
ar
X

iv
:a

st
ro

-p
h/

07
02

65
3v

1 
 2

6 
Fe

b 
20

07

Baryonic Acoustic Oscillations via the Renormalization Group
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A semi-analytic approach to the computation of the non-linear power-spectrum of dark matter
density fluctuations is proposed. The method is based on the Renormalization Group technique
and can be applied to any underlying cosmological model. Our prediction on the baryonic acoustic
oscillations in a ΛCDM model accurately fits the results of N-body simulations down to zero redshift,
where perturbation theory fails.
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Cosmological linear perturbation theory is a funda-
mental tool in the physics of the Cosmic Microwave Back-
ground (CMB), allowing a careful extraction of cosmo-
logical parameters from the data. In the case of Large-
Scale Structure, the accuracy of theoretical predictions
is not yet at the same level than for CMB, due to the
higher degree of non-linearity of the underlying density
fluctuations. For instance, the study of Baryonic Acous-
tic Oscillations (BAO) – a fundamental probe for Dark
Energy measurements – requires a precision of a few per-
cent in the theoretical predictions for the matter power-
spectrum (PS) in the wavenumber range k ≃ 0.05− 0.25
h/Mpc [1]. Including higher orders in PT [2] is known
to give a poor performance in this range, leaving N-body
simulations as the only viable approach to the problem.

Recently, however, perturbation theory (PT) has ex-
perienced a renewed interest, mainly motivated by two
reasons. First, next generation galaxy surveys are going
to measure the PS at large redshift, where the fluctua-
tions are still in the linear regime and 1-loop PT is ex-
pected to work [1]. Second, Crocce and Scoccimarro [3]
have shown that the perturbative expansion can be reor-
ganized in a very convenient way, which allows the use of
standard tools of field theory, like the Feynman diagrams.
They managed to compute the two-point correlator be-
tween density or velocity field fluctuations at different
times (the ‘propagator’) by resumming an infinite class
of diagrams at all orders in PT. Other approaches can be
found in Ref. [4].

In this Letter, we will proceed along the same path, by
implementing Wilsonian Renormalization Group (RG)
techniques to compute the PS. RG methods, widely used
in statistical mechanics and quantum field theory [5], are
particularly suited to physical situations in which there
is a separation between the scale where one is supposed
to control the ‘fundamental’ theory and the scale were
measurements are actually made. Starting from the fun-
damental scale, the RG flow describes the gradual inclu-
sion of fluctuations at scales closer and closer to the one

relevant to measurements. The new fluctuations which
are included at an intermediate step, feel an effective the-
ory, which has been ‘dressed’ by the fluctuations already
included. In the present case, the RG flow will start from
small wavenumbers k, where linear theory works, to reach
higher and higher k.

We will consider a self-gravitating system of Dark Mat-
ter (DM) particles which, in the “single-stream” ap-
proximation, is governed by the continuity, ∂τ δ + ∇ ·

[(1 + δ)v] = 0, and Euler equations ∂τ v+Hv+(v·∇)v =
−∇φ. Here τ is the conformal time, δ the mass-density
fluctuation, v the peculiar velocity, φ the peculiar gravi-
tational potential which, on subhorizon scales, obeys the
Poisson equation ∇2φ = 3

2 H
2 δ , with H = d ln a/dτ ,

having assumed an Einstein-de Sitter background cos-
mology.

Following Ref. [3] we introduce the doublet ϕa(k, η)
(a = 1, 2) – defined in Fourier space – given by (ϕ1, ϕ2) ≡
e−η (δ,−ik · v/H), where the time variable has been re-
placed by the logarithm of the scale factor, η = ln(a/ain),
ain being the scale factor at a conveniently remote epoch,
when all the relevant scales are well in the linear regime.
Notice that, compared with the definition in Ref. [3], we
have an overall factor e−η, such that the linear growing
mode corresponds to ϕa = const. We can then rewrite
the continuity and Euler equations in compact form, as

(δab∂η +Ωab)ϕb(k, η) = eηγabc(k, −p, −q)

× ϕb(p, η)ϕc(q, η) , (1)

where Ω =

(

1 −1
−3/2 3/2

)

and repeated in-

dices/momenta are summed/integrated over.

