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A B S T R A C T   

Extreme precipitation events inflict detrimental socio-economic impacts in the Eastern Mediterranean. These are 
mainly associated with Mediterranean cyclones or the ‘Wet’ Red Sea Trough (WRST). The region’s weather 
forecasters consider the second challenging to forecast, even just a few days in advance. Here, we study the 
dynamic and thermodynamic factors influencing the intrinsic predictability of WRST events. With this aim, we 
combine insights from traditional atmospheric analysis techniques, Lagrangian air-parcel backward trajectories, 
and dynamical systems theory. The latter describes atmospheric states via their local dimension (d) and inverse 
persistence (θ), which inform us of the intrinsic predictability of the atmosphere in phase space. We compare 
WRST events of low (upper decile of d and θ) with high (lower decile of d and θ) predictability. We argue that 
low-predictability events display a significantly different atmospheric pattern. Moreover, the low-predictability 
events show significantly higher daily precipitation rates, more extensive spatial spread, and greater precipita-
tion variability among events than more predictable ones. On average, low predictability events are initiated by 
two distinct moisture sources with different water vapor content. We conclude that the dynamical systems 
framework may become a valuable tool to improve the forecast of extreme precipitation events associated with 
the WRST by providing a priori information on their intrinsic predictability. We foresee successfully imple-
menting such a framework for other extreme weather events and regions.   

1. Introduction 

Extreme precipitation events are among the most hazardous natural 
hazards, causing harmful socio-economic and ecologic impacts in the 
Eastern Mediterranean (Hochman et al., 2022b). These extremes are 
considered difficult to predict; thus, they have been chosen as a grand 
challenge of the World Climate Research Program (Alexander et al., 
2015). 

Eastern Mediterranean extreme precipitation events are mainly 
connected with Mediterranean cyclones or Red Sea Troughs (Dayan 
et al., 2015). The Red Sea Trough is a northern branch of the Sudan 
monsoon low (Ashbel, 1938; El Fandy, 1948). As soon as easterly winds 
flow over the mountains surrounding the Red Sea, a trough develops at 
their lee side (Krichak et al., 1997). The Red Sea Trough often prompts 
dry and warm atmospheric conditions due to the easterly to 

southeasterly flow from arid land regions at the surface (Tsvieli and 
Zangvil, 2005). However, when the surface trough axis extends toward 
the Mediterranean and is reinforced by an upper-level trough, it may 
prompt extreme precipitation and thunderstorms. Such situations are 
regularly termed ‘Wet’ Red Sea Trough (WRST; Hochman et al., 2021b; 
Tsvieli and Zangvil, 2005; Ziv et al., 2022b) and often result in flash 
floods, mainly in the south southeastern parts of the region (Fig. 1; 
Tsvieli and Zangvil, 2005; De Vries et al., 2013; Krichak et al., 2012; 
Berkovic et al., 2021). Notably, weather forecasters in the region find 
these events very challenging to predict (Hochman et al., 2019). In 
particular, numerical weather prediction model forecasts of case studies 
show over and underestimations related to the accurate representation 
of topography and moisture sources in the model (Athar and Sara, 2014; 
Al-Mutairi et al., 2019). 

The WRST has been generally given less attention compared to 

* Corresponding author. 
E-mail address: Assaf.Hochman@mail.huji.ac.il (A. Hochman).  

Contents lists available at ScienceDirect 

Weather and Climate Extremes 

journal homepage: www.elsevier.com/locate/wace 

https://doi.org/10.1016/j.wace.2023.100564 
Received 28 December 2022; Received in revised form 15 April 2023; Accepted 19 April 2023   

mailto:Assaf.Hochman@mail.huji.ac.il
www.sciencedirect.com/science/journal/22120947
https://www.elsevier.com/locate/wace
https://doi.org/10.1016/j.wace.2023.100564
https://doi.org/10.1016/j.wace.2023.100564
https://doi.org/10.1016/j.wace.2023.100564
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Weather and Climate Extremes 40 (2023) 100564

