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Abstract. We give a self-contained proof of the fact, discovered in [1] and proven in [2]
with the methods of [6], that, for any prime number p, there exists a power series

U =U,(T) € T+ T?Z[[T]],

which trivializes the addition law of the formal group of Witt covectors [6], [15, I1.4], is
p-adically entire and assumes values in Zjp all over Qp. We actually generalize, following
a suggestion of M. Candilera, the previous facts to any fixed unramified extension Qg of
Qp of degree f, where ¢ = pf. We show that U = W, provides a quasi-finite covering of
the Berkovich affine line Aé by itself. We prove in Section 4 new strong estimates for the
growth of W, in view of the application [3] to p-adic Fourier expansions on Q,. We refer to [3]
for the proof of a technical corollary (Proposition 4.13) which we apply here to locate the
zeros of ¥ and to obtain its product expansion (Corollary 4.16). We reconcile the present
discussion (for ¢ = p) with the formal group proof given in [2], which takes place in the
Fréchet algebra Qp{z} of the analytic additive group Ga,q, over Qp. We show that, for any
A € Qp, the closure £ of Zp[¥(pz/A) | i =0,1,...] in Qp{z} is a Hopf algebra object in
the category of Fréchet Zp-algebras. The special fiber of £3 is the affine algebra of the p-
divisible group Qp/pAZy over Fp,, while £5[1/p] is dense in Qp{z}. From Zy[¥(Az) | A € Q;]
we construct a p-adic analog APgq, (¥,) of the algebra of Dirichlet series holomorphic in a
strip (—p, p) X iR C C. We start developing this analogy. It turns out that the Banach
algebra of almost periodic functions on Q) identifies with the topological ring of germs of
holomorphic almost periodic functions on strips around Q.
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1. INTRODUCTION

1.1. Foreword. An unfortunate feature of p-adic numbers is that there exists
no character

w:(@pv+)—>((c;<a')a ’lr/)#la
which extends to an entire function C, — C,,. In fact, let m, € C)° be such that

the radius of convergence of exp(mpx) equals 1, so that exp and log establish
an isomorphism

(mpCps+) — (exp(mp C)), ) (C(1+Cpr,-)).

Now assume a 1 as above exists, and let n be a positive integer such that
Y(p") € exp(mC;°) so that ¢ restricts to a character ¢: (p"Zp,+) —
(exp(mpCp°), - ). Let a :=log(s(p™)). Then, for any x € Z, (p"x) = (p")* =
exp(ax). But x — exp(ax) has a finite radius of convergence.

We partially remedy to the previous inconvenience by showing the existence,
for any A € Q 7, of a representable formal group functor

(1) Ex: ACLMY, — Ab

(see Appendix A.1 for the notation), whose generic (resp. special) fiber is the
Qp-analytic group G, (resp. the constant p-divisible group Q,/A\Z, over Fy).
The idea is the following. Over the complex numbers the formulas

e* =cosz+isinz, e % =cosz—isinz,
show that the two (Hopf) algebras Z[i][e?*, e~%*] and Z][i][sin z, cos z] coincide.
The sequence of functions

U(z) = \ij(x)v ¥ (pz), \If(p2x), s

plays here the role of the pair (cos z,sinz) in that the p-adically entire and
integral addition law (7) holds, and x is a logarithm for that formal group.
So, while it is improper to say that W plays the role of an entire character
of Qp, it is suggestive to consider a suitable p-adic completion of the algebra
Zp[¥(Az) | A € Q] and to compare it with the classical algebras of Bohr’s
almost periodic functions APHg and APgr. We review for convenience the
classical definitions of real and complex Fourier analysis in Appendix B.5.
A closer p-adic analog of those classical constructions, and a generalization of
Amice—Fourier theory to p-adic functions on Q, will appear in [3].
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A p-ADICALLY ENTIRE FUNCTION WITH INTEGRAL VALUES 1001

1.2. The function ¥. In the paper [2] we introduced, for any prime number p,
a power series

U(T) =W, (T) =T+ Y a7 € Z[[T]],
i=2
which represents an entire p-adic analytic function, i.e., is such that
limsup|ai|zl)/i =0.
17— 00

This function has the remarkable property that ¥,(Q,) C Z, and that, for any
i € Z and x € Qy, if we write z as in (12), with x; defined by (13), (14), then

T_; = \I/p(pix) modp € F,,.
The power series ¥(T) is defined by the functional relation

(2) S p Ty =T
§=0

Its inverse function 8 = 3, € T + T?Z[[T]] was shown to converge exactly in
the region

IT|, <p, ie, v(T)>—1
One property we had failed to notice in [2] is the following.

Proposition 1.3. The restriction of the function ¥, to a map Q, — Z, is
uniformly continuous. More precisely, for any j =0,1,... and x € Qp,

U, (x4 p/C) C Wy(x) + p'CS.

This is proven in Corollary 4.5 below. See also the more general Theo-
rem 4.14 whose proof depends on Proposition 4.13, proven in [3].

1.4. Our previous approach [2]. Proofs in [2] were based on Barsotti-Witt
algorithms [6]. The most basic notion of topological algebra in [6] is the one of
a simultaneously admissible family, indexed by a € A, of sequences i — x4 —;
for ¢ = 0,1,... in a Fréchet algebra R over Z, (in particular, over F,) [6,
Ch. 1, §1]. In case R is a Fréchet algebra over Q, the definition of simultaneous
admissibility is more restrictive, but the name used in loc. cit. is the same.
For clarity, the more restrictive notion will be called here (simultaneous) PD-
admissibility, while the general notion will maintain the name of (simultaneous)
admissibility.

Using the previous refined terminology, our main technical tool in [2] was a
criterion [2, Lemma 1] of simultaneous PD-admissibility for a family indexed
by o € A, of sequences ¢ — x,,—; for ¢ = 0,1,... in a Fréchet Q,-algebra.
In Barsotti’s theory of p-divisible groups one regards an admissible sequence
i+ x_; as a Witt covector (...,x_a,2_1,%0) [6, 15] with components z_; € R.

We take here only a short detour on the group functor viewpoint and refer
the reader to [15] for precisions. As abelian group functors on a suitable
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category of topological Z,-algebras, the direct limit W,, = W, 1 of the Witt
vector groups of length n via the Verschiebung map

Vi(r_n, . .sx—1,20) = (0,Z_p,...,x_1,%0)

indeed exists. It is the group functor CW of Witt covectors. For a topological
Zp-algebra R on which CW(R) is defined, it is convenient to denote an element
x € CW(R) by an inverse sequence

x=(..,T_9,2_1,Z0)

of elements of R, that is, a Witt covector with components in R. Two Witt
covectorsx = (..., x_9,x_1,x0) and y = (...,y—2,Y—1,Yo) with components R
can be summed by taking limits of sums of finite Witt vectors. Namely, let

(3) ¢i(Xo, ..., Xi;Yo,..., Vi) € Z[Xo, ..., X4, Yo, ..., Y]]

be the i-th (= the last!) entry of the Witt vector (Xo,...,X;) + (Yo,...,Y;).
Then
x4+y=z=1(..,2-9,2-1,20)
means that, for any i = 0,—1,...,
4) zi= M ©n(Ticn, Ticngis - i Yien, Yimntls -5 Yi)

n—-+4oo

converges in R. The convergence properties on the Witt covectors z and y
above for the expressions (4) to converge, are dictated by the following lemma.

Lemma 1.5 ([6, Teorema 1.11]). With the notation as above, fori=0,1,2,...,
let us attribute the weight p' to the variables X;,Y;. Then, for any i > 0, the
polynomial @; in (3) is isobaric of weight p'. Moreover, for any i > 1,

vi(Xo, X1,...,X;; Yo, Y1,...,Y) — i1 (Xq, ..., XisY1,...,Y%)
€ XoYoZ[Xo, X1,..., X, Yo, Y1,..., Y]]
So, we equip the polynomial ring
Z[Xo, X 1,y Xy Y0, Y, Y]
with the linear topology defined by the powers of the ideals
Iy = (X_nN,X_N_1,.. YN, Y N,
and set

P:= lim Z[Xo, X 1,0y X iy Yo, Yoy, Y TN
N,M—+4o00

Then the sequence
(5) =Xy, o, X, X Yosy .., Y1, YD)
converges to an element

O(Xo, Xq,..., X ,..; Yo, Y q,...,Y_,,...) €P.
So, (4) is expressed more compactly as

(6) 2i = O(x5, iz, -3 Yis Yie1,-- - )
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Remark 1.6. The projective limit
Wag1 = Wa, (20,21, ..., Tng1) = (o, 21, ..., Tn),
produces instead the algebraic group W of Witt vectors.

The approach of Barsotti [6] is more flexible and easier to apply to analytic
categories. If R is complete, for two simultaneously admissible Witt covec-
tors * = (...,x_9,2_1,%0) and y = (...,y—2,Y—1,Y0) with components R,
the expressions (6) all converge in R and define (...,2_2,2-1,20) = 2z =:
z + y, which is in turn simultaneously admissible with z and y. In the Q,-
algebra case, a Witt covector © = (...,z_2,2_1,20) has ghost components
(..., z(=2) 21 2(0) defined by

. 2
e =g dp el Ap R, b, i=0,-1,-2,....

Under very general assumptions, [6, Teorema 1.11], a finite family of sequences
(a,—i)i=01,..., for @ € A in a Q,-Fréchet algebra, are simulaneously PD-
admissible if and only if the same holds for the family of sequences of ghost
components (x((fz))i:oJW, for « € A. Under these assumptions, for simulta-
neously PD-admissible covectors x and y,  + y = z is equivalent to

20 =@ 4y j=0,-1,-2,....

In the present case, which coincides with the case treated in [2], the sequences
i+ x_; = p'xz and i — y_; := p'y are simultaneously PD-admissible
in the standard C,-Fréchet algebra Cp{z,y} of entire functions on C? [2,
Lemma 1 and Lemma 3]. It follows from relation (2) that i — z_; := p'z,
fori=0,1,2,..., is the sequence of ghost components of z — (=9 := ¥(p'z).
Therefore, from [6, loc. cit.], we conclude that the two sequences i — ¥ (p'x)
and i — W(p'y) are simultaneously admissible in C,{z,y} as well. Moreover,
by [6, loc. cit.] and the definition of the addition law of Witt covectors with
coefficients in C,{z, y}, we have
(- T (@ + ), Up(z + ), U +y))

= (-, U(p%x), U (pa), (@) + (..., T(p7y), U(py), U(y)).
Equivalently, U satisfies the addition law [2, (11)]
(7) V(z+y) = 2(Y(x), ¥(pz),..; ¥(y), ¥(py),-..),
where
®)  (V(x), ¥(pz),...;¥(y), ¥Y(py),...)

= lim i (V(pa), o W), W) (o), o), V),
for the polynomials ¢; of (3) and (5). Notice that (12) may be restated to say
that, for any = € Qp,

L= ( sy -2, L1520, L1, - ")7

where z; € F,, is given by (13), as a Witt bivector [6] with coeflicients in F,,.
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1.7. Our present approach. We present in Section 3 direct elementary
proofs of the main properties of ¥, which make no use of the Barsotti-Witt
algorithms of [6]. Actually, following a suggestion of M. Candilera, we consider
rather than (2), the more general functional relation for ¥ = ¥, ¢ = p/,

o0
9) > p V@ T =T

j=0
The result, at no extra work, will then be that (9) admits a unique solution
VU, (T) € T+T?Z[[T]]. The series ¥,(T) represents a p-adically entire function
such that ¥,(Qg) C Z,. In Section 4 we describe in the same elementary style
the Newton and valuation polygons of the entire function ¥,, and obtain new
estimates on the growth of |¥,(z)| as |z| — oo, which will be crucial for the
sequel [3]. From these estimates we also deduce, modulo the self-contained
technical Proposition 4.13 whose proof appears in [3], the location of the zeros
of ¥, (Theorem 4.16). Namely, any ball of radius 1, a +Z,, € Q,/Z,, contains
precisely one (simple) zero of ¥,,.

We present in Appendix C some numerical calculations due to M. Candilera,
which exhibit the first coefficients of ¥,, for small values of p. These calculations
have been useful to us and we believe they may be quite convincing for the
reader.

The function ¥,: A(bp — A(ll)p is a quasi-finite covering of the Berkovich
affine line over Q, by itself. We do not know whether the previous covering is
Galois.

