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Abstract: We define a homogeneous De Giorgi class of order p = 2 that contains the solutions of evolution
equations of the types ρ(x, t)ut + Au = 0 and (ρ(x, t)u)t + Au = 0, where ρ > 0 almost everywhere and A is
a suitable elliptic operator. For functions belonging to this class, we prove a Harnack inequality. As a byprod-
uct, one can obtain Hölder continuity for solutions of a subclass of the first equation.
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1 Introduction
In this paper, we consider the two parabolic equations

ρ(x, t)∂u
∂t
− div(A(x, t, u, Du)) + B(x, t, u, Du) + C(x, t, u) = 0 in Ω × (0, T), (1.1)

∂
∂t
(ρ(x, t)u) − div(A(x, t, u, Du)) + B(x, t, u, Du) + C(x, t, u) = 0 in Ω × (0, T), (1.2)

where the coefficient ρ is in L∞ and ρ > 0 almost everywhere, and therefore it can degenerate to zero. The
functions

A : Ω × (0, T) ×ℝ ×ℝn → ℝn ,
B : Ω × (0, T) ×ℝ ×ℝn → ℝ,
C : Ω × (0, T) ×ℝ→ ℝ

are Carathéodory functions with A, B, C ∈ L∞(Ω × (0, T) ×ℝ ×ℝn) satisfying
(A(x, t, u, ξ), ξ) ⩾ λ|ξ|2,
|A(x, t, u, ξ)| ⩽ Λ|ξ|,
|B(x, t, u, ξ)| ⩽ M|ξ|,
|C(x, t, u)| ⩽ N|u|,

for some given positive constants λ, Λ,M, N and for every u ∈ ℝ, ξ ∈ ℝn and a.e. (x, t) ∈ Ω × (0, T).
We show that functions belonging to a suitable DeGiorgi class containing the solutions of equations (1.1)

and (1.2) satisfy aHarnack inequality. In particular, we show the following result, butwe refer to Theorem5.1
and Theorem 5.2 for the precise statements.
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Theorem. There is a constant c > 0 such that for every (xo , to) ∈ Ω × (0, T) and r > 0 such that

B5r(xo) × (to − (5r)2h∗(xo , to , 5r), to + (5r)2h∗(xo , to , 5r)) ⊂ Ω × (0, T)
and

Br(xo) × (to , to + 5r2h∗(xo , to , r)) ⊂ Ω × (0, T),
if u ⩾ 0 is a solution of (1.1) or (1.2), then

sup
Br(xo) u(x, to − r2h∗(xo , to , r)) ⩽ c inf

Br(xo) u(x, to + r2h∗(xo , to , r)),
where

h∗(xo , to , r) = 1
r2|Br(xo)|

to+r2
∫
to

∫
Br(xo) ρ(x, t) dx dt,

h∗(xo , to , r) = 1
r2|Br(xo)|

to

∫
to−r2 ∫Br(xo) ρ(x, t) dx dt.

Moreover, adapting to the parabolic case the classical simple argument due to Moser (see [18], but also, e.g.,
[12, Section 7.9]), one can show that solutions of (1.1) with C = 0 are locally Hölder continuous (see also
Remark 3.3).

Equations like (1.1) and (1.2) arise as natural generalizations of the case ρ = ρ(x) to the time dependent
case ρ = ρ(x, t). Applications can be found in some diffusion and in fluid flow problems (see [2, Chapter 3],
in particular [2, Example 5.14]). In particular, this occurs in hydrology when dealing with transport of con-
taminants in unsaturated or variably saturated media (see [7]) or in density dependent flow in porous media
(see, for instance, [17]).

There is a wide literature regarding the Harnack inequality for parabolic equations. Starting from the
very first results due to Hadamard and Pini (see [16, 25]), the next important step due to Moser (see [19])
was to consider linear parabolic equations in divergence form. Due to the nature of this parabolic operator
(in particular, its invariance with respect to the scaling x → hx, t → h2t), the natural Harnack inequality for
a solution u is

sup
Br(xo) u(x, to − r2) ⩽ C inf

Br(xo) u(x, to + r2). (1.3)

We also mention the papers [1, 26], where operators with linear growth, but possibly nonlinear, are consid-
ered and an inequality of the type (1.3) is derived.

Nevertheless, unlike in the elliptic case, for parabolic operators with different growth the problem is
more delicate. In 1986, DiBenedetto showed that a Harnack inequality analogous to (1.3), i.e. substituting 2
with p, cannot hold for solutions of the equation

ut − div(|Du|p−2Du) = 0, p > 2,

even if this equation is invariant with respect to the scaling x → hx, t → hp t (see [8]).
A modified Harnack inequality for this equation was proved by DiBenedetto, Gianazza and Vespri only

in 2008 (see [9]).
Arriving to parabolic equations with degenerate coefficients of the type

v(x)∂u
∂t
−

n
∑
i,j=1 ∂

∂xi
(aij(x, t)

∂u
∂xj
) = 0

with
w1(x, t)|ξ|2 ⩽ (a(x, t)ξ, ξ) ⩽ Lw2(x, t)|ξ|2, L ⩾ 1,

and v, w1, w2 > 0 almost everywhere, we recall the papers [4–6], where Chiarenza and Serapioni considered

v ≡ 1, w1 = w2 = w
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with w ∈ L1loc, w > 0 a.e., satisfying a Muckenhoupt condition A2 (a subclass of A∞ defined below in Defini-
tion 2.1) in the variable x uniformly with respect to time, i.e. there is C > 0 such that

1
|B| ∫

B

w(x, t) dx 1
|B| ∫

B

w−1(x, t) dx ⩽ C for every ball B and every t,

or equations with
v(x) = w1(x) = w2(x)

satisfying the A2 condition. In [13, 14], a more general situation is considered:

v = v(x), w1 = w1(x, t), w2 = w2(x, t),

with w1 possibly different from w2.
In the present paper, we focus our attention on the coefficient in front of u, taking for this reason

w1 = w2 ≡ 1 and v = ρ(x, t), ρ > 0, almost everywhere and bounded, so possibly degenerating only to zero
(and not to +∞).

We conclude saying that we use a technique due to DiBenedetto, Gianazza and Vespri, which adapts in
some sense the technique of De Giorgi (to prove boundedness and regularity of the solutions) for the elliptic
case to the parabolic case. This is mainly contained in [11].

2 Preliminaries
From now on, we will consider an open set Ω ⊂ ℝn, T > 0 and a function

ρ ∈ L∞(Ω × (0, T)), ρ > 0 almost everywhere.

We define for each t ∈ (0, T),

L2(Ω, ρ(t)) = {u ∈ L1loc(Ω) | uρ
1/2(t) ∈ L2(Ω)}

and
L2(Ω × (0, T), ρ) = {u ∈ L1loc(Ω × (0, T)) | uρ

1/2 ∈ L2(Ω × (0, T))}.
Moreover, we define for each t ∈ (0, T),

H1(Ω, ρ(t)) := {u ∈ L2(Ω, ρ(t)) | Du ∈ L2(Ω)}.

By Du we will always denote the vector of derivatives of a function u with respect to the variables x1, . . . , xn,
(x1, . . . , xn) ∈ Ω, even if u depends also on t. Then we define

V := {u ∈ L2(Ω × (0, T), ρ) | Du ∈ L2(Ω × (0, T))}

and denote by V the dual space of V. We also define

Vloc := {u ∈ L2loc(Ω × (0, T), ρ) | Du ∈ L
2
loc(Ω × (0, T))}.

In the following, we will sometimes write

ρ(E) instead of ∬
E

ρ(x, t) dx dt, E ⊂ Ω × (0, T),

ρ(t)(A) instead of ∫
A

ρ(x, t) dx, A ⊂ Ω.

In [20, 23], some existence results are proved (where ρmay also be zero and negative). As byproducts, we get
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the existence of solutions for the following equations (A, B and C introduced in the previous section):

ρ(x, t)∂u
∂t
− div(A(x, t, u, Du)) + B(x, t, u, Du) + C(x, t, u) = 0,

∂
∂t
(ρ(x, t)u) − div(A(x, t, u, Du)) + B(x, t, u, Du) + C(x, t, u) = 0.

About ρ we will need some assumptions; before listing them, we recall some definitions.

Definition 2.1. Given a ω ∈ L∞(ℝn), ω > 0 a.e., K > 0 and q > 2, we say that
ω ∈ B12,q(K)

if
r
ρ (

ω(Br(x̄))
ω(Bρ(x̄))

)
1/q
(
|Br(x̄)|
|Bρ(x̄)|
)
−1/2
⩽ K (2.1)

for every pair of concentric balls Br and Bρ with 0 < r < ρ.
We say that ω is doubling if for every t > 0 there is a positive constant cω(t) such that

∫
tB

ω(x) dx ⩽ cω(t)∫
B

ω(x) dx, (2.2)

where B is a generic ball Br(x̄) and tB denotes the ball Btr(x̄).
We say that ω belongs to the class A∞(K, ς) if

ω(S)
ω(B)
⩽ K( |S|
|B|)

ς

for every ball B ⊂ ℝn and every measurable set S ⊂ B.
We will denote by A∞(K) the set⋃ς>0 A∞(K, ς), and A∞ = ⋃K>0 A∞(K).

Remark 2.2. If ω ∈ A∞, then ω is doubling (see [10]).

Remark 2.3. If ω ∈ A∞(K), then there is p ⩾ 1 such that
(
|S|
|B|)

p
⩽ K ω(S)

ω(B)
for every measurable S ⊂ B and every B ball ofℝn (see [10]).

About the function ρ, we will assume that there are some positive constants K1, K2, K3, ς, σ and L ⩾ 0 such
that the following conditions (H) hold:

{{{{{
{{{{{
{

[0, T] ∋ t → ∫
Ω

v(x)w(x)ρ(x, t) dx is absolutely continuous,


∫
Ω

v(x)w(x)ρ(x, t) dx

⩽ L‖v‖H1(Ω)‖w‖H1(Ω) for every v, w ∈ H1(Ω),

(H1)

ρ( ⋅ , t) ∈ B12,q(K1) for almost every t ∈ (0, T), (H2)

ρ( ⋅ , t) ∈ A∞(K2, ς) for almost every t ∈ (0, T), (H3)
ρ ∈ A∞(K3, σ). (H4)

Comments on the assumptions. (H1) This assumption is needed in [20, 23] to obtain the results about
existence and uniqueness of the solutions of (1.1) and (1.2) with suitable boundary conditions.

Notice that this requirement is done for every v, w ∈ H1(Ω), which turns out to be a dense subset of
H1(Ω, ρ(t)) for each t ∈ (0, T).

This assumption is clearly satisfied if

ρ, ∂ρ
∂t
∈ L∞(Ω × (0, T))

since in this case we get

d
dt ∫

Ω

v(x)w(x)ρ(x, t) dx

=

∫
Ω

v(x)w(x)∂ρ
∂t
(x, t) dx


⩽ ‖ρt‖∞‖v‖L2(Ω)‖w‖L2(Ω).
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But more interesting are the cases when t → ρ(x, t) is not absolutely continuous; it may be only continuous
(see an example in [22]) and even discontinuous for every x ∈ Ω. The simplest example is the following:
consider (Ω = (0, 1), T = 1)

ρ : (0, 1) × (0, 1)→ ℝ such that ρ(x, t) :=
{
{
{

2 for x < t,
1 for x > t.

Then
d
dt ∫

Ω

v(x)w(x)ρ(x, t) dx = d
dt(

2
t

∫
0

v(x)w(x) dx +
1

∫
t

v(x)w(x) dx) = v(x)w(x).

Since H1(0, 1) ⊂ C0([0, 1]), one can estimate the left-hand side in the previous equality by the H1-norm of v
and w (in this example, H1(Ω, ρ(t)) = H1(Ω) for every t).

Analogous examples may be considered in higher dimensions, for which we refer to [20, 23].
Assumptions (H2) and (H3) are needed for Theorem 2.8 to hold. Notice moreover that in fact they hold

for every, and not for almost every, t ∈ [0, T], thanks to assumption (H1).
Finally, assumption (H4) (more precisely, its consequence (C3) stated below) is needed in Lemma4.6 and

consequently for the expansion of positivity (Theorem 4.8).