2

Mediterranean cyclones. Nevertheless, studies have concentrated on 
identifying and characterizing it in gridded climate data (Ziv et al., 
2022b; Tsvieli and Zangvil, 2005; Saaroni et al., 2019; Krichak et al., 
2012; Alpert et al., 2004; Awad and Almazroui, 2016). However, recent 
attempts to extract an atmospheric proxy identifying a WRST and its 
precipitation intensity did not yield significant separation between dry 
and wet Red Sea Trough events (Ziv et al., 2022b). Here, we identify a 
Red Sea Trough according to the semi-objective synoptic classification 
(Alpert et al., 2004). The classification has been recently upgraded to 
include upper-level variables (Ludwig and Hochman, 2022). This cate-
gorization has been proven useful in reflecting the subtle characteristics 
of Eastern Mediterranean weather types, including the Red Sea Trough 
(Hochman et al., 2018; Hochman et al., 2021b). We classify the ‘Wet’ 
configuration of the Red Sea Trough by leveraging data from the Climate 
Hazards Group Infrared Precipitation with Stations dataset over the 
Eastern Mediterranean domain (CHIRPS version 2; Fig. 1; Funk et al., 
2015). 

The ability to predict extreme weather has traditionally relied solely 
on numerical weather prediction models. Numerical Weather Prediction 
(NWP) improved incredibly in recent decades due to better data 
assimilation, higher resolution, and thus extended forecast horizons 
(Alley et al., 2019). However, implementing NWP models in a purely 
deterministic manner is subject to considerable limitations due to the 
chaotic nature of atmospheric dynamics (Lorenz, 1963). Hence, the 
leading modeling revolution in the last two decades is 
ensemble-forecasting systems that use a set of perturbed initial condi-
tions to produce a range of probable future atmospheric states (Palmer, 
2000). Nevertheless, there are still considerable limitations to NWP. 
Some of these limitations, particularly extensive computational costs, 
can be mitigated by leveraging recent progress in dynamical systems 
theory. These developments allow us to quantify the intrinsic predict-
ability of atmospheric states in phase space. The intrinsic predictability 
is innately linked to the local dimension (d), which estimates the 
possible number of options the atmospheric state can evolve to and from 
and the inverse of the persistence time (θ; Fig. 2; Faranda et al., 2017). 
Indeed, a highly persistent (low θ), low-dimensional (low d) state shall 
be more predictable than a low-persistence (high θ), high-dimensional 

(high d) one (Messori et al., 2017). The dynamical systems framework 
has been recently implemented in a few studies focusing on atmospheric 
extremes (e.g., Hochman et al., 2022; Hochman et al., 2021a,b,c; 
Rodrigues et al., 2018; Wedler et al., 2023). 

The intrinsic predictability of precipitation extremes may be strongly 
influenced by dynamic and thermo-dynamic factors (Dayan et al., 
2015). A framework that permits a quantitative understanding of the 
processes leading to precipitation extremes is based on tracking the air 
parcel characteristics and source. The Lagrangian viewpoint offers 
complementary insights into the underlying dynamics and predictability 
of weather extremes (Hochman et al., 2021c). Air-mass trajectories can 
indicate the source region and any coherent evolution of the thermo-
dynamical characteristics of the air parcels during the time prior to 
precipitation (Sodemann et al., 2008). In the Eastern Mediterranean, 
air-mass trajectories have served to locate the moisture source of pre-
cipitation and identify cyclone-related air streams in multiple case 
studies of heavy precipitation and strong winds (Raveh-Rubin and 
Wernli, 2016). In addition, backward trajectories were used to quantify 
the relative contribution of diabatic and adiabatic processes for warm 
and dry extremes (Berkovic and Raveh-Rubin, 2022). A recent system-
atic investigation of the air parcels arriving in Israel during WRSTs 
revealed that even in the events considered to have tropical character-
istics, most air masses did not arrive from tropical latitudes (Ziv et al., 
2022b). 

