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Abstract— This paper proposes a detailed and extensive
comparison of the Trust Region Policy Optimization and Deep
Q-Network with Normalized Advantage Functions with respect
to other state of the art algorithms, namely Deep Deterministic
Policy Gradient and Vanilla Policy Gradient. Comparisons
demonstrate that the former have better performances then the
latter when asking robotic arms to accomplish manipulation
tasks such as reaching a random target pose and pick &
placing an object. Both simulated and real-world experiments
are provided. Simulation lets us show the procedures that we
adopted to precisely estimate the algorithms hyper-parameters
and to correctly design good policies. Real-world experiments
let show that our polices, if correctly trained on simulation, can
be transferred and executed in a real environment with almost
no changes.

I. INTRODUCTION

Modern robots operating in real environments should
be able to cope with dynamic workspaces. They should
autonomously and flexibly adapt to new tasks, new motions,
environment changes, and disturbances. These requirements
generated novel challenges in the area of Robot Control. It is
no longer sufficient to implement control algorithms that are
robust to noise; they should also become independent from
the assigned task, the planned motion, and the accuracy of the
dynamic model of the system to be controlled. They should
easily adapt to different devices and working conditions by
overcoming the need of complex parameters identification
and/or system re-modeling.

Reinforcement Learning (RL) has been commonly adopted
for this purpose. However, the high number of degrees-
of-freedom of modern robots leads to large dimensional
state spaces, which are difficult to be learned: example
demonstrations must often be provided to initialize the policy
and mitigate safety concerns during training. Moreover, when
performing dimensionality reduction, not all the dimensions
can be fully modelled: an appropriate representation for the
policy or value function must be provided in order to achieve
training times that are practical for physical hardwares.

The conjunction of parallel computing and Embedded
Deep Neural Networks (DNN) extended RL to continuous
control applications. Parallel computing provides concur-
rency, particularly performing simultaneously multiple ac-
tions at the same time. DNN overcomes the need for infinite
memory for storing experiences: it approximates non-linear
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multidimensional functions by parametrizing agents (i.e.,
robots) experiences through the network’s finite weights. The
notion of Deep Reinforcement Learning (DRL) results.

This paper proposes a detailed and extensive compari-
son of the Trust Region Policy Optimization (TRPO) [1]
and Deep Q-Network with Normalized Advantage Func-
tions (DQN-NAF) [2] with respect to other state of the
art algorithms, namely Deep Deterministic Policy Gradient
(DDPG) [3] and Vanilla Policy Gradient (VPG) [4]. Both
simulated and real-world experiments are provided. They
let to finely describe the hyper-parameters selection and
tuning procedures as well as demonstrate the robustness
and adaptability of TRPO and DQN-NAF while performing
manipulation tasks such as reaching a random position target
and pick & placing an object. Such algorithms are able to
learn new manipulation policies from scratch, without user
demonstrations and without the need of a task-specific do-
main knowledge. Moreover, their model-freedom guarantees
good performances even in case of changes in the dynamic
and geometric models of the robot (e.g., link lengths, masses,
and inertia).

The rest of the paper is organized as follows. Section II
describes existing DRL algorithms. In Section III the essen-
tial notation is introduced together with the foundations of
RTPS and DQN-NAF. Section IV describes the simulated
experiments: a detailed description of the implemented sim-
ulated robot model is depicted, together with the tasks we
ask it to perform. Simulation lets us deduce and prove the
correctness of our system design as well as show the steps to
follow for a powerful hyper-parameters estimation. Section
V transfers our policies to a real setup. Finally, Section VI
contains conclusions and future works.