Some consequences of the assumptions.
(C1) From assumption (H1), one can derive that for every ball B ⊂ Ω there exists a constant γB, depending

only on B, such that
sup
t∈[0,T]∫

B

ρ(x, t) dx ⩽ γB inf
t∈[0,T]∫

B

ρ(x, t) dx.

By that, one also derives that

sup
t∈[0,T] [∫

B

ρ(x, t) dx]
−1
⩽ γB inf

t∈[0,T] [∫
B

ρ(x, t) dx]
−1
.

This is actually a consequence of Lemma 2.4 stated below, which can be proved starting from (H1).
(C2) By Remark (2.2) and since, by (H3), ρ(t) ∈ A∞(K2) uniformly in t, we obtain that for every θ > 0 there

is a constant cρ(θ) (depending on K2 and θ) such that

∫
θB

ρ(x, t) dx ⩽ cρ(θ)∫
B

ρ(x, t) dx for every t ∈ (0, T).

Similarly, by (H4) we also have that for every θ > 0 there is a constant Cρ(θ) such that

to+θδ
∫

to−θδ ∫θB ρ(x, t) dx dt ⩽ Cρ(θ)
to+δ
∫

to−δ ∫B ρ(x, t) dx dt.

We will simply write cρ or Cρ if θ = 2.
(C3) Assumptions (H3) and (H4) imply that there is p ⩾ 1 such that

(
|S|
|B|)

p
⩽ K2

ρ(t)(S)
ρ(t)(B) , (

|S̃|
|B × I|)

p
⩽ K3

ρ(S̃)
ρ(B × I)

for almost every t ∈ (0, T), every ball B ⊂ ℝn, every interval I ⊂ ℝ, every measurable set S ⊂ B, and
every measurable set S̃ ⊂ B × I.

Lemma 2.4. If ρ satisfies (H1), then

[0, T] ∋ t → ∫
B

ρ(x, t) dx is continuous

for every ball B = Br(xo) ⊂ Ω.
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Proof. Consider a function ζ such that

ζ ≡ 1 in Br(xo),
ζ ≡ 0 outside of BR(xo),

|Dζ| ⩽ 1
R − r

.

Then, by the assumptions, the function

[0, T] ∋ t → ∫
BR

ζ n(x)ρ(x, t) dx

is continuous for every n ∈ ℕ, n ⩾ 1. Consider now t, s ∈ [0, T] and estimate as follows:

|ρ(t)(Br) − ρ(s)(Br)| =

∫
BR

ζ n(x)ρ(x, t) dx − ∫
BR\Br

ζ n(x)ρ(x, t) dx − ∫
BR

ζ n(x)ρ(x, s) dx + ∫
BR\Br

ζ n(x)ρ(x, s) dx


⩽

∫
BR

ζ n(x)ρ(x, t) dx − ∫
BR

ζ n(x)ρ(x, s) dx

+

∫

BR\Br

ζ n(x)ρ(x, t) dx − ∫
BR\Br

ζ n(x)ρ(x, s) dx

.

Now fix ε > 0. There is δ > 0 such that if |t − s| < δ, then

∫
BR

ζ n(x)ρ(x, t) dx − ∫
BR

ζ n(x)ρ(x, s) dx

<
ε
3 .

Moreover, we can also chose n ∈ ℕ great enough in such a way that

∫
BR\Br

ζ n(x)ρ(x, t) dx < ε3 and ∫
BR\Br

ζ n(x)ρ(x, s) dx < ε3 .

Then we conclude that
|ρ(t)(Br) − ρ(s)(Br)| < ε

for |t − s| < δ.

For the following result, see, e.g., [21, Lemma 2.14]. This lemma is needed to prove the main result (see in
particular the fourth step).

Lemma 2.5. Consider xo ∈ Ω and r > 0 such that B2r(xo) ⊂ Ω, σ ∈ (0, r), ω ∈ B12,q(K) for some q > 2, ω ∈ A∞,
and α, β > 0. Consider an open and non-empty subset B of Br(xo) such that Bσ = {x ∈ Ω | dist(x,B) < σ} is
a subset of Br(xo). Then, for every a > 0and ε, δ ∈ (0, 1), there exists η ∈ (0, 1) such that for every u ∈ H1(Ω, ω)
satisfying

∫
Bσ

|Du|2 dx ⩽ α |Br(xo)|
r2

and
ω({u > a} ∩B) ⩾ βω(Br(xo)),

there exists x∗ ∈ B with Bηρ(x∗) ⊂ B such that

ω({u > εa} ∩ Bηr(x∗)) > (1 − δ)ω(Bηr(x∗)).
For the following result, see [3].

Theorem 2.6. Consider q > 2, r > 0, xo ∈ ℝn, and ω ∈ L∞(ℝn), ω > 0 a.e., ω ∈ B12,q(K) and doubling, i.e. sat-
isfying (2.1) and (2.2). Then there is a constant Γ depending (only) on n, q, K, cω such that

[
1

ω(Br)
∫
Br

|u(x)|qω(x) dx]
1/q
⩽ Γr[ 1
|Br|
∫
Br

|Du(x)|2 dx]
1/2

for every Lipschitz continuous function u defined in Br = Br(x0), with either support contained in Br(x0) or with
null mean value.
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By Theorem 2.6 and one of its direct consequences (a result contained in [14, 15], but see also [21, Theo-
rem 2.9]), one gets the following result.

Remark 2.7. The assumptions required in the result in [15] involve the ratio between twoweights. In our case
(in Theorem 2.8) this assumption is simply

(ρ(t))−1 ∈ A∞(ρ(t)), where A∞(ρ(t)) is the A∞ class with respect to the measure ρ(t) dx). (2.3)

If ρ satisfies (H3), this request is satisfied.
Insteadof (H3), sincewe suppose ρ ∈ L∞, another conditionwhich implies (2.3) is that there is a constant

C > 0 such that

‖ρ(t)‖L∞(B) ⩽ C 1
|B| ∫

B

ρ(x, t) dx = C ρ(t)(B)
|B|

for every ball B and for a.e. t ∈ (0, T).

Theorem 2.8. Consider q > 2 and ρ ∈ L∞(ℝn+1), ρ > 0 a.e., satisfying (H2) and (H3) for some K1, K2 > 0. Then
there is κ ∈ (1, q2 ) and Γ depending (only) on n, q, K1, K2, ς such that

s2

∫
s1

1
η(t)(Br)

∫
Br

|u|2κ(x, t)η(x, t) dx dt

⩽ Γ2r2( max
s1⩽t⩽s2 1

ρ(t)(Br)
∫
Br

u2(x, t)ρ(x, t) dx)
κ−1 1
|Br|

s2

∫
s1

∫
Br

|Du|2(x, t) dx dt

for every Br(xo) ⊂ ℝn, every (s1, s2) ∈ (0, T), every Lipschitz continuous function u defined in Br × (s1, s2),
u( ⋅ , t) with either support contained in Br(xo) or with null mean value, and where the inequality holds both
with η = ρ and η ≡ 1.

Proof. Here we do not present the proof, since it can be derived adapting easily that of [21, Theorem 2.9]. We
only stress that (2.3) is needed, but this is a consequence of (H3) as observed in Remark 2.7.

Remark 2.9. About the proof of the previous theorem, we want to consider the following question: whether
η = ρ requiring ρ to be doubling (together to ρ(t) ∈ B12,q(K1)uniformly in t) is in fact sufficient to get the thesis
of Theorem 2.8. The assumption ρ(t) ∈ A∞(K2) is needed just to get the thesis with η ≡ 1 (and, more general,
with η ̸= ρ).

In this regard, see [21, Remark 2.3 and Theorem 2.9].

Other results useful in the sequel are the following two lemmas, for which we refer to [21].

Lemma 2.10. Consider ω as in Theorem 2.6, k, l ∈ ℝ with k < l, and p ∈ (1, 2]. Then

(l − k)ω({v < k})ω({v > l}) ⩽ 2Γr(ω(Br))2(
1
|Br|

∫
Br∩{k<v<l} |Dv|p dx)

1/p
for every Lipschitz continuous function v defined in the ball Br.

We conclude stating a standard lemma (see, for instance, [12, Lemma 7.1]) needed later.

Lemma 2.11. Let (yh)h be a sequence of positive real numbers such that

yh+1 ⩽ cbhy1+αh

with c, α > 0 and b > 1. If y0 ⩽ c−1/αb−1/α2 , then
lim

h→+∞ yh = 0.
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3 DG classes
We are going now to introduce a De Giorgi class suited to the parabolic equations (1.1) and (1.2) of order 2;
before, we need to we consider a suitable class of decay functions, namely the set

Xc := {ζ ∈ Lip(Ω × (0, T)) | ζ( ⋅ , t) ∈ Lipc(Ω) for each t ∈ (0, T), ζ ⩾ 0, ζt ⩾ 0}.

By v+wewill denote the positive part of a function v, andby v−wewill denote thenegative part of a function v.
Definition 3.1. Given γ > 0, we say that a function u ∈ Vloc, such that

(0, T) ∋ t → ∫
Ω

u2(x, t)ρ(x, t) dx ∈ C0loc(0, T),

belongs to DG(Ω, T, ρ, γ) if u satisfies for every function ζ ∈ Xc, every t1, t2 ∈ (0, T) and every k ∈ ℝ the
inequality

∫
Ω

(u − k)2+ζ 2ρ(x, t2) dx + t2

∫
t1

∫
Ω

|D(u − k)+|2ζ 2 dx dt
⩽ ∫

Ω

(u − k)2+ζ 2ρ(x, t1) dx + γ[ t2∫
t1

∫
Ω

(u − k)2+|Dζ|2 dx dt + t2

∫
t1

∫
Ω

(u − k)2+ζζtρ dx dt
+

t2

∫
t1

∫
Ω

(u − k)2+ζ 2 dx dt + k2 t2

∫
t1

∫{u(t)>k}(ζ 2 + |Dζ|2) dx dt]. (3.1)

and if u satisfies an analogous inequality for every function ζ ∈ Xc, every t1, t2 ∈ (0, T), and every k ∈ ℝ, with
(u − k)− instead of (u − k)+ and with

k2
t2

∫
t1

∫{u(t)<k}(ζ 2 + |Dζ|2) dx dt
instead of the last term in inequality (3.1).

Remark 3.2 (Comments on Definition 3.1). ∙ The energy inequality (3.1) can be derived as done in [22]
starting from both equations (1.1) and (1.2). Notice that in [22] only k ⩾ 0 is considered to derive (3.1)
(and only k ⩽ 0 to derive the analogous one for (u − k)−): indeed, these restrictions are due to the fact
that in [22] a wider class was considered and can be removed in our case.

∙ A solution of (1.1) belongs to {v ∈ V | ρv ∈ V} and a solution of (1.2) belongs to {v ∈ V | (ρv) ∈ V}, but
in fact these two spaces, under assumption (H1), turn out to be the same space.

∙ A function belonging to DG(Ω, T, ρ, γ) is locally bounded (see, for instance, [24]).

Remark 3.3. The solutions of equation (1.1) with C ≡ 0 satisfy

∫
Ω

(u − k)2+ζ 2ρ(x, t2) dx + t2

∫
t1

∫
Ω

|D(u − k)+|2ζ 2 dx dt
⩽ ∫

Ω

(u − k)2+ζ 2ρ(x, t1) dx + γ[ t2∫
t1

∫
Ω

(u − k)2+|Dζ|2 dx dt
+

t2

∫
t1

∫
Ω

(u − k)2+ζζtρ dx dt + t2

∫
t1

∫
Ω

(u − k)2+ζ 2 dx dt] (3.2)

and the analogous one for (u − k)−. Notice that if u satisfies these inequalities, also u + c satisfies them,
where c is an arbitrary constant (in particular, this holds for solutions of (1.1) with C ≡ 0).
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This is the keypoint to use the argument due toMoser, bywhichone canderive the localHölder continuity
from the Harnack inequality for functions satisfying (3.2) and the analogous estimate with (u − k)−.
For fixed (xo , to) ∈ Ω × (0, T) and r > 0, we define the quantities

h∗(xo , to , r) := 1
r2|Br(xo)|

to

∫
to−r2 ∫Br(xo) ρ(x, t) dx dt,

h∗(xo , to , r) := 1
r2|Br(xo)|

to+r2
∫
to

∫
Br(xo) ρ(x, t) dx dt.