This study aims to identify the main factors influencing the intrinsic 
predictability of extreme precipitation events associated with the WRST 
using the abovementioned approaches. We organize the manuscript as 
follows: Section 2 lays out the methodology used, including the data 
(Sect. 2.1), classification of extreme precipitation events (Sect. 2.2), 
dynamical systems analysis (Sect. 2.3), and air parcel trajectories (Sect. 
2.4). The results section provides insight into the time series dynamics of 
extreme precipitation events, and how it is related to the atmospheric 
configuration (Sect. 3.1), and then it presents traditional atmospheric 
analysis (Sect. 3.2) and a Lagrangian view of low vs. high predictability 
events selected case studies (Sect. 3.3). Finally, Section 4 offers summary 
and concluding remarks. 

Fig. 1. Example of a WRST extreme precipitation event with high intrinsic 
predictability (low d & θ). Precipitation (mm d− 1) over Israel for January 9th 
1992, in color shading. The black contours represent mean sea level pressure 
(hPa). (For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.) 

Fig. 2. An intuitive schematic of d and θ computed for tentative atmospheric 
states. The local dimension (d) is related to the number of possible patterns 
preceding and following the state being analyzed at day t (here, d = 2), and θ is 
the inverse of the persistence. When the Red Sea Trough persists for three days 
(red ellipse), then θ = 1/3. If the synoptic configuration changes every time step 
(blue path), then θ = 1. Inspired by a figure from Hochman et al. (2022a) and 
Rodrigues et al. (2018). (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.) 
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2. Data and methods 

2.1. Data 

We based the Red Sea Trough classification, the air-parcel backward 
tracking, and the dynamical systems analysis on the fifth generation of 
the European Center for Medium-Range Weather Forecasting Reanalysis 
data (ERA5; Hersbach et al., 2020). We bilinear interpolated the atmo-
spheric fields to a 0.5◦ × 0.5◦ horizontal grid spacing. We used daily 
(precipitation extremes classification and dynamical systems analysis) 
and 3-hourly (air-parcel backward tracking) temporal resolutions from 
1979 to 2019. 

Due to their grid spacing, reanalysis products cannot explicitly 
resolve convective precipitation processes. Alternative sources are thus 
recommended for the case of extreme precipitation (Alexander et al., 
2020). We used precipitation estimates from the Climate Hazards Group 
InfraRed Precipitation with Station version 2 (CHIRPS; Funk et al., 
2015). CHIRPS is created using infrared precipitation estimates from 
geostationary satellites merged with a rain gauge climatology proced-
ure. It includes global land-only daily precipitation estimates at 0.05◦ ×

0.05◦ horizontal grid spacing from 1981 to 2019. Although the product 
is aggregated to daily scales, the high spatial and temporal resolutions of 
the infrared sensors onboard geostationary satellites (Kidd and Lev-
izzani, 2011) allow capturing the short-living and localized convective 
systems typical of the WRST (Hochman et al., 2022; Armon et al., 2019). 
CHIRPS is considered robust and is primarily used in climatological 
studies over regions with comparable precipitation climatology and 
characteristics as the Eastern Mediterranean (Dinku et al., 2018; Satgé 
et al., 2020; Marra et al., 2022). 

2.2. Classification of extreme precipitation events associated with the 
WRST 

First, we classified the daily weather types over the Eastern Medi-
terranean (Fig. 1; 30–40◦E, 27.5–37.5◦N) using the upgraded semi- 
objective synoptic classification algorithm (Alpert et al., 2004; Ludwig 
and Hochman, 2022). Specifically, the classification uses the days in 
1985 and the winter of 1991–1992, classified into the regional weather 
types by expert forecasters, as ‘ground truth’ (426 days). Then, it finds 
the minimum Euclidean distance between a day of interest and the 
ground truth. The day with the minimum distance is labeled a specific 
weather type. This classification represents the regional weather con-
ditions well (Hochman et al., 2018) and is based on daily mean surface 
air temperature at 2-m (T2m), Sea-Level-Pressure (SLP), and 500 hPa 
geopotential height (Z500) fields from the ERA5 reanalysis. We selected 
only those days that are categorized as a Red Sea Trough. 