II. STATE OF THE ART

During the years, successful applications of NNs for
robotics systems have been implemented. Among others,
fuzzy neural networks and explanation-based neural net-
works have allowed robots to learn basic navigation tasks.
Multi-Layer Perceptrons (MLPs) were adopted to learn vari-
ous tasks of the RoboCup soccer challenge, e.g., defenses, in-
terception, kicking, dribbling and penalty shots. With respect
to Robot Control, neural oscillators with sensor feedback
have been used to learn rhythmic movements where open
and closed-loop information were combined, such as gaits
for a two legged robot. Focusing on model-free DRL, [5]
and [2] make a robotic arm learn to open a door from scratch
by using DQN-NAF. [6], instead, uses Hindsight experience
Replay (HER) to train several tasks by assigning sparse and
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binary rewards. Such tasks include the Pick&Place of an
object and the pushing of a cube. Recently, the scientific
community is achieving notable results by combining model-
free and model-based DRL with Guided Policy Search (GPS)
[7], [8], [9]. This combination guarantees good performances
on various real-world manipulation tasks requiring localiza-
tion, visual tracking and complex contact dynamics tasks.
[10], instead, manages to train from single view image
streams a neural network able to predict the probability
of successful grasps, learning thus a hand-eye coordination
for grasping. Interesting related works on visual DRL for
robotics are also [11], [12], [13], [14]. Data efficient DRL for
DPG-based dexterous manipulation has been further explored
in [15], which mainly focuses on stacking Lego blocks.

III. SYSTEM

A. Preliminaries and notation

Robotics Reinforcement Learning is a control problem in
which a robot acts in a stochastic environment by sequen-
tially choosing actions (e.g. torques to be sent to controllers)
over a sequence of time steps. The aim is that of maximizing
a cumulative reward. Such problem is commonly modeled
as a Markov Decision Process (MDP) that provides: a state
space S, an action space A, an initial state distribution with
density p(s1), a stationary transition dynamics distribution
with conditional density p(st+1|st, at) satisfying the Markov
property p(st+1|s1, a1, . . . , sT , aT ) for any trajectory τ :
{s1, a1 . . . , sT , aT } and a reward function r : S ×A → R .
The policy π (i.e., the robot controller) mapping S → A
is used to select actions in the MDP. The policy can be
stochastic π(a|s) : s 7→ Pr[a|s] or deterministic µ : s 7→ a =
µ(s). In DRL the policy is commonly parametrized as a DNN
and denoted by πθ, where θ is the general parameter storing
all the network’s weights and biases. A typical example is a
gaussian Multi-Layer Perceptron (MLP) net, which samples
the action to be taken from a gaussian distribution of actions
over states:

πθ(a|s) =
1√

(2π)na det Σθ(s)
exp

(
−1

2
||a− µθ(s)||2Σ−1

θ (s)

)
(1)

The return Rγt =
∑T
k=t γ

k−trk, with rt = r(st, at), is the
total discounted reward from time-step t onwards, where
γ ∈]0, 1[ is known as a discount factor that favors proximal
rewards instead of distant ones. In RL value functions
are defined as the expected total discounted reward: state-
value V π(s) = E[Rγ1 |s, π] and action-value Qπ(s, a) =
E[Rγ1 |s, a, π]. DRL methods usually approximate such value
functions with neural networks (critics) and fit them empiri-
cally on return samples with stochastic gradient descent on a
quadratic Temporal Difference (TD) loss. The agent’s goal is
to obtain a policy which maximises the return from the initial
state, denoted by the performance objective J(π) = E[Rγ1 |π].
To do so, classical RL methods pick the best action that max-
imize such value functions (acting greedily) while sometime
acting randomly to explore S . This fact is taken into account
in DRL with stochastic policies or with deterministic policies

with added noise. Since not every robotic setup may have
the possibility to inject noise into the controller for space
exploration, we explored both stochastic and deterministic
model-free DRL algorithms. In this paper, we implemented a
Trust Region Policy Optimization (TRPO) [1] as a stochastic
policy and a Deep Q-Network with Normalized Advantage
Functions (DQN-NAF) [2] as a deterministic one.

B. Algorithms

Policy gradient (PG) methods are a class of RL algorithms
that enjoy many good convergence properties and model-
free formulations. The main reason that led to PG methods
is that the greedy update of classical RL often leads to big
changes in the policy, while in a stable learning it is desirable
that both policy and value function evolve smoothly. Thus
it is preferable to take little steps in the parameter space
ensuring that the new policy will collect more reward than the
previous one. The direction of the update should be provided
by some policy gradient, which must be estimated as precise
as possible to secure stable learning. The general stochastic
gradient ascent update rule for PG methods is

θ ← θ + α∇θJ(θ) (2)

where α is the learning rate. A proper network optimizer with
adaptive learning rate such as Adam [16] is strongly advised
for such updates. Vanilla Policy Gradient (VPG), a variant
of REINFORCE algorithm [4], estimates the policy gradient
from Nτ policy rollouts with the log-likelyhood ratio trick
formula:

∇̂θJ(θ) =
1

Nτ

Nτ∑
i=1

T∑
t=1

∇θ log πθ(at,i|st,i)Rγt (3)

where Rγt is a single sample estimate of Qπθ (s, a), thus
typically with high variance. Many methods have been
proposed to reduce the PG variance, including another neural
net for estimating Qπ or V π (actor-critic methods), or the
use of importance sampling to reuse trajectories from older
policies. In this paper we use TRPO and DQN-NAF.