Notice that

{
h∗(xo , to − r2, r) = h∗(xo , to , r),

h∗(xo , to , r) = h∗(xo , to + r2, r). (3.3)

Notice that for 0 < r < ̃r one has

h∗(xo , to , r) ⩽ ( ̃rr )n+2h∗(xo , to , ̃r), h∗(xo , to , r) ⩽ ( ̃rr )n+2h∗(xo , to , ̃r). (3.4)

Once we fixed (xo , to) ∈ Ω × (0, T), for a generic R > 0 we will set

QR(xo , to) := BR(xo) × (to − R2h∗(xo , to , R), to),
QR(xo , to) := BR(xo) × (to , to + R2h∗(xo , to , R)).

Given r ∈ (0, R] and θ > 0 (possibly also greater than 1), we define

{
Qr,θ(xo , to) := Br(xo) × (to − θr2h∗(xo , to , R), to),
Qr,θ(xo , to) := Br(xo) × (to , to + θr2h∗(xo , to , R)), (3.5)

where h∗ and h∗ always refer to a fixed radius R bigger than or equal to r (only for θ = 1 and r = R the cylin-
der Qr,θ coincides with QR). To lighten the notation, we will omit writing (xo , to) if not strictly necessary and
simply write

QR , QR , Qr,θ , Qr,θ

if it is clear which point we are referring to.

4 Expansion of positivity
We recall that u ∈ DG(Ω, T, ρ, γ) is locally bounded, as mentioned in Remark 3.2.

Proposition 4.1. Consider (x̄, ̄t) ∈ Ω × (0, T) and R > 0 such that

QR = QR(x̄, ̄t) ⊂ Ω × (0, T).

Let h∗ = h∗(x̄, ̄t, R). Consider r, ̃r, θ, θ̃ satisfying
0 < r < ̃r ⩽ R, 0 < θ < θ̃ such that Q ̃r,θ̃(x̄, ̄t) ⊂ Ω × (0, T).

Then, for every choice of a, σ ∈ (0, 1), every u ∈ DG(Ω, T, ρ, γ) and every μ+, ω satisfying

μ+ ⩾ sup
Q ̃r,θ̃(x̄, ̄t) u, ω ⩾ oscQ ̃r,θ̃(x̄, ̄t) u,

there is ν, depending (only) on γ, 1 − a, κ, γB ̃r(x̄), Γ, ̃r−1, θ̃−1, R/ ̃r, cρ(R/ ̃r), Cρ(θ̃), ̃r − r, θ̃ − θ, and μ+
σω , such that

if
|{(x, t) ∈ Q ̃r,θ̃(x̄, ̄t) | u(x, t) > μ+ − σω}|

|Q ̃r,θ̃(x̄, ̄t)| +
ρ({(x, t) ∈ Q ̃r,θ̃(x̄, ̄t) | u(x, t) > μ+ − σω})

ρ(Q ̃r,θ̃(x̄, ̄t)) ⩽ ν,

then
u(x, t) ⩽ μ+ − aσω for a.e. (x, t) ∈ Qr,θ(x̄, ̄t).
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Remark 4.2. This is the only result (indeed, also Proposition 4.3) stated for each function belonging to
DG(Ω, T, ρ, γ), while in all of the remainder we consider nonnegative functions.

In this way, the constant νmay depend on the oscillation of a specific function in the class DG(Ω, T, ρ, γ),
but in fact it depends on the ratio

μ+
ω
,

as highlighted in the statement. In particular, if one confines to consider a function u ⩾ 0 (as we will do) and
choose

μ+ = sup
Q ̃r,θ̃(x̄, ̄t) u, ω = oscQ ̃r,θ̃(x̄, ̄t) u,

in fact ν does not depend anymore on μ+ or on ω since μ+
ω ⩽ 1 (see in particular the last lines of the following

proof and also step 1 of the proof of Theorem 5.2).

Proof. Consider for h ∈ ℕ,

rh = r +
̃r − r
2h

,

θh = θ +
θ̃ − θ
4h

,

Qh := Qrh ,θh (x̄, ̄t),

σh = aσ +
1 − a
2h

σ,

kh = μ+ − σhω.
With these choices, we have that

θh − θh+1 = 3 θ̃ − θ
( ̃r − r)2
(rh − rh+1)2

and that
Qh+1 ⊂ Qh .

Consider now a sequence of functions satisfying

ζh ≡ 1 in Qh+1,
ζh ≡ 0 outside of Qh for t ⩽ ̄t,
0 ⩽ ζh ⩽ 1,

|Dζh| ⩽
1

rh − rh+1
and

0 ⩽ (ζh)t ⩽
1

(θhr2h − θh+1r2h+1)h∗
⩽

1
(θhr2 − θh+1r2)h∗
=

4h+1
3r2h∗ 1

θ̃ − θ

=
1

3r2h∗(rh − rh+1)2 ( ̃r − r)2θ̃ − θ

<
1

r2h∗(rh − rh+1)2 ( ̃r − r)2θ̃ − θ
,

and finally define
Ah = {(x, t) ∈ Qh | u(x, t) > kh}.
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First, we have (κ is the value in Theorem 2.8 and γB is defined in (C1))

((1 − a)σω)2

22h+2 |Ah+1|
|Q ̃r,θ̃| = (kh+1 − kh)2 |Ah+1|

|Q ̃r,θ̃|
⩽

1
|Q ̃r,θ̃| ∬Ah+1 (u − kh)

2+ dx dt
⩽

1
|Q ̃r,θ̃| ∬Qh+1 (u − kh)

2+ dx dt
⩽

1
|Q ̃r,θ̃|∬Qh

(u − kh)2+ζ 2h dx dt
⩽ (
|Ah|
|Q ̃r,θ̃|) κ−1κ ( 1

|Q ̃r,θ̃|∬Qh

(u − kh)2κ+ ζ 2κh dx dt)
1
κ

= (
|Ah|
|Q ̃r,θ̃|) κ−1κ ( 1

θ̃ ̃r2h∗ ) 1κ ( 1
|B ̃r|∬

Qh

(u − kh)2κ+ ζ 2κh dx dt)
1
κ
. (4.1)

Similarly,

((1 − a)σω)2

22h+2 ρ(Ah+1) inf
t∈( ̄t−θh+1r2h+1h∗ , ̄t) 1

ρ(t)(B ̃r)
= (kh+1 − kh)2ρ(Ah+1) inf

t∈( ̄t−θh+1r2h+1h∗ , ̄t) 1
ρ(t)(B ̃r)

⩽ inf
t∈( ̄t−θh+1r2h+1h∗ , ̄t) 1

ρ(t)(B ̃r) ∬
Ah+1 (u − kh)

2+ρ dx dt
⩽∬

Ah

1
ρ(t)(B ̃r) (u − kh)2+ζ 2h ρ dx dt

⩽ (∬
Ah

1
ρ(t)(B ̃r)ρ dx dt) κ−1κ (∬

Qh

1
ρ(t)(B ̃r) (u − kh)2κ+ ζ 2κh ρ dx dt)

1
κ
,

by which

((1 − a)σω)2

22h+2 1
γB ̃r ρ(Ah+1)

ρ(Q ̃r,θ̃) ⩽ γ κ−1
κ

B ̃r ⋅ ( ρ(Ah)
ρ(Q ̃r,θ̃)) κ−1κ ( 1

θ̃ ̃r2h∗ ) 1κ (∬Qh

1
ρ(t)(B ̃r) (u − kh)2κ+ ζ 2κh ρ dx dt)

1
κ
. (4.2)

Now we use Theorem 2.8 to estimate the last factors in (4.1) and (4.2). In the following, η may denote the
function ρ or the constant function 1. We get

(∬
Qh

1
η(t)(B ̃r) (u − kh)2κ+ ζ 2κh η(x, t) dx dt)

1
κ

⩽ Γ
2
κ ̃r

2
κ ( max̄t−θh r2hh∗⩽t⩽ ̄t 1

ρ(t)(B ̃r) ∫
Brh

(u − kh)2ζ 2h ρ(x, t) dx)
κ−1
κ
(

1
|B ̃r|∬

Qh

|D((u − kh)+ζh)|2 dx dt) 1κ
⩽ Γ

2
κ ̃r

2
κ ( max̄t−θh r2hh∗⩽t⩽ ̄t 1

ρ(t)(B ̃r)) κ−1κ ( 1
|B ̃r|) 1κ

⋅ [ max̄t−θh r2hh∗⩽t⩽ ̄t ∫Brh

(u − kh)2ζ 2h ρ(x, t) dx + 2∬
Qh

|D(u − kh)+|2ζ 2h dx dt
+ 2∬

Qh

|Dζh|2(u − kh)2+ dx dt]. (4.3)



802 | F. Paronetto, Harnack inequality for parabolic equations with coefficients depending on time

Now since
(u − kh)+ ⩽ σhω, (4.4)

we can estimate the last term in the right-hand side as

2∬
Qh

|Dζh|2(u − kh)2+ dx dt ⩽ 2 |Ah|
(rh − rh+1)2 (σhω)2. (4.5)

Now we estimate the first two of the three addends of the last factor in the right-hand side using (3.1):

max̄t−θh r2hh∗⩽t⩽ ̄t ∫Brh

(u − kh)2ζ 2h ρ(x, t) dx + 2∬
Qh

|D(u − kh)+|2ζ 2h dx dt
⩽ 2γ[∬

Qh

(u − kh)2+|Dζh|2 dx dt +∬
Qh

(u − kh)2+ζh(ζh)tρ dx dt
+∬

Qh

(u − kh)2+ζ 2h dx dt + k2h∬
Ah

(ζ 2h + |Dζh|
2) dx dt]

⩽ 2γ[ 1
(rh − rh+1)2 ∬

Qh

(u − kh)2+ dx dt + 1
r2h∗(rh − rh+1)2 ( ̃r − r)2θ̃ − θ

∬
Qh

(u − kh)2+ρ dx dt
+∬

Qh

(u − kh)2+ dx dt + k2h∬
Ah

(ζ 2h + |Dζh|
2) dx dt].

Now using again (4.4), we get

max̄t−θh r2hh∗⩽t⩽ ̄t ∫Brh

(u − kh)2ζ 2h ρ(x, t) dx + 2∬
Qh

|D(u − kh)+|2ζ 2h dx dt
⩽ 2γ[ |Ah|(σhω)2

(rh − rh+1)2 + ρ(Ah)(σhω)2

r2h∗(rh − rh+1)2 ( ̃r − r)2θ̃ − θ

+ |Ah|(σhω)2 + |Ah|k2h(1 +
1

(rh − rh+1)2 )]. (4.6)

By (3.4), we get

1
h∗(x̄, ̄t, R) ⩽ (R̃r )n+2 1

h∗(x̄, ̄t, ̃r)
= (

R
̃r )
n+2 |Q ̃r|

ρ(Q ̃r)
= (

R
̃r )
n+2 1

θ̃

|Q ̃r,θ̃|
ρ(Q ̃r)

⩽ (
R
̃r )
n+2 Cρ(θ̃)

θ̃

|Q ̃r,θ̃|
ρ(Q ̃r,θ̃) ,

where Cρ is defined in Remark 2.9. Then, continuing estimating in (4.6), we finally get

max̄t−θh r2hh∗⩽t⩽ ̄t ∫Brh

(u − kh)2ζ 2h ρ(x, t) dx + 2∬
Qh

|D(u − kh)+|2ζ 2h dx dt
⩽

2γ|Q ̃r,θ̃|
(rh − rh+1)2 [((σhω)2 + k2h)((rh − rh+1)2 + 1)] |Ah|

|Q ̃r,θ̃|
+ (

R
̃r )
n+2 Cρ(θ̃)

θ̃

2γ|Q ̃r,θ̃|
(rh − rh+1)2 (σhω)2r2

ρ(Ah)
ρ(Q ̃r,θ̃) ( ̃r − r)2θ̃ − θ

. (4.7)

Now we call
zh :=
|Ah|
|Q ̃r,θ̃| , xh :=

ρ(Ah)
ρ(Q ̃r,θ̃) , yh := zh + xh .
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Summing (4.1) and (4.2) and taking into account (4.3), (4.5) and (4.7), we get

yh+1 ⩽ 1
((1 − a)σω)2

(1 + γ1+ κ−1κB ̃r )( 1
θ̃ ̃r2h∗ ) 1κ 16h+1 ⋅ Γ 2

κ ̃r
2
κ ( max̄t−θh r2hh∗⩽t⩽ ̄t 1

ρ(t)(B ̃r)) κ−1κ ( 1
|B ̃r|) 1κ

⋅
2γ|Q ̃r,θ̃|
( ̃r − r)2

[((σhω)2 + k2h)(
( ̃r − r)2

22h+2 + 2) + (R̃r )n+2 Cρ(θ̃)θ̃ (σhω)2r2
( ̃r − r)2

θ̃ − θ
]y1+ κ−1κh .