In detail, the original classification used only surface variables, 
including U, V, T, and Z at 1000 hPa (Alpert et al., 2004). Ludwig and 
Hochman (2022) used the same classification procedure. Still, instead of 
the abovementioned variables, the authors used T2m, SLP, and Z500, 
which are also the variables we computed the dynamical systems met-
rics on (see Sect. 2.3). Moreover, the abovementioned variables include 
sea-land contrast (T2m), synoptic (SLP), and large-scale (Z500) features. 
We evaluated our classification (Ludwig and Hochman, 2022) ability to 
identify the Red Sea Trough. To do so, we randomly selected 100 days 
classified as a Red Sea Trough. Then, we tested if these days were really a 
Red Sea Trough by inspecting the synoptic maps of these 100 days ac-
cording to the evaluation suggested by Saaroni et al. (2019). We find 
that using T2m, SLP, and Z500 in the classification procedure improves 
the identification of a Red Sea Trough from 62% in the original classi-
fication (62 real Red Sea Trough days out of 100) to 87% in our classi-
fication. We further note that transitioning from NCEP/NCAR 
reanalysis, used in the original classification and Ziv et al. (2022a, b), to 
ERA5 reanalysis but with the original variables (U, V, T, and Z at 1000 
hPa) improved the identification of a Red Sea Trough from 62% to 72%. 

The classification of precipitation events into extreme and light 

events was based on the CHIRPS data set. It focuses on land areas within 
the region used to classify the Red Sea Trough days (Fig. 1). We removed 
a few grid points in the Saudi desert due to apparent noise in the CHIRPS 
estimates. In total, we used ~27500 grid points. We then defined WRST 
events at the regional scale as ≥ 1 consecutive days classified as a Red 
Sea Trough, in which at least one grid point is wet, i.e., precipitation ≥
0.1 mm. At each grid point, we retained the maximum daily precipita-
tion during each event (in case the event lasts more than one day) to 
obtain a list of WRST daily maxima. Those events with at least 15 grid 
points above the local 98th percentile of the WRST events were defined 
as extreme precipitation events. Similarly, we defined events with less 
than 100 grid points exceeding the local 30th percentile of the WRST 
events as light precipitation events. Thus, we retained 289 (269) 
extreme (light) precipitation events, which are each ~20% of all WRST 
events. We chose these quantile thresholds to divide the dataset into 
equally populated extreme and light events groups. We note here that 
the rainfall study area is based on the synoptic classification domain 
(Fig. 1). Nevertheless, before starting our analyses, we tested three 
additional possible domains: Israel, arid (<400 mm y− 1), and non-arid 
climates (>400 mm y− 1). The results presented in this study are rather 
insensitive to the domain used. This is a non-trivial finding. The reason 
for this may relate to our focus on extreme precipitation events with a 
minimum spatial extent and structure. Practically, we seek the strongest 
events that impact large areas. 

2.3. Dynamical systems metrics for estimating the intrinsic predictability 

To characterize the intrinsic predictability of WRST events, we 
depend on a method that merges Poincaré recurrences with extreme 
value theory (Lucarini et al., 2012; Lucarini et al., 2016). This point of 
view permits the computation of instantaneous properties of chaotic 
dynamical systems. It is, therefore, very well suited for studying the 
atmosphere’s time series dynamics (Faranda et al., 2017). We took the 
time series of two-dimensional atmospheric maps as a long trajectory in 
phase space. We focused on two metrics. The local dimension (d) is a 
proxy for the number of active degrees of freedom the trajectory can 
discover locally. The inverse of persistence (θ) is linked to the more 
traditional notion of persistence (Hochman et al., 2019). Both metrics 
are strongly related to the intrinsic predictability of the atmosphere’s 
evolution, such that a high d and θ correspond to a low intrinsically 
predictable atmospheric state and vice versa (Messori et al., 2017). We 
computed the inverse of the persistence time of an atmospheric state of 
interest using the extremal index estimator (Süveges, 2007). The 
computation of d and θ comes from the understanding that the cumu-
lative probability distribution of the system recurrences converges to the 
Generalized Pareto Distribution exponential member that is applicable 
for modeling the tails of physical distributions (Faranda et al., 2017). We 
point the reader to additional details regarding the derivation of the 
metrics (Faranda et al., 2019; Hochman et al., 2022), and Fig. 2 for an 
intuitive schematic describing the dynamical systems metrics. 

