

v55 3.88-3.85 9.86 10.32 10.04 0.35 0.64 Lactose

v56 3.92-3.88 13.19 13.85 13.31 0.46 0.55 Lactose

v57 3.94-3.92 771 803 7.76 0.28 0.67 Lactose

v58 3.97-3.94 471 507 483 0.17 0.31 Lactose

v59 4.03 -4.00 0.16 0.16 0.15 0.01 0.63

v60 4.08 -4.03 030 030 029 0.01 0.83

v61 4.11-4.08 0.08 0.08 0.08 0.00 0.69

v62 4.15-4.13 0.02 0.02 0.02 0.00 0.38

v63 422-4.15 0.13 0.13 0.12 0.01 0.67

v64 430-4.26 0.11 012 0.11 0.00 0.58

v65 4.35-4.30 0.17 0.16 0.18 0.0l 0.22

v66 446 -4.38 9.69 10.18 9.81 0.34 0.57 Lactose

v67 4.50-4.46 0.10 0.10 0.09 0.00 0.38

v68 4.57-4.51 0.11 011 0.11 0.0l 0.90 Galactose

v69 4.66 - 4.57 353 3.68 356 0.12 0.62 Lactose

v70 5.07-5.04 0.05 0.07 0.05 0.01 0.14

v7l 5.17-5.16 0.05 0.05 0.05 0.00 0.40 Mannose

v72 5.24-5.17 4.63 488 4.67 0.16 0.52 Lactose + Galactose
v73 5.35-531 0.03 0.03 0.03 0.00 0.37

v74 5.42-5.35 0.08 0.08 0.07 0.01 0.50

v75 5.46-542 0.02 0.02 0.02 0.00 0.46 Glucose-1-phosphate
v76 5.56-5.50 0.02 0.02 001 0.00 0.14  UDP-N-acetylglucosammine
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v77 5.82-5.68 0.19 020 0.18 0.01 0.33 Cis-aconitate

v78 5.87-5.83 0.01 0.01 0.01 0.00 0.09

v79 591-5.88 0.00 0.00 0.00 0.00 0.34 Uridine
v80 5.99-5.95 0.01 0.01 0.0 0.00 0.02

v81 6.19 - 6.15 0.05 0.05 0.05 0.00 0.11 Orotate
v82 6.56 - 6.51 0.00 0.00 0.00 0.00 <0.001 Fumarate
v83 6.65 - 6.61 0.00 0.00 0.00 0.00 0.47

v84 6.82-6.73 0.03 0.02 0.03 0.00 0.17

v85 7.32-7.22 0.03 0.03 0.03 0.00 0.13

v86 7.36 - 7.32 0.01 0.01 0.0 0.00 0.19

v87 7.54 -7.50 0.02 0.01 0.01 0.00 <0.001 Hippurate
v88 7.62 -7.56 0.01 0.01 0.0 0.00 0.01 Hippurate
v89 7.83-17.73 032 029 032 0.02 0.43

v90 7.88 - 7.83 0.02 0.02 001 0.00 <0.001 Hippurate
vI1 7.96 - 7.93 0.01 0.01 0.01 0.00 0.92

v92 8.14 - 8.02 0.05 0.05 0.05 0.00 0.89 Adenine

! Values are reported as relative abundance
2 Identification of NMR signals was performed according to Klein et al., 2010; Sundekilde,
Larsen, & Bertram, 2013, Tenori et al., 2018; Yanibada et al., 2018.
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CHAPTER 7

Conclusions

With the increasing complexity of food chains and hidden food fraud, the authentication of
agri-food products has become a crucial task in recent times. Increasing interest and
awareness about food product quality in the general public has necessitated accurate and
precise analytical methods in order to guarantee the quality of food. Thus, there is a
requirement to introduce modern, affordable and rapid food control methods (when
compared to traditional methods) to ensure product quality.

In this doctoral thesis, NIR and NMR spectroscopy are used across four studies in an effort
to determine the viability of those techniques when it comes to food authentication.
Specifically, in Chapter 3 benchtop and portable NIR tools are used with chemometric
techniques to determine the presence of pyrrolizidine alkaloids (PAs) and their N-oxides
(PANOs) (which have been reported to cause toxicity in humans) in bee pollen. Here the
need, as suggested from the EFSA, to develop new methods to detect PAs/PANOs in food.
The combination of NIR with a statistical modelling approach have been demonstrated to
have the potential to be applied for rapid and reliable identification of contaminated bee
pollen in large-scale screening in the food supply chain by also using a portable-at-line
operating system.