Since

(
1

θ̃ ̃r2h∗ ) 1κ ̃r 2
κ ( max̄t−θh r2hh∗⩽t⩽ ̄t 1

ρ(t)(B ̃r)) κ−1κ ( 1
|B ̃r|) 1κ |Q ̃r,θ̃|

= ̃r
2
κ ( max̄t−θh r2hh∗⩽t⩽ ̄t 1

ρ(t)(B ̃r)) κ−1κ |Q ̃r,θ̃| κ−1κ
= ̃r

2
κ (

|B ̃r|
min ̄t−θh r2hh∗⩽t⩽ ̄t ρ(t)(B ̃r)) κ−1κ (θ̃ ̃r2h∗) κ−1κ

⩽ ̃r
2
κ (

|B ̃r|
min ̄t−θh r2hh∗⩽t⩽ ̄t ρ(t)(B ̃r)) κ−1κ (θ̃ ̃r2max ̄t−R2⩽t⩽ ̄t ρ(t)(BR)

|BR|
)

κ−1
κ

⩽ ̃r2 θ̃
κ−1
κ (cρ(

R
̃r ))

κ−1
κ γ

κ−1
κ

B ̃r ,
where cρ(θ) is defined in Remark 2.9, we finally get

yh+1 ⩽ c16hy1+ κ−1κh ,

where

c = 32
γγ

κ−1
κ

B ̃r Γ 2
κ

(1 − a)2
(1 + γ1+ κ−1κB ̃r ) ̃r2( ̃r − r)2 θ̃ κ−1

κ (cρ(
R
̃r ))

κ−1
κ

⋅ [(1 + ( μ+σω − a)2) ( ̃r − r)2 + 84 + (
R
̃r )
n+2 Cρ(θ̃)

θ̃
1
r2
( ̃r − r)2

θ̃ − θ
].

Then, by Lemma 2.11, we get the thesis provided that

y0 ⩽ c− κ
κ−1 16− κ2(κ−1)2

and choosing
ν = c− κ

κ−1 16− κ2(κ−1)2 .
The proof is finished.

Similarly, one can prove the following proposition.

Proposition 4.3. Consider (x̄, ̄t) ∈ Ω × (0, T) and R > 0 such that

QR = QR(x̄, ̄t) ⊂ Ω × (0, T).

Let h∗ = h∗(x̄, ̄t, R). Consider ̂r, ̃r, θ̂, θ̃ satisfying
0 < ̂r < ̃r ⩽ R, 0 < θ̂ < θ̃ such that Q ̃r,θ̃(x̄, ̄t) ⊂ Ω × (0, T).

Then, for every choice of a, σ ∈ (0, 1), every u ∈ DG(Ω, T, ρ, γ) and every μ−, ω satisfying

μ− ⩽ inf
Q ̃r,θ̃(x̄, ̄t) u, ω ⩾ oscQ ̃r,θ̃(x̄, ̄t) u,

there is ν, depending (only) on γ, 1 − a, κ, γB ̃r(x̄), Γ, ̃r−1, θ̃−1, R/ ̃r, cρ(R/ ̃r), Cρ(θ̃), ̃r − r, θ̃ − θ, and μ−
σω , such that

if
|{(x, t) ∈ Q ̃r,θ̃(x̄, ̄t) | u(x, t) < μ− + σω}|

|Q ̃r,θ̃(x̄, ̄t)| +
ρ({(x, t) ∈ Q ̃r,θ̃(x̄, ̄t) | u(x, t) < μ− + σω})

ρ(Q ̃r,θ̃(x̄, ̄t)) ⩽ ν,

then
u(x, t) ⩾ μ− + aσω for a.e. (x, t) ∈ Q ̂r,θ̂(x̄, ̄t).
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Remark 4.4. Fix (x̃, ̃t) ∈ Ω × (0, T) and h > 0 and set

Dr(h; ̃t)(x̃) := {x ∈ Br(x̃) | u(x, ̃t) < h}.

Observe that the condition u(x, ̃t) ⩾ h for every x ∈ Br(x̃) implies D4r(h; ̃t)(x̃) ⊂ B4r(x̃) \ Br(x̃), and thus

ρ( ̃t)(D4r(h; ̃t)(x̃)) ⩽ (1 −
1
c2ρ
)ρ( ̃t)(B4r(x̃)).

Lemma 4.5. Consider (ȳ, ̄s) for which, given R, r, θ > 0,

B4r(ȳ) ⊆ BR(ȳ),
QR(ȳ, ̄s) = BR(ȳ) × ( ̄s, ̄s + h∗) ⊂ Ω × (0, T), h∗ = h∗(ȳ, ̄s, R),

Q4r,θ(ȳ, ̄s) = B4r(ȳ) × ( ̄s, ̄s + 16θr2h∗) ⊂ Ω × (0, T).
Then there exist ϑ ∈ (0, θ), ϑ depending on ρ( ̄s)(B4r(ȳ)), and η ∈ (0, 1) such that, given h > 0 and u ⩾ 0 in
DG(Ω, T, ρ, γ) for which

u(x, ̄s) ⩾ h a.e. in Br(ȳ),

it holds
ρ(t)(D4r(ηh; t)(ȳ)) < (1 −

1
2c2ρ
)ρ(t)(B4r(ȳ))

for every t ∈ [ ̄s, ̄s + ϑ(4r)2h∗(ȳ, ̄s, R)].
Proof. In the following, we set

Dr,θ(k) = {(x, t) ∈ Qr,θ(ȳ, ̄s) | u(x, t) < k}.

Consider σ ∈ (0, 1) and a function ζ ∈ Xc, ζ = ζ(x), satisfying

ζ ≡ 1 in B4r(1−σ)(ȳ),
ζ ≡ 0 outside of B4r(ȳ),
0 ⩽ ζ ⩽ 1,

|Dζ| ⩽ 1
4rσ .

Consider ϑ > 0 to be fixed below. We apply now the energy estimate (3.1) with this choice of ζ to the function
(u − h)− and get

sup
t∈( ̄s, ̄s+ϑ(4r)2h∗) ∫

B4r(1−σ) (u − h)
2−ρ(x, t) dx

⩽ ∫
B4r

(u − h)2−ρ(x, ̄s) dx + γ( 1
(4rσ)2
+ 1)[

̄s+ϑ(4r)2h∗
∫̄s ∫

B4r

(u − h)2− dx dt + h2|D4r,ϑ(h)|].

Now, using Remark 4.4 to estimate the first term on the right-hand side, and the fact that u(x, ̄s) ⩾ 0 implies
(u − h)−(x, ̄s) ⩽ h, to estimate the first term we get

sup
t∈( ̄s, ̄s+ϑ(4r)2h∗) ∫

B4r(1−σ) (u − h)
2−ρ(x, t) dx ⩽ h2(1 − 1

c2ρ
)ρ( ̄s)(B4r(ȳ)) + 2γ(

1
(4rσ)2
+ 1)h2|D4r,ϑ(h)|.

Writing, for some η ∈ (0, 1) to be fixed and for t ∈ ( ̄s, ̄s + ϑ(4r)2h∗),
D4r(ηh; t)(ȳ) = D4r(1−σ)(ηh; t)(ȳ) ∪ ({x ∈ B4r(ȳ) \ B4r(1−σ)(ȳ) | u(x, t) < η}),

we derive that

ρ(t)(D4r(ηh; t)(ȳ)) ⩽ ρ(t)(D4r(1−σ)(ηh; t)(ȳ)) + ρ(t)(B4r(ȳ) \ B4r(1−σ)(ȳ)).
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On the other hand,

∫
B4r(1−σ) (u − h)

2−ρ(x, t) dx ⩾ ∫
D4r(1−σ)(ηh;t)(ȳ)(u − h)2−ρ(x, t) dx
⩾ h2(1 − η)2ρ(t)(D4r(1−σ)(ηh; t)(ȳ)).

Finally, we obtain

ρ(t)(D4r(ηh; t)(ȳ)) ⩽ ρ(t)(D4r(1−σ)(ηh; t)(ȳ)) + ρ(t)(B4r(ȳ) \ B4r(1−σ)(ȳ))
⩽

1
h2(1 − η)2

∫
B4r(1−σ) (u − h)

2−ρ(x, t) dx + ρ(t)(B4r(ȳ) \ B4r(1−σ)(ȳ))
⩽

1
(1 − η)2

[(1 − 1
c2ρ
)ρ( ̄s)(B4r(ȳ)) + 2γ(

1
(4rσ)2
+ 1)|D4r,ϑ(h)|]

+ ρ(t)(B4r(ȳ) \ B4r(1−σ)(ȳ)) (4.8)

for every t ∈ ( ̄s, ̄s + ϑ(4r)2h∗). Now we argue by contradiction: if the thesis were not true, then for every
ϑ, η ∈ (0, 1) we would have τ ∈ ( ̄s, ̄s + ϑ(4r)2h∗) for which

ρ(τ)(D4r(ηh; τ)(ȳ)) ⩾ (1 −
1
2c2ρ
)ρ(τ)(B4r(ȳ)).

By this and (4.8) (with t = τ), we would get

(1 − 1
2c2ρ
)ρ(τ)(B4r(ȳ))

⩽ ρ(τ)(B4r(ȳ) \ B4r(1−σ)(ȳ)) + 1
(1 − η)2

[(1 − 1
c2ρ
)ρ( ̄s)(B4r(ȳ)) + 2γ(

1
(4rσ)2
+ 1)|D4r,ϑ(h)|].

Then we could choose ϑ depending on σ in such a way that

lim
σ→0+ |D4r,ϑ(h)|

σ2
= 0.

By the uniform continuity (see Lemma 2.4) of the function [0, T] ∋ t → ρ(t)(B4r(ȳ)), we have that for every
ε > 0 there is δ > 0 such that if

ϑ(4r)2h∗(ȳ, ̄s, R) < δ,
then

|ρ(t2)(B4r(ȳ)) − ρ(t1)(B4r(ȳ))| < ε for every t1, t2 ∈ [ ̄s, ̄s + ϑ(4r)2h∗(ȳ, ̄s, R)].
Then, adding and subtracting on the left-hand side the term ρ( ̄s)(B4r(ȳ)), letting σ go to zero and dividing by
ρ( ̄s)(B4r(ȳ)), we would get

(1 − 1
2c2ρ
) ⩽

1
(1 − η)2

(1 − 1
c2ρ
) + (1 − 1

2c2ρ
)

ε
ρ( ̄s)(B4r(ȳ))

.

Since this inequality holds independently of the values of η and ε, we would have a contradiction. Notice
that, having to choose ε(ρ( ̄s)(B4r(ȳ)))−1 small enough and δ depending on ε, the value of ϑ depends on
ρ( ̄s)(B4r(ȳ)). Indeed, we could choose η and ε satisfying

1
(1 − η)2

(1 − 1
c2ρ
) < α(1 − 1

2c2ρ
),

(1 − 1
2c2ρ
)

ε
ρ( ̄s)(B4r(ȳ))

< (1 − α)(1 − 1
2c2ρ
)

for some α ∈ (0, 1). These imply to choose

α(1 − η)2 > (1 − 1
c2ρ
)(1 − 1

2c2ρ
)
−1
,

ε < (1 − α)ρ( ̄s)(B4r(ȳ)).

Once one chose η and α satisfying the first inequality, one can choose ε, and consequently ϑ.
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Lemma 4.6. Consider r, θ > 0, (ȳ, ̄s) for which

QR(ȳ, ̄s) = BR(ȳ) × ( ̄s, ̄s + h∗) ⊂ Ω × (0, T),
with R = 5r and h∗ = h∗(ȳ, ̄s, 5r), and

Q4r,θ(ȳ, ̄s) = B4r(ȳ) × ( ̄s, ̄s + θ(4r)2h∗) ⊂ Ω × (0, T).
Consider u ∈ DG(Ω, T, ρ, γ), u ⩾ 0, and h > 0, such that

u(x, ̄s) ⩾ h a.e. in Br(ȳ).