Previous studies have shown that d and θ exhibit a seasonal cycle 
(Faranda et al., 2017; Rodrigues et al., 2018; Hochman et al., 2022c). 
Therefore, we removed the seasonal cycle before comparing different 
WRST events. We must deseasonalize the metrics to study the anomalies 
as we compare different events during different parts of the year. Note 
that the selected events do not have a preference for a specific time of 
year. We estimated the seasonal cycle by averaging the metrics over all 
years for a specific time step, repeating this for all time steps within a 
year, and eventually smoothing the series via a 30-day moving average 
(Hochman, 2021a,c,2022c; Hochman et al., 2022). 

The dynamical systems framework has been applied to various at-
mospheric datasets (e.g., De Luca et al., 2020; Pons et al., 2020; Brunetti 
et al., 2019). Here, we computed d and θ for daily SLP, Z500, and T2m 
fields from the ERA5 reanalysis over the Eastern Mediterranean (Fig. 1), 
consistent with the variables used for the synoptic classification (see 
Sect. 2.2). We defined low and high intrinsically predictable days as the 
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upper and lower deciles of d and θ anomalies, respectively. We chose this 
threshold as a compromise between keeping the extreme events and 
gathering a sizeable number of cases for robustness. 

We produced mean composite maps to understand the differences 
between subgroups of WRST events and their predictability. We tested 
for significant differences at the 5% level using a two-sided student’s T- 
test (for SLP, Z500, T2m, and T850 maps) and a bootstrap sampling test 
with 104 realizations (for precipitation). 

2.4. Air-parcel trajectories 

We computed 5-day backward air-parcel trajectories using the 
Lagrangian analysis tool (LAGRANTO 2.0; Sprenger and Wernli, 2015; 
Wernli and Davies, 1997). LAGRANTO uses the entire 3-D wind field 
from ERA5 to calculate the air-mass trajectory. Trajectories are 

initialized at 00 UTC from fixed points in the analysis domain (Fig. 1; 
30–40◦E, 27.5–37.5◦N) every 50 hPa between 950 and 800 hPa on the 
first day of the event. We filtered the classified WRST events trajectories 
to use the ones originating from grid points with more than 0.5 mm of 
precipitation. We obtained insights into the characteristics of the air 
parcels by tracking the specific humidity along the trajectories. Changes 
in the specific humidity indicate moisture uptake due to turbulent 
fluxes, evaporative processes, or convection in or above the boundary 
layer (Sodemann et al., 2008). 

3. Results 

3.1. Dynamics of WRST extreme vs. light precipitation events 

We first analyzed the differences between extreme and light 

Fig. 3. Comparison between extreme (left panels – 289 events) vs. light (middle panels – 269 events) precipitation events associated with the WRST in 1979–2019. 
Average daily mean Sea Level Pressure (SLP in hPa; a-c), 500 hPa geopotential height (Z500 in m; d-f), 2-m temperature (T2m in ◦C; g-i), and 850 hPa temperature 
(T850 in ◦C; j – l). The difference between extreme and light precipitation events is displayed (right panels). Using a two-sided student T-test, black crosses denote 
significant differences at the 5% level. 
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precipitation events (see Sect. 2.2 for the definition). From an atmo-
spheric dynamics point of view, there are a few apparent differences 
between the two subgroups (Fig. 3). In the case of extreme precipitation, 
Western Asia is dominated by an extensive high, and the Red Sea Trough 
is more distinct (Fig. 3 a-c). The Z500 patterns of extreme precipitation 
events display lower average geopotential heights than light precipita-
tion events, particularly pronounced over the Eastern part of the Med-
iterranean Sea, enhancing the large-scale forcing of air uplift in the 
Eastern Mediterranean (Fig. 3 d-f). Finally, the temperatures at the 
surface and at the 850 hPa level in the extreme precipitation events 
display significantly lower temperatures than the light precipitation 
ones (Fig. 3 g-l). 