TRPO [1], [17] can be seen as ab advanced version of PG
(Algorithm 1). Three are the main improvements:

1) Rγt is replaced with lower variance advantages
Aπ(s, a) = Qπ(s, a) − V π(s), estimated with Gener-
alized Advantage Estimation algorithm (λ)[18] (similar
to actor-critic algorithm).

2) it uses the Natural Policy Gradient (NPG), making
the PG invariant to the parametrization θ used by
premultiplying it with the inverse of the policy Fisher
Info Matrix, namely the metric tensor for policy space.

Hk = Eτ∼πθk
[
∇θ log πθ(a|s)∇θ log πθ(a|s)>

] ∣∣∣
θ=θk

(4)
This kind of update takes into account also the distance
in KL-divergence terms between subsequent policies.
Bounding such divergence helps in stabilizing the learn-
ing. Finally, since for neural network policies with
tens of thousands of parameters NPG incurs prohibitive



Algorithm 1 Trust Region Policy Optimization (TRPO)

1: Randomly initialize policy parameters θ0

2: for k = 0, 1, 2, . . . , do
3: Collect set of Nτ trajectories under policy πθk
4: Estimate advantages with GAE(λ) and fit V πθk
5: Estimate policy gradient

ĝk =
1

Nτ

Nτ∑
i=1

T−1∑
t=0

γt∇θ log πθ(at,i|st,i)
∣∣
θ=θk

Â(st,i, at,i)

6: Estimate Ĥk = ∇2
θDKL(πθ||πθk)

∣∣∣
θ=θk

7: Compute Ĥ−1
k ĝk with CG algorithm

8: Compute policy step ∆k =
√

2δD
ĝ>k Ĥ

−1
k ĝk

Ĥ−1
k ĝk

9: for l = 1, 2, . . . , L do
10: Compute candidate update θc = θk + νl∆k

11: if Lπθk (πθc) ≥ 0 and DKL(πθc ||πθk) ≤ δD
then

12: Accept candidate θk+1 = θc

13: end if
14: end for
15: end for

computation cost by forming and inverting the empirical
FIM. Therefore is it usually retrieved approximately
using a Conjugate Gradient (CG) algorithm with a fixed
number of iterations.

3) A line search algorithm is performed to check if
there has been an improvement in the surrogate loss
Lπ(π′) = J(π′) − J(π) ≥ 0 and the old policy does
not differ too much from the updated one in distribution.

This algorithm proved very successful in contacts rich envi-
ronment and high-dimensional robots for locomotion tasks,
but its efficiency in common robotic tasks such as 3D end-
effector positioning and Pick&Place must be yet validated.

DQN-NAF was proposed by [5] and aims to extend Q-
learning to continuous spaces without relying on PG es-
timates. Therefore, in order to solve the hard problem of
Q-maximization in continuous action space, [5] proposed
the introduction of Normalized Advantage Functions (NAF).
This new method, which adopts a deterministic neural net-
work policy µ(s), enforces the advantage function to be
shaped as a second order quadratic convex function, such
as

Aµ(s, a) = −1

2
||a− µ(s)||2P (s) (5)

where P (s) is a trainable state-dependent positive definite
matrix. Since V µ(s) acts just as a constant in the action
domain and that Qµ(s, a) = Aµ(s, a) + V µ(s), the final Q-
function has the same quadratic properties of the advantage
function (5) and it can be easily maximized by choosing
always a = µ(s). This allows to construct just one net
with that will output P (s), V (s) and µ(s) to retrieve the Q-
values. Clearly the overall Q-network parameter θQ is the
union of θV , θµ and θP , since they differ only in the output
layer connection. The DQN-NAF pseudocode is presented in

Algorithm 2 Deep Q-Network with NAF (DQN-NAF)