Consider ϑ ∈ (0, θ) as in Lemma 4.5 and suppose moreover that

B5r(ȳ) × ( ̄s − ϑ(4r)2h∗ ̄s + ϑ(4r)2h∗) ⊂ Ω × (0, T) with h∗ = h∗(ȳ, ̄s, 5r).
Then there is p ⩾ 1 and for every ε > 0 there exists

η1 = η1(ε, n, p, γ, Γ, cρ , γB4r(ȳ), γB5r(ȳ), ϑ, r, h∗/h∗) ∈ (0, 1)
such that

ρ([u < η1h] ∩ (B4r(ȳ) × ( ̄s, ̄s + ϑ(4r)2h∗))) < ερ(B4r(ȳ) × ( ̄s, ̄s + ϑ(4r)2h∗)),
|[u < η1h] ∩ (B4r(ȳ) × ( ̄s, ̄s + ϑ(4r)2h∗))| < (K3ε)1/p|B4r(ȳ) × ( ̄s, ̄s + ϑ(4r)2h∗)|.

Remark 4.7. Notice that, observing the dependence of ϑ on ρ( ̄s)(B4r(ȳ)) in Lemma 4.5, one obtains that the
smaller ρ( ̄s)(B4r(ȳ)) is, the smaller ϑ, and thus also η1, is.

Proof. Consider η > 0, m ∈ ℕ and, for u and h as in the assumptions, consider the function (u − ηh2−m)−.
Setting

Ar(h; s)(y) := {x ∈ Br(y) | u(x, s) > h},
Dr(h; s)(y) := {x ∈ Br(y) | u(x, s) < h},

by Lemma 2.10 (taking k = ηh/2m, l = ηh/2m−1, p ∈ (1, 2) and ω = ρ(σ)) for each σ ∈ ( ̄s, ̄s + θ(4r)2h∗), we
get

∫
B4r(ȳ)(u − ηh2m )−ρ(x, σ) dx
⩽
ηh
2m ρ(σ)(D4r(ηh2−m; σ)(ȳ))
⩽

2Γr(ρ(σ)(B4r))2

ρ(σ)(A4r(ηh2−m+1; σ)(ȳ))( 1
|B4r|

∫
D4r(ηh2−m+1;σ)(ȳ)\D4r(ηh2−m;σ)(ȳ) |Du(x, σ)|p dx)

1
p
. (4.9)

Now, since (at least for m ⩾ 2)

A4r(ηh2−m+1; σ)(ȳ) ⊇ B4r(ȳ) \ D4r(ηh; σ)(ȳ),

if we consider η ∈ (0, 1) as in Lemma 4.5, we get

ρ(σ)(A4r(ηh2−m+1; σ)(ȳ)) > (1 − 1
2c2ρ
)ρ(σ)(B4r(ȳ))

for every σ ∈ [ ̄s, ̄s + ϑ(4r)2h∗]. Then, by that and (4.9), we derive
∫

B4r(ȳ)(u − ηh2m )−ρ(x, σ) dx <
4Γc2ρrρ(σ)(B4r)

2c2ρ − 1
(

1
|B4r|

∫
D4r(ηh2−m+1;σ)(ȳ)\D4r(ηh2−m;σ)(ȳ) |Du(x, σ)|p dx)

1
p
. (4.10)
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Now we define the sequences

am :=
̄s+ϑ(4r)2h∗
∫̄s ρ(σ)(D4r(ηh2−m; σ)(ȳ)) dσ = ρ(Q4r,ϑ(ȳ, ̄s) ∩ {u < ηh2m }),

bm :=
̄s+ϑ(4r)2h∗
∫̄s |D4r(ηh2−m; σ)(ȳ)| dσ = Q4r,ϑ(ȳ, ̄s) ∩ {u < ηh2m }

.

Notice that, integrating the left-hand side in (4.10), we get̄s+ϑ(4r)2h∗
∫̄s ∫

B4r(ȳ)(u − ηh2m )−ρ dx dσ ⩾ ηh
2m+1 am+1. (4.11)

While integrating the right-hand side and using (C1), we obtain̄s+ϑ(4r)2h∗
∫̄s ρ(σ)(B4r)(

1
|B4r|

∫
D4r(ηh2−m+1;σ)(ȳ)\D4r(ηh2−m;σ)(ȳ) |Du(x, σ)|p dx)

1
p
dσ

⩽ max̄s⩽σ⩽ ̄s+ϑ(4r)2h∗ ρ(σ)(B4r) (ϑ(4r)2h∗) p−1p|B4r|
1
p
(

̄s+ϑ(4r)2h∗
∫̄s ∫

D4r(ηh2−m+1;σ)(ȳ)\D4r(ηh2−m;σ)(ȳ) |Du|p dx dσ)
1
p

⩽
γB4rρ(B4r(ȳ) × ( ̄s, ̄s + ϑ(4r)2h∗))

(ϑ(4r)2h∗|B4r|) 1p ( ∬

Q4r,ϑ

D(u −
ηh
2m )−2 dx dσ) 12 (bm−1 − bm) 2−p2p . (4.12)

We want to estimate
∬

Q4r,ϑ

|D(u − ηh2m )−|2 dx dσ.
To do that consider a function ζ ∈ Xc satisfying

ζ ≡ 1 in Q4r,ϑ = Q4r,ϑ(ȳ, ̄s) = B4r(ȳ) × ( ̄s, ̄s + ϑ(4r)2h∗),
ζ ≡ 0 outside of B5r(ȳ) × ( ̄s − ϑ(4r)2h∗, ̄s + ϑ(4r)2h∗) for t ⩽ ̄s + ϑ(4r)2h∗,
0 ⩽ ζ ⩽ 1,

|Dζ| ⩽ 1
r
,

0 ⩽ ζt ⩽
1

ϑ(4r)2h∗ .
Then apply (3.1) to the function (u − ηh2−m)− for some η > 0, m ∈ ℕ and ζ as above:̄s+ϑ(4r)2h∗

∫̄s ∫
B4r

D(u −
ηh
2m )−2(x, t) dx dt

⩽ γ
̄s+ϑ(4r)2h∗
∫̄s−ϑ(4r)2h∗ ∫B5r

(u − ηh2m )
2−(|Dζ|2 + ζζtρ) dx dt

⩽
γ
r2
[

̄s+ϑ(4r)2h∗
∫̄s−ϑ(4r)2h∗ ∫B5r

(u − ηh2m )
2− dx dt + 1

ϑ(4r)2h∗
̄s+ϑ(4r)2h∗
∫̄s−ϑ(4r)2h∗ ∫B5r

(u − ηh2m )
2−ρ dx dt]

⩽
γ
r2

η2h2

22m
[ϑ(4r)2(h∗ + h∗)|B5r| + 1

ϑ(4r)2h∗ ρ(B5r(ȳ) × ( ̄s − ϑ(4r)2h∗, ̄s + ϑ(4r)2h∗))]
=

γ
r2

η2h2

22m
|B5r|[ϑ(4r)2(h∗ + h∗) + 2516 1ϑ ρ(B5r(ȳ) × ( ̄s − ϑ(4r)2h∗, ̄s + ϑ(4r)2h∗))ρ(B5r(ȳ) × ( ̄s − (5r)2h∗, ̄s)) ]. (4.13)
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From (4.10)–(4.13), we get

ηh
2m+1 am+1 < 4Γc2ρr

2c2ρ − 1
γB4rρ(B4r(ȳ) × ( ̄s, ̄s + ϑ(4r)2h∗))

(ϑ(4r)2h∗|B4r|) 1p γ 1
2

r
ηh
2m |B5r|

1
2

⋅ [ϑ(4r)2(h∗ + h∗) + 2516 1ϑ ρ(B5r(ȳ) × ( ̄s − ϑ(4r)2h∗, ̄s + ϑ(4r)2h∗))ρ(B5r(ȳ) × ( ̄s − (5r)2h∗, ̄s)) ]
1
2 (bm−1 − bm) 2−p2p .

Since

ρ(B5r(ȳ) × ( ̄s − ϑ(4r)2h∗, ̄s + ϑ(4r)2h∗))
ρ(B5r(ȳ) × ( ̄s − (5r)2h∗, ̄s)) ⩽

ϑ(4r)2(h∗ + h∗)γB5r min ̄s−ϑ(4r)2h∗⩽σ⩽ ̄s+ϑ(4r)2h∗ ρ(σ)(B5r(ȳ))
(5r)2h∗min ̄s−(5r)2h∗⩽σ⩽ ̄s ρ(σ)(B5r(ȳ))

⩽
16
25

ϑ(h∗ + h∗)γB5r

h∗
and

|B5r|
1
2

|B4r|
1
p
⩽
|B8r|

1
2

|B4r|
1
p
⩽
√2n|B4r|

1
2

|B4r|
1
p
=
√2n

|B4r|
2−p
2p

,

we get

a
2p
2−p
m+1 < (8Γc2ρ√γγB4r

2c2ρ − 1
)

2p
2−p (ρ(B4r(ȳ) × ( ̄s, ̄s + ϑ(4r)2h∗))) 2p2−p

(ϑ(4r)2h∗) 2
2−p (2n)

p
2−p
|B4r|

⋅ [ϑ(4r)2(h∗ + h∗) + (h∗ + h∗)γB5r

h∗ ]
p

2−p (bm−1 − bm).
First of all, notice that, by this and since {bm}m is decreasing, one gets that the fact that+∞

∑
m=1 a 2p

2−p
m+1

converges, implies
lim

m→+∞ am = 0.
More precisely, we estimate the generic term am: setting the quantity

Q := (
8Γc2ρ√γγB4r

2c2ρ − 1
)

2p
2−p (ρ(B4r(ȳ) × ( ̄s, ̄s + ϑ(4r)2h∗))) 2p2−p

(ϑ(4r)2h∗) 2
2−p (2n)

p
2−p
|B4r|

⋅ [ϑ(4r)2(h∗ + h∗) + γB5r

h∗ + h∗
h∗ ] p

2−p ,
summing till a generic mo ∈ ℕ and since {am}m is decreasing, we get

moa
2p
2−p
mo+1 ⩽ mo

∑
m=1 a 2p

2−p
m+1 < Q(b0 − bmo ) < Qb0.

Since
b0 = |Q4r,ϑ(ȳ, ̄s) ∩ {u < ηh}| < |Q4r,ϑ(ȳ, ̄s)| = ϑ(4r)2h∗|B4r(ȳ)|

we get

moa
2p
2−p
mo+1 < Qϑ(4r)2h∗|B4r(ȳ)|.

Finally,
amo+1 < Cρ(B4r(ȳ) × ( ̄s, ̄s + ϑ(4r)2h∗)),

where

C := ( 1mo
)

2−p
2p (

8Γc2ρ√γγB4r

2c2ρ − 1
)√

h∗ + h∗
h∗ √2n(1 + γB5r

ϑ(4r)2
).

Now, once we fixed ε > 0, requiring that C ⩽ ε, we can find mo for which the first point of the thesis is true.
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To get the second point, by (C3) and Remark 2.3, we also get that there is p ⩾ 1 such that
|[u < η1h] ∩ (B4r(ȳ) × ( ̄s, ̄s + ϑ(4r)2h∗))|p
|B4r(ȳ) × ( ̄s, ̄s + ϑ(4r)2h∗)|p
⩽ K3

ρ([u < η1h] ∩ (B4r(ȳ) × ( ̄s, ̄s + ϑ(4r)2h∗)))
ρ(B4r(ȳ) × ( ̄s, ̄s + ϑ(4r)2h∗))

< K3ε,

by which
|[u < η1h] ∩ (B4r(ȳ) × ( ̄s, ̄s + ϑ(4r)2h∗))| < (K3ε)1/p|B4r(ȳ) × ( ̄s, ̄s + ϑ(4r)2h∗)|,

as desired.