Next, we focused on the extreme precipitation events and separated 
them into subgroups, i.e., upper and lower deciles of d and θ. As such, we 
studied the atmospheric factors influencing the anomalies of d and θ and 
consequently related this to the differences in the intrinsic predictability 
of these events. The upper and lower deciles of the d and θ metrics 
exhibit substantial atmospheric differences (Figs. 4 and 5, respectively). 
The upper decile of d events has lower SLP values, more pronounced 
over Cyprus and Jordan (Fig. 4 a-c). The high and low θ events exhibit 
similar SLP differences compared to those between the subgroups of 
d (Fig. 5 a-c). We, therefore, suggest that the airflow in the low pre-
dictability events is influenced by the Mediterranean Sea in addition to 
more southerly locations (see also Sect. 3.2). The main difference be-
tween the Z500 patterns of the high and low d subgroups is the orien-
tation of the trough axis (Fig. 4 d-f). Indeed, the trough axis is oriented in 
the northeast-southwest direction in the high d events (Fig. 4 d), 
whereas the trough direction is northwest-southeast in the low d events 
(Fig. 4 e). This implies colder air transport from northerly locations in 

the high d events compared to the low d events on the rear side of the 
trough. A somewhat different picture arise from comparing high and low 
θ events (Fig. 5 d-f). The high θ (low persistence) events display lower 
Z500 values (Fig. 5 d). However, the low θ events display a pronounced 
trough tongue reaching the Mediterranean Sea (Fig. 5 e). Finally, the 
temperature at the surface displays lower gradients in the west-east 
direction that mainly relate to land-sea temperature difference, with 
lower temperatures over the Mediterranean, in both the high d and θ 
events (Fig. 4 g-i and 5 g-i, respectively). The differences in temperature 
may relate to seasonal differences; however, the individual events were 
found to be distributed evenly during various seasons, for both high and 
low d and θ subgroups. 

To summarize, there are substantial differences between high and 
low d and θ extreme precipitation events in terms of the atmospheric 
flow influencing these metrics and, consequently, the intrinsic predict-
ability of WRST events. The near-surface patterns influencing d and θ are 
very similar, considering the SLP and T2m variables. However, for the 
upper-level Z500 variable, the factors influencing d and θ are somewhat 
different. We note that each composite in Figs. 4 and 5 is composed of 
different members, as the measure of d and θ depends on the variable 
used for its definition. We next examined their relationships. 

3.2. Dynamics of low vs. high predictability WRST extreme precipitation 
events 

First, we selected high and low intrinsically predictable extreme 
precipitation events where both d and θ are at the distribution’s upper 
(low predictability) or lower (high predictability) decile. We centered 
our definition on the dynamical systems metrics computed for the T2m 

Fig. 4. Same as Fig. 3 but comparing high (left panels) vs. low (middle panels) local dimension (d) extreme precipitation events. Note that d is calculated separately 
for each variable; thus, the composited days do not necessarily overlap. 
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variable since it demonstrates a significantly higher correlation (0.63) 
between d and θ compared to SLP (0.23) and Z500 (0). We identified 14 

low and 16 high-predictability events (Fig. 6). 
Next, we analyzed the differences between the abovementioned low 

and high-predictability events (Fig. 7). Low predictability events are 
accompanied by an additional low-pressure minimum over the Eastern 
Mediterranean and the SLP minimum over the Red Sea, which is deeper 
as well, compared to the overall higher pressure to the north of high- 
predictability events. The temperature at the surface and 850 hPa ex-
hibits lower temperature gradients in the west-east direction, with 
higher temperatures over the Mediterranean Sea in the low- 
predictability events (Fig. 7 g-l). Finally, the upper-level trough at 
Z500 in the low-predictability events is more profound, and the airflow 
is southwesterly compared to northwesterly in the high-predictability 
events (Fig. 7 d-f). 