1: Randomly initialize Q and target Q′ with θQ
′ ← θQ

2: Allocate Replay buffer R
3: for episode 1, . . . , Nτ do
4: for t = 1, . . . , T do
5: Execute at = µθµ(st)
6: Store in R transition (st, at, rt, st+1)
7: for iteration k = 1, . . . ,KQ do
8: Sample minibatch of Nb transitions from R
9: Set targets yi = ri + γVθV ′ (st+1)

10: Update θQ by minimizing loss

L(θQ) =
1

Nb

Nb∑
i=1

(
yi −QθQ(si, ai)

)2

11: Update target network

θQ
′
← ξθQ + (1− ξ)θQ

′

12: end for
13: end for
14: end for

Algorithm 2. The structure is very similar to DDPG due to
use of targets nets for computing the TD loss but uses only
one more complex Q-network that incorporates the policy.
Another slight difference is that the critic may be fitted KQ

times each timestep, acting as a critic-per-actor update ratio.
This increases computational burden but stabilizes even more
learning since the state-value network approximates better
of the true V µ(s), improving policy updates reliability. This
algorithm was applied with success directly onto a 7 DOF
robotic arm in [2], even managing to learn how to open
a door from scratch. In particular it was implemented an
asynchronous version of DQN-NAF surfing the ideas of [19],
where multiple agents were collecting samples to be sent to a
shared replay buffer. In this way learning is almost linearly
accelerated with the number of learners, since the replay
buffer R provides more decorraleted samples for the critic
update. Obviously the reward function plays an important
role in both DDPG and DQN-NAF and we will focus on
different designs to explore the performances on these two
state-of-the-art DRL algorithms.

IV. SIMULATED EXPERIMENTS

We first compared the most promising state of the art
algorithms by means of simulated tasks modeled using the
MuJoCo physics simulator [20]. Simulation lets fast and safe
comparisons of design choices such as, for DRL, the hyper-
parameters’ setting. We modeled a UR51 manipulator robot
from Universal Robots with a Robotiq S Model Adaptive
3-fingers gripper2 attached on its end effector, for a total
of 10 degrees of freedom. The same robot was used in
our real-world experiments. We want to emphasize the fact

1https://www.universal-robots.com/products/ur5-robot/
2https://robotiq.com/products/3-finger-adaptive-robot-gripper

https://www.universal-robots.com/products/ur5-robot/
https://robotiq.com/products/3-finger-adaptive-robot-gripper


Joint Joint Limits[rad] kr mnom [Nm]
q1 [−π, π] 101 150
q2 [−π, 0] 101 150
q3 [−π, π] 101 150
q4 [−π, π] 101 28
q5 [−π, π] 101 28
q6 [−π, π] 101 28

TABLE I: UR5 Motor and Joint specifications.

Joint Joint Limits [rad] kr mnom [Nm]
qi0 [−0.2967, 0.2967] 14 0.8
qi1 [0, 1.2217] 14 0.8
qi2 [0, π/2] - -
qi3 [−0.6632, 1.0471] - -

TABLE II: Robotiq 3-Finger Gripper Motor and Joint spec-
ifications.

that only one robotic arm was modeled for the simulated
experiments in order to keep consistency with the real-world
setup. However, analyzed algorithms would remain robust
even in case of changes of the dynamic and geometric models
of the robot (e.g., link lenghts, masses, and inertia).

A. Robot Modeling

The manipulator and gripper MuJoCo models (MJCF files)
are generated from the robots’ Unified Robot Description
Formats (URDFs)3. Once attached the MJCF files to each
other, we computed the following global joint state and
torque

q =

[
qur5
qgrip

]
∈ R18 a =

[
aur5
agrip

]
∈ R10 (6)

where qur5 =
[
q1 q2 q3 q4 q5 q6

]>
and qgrip =[

q10 . . . q13 q20 . . . q23 q30 . . . q33

]>
(qij |i =

{1, 2, 3} is the i-th finger and j = {1, 2, 3} is the
j-th phalange) are the UR5 and gripper joint posi-
tions vectors, respectively (measures expressed in radiants).
aur5 =

[
m1 m2 m3 m4 m5 m6

]>
and agrip =[

m00 m11 m12 m13

]>
are the UR5 and gripper action

vectors, i.e., the torques m applied to each joint by its motor.
In order to better match the real robot, the MuJoCo model

includes the actual gear reduction ratios kr and motors
nominal torques mnom of Tab I and II. Actuators were
modeled as torque-controlled motors. As advised by MuJoCo
documentation, joint damping coefficients were added and
chosen by trial and error, resulting in an improved simulated
joint stiffness.