1.8. Convergence of Fourier-type expansions. Section 2.1 describes some
Hopf algebras whose existence follows from the addition properties of ¥,,. Sec-
tion 2.13 suggests an interpretation of the functions W,(z/\), for A € Q,', as
p-adic analogs of exp(Zz), for A € R*. We are naturally lead to the question
of which functions can be expressed as uniform limits on Q) of the previous
functions. By analogy to the classical case, we call these functions uniformly
almost periodic on Q, and denote by AFp, the corresponding closed subal-
gebra of the Banach algebra C?%.(Q,, Q,) of bounded uniformly continuous
functions Q, — Q. Although we do not have an intrinsic characterization of
these functions, we can show that they may be seen as germs of holomorphic
functions on a neighborhood of Q,. We point out that colimits for topologi-
cal algebras are not in general supported by set-theoretic inductive limits (see
Remark 6.8). Therefore, our uniform approximation Theorem 2.27 does not
state that any uniformly almost periodic function on Q, necessarily extends
to an analytic function on a p-adic strip around @Q,. On the other hand, APy,
is dense in the Fréchet algebra C(Q,,Qp) of continuous functions Q, — Q,,
equipped with the topology of uniform convergence on compact open subsets
of @p. The proofs of these facts are detailed in Sections 5 and 6. We spend
some time in Section 5 to explain in categorical terms (clearly stated in Ap-
pendix A) the natural limit/colimit/tensor product formulas which justify the
linear topologies of the previous function algebras. For example, C(Qp,Z,)
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(but not Cunit(Qp,Zy)) is a Hopf algebra related to the constant p-divisible
group Q,/Z, over Z, and to its “universal covering” Q,. A more complete
discussion of these topological algebras and of their duality relation with the
affine algebra of the universal covering of the p-divisible torus, interpreted as
an algebra of measures, will appear in [5].

In Section 6 we prove the facts announced in Section 2.13, namely, Theo-
rem 2.17, Theorem 2.19, Proposition 2.20, Proposition 2.21, Proposition 2.23,
Proposition 2.24, and Theorem 2.27.

2. RINGS OF p-ADIC ANALYTIC FUNCTIONS

2.1. Entire functions bounded on p-adic strips. (See Appendix A for
notation of topological algebra and nonarchimedean functional analysis.) We
describe here the Hopf algebra object Q,{x} in the category of Fréchet Q,-
algebras equlpped with the completed projective = inductive tensor prod-
uct @y Q = ®. ,0,» which consists of the global sections of the QQ-analytic
group G,. We also consider boundedness conditions for the functions in Q,{z}
on suitable neighborhoods of @, in the Berkovich affine line Abp over Qp.

Our notation for coproduct (resp. counit, resp. inversion) of a Hopf algebra
object A in a symmetric monoidal category with monoidal product ® and
unit object I is usually P = P4: A — A® A (resp. € = e4: A — I, resp.
p=pa: A= A).

Definition 2.2. For any closed subfield K of C,, we denote by K{z} =
K{xi1,...,x,} the ring of entire functions on the K-analytic affine space
(A%, Ok). The standard Fréchet topology on the K-algebra K{z} is induced
by the family {w, },cz of valuations

w(f):= _ inf - w(f(z)),

ze(p~rCH™
for any f € K{x}.

Remark 2.3. More generally, for bounded functions f: X — (S,]| |), where
X is a set and (S,| |) is a Banach ring in multiplicative notation, ||f||x =
sup,cx|f(x)| will denote the supnorm on X.

Definition 2.4. For any p > 0 and any finite extension K/Q),, the p-adic n-
strip of width p around K™ is the analytic domain which is the union ¥,(K) =
E,(D") (K) of all affinoid n-polydiscs of radius p centered at K-rational points.
We denote by
Res,: Cp{z} — O(%,), fr fis,,

the restriction map. Clearly, the map Res, is an injection. We let OX4(3,(K))
(resp. O%(X,(K))) denote the subring of Ok (X,(K)), consisting of functions
bounded (resp. bounded by 1) on X,(K). We denote by || | x,, the supnorm
on X,(K). The Banach algebra structure on OX4(3,(K)) (resp. O%(X,(K)))

induced by the norm || ||k, will be called K -uniform. The Fréchet structure
of Og(E,(K)) (resp. O%(E,(K))) induced by the family of seminorms of
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1006 FRANCESCO BALDASSARRI

Definition 2.2 will be called standard. We set, in partlcular X, = E(l (Qp) but
will keep the notation || [|g,,,. We also denote by H} (m)-bd () (resp. H{*°(p))
the subring of K{z} of functions which are bounded (resp. bounded by 1)

on X,(K). We set
(n) bd ﬂH (n), bd

For any p > 0 and any f € Hg? (p), we introduce one further valuation
wioolf) = inf o(f(2).

For n =1 and K = Q,, we shorten H{"P4(p) (resp. H{°(p), resp. HiW-P4,
resp. Wk, oo, Tesp. K-uniform) to HP4(p) (resp. H°(p), resp. HPY, resp. woo,
resp. uniform).

Remark 2.5. It is not a priori clear that H"9 contains non-constant functions.
We will prove below (Theorem 4.14) that W(x) € HP9.

Remark 2.6. For any n and any p > 0, Hy, (). (p) is a closed K°-subalgebra
of K{x1,...,2,}; the induced Fréchet K°- algebra structure on HK) (p) will
be called standard Now it follows from formula (2) below that, by contrast,
1P () = 1 (p)[1/p] is dense in K{zy,... a0}

Remark 2.7. The Fréchet structure on Ok (X,), which we call “standard”,
is the one of analytic geometry: it coincides with the topology of uniform
convergence on rigid discs of radius p. Similarly for O% (3,(K)). The standard
Fréchet algebra K{z} identifies with
K{xz} = lim (O (X)), standard).
p——+o00

Definition 2.8. The strip topology on H%)’bd is the projective limit topology
of the uniform topologies of Definition 2.4. So,
n),bd . .
(M5 strip) = lim (OR(S,(K)), | [|x0)
p——+o0
is a K-Fréchet space.
Remark 2.9. We have a dense embedding Hj, (n).bd K{zi,...,2n}. The
strip topology on ’H ):bd , for which this algebra is complete, is ﬁner than its
(non complete) standard topology.

The next lemma shows that, for any non archimedean field K and G, =
Ga,Ka
O(Ga x G,) = O(Gy) Br.x O(Ga),

so that O(G,) is a Hopf algebra object in the category of Fréchet K-algebras.

Lemma 2.10. There are natural identifications

(10) K{x1,...,20} @r i K{y1, -y ym} = K{T1,. ., Zn, Y1, Y}
sendingr; ® 1= x; and 1@ y; —y;, fori=1,...,n,7=1,....m
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Proof. For any s € Z, the map of the statement produces isomorphisms of
K-Tate algebras [11, §6.1.1, Cor. 8]

K<pisx17 e 7pisxn> ®7T,K K<p78y17 cee 7pisy'm>
=K{p 21, s T, D Y1, Ym)-
We now apply Proposition A.9. O

Corollary 2.11. Let K be a finite extension of Q, and p > 0. The identifi-
cations (10) induce identifications

(H%L)’O(p),standard) o (’Hy(n)’o(p), standard) — (H%n'm)’o(p),standard).
Similarly for (0% (X,(K)),standard).

Corollary 2.12. The map P: z; — z; ® 1 + 1 @ z; makes K{xi,...,z,} into
a Hopf algebra object in the category of Fréchet K-algebras. The restriction of
P to H°(p) induces a map

P: (H°(p), standard) — (H&°(p), standard) @ (Hy"° (p), standard)

which makes (’H%)’O(p),standard) a Hopf algebra object in the category of
Fréchet K°-algebras. Similarly for (O%(3,(K)),standard).

2.13. p-adic almost periodic functions. We sketch here the main ideas and
results on p-adic almost periodic functions. Proofs are given in Section 6. We
freely use in this introduction the (quite self-explanatory) notation of Section 5
for continuous, uniformly continuous, bounded rings of p-adic functions Q, —
Q, and their topologies.

The following elementary lemma shows that a naive p-adic analog of real
Bohr’s uniformly almost periodic functions (see Definition B.3 in Appendix B),
where “an interval of length /. in R” is taken to mean a coset a + p"Z,, for
a € Q, and p~" = /., does not lead to a meaningful definition.

Lemma 2.14. A continuous function f: Q, — Qp which has the property that
for any € > 0, there exists h € Z such that any coset a —|—pth mn Qp/pth
contains an element t, such that

(11) |[flx+t,) — flx)] <e forallzeQ,

s constant.

Proof. In fact, from condition (11), for any a € Q,, it follows by iteration that
t, may be replaced by any t € Zt,. By continuity, we may replace t, by any
t € Zpt,. For a & p"Z,, Zyt, = Zpa. So, if we pick a = p~, for N > 0, (11)
implies that the variation of f(z) in p~™Z, is less than e. So, the variation of
f(z) in @, is less than e for any € > 0, hence f is constant. O

We resort to an ad hoc definition. For x € Q,, let us consider the classical
Witt vector expression

oo

(12) z= Y [zlp' € W(F,)[1/p] = Qp,

>>—00
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where [t], for ¢ € Fp, is the Teichmiiller representative of ¢t in W(F,) = Z,,.
Notice that, for any 7 € Z, the function

(13) 2t Qp = Fp, == ux,

factors through a function, still denoted by x;,

(14) zi: Qp/p"Z, — Fpy,  hes hy

We regard the function in (14) as an F,-valued periodic function of period p*+!
on Q. In the following, for any i € Z and any A € Q,', we denote by “[(Az);]”
the uniformly continuous function Q, — Z,, x — [(Az);]. We observe that

[\ 2)i] = [(A2)i—y]
for any 7,7 € Z and A € Q.

Definition 2.15. We define the Q,-algebra APg, (resp. the Z,-algebra APy )
of (resp. integral) uniformly almost periodic (u.a.p. for short) functions Q, —
Qp (resp. Q, — Z,) as the closure of

Qull(Ax)i] i € Z, X € Z;] (vesp. of Zy[[(Ax)i] | i € Z, A € Z))])
in the Q,-Banach algebra C?%.(Q,,Q,) (resp. in the Z,-Banach ring

unif
Cunit(Qp, Zp)), equipped with the induced valuation wee.
Remark 2.16. This remark is made to partially justify Definition 2.15. For
any N € Z, we denote by Sy : Q, — p™VZ,, the function N-th order fractional
part, namely,

=Y [wlp' = Sn(x) = [mlp'.
i>>—00 =N

It is clear that, for any N and A € Q,', x + Sn()z) is a bounded uniformly
continuous function. The function Ss, certainly not periodic, is a p-adic analog
of the function

R —[0,1), ...1234.56789...+— 0.789...,
which is genuinely periodic of period 0.01.

We will prove the following partial analog to Bohr’s “approximation theo-

rem” (Theorem B.4 in Appendix B), where in fact the functions cos(3*z) and

sin(2z), for A € R*, are replaced by the functions ¥(Az), for A € Q.
Theorem 2.17. (APgy,,ws) (resp. (APz,,ws)) is the completion of the

valued ring
(Qp[¥(Az) | A € Q) wae)  (resp. (Zp[¥(Ax) | X € Q)] o))

Definition 2.18. For any A € Q,, the Fréchet Z,-algebra & (resp. Ty) is
the closure of

Z[O(\"'pia) | j=0,1,...]
in Q,{z} (resp. in O(Xy)) with the standard topology. We then set {4 :=
ES1/p] (vesp. TP := T2[1/p)).
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Finally, we define the Fréchet Z,-algebra £° as the closure of Z,[¥ (A~ !piz) |
j=0,1,...] in Q,{z}, and set £P4 := £°[1/p].

Theorem 2.19 (Approximation theorem on compacts). The completion of
the multivalued ring

EP Al lprz, yrez)  (resp. (€%l llprz, }rez))
is the Fréchet Qp-algebra (resp. Zp-algebra) C(Qp, Qp) (resp. C(Qp, Zp)).
The following proposition follows from the estimates of Proposition 1.3 (see
Corollary 4.5 or Theorem 4.14 for the proof) together with the fact that the

conditions listed below are closed for the standard Fréchet structure. The proof
of the latter fact is given in Lemma 6.6.

Proposition 2.20. For any f € &5 (resp. f € TY), we have
(1) f is bounded by 1 on the p-adic strip ¥)y;
(2) f(@p) C Z;D; N
(3) For anyr € Z, a,j € Z>o, the function g(x) := f(p~ ") satisfies
g(x+p"IAC) C g(x) + p*TICy  for all x € Qp.

Proposition 2.21. For any A € Q), (£5,standard) (resp. (7y,standard)) is
a Hopf algebra object in the monoidal category (CEM;p, @Zp) for the coproduct
P and coidentity € given by

(15) P\ 'plaz)) » YA Pz @1+ 121 ple), (T 'piz)) =0,
for 5 =0,1,.... This structure only depends upon |A|.

Definition 2.22. We define Ej in (1) (resp. T)) as the abelian group func-
tor on ACEM%F, represented by the Hopf algebras (£3,standard) (resp. by

(Ty,standard)).

A partial p-adic analog of Féjer’s theorem, or, more precisely, of Theo-
rem B.2 in Appendix B, is the following proposition.

Proposition 2.23. For any A € Q, the completion of the valued ring
(Zp[T(A"p'2) | =10,1,...], W)

coincides with its closure in Cunit(Qp, Zp) = W (Cunit(Qp, Fp)), equipped with
the p-adic topology, and identifies with W(F,[[(A"x)_;] | 7 = 0,1,...]), also
equipped with the p-adic topology.

For the standard topology, we have the following result.