Theorem 4.8. Consider (xo , to) and r > 0 such that

B5r(xo) × (to − (5r)2h∗, to + (5r)2h∗) ⊂ Ω × (0, T),
where

h∗ = h∗(xo , to , 5r), h∗ = h∗(xo , to , 5r).
Let ϑ ∈ (0, 1) be the value determined in Lemma 4.5 corresponding to θ = 1. Then, for every ϑ̄ ∈ (0, ϑ), there is
λ ∈ (0, 1) depending only on K3, n, p, γ, Γ, cρ, γB4r(xo), γB5r(xo), ϑ, r, and h∗/h∗, such that, for every h > 0 and
u ⩾ 0 in DG(Ω, T, ρ, γ), if

u( ⋅ , to) ⩾ h a.e. in Br(xo),
then

u ⩾ λh a.e. in B2r(xo) × [to + ϑ̄(5r)2h∗(xo , to , 5r), to + ϑ(5r)2h∗(xo , to , 5r)].
Remark 4.9. As observed after Lemma 4.6 and since λ depends on the same quantities onwhich η1 depends,
we have that the smaller ρ(to)(B4r(xo)) is, the smaller ϑ and λ are.

Proof. In Proposition 4.3, consider x̄ = xo, ̄t = to + ϑ(5r)2h∗(xo , to , 5r), μ− = 0, σω = c (with c arbitrary, to be
chosen later), R = 5r, ̃r = 4r, ̂r = 2r, and θ̃ = ϑ where ϑ is the value determined in Lemma 4.5 corresponding
to θ = 1. Notice that

Q4r,ϑ(x̄, ̄t) = B4r(x̄) × ( ̄t − ϑ(5r)2h∗(xo , to , 5r), ̄t)
= B4r(xo) × (to , to + ϑ(5r)2h∗(xo , to , 5r))
= Q4r,ϑ(xo , to).

Similarly, for any ϑ̂ ∈ (0, ϑ),

Q2r,ϑ̂(x̄, ̄t) = B2r(x̄) × ( ̄t − ϑ̂(5r)
2h∗(xo , to , 5r), ̄t)

= B2r(xo) × (to + (ϑ − ϑ̂)(5r)2h∗(xo , to , 5r), to + ϑ(5r)2h∗(xo , to , 5r)).
Now, given a ∈ (0, 1) and for every ϑ̂ ∈ (0, ϑ), we get the existence of ν̄ > 0 such that if

|{(x, t) ∈ Q4r,ϑ(x̄, ̄t) | u(x, t) < c}|
|Q4r,ϑ(x̄, ̄t)|

+
ρ({(x, t) ∈ Q4r,ϑ(x̄, ̄t) | u(x, t) < c})

ρ(Q4r,ϑ(x̄, ̄t))
⩽ ν̄,

then
u(x, t) ⩾ ac for a.e. (x, t) ∈ Q2r,ϑ̂(x̄, ̄t).

To conclude, consider
ϑ̄ = ϑ − ϑ̂,

which is arbitrary in (0, ϑ), and consider ε > 0 such that

ε + (K3ε)1/p = ν̄.
Corresponding to this value of ε, we get the existence of η1 such that Lemma 4.6, with ȳ = x̄ = xo and ̄s = to,
holds. Choosing then c = η1h, we conclude taking λ = aη1. Choosing, for instance, a = 1

2 , we drop the depen-
dence of a, and then λ depends on the same constants on which η1 depends and, since η1 depends also on
ε, consequently λ also depends on K3, p and on the constants on which η1 depends.
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5 The Harnack inequality
Theorem 5.1. There exists η such that for every constant c ∈ (0, 1], every u ∈ DG(Ω, T, ρ, γ), u ⩾ 0, every
(xo , to) ∈ Ω × (0, T), and r > 0 such that

B5r(xo) × (to − (5r)2h∗(xo , to , 5r), to + (5r)2h∗(xo , to , 5r) ⊂ Ω × (0, T)
and

Br(xo) × (to , to + 5r2h∗(xo , to , r)) ⊂ Ω × (0, T),
one has that

u(xo , to) ⩽ η inf
Br(xo) u(x, to + cr2h∗(xo , to , r)),

where we recall that

h∗(xo , to , r) = 1
r2|Br(xo)|

to+r2
∫
to

∫
Br(xo) ρ(x, t) dx dt.

The constant η depends (only) on K3, n, p, γ, Γ, cρ, γ, r, ρ(to)(Br(xo)), and h∗(xo , to , r), where
γ := max{γB4r(xo), γB5r(xo), sup{γBρ(y)  ρ ∈ (0, 5r2 ), y ∈ (0, r)}}.

Similarly, one can prove the following theorem.

Theorem 5.2. There exists η̃ such that for every constant c ∈ (0, 1], every u ∈ DG(Ω, T, ρ, γ), u ⩾ 0, every
(xo , to) ∈ Ω × (0, T), and r > 0 such that

B5r(xo) × (to − (5r)2h∗(xo , to , 5r), to + (5r)2h∗(xo , to , 5r)) ⊂ Ω × (0, T)
and

Br(xo) × (to − 3r2h∗(xo , to , r), to) ⊂ Ω × (0, T),
one has that

η̃ sup
Br(xo) u(x, to − cr2h∗(xo , to , r)) ⩽ u(xo , to).

Proof of Theorem 5.1. For the sake of simplicity, we suppose that to = 0, which is always possible up to
a translation.

We may write u(xo , 0) = br−ξ for some b, ξ > 0 to be fixed later. Define the functions

M (s) = sup
Cs(xo ,0) u, N (s) = b(r − s)−ξ , s ∈ [0, r),

where, for a generic point (υ, σ) ∈ Ω × (0, T),

Cs(υ, σ) = Bs(υ) × (σ − s2h∗(xo , 0, r), σ).
Let us denote by so ∈ [0, r) the largest solution of M (s) = N (s) (notice that 0 is a solution). Define

M := N (so) = b(r − so)−ξ .
We can find (yo , τo) ∈ Cso (xo , 0) such that

3
4M < sup

C ro
4
(yo ,τo) u ⩽ M, (5.1)

where ro = (r − so)/2. In this way, we get

Cro (yo , τo) ⊂ C r+so
2
(xo , 0),

and therefore
sup

Cro (yo ,τo) u ⩽ sup
C r+so

2
(xo ,0) u =M (

r + so
2 ) < N (

r + so
2 ) = 2

ξM.

We now proceed dividing the proof in seven steps.
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Step 1. In this step, we want to show that there is ν̄ ∈ (0, 1) such that

ρ({u > M2 } ∩ Cro/2(yo , τo)) > ν̄ρ(Cro/2(yo , τo)). (5.2)

To prove that, we prove first that there is ̄ν̄ ∈ (0, 1) such that

ρ({u > M
2 } ∩ Cro/2(yo , τo))

ρ(Cro/2(yo , τo)) +
|{u > M

2 } ∩ Cro/2(yo , τo)|
|Cro/2(yo , τo)| > ̄ν̄. (5.3)

Assume, by contradiction, that this is not true. Taking, in Proposition 4.1,

(x̄, ̄t) = (yo , τo),

r = ro4 ,

̃r = ro2 ,

R = r,

θ̃h∗(yo , τo , r) = ( ro2 )2h∗(xo , 0, r),
θh∗(yo , τo , r) = ( ro4 )2h∗(xo , 0, r),

μ+ = ω = 2ξM,
σ = 1 − 2−ξ−1,
a = σ−1(1 − 3

2ξ+2 ),
we obtain that

u ⩽ 3M4 in C ro
4
(yo , τo),

which contradicts (5.1). Notice that, according to Proposition 4.1, ̄ν̄ depends on γ, ξ , M, κ, γB ro
2
(yo), Γ, r−1o ,

r/ro, cρ(r/ro), h∗(yo , τo , r)/h∗(xo , 0, r), Cρ(h∗(yo , τo , r)/h∗(xo , 0, r)), ro, and h∗(xo , 0, r).
Now, by (5.3), we derive that at least one of the two addends is greater than ̄ν̄/2. If

ρ({u > M
2 } ∩ Cro/2(yo , τo))

ρ(Cro/2(yo , τo)) >
̄ν̄
2

and since ρ ∈ A∞(K3, σ), we get that

ρ({u > M
2 } ∩ Cro/2(yo , τo))

ρ(Cro/2(yo , τo)) ⩽ K3(
|{u > M

2 } ∩ Cro/2(yo , τo)|
|Cro/2(yo , τo)| )

σ
.

Then
|{u > M

2 } ∩ Cro/2(yo , τo)|
|Cro/2(yo , τo)| > (

1
K3

̄ν̄
2)

1
σ .

In this case, we consider

ν̄ := min{
̄ν̄
2 , (

1
K3

̄ν̄
2)

1
σ }.

If instead
|{u > M

2 } ∩ Cro/2(yo , τo)|
|Cro/2(yo , τo)| >

̄ν̄
2 ,

by (C3) we get that

(
|{u > M

2 } ∩ Cro/2(yo , τo)|
|Cro/2(yo , τo)| )

p
⩽ K3

ρ({u > M
2 } ∩ Cro/2(yo , τo))

ρ(Cro/2(yo , τo)) .

In this case, we consider

ν̄ := min{
̄ν̄
2 , (

1
K3

̄ν̄
2)

p
}.
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Step 2. In this step, we want to prove that

∬
Cro/2(yo ,τo) |Du|2 dx dt ⩽ C(2ξM)2|Bro (yo)|,

where
C = γ((4 + r2o)h∗(xo , 0, r) + 43 ρ(Bro (yo) × (τo − r2oh∗(xo , 0, r), τo))

|Bro (yo)|r2oh∗(xo , 0, r) ).

Consider a function ζ defined in Ω × (0, τo] such that

ζ ≡ 1 in B ro
2
(yo) × (τo − (

ro
2 )

2
h∗(xo , 0, r), τo),

ζ ≡ 0 outside of Cro (yo , τo) for t ⩽ τo ,
0 ⩽ ζ ⩽ 1,

|Dζ| ⩽ 2
ro
,

0 ⩽ ζt ⩽
4
3
1
r2o

1
h∗(xo , 0, r) .

Using this function ζ in (3.1), taking k = 0 and since u ⩽ 2ξM in Cro (yo , τo), we get that
τo

∫

τo− r2o4 h∗(xo ,0,r) ∫Bro/2 |Du|
2 dx dt

⩽ γ
τo

∫

τo−r2oh∗(xo ,0,r) ∫Bro

u2(|Dζ|2 + ζζtρ + ζ 2) dx dt

⩽ γ[ 1
r2o
(2ξM)2(4|Bro (yo)|r2oh∗(xo , 0, r) + 43 ρ(Bro (yo) × (τo − r2oh∗(xo , 0, r), τo))

h∗(xo , 0, r) )

+ (2ξM)2|Bro (yo)|r2oh∗(xo , 0, r)]
⩽ γ(2ξM)2|Bro (yo)|[(4 + r2o)h∗(xo , 0, r) + 43 ρ(Bro (yo) × (τo − r2oh∗(xo , 0, r), τo))

|Bro (yo)|r2oh∗(xo , 0, r) ].

Step 3. The goal of this step is to show the existence of

̄t ∈ [τo −
r2o
4 h∗(xo , 0, r), τo]

such that
{{{{{{
{{{{{{
{

ρ( ̄t)({x ∈ B ro
2
(yo) | u(x, ̄t) > M

2 })

ρ( ̄t)(B ro
2
(yo))

>
ν̄

2γB ro
2
(yo) ,

∫
Bro/2(yo) |Du(x, ̄t)|2 dx ⩽ α

|Bro/2(yo)|
r2o/4

(2ξM)2,
(5.4)

where

α =
4γ2nγB ro

2
(yo)

ν̄h∗(xo , 0, r) [(4 + r2o)h∗(xo , 0, r) + 43 ρ(Bro (yo) × (τo − r2oh∗(xo , 0, r), τo))
|Bro (yo)|r2oh∗(xo , 0, r) ] (5.5)

and ν̄ has been determined in step 1. To do that, we define the following sets:

A(t) = {x ∈ B ro
2
(yo)
 u(x, t) ⩾

M
2 }

I = {t ∈ (τo − τ1, τo]
 ρ(t)(A(t)) >

ν̄
2γB ro

2
(yo) ρ(t)(B ro

2
(yo))},

Jα = {t ∈ (τo − τ1, τo]

∫

Bro/2(yo) |Du(x, t)|2 dx ⩽ α
|Bro/2(yo)|

r2o/4
(2ξM)2},
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with α > 0 and where, for the sake of simplicity, we denote by τ1 the quantity

τ1 :=
r2o
4 h∗(xo , 0, r).