Focusing on the gripper, its fingers under-actuated system
was modeled as a constraint of joint phalanges angles. This
joint coupling was implemented by defining fixed tendons
lengths between phalanges through a set of multiplicative
joint coefficients c. These parameters were found by trial and
error until a satisfying grasp was obtained: c12 = −1.5 for
the tendon between qi1 and qi2, c23 = −3.5 between qi2 and
qi3, ∀i = 1, 2, 3. This is not how the real system works, but

3http://wiki.ros.org/urdf

Fig. 1: UR5 Reach Task MuJoCo Environment

it is the best demonstrated way to ensure a correct simulated
gripper closure. Finally, inertia matrices were correctly gen-
erated through the MuJoCo inertiafromgeom option,
which enables automatic computation of inertia matrices and
geoms frames directly from model’s meshes.

An important parameter is the MuJoCo simulation
timestep TM , i.e., the timestep at which the MuJoCo Pro
physics engine computes successive evolution states of the
model, given an initial joints configuration. Usually, mag-
nitude of milliseconds is chosen. In our case, TM = 2ms
ensures a good trade-off between simulation’s stability and
accuracy. Standard gravity (9.81 m s2) was already enabled
by the simulator by default.

In order to match the real UR5 controller, which operates
the robotic arm at f = 125Hz, we set a frameskipNTM =
4. This value defines how many MuJoCo state evolutions
the OpenAI’s Gym environment must skip, with an effective
sampling time Ts of

Ts = TM ·NTM = 8ms, f =
1

8 ms
= 125 Hz (7)

This method guarantees a stable and accurate simulation
while sampling our modeled system at the correct rate.

B. Tasks

1) Random Target Reaching: The robot end effector must
reach a random target position pgoal (the center of the red
sphere of Figure 1) within a fixed cube of side 40 cm in
the robot workspace. In global coordinates (world reference
frame positioned and centered on the floor under the robotics
arm bench):

pgoal = U3[−0.2, 0.2] +
[
0.7 0 0.9

]>
(8)

where U3[−B,B] is a 3×1 vector whose entries are sampled
uniformly within the specified bounds ±B ∈ R.

The choice of restricting the goal position within a cube
aims to limit the training space of DRL algorithms, otherwise
extended 850 mm from the base joint of the robot. In order to
promote space exploration and avoid deterministic behavior,
uniformly sampled noise is added to the initial joint positions

http://wiki.ros.org/urdf


Fig. 2: UR5 Pick&Place Task MuJoCo Environment

and velocities of the UR5:

qur5 = qur5,0 + U6[−0.02, 0.02]

qur5,0 =
[
−0.3 −0.7 1.1 −0.1 −0.2 0

]>
rad

q̇ur5 = q̇ur5,0 + U6[−0.1, 0.1]

q̇ur5,0 =
[
0 · · · 0

]>
rad s−1

(9)
The state of the environment follows:

s =
[
q> q̇> p>goal p>ee

]> ∈ R42 (10)

where q is the robotic arm joint vector; q̇ is its time
derivative; pee and pgoal are the position of the end effector
and of the target, respectively.

The episode horizon for this task has been set to T = 300,
which means that the agent is allowed to achieve its goal
within T · Ts = 2.4 s. Thus the engine computes a total of
2.4 s of simulated time; after that the episode is terminated
and a new one starts.

The reward function follows:

rR(s, a) = −||pgoal − pee|| − ca||a|| (11)

The regularization term ca||a|| aims to promote the learning
of stable and bounded actions, slightly penalizing (ca ≈
10−3) the usage of excessive torques. This reward function
is always negative (penalizing rewards) thus the maximum
collectible return is 0. Here we can define a particular
environment state s as terminal by checking if the task has
been correctly performed truncating the episode. However in
this case the agent must experience the whole trajectory until
the episode horizon threshold T if a previous good terminal
state is not encountered. Any other type of termination
will lead to higher return, tricking agent to infer the actual
sequence of action as good. Due to this fact, such a reward
slows the initial learning process since it is highly likely that
the robots may find itself in a state far from optimum but
still it must experience the whole bad episode. A discrete
timestep

t is terminal if ||pee(t)− pgoal(t)|| < 5 cm (12)

that means the assigned task is achieved.