We have defined a vertex function, γabc(k,p,q)
(a, b, c,= 1, 2) whose only non-vanishing elements are
γ121(k, p, q) = 1/2 δD(k+p+q)α(p,q), γ222(k, p, q) =
δD(k+p+q)β(p,q), and γ121(k, p, q) = γ112(k, q, p),
where α(p,q) = [(p+q)·p]/p2 and β(p,q) = (p+q)2(p·
q)/(2p2q2).
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Besides the vertex, the other relevant dynamical quan-
tity is the linear retarded propagator, which gives the
linear evolution in η of ϕa, ϕ

0
a(k, η) = gab(η, η

′)ϕ0
b(k, η

′),
with η > η′ (the subscript “0” indicates solutions of the
linear equations, eηγabc = 0), which reads gab(η, η

′) =
[B + A exp(−5/2(η − η′))]ab θ(η − η′), with θ the step-

function, B = 1
5

(

3 2
3 2

)

and A = 1
5

(

2 −2
−3 3

)

.

The growing (ϕa ∝ const.) and the decaying (ϕa ∝

exp(−5/2η)) modes can be selected by considering initial
fields ϕa proportional to ua = (1, 1) and va = (1,−3/2),
respectively.

To extend the validity of this approach to ΛCDM, we
reinterpret the variable η as the logarithm of the linear
growth factor of the growing mode, i.e. η = ln(D+/D+

in).
This approximation has been shown to accurately fit N-
body simulations for different cosmologies [1].

Our aim is to apply methods familiar in quantum field
theory to construct generating functionals for quantities
like the PS, bispectrum, etc. ... The starting point is
to write down an action giving the equation of motion
(1) at its extrema. One can realize that a new, auxiliary,
doublet field χa has to be introduced to this aim, and
that the action is given by

S =

∫

dη [χa(−k, η) (δab∂η +Ωab)ϕb(k, η) (2)

−eηγabc(−k,−p,−q)χa(k, η)ϕb(p, η)ϕc(q, η)] .

Varying the action S w.r.t. χa gives precisely Eq. (1),
while varying it w.r.t. ϕa yields an equation solved by
χa = 0.

The probability of a classical field configuration is a
delta function centered on the solution of the equation of
motion. By averaging over Gaussian initial conditions,
one can show [6] that the generating functional of corre-
lation functions involving the ϕ and χ fields is the path-
integral

Z[Ja, Kb; P
0] (3)

=

∫

DϕaDχb exp

{
∫

dηdη′
[

− 1

2
χaP

0
abδ(η)δ(η

′)χb

+ iχag
−1
ab ϕb − ieη γabcχaϕbϕc + iJaϕa + iKbχb

]

}

,

where Ja and Kb are external sources and the momen-
tum dependence is everywhere implicit. Here P 0

ab(k) =
P 0(k)uaub and P 0 is the linear PS at the initial “time”
η = 0, having assumed pure growing-mode initial condi-
tions. As usual, we define also the generator of connected
Green’s functions W [Ja,Kb] = −i lnZ[Ja,Kb] and, for
1-particle irreducible (1PI) ones, the effective action
Γ[ϕa, χb] = W [Ja,Kb]−

∫

dη d3k(Jaϕa+Kbχb), in terms
of the “classical” fields, ϕa[Jc,Kd] = δW [Jc,Kd]/δJa and
χb[Jc,Kd] = δW [Jc,Kd]/δKb. In linear theory the path-

FIG. 1: Feynman rules

integral can be performed analytically,

Z0[Ja,Kb;P
0] = exp

{

−

∫

dηdη′[ 1
2
Ja(η)P

L
ab(η, η

′)Jb(η
′)

+ iJa(η)gab(η, η
′)Kb(η

′)]

}

, (4)

with PL
ab(ηa, ηb; k) = gac(ηa, 0)gbd(ηb, 0)P

0
cd(k) the lin-

early evolved PS.
Standard methods of PT can be applied, using the

Feynman rules sketched in Fig. 1. There are three build-
ing blocks: the linear propagator gab, the linear PS PL

ab

and the vertex eηγabc. The Feynman diagrams con-
structed using these rules are in one-to-one correspon-
dence with those of Ref. [3], and reproduce all the known
results of PT [2].
The full propagator, PS and vertex can be obtained

from W and Γ as (δ2W/δJaδKb)J,K=0 ≡ −δ(k +
k′)Gab, (δ2W/δJaδJb)J,K=0 ≡ iδ(k + k′)Pab and
(δ3Γ/δχaδϕbδϕc)ϕ, χ=0 ≡ −Γabc(ka + kb + kc; η).
Using the definitions of effective action and classi-

cal fields above, one can show that the full PS has
the structure Pab = P I

ab + P II
ab , where P I

ab(k; η, η
′) =

Gac(k; η, 0)Gbd(k; η
′, 0)P 0

cd(k) and P II
ab (k; η, η

′) =
∫ η

0 dη′′
∫ η′

0 dη′′′Gac(k; η, η
′′)Gbd(k; η

′, η′′′)Φcd(k; η
′′, η′′′),

where Φab is defined through (δ2Γ/δχaχb)ϕ,χ=0 ≡

iP 0
ab(k)δ(η)δ(η

′) + iΦab.