Proposition 2.24. For any A € Q), the completion of the valued ring (3, woo)
(resp. (TY,ws0)) coincides with its closure in C(Qp,Z,) = W(C(Qp,F)p)),
equipped with the product topology of the prodiscrete topologies on the com-
ponents (33), and identifies with W(F,(v()), 00)) (see Proposition 5.16 below
for notation), also equipped with the product topology of the prodiscrete topolo-
gies on the components.
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The ring E§ ®z, Fp (resp. Ty ®z, Fp), equipped with the quotient topology
coincides with Fp(v(\), 00) = C(Qp/\pZyp, Fp).

We now introduce our p-adic analog of the sheaf APHc of almost periodic
analytic functions (see Section B.5 in Appendix B).
Definition 2.25.

(1) For any p > 0, we define the algebra of (resp. integral) almost periodic
p-adic analytic functions on the strip ¥, as the closure APHq, (X))
(resp. APHz,(%,)) of Qp[¥(Az) | A € Q] (resp. Zp[¥(Az) | A € Q)])
in (O*4(3,), uniform), with the induced Banach ring structure.

(2) The algebra of germs at 0 of almost periodic p-adic analytic functions
is the locally convex inductive limit

(A'P’H(),Qp,stl"ip) = hﬂ APHQP (Ep).
p—0
(3) The algebra of germs at 0 of integral almost periodic p-adic analytic
functions is
(A’PHQZP , strip) = hﬂu A'P'HZP (Ep).
p—0
(4) The algebra of almost periodic p-adic entire functions is
(APHg,,strip) := im  APHg, (3,).
p—r+00

(5) The algebra of integral almost periodic p-adic entire functions is the
closure (AP Hz,, strip) of Z,[¥(Az) [ A € Q] in (AP Hg,, strip) equip-
ped with the induced Fréchet Z,-algebra structure.

(6) The Fréchet Z,-algebra £° is a Hopf algebra object in the category
CLMy, for the laws (15). The corresponding group functor

E: ACLM; — Ab
will be called the universal covering of Ey, for any A € Q.
Remark 2.26. The special fiber of E is the constant group
Qp = I&H Qp/ Ay

[A|—0

over F,,. On the other hand, equation (2) shows that £°[1/p] is dense in Q,{z},
so that the generic fiber of E is G, g,

Our Definition 2.25 is designed as to make the analog of Theorem B.7 in
Appendix B a true statement. In the p-adic case, we actually get the following
more precise statement.

Theorem 2.27 (Uniform approximation theorem). The natural CLMg -
morphism (resp. CLMy, -morphism)

(APHo,q,,strip) = (APg,, wee)  (resp. (APHoz,,strip) — (APz,, ws)),

18 an isomorphism.
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The similarity with classical Fourier expansions will be made more stringent
in [3], where the classical Mahler binomial expansions of continuous functions
2y, — 7y is generalized to an expansion of any uniformly continuous functions
Qp — Qp as a series with countably many terms of entire functions of expo-
nential type. Such a p-adic Fourier theory on Q, presents the same power
and limitations as the classical Fourier theory on R. Functions in APy, play
the role of Bohr’s uniformly almost periodic functions and a variation of the
Bochner-Fejér approximation theorem [9, §1.9] holds. On the other hand, a
Fourier series F(f) (with countably many terms) does exist for a much more
general class of functions f: Q, — Q, and the classical question as to what
extent the series F(f) approximates f makes perfect sense, precisely as in
classical Harmonic Analysis.

We ask whether the classical Bohr compactification of Q, has a p-adic an-
alytic description, as it has one in terms of classical (i.e., complex-valued)
harmonic theory on the locally compact group (Q,,+).

We expect that a completely analogous theory should exist for any finite
extension K/Q,. To develop it properly it will be necessary to extend Barsotti
covector’s construction to ramified Witt vectors modeled on K and to relate
this construction to Lubin-Tate groups over K° [19].

3. ELEMENTARY PROOFS OF THE MAIN PROPERTIES OF ¥

We prove here the basic properties of the function ¥. In contrast to [2], the
proofs are here completely self-contained.

Proposition 3.1. The equation (9) has a unique solution in ¥ =V, € T +
T27Z([T).

Proof. We endow Z[[T1]] of the T-adic topology. It is clear that, for any ¢ €
TZ([T]], the series 3% pIo(p?T)? converges in TZ[[T]]. Moreover, the map

Lipm T =Y plp@T)”

j=1
is a contraction of the complete metric space T+ T?Z[[T]]. In fact, let e(T) €
TTZ[[T)], with r > 3. For any ¢ € T + T?Z[[T]], we see that

L(p+e) — L(p) € T Drag[T]].

Since (¢ — 1) 4+ ¢ > r, this shows that £ is a contraction. So, this map has a
unique fixed point which is U (7). O

The following proposition, due to M. Candilera, provides an alternative
proof of Proposition 3.1 and finer information on ¥, (7).

Proposition 3.2 (M. Candilera). The functional equation for the unknow
function u

1= ij(qul)quj%fu(pj(qfl)T)qj

=0
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admits a unique solution uw(T) = uy(T) € 1+ TZ[[T]]. We have
Uy (T) = Tug(TH).

Proof. In this case we consider the T-adic metric space 1 + TZ[[T]] and the
map

M:1+TZ[T)] - 1+ TZ[T]), ¢—1- Zpﬂqj*l)z’%ﬂpﬂq*l)z’)qj.
j=1
We endow Z[[T']] with the T-adic topology. It is clear that, for any ¢ € TZ[[T]],
the series E?’;lp_j@(pjT)qj converges in TZ[[T]]. If e(T) € T"Z[[T]], with
r > 2. For any ¢ € 1+ TZ[[T]], we see that
M(p +e) = M(p) € T Z[[T]).

So, the map M is a contraction and its unique fixed point has the properties
stated for the series u in the statement. g

Proposition 3.3. The series U(T') = U (T) is entire.

Proof. Since ¥ € T + T?Z[[T]] C TZ[[T]], we deduce that ¥ converges for
vp(T) > 0. Since the coefficient of T in ¥(T') is 1, whenever v,(T) > 0, we
have v, (U(T)) = v,(T).

Suppose ¥ converges for v,(T) > p, for p < 0. Then, for j > 1, U (p'T)?
converges for v,(T) > p — 1. Moreover, if j > —p+1 and v,(T) > p — 1, we
have . o ‘ ‘ .

w( I VET)T) = —j + ¢ (5,(0"T) > = +¢'(j +p 1),
and this last term — 400, as j — +oc. _

This shows that the series T — 72, p~/W(p? T)? converges uniformly for
vp(T) > p — 1, so that its sum, which is ¥, is analytic for v,(T) > p— 1. It
follows immediately from this that ¥ is an entire function. O

Remark 3.4. We have proven that, for any j =0,1,... and for v,(T) > —j,
w(p P T)T) = —j + ¢ (j + 0, (T)).
In particular, for any a € Zq, (¥(a) € Zq and) ¥,(a) = a, modulo pZ,.
Proposition 3.5. For any a € Qq, ¥4(a) € Z,.
Proof. Let a € Z,. We define by induction the sequence {a;}i=01,...:
it . i—j—1 i—j
(16) ap =a, a;= Zp]_z(a? —aj ).
§=0
Since, for any a, b € Zg, if a = b mod p, then a?" = b?" mod pq"™, hence modulo

p" 1, while a = a? mod p, we see that a; € Z, for any i.
We then see by induction that, for any 4,

i—1 o i .
a;=p " <a - ija‘f J) or, equivalently, a = Z]ﬂa‘;— ’
=0

=0
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Explicitly, if we substitute in the formula which defines a;, namely,
i—1 i i—1 o
plai=>Y pal T =Y plal
Jj=0 Jj=0

; . i—j—1
the (i — 1)-st step of the induction, namely, a = Z;;lo P’ a? ’ , we get

i—1 o
i i g7
plai=a—Y pal ",
=0

which is precisely the i-th inductive step.
From the functional equation (9) and from Remark 3.4, we have, for a € Z,
and i =0,1,2,...,

. . ¢ - s
(17) U(pa)=pta—> pU(p'pra)
=1

i—1
= p_i <a — Z pj\IJ(p_ja)qu) mod pZ.
j=0

Notice that ¥(a) € Z, and that, modulo pZ,, ¥,(a) = a = ap, defined as
in (16). We now show by induction on 4 that for aq,...,a;,... defined as
in (16),

U(p~‘a) = a; mod pZ,,
which proves the statement. In fact, assume ¥(p~7a) = a; mod pZ,, for j =
0,1,...,i— 1, and plug this information in (17). We get

i i—1 o
U(p~'a)=p ‘a— ZP_ECL;{@ =p <a B ija(f J) = @i modply,
=1 Jj=0

which is the i-th inductive step. O

Remark 3.6. Notice that from (17) it follows that, for any a € p~"Z,,
a= Zp*Z\I/q(pza)qe mod pZg.
=0

The formula can be more precise using the functional equation (9) and Re-
mark 3.4. We get, for any a € Qq,
—vp(a)+i
° .
Z p_Z\I/q(pea)q mod p"**Z, for alli € Z>o,
£=0

S
If

that is,
(18) a= Zp*Z\Ilq(pea)qe modp”””(“)HZq for all i € Z>_, (a)-
=0

We generalize (12) as follows.
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Corollary 3.7. For any a € Qq, let
a; == V,(p~'a) mod pZ, € F,.
We have

o0

a= Z [ai]pi € W(F,)[1/p] =Q

1> —00

Proof. Assume first that a € Z,. In this case (18) implies
a= Zp p a)? ¢ modpiHZq for all ¢ € Z>o.

So, the statement follows from the following lemma.

Lemma 3.8. Let i — b; and i — ¢;, for i =0,1,..., be two sequences in Z,
such that

/i P /i . i— )
ijb‘f = ijc? ’ mod p™t*Z, for alli € Z>o.

Then
bi = c¢; modpZ, for all i € Z>g.

Proof. Immediate by induction on . O

In the general case, assume a € p~"Zy. Then

oo

pla=Y [¥,(p" "a) mod pZyJp’ € W(F,),
=0

hence
oo

a = [¥,(p" 'a) mod pZyJp' " € p "W(EF,). O
1=0

From the previous corollary, it follows that a € Q4 has the following expres-
sion as a Witt bivector with coefficients in Fy:

_ (a/p)* (a/p)* _a/p
a=(...,a2" ,...;a%" a 17a0,a1,a1,...),
which obviously equals (...,a_;,...,a_2,a_1;0a9,a1,a1,...),if g=p

Remark 3.9. We have tried to provide a simple addition formula for ¥, of
the form (7), in terms of the same power-series ®. We could not get one, nor
were we able to establish the relation between W, and ¥,, for ¢ = p/ and f > 1.
On the other hand, it is clear that Barsotti’s construction of Witt bivectors,
based on classicals Witt vectors, extends to the L-Witt vectors of [19, Ch. 1],
where L/Q, denotes any fixed finite extension. In our case, we would only
need the construction of loc. cit. in the case of the field L = Q,. We believe
that the inductive limit of Z,-groups Wq, » — Wg,,n+1 under Verschiebung

Vi(z_pn,...,z_1,20) = (0,2_p, ..., T_1,20)
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is a Zg-formal groups whose addition law is expressed by a power-series @,
analog to Barsotti’s ®. We believe that equation (7) still holds true for ¥, if
we replace ® by ®,. We also believe that a generalized ¥ exists for any finite
extension L/Q,, with analogous properties.

4. VALUATION AND NEWTON POLYGONS OF ¥,

This section is dedicated to establishing the growth behavior of |¥,(z)| as
|z] — oco. These results will be essential to get the delicate estimates of [3].

4.1. Valuation polygon of ¥,. We recall from [17] that the valuation poly-
gon of a Laurent series f = >, a;T" with coefficients a; € C,, converging
in an annulus A := a < v,(T) < B, is the graph Val(f) of the function
w = v(f,p) == inf;(vp(a;) + ip), which is in fact finite along the segment
a < pu < B. The function p — v(f, 1) is continuous, piecewise affine, and con-
cave on [, B]. For any u € [«, 8], we have v(f, u) = inf{v, (¥ (z)) | vp(x) = p}.
In the case of ¥, A = C, and the segment [a, §] is the entire u-line. For the
convenience of the reader, we have recalled below the relation between the
valuation polygon and the Newton polygon of f.

Theorem 4.2. The valuation polygon of ¥, goes through the origin, has slope
1 for u> —1, and slope ¢/, for —j —1 < pu< —j,j=1,2,... (see Figure 1).

3 9 _q slope 1

p-line

vertex V; at (—1,—1)
slope€ q
vertex V5 at (=2, —q — 1)

slope ¢

vertex V3 at (=3, —¢%> —q—1)

FIGURE 1. The valuation polygon of ¥,.