Fig. 8 displays the differences between low and high-predictability 
extreme precipitation events in their maximum daily precipitation pat-
terns. Indeed, the low-predictability events exhibit higher daily precip-
itation values and more extensive spatial extension (Fig. 8 a-c). Yet, 
southern and eastern parts of the domain exhibit lower precipitation 
rates in low predictability events. However, an area comparison can be 
misleading when comparing events typified by highly localized, 
convective precipitation. In addition, the standard deviation in 
maximum precipitation between the events is larger in the low- 
predictability events (Fig. 8 d-f). These findings advise that the 
dynamical systems metrics are linked with the maximum surface pre-
cipitation and its spatial patterns, which may prompt using these metrics 
to improve the predictability of extreme precipitation events. 

Fig. 5. Same as Fig. 3 but comparing high (left panels) vs. low (middle panels) inverse persistence (θ) of extreme precipitation events.  

Fig. 6. Scatter plot of local dimension (d) vs. inverse persistence (θ) anomalies 
computed for extreme precipitation events associated with the WRST. The 
metrics are computed on the 2-m temperature (T2m) variable. Selected 
anomalous low predictability (high d & θ – 14 events) events are in green, and 
high predictability (low d & θ – 16 events) are in purple. Figs. 7–10 are based on 
the selected events. (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.) 
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3.3. Air-parcel history of low vs. high predictability WRST extreme 
precipitation events 

The backward trajectories of air parcels preceding low vs. high 
predictability events display considerable differences (Figs. 9 and 10). 
The analysis illustrates that, on average, the flow preceding a high- 
predictability event has a roughly zonal orientation. Indeed, most air 
parcels originate from relatively localized regions in the Eastern part of 
the Mediterranean Sea (Fig. 9 a, c; in purple). The air parcels in the low- 
predictability events originate from more distant areas both in meridi-
onal and zonal directions (Fig. 9 a, c; in green). The initial pressure level 
of the air parcels shows a slight widening of the distribution in the low- 
predictability events, indicating that more air parcels in these cases 
originate closer to the surface compared to the mid-troposphere in the 
more predictable events (Fig. 9 b). 

An implication of the parcel height distribution shift to lower 
tropospheric levels is the moisture content of the air parcels reaching the 
Eastern Mediterranean. Examination of the humidity evolution leading 
to low vs. high predictability events shows that at ≥ 96 h prior to the 
event, there are relatively small differences between the distribution of 

specific humidity content of the air masses, with higher values for the 
low-predictability events (Fig. 10 a). However, closer to the event’s 
time, only the low predictability humidity distribution evolves to a 
bimodal distribution, with two peaks in the high (~5 g/kg) and the 
lower (~1 g/kg) specific humidity compared to high-predictability 
events (Fig. 10 b, c). The interaction between air parcels of such 
different properties could lead to rapid precipitation development and, 
thus, a decrease in the overall predictability of the event. This process is 
particularly evident in the last 48 h before the event (Fig. 10 c), sug-
gesting that the low predictability of such events results from short-term 
contributions before the onset of precipitation. A merging of relatively 
high with low humidity air parcels, as suggested by the greater merid-
ional extent of the air-mass origins of low-predictability events, is pro-
posed here as a unique factor degrading the predictability of WRST 
extreme precipitation events. 