The starting point of our formulation of the RG is a
modification of the primordial PS appearing in Eq. (3),
as P 0(k) → P 0

λ(k) = P 0(k)θ(λ − k). Inserting the
truncated PS in Eq. (3) yields a generating functional
Zλ[Ja, Kb; P

0] ≡ Z[Ja, Kb; P
0
λ ], that describes a ficti-

tious Universe, whose statistics of initial data is modified
by suppressing all fluctuations with wavenumber larger
than λ. On the other hand, the dynamical content, en-
coded in the linear propagator and in the structure of the
interaction, is left unchanged.
In the λ → ∞ limit, all the fluctuations are included,

and we recover the physical situation. Increasing the



3

FIG. 2: RG equation for the propagator Gab,λ

FIG. 3: RG equation for Φab,λ

cutoff from λ = 0 to λ → ∞, the linear and non-linear
effect of fluctuations of higher and higher wavenumber is
gradually taken into account. This process is described
by a RG equation [5, 6] which can be obtained by taking
the λ derivative of Zλ,

∂λZλ =
1

2

∫

dηa dηbd
3q δ(λ−q)P 0

ab(q)δ(ηa)δ(ηb)
δ2Zλ

δKbδKa

.

(5)
Taking successive derivatives w.r.t. the sources of this

master equation – or of the analogous ones for W and
Γ – one can obtain the RG evolution of any physical
quantity. The structure of the equation is such that the
evolution of a correlation function of order n involves all
correlations up to order n+ 2. The RG equation for the
propagator and for the function Φab,λ are represented in
Figs. 2 and 3, respectively, where the thick lines indicate
full propagators, the dark box is the full PS Pab,λ, dark
blobs are full 1PI functions, and the crossed box is the
RG kernel obtained by deriving w.r.t. λ the θ function
multiplying the PS in P I , that is

Kab,λ(k, η, η
′) = Gac,λ(k; η, 0)Gbd,λ(k; η

′, 0)P 0
cd(k) δ(λ−k) .

(6)
A recipe can be given to obtain the RG equation for

any given quantity [6]:
i) write down the 1-loop expression for the quantity of

interest, obtained using any needed vertex, (for instance,
in Figs. 2, 3 we have not only the vertex χϕϕ, but also
χχϕ, χϕϕϕ and χχϕϕ, which vanish at tree-level);
ii) promote the linear propagator, the PS and the ver-

tices appearing in that expression to full, λ-dependent
ones;
iii) take the λ-derivative of the full expression, by

considering only the explicit λ-dependence of the step-
function contained in P I

λ .
It should be emphasized that the RG equations ob-

tained following these rules are exact, in the sense that
they encode all the dynamical and statistical content of
the path-integral (3) or, equivalently, of the continuity

and Euler equations supplemented by the initial PS. Dif-
ferent approximation schemes can be attempted, includ-
ing of course PT, which can be recovered by using quanti-
ties up to the l-th loop order in the RHS to get the l+1-th
one by performing the λ-integration. However, our RG
equations are most indicated for non-perturbative resum-
mations.
As a first step, we note that the full 3 and 4-point

functions appearing in the RG equations for Gab,λ and
Φab,λ are also λ-dependent quantities, which can be com-
puted by RG equations, also derived from Eq. (5). These
equations depends, in turn, on full, connected, and λ-
dependent functions up to 5 (for the 3-point function) or
6 (for 4-point ones) external legs, which also evolve ac-
cording to RG equations. Approximations to the full RG
flow then amount to truncating the full hierarchy of cou-
pled differential equations, and using some ansatz for the
full n-point functions appearing in the surviving equa-
tions. We will approximate the full RG flow by keeping
the running of the 2-point functions (propagator and PS)
and keeping the tree-level expression for the trilinear ver-
tex χϕϕ. In this approximation, only the first diagrams
on the RHS of Figs. 2 and 3 contribute to the running.
The 1-loop result for the propagator [2] can be recov-

ered by using the tree-level expressions for the kernel
Kab,λ and for the propagators on the RHS of Fig. 2.
Using running propagators on the RHS of Fig. 2, while

keeping the kernel at tree-level, we get a RG equation
which can be analytically integrated in the k ≫ q = λ
limit,

∂λGab,λ(k; ηa, ηb) = −Gab,λ(k; ηa, ηb)
k2

3

(eηa − eηb)
2

2

×

∫

d3q δ(λ− q)
P 0(q)

q2
, (7)

having used the property ufγefg(−k,q,k − q) ≃

δeg(k/2q) cosk ·q, valid in this limit. Imposing the initial
conditionGab,λ=0(k, ηa, ηb) = gab(ηa, ηb), and integrating
up to λ = ∞, one gets