In Chapter 4, NIRS classification and modelling abilities were also tested on chicken
breasts, which were classified according to their freshness. Preservation of quality during
refrigerated storage represents one of the main challenges for the poultry industry especially
if poultry meat's relatively short shelf life is considered. NIR spectroscopy coupled with a
multivariate model provided deep insight into the physicochemical processes occurring
during storage of fresh chicken meat cuts. Spectroscopy showed reliable effectiveness to
recognise a 7-day shelf life threshold of breasts, suitable for routine at-line application for
screening of meat quality. The bench-top instrument provided a wide range of spectral
information suitable for the in-depth interpretation of biochemical and spoilage phenomena
causing meat deterioration.

The inclusion of PAPs from insects in feed formulation for egg-producing poultry
species could represent a premium value by declaring a highly-marketable labelling

designation and a shift towards a more sustainable production system which includes the

101



utilisation of new feedstuffs with remarkable sustainability. Therefore, in Chapter 5, a study
on table eggs from quails highlighted the feasibility of NIR spectroscopy combined with
multivariate statistical models as rapid screening approach to differentiate eggs according to
the inclusion of silkworm meal in quails’ diet. The results demonstrated that a random forest
(RF) spectral NIR variable selection improved the classification performance and provided
reliable results for the insect-in-diet identification avoiding useless and interfering
information. However, the similarities among the spectral patterns for the SWM-classes
resulted in poor predictive performance for all the spectroscopic devices and ML models
combinations. Therefore, the assessment of the prediction in external validation was
performed also by a binary approach - SWM absence or presence. According to this, both
NIR-benchtop and NIR-portable devices reported satisfactory classification performance,
especially if combined with KNN and SVM models. Moreover, the main outcomes of this
study revealed that the classification performances of NIR instruments varies according to
the statistical model applied. Among the different tested techniques, SVM or KNN have
shown the best predictive performances.

Based on the experimental findings of Chapters 3, 4 & 5, non-destructive NIR
spectroscopy could represent an end-step valuable screening authentication approach
providing a comprehensive overview of the analysed sample. In all NIR-related studies, the
bench-top instrument provided satisfactory accuracy and it might be considered the more
feasible NIR tool to achieve the purpose of the studies. Considering an operative scenario,
the challenge of portable NIR instruments could be its suitability for rapid at-line screening
along the supply chain in a real time scenario. In fact, despite worse optical properties and
negative interference of the field, the advantages of portable NIR tools (simple hardware,
low-power consumption, and small size) allow it to be an at/in-line flexible, efficient, fast,
and reliable alternative to food matrices.

NIR cannot replace conventional techniques, but it can be combined with them to
reduce the number of wet-chemistry analyses and improve the efficiency of the testing
process. The speed of analysis and response of NIR technology suits the inspection of
perishable products that have a short supply chain.

In Chapter 6, comparison of milk samples from different forage-based dairy chains
was conducted. Forage type affects the environmental sustainability of a given dairy chain
and has considerable impact on the quality of the milk and its suitability for specific cheese
such as those having PDO trademark, often subjected to fraudulent actions. 'H NMR

combined with multivariate statistical analysis showed that only total replacement of maize
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silage with dried forages (hays) in the cows’ diet led to significant variations in ruminal and
mammary metabolism with relevant changes in the milk fatty acids and NMR profiles. The
milk metabolomic profile was not significantly modified when the ensiled whole-plant
maize was only partially replaced by a mix of legume and grass silages. From a
methodological point of view, a low-level FA and NMR data fusion coupled with a CDA
chemometric approach was shown to enhance the predictive performance of the supervised
CDA discriminant model for bulk milk samples from the different feeding systems. 'H NMR
was shown to be an a very responsive and high-performance technology effective in the
assessment the existence of milk non-target metabolites quickly.

In summary, both NIR and NMR spectroscopic techniques have been shown to be
accurate and effective analytical methods for inspection to control food authentication and/or
safety on a real operative scenario based on rapid, eco-friendly and non-destructive
assessment. Indeed, for the animal food supply chain one of the main challenges still
remaining is the ability to implement simple but reliable routinary authentication methods
while keeping the costs low and the performance level high, which is currently a gap in
research that can be further explored and improved. A further goal is to have a better
understanding of the interaction between infrared radiation and molecular functional groups
of given food to improve the understanding of NIR spectra for the meaningful interpretation

of spectra from molecules ranging from single compounds to polymers.
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