Proof. We recall that if both f and g converge in the annulus A := a < v,(T') <

f, then, for any p € [, 8], v(f + g, 1) > inf(v(f, i), v(g, 1)), and that equality
holds at w if v(f, 1) # v(g, u). Moreover, for any n € N, v(f", u) = no(f, p).
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In the polygon in Figure 1, for j = 1,2,..., the side of projection [—j, 1 — j]
on the p-axis is the graph of the function

oj(n)=¢ (u+j-1)—¢ = —qg-1L
Notice that
ojt1(p) = =1+ qoj(p+1),
and therefore
ojvi(p) =—1—q—-— ¢ "+ ¢ oj(u+1i),

forany 1 =0,1,2,....
Since U € TZ[[T]] and since the coefficient of T" is 1, we have v(¥, u) = u
for > 0. For 0 > p > —j, j > 1, we have

(19) o 7Y@T)",p) = —j + (P T)T 1) = —j + ¢ v(V(P'T), )

=—J+v(¥(S),j+p) = —j+ ([ +ud

> p=v(T,p),
where we have used the variable S = p’T.
Remark 4.3. For p = —j, we get equality in the previous formula.

Let us set, for 5 =0,1,2,...,

() = —j+ (G +wd,
so that (19) becomes
(20) v(p WP T ) = (1) > o) = p = o(T, ),
for 0 > p > —j, 7 > 1, with equality holding if p = —j. Notice that

bo(p) = p=o1(p).
Because of (20) and (2), and by continuity of y — v(, u), we have
(¥, p) =v(T',p) = p=o1(p) for p>—1.

We now reason by induction on n = 1,2,.... We assume that, for any j =
1,2,...,n, the side of projection [—j,1 — j] on the p-axis of the valuation

polygon of ¥ is the graph of o;(x). This at least was proven for n = 1. We
consider the various terms in the functional equation

V=T —p W) - peEAT)T =Y p I u(pT) .
=3

We assume n > 1. For j =1,2,...,n,and —n — 1 < u < —n, we have
vp VW) ) = =+ o(Y(E'T)Y 1) = = + ¢ o (¥ (' T), )
=—j+ dv(V(S).j+p) = =5+ ¢ onjra(u + ),
since j —n —1 < j+ pu < j — n, and therefore the inductive assumption gives
v(V,j + p) = op—j+1(pu+ j) in that interval. For j > n, and —n —1 < p, we
have instead, from (20), v(p™ 7 U (p!T)?', 1) = £;(11).
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slope «

(77'.07 U(aio))

y = poxr +v(f,p ,
(—i1,v

1017

(0, +00)

(—i,0(a)

slope 8

(_i37 v(ais))

a‘il))
y = pax + v([, p2)

_

i2))

= px +o(f, @), for po < p <

FIGURE 2. The Newton polygon Nw(f) of f.

(/le U(f

o(f, ) = irp+v(ai,)

o; v(f; to))

/ (b, v(f, 1))

#1))
o(f, 1) = dap + v(as,)

\*(/1’27 U(f7 /'LZ))

p-line

(@, v(f, @)

(B,v(f,8))

FIGURE 3. The valuation polygon Val(f).

Lemma 4.4. Letn > 1. For j =1,2,...,n and for any p € R,

(21) Cusr (1) <

Miinster Journal of M
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For j >n and p > —n — 1, we have

(22) Gus (1) < £(11).
For —n—1 < p < —n,
(23) Ont1(p) < p.

Proof. Assertion (21) is clear, since the two affine functions p — op41 () and
> —j+¢?0n_jr1(p+7) have the same slope ¢", while their values at 4 = —n

are —q" 1 —q" 2—...—g—land —j—¢" 1 —¢" 2 —. .. — ¢ — I, respectively.
Notice that
=" =" =T = () - == =1
>_qn—1_qn—2__.__q_1’

so that the conclusion follows.
We examine assertion (22), namely, that for j > n and > —n —1, we have

¢"(ntn) =gt =g P g = 1< =+ (G + )
The previous inequality translates into
¢(ntn) =" =" = — g = 1< =+ (=)@ 4 (o p)g T,

that is,
¢TI g L=+ (G- n)d ()" (T 1) > 0,

for 4 > —n — 1. Since the left-hand side is an increasing function of p, it
suffices to show that the inequality holds for y = —n — 1, that is to prove that

(29 T T gt = ) =g T = 1) > 0,
for any j > n > 1. We rewrite the left-hand side of (24) as
" gt Lt (i )+ (g’ — ¢ +q"
=@+ gt =)+ (¢ - 1) - n) + ("~ @),

where the four terms in round brackets on the right-hand side are each, obvi-
ously, positive numbers. The conclusion follows.
We finally show (23), namely that for —n — 1 < u < —n,

"(p+n)—q¢" ' =¢" - —p—1<p
It suffices to compare the values at u = —n — 1 and at g = —n. We get
" =" =" g —1<-n—1
and
"¢ —g 1<,
respectively, both obviously true. 0

The previous calculation shows that the side of projection [-n — 1, —n] on
the p-axis of the valuation polygon of ¥ is the graph of o,41(u). We have
then crossed the inductive step Case n = Case n + 1, and Theorem 4.2 is
proven. O
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Corollary 4.5. Proposition 1.3 holds true.

Proof. We have seen that v, (¥, (z)) = vp(x) if vp(z) > 0. Then Proposition 1.3
follows from (7) and Lemma 1.5. O
Corollary 4.6. For anyi=1,2,..., and vy(x) > —i (resp. vp(z) > —i), we
have v, (¥ 4(x)) > —% (resp. vp(Pq(x)) > —%). If vy(x) > —1, we have
vp(Ug(z)) = vp().

Proof. The last part of the statement is a general fact for automorphisms of

an open k-analytic disk D with one k-rational fixed point a € D(k) (the disk
vp(x) > —1 and z(a) = 0, in the present case) [8, Lemma 6.4.4]. O

4.7. Newton polygon of ¥,. We now recall that to a Laurent series f =
ZieZ a;T" with coefficients a; € Cp, converging in an annulus A = a <
vp(T') < B, one associates two, dually related, polygons. The valuation polygon
w— v(f, 1) was recalled before. The Newton polygon Nw(f) of f is the convex
closure in the standard affine plane R? of the points (—i,v(a;)) and (0, +00).
If a; = 0, then v(a;) is understood as = +00. We define s — Nw(f, s) to be
the function whose graph is the lower-boundary of Nw(f). The main property
of Nw(f) is that the length of the projection on the X-axis of the side of slope
o is the number of zeros of f of valuation = o. The formula

v(f,p) = inf i+ v(ai)
indicates (cf. [17]) that the relation between Nw(f) and Val(f) “almost” co-

incides with the duality formally described in the following lemma.

Lemma 4.8 (Duality of polygons). In the projective plane P?, with affine
coordinates (X,Y), we consider the polarity with respect to the parabola X? =
-2Y

P? - (P?)* — P?, point(o,7) = line(Y = —0 X — 7) = point(a, 7).

Assume the graph T' of a continuous convex piecewise affine function has con-
secuttve vertices

-5 (=0, p0), (—in, 1), (—i2,02), (—is, @3),. .,
joined by the lines
Y =0 X4+, Y=0X4+7,Y=03X+713,....
Then the lines joining the points
.y (o1, —71), (—02,—T2), (—03,—T3), ...

are
...,Y:ilX—@l,Y:igX—gDQ,...,

and the polarity transforms these back into

< (_ilﬂ 901)7 (_i% @2); cee
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We say that the graph T'* joining the vertices (0;,7;), (0ix1,Ti+1) by a straight
segment is the dual graph of I'. It is clear that the relation is reciprocal, that
is, (T*)* =T and that T* is a continuous concave piecewise affine function.

Proof. 1t is the magic of polarities. O
The precise relation between Nw(f) and Val(f) follows.
Proposition 4.9. We have

Val(f) = (=Nw(f))",

where —Nw(f) is the polygon obtained from Nw(f) by the transformation
(Xa Y) = (Xa _Y)

Proof. The most convincing proof follows from comparing Lemma 4.8 with
Figures 2 and 3. U

We now apply the previous considerations to the two polygons associated
to the function ¥,.

Corollary 4.10. The Newton polygon Nw(¥,) has vertices at the points

i q'—1 i i—1
V;::(—q,zq— )=(—q,zq —q¢7 = =g 1)
q—1
The equation of the side joining the vertices V; and V;_1 is
i
-1
y=—ix -1,
q—1

its projection on the X -axis is the segment [—q', —¢*~1]. So, Nw(¥) has the
form described in Figure 4.

Corollary 4.11. For any i =0,1,..., the map ¥ = ¥, induces coverings of
degree ¢',
qurl -1
(25) W:{zeC,|up(z) > —i—1} — {x €Cy | vp(a) > _51_71}
(in particular, an isomorphism
(26) U: {zeCp|uvp(z) > -1} = {z €Cp | vp(z) > —1},
for i =0), finite maps of degree ¢',
U:{zeCp|—(i+1) <uvp(z) < —i}
it+1 i
¢ —1 ¢ —1

—>{x€(Cp|—ﬁ<vp(x)<—q_1},

and finite maps of degree ¢*T' — ¢*,
i+1 1

\IJ:{$€Cp|vp(x):—i—1}—>{x€(cp‘—qqfl

Minster Journal of Mathematics VoL. — (—), 999-999



A p-ADICALLY ENTIRE FUNCTION WITH INTEGRAL VALUES 1021

*

vertex Vs at (—q2,2¢® —q — 1

slope -2

vertex Vi at (—¢%,iq" —¢* ' — - —q—1)

vertex V7 at (—gq,q — 1)
slope -1
—q° —q -1

FIGURE 4. The Newton polygon Nw(¥,) of ¥,.

Proof. The shape of the Newton polygon of ¥ indicates that, for any a € C,,
with vp(a) > —1, the side of slope = v,(a) of the Newton polygon of ¥ — a
has projection of length 1 on the X-axis. So, ¥: {x € C, | vp(z) > —1} —
{z € C, | vp(x) > —1} is bijective, hence biholomorphic. Now we recall from
Corollary 4.6 that for any given ¢ > 1,

i+1 -1
U({z € Cp|vy(a) > —i—1}) C {x €Cp | vp(a) > _qq_ 1_}.
So, let a be such that —qiqtll_l < wvp(a) < —%a say vp(a) = _% -5

with € € [0,¢%). Then, the Newton polygon of ¥ — a has a single side of slope
> —i — 1, which has precisely slope = —¢¢~% — 4 and has projection of length
q' on the X-axis. So, the equation ¥(z) = a has precisely q solutions z in the

annulus —i—1 < vp(z) < —i. If, for the same i, —% < vp(a) < —qi;_ll_l, the
Newton polygon of ¥ —a has a side of slope —i, whose projection on the X-axis
has length ¢* — ¢*~1, and a side of slope o, 1 —i > ¢ > —i, whose projection

on the X-axis has length ¢'~!. So, again ¥ ~!(a) consists of ¢’ distinct points.

We go on, for a in an annulus of the form —qgjl_l < vp(a) < —%, up
toj=1—2, ie., to —qu}l < vp(a) < —1. In that case, the Newton polygon
of ¥ — @ has a side of slope —i of projection ¢* — ¢*!, a side of slope 1 — i
of projection ¢! — ¢*~1, ..., a side of slope j — i of projection ¢*~7 — ¢*~7~!
on the X-axis, ..., up to a side of slope -1 of projection ¢ — 1 on the X-axis.

Finally, for v,(a) > —1, there is still exactly one solution of ¥(z) = a, with
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vp(r) > —1. This means that ¥ induces a (ramified) covering of degree ¢’
n (25). O

4.12. The addition law of ¥. We now extend the estimates of Corollary 4.11
to translates ¥(a + x) of U, for @ € Q,. Although we expect that the same
discussion carries over to ¥,(a + ), where a € Qg, we assume for simplicity
that ¢ = p in the rest of this subsection.

Proposition 4.13. Let m € Z~q and let M(z—_p, ..., x_1,z) be a monomial
in Zplx—m ..., x_1,%0] divisible by x_,,, and of pure weight 1, where z; weighs
pt for anyi. Set

M(z):=M(T(p"z),...,¥(x)).
Then, for anyr=1,2,...,

wr(M(z))>m+1—(p—1)r(m—r+1)

(") - () -5
1y m = 7“)2;( —r)_p;rl_—ll(>_pr“—1),

>m+1+(p—

while, forr=0,—1,-2,..., we get
wr(M(2)) = m—1 — (p— Dmr + (p— 1) (m; 1) (> p(1—1r)).

Proof. This follows from the estimates of Corollary 4.11 via a totally self-
contained, but lengthy, computation on isobaric polynomials of Witt-type. We
refer to the upcoming paper [3] for the proof of a more general statement. O

We apply Proposition 4.13 to the study of the addition law of ¥. From (7)
and (8), we deduce, taking into account Proposition 3.5, that, for any c € Q,,

27) ¥(z+c) = lim @i(P(p'a),..., U(pz), U(z); T(p'c), ..., ¥(pc), ¥(c)),
where
Pm(U(p™ ), ..., W(pz), U(2); U(p™c), ..., ¥(pe), ¥(c))
— o1 (U™ ), W (px), U(); U (p™ L), ..., U(pe), U(c))
is a sum of monomials M (x) as in Proposition 4.13.

Theorem 4.14.