Gab(k, ηa, ηb) = gab(ηa, ηb)e
−k2σ2

v

(eηa−e
ηb)2

2 , (8)

where σ2
v is the velocity dispersion, defined as σ2

v ≡

(1/3)
∫

d3qP 0(q)/q2. Two comments are in order. The
RG improvement discussed here has a clear interpreta-
tion in terms of PT. Indeed, as shown in [3], the result
in Eq. (8) can be obtained also by resumming an infinite
class of diagrams. It is amazing how the same result, that
in PT requires a careful control of the combinatorics, is
here obtained by a simple, 1-loop, integration. The sec-
ond comment has to do with the dramatic modification
of the UV behavior of the resummed propagator w.r.t.
the linear one, and on its impact on the RG flow. In-
deed, when the propagator of Eq. (8) is employed in the
kernel Kab,λ, an intrinsic UV cut-off is provided to the
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RG flow: fluctuations with large momenta are exponen-
tially damped, so that the RG evolution freezes out for
λ ≫ e−η/σv. This is a genuinely non-perturbative ef-
fect, which is masked if one considers PT at any finite
order. In other words, the full equations of motion are
much better behaved in the UV than their perturbative
approximations.
Improving further on the approximations leading to

Eq. (8), we relax the k ≫ λ condition, keeping the full
momentum dependence of the tree-level vertex, and us-
ing λ-dependent propagators also in the kernel (6). For
the full propagator we use the ansatz Gae,λ(k, s1, s2) =

Hae,λ(k) exp[−k2σ2
v

(es1−es2)2

2 ], in which we have fac-
tored out the leading time behavior of Eq. (8). Inserting
the expression above in the RG equations we obtain a
closed system of four coupled differential equations, one
for each component of Hae, λ. In order to simplify it fur-
ther, we consider the two combinations Ga1,λ + Ga2,λ,
(a = 1, 2), therefore, for each external momentum k, we
solve a system of two coupled differential equations. Full
details will be given in [6]. The exponential damping of
Eq. (8) is exhibited also by our more refined scheme.
The RG evolution of the propagator governs that of the

P I
ab,λ contribution to the full PS. On the other hand, the

evolution of the other contribution, P II
ab,λ, can be com-

puted by solving the equation in Fig. 3. We approximate
the exact RG equations along the same lines we follow in
the computation of the propagator. In particular, the η
integrations in the expression for P II

ab require an ansatz
for its ‘time’ dependence. In analogy with Eq. (8), we use,
again on the RHS of the RG equation, P II

ab,λ(q, ηa, ηb) =

P̄ II
ab,λ(q, s1, s2) exp[−q2σ2

v
(eηa−es1 )2+(eηb−es2 )2

2 ]. We
compute the PS at equal ‘times’, ηa = ηb = η, with the
initial condition P II

ab,λ=0(k) = 0 . We consider a spatially

flat ΛCDM model with Ω0
Λ = 0.7, Ω0

b = 0.046, h = 0.72,
ns = 1. The primordial PS P 0 is taken from the out-
put of linear theory at zin = 35, as given by the CAMB
Boltzmann code [7].
In Fig. 4 we plot our results for the PS (solid lines), in

the momentum range relevant for the BAO, at z = 0, 1,
and 2. The short-dashed lines correspond to the linear
theory and the long-dashed ones to 1-loop PT (which, at

z = 0 has been truncated for k
>
∼ 0.17 h/Mpc, where P I

takes negative values, signaling the breakdown of the per-
turbative expansion). The black squares are taken from
the numerical simulations of Ref. [8]. To enhance the
BAO feature, each PS has been divided by the linear one,
in a model without baryons [9]. In the peak region, our
RG results agree with those of N-body simulations to a
few percent accuracy down to redshift z = 0, where linear
and 1-loop perturbation theory badly fail. Thus, the dy-
namical behavior in this momentum range appears to be
captured fairly well by the approximations implemented
by our approach, namely the ‘single stream approxima-

tion’, leading to Eq. (1), and the non-linear corrections of

FIG. 4: The power-spectrum at z = 2, 1, 0, as given by the
RG (solid line), linear theory (short-dashed), 1-loop PT (long-
dashed), and the N-body simulations of [8] (squares).

the two-point functions only, i.e. the propagator and the
PS. The RG performance can be systematically improved
by increasing the level of truncation of the full tower of
differential equations, the next step being the inclusion
of the running of the trilinear vertex.
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