By (5.2), we get

ν̄ min
t∈[τo−τ1 ,τo] ρ(t)(Bro/2(yo))τ1
<

τo

∫
τo−τ1 ρ(t)(A(t)) dt
= ∫

I

ρ(t)(A(t)) dt + ∫(τo−τ1 ,τo)\I ρ(t)(A(t)) dt
⩽ max

t∈[τo−τ1 ,τo] ρ(t)(B ro
2
(yo))|I| +

ν̄
2γB ro

2
(yo) max

t∈[τo−τ1 ,τo] ρ(t)(B ro
2
(yo))|(τo − τ1, τo) \ I|

⩽ max
t∈[τo−τ1 ,τo] ρ(t)(B ro

2
(yo))τ1[

|I|
τ1
+

ν̄
2γB ro

2
(yo) ]

⩽ γB ro
2
(yo) min

t∈[τo−τ1 ,τo] ρ(t)(B ro
2
(yo))τ1[

|I|
τ1
+

ν̄
2γB ro

2
(yo) ].

From this, using also (C1), we derive the following lower bound on I:

|I| > ν̄
2γB ro

2
(yo) τ1 = ν̄

2γB ro
2
(yo) r2o4 h∗(xo , 0, r).

On the other hand, by step 2 we get

α
|Bro/2(yo)|

r2o/4
(2ξM)2(τ1 − |Jα|)

⩽
τo

∫
τo−τ1 ∫Bro/2(yo) |Du|2 dx dt
⩽ γ(2ξM)2|Bro (yo)|((4 + r2o)h∗(xo , 0, r) + 43 ρ(Bro (yo) × (τo − r2oh∗(xo , 0, r), τo))

|Bro (yo)|r2oh∗(xo , 0, r) ),

by which

|Jα| ⩾
r2o
4 [h
∗(xo , 0, r) − γ2nα ((4 + r2o)h∗(xo , 0, r) + 43 ρ(Bro (yo) × (τo − r2oh∗(xo , 0, r), τo))

|Bro (yo)|r2oh∗(xo , 0, r) )].

Then, since

|I ∩ Jα| = |I| + |Jα| − |I ∪ Jα|

⩾
ν̄

2γB ro
2
(yo) r2o4 h∗(xo , 0, r)
+
r2o
4 [h
∗(xo , 0, r) − γ2nα ((4 + r2o)h∗(xo , 0, r) + 43 ρ(Bro (yo) × (τo − r2oh∗(xo , 0, r), τo))

|Bro (yo)|r2oh∗(xo , 0, r) )]

−
r2o
4 h∗(xo , 0, r)

⩾
ν̄

2γB ro
2
(yo) r2o4 h∗(xo , 0, r) − γ2nα r2o

4 ((4 + r
2
o)h∗(xo , 0, r) + 43 ρ(Bro (yo) × (τo − r2oh∗(xo , 0, r), τo))

|Bro (yo)|r2oh∗(xo , 0, r) ),

taking

1
α
=

ν̄
4γB ro

2
(yo) h∗(xo , 0, r) 1γ2n ((4 + r2o)h∗(xo , 0, r) + 43 ρ(Bro (yo) × (τo − r2oh∗(xo , 0, r), τo))

|Bro (yo)|r2oh∗(xo , 0, r) )
−1
,
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one gets that

|I ∩ Jα| = |I| + |Jα| − |I ∪ Jα| ⩾
ν̄

4γB ro
2
(yo) r2o4 h∗(xo , 0, r).

Then we get the existence of
̄t ∈ [τo −

r2o
4
ρ(Br(xo) × (0, r2))

r2|Br(xo)|
, τo]

such that (5.4) holds.

Step 4. The goal of this step is to show that for every δ ∈ (0, 1) there are η ∈ (0, 1) and x̂ ∈ Bro/2(yo) such that
Bη ro

2
(x̂) ⊂ B ro

2
(yo)

and
ρ( ̄t)({u( ⋅ , ̄t) ⩽ M4 } ∩ Bη ro

2
(x̂)) ⩽ δρ( ̄t)(Bη ro

2
(x̂)). (5.6)

To show this, it is sufficient to use step 3 and to apply Lemma 2.5 to the function u with ω = ρ( ̄t), a = M
2 ,

ε = 1
2 , r = ro/2, xo = yo,B = Bro/2(yo), and σ = ro/2, so that

Bσ = Bro (yo), β = ν̄
2γB ro

2
(yo) ,

and α is as defined in (5.5). Then we get (5.6).

Step 5. In this step, we want to show that an estimate like (5.6) holds also in a cylinder.
Precisely, we show that for every δ̄ ∈ (0, 1) there is ε ∈ (0, 1), which will depend only on δ̄, and

̄s = ( εηro4 )
2
h∗(x̂, ̄t, ηro4 )

such that (with x̂, ̄t, η, ro as in the previous step)

ρ({u ⩽ M8 } ∩ (Bεη ro
4
(x̂) × [ ̄t, ̄t + ̄s])) ⩽ δ̄ρ(Bεη ro

4
(x̂) × [ ̄t, ̄t + ̄s]). (5.7)

Apply the energy estimate (3.1) to the function (u − M
4 )− in the interval [ ̄t, ̄t + s] and ball Bηro/2(x̂), where ̄t is

the one satisfying (5.4) and (5.6), and s ⩽ ̄s with ε > 0 to be chosen.
As test function, consider a function ζ = ζ(x) such that ζ = 1 in Bηro/4(x̂), ζ = 0 outside of Bηro/2(x̂), and

|Dζ| ⩽ 4
ηro . Using also (5.6) and integrating in ( ̄t, ̄t + s] with s ∈ (0, ̄s], we get

∫
Bηro/4(x̂)(u −

M
4 )

2−ρ(x, s) dx
⩽ ∫
Bηro/2(x̂)(u −

M
4 )

2−ρ(x, ̄t) dx
+ γ( 16

η2r2o
+ 1)[

̄t+ ̄s
∫̄t ∫Bηro/2(x̂)(u −

M
4 )

2−(x, t) dx dt + M2

16

̄t+ ̄s
∫̄t ∫{u(t)< M4 } dx dt]

⩽ δM
2

16 ρ( ̄t)(Bη ro
2
(x̂)) + γ( 16

η2r2o
+ 1)M

2

16 2
̄s|Bηro/2(x̂)|

=
M2

16 [δ + 2ε
2γ(1 + η

2r2o
16 )h

∗(x̂, ̄t, ηro4 )]ρ( ̄t)(Bη ro
2
(x̂))

⩽ γBη ro
2
(x̂)M2

16 [δ + 2ε
2γ(1 + η

2r2o
16 )h

∗(x̂, ̄t, ηro4 )]ρ(s)(Bη ro
2
(x̂)),

where we recall that γB is defined in (C1). Now, after taking

B(s) = {x ∈ Bηro/4(x̂)  u(x, s) ⩽ M8 },
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we have that

∫
Bηro/4(x̂)(u −

M
4 )

2−(x, s)ρ(x, s) dx ⩾ ∫
B(s)(u − M4 )2−(x, s)ρ(x, s) dx ⩾ M

2

64 ρ(s)(B(s)).

Then, for every s ∈ [ ̄t, ̄t + ̄s],

M2

64 ρ(s)(B(s)) ⩽ γBη ro
2
(x̂)M2

16 [delta + 2ε
2γ(1 + η

2r2o
16 )h

∗(x̂, ̄t, ηro4 )]ρ(s)(Bη ro
2
(x̂))

⩽ cργBη ro
2
(x̂)M2

16 [δ + 2ε
2γ(1 + η

2r2o
16 )h

∗(x̂, ̄t, ηro4 )]ρ(s)(Bη ro
4
(x̂)).

Integrating in [ ̄t, ̄t + ̄s], we get

ρ({u ⩽ M8 } ∩ (Q
ηro
4 ,ε2 (x̂, ̄t)))

⩽ cργBη ro
2
(x̂)M2

16 [δ + 2ε
2γ(1 + η

2r2o
16 )h

∗(x̂, ̄t, ηro4 )]ρ(Q ηro
4 ,ε2 (x̂, ̄t)),

where Q
ηro
4 ,ε2 (x̂, ̄t), according to the definition (3.5) with R = ηro/4, is

Bη ro
4
(x̂) × [ ̄t, ̄t + ̄s] = Bη ro

4
(x̂) × [ ̄t, ̄t + (ε ηro4 )

2
h∗(x̂, ̄t, ηro4 )].

Now for any δ̄ ∈ (0, 1), since δ (chosen in step 4) and ε are arbitrarily chosen in (0, 1), one can find δ and ε
in such a way that

δ̄ = cργBη ro
2
(x̂)M2

16 [δ + 2ε
2γ(1 + η

2r2o
16 )h

∗(x̂, ̄t, ηro4 )].
Step 6. We want to show in this step that there is an instant ̂s such that

u(x, ̂s) ⩾ M
16 for a.e. x ∈ B ηro

8
(x̂). (5.8)

Setting ̂s := ̄t + ̄s, we have that

̂s := ̄t + ̄s = ̄t + (εηro/4)2h∗(x̂, ̄t, ηro4 ).
Then, by (3.3),

Q
ηro
4 ,ε2 (x̂, ̄t) = Bη ro

4
(x̂) × [ ̄t, ̄t + ̄s]

= Bη ro
4
(x̂) × [ ̂s − ̄s, ̂s]

= Bη ro
4
(x̂) × [ ̂s − ε2(ηro4 )

2
h∗(x̂, ̄t, ηro4 ), ̂s]

= Bη ro
4
(x̂) × [ ̂s − ε2(ηro4 )

2
h∗(x̂, ̄t + (ηro4 )2, ηro4 ), ̂s].

Writing

h∗(x̂, ̄t + (ηro4 )2, ηro4 ) = h∗(x̂, ̄t + ( ηro4 )2, ηro4 )h∗(x̂, ̂s, ηro4 ) h∗(x̂, ̂s, ηro4 )
and setting

α = ε2
h∗(x̂, ̄t + ( ηro4 )2, ηro4 )

h∗(x̂, ̂s, ηro4 ) ,

we get that (see also (3.5) for the definition of these cylinders)

Q
ηro
4 ,ε2 (x̂, ̄t) = Q ηro

4 ,α(x̂, ̂s). (5.9)

Notice that, since ε is arbitrarily chosen, we can always suppose that

Q ηro
4 ,α(x̂, ̂s) ⊂ Cso (xo , 0),
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so that
oscQ ηro

4 ,α(x̂, ̂s) u ⩽ 2ξM.

Now we come back to the previous step and observe that, since ρ ∈ A∞(K3, σ), we have (see (C3))

(
|{u ⩽ M

8 } ∩ (Q
ηro
2 ,ε2 (x̂, ̄t))|

|Q
ηro
2 ,ε2 (x̂, ̄t)|

)
p
⩽ K3

ρ({u ⩽ M
8 } ∩ (Q

ηro
2 ,ε2 (x̂, ̄t)))

ρ(Q
ηro
2 ,ε2 (x̂, ̄t))

.

Consequently, by (5.7),
|{u ⩽ M

8 } ∩ (Q
ηro
2 ,ε2 (x̂, ̄t))|

|Q
ηro
2 ,ε2 (x̂, ̄t)|

⩽ (K3 δ̄)
1
p .

Moreover, one can choose δ̄ in such a way that (K3 δ̄)1/p < 1. In this way, we get (using (5.9))
|{u ⩽ M

8 } ∩ (Q ηro
4 ,α(x̂, ̂s))|

|Q ηro
4 ,α(x̂, ̂s)|

+
ρ({u ⩽ M

8 } ∩ (Q ηro
4 ,α(x̂, ̂s)))

ρ(Q ηro
4 ,α(x̂, ̂s))

⩽ (K3 δ̄)
1
p + δ̄.

Now we use Proposition 4.3 in the cylinder Q ηro
4 ,α(x̂, ̂s) defined in (5.9) with

{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{
{

̂r = ηro8 ,

̃r = R = ηro4 ,

θ̃ = α,

θ̂ = α2 ,

μ− = 0,
a = 12 ,

σ = 1
2ξ8

,

ω = 2ξM.