(1) The function ¥ is bounded and uniformly continuous on any p-adic
strip around Q. In particular,

W(z) € HP.
(2) Foranyj=0,1,... and z € Qp,
(28) U, (z+p'Cy) C Uy(a) + p'Cs.
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Proof. For the first part of the statement, we observe that Proposition 4.13
shows that for any fixed r > 0, the sequence

i @i(U(p'x),..., U (px), ¥(x); ¥ (p'c),..., ¥(pc), ¥(c))

converges in the w,-valuation. This means that for any p > 0, the previous
sequence is a sequence of entire functions bounded on the p-adic strip ¥,
around Q,, which converges to ¥(x + ¢) uniformly on X,.

The second part of the statement was already proved in Corollary 4.5. It
also follows from the estimates of Proposition 4.13 when r < 0. O

4.15. The zeros of ¥. The following theorem is formulated in a way to make
sense for ¢ = any power of p. We expect that it is true in that generality.
However, for the time being, we can only prove it for ¢ = p.

Theorem 4.16. In this statement, let ¢ = p

(1) For anyn=1,2,..., the map ¥, has g, := ¢" — q"~* simple zeros of
valuation —n in Q4. More precisely, for any system of representatives
ai,...,aq, € Zq of (Zq /p”Z) =W,_1(Fy)*, and any j =1,...,¢qn,
the open disc D(a;p~",p~) contains a unique zero z( " e Qq of ¥,.

Then z; (). (:) are all the zeros of ¥, of valuatzon —n.
(2) Forn = 1,2 et 2™ (”) be the zeros of ¥, of valuation —n.
We set
an
vt =] (1- (n)) € 149",
j=1
Then

)=z H U ()

is the canonical convergent infinite Schnirelmann product expression
(17, (4.13)] of ¥4(x) in the ring Qp{x}.

(3) The inverse function B( ) = Bq(T) of Uy(T) (i.e., the power series
such that, in TZ[[T]], q(Bq(T)) = T = B4(Vy(T))) belongs to T +
T?Z([T)]. Its disc of convergence is exactly v,(T) > —1.

Proof. We now prove the first statement in Theorem 4.16. We recall that
here ¢ = p, so that ai,...,a,, € Z,, with p, = p"™ — p"~!, are a system of
representatives of (Z,/p"Zy)*

Lemma 4.17. For any m,n € Zsg, with m < n, and any j = 1,...,p,, the
value of W at the mazimal point &, p—n ,m (of Berkovich type 2) of the rigid
disc D(ajp~", (p™)"), that is, —1og|¥(&y,p—n pm)l = Wi (¥(ajp~™ + x)), is

1
pp — <0.
Proof. The proof follows from the addition law (27) in which

U(a;p™™),..., \I/(ajpi*") € ZLyp,
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so that, for any ¢ =0,1,2,...,
pi(W(p'e), ..., U(px), U(2); U(ap'™"),..., U(ap' "), ¥(a;p~"))
is a sum of a dominant (at £, pm) term
V() + W(ajp™")
and of terms M (z) described, for m = n — ¢, in Proposition 4.13. O

From the harmonicity of the function |¥(x)| at the point &, ,-n ,m, the
estimate of Lemma 4.17, and the fact that ¥(a;p™") € Z,,, we deduce that each
of the p,p™~" open discs of radius p™, centered at points of p~"Z, \ p'~"Z,
contains at least one zero of ¥, in Q,. For m = 1, this proves the first part of
the statement.

For the second part of the statement, we refer to [17, §4]. The fact that
every ¥, (x) € Qplz] is —n-extremal follows from the fact that its zeros are all
of exact valuation —n [17, (2.7)].

The fact that 3, belongs to T' + T?Z[[T] is obvious. The convergence of 3,
for v, (T') > —1 follows from (26). The fact that it cannot converge in a bigger
disk is a consequence of the fact that ¥, has ¢ — 1 zeros of valuation —1. [

Corollary 4.18. All zeros of ¥, are simple and are contained in Q4. Each
ball a + Zq € Qq/Zq contains a single zero of ¥,.

Remark 4.19. We believe that Theorem 4.16 holds, with essentially the same
proof, for any power q of p. See Remark 3.9.

5. RINGS OF CONTINUOUS FUNCTIONS ON @,

The point of this section is that of establishing the categorical limit/colimit
formulas for the linear topologies of rings of p-adic functions on Q,. For topo-
logical algebra notions, we take the viewpoint and use the definitions explained
in Appendix A (see also [4]).

We consider here a linearly topologized separated and complete ring k,
whose family of open ideals we denote by P(k). In practice, k = Z,, or = F),
or = Zy,/p"Z,, for any r € Z>1. More generally, A will be a complete and sep-
arated topological ring equipped with a Z-linear topology, defined by a family
of open additive subgroups of A. In particular, we have in mind A = a fixed
finite extension K of Q,, whose topology is K °-linear but not K-linear. Again,
a possible k£ would be K° or any K°/(mwk)", for a parameter 7 = wg of K,
and 7 as before.

We will express our statements for an abelian topological group G, which is
separated and complete in the Z-linear topology defined by a countable family
of profinite subgroups G,, with G, D G,41, for any r € Z. So,

G= lm G/G, = lim G,

r——4o00 r——00
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where G/G, is discrete, G, is compact, and limits and colimits are taken in
the category of topological abelian groups separated and complete in a Z-
linear topology. We denote by 7,.: G — G/G, the canonical projection. Then
G is canonically a uniform space in which a function f: G — A is uniformly
continuous if and only if for any open subgroup J C A, the induced function
G — A/J factors via a 7, for some r = r(J). A subset of G of the form
7 t({h}) = g+ G, for g € G and h = 7,.(g), is sometimes called the ball of
radius G, and center g. In particular, G is a locally compact, paracompact,
0-dimensional topological space. A general discussion of the duality between k-
valued functions and measures on such a space, will appear in [5]. In practice,
here G = Q, or Q,/p"Z, or p"Z,, with the obvious uniform and topological
structure.

Definition 5.1. Let G and A be as before. Then we define C(G, A) (resp.
CPd (G, A)) as the A-algebra of continuous (resp. bounded and uniformly
continuous) functions f: G — A. We equip C(G, A) (resp. C*d.(G, A)) with
the topology of uniform convergence on compact subsets of X (resp. on X).
For any r € Z and g € G, we denote by x4+¢, the characteristic function of
g+ G, € G/G,. If G is discrete and h € G, by e,: G — k we denote the

function such that ey (h) = 1, while ep(x) = 0 for any = # h in G.

Remark 5.2. It is clear that if A = k is a linearly topologized ring, any
subset of k and therefore any function f: G — k is bounded. So, we write
Cunit (G, k) instead of CP%.(G, k) in this case. If G is discrete, any function
G — k is (uniformly) continuous; still, the bijective map Cunit (G, k) = C(G, k)
is not an isomorphism in general, so we do keep the difference in notation. If
G is compact, any continuous function G — k is uniformly continuous, and
Cunit(G, k) — C(G,k) is an isomorphism, so there is no need to make any
distinction.

Lemma 5.3. With the notation as above, assume that G is discrete (so that the
G, ’s are finite). Then C(G, k) (resp. Cunit(G, k)) is the k-module of functions
[+ G = k endowed with the topology of simple (resp. of uniform) convergence
on G. So,

C(G.k) = lim C(Gy.k)=][[ken, hea.
h

rT——00
Similarly,
|:|,u D,u
Cunif(Ga k) = @ (k/I)eh = H keh,
IeP(k) heG heq

where HE&”G(k/I)eh carries the discrete topology.
Proof. Tt is clear from the definitions. O

The next lemma is a simplified abstract form, in the framework of linearly
topologized rings and modules, of the classical decomposition of a continuous
function as a sum of characteristic functions of balls (see, for example, [13,
§1.3.1]).
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Lemma 5.4. With the notation as above, assume that G is compact (so that
the G/G,’s are finite). Then

C(G,k) = Cont(G, k) = lim" C(G/Gr k) = Tm" €D kxgra.
r—-+o00 T‘>+Oog+GTEG/GT

For any r, the canonical morphism C(G/G,, k) — C(G, k) is injective.
Proof. This is also clear from the definitions. g

Remark 5.5. We observe that the inductive limit appearing in the formula
hides the complication of formulas of the type

Xg+G, = Z Xgi+Gri1 ifg+Gr= Ugi +Grya,
7 [

which we do not need to make explicit for the present use (see [5] for a detailed
discussion).

Proposition 5.6. With the notation as above and G general, in the category
CLME, the following hold:
(1) We have
C(G,k)= lim C(G,,k)
T*}L*OO
for the restrictions C(Gr, k) — C(Gry1,k). In particular, for any fized
r e,
ca k)= JI clg+Grk).
g+GrE€G/Gy
(2) We have
Cunif(Ga k) = hA’lu Cunif(G/Gra k)
r—+o0
for the embeddings
Cunif(G/GT; k) — Cunif(G/Gr+17 k)
(3) The natural morphism
Cunit (G, k) — C(G, k)
is injective and has dense image.
Proof. The first two parts follow from the universal properties of limits and
colimits. The morphism in part (3) comes from the injective morphisms, for
r € 7,
Cunif(G/Gra k) — C(G7 k)
and the universal property of colimits. The inductive limit of these morphisms
in the category CLM], is a completion of the inductive limit taken in the cat-
egory Mody, of k-modules equipped with the k-linear inductive limit topology.

Since the latter is separated and since the axiom AB5 holds for the abelian
category Mody, we deduce that the morphism in part (3) is injective. The
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morphism has dense image because, for any r € Z and for any s € Z>¢, the
composed morphism
Cunif(Gr/GrJrsa k) — Cunif(G/GT+87 k) — C(G7 k) — C(GT7 k)
is the canonical map of Lemma 5.4
Cunif(Gr/Gr—i-sa k) - C(Gf’v k)

for the compact group G, and its subgroup G,s. The fact that the set theo-
retic union | J,~ Cunif(Gr/Grs, k) is dense in C(G,, k) is built-in in the defi-
nition of hﬂ“ a O
Proposition 5.7. Let (H,{H,},) be a locally compact group with the same

properties as (G,{G,},) above, so that (G x H,{G, x H.},) also has the same
properties. Then we have a natural identification in CLM},

(29) C(G, k) ®, C(H, k) =5 C(G x H,k)
and a continuous strictly closed embedding
(30) Cunit (G, k) @y Comit (H, k) — Comit (G x H, k).

Proof. We prove (29) first. By the first part of Proposition 5.6 (1) and the
fact that @Z commutes with projective limits, we are reduced to the case of
G and H being compact. We are then in the situation of Lemma 5.4 for both
G and H (in particular, the G/G,’s and the H/H,’s are finite). We need to
prove

@u @ kX(g,n)+GrxH,
T (g,h)+(G X Hy)

= li" (P kxgra, & I P kxnen,
=100 g1 G, T—=+00 b4+ H,
Let M (resp. N) be the left-hand side (resp. the right-hand side) in the
previous equation. Then
M = lim M/IM, N = Jim N/IN.
IeP (k) I€P (k)
We show that M/IM ~+ N/IN for any I € P(k). We have

M/TM = limg @ (/D)X (g.n)+C,xH, -
" (9,h)+(GrxHy)

Pi=lin" (P kxgro. Q:=ln" P kxnin,.

T g+G, T h+H,

Let

Then
N/IN = P/TP @1 Q/1Q
=lim @ (k/Dxgia, ©x/rlim @ (k/I)xn+m, = M/TM.

T g+G, T htH,
This concludes the proof of (29).
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We now pass to (30). We use Proposition 5.6 (2) to replace the map in the
statement by

lim® Cunit (G/ Gy, k) @3 lim" Conit (H/Hy, k)

r——4o00

= 1" Conit (G x H)/ (G, x Hy). k).

By Lemma 5.3 this reduces to considering

Ou ~u . . . Ou
lim® lim (k/Tegra, ® lm* lim [T 7 (k/Densn,
T I€P(k) geG r—+ooI€P(k) he H

w1 Ou
— lim™  lim H (k/De(g+c, nrH,)-
r  I€P(k) (g,h)

As before, let M (resp. N) be the left-hand side (resp. the right-hand side) in
the previous equation. Then
M = lim M/IM, N = lim NJ/IN.
IEP(k) IEP(k)

We show that M/IM <+ N/IN in an embedding with the relative topology,
for any I € P(k). Now,

M/TM =1tim" [ [(k/Degra. Sy tim" [ [(k/Denyn,
T g r h

= tiny" ( [T/ Degra, @iyr [T/ Densn,)
T g h

and
N/IN =1lim" [] (k/Deggrc,nim,),
" (g;h)
where hﬂ“ and @), /1 are taken in the category CLM; ;. So, our statement is
reduced to the fact that, for k, G, and H discrete, if k% (resp. k| resp. k&*H)
indicates the k-algebra of functions G — k (resp. H — k, resp. G x H — k)
with the discrete topology, then we have an inclusion

kS @y, kM — kOH. O
We are especially interested in the following corollary.