2) Pick&Place: The arm must learn how to grasp a
cylinder from a table (Rcyl = 2 cm, masscyl = 0.5 kg)
and place it about 30cm above the object (see Figure 2):

pcyl =
[
0.7 0 0.9

]>
pgoal =

[
0.7 0 1.2

]>
(13)

At every episode, both cylinder and goal positions are fixed,
while the initial position of the robot’s joints is uniformly
sampled.

The state of the environment follows:

s =
[
q> q̇> p>ee p>goal p>cyl

]> ∈ R45 (14)

T = 500 is selected as timesteps, that means a total allowable
time to perform the task equal to T · Ts = 4 s. A similar
task was already performed in [2] with DQN-NAF, but with
a stick floating in the air attached to a string and a simplified
gripper with fingers without phalanges. Our task instead
is more realistic and the robot must learn to firmly grasp
without any slip the cylinder.

Inspired by [2], we created a geometrical-based reward
function that promotes the minimization of three distances:

• the distance from the end effector to the object: d1 =
||pee − pcyl||

• the distance from the fingers to the center of mass of
the cylinder:

d2 =

3∑
i=1

(
||pcyl − pfi || −Rcyl

)
In particular pfi is the 3 × 1 cartesian position of the
second phalanx of finger i in the world reference frame.
The radius of the cylinder Rcyl acts simply as offset to
avoid nonsense penalties since it is impossible to reach
with the fingers the object’s center of mass.

• the distance from the cylinder to the goal: d3 = ||pcyl−
pgoal||

The final reward function is:

rP(s, a) =
1

1 +
∑3
j=1 cjdj

− ca||a|| (15)

where cj is manually selected in order to balance distance
weightings. The function is normalized in order to avoid
huge rewards when reaching the goal. In this way, when
no torque is applied to motors and the goal is reached,
the highest reward possible is 1. This is an encouraging
reward function: such reward shaping is one of our main
novelties and it foresee that its values are instead mainly
positives, allowing us to define a bad terminal state and
speeding up simulation of many trajectories. This type of
reward function is widely diffused in locomotion tasks, since
it is easy to assign a reward proportional to the distance
traveled or forward velocity. On the other hand for robotic
manipulations this is not always trivial and such a reward
function can be hard to compose efficiently.

The gripper must stay close to the cylinder and the cylinder
to the goal, that means the episode is terminated on the



following state check:

t is terminal if

{
d1(t) > 0.35 m

d3(t) > 0.35 m
(16)

C. Hyper-parameters settings

By trial and error, we found that Nmax
τ = 4000

episodes guarantees a good training for the reaching
task while Nmax

τ = 5000 is a good trade-off for the
Pick&Place: the training is stopped when Nmax

τ is reached.
rllabplusplus algorithms perform the policy update
every B samples. This means that every algorithm itera-
tion/policy update is done every Nτ = B/T episodes, were
T is the maximum number of episode timesteps (max path
length). Moreover, we used a discount factor γ = 0.99 in
order to make the agent slightly prefer near future rewards
rather than distant ones. Specifically for every algorithm:

a) DQN-NAF: DQN-NAF updates the policy based on
the critic estimation. The seamless integration of the policy in
the second order approximated critic allows to select, at each
timestemp, the action that globally maximize the Q function.
We tested three different minibatch sizes: Nb = 32, 64, 128.
In order to explore the fact that the same but scaled reward
function may cripple the learning, only in the policy update
we scaled the rewards by a factor rs = 1, 0.1, 0.001. In other
words, the reward used to update the policy is

r(s, a) = r(s, a) · rs (17)

In principle a lower reward should reduce the base stepsize of
the policy gradient. Intuitively this whole method is heavily
task dependent but proved [21] to stabilize (though slow
down) the learning. The soft target update coefficient for
target networks used was left to the default value ξ = 10−3.