(5.10)

By Proposition 4.3, we can choose δ̄ such that the value ν of Proposition 4.3 satisfies ν = δ̄ + (K3 δ̄)1/p. With
the choices (5.10) and this choice of δ̄, we derive that

u(x, t) ⩾ M
16 for a.e. (x, t) ∈ Q ηro

8 , α2 (x̂, ̂s),

and in particular (5.8).

Step 7. Denoting by ̂r the quantity ηro/8, by Theorem4.8 and by (5.8), we get the existence of ϑ ∈ (0, 1) such
that for every ϑ̄ ∈ (0, ϑ) there is λ > 0 such that

u ⩾ λ M16 a.e. in B2 ̂r(x̂) × [ ̂s + ϑ̄(5 ̂r)2h∗(x̂, ̂s, 5 ̂r), ̂s + ϑ(5 ̂r)2h∗(x̂, ̂s, 5 ̂r)].
Applying again Theorem 4.8 in B2 ̂r(x̂) × {t} for every

t ∈ [ ̂s + ϑ̄(5 ̂r)2h∗(x̂, ̂s, 5 ̂r), ̂s + ϑ(5 ̂r)2h∗(x̂, ̂s, 5 ̂r)],
we obtain

u ⩾ λ2 M16 a.e. in B4 ̂r(x̂) × ̂J2,
where

̂J2 = ⋃
ω∈[ϑ̄,ϑ][ ̂s + ω(5 ̂r)2h∗(x̂, ̂s, 5 ̂r) + ϑ̄(10 ̂r)2h∗(x̂, ̂s + ω(5 ̂r)2h∗(x̂, ̂s, 5 ̂r), 10 ̂r),

̂s + ω(5 ̂r)2h∗(x̂, ̂s, 5 ̂r) + ϑ(10 ̂r)2h∗(x̂, ̂s + ω(5 ̂r)2h∗(x̂, ̂s, 5 ̂r), 10 ̂r)].
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In particular,
u ⩾ λ2 M16 a.e. in B4 ̂r(x̂) × ̂I2,

where

̂I2 = [ ̂s + ϑ̄(5 ̂r)2h∗(x̂, ̂s, 5 ̂r) + ϑ̄(10 ̂r)2h∗(x̂, ̂s + ω(5 ̂r)2h∗(x̂, ̂s, 5 ̂r), 10 ̂r),
̂s + ϑ(5 ̂r)2h∗(x̂, ̂s, 5 ̂r) + ϑ(10 ̂r)2h∗(x̂, ̂s + ω(5 ̂r)2h∗(x̂, ̂s, 5 ̂r), 10 ̂r)].

Iterating this argument after m steps, one reaches

u ⩾ λm M
16 a.e. in B2m ̂r(x̂) × [ ̂sm , ̂tm],

where

̂s0 = ̂s,
̂s1 = ̂s + ϑ̄(5 ̂r)2h∗(x̂, ̂s, 5 ̂r) = ̂s0 + ϑ̄τ1,
̂s2 = ̂s + ϑ̄(5 ̂r)2h∗(x̂, ̂s, 5 ̂r) + ϑ̄(10 ̂r)2h∗(x̂, ̂s + ϑ̄(5 ̂r)2h∗(x̂, ̂s, 5 ̂r), 10 ̂r) = ̂s0 + ϑ̄τ1 + ϑ̄τ2 = ̂s1 + ϑ̄τ2,
̂s3 = ̂s2 + ϑ̄(20 ̂r)2h∗(x̂, ̂s2, 20 ̂r) = ̂s2 + ϑ̄τ3,
...
̂sm = ̂sm−1 + ϑ̄τm = ̂s + ϑ̄(τ1 + τ2 + . . . + τm),
τ1 = (5 ̂r)2h∗(x̂, ̂s, 5 ̂r),
τ2 = (10 ̂r)2h∗(x̂, ̂s + ϑ̄(5 ̂r)2h∗(x̂, ̂s, 5 ̂r), 10 ̂r),

...
τm = (52m−1 ̂r)2h∗(x̂, ̂sm−1, 52m−1 ̂r),
̂tk = ̂sk−1 + ϑ(τ1 + τ2 + . . . + τk), k = 1, . . .m.

Notice that, by definition, for k between 1 and m,

̂sk = ̂s + 25ϑ̄
k
∑
j=1 4j−1 ̂r2
(τj − τj−1)|B5⋅2j−1 ̂r(x̂)|

τj

∫
τj−1 ∫B5⋅2j−1 ̂r(x̂) ρ(x, t) dx dt = ̂s + 25ϑ̄ ̂r2

k
∑
j=14j−1 −∫−∫Cj ρ(x, t) dx dt,

̂tk = ̂s + 25ϑ ̂r2
k
∑
j=14j−1 −∫−∫Cj ρ(x, t) dx dt,

where
Cj := B5⋅2j−1 ̂r(x̂) × [τj−1, τj].

We can choose m in such a way that
2r ⩽ 2m ̂r ⩽ 4r. (5.11)

Here the estimate 2r ⩽ 2m ̂r ensures that B2m ̂r(x̂) ⊃ Br(xo) and that B2m ̂r(x̂) ⊂ B5r(xo). Now, according to the
choice of ro made in (5.1), we have that

̂r = ηro8 =
ηro
8 =

η(r − so)
16 .

Recalling that
M = b(r − so)−ξ ,

we have (now using 2m ̂r ⩽ 4r)

u ⩾ λm M
16 =

λm

16 b(r − so)
−ξ = λm16 b( η

16 ̂r
)
ξ
⩾ (2ξ λ)mbηξ2−6ξ−4r−ξ
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a.e. in B2m ̂r(x̂) × [ ̂sm , ̂tm]. First of all, we get rid of the dependence of m, still to be chosen, in the right-hand
side simply by choosing a value of the parameter ξ in such a way that

2ξ λ = 1,

that is, ξ = log2 λ−1 (remember that λ ∈ (0, 1)); consequently, one has fixed also the value of b. By this choice,
we have, in particular,

u ⩾ bηξ2−6ξ−4r−ξ = cou(xo , 0) a.e. in Br(xo) × [ ̂sm , ̂tm],

where
co := ηξ2−6ξ−4 and u(xo , 0) = bηξ2−6ξ−4r−ξ

for the choice made at the beginning of the proof. Now to conclude, we have to choose ̂sm and ̂tm in such
a way that

cr2h∗(xo , 0, r) ∈ [ ̂sm , ̂tm],
where c ∈ (0, 1] is arbitrarily chosen. Set, for simplicity,

ρj := −∫−∫
Cj

ρ(x, t) dx dt

and observe that ( ̂s < 0)

̂sm = ̂s + 25ϑ̄ ̂r2
m
∑
j=14j−1ρj

< 25ϑ̄ ̂r2
m
∑
j=14j−1ρj

⩽ 25ϑ̄ ̂r2 4
m − 1
3 max

j=0,...m−1 ρj
< 25ϑ̄ ̂r2 4

m

3 max
j=0,...m−1 ρj

⩽ 25ϑ̄4r3 max
j=0,...m−1 ρj ,

where in the last inequality we have used (5.11). To guarantee that ̂sm ⩽ cr2h∗(xo , 0, r), it is then sufficient
to require that

25ϑ̄16r
2

3 max
j=0,...m−1 ρj ⩽ cr2h∗(xo , 0, r)

that is,
ϑ̄ ⩽ 3

400
ch∗(xo , 0, r)

maxj=0,...m−1 ρj .
It remains in some sense to force ̂tm ⩾ cr2h∗(xo , 0, r). If this is true, we choose

η = c−1o
and we conclude. Otherwise, since ̂sm < cr2h∗(xo , 0, r), we consider ̃t > ̂sm such that

u(x, ̃t) ⩾ cou(xo , 0) a.e. in Br(xo).

We can suppose, taking ϑ̄ smaller than the choice made above if necessary, that

̃t + ϑ̄r2h∗(xo , 0, r) ⩽ cr2h∗(xo , 0, r).
By Theorem 4.8, we then get that

u(x, t) ⩾ λcou(xo , 0) a.e. in B2r(xo) × [ ̃t + ϑ̄(5r)2h∗(xo , ̃t, 5r), ̃t + ϑ(5r)2h∗(xo , ̃t, 5r)]. (5.12)
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Notice that
γ−1B5r(xo)h∗(xo , 0, 5r) ⩽ h∗(xo , ̃t, 5r) ⩽ γB5r(xo)h∗(xo , 0, 5r).

Then in particular, taking, if necessary, ϑ̄ smaller than before and anyway ϑ̄ < ϑγ−2B5r(xo), we have
u(x, t) ⩾ λcou(xo , 0)

a.e. in
Br(xo) × [ ̃t + ϑ̄γB5r(xo)(5r)2h∗(xo , 0, 5r), ̃t + ϑγ−1B5r(xo)(5r)2h∗(xo , 0, 5r)].

Now if
̃t + ϑγ−1B5r(xo)(5r)2h∗(xo , 0, 5r) > cr2h∗(xo , 0, r),

we can conclude taking
η = (λco)−1;

otherwise, we go on. Restarting from (5.12) restricted to Br(xo) and since λ ∈ (0, 1), we get that

u(x, t) ⩾ λ2cou(xo , 0)

a.e. in

Br(xo) × [ ̃t + ϑ̄(5r)2h∗(xo , ̃t, 5r) + ϑ̄(5r)2h∗(xo , ̃t + ϑ̄(5r)2h∗(xo , ̃t, 5r), 5r),
̃t + ϑ(5r)2h∗(xo , ̃t, 5r) + ϑ(5r)2h∗(xo , ̃t + ϑ̄(5r)2h∗(xo , ̃t, 5r), 5r)].

With the additional constraint

ϑ̄h∗(xo , ̃t, 5r) + ϑ̄h∗(xo , ̃t + ϑ̄(5r)2h∗(xo , ̃t, 5r), 5r) < ϑh∗(xo , ̃t, 5r),
we obtain

u(x, t) ⩾ λ2cou(xo , 0)

a.e. in

Br(xo) × [ ̃t + ϑ̄τ∗(xo , ̃t, 5r), ̃t + ϑ(5r)2h∗(xo , ̃t, 5r) + ϑ(5r)2h∗(xo , ̃t + ϑ̄(5r)2h∗(xo , ̃t, 5r), 5r)].
Now if

̃t + ϑh∗(xo , ̃t, 5r) + ϑh∗(xo , ̃t + ϑ̄(5r)2h∗(xo , ̃t, 5r), 5r) > ch∗(xo , 0, r),
one concludes choosing

η = (λ2co)−1.
Iterating this procedure, if necessary, k times, we get that

u(x, t) ⩾ λkcou(xo , 0) a.e. in Br(xo) × [ ̃t + ϑ̄(5r)2h∗(xo , ̃t, 5r), ̃t + ϑt∗k ],
where

t∗0 := 0,
t∗1 := (5r)2h∗(xo , ̃t, 5r),
t∗2 := (5r)2h∗(xo , ̃t, 5r) + (5r)2h∗(xo , ̃t + ϑ̄t∗1 , 5r),

...

t∗k := k−1∑
j=0(5r)2h∗(xo , ̃t + ϑ̄ j

∑
i=0 t∗i , 5r).

At this point, we need
̃t + ϑt∗k > cr2h∗(xo , 0, r).
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Since (by the definition of Cs(υ, σ) at the beginning of the proof)

̃t > −r2h∗(xo , 0, r),
the previous request is satisfied if

ϑt∗k > (c + 1)r2h∗(xo , 0, r).
Moreover, we want ̃t + ϑt∗k to remain in the domain, i.e.

̃t + ϑt∗k < 4r2h∗(xo , 0, r),
which is true if ϑt∗k < 5r2h∗(xo , 0, r). Since c ∈ (0, 1], we then require that

2h∗(xo , 0, r) < ϑ t∗kr2 < 5h∗(xo , 0, r).
Since, if necessary, ϑ can be taken smaller, one can always find k ∈ ℕ∗ such that the previous inequalities are
satisfied. Notice that k depends (only) on ϑ, ϑ̄ and on themean value of ρ in the cylinder Br(xo) × (to , to + r2),
and not on the function u. Nowwe conclude taking η = (λkco)−1. Notice that increasing k does not increase η,
and therefore η is independent of k.
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