4. Summary and conclusions 

Predicting extreme precipitation events is critical for increasing 
preparedness and thus reducing their potential impact. This is 

Fig. 7. Same as Fig. 3 but comparing high (left panels) vs. low (middle panels) predictability of extreme precipitation events associated with the WRST. We define the 
low and high predictability events in Fig. 6. 
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particularly challenging in an epoch of fast climate change, as the fre-
quency of the synoptic conditions characterizing extreme weather in a 
region may change dramatically (Hochman et al., 2022b; David-Novak 
et al., 2004; Hochman et al., 2018). While the community has given 
most of the attention to Mediterranean cyclones, the WRST also has the 
potential for extensive damage. It may bring torrential rains, thunder-
storms, debris flows, and flooding (De Vries et al., 2013) and is 
considered difficult to forecast accurately (Gasch et al., 2017). Despite 
this, the predictability of WRST has received less consideration in the 
literature so far. 

Here, we combine dynamical systems theory, traditional atmo-
spheric analysis techniques, and Lagrangian backward air parcel tra-
jectories to identify the main factors influencing the intrinsic 
predictability of such events. We define extreme precipitation events 
associated with the WRST using an upgraded synoptic classification al-
gorithm (Alpert et al., 2004; Ludwig and Hochman, 2022) using ERA5 
reanalysis variables with high-resolution daily precipitation data from 
the CHIRPS version 2 data set. 

Our main findings are as follows:  

i. Extreme precipitation events associated with the WRST display 
significant atmospheric pattern differences compared to light 
precipitation events associated with the same system.  

ii. Low-predictability events display a different atmospheric pattern 
compared to high-predictability ones. Low-predictability events are 
associated with lower SLP values over Cyprus and Jordan (Ziv 
et al., 2022a), and a different orientation/depth of the 
upper-level trough. Indeed, the low predictability of extreme 
precipitation events in the Western Mediterranean is also linked 
with the location and intensity of the cut-off low (Khodayar et al., 
2022).  

iii. We provide evidence that the dynamical systems metrics relate to 
maximum precipitation amounts, spatial spread, and precipitation 
variability. These metrics may become a helpful tool to improve 

our ability to forecast extreme precipitation events associated 
with the WRST.  

iv. The backward air-parcel trajectory analysis provides novel insights 
into the origin and moisture evolution that prompt low-predictability 
events. We argue that low-predictability events are generated 
when air parcels with very different moisture contents, particu-
larly in the last 48 h before the event time, converge over the 
region. This relatively short period before the event was also 
found to be critical when forecasting the region’s cold spells 
(Hochman et al., 2022c). 

As a caveat, we note that the dynamical systems framework still 
holds some interpretation challenges. For example, deciding on the at-
mospheric variable or vertical level that best characterizes a weather 
event’s intrinsic predictability is not always straightforward. Moreover, 
the quantitative results we present may depend on the choice of 
threshold to define extreme/light precipitation and low/high predict-
ability events. Finally, the Red Sea Trough has recently received atten-
tion regarding how it is classified in reanalysis data (Ziv et al., 2022b). 
We note that our framework of analyzing intrinsic predictability could 
be useful when analyzing other types of classification procedures in the 
future. 

We envisage that the innovative perspective and framework offered 
here, which leverages dynamical systems and atmospheric dynamics 
points of view for identifying the primary sources of extreme weather 
predictability, outlines a research direction with great potential. At the 
same time, care must be taken in interpretation. We trust, however, that 
it can be applied to other regions and weather extremes. 
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Fig. 9. (a) A spatial density plot (Kernel Density Estimation; KDE) of the tra-
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extreme precipitation WRST events. (b) Histograms of pressure level (hPa) for 
low (green) and high (purple) predictability of extreme precipitation WRST 
events. (c) Same as (b) but for latitude (◦N). We define the low and high pre-
dictability events in Fig. 6. Zero hours corresponds to the first day of an event at 
00 UTC. (For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.) Fig. 10. Histograms of specific humidity (g/kg) for high vs. low predictability 

extreme precipitation WRST events at (a) 96–144 h, (b) 48–96 h, and (c) 0–48 h 
before the events. We define the low and high predictability events in Fig. 6. 
Zero hours corresponds to the first day of an event at 00 UTC. 
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