b) TRPO: We used the Conjugate Gradient (CG) Algo-
rithm with nCG = 10 iterations in order to estimate the NPG
direction and to fit the baseline network. We used the rllab
default trust region size δ = 0.01 for both policy (δD) and
baseline (δV ) updates. Tests demonstrated that the size of the
baseline network does not significantly affect the learning
progress; thus, it was fixed to 100× 100. This might reflect
the fact that the baseline is deep enough to effectively predict
the states value it is fed with; a larger network would slow the
training and introduce overfitting. The MLP baseline network
is updated through the CG algorithm. For the advantage
estimation procedure we used a GAE coefficient λ = 0.97
as suggested by [18]. According to [21], the batch size
B highly affects the stability and the learning performance
curve. Thus, we tested 3 different batch sizes, corresponding
approximately to a Nτ = 10, 20, 40 environment runs per
algorithm iteration.

D. Evaluation and results

The average return is used to evaluate policies perfor-
mances. After each update of the πθ policy neural net-
work, the new controller is tested on N test

τ = 10 new
task episodes and an estimate of the agent performance
J(πθ) = Eτ∼πθ [r(τ)] = Eπθ

[∑T
t=1 r(st, at)

]
is estimated,

Policy πθ Policy Hidden Sizes dim(θ)
Reach Pick&Place

1 32× 32 2762 2858
2 100× 100 15410 15710
3 150× 100× 50 757110 757560
4 400× 300 140510 141710

TABLE III: Policy architectures tested on the three different
environments and algorithms

Fig. 3: Random Target Reaching - Best results

i.e., the average undiscounted return r̄ along with its standard
deviation σr:

r̄ =
1

N test
τ

N test
τ∑

i=1

r(τi) σ̂r =

√√√√ 1

N test
τ

N test
τ∑

i=1

(
r(τi)− r̄

)2

(18)
σr represents the shaded region around the mean return. We
used the undiscounted return as evaluation metric because it
lets an easier understanding of the mean sequence of rewards
if compared with its γ-discounted version.

Finally, Final Average Return describes the average return
of the last 10 policy runs. Episodes Required indicates
the minimum number of episodes required to reach a per-
formance similar to a final policy characterized by Final
Average Return.

These settings are used to compare DQN-NAF and TRPO
for the proposed tasks with respect to two widely used state
of the art DRL algorithms: Vanilla Policy Gradient (VPG) []
and Deep Deterministic Policy Gradient (DDPG) []. Our
aim is that of proving the robustness and adaptability of
proposed approaches with respect to the proposed tasks. For
a exhaustive comparison, we tested 4 different types of nets:
32 × 32, 100 × 100, 150 × 100 × 50 and 400 × 300 (see
Table IV-D). Policy networks are trained with tanh, while Q
networks and V baselines are equipped with Relu nonlinear
activation function.

1) Random Target Reaching: VPG struggles to learn a
near-optimal policy (see Figure 3). The best VPG policy
(100× 100) gets stuck after just 500 episodes on an average
return of about −60. TRPO is not able to solve the task
but, thanks to its theoretical monotonic guarantees, it should
be able to reach a close to zero return with a slightly higher



Algorithm Episodes Req. Final Avg Return Max Return
VPG 260 −60.90± 24.70 −47.65± 24.71

DDPG 2860 −2.83± 2.57 −2.13± 1.21
DQN-NAF 700 −2.36± 1.23 −2.18± 1.04

TRPO 2360 −22.87± 16.27 −20.27± 14.83

TABLE IV: Random Target Reaching - Numerical Results

Algorithm Episodes Req. Final Avg Return Max Return
VPG 740 187.11± 70.63 273.95± 18, 21

DDPG 4950 257.02± 12.59 321.24± 14.37
DQN-NAF 1980 173.08± 9.38 255.39± 5.73

TRPO 4980 324.97± 43.35 344.01± 17.74

TABLE V: Pick&Place - Numerical Results

number of episodes. DDPG can synthesize a 400×300 policy
that achieves the best possible return in about 2500 episodes.
However, it is the algorithm with the most unstable return
trend and it must be carefully tuned in order to get good
results.