Corollary 5.8.
(1) For anyr € Z,

Cunif(@p/p“_lzpazp): l&n C(Qp/pT—HZpaZp/pSZp)a

s——+o0

where C(Qp/p ' Zy, Z, | p°Zy) is equipped with the discrete topology.
It is the Zy-algebra of all maps Q,/p" ' Z, — Z, equipped with the
p-adic topology.
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(2) Foranyr € Z,
C(@p/pT—HZpaZp) = @ C(p_th/pT'HZp,Zp/psZp),

s,t——+o00
where C(p~tZ,/p" 12y, Z,/p°Zy) is equipped with the discrete topol-
ogy. It is the Z,-Hopf algebra of all maps Qp/p"1Z, — Z, equipped
with the topology of simple convergence on Q,/p"1Z, for the p-adic
topology of Zy.
(3) We have

Cunif(@;m Zp) = hglu Cunif(@p/prJrlZpa Zp);

r—-+00
(4) We have
C(Qpazp): l&n C(Qpazp/pszp)'

s——+o00

Remark 5.9. Formula (29) shows that C(Qy, Z,) is a Hopf algebra object in
CLM7 .
P

Remark 5.10. We point out a tautological, but useful, formula which holds in
C(Q,/p"'Zy,Fp). For any h € Q,/p"T1Z,, let e, denote as before the function
Qp/p"t1Z, — F, such that ey(h) = 1 while ey, (z) =0 if z € Q,/p" T, z # h.
For any ¢ < r, the function

z;: Qp/p" 2, — T,
was introduced in (14). We then have

T; = E hien,

heQyp /pm+1Zy
where h1 =X (h)

Lemma 5.11. Let G and K be as above but assume G is discrete. Then in
the category CLCk,
C(G,K) =[] Keq
geqG
is a Fréchet K-algebra and

CPe(G,K) = 1oo(G, K)

unif
is the Banach K-algebra of bounded sequences (ag)gec of elements of K,
equipped with the componentwise sum and product and with the supnorm.

Proof. Obvious from the definitions. O

Lemma 5.12. Let G and K be as above, but assume G is compact. Then in
the category CLCk,

C(G,K)=CPi (G, K) =1 (G, K)

unif
is the Banach K-algebra of sequences (ay)geq, with ay € K, such that ag — 0

along the filter of cofinite subsets of G, equipped with componentwise sum and
product and with the supnorm.
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Proof. This is a straight-forward generalization of the classical wavelet decom-
position. See [13, Prop. 1.16]. O

Proposition 5.13. Let G and K be as in all this section. Then in the category
CLCk, the following hold:

(1) We have
C(G,K) = lim C(Gy, K)

r——00

for the restrictions C(Gr, K) = C(Gry1, K). In particular, C(G, K) is
a Fréchet K-algebra.
(2) We have

Cunlf(Gv K) = 1& Cunlf(G/GTa K)

r—4o0

for the embeddings
umf(G/GT? K) unlf(G/GT+17 )7

where the inductive limit of Banach K -algebras is strict. In particular,
CPd (G, K) is a complete bornological K -algebra.
(3) The natural morphism

Cumf(G7 K) - C(G7 K)
is injective and has dense image.

Proof. 1t is clear. For the notion of a bornological topological K-vector space,
we refer to [18, §6]. The fact that the notion is stable by strict inductive limits
is Example 3 on page 39 of loc. cit. The statement on completeness is proved
in [18, Lemma 7.9). O

Proposition 5.14. Let G and H be locally compact groups as in Proposi-
tion 5.7. Then

(31) C(G,K) &,k C(H,K) = C(G x H,K),
while the canonical map

Comit (G, K) ©r i Coiie(H, K) —= CUiie (G x H, K)
18 a strictly closed embedding of complete bornological algebras.

Proof. In the case of G and H being compact, this is detailed in the example

after [18, Prop. 17.10]. In the general case, (31) follows by taking projective

limits. The statement for C*4.(G, K) reduces instead to (30). O
We point out that (CL C, ®x ) is a K-linear symmetric monoidal category.
From Remarks 5.7 and 5.14, we conclude the following proposition.
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Proposition 5.15. Let G be as in Definition 5.1, and let A be either k or
K, as before, and C(G,A) be as in loc. cit. We regard (CLM},®y) and

(CLCK,@@,T,K) as symmetric monoidal categories. The coproduct, counit, and
mversion

Pz y) = f@+y), e(f)=f0c), p(f)(z)=f(-2),

for any f € C(G,A) and any x,y € G, define a structure of topological A-Hopf
algebra on C(G, A), in the sense of the previous monoidal categories.

The following result describes the structure of the Hopf algebras of functions
Qp/p 2y = Ly 0" Ly,
for any r,a € Z and a > 0, in terms of the functions
z;: Qy/p 2, » T,
introduced in (14). See also Remark 5.10.

Proposition 5.16. For any i € Z, let x; be as in (14) and let X, be indeter-
minates. Forr € Z and i € Z>q, let Fp(r,i) denote the Fy-algebra

Fo[Xp, Xo1, Xpay .o, Xp] /(L= XP7H 1 = XP7 01— XPT ).

r—1»
The dimension of Fp(r,i) as a F,-vector space is (p — 1)1, Let X, ; =
(Xo—iy Xr—ig1y- oy Xo1, X)) be viewed as a Witt vector of length i + 1 with
coefficients in Fy(r,i). We make Fy(r, i) into an Fp-Hopf algebra by setting
PX,; = X, ®F, 1 +1®F, Xri.
For anyi=0,1,..., the Fp-algebra map Fp(r,i + 1) — Fp(r, 1), sending X,_;

to X,—; if0 < j <iand X,—_;—1 to0, is a homomorphism of F,-Hopf algebras.
Then in the category CLMy

(1) the map
Fp(r,i) = C(pr_izp/pr-i_lzpalﬁ‘p)a Xj = zj,
forr—i < j <, is an isomorphism of F,-Hopf algebras,

(2) the F,-Hopf algebra C(Q,/p" ' Z,,F,) equals

Fp(r,00) == @ Fy(r, i)

1——+o00

with the prodiscrete topology,
(3) the topological Fp-algebra Cunit(Qp/p" 1 Z,, F),) equals Fy(r,00) equip-
ped with the discrete topology.

Proof. Parts (1) and (2) are [7, Teorema 3.31]. Part (3) follows by forgetting
the topology. O

Remark 5.17. Notice that the Fp-algebras F,(r,¢) are perfect.
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Corollary 5.18. Forr € Z and i,a € Z>g, the following hold:

(1) The topological Zp/paJrlZp'algebm Cunif(@p/pTJrlZpaZp/paJrlZp)
equals

Wa(cunif(Qp/pTJrlva Fp)) = Wq(Fp(r,00))
equipped with the discrete topology. Therefore,
Cunif(Qp/pT+1va Zp) = W(Cunif(@p/pr+lzpv Fp)) = W(F,(r,00))

equipped with the p-adic topology.
(2) The Z,/p**1Z,-Hopf algebra C(Q,/p" ' Z,, Z,/p* 1 Z,) equals

(32) Wa(C((@p/pH'lZp, Fp)) = Wa(Fp(r, 00))
with the prodiscrete topology. Therefore,
(33) C(@p/pTJrlZpa Lp) = W(C(@p/prJrlva Fp)) = W(Fp(r, 00))

equipped with the product topology of the prodiscrete topology of
F,(r,00) on the components.

Definition 5.19. We set
C =C(Qp,Zp).
For any r,a € Z with a > 0, we define a Fréchet Z,-subalgebra of C by
Cra={f€C| flx+pZ,) C f(zx)+p*T'Z, for all z € Q,}.
Let F be the set-theoretic map
F:C—=C, f— fP
Then Crq41 CCrq and Cr g C Crytq,
(34) Pt CCryg
is an ideal of C, 4, and F' induces a map
F:Cro—Crayi-
There exists a canonical map
Rra: Cra = C(Qp/p" 2y, Ly /0" L), [+ Rralf),
such that
Tat10 f = Realf) 0 Try1,
which sits in the exact sequence
(35) 0= p™'C = Cr =25 C(Qp /P L, Ly /0" ) = W ([ (1, 50)) = 0.

We conclude with the following proposition.

Minster Journal of Mathematics VoL. — (—), 999-999



A p-ADICALLY ENTIRE FUNCTION WITH INTEGRAL VALUES 1033

Proposition 5.20. For any r € Z and any a € Z>1, the map f — m o f
induces an isomorphism

Cra/PCra-1 = Cunif(@p/pT—Hva Fp).
Similarly, for a =0, we have
Cro/pC - Cunif(@p/pT—Hva Fp).
The inverse of the isomorphism of discrete Fy-algebras
Cra/pCra—1 — Cro/pC
is provided by the map
F®: Cro/pC 5 Cra/pCra—t, [ f7".
Proof. The first formula follows from (34) and (35). In fact,
Cra/PCra—1 = (Cr.a/P"C)/P(Cria—1/p""*C)
= Wa(Fp(r,00))/pWa-1(Fp(r,00)) = Fp(r, 00).
Similarly for the other formulas. t
By iteration, we get the following corollary.
Corollary 5.21. We have
Croa/P*T1C = C(Qp/P" Ly, Ly 0" L) = Wa(Fp (1, 00)).

For any f € C, 4, there exist fo, f1,..., fa € Cro, well determined modulo pC,
such that

a a—1 a—2
=1 +pff +0°f8 4+ p"fa modp®T'C.
6. p-ADICALLY ENTIRE FUNCTIONS BOUNDED ON Qp

We prove here the statements announced in the introduction, namely, The-
orem 2.17, Theorem 2.19, Proposition 2.20, Proposition 2.21, Proposition 2.23,
Proposition 2.24, and Theorem 2.27. We assume ¢ = p from now on, so, in
particular, ¥ stands for U,

We start with the proof of Theorem 2.17.

Proof of Theorem 2.17. It suffices to prove the statement over Z,. Notice that
Zp[V(Ax) | A € Q)] = Zp[U(Np~'x) | i € Z, X € L]

Both rings Zp[[(Ax)] | i € Z, X € Z)}] and Z,[¥(A\p~'x) | i € Z, X € Z)] are
contained in the Z,-Banach ring Cynit(Qp, Z,), which may be identified with
W(Cunit(Qp, Fp)) equipped with the p-adic topology. Then APy consists of
W(F,[(Ax); | i € Z, A € Z)]). Notice that Fp[(Ax); | i € Z, A € Z}] is a
perfect subring of the perfect ring Cunir(Qp,Fp), since (Az)! = (Az); for any
i, A. It suffices to prove the following.

Lemma 6.1. For any fized A € ¥, the closure of Zy[¥(Ap'x) | i =0,1,2,...]
in W(Cunit(Qp,Fp)) coincides with W(F,[(Az); | i =0,—-1,-2,...]).
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We may as well assume A = 1 and prove the following.
Sublemma 6.2. The closure of Z,[¥ (p'z) | i = 0,1,2,...] in W(Cunit(Qp, Fp,))
coincides with W(Fp[z, | i=0,—-1,-2,...]).

Let C be the closure of Z,[¥(p'z) | i =0,1,2,...] in W(Cunit(Qp,Fp)). The
formula ,
[z_;] = lim ®¥(p'z)V

N—oc0

shows that W(Cunit(Qp,Fp)) C C. It will suffice to show that, as functions
Qp = Zy,
U(x) e W(Fplz; |i=0,-1,-2,...]).

We write the restriction of ¥(x) to a function Q, — Z, as

U(z) = (Yo(x), U1(x), Ta(z),...),
with ¥; € Cunit(Qp,Fp) and ¥o(z) = x9. We have, from (2), the formula in
Cunif(@pa Qp)
(36) V(@) +p ' W(px)? + - +p WP 4.

=2 =(..., Ty, T, T_1;T0, %, %,...).
From (36) we deduce that, as functions in Cynit(Qp, p~Z,),

U(z) +p U (pz)? +p 2 (p) 44 p T (pla)
= (Tiy ey T2, T 1 X0, %y K, ).

This shows, inductively on %, that

\IJiGIFp[xj|j:O,—1,—2,...,—i]. ]
Definition 6.3. Let r € Z and a € Z>;. We define &, (resp. 7.°,) to be

the Z,-subalgebra of £, (resp. of 7,%) (cf. Definition 2.18) consisting of those
functions f such that

fla+p™C) C f(x)+p*HC; forall z € Qp and j € Z>;.
Remark 6.4. For the rest of this section, the statements valid for the rings

&2 C Qp{z} hold equally well, and with the same proof, for the rings 7,°, C
O(X,--)°. For short, we deal with the former only.

Notice that

T

Erar1 CELaCE a1 and PEL, CEL,1q,
and that we have a map F' as in Definition 5.19 such that
F(E2.) C & apr-
Remark 6.5. We have
Er =&
We already proved (Proposition 1.3 and Corollary 4.5) that ¥(z) € &7 . There-

fore, for any i € Z>¢ and £ =0,1,...,p — 1, the function U (p'~"x)" belongs
to &7 0 C &L,

r—i,a
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Lemma 6.6. If a sequence of functions n > f, € &, (resp. € T,°,) converges
to f € Cpo{x} (resp. to f € O(X,-+)°) uniformly on bounded subsets of C,
(resp. of Xp-+), then f € £, (resp. € T,2,). Therefore, £, (resp. T.2,) is
a closed Zy,-subalgebra of Cp{x} (resp. of (O(X,--)°,standard)). The induced
Fréchet algebra structure on &7, (resp. on T,%,) will be called standard.

Proof. We deal, to fix ideas, with the case of £7 ,. We show that for any c € Q,,
and j =0,1,...,

f(C+pT+j+1(C;) C f(C) +pa+j+1(C;.

By assumption, for any s,t € N, there exists N = Ny such that if n > N,
then

(fn = H(p™°Cp) C p'C;.
So, for ¢ and j as before, let s be such that ¢ 4+ p"t/H1Cs C p~*C;,
be > j+a+ 1. Then, for any n > N,

(fo = P+ p"™HIC)) C (fu = H)p7°Cy) C p'Cp C pTFIC,
Therefore, f € & ,. O

and let ¢

Notice that Proposition 2.20 follows from Lemma 6.6, by taking a = 0.
Let r,a be as in Definition 6.3. Any function f € &7, induces a continuous
function fig,: Qp — Zp. The Z,-linear map

(37) Res®: (&7 ,,standard) — Cro C C(Qp,Zy), [+ flg,,

is continuous and injective. By composition, we obtain, for any r € Z and any
a,h =0,1,..., a morphism
(38) Ry qoRes’: (& ,,standard)
- C(prith/pﬂrlzpv Zp/paJrlZp) = Wa(Fp(r, 1)),

where the right-hand side is equipped with the topology of (32). The kernel
of that map is the set of g € £2, such that —log||g|,»-~ > a + 1. From (37)
we also get maps of Fréchet Z,-algebras:
(39) Res®: (EX, Il lprz, trez)” = C(Qp, Zp),  f+ fig,,
(40) Res®: (TX, {ll lprz, }rez)” = C(@Qp. Zp), = fia,-
Lemma 6.7. Let r € Z and a € Z>q be as before.

(1) Any series of functions of the form

p—1 oo

oD i) crai € Ly,

£=0 i=0

converges in the standard Fréchet topology of Qp{z} to an element of
&2, along the filter of cofinite subsets of {0,1,...,p — 1} X Z>o.
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(2) For any element f € Crq and for any s = 0,1,2,..., there exist
uniquely determined elements cgp; = cg’bﬂ. € Zy such that for

a

p—1 oo
ZZZCMW\P )P €&
b=0 ¢=0 +=0

where the infinite sum converges in the standard Fréchet topology of
Er ., we have

r,a’

- logll(f — frlly oz, = a+1.

Same statement for £ , replaced by T, .
(3) For any element f € Cna and any h = 0,1,..., there exist uniquely
determined elements cpp,; = ), ; € Zy, such that for

a p—1 h

fr,a7h = Z Z Z Cg’bﬂpb\ll(pi_rx)epafb’

b=0 ¢=0 i=0
we have
—log|l(f = fra.n)llpp-rz, 2 a+1.

(4) The map (38) is surjective.
(5) The maps (39) and (40) are the isomorphisms of Theorem 2.19.

Proof. The first part is clear. As for the second, we observe that, for any
a—b

b=0,1,...,a, the map R, , o Res® transforms the function p®¥(p'~"z)%®" ",
for =0,1,...,p— 1, into the Witt vector

0,...,0,wp = x%_;,0,...,0) € W4 (F,(r,0)),

where xf_, is placed at the b-th level. Since any y € F,(r, 00) admits a unique

expression as a sum, convergent in the prodiscrete topology of Fp(r, 00),

p—1 oo
ZPM zxr i Vi € Fpa
£=0 i=0
it is clear that any w = (wo,w1,...,we) € W (Fp(r,00)) admits a unique

expression as a summ

a p—1 oo

ZZ’M}” .,O,szxﬁii,o,...,()),

b=0 ¢=0 =0

which in turn converges in the prodiscrete topology of W, (F,(r,00)). More

precisely, for any a,h = 0,1,..., we can determine coefficients ¢, ; € Z,, such
that
a p—1 h
w — E E Cy blxr i
b=0 £=0 i=0
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has zero image in W, (F,(r, h)). So, the function

a p—1 h .
fran = Z Z Z Cz,b,ipb‘l’(pi_rx)epa_

b=0 ¢=0 i=0
is such that

min{v,(fran(z) — f(2)) |z € p" "2y +p"CO} > a+ 1.

Finally, we already observed that the kernel of the map (38) consists of the
elements g € &7, such that —log|g|»-—rz, > a+ 1. This proves (2), (3)
and (4).

As for the last part of the statement, we pick any f € Cunit(Qp,Z,) and
a natural number N = 0,1,.... Then there exists an M = 0,1,... and
fu € C(Q,/pMZ,, Z,) such that wee (f — far) > N. It will suffice to determine
an element g € Z,[V(Az) | A € Q)] such that we (g — far) > N. We then pick
r€Zand a € Z>g so that r+1 > M and a +1 > N. The statement follows
from the surjectivity of (38). This concludes the proof. O

As a corollary, we obtain the proof of Propositions 2.23 and 2.24. We now
give the proof of Proposition 2.21.

Proof of Proposition 2.21. We discuss (€5, standard) in order to fix ideas. The
case of (77, standard) is analogous. The coproduct of £ originates from (7),
which we spell out as

a:»—)lll(x(g\)Zp 1+1®ZP x)

= (I)(\I/(JZ (/g\)Zp 1)) \I/(px ®ZP 1); S \Il(l ®ZP 33), \Ij(l ®ZP px)v e )

= O(V(z) ®z, 1,¥(pzr) @z, 1,...;1 @z, ¥(2), Bz, ¥ (1pz),...),
and the identification (10). The fact that £ only depends upon |A| follows
from the fact that, for any f € C{z}, the map Q, — C{z}, a — f(ax),
is continuous. For any n € Z, the map nt: V(A" p/z) — U(A\~pinz), for
any j = 0,1,..., is an endomorphism of £3. By continuity, we obtain a map
ac: Y — &3, for any a € Zy. If m,n € Z are such that mn =1+ ap®, for
a € Zand N € Z, N > 0, then ¥(A\~*pimnx) is close to (A~ 1piz). Again
by continuity we find that if a € Z,;, a¢ is an automorphism of £3. O

We finally prove our uniform approximation Theorem 2.27.

Proof. We discuss the integral case only; the bounded case follows directly.
We first observe that a CLMj -morphism

(A'P’H(),ZP ,strip) = hgu (APHZP (Ep), strip) — (APZP s Woo)

p—0

exists because so does, for any p > 0, the morphism (APHz,(3,),strip) —
(APz,,ws). Moreover, that morphism is injective. An element of APHg z, is
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represented by a sequence P, € Z,[¥(x/)) | A € Q)] with p,, decreasing to 0,
such that for any ¢ > 0, there exists V. such that for any m >n > N,

B0, = P ll@y.pm < e

Let f € APz, and let N € Z~. By the definition of u.a.p. functions, there
exists a polynomial

Py =Y ax¥(z/N),
AeQy
where ay € Z, = 0 for almost all A, such that

’LUOO(f—PN) > N.

By (28) of Theorem 4.14, for any N > 0, there exists py > 0 such that
vp(Pn(a+x) — Pn(a)) > N for any a € Q, and = € Cp, |z| < py. We may
assume that the sequence N — py decreases to 0. We deduce that for M > N,

- IOgHPN - PMHQ;mPM > N.

So, the sequence N +— Py represents a germ P € APH z, whose restriction
to Qp is f. O

Remark 6.8. We are not asserting here that there should be a p-adic strip
Y, around @, on which f extends analytically. In fact, an inductive limit in
the category CLM;p is not necessarily supported by a set-theoretic inductive
limit (see Appendix A.1 below) and similarly for a locally convex inductive
limit of Banach spaces.

APPENDIX A. NON ARCHIMEDEAN TOPOLOGICAL ALGEBRA

A prime number p is fixed throughout this paper and ¢ = pf is a power
of p. So, Q, will denote the unramified extension of Q, of degree f, and Z,
will be its ring of integers. Unless otherwise specified, a ring is meant to be
commutative with 1.

A.1. Linear topologies. Let k be a separated and complete linearly topol-
ogized ring; we will denote by P(k) the family of open ideals of k. We will
consider the category CLM} of separated and complete linearly topologized
k-modules M such that the map multiplication by scalars

kExM— M, (r,m)—rm,

is uniformly continuous for the product uniformity of k x M. Morphisms of
CLM are continuous k-linear maps. This is the classical category of [12,
Ch. III, §2]. See [4] for more details.

Remark A.2. All over this paper we will assume that in a topological ring R
(resp. topological R-module M), the product (resp. the scalar product) map
RXxR — R (resp. Rx M — M) is at least continuous for the product topology
of R x R (resp. of R x M); morphisms will be continuous morphisms of rings
(resp. of R-modules).

Minster Journal of Mathematics VoL. — (—), 999-999



A p-ADICALLY ENTIRE FUNCTION WITH INTEGRAL VALUES 1039

By a nonarchimedean (n.a.) ring R (resp. R-module M) we mean a topo-
logical ring R (resp. R-module M) equipped with a topology for which a basis
of neighborhoods of 0 consists of additive subgroups and additive translations
are homeomorphisms. So, any valued nonarchimedean field K is a n.a. ring
in the previous sense and, if K is non-trivially valued, the category LCk of
locally convex K-vector spaces [18] is a full subcategory of the category of n.a.
K-modules. But, such a field K is never a linearly topologized ring. The ring
of integers K° is indeed linearly topologized, but no nonzero object of LCk is
an object of CLMY%-.

Definition A.3. Let R be a topological ring and M be a topological R-module.
A closed topological R-submodule N of M is said to be strictly closed if it is
endowed with the subspace topology of M.

For any object M of CLM), P(M) will denote the family of open k-
submodules of M. The category CLM;, admits all limits and colimits. The
former are calculated in the category of k-modules but not the latter. So, a
limit will be denoted by lim while a colimit will carry an apex (—)" as in hﬂ“
In particular, for any family M, a € A, of objects of CLM?}, the direct sum
and direct product will be denoted by

u
@ Mou H MOH
a€cA acA
u

respectively. We explicitly notice that @, 4 Mo is the completion of the
algebraic direct sum @, 4 M, of the algebraic k-modules M,’s, equipped
with the k-linear topology for which a fundamental system of open k-modules
consists of the k-submodules

P Ua + 1M,)

acA
such that U, € P(M,) for all a, and I € P(k) is independent of «. Then the k-
module underlying @Ze 4 M, in general properly contains the algebraic direct
sum @, 4 Ma. It will also be useful to introduce the uniform box product of

the same family
Ou
I M.

acA
which, set-theoretically, coincides with [],c 4 M, but whose family of open
submodules consists of all U := [],c 4 Ua, with U, € P(M,), such that there
exists Iy € P(k) such that Iy M, C U, for any o € A. The category CLME,
equipped with the tensor product &, of [16, 0.7.7] (see also [12, Ch. III, §2,
Exer. 28]) is a symmetric monoidal category. The category of monoids of
CLM;; is denoted by ACLM:.
For two objects M and N of CLM}, we have

M®, N = lim M/P ey N/Q,
PeP(M),QeEP(N)

so that &, commutes with filtered projective limits in CLM®Y.
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A.4. Semivaluations. We describe here full subcategories of CLM;;, and spe-
cial base rings k, of most common use. We denote by Z,) = QN Z,, the
localization of Z at (p). Then C, will be the completion of a fixed algebraic
closure of Q,. On C,, we use the absolute value |z| = |z|, = p~*»(*) for the
p-adic valuation v = v, with v,(p) = 1, and z € C,.

Definition A.5. A semivaluation on a ring R is a map w: R — R U {+oc}
such that w(0) = 400, w(z +y) > min(w(z), w(y)) and w(zy) > w(x) + w(y)
for any x,y € R. We will say that a semivaluation is positive if it takes its
values in R>o U {+00}.

Remark A.6.
(1) If wy,ws,...,w, are a finite set of semivaluations on the ring R, so is
their infimum
w:= inf w;.
1=1,...,n

(2) The trivial valuation vo: R — {0, +o0}, which exists on any ring R, is
(in our sense!) a positive semivaluation.
(3) We will indifferently use the multiplicative notation |x|,, = exp(—w(x)).