Being designed to perform robotic tasks, DQN-NAF stably
solves the environment in less then 700 episodes. Moreover,
almost every policy architecture succeeds to collect almost
zero return with a very similar number of episodes. This
behavior uncorrelates the need for a huge net to perform
the same task: it seems that it is the method the network is
trained with that really makes the difference. However we
cannot skip to test different nets on the next environments
since this fact is surely related to the reward function used
and the particular task. As a general rule, we found out that
a net larger then 32×32 usually delivers better performance
across these 4 algorithms.

2) Pick&Place: As displayed in Figure 4, the pick and
place environment proved highly stochastic due to the con-
tacts between the gripper and the cylinder; little impacts
during the grasp learning often lead the cylinder to fall and
roll, preventing further grasp trials. This fact is reflected
by the high average return variance and unstable learning
in VPG, DDPG and DQN-NAF, for almost all network
configurations. Their learning curves prove an overall return
increase but the grasp still fails frequently due to the slipness
of the cylinder or high approaching speed. The monotonic
improvement theory and precautions of TRPO delivers after
5000 episodes an average return of 324 ± 43, performing
a solid grasp while generating a stable trajectory for the
cylinder placement on the blue goal. The most interesting fact
about the TRPO grasp is the tilting of the cylinder towards
the fingers. This allows the robotic arm to lift the cylinder
with less effort while minimizing the risk of object slip/loss.
On the other hand, the overall movements for the cylinder’s
transport can be sometimes more shaky than those observed
in the reaching task with DQN-NAF. TRPO’s policy was
also chosen to perform the task on the real setup because
it had the most room for improvement and further training
may polish the network’s behavior or deliver better grasping
results.

Fig. 4: Pick&Place - Best results

Fig. 5: The Random Target Reaching experiment. The robot
has to reach the red ball.

V. REAL-WORLD EXPERIMENTS

Real-world experiments aim to prove that the policies
learned in simulation are powerful also in real environments.

In order to use the learned policies in a real environment,
it is necessary to put in communication the real setup with
the simulated one. The simulated environment can interface
the external software by exchanging JSON data through a
TCP Socket connection. As the real robotics setup is based
on ROS, we used ROSBrige4 which provides a JSON API
to ROS functionality for non-ROS programs.

Focusing on visual data, in order to easily obtain objects
poses, fiducial markers are placed on them. In particular, we
used the AprilTags [22] library. A Microsoft Kinect One,
placed in front of the robot, is used to view the scene.

1) Random Target Reaching: The policy described in
Section IV was tested: a ball is sustained near the gripper as
in Figure 5. A marker is placed on it in order to obtain its
pose. The robot is able to place its end effector at the ball

4http://wiki.ros.org/rosbridge suite

http://wiki.ros.org/rosbridge_suite


Fig. 6: The Pick&Place experiment. The robot has to pick
up the yellow cylinder and bring it in a random place.

position with a 100% success rate. Moreover, the robot is
able to follow the ball when in motion (see the supplementary
video).

2) Pick&Place: The robot has to pick up a cylinder placed
on a table and bring it on a random point placed over the
first one. As for the previous experiments, the cylinder pose
is recognized using a fiducial marker (see Figure 6). 100%
success is guarantees as demonstrated by the supplementary
video.

VI. CONCLUSIONS AND FUTURE WORK

Deep Reinforcement Learning algorithms provides nowa-
days very general methods with little tuning requirements,
enabling tabula-rasa learning of complex robotic tasks with
deep neural networks. Such algorithms showed great poten-
tial in synthesizing neural nets capable of performing the
learned task while being robust to physical parameters and
environment changes. In simulation, we compared DQN-
NAF and TRPO to VPG and DDPG for classical tasks
such as end-effector dexterity and Pick&Place on a 10 DOF
collaborative robotic arm. Simulated results proved that good
performances can be obtained with reasonable amount of
episodes, and training times can be easily improved with
more CPUs on computational clusters. DQN-NAF performed
really well on the reaching task, achieving a suboptimal pol-
icy. TRPO demonstrated to be the most versatile algorithm
thanks to its reward scaling and parametrization invariances.
VPG learns typically slower whereas DDPG is the most
unstable and difficult to tune since it is highly reward scale
sensitive. We discovered that the policy network architecture
(width/depth) was not a decisive learning parameter and it
is algorithm dependent. However, a hidden layer size of at
least 100 × 100 is advised for similar continuous control
tasks. Finally we showed that it is possible to transfer the
learned policies to real hardware with almost no changes.
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