For any semivaluation w of a ring R, the family
Ry ={x € R|w(x)>c}

for ¢ € R is a fundamental set of open subgroups for a group topology of R.
Moreover, R, o is a subring of R and all R, . are R, o-submodules of R.
A (multi-) semivalued ring (R, {wq }taca) is a ring R equipped with a family
{wq }aca of semivaluations. A semivalued ring is endowed with the topology
in which any = € R has a fundamental system of neighborhoods consisting of
the subsets

T+ ﬂ Rac,,

acF

where F' varies among finite subsets of A and, for any « € F, ¢, € R. A Fréchet
ring (resp. Banach ring) is a ring R which is separated and complete in the
topology induced by a countable family of semivaluations (resp. by a single
semivaluation). If the semivaluations w, are all positive, the Fréchet (resp.
Banach) ring (R, {wa}aca) is linearly topologized. We will call it a linearly
topologized Fréchet (resp. Banach) ring. When R is an algebra over a Banach
ring (S, v), and the semivaluations w,, satisfy

wo(zy) =v(x) +wa(y) forallz €S, yeR,

we also say that R = (R, {wa}aca) is a Fréchet (resp. Banach) S-algebra. In
the particular case when (S,v) is a complete non-trivially valued real-valued
field (K,v), a Fréchet or Banach S-algebra is a Fréchet or Banach algebra
over K in the classical sense. Notice however that we allow v to be the trivial
valuation of S or K. We denote by CLCk the category of locally convex
topological K-vector spaces of [18], where morphisms are continuous K-linear
maps, which are moreover separated and complete.
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Lemma A.7. Let (S,v) be a Banach ring and let (R,{wn}n=12,.) be a
Fréchet S-algebra. Let (R, w,) be the separated completion of R in the locally
convez topology induced by the semivaluation w,. Assume wy,(r) > wy,(r) for
any r € R if n < m. Then the identity of R extends to a morphism R,, — R,
of Banach S-algebras and R is the limit, in the category of n.a. S-algebras, of
the filtered projective system (Rp)n.

In particular, a S-subalgebra T of R is dense in R if and only if it is dense
in R, for any n.

A.8. Tensor products. Let (S,v) be a complete real-valued ring and let R =
(R, {wa}aca) and R" = (R',{w}j}ger) be two Fréchet S-algebras. Then we
define a Fréchet S-algebra R®, s R’ as the completion of the S-algebra R®g R’
in the topology induced by the following semivaluations [11, §2.1.7], for any
(o, 8) € Ax B,

Wa,p(g) = sup( min wa(x;) +wj(yi),

where the supremum runs over all possible representations

n
gzzxi®yia xi€R7 yzER/
=1

The following proposition follows immediately from Lemma A.7.

Proposition A.9. Let (S,v) be a Banach ring and let (R, {wy}n=12,..),
(R, {w] }rn=1,2....) be two Fréchet S-algebra satisfying the assumption of Lem-
ma A.7. Then, with the same notation, R @Q,T,S R’ is the limit, in the cate-
gory of n.a. S-algebras, of the filtered projective system of Banach S-algebras
(Rn @ﬂ',S R;Z)’IL'

Notice that

(1) if R and R’ are Fréchet algebras over a complete real-valued field
(K,v), with nontrivial valuation v, R é’m x R’ coincides with both
the completed projective and the inductive tensor product of [18] (cf.
Lemma 17.2 and Lemma 17.6 of loc. cit.);

(2) if R and R’ are linearly topologized Fréchet algebras over a linearly
topologized Banach ring (S,v), R ®. s R’ coincides with R ®¢ R

APPENDIX B. CLASSICAL THEORY OF ALMOST PERIODIC FUNCTIONS

The main character of this paper, our function ¥, shows many analogies
with the classical holomorphic almost periodic functions of Bohr, Bochner,
and Besicovitch [9]. In fact, many of the subtle function theoretic difficulties
which appear in the p-adic setting are also encountered in classical Harmonic
Analysis. We feel that a short presentation of the basics of the classical theory
might be useful. See also the survey article [14].
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B.1. Fejér’s Theorem. Let (CPL.(R,R),| |g) be the Banach algebra of
bounded uniformly continuous functions R — R, equipped with the supnorm
on R. For A € Ryg, let Py C CPL(R,R) be the strictly closed Banach
subalgebra of continuous periodic functions of period .

Let us recall the classical Fejér’s theorem [20, §13.31]. Let f € Pg . The
Fourier expansion of f is the formal trigonometric series

> 2 2
% + n; an, cos(%nz) + b, sin(%nz),

an /\/f ) cos —z) bn )\/f sm )dt.

The sequence of the partial sums

SN —I—Zancos( )—l—bnsm(%;nz),

does not necessarily converge to f uniformly on R. However, the Cesaro means
So+ -4+ St

n
converge to f uniformly on R. In particular, we have the following result.

with

Onp —

Theorem B.2. Rlcos(3z),sin(3 )] is dense in the R-Banach algebra
(P I [l)-

We will show below that a suitably reformulated p-adic analog of Theo-
rem B.2 holds true p-adically.

Definition B.3 (Bohr’s definition of u.a.p. functions). A continuous function
f: R = R is uniformly almost periodic (u.a.p. for short) if, for any ¢ > 0,
there exists ¢ > 0 such that for any interval I C R of length /., there exists
T € I such that

|[f(x+7)— f(z)|<e forallzeR.

It is easy to check that the set of uniformly almost periodic functions R — R
is a closed subalgebra APz of (CPL(R,R),| [r) [9, Ch. I, §1, Thm. 4°, 5°].
We define APc C (CPL(R,C), | ||g) similarly.

The following result is Bohr’s “approximation theorem”. We refer to [9, §1.5]
for its proof and for a detailed description of the contributions of S. Bochner
and H. Weyl.

Theorem B.4. (APg, || ||r) identifies with the completion of the normed ring

(R[cos(%x),sin(?x) | e RX} Al ||R).
Similarly for (APc, || |Ir)-

We propose p-adic analogs of those Banach algebras and of the latter theo-
rem.
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B.5. Dirichlet series. Let C{x} be the Fréchet C-algebra of entire functions
C — C, equipped with the topology of uniform convergence on compact sub-
sets of C. The rotation z — iz transforms trigonometric series into series of
exponentials and Bohr’s definition naturally propagates into the following.

Definition B.6 ([9, §III.2, Thm. 1°]). For any interval (a,b) C R, an analytic
function f on the strip (a,b) x iR C C is almost periodic holomorphic on (a,b)
if, for any £ > 0, there exists . > 0 such that for any interval I C R of length
£, there exists 7 € I such that

|f(x+iT) — f(x)] <e forall z € (a,b) xiR.

We let APHc((a,b)) denote the C-algebra of almost periodic holomorphic
functions on (a, b).

Notice that APHc((a,b)) is a closed subalgebra of the Fréchet algebra
O((a,b) x iR); the induced Fréchet algebra structure is called standard. We
may equip APHc((a,b)) with the finer Fréchet algebra structure of uniform
convergence on substrips (a’,b’) X iR, for a < o’ < b < b. We informally call
this topology the strip topology.

The following polynomial approximation theorem [9, §I11.3, Thm. 3°] holds.

Theorem B.7. APHc((a,b)) is the Fréchet completion of the C-polynomial
algebra generated by the restrictions to (a,b) x iR of all continuous characters
of R, namely, by the maps

ex: (a,b) x iR — C, 2z e,

for X € R*, equipped with the strip topology.
The assignment (a, b) — APHc((a, b)) uniquely extends to a sheaf of Fréchet
C-algebras on R.

Definition B.8.

(1) We denote by APH, ¢ the stalk of the sheaf APHc at 0 equipped with
the locally convex inductive limit topology of the system of Fréchet
algebras APHc((—¢,¢)) as e — 0.

(2) We denote by APH¢ C C{z} the Fréchet algebra of global sections of
APHc equipped with the strip topology.

Notice that we have a natural injective morphism, induced by restriction of
functions and the properties of the inductive limit

APH(C — .A,P,Hog.

The next corollary follows from the combined theorems of approximation The-
orem B.4 and Theorem B.7.

Corollary B.9. (AP, || ||r) identifies with the completion of the normed ring
(APHO,(Cv || ||R)
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Remark B.10. Sections of the sheaf APHc on open subsets of R may be
viewed as generalized Dirichlet series [9, §II1.3]. A p-adic analog on Q, of the
sheaf APHc of Dirichlet series on R, might be useful in the theory of p-adic
L-functions.

APPENDIX C. NUMERICAL CALCULATIONS BY M. CANDILERA

The following calculations were performed with Mathematica®. We com-
puted the first coefficients of the series U,(T) = >>° | b,T", for p = 2, up to

the term of degree 2°, and for p = 3, up to degree 3*. We also evaluated the a
few coefficients of U5(T') and ¥7(T'). We give here tables of the p-adic orders
of the coeflicients b,, for p = 2, 3. For those values of p, we also draw the graph
of the function n — v,(b,) and compare it with the Newton polygon of ¥,
(flipped around the y-axis). We confirm experimentally the calculation of the
corresponding valuation polygons.

C.1. Very first coefficients. For p = 2, we have

Uo(T) =T —2-T?+2*. 73 —11-25.T* 7. 211 . 7%
—7-37-2"2.7%43.751.2' .77 — 301627 - 2'7 . T®
+ 308621 - 226 . 79 4 227 . 10 o(T),

for a unit w(T) € Z [[T]]*.
For p = 3,

Uy(T)=T-3>-T3+3".7°-22.7.3". 7" +2.7.13-113- 3% . 1°
—5-89-1249-3%2. 7 4+ 5.117-217667- 3% . 713 ...

For p =5,

\115(T):T—54.T5+513.T9_53,59_521_T13
+3-11-97-1123-1699 - 527 - T7 4+ 537 . 7?1 . (7)),

for a unit w(T") € Zs [[T]*.
For p =7,

U (T)=T 777+ 79713 —2.31.37.359- 730 . T 4 743 7% .(T),
for a unit w(T) € Zp[[T]*.
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C.2. First 24 coefficients of ¥5(t) and 2-adic order of the 32 first.

1204

9(H

60

304

FI1GURE 5. Newton and valuation polygons of Ws.

Ua(t) =23 51 bnt"
b1 | O by | 26 || by7 | 61 || bos | 101
bo 1 big | 27 || big | 62 || bog | 102
b3 | 4 || bi1 | 33 || big | 70 || bay | 110
by | 5 || bi2 | 34 || bog | 71 || bog | 111
Bs |11 || rs [ 42 || Bay | 81 | bag | 121
b | 12 || big | 43 || bao | 82 || b3p | 122
by | 16 || bis | 48 || bas | 89 || b3y | 128
bg | 17 || big | 49 || bog | 90 || b3o | 129

1, by=-2, by=16=2% by =-352=—25.11,

14336 = 21 .7, bg = —1060864 = —2'2 . 7. 37,

— 147652608 = 2'6 . 3. 751,

—39534854144 = —21'7 . 301627,

20711204716544 = 225 . 308621,

—21454855889485824 = —227 . 32 .13 . 701 - 1949,

44195700516541431808 = 233 . 5145056699,

—181554407879323198423040 = —23% . 5. 41 . 2273 - 22679500,
1489469015852141109009448960 = 2*2 . 5. 67733208918623,
—24421319844213105128638664146944 = —2*3 . 32 . 8179 - 37716952983613,

800530746908074643997623203521363968 = 248 . 31 . 71 . 1619 - 826201 - 966018887,
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big = —52473187457503996327647036404796036743168
= —2%9.31.397. 13687 - 2882489 - 191972726039,
b7 = 6878395240848057051122842718175351390427152384
261 . 3.47.59-919 - 24709 - 15791216459521333,

b1s = —1803212578568825704559863338710346864852507172012032
=252.3% . 19.97 . 173 - 1665967 - 581220517 - 140723269997,
b1g = 945424354393817092018179744741353462710753588534117924864

=270 .72 . 23. 15973 - 44485316159805664956515547941,
bao = —991360632780906301560343330625129510790528483073480047449866240

=271 . 5.167 - 14503 - 15445577653440901 - 2244675152281633901,
ba1 = 2079045830009718214618472297232655379089817022368004517660824096997376

=281 . 109 - 23549 - 167442376921 - 2000645152343730624200879183,

bgo = —8720175189463740580963423057535032711261236371520206719551905031269050744832

=282 .47 . 1867 - 105323 - 2119591 - 80618233393589 - 1141865166972250409671,

ba3 = 73150235997673008411264495083486904164758556563477195586370441676376428384144588800

=289 .33 .52. 175082340917111384848376265817809832605816887352831773,

by = —1227258187586069935509530355473988020883482157853428276444146736521211077001846045664083968

=290 . 54617 - 76121647308197 - 238451637287968840726339672350427699951944293.

-5 —4

C.3. 3-adic values of the first 81 coefficients of ¥3(T).
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bs | 2 || bas | B8 || bas | 135 || bes | 213
b5 7 b25 64 b45 141 b65 223
b7 | 11 ]| ba7r | 68 || ba7 | 151 || be7 | 231
bg | 14 || bag | 79 || bag | 159 || bgg | 238
bi1 | 22 || bsy | 87 || bs1 | 166 || by | 247
biz | 28 || bgz | 94 || bss | 175 || bys | 255
bis | 33 || bss | 103 || bss | 183 || bys | 262
bi7 | 40 || bs7 | 111 || bsy | 190 || byy | 271
big | 46 || bgg | 118 || bsg | 199 || byg | 279
bay | 51 || ba1 | 127 || be1 | 207 || bgy | 284
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